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Abstract

Student performance is commonly measured using summative assessment
methods such as midterms and final exams as well as high-stakes testing.
Although not as common, there are other methods of gauging student
performance. Formative assessment is a continuous, student-oriented form
of assessment, which focuses on helping students improve their performance
through continuous engagement and constant measurement of progress.

One assessment practice that has been in use for decades in such a
manner is peer-assessment. This form of assessment relies on having
students evaluate the works of their peers. The level of education in which
peer-assessment is used may vary across practices. The research discussed
here was conducted in a higher education setting.

Despite its cross-domain adoption and longevity, peer-assessment has
been a practice difficult to utilize in courses with a high number of students.
This directly stems from the fact that it has been used in traditional
classes, where assessment is usually carried out using pen and paper. In
courses with hundreds of students, such manual forms of peer-assessment
would require a significant amount of time to complete. They would also
contribute much to both student and instructor load.

Automated peer-assessment, on the other hand, has the advantage of
reducing, if not eliminating, many of the issues relating to efficiency and
effectiveness of the practice. Moreover, its potential to scale up easily
makes it a promising platform for conducting large-scale experiments or
replicating existing ones.

The goal of this thesis is to examine how the potential of automated
peer-assessment may be exploited to improve student engagement and to
demonstrate how a well-designed peer-assessment methodology may help



teachers identify at-risk students in a timely manner.

A methodology is developed to demonstrate how online peer-assessment
may elicit continuous student engagement. Data collected from a
web-based implementation of this methodology are then used to construct
several models that predict student performance and monitor progress,
highlighting the role of peer-assessment as a tool of early intervention.

The construction of open datasets from online peer-assessment data
gathered from five undergraduate computer science courses is discussed.

Finally, a promising role of online peer-assessment in measuring levels
of student proficiency and test item difficulty is demonstrated by applying
a generic Item Response Theory model to the peer-assessment data.

Keywords

[peer-assessment, student engagement, early intervention, performance
prediction, learning analytics, datasets, higher education]
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Introduction

The rapid evolution of Information and Communication Technologies and
their widespread adoption by businesses and other institutions towards the
end of the previous century have transformed many aspects of our lives.
Technological advances have since dictated the creation or ratification of
many standards in sectors such as healthcare and finance.

The Internet has been the main driving force behind the evolution
of marketing strategies, business models and many other commercial
activities. Education, however, is one of a few sectors which have not
embraced such technological advances in their entirety. Although ICT
has improved efficiency in performing some routine activities that are not
directly related to the teaching-learning process, the process itself is seldom
transformed by ICT. We are still in an era where the traditional classroom
largely remains the gold-standard in the delivery of lectures. More often
than not, the teacher is still required to be physically present in a class
with a large number of students.

Lack of adoption of educational technology is even more pronounced in
higher education. It may be true that face-to-face interaction is an essential
part of communication that ICT will never replicate. Nonetheless, there
are other problems in traditional education that ICT has the potential to
address.
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One of these is the issue of assessment, which is more prevalent in
higher education settings. This prevalence is due to the typically large
number of students that enrol in courses. The usual routine of assigning,
collecting, and evaluating assignments in freshman courses with over a
hundred students is virtually inexistent, with the exception of many US
institutions where such tasks are usually carried out by teaching assistants.
In the majority of institutions across the globe, however, students are
usually evaluated by their performance in mid-terms and final exams. This
is mainly due to the fact that the amount of time and effort required on
part of the teacher in disseminating, collecting and grading of assignments
increases significantly with the number of students attending the course.

Although the process has been slower than in other disciplines,
technological advances are being adopted in the field of education as well.
Recent advances in Natural Language Processing (NLP) and Machine
Learning (ML) have been used in numerous studies to demonstrate that
several levels of text processing can indeed be automated.

Essay grading has also benefited from similar advances. A number of
Massive Open Online Courses (MOOCs) such as Coursera already make
use of such solutions. Some commercial solutions also use a combination
of human- and machine-assigned scores. A prominent example is the essay
grading technology used by Educational Testing Service (ETS).

The issue of plagiarism in higher education has also been addressed using
NLP and ML techniques. Turnitin, for instance, is a commercial plagiarism
checking solution that is currently in use by many online learning platforms.

Other applications of ICT in education relate to transforming or
reshaping pedagogical models using multimedia technologies, which are
probably the most common form of technology in all levels of education.
The Flipped Classroom approach, for instance, makes use of online learning
platforms and short video lectures to transform the role of instructors into
tutors.

Assessment and evaluation of student performance is one of the
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main topics in education where alternative solutions to traditional forms
of assessment had been proposed and experimented with long before
computers were even powerful enough to allow interaction through
Graphical User Interfaces. Although the goals may vary, several
alternatives to the teacher being the sole assessor of students are now
in use. Two of these are self-assessment and peer-assessment. Broadly
put, the former focuses on how to improve student learning through the
student’s reflection on or assessment of their own work. The latter, puts
more weight on how students could learn by providing feedback on their
peers’ work as well as learning by incorporating feedback from their peers.

Several opportunities exist for transforming these alternative forms of
assessment. In particular, the work discussed in this thesis focused on
semi-automation of peer-assessment and how to take advantage of the
opportunities that arise from this automation. These opportunities are
related to learning strategies used by students as well as choices of pedagogy
for the teacher.

1.1 Motivation

Higher education dropout rates are generally high across the world,
even in developed nations. The National Center for Education Statistics
(NCES) of the US Department of Education put the rate of those first-time,
full-time undergraduate students who do not graduate within 6 years from
a 4-year degree granting institution at 40% for the fourth quarter of 2008
[48]. While northern and western Europe have a much lower rate, Italy
has one of the highest university dropout rates, with only 32% of 2012’s
Italian youth expected to complete university education in their lifetime
[67].

A 2015 report by the Organisation for Economic Co-operation and
Development (OECD) identifies several factors that have led to high
dropout rates in higher education across European universities [67]. These
may be factors at the national level such as education policies, tuition fees
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or student financial aid. Other factors at the individual level are explained
by the OECD report as relating to family or socioeconomic background,
gender, ethnic background, cognitive competencies and motivational
disposition of the student.

A study involving 6000 students across 18 baccalaureate-granting US
institutions found that engagement had positive, statistically significant
effects on retention and student success, especially at the first two-years of
college [54].

The main motivation behind this thesis was, therefore, exploring ways to
address the problem of high dropout rates from the perspective of improved
student engagement as a result of application of computer science solutions.
The aim was to design solutions that, in particular, focused on monitoring
competencies and improved student engagement.

To this end, the work discussed in this thesis involved several batches
of students enrolled in first and second year undergraduate-level computer
science courses at the University of Trento, over a period of four years.

Peer-assessment is a practice with goals that have very much in common
with the motivations of this work. It is for this reason that peer-assessment
was chosen as the appropriate pedagogical model for fostering student
engagement and performance monitoring.

As a pedagogy, peer-assessment faces its own problems related to both
effectiveness and efficiency. The work discussed in this thesis addressed
these problems through the introduction of an online peer-assessment
system that automated the majority of activities carried out by students
and the teacher.

Automation of such tasks had returns that improved efficiency and
effectiveness. Use of the online peer-assessment platform by students led
to continuous generation of data about student activity. These data were,
in turn, utilized to build models that allowed monitoring student progress
and early prediction of expected student performance.
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Prediction of student performance is not limited to peer-assessment.
Indeed, student performance prediction uses several sources of data and
their combinations to predict various outcomes. Dropout is one of the most
common outcomes that automated prediction systems focus on. Data from
intermediate quizzes, midterms, take-home assignments and achievements
in earlier years of school have all been used to make predictions.

A number of studies use peer-assessment data to predict dropout in
MOOCs. Peer-assessment activities may be designed as small mini-tasks
that require relatively small amount of time to complete. This would
enable students to carry out several mini-tasks in a continuous manner.
This continuous stream of data could then be used to predict more
specific outcomes than just dropout, such as expected performance levels
of students.

Peer-assessment data from previous batches of students may also be
used to construct models that could make early predictions to identify
those who may be at risk of dropping out. Such tools of intervention are
especially important in courses with a large number of students, where the
instructor may have neither the resources nor the time to closely monitor
students.

Moreover, automated peer-assessment may be seen as having the
auxiliary role of shifting instructor load to students. In the Italian higher
education system, for instance, the concept of graduate assistants, who
would carry out the professor’s voluminous repetitive tasks, is largely
nonexistent. Automated peer-assessment, has the additional goal of
distributing assessment loads over to students, given that the assessment
tasks are well-defined and structured. This, however, has very rarely been
the focus of peer-assessment studies, probably due to concerns regarding
the validity and reliability of peer-assessment itself, expressed in many
studies.

Other motivations to explore additional roles of automated
peer-assessment emerged through the course of this study. These
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were investigation of its potential as a tool of early intervention and how
data from automated peer-assessment platforms could be used to model
test items and student proficiencies.

Measuring the true effect of a proposed strategy to a problem, especially
when the problem has to do with the teaching-learning process, requires
observation of the effects of the strategy over a period of time well
beyond the span of this research work. It is, nonetheless, hoped that this
work will be the first attempt at realizing a novel, technology-supported
peer-assessment, which future work could build upon.

1.2 Thesis Goals

The main goal of this thesis is to demonstrate the advantages of
automating peer-assessment practices and to explore how opportunities
that are brought about by such automation can be made full use of.

The two main hypotheses of this thesis are:

• A well-designed online peer-assessment methodology can promote
student engagement and

• Data from such methodology can serve as a tool of early intervention
by predicting student success and identifying at-risk students in a
timely manner.

Automated peer-assessment tasks could promote student engagement
and serve as good indicators of student performance. The approaches
demonstrated in this study foster student engagement by encouraging
continuous participation in online peer-assessment tasks. As a result,
a significant correlation may be established between participation in
carefully designed online peer-assessment tasks and student performance
in summative assessment tasks such as end-of-course exams.
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An extended goal of this thesis is to apply principles of Item Response
Theory (IRT) in order to model the quality of students’ expected responses
to questions provided by their peers.

1.3 Thesis Contributions

This thesis is interdisciplinary in that it brings together the fields
of education and computer science. Motivated by recent successes in
applications of computer science in sectors such as healthcare, it aims to
address problems in peer-assessment in higher education and create new
opportunities by applying solutions from computer science and engineering.

This thesis is novel in that it advances to a further extent than before
efforts to apply machine learning and software engineering solutions that
revitalize peer-assessment practices, both in technical and pedagogical
aspects.

The contributions of this thesis are:

1. An online peer-assessment platform that enhances student
engagement throughout a course

2. A novel design of peer-assessment tasks that advances the role of
peer-assessment as a tool of early intervention in higher education
settings

3. A linear-regression model trained with peer-assessment data for
predicting end-of-course student performance

4. Peer-assessment driven linear regression models that can trace and
predict student progress within a few weeks of a course’s start

5. A novel attempt to model student proficiencies and test item
difficulties using questions submitted by students.

6. Publicly available peer-assessment datasets
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1.4 Structure of the Thesis

This thesis is structured as follows.

• Chapter 1 - Introduction - This chapter provides a description of
the motives and reasons behind this thesis. It introduces the reader
to the main goals of this thesis and establishes the topics on which it
focuses. It explains in more detail the contributions of this thesis and
how the work presented is structured.

• Chapter 2 - Literature Review - As discussed earlier, this
thesis has an interdisciplinary nature. It adopts the practice of
peer-assessment in higher education as the platform on which the
thesis work is built. It explores the applicability of machine learning
techniques to peer-assessment data to predict expected student
performance. Therefore, this chapter provides a review of recent
literature in both peer-assessment in higher education and student
performance prediction.

• Chapter 3 - Peer-Assessment for Promoting Student
Engagement - This chapter is dedicated to the discussion of the
web-based peer-assessment platform that has been the foundation
of experiments that spanned four years. These experiments were
conducted in actual classes, where students actively used the online
peer-assessment platform. Results of two rounds of student surveys
that confirmed the importance of the tasks in enhancing student
engagement are reported here.

• Chapter 4 - Online Peer-Assessment as a Tool of Early
Intervention - This chapter builds upon the findings reported
in the previous two chapters and studies the correlation between
participation in online peer-assessment tasks and successful course
completion.

• Chapter 5 - Predicting Student Success from
Peer-Assessment Activities - This chapter explores how online
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peer-assessment data can be used to train a linear regression model
that could predict final exam scores of students between the range
18-30. It further argues how predicting a range may be beneficial
and proceeds to predict grades, with significant improvement in
performance.

• Chapter 6 - Monitoring Student Progress from
Peer-Assessment Activities - This chapter focuses on making
modular and continuous predictions of student performance. It
discusses weekly predictions of student performance over an eight
week period for two courses. It proposes several interpretations of
progress and what this series of predictions may look like in the
case of two of these interpretations. It demonstrates that online
peer-assessment tasks could trace student progress with small degree
of error within the first few weeks a course.

• Chapter 7 - Estimation of Student Proficiency and Test Item
Difficulty from Peer-Assessment Data - This chapter explores
whether the quality of students’ answers to peer-submitted questions,
expressed in terms of peer-assigned marks, could fairly indicate
the difficulty level of the questions. Moreover, it studies whether
such peer-assigned marks could be used to model the proficiency
of students. To this end, the linear regression models discussed in
earlier chapters are used in combination with one of the most common
response modelling approaches, Item Response Theory (IRT), in order
to build an IRT model. A validation framework is used to evaluate
the performance of the model.

• Chapter 8 - Online Peer-Assessment Datasets - This chapter
describes the construction of the datasets used in this study. It
proposes experiments that may be conducted using these datasets.

• Chapter 9 - Discussion and Conclusion - This chapter
summarizes the main objectives of this thesis, the studies conducted in
order to achieve them and to what extent they were met. It provides
a summary of the work discussed in each of the chapters and how
it relates to the main goals of this thesis. Challenges encountered
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throughout the course of this work and measures taken to overcome
them are discussed. A prospect of work yet to be carried out and
opportunities for future research constitute the closing remarks of this
chapter.

1.5 Relevant Publications
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2

Literature Review

2.1 Introduction

As stated in the previous chapter, the work discussed in this thesis is
interdisciplinary in that it brings together the practice of peer-assessment
in higher education and student performance prediction using a machine
learning approach.

It is, hence, important that recent work in both peer-assessment and
student performance prediction are reviewed beforehand. Accordingly, this
chapter dedicates one section to the review of each area of research.

2.2 Peer-Assessment in Higher Education

Assessment and evaluation of students in higher education settings
mostly follow a summative format, where the extent to which students have
achieved specific learning goals is commonly measured at specific intervals
throughout a course [41, 64, 65]. Typical summative assessment tasks
include midterms, final exams and written assignments that are submitted
as parts of a coursework. Both criterion-based and norm-referenced forms
of summative assessment are in use. The first form establishes a student’s
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performance by determining whether specific and clear public standards
are met, whereas the latter evaluates a student’s standing relative to the
achievements of other students in the same cohort [41, 64].

Doubts about the reliability and effectiveness of summative assessment
have been cast by scholars such as Boud and Knight, who highlighted
the importance of feedback and argued that goal of assessment should be
promoting learning [50, 14].

Formative assessment is a form of assessment that is built on top of such
arguments. It is intended to provide feedback and support to students so
they could monitor their own progress and identify their strengths and
weaknesses. Formative assessment should incorporate detailed feedback
and should not contribute towards final marks.

One non-traditional assessment approach, which commonly adopts
formative assessment is peer-assessment. In this form of assessment,
students or groups of students assess the woks of their peers. A formal
definition provided by Topping for peer-assessment is ‘... an arrangement
in which individuals consider the amount, level, value, worth, quality, or
success of the products or outcomes of learning of peers of similar status
[89].

The advantage of feedback and forms of assessment that heavily rely
on it could, however, quickly diminish with growth in class size. The
significant, and barely manageable, increase in instructor workload that
would be incurred by introducing formative assessment and detailed
feedback in university courses could by itself deter the adoption of the
method.

The same is true for peer-assessment, at least in higher education
settings. Implementing peer-assessment in a course usually requires the
extra effort of carrying out repetitive tasks such as the design, distribution
and collection of peer-assessment tasks. The manual nature of such tasks
thus makes the practice an unrealistic candidate for formative assessment
in classes with a large number of students.
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Peer-assessment has been used in higher education settings for over half
a century. Research has since shown that its manual nature is one of
the many factors that determine its efficiency and effectiveness. Perhaps
the most influential works that consolidate findings of research conducted
before the turn of the century are those carried out by Topping [89] and
Falchikov and Goldfinch [27].

Topping identified several variables that determined the effectiveness of
peer-assessment, which varied among the 109 studies that he reviewed.
Variation in curriculum areas, objectives of peer-assessment projects,
whether peer-assessment was conducted in summative or formative
settings, the type of work being assessed, degrees of agreement between
peer- and teacher-assigned scores were among the factors he identified.

Consequently, Topping concluded that the existence of too many
variables across the studies he examined meant that it was difficult to
establish whether peer-assessment was either a sound or practical approach
in higher education settings.

Two years later, Falchikov and Goldfinch argued that a meta-analytic
approach needed to be followed to study whether peer-assessment was a
reliable and valid approach. The meta-analytic approach they applied to
over fifty studies that compared peer- and teacher-assigned marks identified
population characteristics, the work being assessed, the course level, the
nature of assessment criteria, and the number of teachers and students
involved in peer-assessment tasks as the main variables that affected the
quality of the studies. They concluded that, on average, peer marks agreed
with teacher marks. They identified six factors that would most likely
influence improvements in agreement between peer- and teacher-assigned
marks. They concluded that:

• Studies in which well-specified criteria were provided to students
and they were asked to provide overall judgments instead of specific
judgment per criteria had better peer-teacher mark agreements.

• Educational peer-assessment studies seemed more effective than those
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conducted in professional settings.

• Better experimental designs led to better agreements.

• There was a weak relationship between increase in the number of peers
per single assessment task and decrease in score agreements.

• Medical subject areas tended to have less peer and teacher score
agreements.

• Better agreements between peer and teacher scores were achieved
when students were involved in the definition of clearly stated scoring
criteria.

Recent studies in peer-assessment have focused on a number of themes
including peer-feedback, design strategies, student and teacher perceptions,
social and psychological factors, student engagement, variables and
qualities across studies, design strategies and validity and reliability of
the practice.

Validity, which refers to score agreements between peers and teachers,
and reliability, which refers to closeness of scores assigned by multiple peers,
are still the most studied factors. However, results of the large number
of studies conducted in this area have not managed to either support or
reject the hypothesis that peers are reliable markers. The influential study
by Falchikov and Goldfinch found an average correlation of 0.69 for the
fifty-six studies. Nonetheless, this degree of correlation, although high,
is not strong enough to warrant definitive substitution of peer marks for
those of teachers.

The settings and variables of peer-assessment tasks in the studies
considered by Falchikov and Goldfinch varied with experiments. This
was especially the case for sample sizes and number of students involved
per assessment task. Automated peer-assessment environments could help
alleviate problems related to validity and reliability in a number of ways.
Before making the case for automated peer-assessment, however, formal
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definitions of both traditional or manual and automated peer-assessment
are offered.

Traditional (Manual) Peer-Assessment practices are those that do not
utilize electronic equipment such as Electronic Voting Systems (EVS) or
clickers such as those used in peer-instruction [26, 81] or information
technology artifacts such as computer software in order to improve the
efficiency and effectiveness of processes. In such practices, the work to
be assessed is either hand-written or orally presented. The collection and
assignment of the work to be assessed is carried out manually. Students rate
and comment on their peers’ works by providing either oral or hand-written
feedback. The specification and communication of criteria, if any, takes
place in the form of traditional classroom discussions or lessons.

Automated Peer-Assessment on the other hand may utilize electronic
equipment or information technology artifacts to automate, partially
or entirely, the processes involved. Typical automated peer-assessment
environments use computer software to facilitate the distribution and
delivery of assessment tasks as well as the completion of tasks and
communication of assessment results. Advanced computer science solutions
such as NLP and ML may also be used to grade essays. These grades may
be used to calibrate peer-assigned marks. Some automated peer-assessment
tools also provide teachers the option to specify assessment criteria to
be used by students when assessing their peers’ works. Semi-automated
peer-assessment refers to practices in which only certain processes such as
distribution and collection of assessment tasks are automated.

Regarding problems of validity and reliability, the case for automation
is made through the identification three potential improvements.

Firstly, automation of peer-assessment tasks improves scalability of
experiments by automating redundant and time-consuming activities such
as distribution and collection of assignments that do not necessarily
contribute to the objectives of the practice itself. With such activities
that prohibit large-scale experiments out of their way, researchers could
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then conduct several cycles of new experiments or replicate previous ones
with much larger cohorts of students, for roughly the same amount of
time it would take to conduct manual versions of those experiments.
Therefore, automation offers sustainability to the practice and allows
extensive research that could eventually lead to a widely shared consensus
regarding the practice’s validity and reliability.

Secondly, automation could pave the way to efficient analysis of large
amounts of teacher and student activity data collected over several runs of
experiments. Data mining techniques could be deployed in automated
environments to extract important information such as time spent on
completing assignments and other online activity, which might otherwise
be unavailable or difficult to obtain.

Thirdly, automated calibration of peer scores according to information
automatically extracted from repeated runs of peer-assessment experiments
could help adjust peer-assigned scores to improve agreement with teacher
scores (Hamer et al. 2005). Automated Essay Scoring (AES) and
Calibrated Peer Review (CPR) both take advantage of automation.
Massive Open Online Courses (MOOCs) usually apply one of these
techniques to assess students’ works. CPR relies on rating abilities of
students, which are determined through an initial assessment, to calibrate
peer-assigned scores. AES, on the other hand, solely uses ML and NLP
techniques to rate essays. While both approaches are not necessarily
mutually exclusive, most notable MOOC providers such as Courseera
and EdX have opted to integrate only one of them into their courses
[11]. Automation is the path to applying any, or a combination, of these
approaches to peer-assessment tasks.

Apart from validity and reliability, most literature reviews in
peer-assessment have focused on factors such as student involvement,
identification of variables of peer-assessment, and quality factors. Student
involvement is one of the most important factors that determine the
effectiveness of peer-assessment [28, 87]. According to Bloxham and West
(2004) [13] and Sluijsmans et al. [83], student involvement should go
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beyond participation in assessment tasks; students should take part in
the specification of assessment criteria as well.

As the factors that have been of more importance in peer-assessment
studies over the years are unveiled, it also becomes apparent that many
of the requirements for setting up the ideal peer-assessment environment
become more and more difficult to meet as one moves from a class with
a handful of students to large classes, such as those common in freshman
courses. The need for efficiency becomes stronger than ever, so does the
case for automation.

Student involvement has been addressed by several studies, which
recommended that students be actively involved in the various stages
of peer assessment. Falchikov argued that any assessment task must
have students as active participants in order for it to be effective, should
allow replication and provide students with clear instructions regarding the
processes involved. The importance of student involvement in all stages is
also highlighted by Tillema et al. [87], while the importance of involving
students in the specification of assessment criteria has also been stressed
in other studies [13, 83].

One of the largest manual peer-assessment studies so far was a
three-phase study conducted over a two-year period, involving 1654
students and 30 staff from three departments [12]. This study
demonstrated how rigorous, long-term peer-assessment could be conducted
and followed an action research process to design peer-assessment
procedures. Students were involved in the development of clearly stated
criteria that were subsequently revised by eliciting their continuous
involvement.

While the study had high quality and was exemplary, it lacked attributes
that would promote sustained implementation of the proposed approach.
The distribution of assignments to peers was manual, and given the high
number of students involved, such was the effort needed to implement
anonymous peer assessment that some departments subsequently opted to
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forgo anonymity. Lack of anonymity is perceived by students as a negative
factor that deters participation in peer-assessment tasks. It undeniably
increases the risk of bias.

Once more, the argument for automating peer-assessment is
strengthened by the fact that automation seamlessly introduces anonymity
and random task assignment features into the process.

While an overall positive perception of students towards peer-assessment
has been reported by some studies [69, 75, 95, 96, 56, 21, 98, 60], a survey of
1740 students and 460 faculty involved in peer-assessment found that most
students and faculty perceived summative peer-assessment as ineffective
due to concerns about the ability of students to rate their peers [57].

Whether students’ criticism of their peers’ ability has truth or arises
from bias can be well-tested in a peer-assessment environment that
maintains anonymity. A possible scenario is where a teacher plays the
role of a student and assesses ’peers’ in an anonymous experiment where
students are not notified of the teacher’s involvement. Changes in opinions
of students, or otherwise, after the conclusion of the experiment should
provide enough information to accept or reject the null hypothesis that
students are not unreasonably critical of their peers’ ability to assess their
work. An automated peer-assessment environment would be a perfect
candidate for this experiment.

The number of studies comparing peer and teacher marks has steadily
increased since the work by Falchikov and Goldfinch. In this thesis, a
meta-analytic review of fifteen studies published since then was conducted.
The review found similar results to those of Falchikov and Goldfinch. In
addition to the attributes reported by Falchikov and Goldfinch, the review
introduced contribution of peer-assessment marks towards final grade and
anonymity as two other attributes of the studies. After excluding studies
that did not report comparable results, the average correlation between
peer and teacher marks for the eight remaining studies was found to be
high (r=0.8). For five of the studies, the data reported was used to compute
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an effect size (d) of 0.27, which implied strong agreement between peer and
teacher marks (when comparing peer and teacher marks, smaller effect sizes
are sought [27]). Detailed analysis of these studies and an extensive review
of 64 peer-assessment studies published since 2000 is provided in [6].

Many peer-assessment studies are conducted in traditional classroom
environments as one-off experiments that are rarely replicated in similar
settings. Moreover, the opportunities provided by advances in similar
practices such as collaborative learning have seldom been taken advantage
of [51]. As has been proposed throughout this review, applied computer
science could help alleviate much of the problems related to efficiency
and effectiveness of the practice. Lack of important collaboration of
PA practitioners with researchers in other fields is seen as hindering the
sustained development of the practice [51, 85].

ML approaches have been used in other educational settings to
predict student performance but application of statistical methods in
peer-assessment has so far focused on developing weighting mechanisms
to calibrate peer-assigned scores [91, 34, 11, 17].

The work discussed in this thesis introduces two new dimensions. The
first is improving student engagement through automated peer-assessment.
A relationship was established between lack of participation in online
peer-assessment tasks and course incompletion. Chapter four explores how
this relationship was established and proposes automated peer-assessment
as a tool of early intervention.

The other dimension is using prediction models in peer-assessment as
tools of student performance and progress monitoring. This dimension is
demonstrated in chapters five and six. Before discussing how prediction
models could be applied to peer-assessment data, however, a review of their
application in other educational settings and a discussion of their potential
to be applied in settings such as peer-assessment is in order.
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2.3 Student Performance Prediction in Higher
Education

In educational settings, performance prediction is carried out with the
intention of providing students and teachers information that can be used
to measure progress and to identify students at risk of failing well ahead
of time so that appropriate measures are taken both on parts of the
teacher and the student to avoid such risk. For this reason, timeliness
shall be regarded as a necessary albeit hardly sufficient condition for the
effectiveness of performance prediction and other prediction models in
general.

The majority of studies in performance prediction have been conducted
in higher education settings and apply one or more machine learning
algorithms to build performance prediction models. For this reason, this
review focuses on studies in higher education that applied machine learning
techniques to student performance data collected in traditional or online
learning environments, or both.

2.3.1 Evolution of Data Sources in Student Performance
Prediction

Earlier research focused on determining whether standardised test results
that were obtained at earlier levels of education could predict student
success in later years of higher education [30, 25, 44, 3]. Most recent
studies do not incorporate student performance data from lower levels of
education. Those that do so incorporate additional parameters obtained
from more recent achievements such as freshman and sophomore years
[42, 55, 88, 5].

Recent performance prediction studies are refined in the parameters
they utilize, the statistical measures they employ, and the outcomes
they predict. Demographic data, performance on take-home assignments,
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projects, and activity on online learning platforms have all been used to
build performance prediction models. Appendix A provides a list of
performance prediction studies with details of the data used, course levels,
algorithms, number of students, and evaluation results.

The Internet has made it possible to construct online interaction
environments, paving the way for the collection of student data in an
unparalleled manner. MOOCs are a perfect example of this, where data
from tens of thousands of students is used to train statistical models
[10, 74]. Accordingly, recent research in performance prediction has
augmented traditional parameters with online student activity data. This
phenomenon has helped ease the transition from prediction of a binary
outcome such as a pass or a fail to prediction of more fine-grained outcomes
such as grades. Examples of studies that utilized online student activity
data in predicting performance include [2, 7, 8, 80, 52, 37, 59, 103].

Among 46 studies that explored the application of performance
prediction in higher education settings, 70% used at least two student
performance data sources to build their prediction models. Current
semester performance was the most used and high school data, the least.
Figures 2.1 and 2.2 provide detailed information about the data sources.
The chart in figure 1, therefore, shows a higher number than the actual
46 studies because it reflects use of multiple data sources by 70% of the
studies.
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Figure 2.1: Number of Studies per Data Source
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Figure 2.2: Data Source Utilisation per Percentage of Studies
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Figure 2.3: Percentage of Studies per Discipline

2.3.2 Course Levels and Disciplines

Of the 46 studies, the majority used data from courses administered as part
of either computer science or engineering programmes at the undergraduate
level. Of these, many focused on predicting performance of freshman and
second year students enrolled in introductory level courses.

Reasons behind the lack of similar studies in other subject areas or at
different course levels remain an assumption. Two partial explanations
are provided. It may be that utilizing machine learning algorithms is
an immediate advantage that researchers in the field of computer science
have. It could also be that performance prediction has more impact when
conducted at earlier years of college education. Figures 2.3 and 2.4 show
the studies categorized according to disciplines and course levels.
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Figure 2.4: Percentage of Studies per Course Level

2.3.3 Granularity of Performance Prediction – Overall Success
Versus Specific Outcome

The 46 studies also differed in how they interpreted performance. A generic
approach is to predict pass or fail. Some of the studies that followed
this approach include [66, 47, 71, 92, 97]. Others took a further step in
predicting the classification of the degree or achievement [9, 74].

Figure 2.5 shows the studies grouped according to the outcomes they
predicted. Some of these studies predicted overall success as well as
specific outcomes. Predicting overall success in a timely manner serves as
a mechanism of early intervention. Timely prediction of a range or scores
or grades has, however, a more powerful formative value as it provides
granular information about specific performance categories of students
[8]. In recent years, prediction of student performance has become more
fine-grained and sophisticated. Researchers now seek to predict actual
scores for tests and assignments as well as final scores and grades for an
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Figure 2.5: Percentage of Studies per Type of Prediction
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entire course. In its simplest form, effective prediction of such outcomes
has a two-part requirement. The type and amount of student data that is
to be collected form one part and the data analysis and choice of prediction
techniques form the other.

2.3.4 One-Off Versus Continuous Prediction – The Case of
Summative and Formative Prediction Models

Performance prediction models provide a number of advantages for both
students and teachers. In summative assessment environments, prediction
only provides information about end-of-course performance or overall
performance in later years of higher education.

In contrast, student-centred performance prediction aims to
continuously provide information on student progress. For example,
a prediction model integrated into an online learning environment could
provide each student information about their predicted performance and
how this performance relates to those of their peers. Such information
is helpful to students because it helps them identify their strengths and
weaknesses in certain topics. It also helps the teacher measure the overall
progress of the class and identify those students that may require special
supervision. Borrowing from assessment terminology, student performance
prediction can therefore be categorized into formative and summative.

The parameters that are chosen to act as predictors of student
performance essentially determine the type of prediction that is to be made.
Some predictor attributes, once obtained, are highly unlikely to evolve
over time. Hence, it is claimed that although they may provide important
information about expected performance when used together with other
dynamic variables, they hardly contribute to measuring student progress.

To demonstrate this, a scenario is considered where student success at
the end of the first year of college is predicted. A common approach for
building such prediction models is to train a machine learning algorithm
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with student performance data collected from the final years of high school
and demographic background. For the purpose of predicting success at a
critical point such as the end of the first year of college studies, it has been
shown such data are indeed good predictors [44, 1, 36, 90, 63, 76, 19, 38].

However, much of the demographic data seldom changes and academic
performance history from earlier years never does. For this reason,
if a student’s performance is predicted halfway through the first year
of college using the same model, the predictions remain unchanged.
Consequently, the use of such static parameters alone only allows making
one-off predictions.

When combined with data that changes over time, demographic and
previous academic performance data provide more information and can be
used to measure progress. While static data provide information about a
student’s background, dynamic data such as the number of assignments
completed to-date provide progress information. Together, static and
dynamic data constitute a student profile in good models. There is no
specific combination of static and dynamic student data that can apply to
all prediction models. Appendix A shows the varying degrees of success
obtained for the studies that considered both static and dynamic data.

One way of predicting progress is through predicting performance
at specific intervals within a course. For instance, a study by
Fernandez-Delgado et al. [29] showed how to predict performance on
specific course modules. This is a good example of a formative predictive
model. If students are informed in time about their expected performance
on course modules, they have the opportunity to act accordingly.

In general, experiments that aim to predict student progress are most
effective when predictions made at a specific point during a course utilize
data from previously enrolled students up to the specific point of prediction.
This can provide information on how students from previous cohorts with
similar progress levels performed at the end of the course. In experiments
that utilize machine learning algorithms, this implies training models with

29



a portion of the available data set that covers the period from the start
of the course to the specific point of prediction only. Such approach is
discussed in Chapter 6.

Online educational platforms provide a unique advantage by collecting
dynamic data and are the ideal platform for building progress prediction
models on top of. Studies that utilize such platforms to provide predictions
at several intervals of a course include [10, 58, 52]. None of these studies
use demographic data of performance data from earlier levels of education.

Because one-off predictions usually focus on predicting end-of-course
performance, they hardly provide information about progress. In this
manner, such predictions may be considered as having only summative
value. Nonetheless, 19 of the 21 studies that made one-off predictions could
be transformed to make continuous predictions because the prediction
models could be applied to incomplete data obtained at several intervals
during the course. The reason for not making predictions in this manner,
perhaps, is due to the additional effort required to redesign experiments or
to collect incomplete data several times during a course.

Figure 2.6 shows the studies categorized according to whether they
make one-off (N=21) or continuous predictions (N=6) and those that
make one-off predictions but could be transformed to provide continuous
predictions (N=19).

2.3.5 What are Good Predictors of Student Success and How
Good are the Predictions?

Despite the abundance of studies in performance prediction and the
parameters used in making predictions, it is difficult to single out
parameters as outstanding performance predictors. Two immediate reasons
for this may be the variation in the setup of experiments and in the
prediction algorithms used. Other factors include the amount of data and
the course or discipline.
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Figure 2.6: Percentage of Studies per Continuity of Predictions

Nonetheless, studies that used a higher number of predictor parameters
and a larger number of student records reported better results. Because
online learning and assessment environments simplify the collection of
student activity data, and hence allow inclusion of parameters about
such activity, studies that used online educational platforms reported
significantly better results. 25 of the 46 studies used data from online
learning platforms. Of these, 9 reported the number of records used to
train their models and the accuracy of the models. Due to the varying
number of students, accuracy could not be averaged directly. However, the
average accuracy, weighted by the number of students, was 89%. Instead,
for the 22 studies that did not use data from online learning platforms, the
weighted accuracy was 80%.

Similarly, predictors built using data from a large cohort of students
or utilized data collected over long periods of time, had high performance
accuracy. The weighted accuracy for 9 studies that reported accuracy was
again 89
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It should, however, be noted that accuracy may not be the right choice of
performance evaluation technique, especially when prediction is essentially
a classification task. In such scenarios, other metrics such as precision,
recall, F1 scores and False Positive Rates could be used. This is especially
true when a prediction model is evaluated according to how many at-risk
students it identifies and how many it fails to do so.

Forty-six percent of the studies used previous academic performance
data, many in combination with other data such as online activity logs.
Fourteen of the studies used demographic data in making predictions.
A comparison of the data sources and the reported performance
results revealed that demographic data are more effective when used in
combination with two or more other data sources such as online activity
logs and previous academic performance data. Indeed, those studies that
used solely demographic data or in combination with only one other data
source reported moderate performance levels.

In contrast, studies that included partial marks, mid-term results
or assignment scores reported higher results. The highest results were
reported by studies which included three or more of these parameters
in their predictions. Details of the 46 studies and remarks on their
adaptability to making continuous predictions are presented in Appendix
A.

2.3.6 Prediction Techniques and Algorithms

The majority of the studies reviewed followed the approach of applying
a range of machine learning algorithms to their data set and choosing
the algorithm that reported the highest level of performance. The most
common of these algorithms were Linear Regression, Neural Networks,
Support Vector Machines, Naïve Bayes Classifier, and Decision Trees.

A few studies used a combination of classifiers for improved predictions
[16, 9, 62].
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Other studies that followed less common approaches include those that
used Markov Networks [82], Collaborative Multi-Regression models [24],
smartphone data [93] and those that performed sentiment analysis of
discussion forum posts in MOOCs [73].

Yet, some studies discussed algorithms developed for the sole purpose
of student performance prediction [94, 61].

Despite the varied nature of the data used in the studies, no single
algorithm can provide the best result in all prediction scenarios. However,
5 of the 9 studies that used a combination of algorithms reported over 90%
prediction accuracy. Those that used Neural Networks, Random Forest,
Decision Trees and Support Vector Machine algorithms reported over 80%
accuracy.

Figure 2.7 shows the studies categorized by the type of prediction
algorithm they used. Those that applied more than one algorithm are
grouped under the ’multiple’ category.
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Figure 2.7: Percentage of Studies per Type of Prediction Algorithm used
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2.3.7 Predictions in Massive Open Online Courses (MOOC)

One of the factors that may weaken the appeal of MOOCs as
complementary to, or even long-term replacements for, traditional course
administration practices is that they are plagued by high attrition rates
(Jordan 2013). It is, hence, not surprising that most student performance
prediction studies that involve MOOCs have focused on predicting student
dropout.

Because MOOCs are inherently tied to online platforms, the task of
collecting data regarding student activity is only as challenging as building
the platforms themselves. MOOCs allow gathering immense amounts
of data from students that do not necessarily attend courses from the
same geographic region. Consequently, the diversity and size of the data
collected by such platforms is unparalleled.

The impact of the unique advantage provided by using online course
administration systems is immediately apparent in the performance levels
of prediction models that are built on such data. Although the outcomes
they predict are less complex when compared to models that predict grades
or final scores, predictors in MOOCs consistently perform better than their
counterparts built on top of traditional educational settings. One possible
reason for this high performance is the ability of such platforms to capture
data about student traits and activities that are only expressed in online
learning environments. These may include participation in discussion
forums and amount of time spent on completing tasks. Another reason is
that the amount of data used to build the prediction models is significantly
large and leads to improved prediction.

Many studies also set out to explore pedagogical or administrative
factors that affect student success in MOOCs. Among such factors are
ownership and length of posts in online discussion forums [99].

Other activities that may be used as features for building MOOC
dropout prediction models include number of video lecture downloads,
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number of completed quizzes, number of completed tasks, click-stream
data, the amount of time spent on course modules and the number of
days students are active [100, 74, 58, 10, 79, 86, 20, 49].

2.3.8 The Potential Paradox of an Effective Performance
Prediction System

A straightforward approach to testing the performance of models that
predict favorable outcomes is to compare such predictions with actual
outcomes. Such an approach, however, may not apply to systems that
predict unfavorable outcomes as the effectiveness of these predictive
systems is rooted in their ability to provide information that would help
avert such outcomes.

If common evaluation techniques are used to measure the performance of
prediction systems that help avert unfavorable outcomes, evaluation results
will lead to the conclusion that these prediction models do not perform well.
By the same argument, a conclusion that these models are good predictors
implies bearing the consequences of unfavorable outcomes. Although
this paradoxical nature of evaluating prediction models is somewhat
nonexistent in models that predict natural catastrophes, it is still evident
in models that provide timely prediction of student performance.

Concretely, a question is raised about how to statistically evaluate the
performance of a model that predicts an outcome in a timely manner
when the true performance of the model is measured in its ability to help
avoid that same outcome. In the case of student performance prediction,
timely prediction helps identify students who are at risk of failing. If
that information is acted upon properly, the undesired outcome, failing
a course, is averted. Classical evaluation techniques such as prediction
accuracy would provide the misleading conclusion that the model does not
perform well, when it actually does so.

The performance of such non-traditional prediction models can be
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tested in two ways. An approach that is common to many well-designed
research experiments is to divide subjects into experimental and control
groups. In a class of students divided into such two groups, continuous
and timely prediction will be provided to both groups but only those in
the experimental group will be supervised according to the information
provided by the prediction model. At the end of the course, analyzing how
many at-risk students in both groups, as predicted by the model, improved
and eventually passed the course shall reveal the true performance of the
prediction model. Traditional performance evaluation techniques could
be used to evaluate the performance of the model on the control group.
Statistical methods that measure how varied two sets of outcomes are,
can be used to judge how good the prediction model performs on the
experimental group. Large differences between predictions and actual
outcomes for the experimental group would then imply high performance
of the prediction model.

This approach, however, entails more risk for students in the control
group as they may not benefit from the prediction and may indeed fail the
course. This could explain why none of the 46 studies adopted this or a
similar controlled experiment approach.

An empirical approach that does not partition students into distinct
groups involves periodic evaluation of only those students that the
prediction model deems to be at-risk of failing. Although this method
implies more work on part of the teacher, it provides invaluable information
about the actual progress of the student. As noted in earlier sections, this
approach is typical in formative assessment scenarios.

2.3.9 Summary

The majority of performance prediction research has focused on the
disciplines of computer science and engineering. Although not far-fetched,
the argument that researchers in these disciplines have at their disposal
tools and know-how to build better prediction models may not explain the
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observation very well.

Although earlier research sought to establish whether it was possible to
make predictions that were binary in nature, recent studies have managed
to predict specific grades with high accuracy. In fact, some studies go as
far as predicting specific scores. In general, predicting outcome becomes
more difficult as the number of possible outcomes grows. Hence, studies
that predict actual scores are usually less accurate than those that predict
pass or fail. However, significant increase in performance is noted in score
prediction models with increase in the amount of data.

Increase in training data size does not necessarily imply improved
prediction accuracy. It is possible that after a certain point, prediction
performance may not improve despite the introduction of new data. This
is because prediction parameters and algorithms are just as important.
After all, it is learning algorithms that use a large number of parameters
– algorithms with low bias – and large training data, which provide low
variance, that constitute a good prediction model.

Whether prediction is intended for summative or formative purposes
highly determines the approach to building the model. While educational
policy makers may be more interested in determining whether national and
standardized tests are good predictors of long-term student performance,
teachers benefit more from information that provides insight into student
progress. Students benefit from timely information about their progress
because it gives them the opportunity to act accordingly. The parameters
chosen to build prediction models should reflect this notion of progress as
well.

2.4 Conclusion

Online peer-assessment data provide rich information about students
and may be used to build performance prediction models. None of the
studies reviewed, however, used data from peer-assessment environments.
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Indeed, an extensive search of educational conference and journal databases
such as ACM, IEEExplore, ERIC and Google Scholar did not result in any
study that used peer-assessment data for building prediction models.

Although a similar approach is used to evaluate the importance of
the web-based peer-assessment system discussed in the next chapter, the
chapters that follow up argue that, based on statistical analysis and
utilisation of the data extracted from the system, its perceived advantages
are validated and corroborated.

Chapters 5 and 6 explore how peer-assessment data can be utilized to
build models that can predict end-of-course performance as well as track
student progress.
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3

Peer-Assessment for Promoting
Student Engagement

3.1 Introduction

One of the challenges of both traditional and contemporary instructional
media in higher education is creating a sustainable teaching-learning
environment that ensures continuous engagement of students and provides
efficient means of assessing their performance [15]. Summative assessment
in campus-based classrooms with hundreds of students is seldom carried out
enough throughout a course to identify those students who might be at risk
of failing or dropping out. The MOOC phenomenon, although it promises
to reach out to and educate more students across the globe, has suffered the
same fate, if not worse. Attrition rates in MOOCs are astoundingly high
[46]. It may be argued, given the hundreds of thousands of students that
enroll in a MOOC, even a small percentage of completions implies a high
number of students completing the course with success when compared to
actual numbers in campus-based courses. This argument, however, does
little to address the issue of student engagement.

Is it because of cognitive challenges that they face that many students
drop out of courses? Is it why students tend to wait until the final
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weeks of a course to prepare for their final exam? Or, is it because of
passive participation that does not elicit their engagement? Whichever
the reason, is it possible to develop a mechanism that can identify in a
timely manner students who are at risk of dropping out or failing? It
was believed that the attempt to discover the true reason behind student
dropouts and course failures required the use of efficient methodologies
and technological tools. It was also believed that the initial attempt of
implementing these methodologies and tools should not do away with
traditional instruction methods but augment them in a way that would
solicit sustained student engagement. With these beliefs, a web-based
peer-assessment tool was developed and utilized in several editions of three
courses spanning four years. This chapter is devoted to the discussion of
this web-based peer-assessment platform.

There are several variations of peer-assessment methodologies, which
have been integrated into traditional classrooms. PeerGrader [33],
PRAISE [22], PeerWise [23] and PeerScholar [70] are the most notable
for their formative nature and the way they involve students in several
assessment stages. Similarly, it was decided to involve students in a
question-answer-evaluation loop that would include some game elements
and in which students themselves would be the lead actors. The hypothesis
was that being actively involved in such activities would encourage them
to keep up with the pace of the course and to study regularly in a deeper,
more engaging manner.

3.2 Design of Peer-Assessment Activities

The peer-assessment activities involved cycles of three tasks in which
students were required to submit questions about topics discussed in class,
respond to a subset of the questions that were submitted and rate the
responses of their peers to those questions.

It was decided not to make participation in PA activities mandatory.
This was because it was believed mandatory participation would mask true
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effects of the proposed approach and would force it to somewhat resemble
summative assessment. However, students were rewarded according to the
extent of their involvement and the number of performance points they
collected throughout these activities.

Every week for the duration the course, students were required
to ask a question regarding topics covered during the most recent
lectures. Questions varied from typical assessment queries to requests for
clarification and to inquiries that would require deeper insight into a theme.
When submitting their task, students tagged their question using at least
two keywords.

Next, each question was assigned to five students at random. Students
then rated the quality of the questions they were assigned on a scale of 1
to 5 across three dimensions – interestingness, difficulty and relevance.

Once students submitted their questions, the teacher would select a
subset of the questions, taking into account their difficulty levels, relevance
and interestingness.

Questions would then be automatically distributed to students in a
random manner. The task distribution module of the peer-assessment
platform ensured that each question was assigned to at least four students.

In rating responses of their peers to a question, students would be
assigned a specific number of points, computed using the number of
answers submitted to that question. For the purpose of the peer-assessment
activities, these points were referred to as coins. Students would then
distribute the coins over the responses, where each response could be
assigned a range of coins between zero and five, inclusive.

After a cycle of tasks was complete, statistics about responses were made
available for students through their profile pages. In order to account for
task incompletions, which occurred mainly because participation was not
mandatory, the number of points earned for answers was reported in terms
of the number of Effective Coins (EC). This is the ratio of the number of
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coins earned for an answer to a question to the total number of coins earned
for all answers to that question. High EC values for an answer implied that
the answer was found by raters to be superior to other answers to the same
question and low EC values indicated otherwise.

In addition to EC values, statistics such as the number of completed
tasks, the number of tasks for which deadlines were missed, the number of
outstanding tasks and class standings in terms of weekly percentiles were
made available to students.

3.3 Implementation of the Framework

The peer-assessment framework was implemented as a Java web
application using the Struts2 MVC framework. The front-end was designed
using Java Server Pages (JSP) while the backend utilized Hibernate ORM
for high-level mapping of objects to MySQL database relations.

In order to guarantee that the system was used only by students at the
University of Trento, it was integrated with the university’s authentication
infrastructure.

The system was composed of four main modules - The instructor
module, the student module, the question selection module and the Q&A
summary module.

3.3.1 The instructor module

The instructor module allows the instructor to add new courses into the
system, add lectures for that course and assign new tasks to all students.
The module also allows the teacher access to the complete list of students
and their activities in the system. Using the module, the teacher could
contact students.
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The system automatically sends an email to students when a new task
is available. The teacher has the option to add notes and instructions to
the email.

The instructor module can also generate several types of reports about
student activities. It also lets the teacher download questions and Q&A
sets for each lecture.

In courses where teaching assistants are available, they may be employed
to rate student answers. Figures 3.1 to 3.7 provides snapshots of this
module.
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Figure 3.1: Peer-Assessment System - Courses Dashboard
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Figure 3.2: Peer-Assessment System - Lectures Dashboard

46



Figure 3.3: Peer-Assessment System - Tasks Dashboard
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Figure 3.4: Peer-Assessment System - Students Dashboard
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Figure 3.5: Peer-Assessment System - Data Export Dashboard 1
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Figure 3.6: Peer-Assessment System - Data Export Dashboard 2
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Figure 3.7: Peer-Assessment System - Teaching Assistant Dashboard
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3.3.2 The Student Module

The student module of the framework was designed to provide students
access to tasks and other information. Students have to sign in using their
university credentials. After successful login, they are presented with a
menu of courses to choose from, as the system can be used with several
courses at once.

After selecting a course, students are directed to their homepage. The
homepage provides a list of tasks that are not completed and a history
bar with recent activities. It also provides a sidebar with a summary of
activities such as the number of tasks completed, the total number of tasks
assigned, the total number of points earned and the leading number of
points for the class.

Students also have access to a statistics page, which provides visual
information about their activities. This information is presented as the
task completion ratio, for each type of task, and weekly standings in terms
of percentiles of points earned for a single week. The lowest and the highest
percentiles in the class for each week are also reported.

Figures 3.8 to 3.13 provide snapshots of this module.

52



Figure 3.8: Peer-Assessment System - Course Enrolment Page
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Figure 3.9: Peer-Assessment System - Student Homepage 1
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Figure 3.10: Peer-Assessment System - Student Homepage 2
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Figure 3.11: Peer-Assessment System - Student Homepage 3
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Figure 3.12: Peer-Assessment System - Student Task Completion
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Figure 3.13: Peer-Assessment System - Student Weekly Performance
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3.3.3 The Question Selection Module

This module was designed to assist the instructor in selecting a subset of
questions collected during the ’Ask a Question’ task phase to be distributed
to students. The question selection process was semi-automated by
implementing a question clustering feature using the K-Means clustering
algorithm to group similar questions. The clustering algorithm used Term
Frequency-Inverse Document Frequency (tf-idf) and Cosine Similarity to
group questions.

Figure 3.14 provides a snapshot of this module.
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Figure 3.14: Peer-Assessment System - Supervisor Question Selection Page
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3.3.4 The Q&A Summary Page

This feature was designed to provide students with a weekly summary of
the Q&A sets. The Q&A items are organized as collapsible tiles with the
question, the number of answers and total points earned by all answers to
the question reported in the header of each tile.

Figure 3.15 provides a snapshot of this module.
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3.4 Reception of the Peer-Assessment Platform by
Students

The peer-assessment framework was used by over 600 students enrolled
in five courses between the academic years 2013/14 and 2015/16. The
majority of these courses were offered at an undergraduate level and all
were courses from the department of computer science. The first three
courses in which the system was used were Informatica Generale I (IG1),
a first year bachelor course, Programmazione Android (PA), a third year
bachelor course, and Web Architectures (WA), a course for first year master
students. A total of 382 students participated in online peer-assessment
tasks for these courses.

The most recent version of the system was utilized in an Object Oriented
Programming course offered to 150 first-year computer science students and
about 31 third-year math students, for a total of 181 students.

In order to understand students perception of the peer-assessment
approach and to explore whether it had elicited engagement and
continuous revision of the course material, students were asked to complete
questionnaires.

For each of the first three courses, the questionnaire included 13
five-point Likert items, 1 multiple-choice, multiple-answer question and
3 open-ended questions. More than half of the students responded for each
course - 124 out of 222 (55%) for IG1, 80 out of 120 (66%) for PA, and 23
out of 40 (57%) for WA.

Considering the size of the statistical samples and under the assumptions
of a simple random sampling of the population, a sample proportion of 50%,
and a finite population, the respective margins of error at 95% confidence
level were computed as 6% for IG1, 6% for PA and 13% for WA.

The initial set of questions sought to understand if the peer-assessment
system was accepted by students and if it was perceived as an effective
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tool of learning. Students were asked if they thought asking questions and
responding to their peers’ questions was useful. The majority of students,
between 45% ( ± 6% Margin of Error) and 87% ( ± 9% Margin of Error)
responded positively for the three courses. An interesting observation here
was that the percentage of positive responses increased significantly with
the course level. It appeared that postgraduate students were very content
with the approach.

Regarding engagement and attentiveness in class, first year
undergraduate students of IG1 were closely divided on whether
participation in online peer-assessment tasks enhanced their attentiveness
in class (28% ± 5% for YES and 32% ± 6% for NO). This sentiment
was reversed for third-year undergraduates - positive responses were
relatively higher (40% ± 6%) than negative responses (31% ± 6%).
Postgraduate students had much higher positive responses (65% ± 13%).
Concretely, a positive correlation was witnessed between perceived increase
in attentiveness brought about by participation in online peer-assessment
tasks and course level.

The system was also deemed to be effective in providing a push for
students to follow their course more regularly, with more positive responses
reported at higher course levels. First year undergraduate students were
divided at 39% ± 6% (positive) to 30% ± 5% (negative), while 83% ± 10%
of postgraduates responded positively.

Similar trends were witnessed in students responses regarding whether
involvement in peer-assessment tasks induced deeper studying and better
preparation for the final exam. At least 43% ± 6% of first-year
undergraduates thought it had a positive effect on their study and
preparation for the exam, while at least 39% ± 6% of third-year
undergraduates thought the same. At least 69% ± 12% of postgraduates
had the same view.

Regarding the amount of work introduced by the peer-assessment
framework, the vast majority of students thought it was adequate - only
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14% ± 4%, 10% ± 4% and 13% ± 9% responding otherwise for IG1, PA
and WA, respectively. Given their smaller number, a higher proportion of
postgraduates thought the additional workload was burdensome. This may
be explained by the higher workload that postgraduate students already
have.

The findings of the evaluation results were corroborated by those from a
recent evaluation of the system. The latest evaluation, from the academic
year 2015/16 was thorough. Students enrolled in an Object Oriented
Programming course using the peer-assessment framework were asked to
complete an online survey of the system and of the overall approach before
sitting the final exam. Of the 150 students who were enrolled at the
beginning of the course, 117 completed the survey.

The first point of focus of this survey was exploring how students
perceived being evaluated by their peers. This has been one of the most
popular topics in peer-assessment research for decades. It was thought
worthy to understand whether the student responses agreed with previous
findings. Students were explicitly asked if they found the practice to be
an injustice. Responses were similar to many inconclusive findings in the
literature in that no strong opinion was expressed by a majority. 33% ±
5% agreed it was fair whereas 34 ± 5% believed it was unfair. The rest
did not respond to this question.

A follow-up question found that only 5% ± 2% felt uneasy about the
practice of being evaluated by their peers and 25% ± 4% did not like this
form of assessment. 55% ± 5% said they found it useful and only 18% ±
4% thought it was not useful. Asked about the usefulness of such practice
as a form of formative assessment, the large majority (60% ± 5%) agreed
it was so and only 13% ± 3% thought otherwise.

The perceived appropriateness of the introduced workload by the
framework was explored here as well, although in greater detail using
diverse phrases and several questions. 61% ± 5% responded that the
required extra effort was not excessive while only 11% ± 3% responded
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that it was excessive.11% ± 3% believed the time they dedicated to using
the system was badly spent whereas 69% ± 5% believed it was worth it.
Similarly, the time spent on using the system was deemed unproductive
by 6% ± 3% of the respondents and productive by 63% ± 5% of the
respondents. Using the system was perceived to be a nuisance for 15% ±
3% of the respondents and not at all by 51% ± 5% of the respondents.

The utility of the approach was confirmed in this round of evaluations
as well. 74% ± 4% of respondents thought the experience was useful,
against a mere 10% ± 3%, who were convinced otherwise. An analysis of
the reasons provided revealed that 67% ± 4% felt motivated to review the
material covered by the lectures whereas only 9% ± 3% did not feel the
need to do so. 55% ± 5% thought this prepared them better for the exam,
in contrast with 10% ± 3% who did not see such advantage. 60% ± 4%
believed being involved in peer-assessment tasks helped them to keep up
with the pace of the course whereas 10% ± 3% did not believe so. However,
only 22% ± 4% thought participation in online peer-assessment tasks made
them more attentive in class in order to prepare for subsequent question
posing and answering tasks. 26% ± 4% did not believe so and 52% had no
opinion on the matter. This observation may be well explained by the fact
that students largely relied on the teacher’s lecture slides than either their
notes or other resources in order to help them complete question posing
and answering tasks. Indeed, 75% ± 4% used the lecture slides. 36% ±
4% always or often reviewed their own notes.

The fact that the teacher’s slides were the most preferred source
of information reinforced the earlier indication that the system pushed
students to review the material presented in class throughout all
peer-assessment task phases. It was thus concluded that the repeated
reviewing of the material discussed in class, either in part or in its entirety,
served as the raison d’être of the methodology.

Lastly, students were asked if they wished the peer-assessment
framework to be applied in other courses. 61% ± 5% replied positively, as
opposed to 20% ± 3% who did not wish to use the system in the future.
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3.5 Conclusion

A peer-assessment methodology implementing a slightly competitive
social game was discussed in this chapter. The goal of the peer-assessment
methodology was to improve student engagement in courses with a
large number of students. The web-based peer-assessment framework
implementing this methodology was utilized in several courses since the
2013-14 academic year.

The design of online peer-assessment tasks makes the system suitable
to be applied in very large classes, including Massive Open Online Courses
(MOOCs).

Earlier indications of the system’s acceptability were strongly confirmed
in a recent evaluation of its latest version. The majority of students
expressed satisfaction with the system’s capacity to encourage continued
revision practices and to promote better preparation for final exams.
The large majority of students also believed in the utility of the online
peer-assessment system as a formative approach to assessment and
learning.

Multiple evaluations of the framework have supported the validity of
the methodology behind it. Apart from a foreseen re-implementation of
certain modules in order to address minor technical issues, it is believed
that the system is ready to be widely deployed across departments at the
University of Trento. Future evaluations of the system will also take into
account the potential impact of certain factors on the methodology such as
students’ departments and course levels as well as basic demographic data
such as gender and age groups.
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4

Online Peer-Assessment as a Tool of
Early Intervention

4.1 Introduction

This chapter explores the applicability of online peer-assessment as a
mechanism early intervention. It discusses whether the peer-assessment
methodology and web-based framework discussed in the previous chapter
could yet play another role in early identification of students that risk
failing courses.

In order to determine if this was the case, the relationship between online
activity and performance in final exams was studied. The study examined
online peer-assessment data gathered from three undergraduate-level
computer science courses offered between early 2013 and mid 2016.
Analysis of the peer-assessment data and final exam scores of a total of
619 students for the three courses revealed that there was a correlation
between low task completion rate and course incompletion. However, the
analysis did not find any strong relationship between high task completion
rate and successful course completion.
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4.2 Description of the Peer-Assessment Data

Although participation in peer-assessment tasks was optional, all
students who completed at least a third of the tasks were awarded a bonus
worth 3.3% of the final mark. An additional 3.3% bonus was awarded to
the top-third students, based on the number of peer-awarded points. For all
three courses, it was observed that active participation in peer-assessment
activities declined towards the end of the course. Regardless, a total of
83% of students for the three courses completed at least a third of the
tasks.

How to predict expected student performance using student activity
data from the peer-assessment system is explored in the two chapters that
proceed. The prediction models discussed there, however, considered only
those students who had completed over a third of all peer-assessment tasks.
The main reason behind this was that the performance of the predictive
models was significantly reduced with the introduction of data of students
with little or no participation at all. Because the number of students who
did not participate enough in online peer-assessment tasks was considerably
low, the attempt to build prediction models only for those students did not
produce encouraging results.

Therefore, the analyses presented here used less sophisticated statistics
to perform comparisons between the two student groups. Although it
may seem appropriate to defer this discussion until the predictive models
have been presented, it was placed here with the belief that the approach
followed in this chapter has more in common with that presented in the
previous chapter.

The three undergraduate-level computer science courses were labelled
IG1, LP, and PR2. The Italian grading system uses a scale that ranges
between 0 and 30, with 30L or 30 Excellent the highest possible mark.
In order to pass a course, students have to obtain at least a score of 18.
For the purpose of this analysis, the range of scores was categorized into
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Table 4.1: Mapping of Scores to Performance Groups

Score Verdict
Below 18 Insufficient

Between 18 and 22 Low performer
Between 23 and 26 Medium performer

27 or above High performer

Table 4.2: Distribution of Scores for Students in the Low-Participation Group

Course Number of Students <18 [18.23) [23, 26] >=27
IG1 35 25 4 3 3
PR2 42 18 7 11 6
LP 30 22 1 5 2

Table 4.3: Distribution of Scores for Students in the High-Participation Group

Course Number of Students <18 [18.23) [23, 26] >=27
IG1 182 69 46 36 31
PR2 141 23 33 49 36
LP 189 84 40 37 28

four groups and labels were assigned to each group. Table 4.1 presents
this partitioning of scores. Students had the opportunity to improve their
grades by making several attempts. The analysis considers the data of
those students who both subscribed for peer-assessment tasks and sat the
exam at least once.

4.3 Analysis and Results

For each course, students were divided into low-participation and
high-participation groups on the 33% task completion mark, with the
former falling below that mark. A further categorization was then made
to explore the intersection between each participation group and exam
performance group. Tables 4.2 and 4.3 present the number of students in
each intersection.

It was observed that, across all three courses, a large majority of
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low-participation students did not manage to obtain passing marks.
Although the course incompletion rate of low-participation students
enrolled in the course PR2 was not the highest across all three courses,
low participation students here were more than twice as likely to score
below the passing mark as their high participation counterparts. Similarly,
LP and IG1 low-participation groups were 1.66 and 1.87 times as likely
as their high-participation counterparts to score below the passing mark,
respectively.

Another observation that emerged from analysis of the data was that
low-participation students usually became inactive within the first four
weeks, before halfway through the courses. This led to much of the data for
low-participation students changing very little throughout the remainder
of the courses. This important observation strengthened the argument that
the online peer-assessment system could be used as a tool for identifying
potentially at-risk students as early as four weeks into the courses.

Yet another observation was the large difference in the percentage of
students with insufficient performance between the low-participation and
high-participation groups. This difference ranged between 27% and 33%
for the three courses. Although with varying degrees, this confirmed
that low-participation students had a much lesser chance of successfully
completing the courses. The following charts demonstrate in greater
detail, the differences in performance levels between low-participation and
high-participation groups for the three courses.
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Figure 4.1: Participation in Peer-Assessment Tasks and Exam Scores for Course IG1
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Figure 4.2: Participation in Peer-Assessment Tasks and Exam Scores for Course PR2
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Figure 4.3: Participation in Peer-Assessment Tasks and Exam Scores for Course LP
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4.4 Conclusion

It was sought to determine if the peer-assessment methodology and the
web-based framework discussed in the previous chapter could yet play a
role other than promoting student engagement.

Data from over 600 students was analyzed to determine if there was
a correlation between low participation in online peer-assessment tasks
and course incompletion. The analysis revealed that the majority of
students with little participation in online peer-assessment tasks struggled
to either pass their exams or perform well. The findings contribute to
yet another motivation for automated peer-assessment. Although, at this
stage, there is not enough evidence to suggest that participation in online
peer-assessment tasks improves overall student performance, the argument
that these activities could provide well-timed identification of potentially
at-risk students is not far-fetched.

A future extension of this work will focus on whether further
categorization and mapping of students into more performance groups
could provide better insights with respect to identifying students that may
not be at risk but may still need closer supervision.

The case for introducing electronic peer-assessment environments into
the classroom is supported by the foreseen significant improvements in
efficiency and effectiveness of the activities involved. It is hoped that the
prospects explored in this study contribute to the case for transitioning into
cost-effective, ubiquitous, and highly interactive electronic peer-assessment
solutions.

In particular, the transition to a ubiquitous system can be made
with little difficulty by taking advantage of the fact that virtually all
students own smartphones or tablets. Developing a mobile peer-assessment
solution has the potential to increase student productivity given that
peer-assessment tasks are designed to be simple, mobile-friendly and with
special attention to privacy and other social aspects. Hence, development
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of a mobile version of the peer-assessment system will be addressed in the
near future.
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5

Predicting Student Success from
Peer-Assessment Activities

5.1 Introduction

A common approach to the problem of predicting students’ exam scores
has been to base this prediction on the previous educational history
of students. As presented in the review of the literature on student
performance prediction, there are no prediction techniques that utilize data
from a peer-assessment environment, automated or otherwise, in order
to predict performance on final exams. This chapter goes further and
applies linear regression to peer-assessment data collected using the online
system to determine if performance in peer-assessment activities can fairly
determine expected student performance in final exams. By doing so, it
aims to strengthen the argument that the peer-assessment methodology
can be applied to classes with a large number of students, where close
supervision of each student is hardly possible.

In order to build the prediction model, peer-assessment data from two
undergraduate-level computer science courses, labelled IG1 and PR2, was
used.

If carried out in a timely manner, automated prediction of final

77



exam scores could provide information crucial for early identification of
potentially at-risk students. Automated score prediction could also have
a significant implication in the Massive Open Online Courses (MOOC)
arena. Predicting student performance could help provide early insight
into the attrition rates of courses administered in MOOC format.

Here, how student performance can be predicted by extracting student
activity data is explored in detail. Although the datasets used in this study
are not enthusiastically large, the fact that they have been collected from
two separate courses, with each having at least a hundred students, has
led to the argument that online peer-assessment can indeed serve as an
alternative and efficient data source for performance prediction models.

The aim of this chapter is thus to promote the argument that data
collected from the peer-assessment system could be used to build student
performance prediction models, hence strengthening the role of the
methodology, and peer-assessment in general, as tools of early intervention.

5.2 Building the Prediction Models

The peer-assessment data discussed in this chapter were collected using
an earlier version of the web-based framework which included three main
tasks: asking questions, answering questions and voting for the best
answer among those provided by peers to a question. The data came
from two courses. The courses were Informatica Generale I (IG1) and
Programmazione 2 (PR2), introductory-level computer science courses
offered to undergraduate students at the university of Trento. The three
tasks were repeated every week, from the second to the final week of
the courses. Of all the questions that were submitted during the ’Ask
a Question’ phase for each week, the teacher selected a subset that was
used in the remaining tasks. When providing an answer to a question,
students were also given the option to rate the difficulty, relevance and
interestingness of the questions on a 1 to 5 Likert-scale.
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All student activity including time spent on completing tasks was logged
by the system. The university’s exam scoring system uses a 0-30 scale
where 30 excellent is the highest achievable score, with the minimum
passing mark set to 18. The data used here come only from those
students who passed the course. As explained in the previous chapter,
the reason for this was that inclusion of data from students who had
little or no participation in online peer-assessment tasks or who had below
passing marks made the prediction models perform poorly. Therefore,
the prediction models discussed here use student activity in the online
peer-assessment tasks to predict the final scores of students on a scale of
18 to 30. Consequently, although a total of over 400 students participated
in the online peer-assessment activities for the two courses, only the data
of a total of 206 students were used to build the prediction models.

Intuitively, it was first sought to determine if the number of a student
answers that were chosen as the best by peers could indicate how a student
would perform in the final exam.

Hence, a preliminary investigation was conducted to determine if the
number of answers chosen as the best, referred to as votes earned, could
be used as a sole predictor of final scores. It was learned that the data
did not indicate any such relationship. It was therefore decided to proceed
with investigation of the impact that other variables obtained from the
peer-assessment data may have on final scores.

This investigation sought to determine if the number of tasks a student
completed throughout the course, the number of questions they submitted
and answered and the difficulty of the questions they answered could be
used as performance indicators.

Therefore, an initial list of seven parameters was used to build the linear
regression models discussed here. An additional 16 parameters, most of
which were aggregates of the initial seven variables, were also considered,
among which an additional 7 were chosen.

The final 14 variables, referred to as features from hereon, that were
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used to build the prediction models are:

• Tasks Assigned (TA) – The number of tasks that were assigned to
the student

• Tasks Completed (TC) – The number of tasks that the student
completed

• Questions Asked (QAS) – The number of ’Ask a Question’ tasks
the student completed

• Questions Answered (QAN) – The number of ’Answer a Question’
tasks the student completed

• Votes Cast (VC) – The number of ’Rate Answers’ tasks the student
completed

• Questions picked for answering (QP) – The number of the
student’s questions that were selected by the teacher to be used in
’Answer A Question’ tasks

• Votes Earned (VE) – The number of votes the student earned for
their answers

• Votes Earned Total Difficulty (VED) – The sum of the products
of the votes earned for an answer and the difficulty level of the
question, as rated by students themselves, for all answers submitted
by the student

• Votes Earned Total Relevance (VER) – The sum of the products
of the votes earned for an answer and the relevance level of the
question, as rated by students themselves, for all answers submitted
by the student

• Votes Earned Total Interestingness (VEI) – The sum of the
products of the votes earned for an answer and the interestingness
level of the question, as rated by students themselves, for all answers
submitted by the student
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• Selected Q total difficulty (SQD) – The sum of the difficulty levels
of the student’s questions, as rated by students themselves, which were
selected to be used in subsequent tasks

• Selected Q total relevance (SQR) – The sum of the relevance
levels of the student’s questions, as rated by students themselves,
which were selected to be used in subsequent tasks

• Selected Q total interestingness (SQI) – The sum of the
interestingness levels of the student’s questions, as rated by students
themselves, which were selected to be used in subsequent tasks

• Number of Attempts (NA) – The number of attempts the student
made to pass the course

The data were normalised using the min-max normalization method
to convert each value into a value between 0 and 1. To perform this
normalization and to build the linear regression models, the Weka data
mining toolkit ([39]) was used. Three linear regression models were built.
The first two were built per course and the third was built using the
combined dataset for both courses. Although combining datasets from
different courses may sound strange, this was done in order to explore
if there were parameters that had similar effects across courses. The
combination of the two datasets also allowed building a model with a much
larger number of training sets.

The performance of each model was tested via 10-fold cross-validation.
The Root Mean Squared Error (RMSE) was used as a performance
evaluation metric, a common practice for evaluating the performance of
linear regression models.

In order to investigate the impact of additional variables on the
prediction of final scores, those variables were added to the initial model
incrementally.

First, models were built using the initial 7 features. Then, more
complex models were built by adding additional features step by step, and
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preserving the feature whenever its introduction increased performance.
As a result, 3 sets of 7 linear regression models each were built.

Because discussing 13 different linear regression models, whose final
performance was inferior, is lengthy and may deviate from the topic at
hand, only the final model with the least RMSE is discussed here. This
model was built using the 14 parameters discussed earlier and it is given
by:

FS(i) = CTSi + 27.9

where S is a 14-by-n matrix (14 parameters by n
students), Si is the ith column in S representing student
i, CT is the transpose of the column vector C given by:

C =



−3.98
−0.32
0.63
0.68
−2.16
0.10
0.71
22.92
−16.29
−5.02
4.54
−3.71

0
−4.42



andSi =



TAi
TC i
QASi
QANi
V C i
QP i
VEi
VEDi
V ERi
V EI i
SQDi
SQRi
SQI i
NAi


The features designated in bold in the coefficient and feature matrices

indicate the parameters that had higher contributions than others. In
addition to the votes earned, it was discovered that qualities such as the
number of questions asked and answered and the difficulty levels of student
questions selected by the teacher were strong indicators of final scores. It
was also observed that having an answer for a difficult question chosen as
the best was the strongest indicator of final scores. This supported the
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common hypothesis that students who have the capacity to provide the
best answers to several difficult questions have a tendency to have high
final scores. In the experiments discussed here, this tended to be true
despite the fact that answers were rated by peers. This tendency also
contributed positively to arguments in the peer-assessment literature in
favor of the validity of peer-assigned grades.

Although an assertion on whether this is true across courses with
differing content and number of students may not be made at this stage,
the observations made here supported the common belief that students
who perform well in homework and other online activities are likely to
successfully complete the course, as shown in the previous chapter.

However, before concluding that the model was strong enough to predict
final marks, its performance needed to be tested in a number of ways.

5.3 Evaluation and Results

The final model was built using only the data collected from IG1 as
it had the lowest prediction errors, with a cross-validated RMSE of 2.93.
This created the opportunity to test how the model would perform on data
coming from another course. The model was thus tested with 101 instances
from the PR2 course. The RMSE was found to be 3.44. This finding was
very encouraging as the model could still perform very well when predicting
final scores of students from another course. Although the two courses
were different in that they were attended by different student groups, they
still focused on two introductory-level programming languages. Thus, the
performance of the model on data from a similar course provided a positive
answer to the question whether one model could fairly predict performance
in another course.

It should be noted that the goal behind constructing such a prediction
model was not to determine whether a student would earn a specific score.
Rather, the aim behind designing such models was to provide indications

83



as to whether students were likely to be at-risk of failing, to have average
performance or to perform very well. With respect to this aim, it is believed
that the prediction model was indeed a fair indicator of the likelihood of
several levels of success.

Another test sought to answer whether the model’s predictions were
easy to make. It was sought to explore whether these predictions were
any better than random guessing. Hence, several mechanisms of random
guessing were developed.

In order to simulate true random guesses that an actual person would
make, each of these random guessing mechanisms was run 10000 times and
the model’s performance was compared with the average of these guesses.

First, a grade was assigned to each of the 206 students by randomly
selecting a number from the valid range of grades, 18 to 30. This random
assignment was performed 10000 times for students of both courses. The
average RMSE of these assignments was then evaluated. The average
RMSE for this technique was computed as 5.04.

Then, in order to simulate the guessing pattern of a human being with
prior information about what the final scores of the courses would look
like - that is, a human being that could make an educated guess - grades
were sampled from previous editions of the courses. In order to conduct this
sampling, several probability distributions that resembled the distributions
of the grades for each course were examined. It was found that kernels were
the best-fit probability distribution for each of the courses. Hence, samples
were taken from these distributions 10000 times and RMSEs of all score
assignments were averaged. Average RMSEs of 4.94 and 5.01 were obtained
for IG1 and PR2, respectively.

Figures 5.1 and 5.2 show the distributions of actual scores from previous
editions of the course, plotted against the probability density functions that
resemble them best.
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Figure 5.1: Histogram of the final scores of students of IG1 plotted against a kernel distribution
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Figure 5.2: Histogram of the final scores of students of PR2 plotted against a kernel distribution
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Table 5.1: Evaluation of prediction methods for IG1

Prediction Method RMSE
Sampling from a uniform distribution 5.04
Sampling from a kernel distribution 4.94

Sampling from previous scores directly 4.89
Linear regression model 2.93

Table 5.2: Evaluation of prediction methods for PR2

Prediction Method RMSE
Sampling from a uniform distribution 5.04
Sampling from a kernel distribution 5.01

Sampling from previous scores directly 4.96
Linear regression model 3.44

In the third round of tests, the sampling utilized a prior distribution
that would very much resemble guessing by throwing a virtual dice with
sides having one of each of N scores that were obtained from the previous
editions of the course. In other words, random scores were assigned by
rolling an N-sided dice, each of whose sides had a score written on it.
Depending on the frequency of the scores in the actual distribution, the
dice could have multiple sides with the same score written on them. For
each of the 206 students, the dice was rolled 10000 times, resulting in 10000
sets of scores for 206 students. Each of these 10000 sets was then compared
with actual scores to compute the RMSE. The average RMSE was then
computed for the 10000 sets. This was computed as 4.89 for IG1 and 4.96
for PR2.

None of these rigorous tests resulted in predictions that were better
or close to those made by the model. Indeed, the model’s errors were
significantly lower than those generated by any of the random guessing
techniques, for both courses. Hence, it was concluded that the model’s
predictions were better than several techniques of random guessing.

Summaries of the evaluation results for both courses are presented in
tables 5.1 and 5.2.

The histograms presented in figures 5.3 and 5.4 provide visual
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information about the distribution of the models errors. An ideal prediction
model would have an error rate very close to zero. Hence, its histogram
would have a very slender shape, with the peak located close to the center of
the X-axis. As shown in the histograms, the errors of the model resemble
such a distribution, with very low levels of error recorded as one moves
away from the center of the X-axis.
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Figure 5.3: Histogram of the prediction errors for IG1
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Figure 5.4: Histogram of the prediction errors for PR2
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Predicting grades on a wide spectrum, from 18 to 30 in this case,
is a fine-grained prediction approach in which an attempt is made to
pinpoint actual student scores. When it comes to assessing the performance
categories of students, it would benefit to group scores into ranges, which is
usually common in grading systems used by many educational institutions
such as those in the US. Such grading systems usually identify students as
belonging to a number of performance categories such as poor, low, average,
above average or high performers. Predicting whether grades would fall
in one of these categories would provide a much better information for
teachers who seek to identify and closely supervise low performing and
at-risk students.

Hence, a follow-up experiment was conducted in order to explore
whether a similar model with high predictive performance could be built
by transforming the dataset to reflect performance categories instead of
actual scores.

5.4 From Predicting Scores to Predicting Grades

In order to transform actual scores into grades, a scaling rule was applied
to divide the scores into five ranges much similar to the A to F grading
system. The only difference was that numerical grades were used instead
of letter grades.

Hence, scores 28 to 30 were assigned a grade of 4, 25 to 27 a grade of 3,
22 to 24 a grade of 2, 18 to 21 a grade of 1 and those below 18 a grade of
0.

In order to perform this experiment, the same features explained earlier
were used to build a new model that predicted numerical grades using the
newly transformed data. As before, 10-fold cross-validation was used to
evaluate the performance of the model. The model that was built using
data from the IG1 course performed better than that built on the PR2
course, albeit slightly. As before, the results reported here come from the
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model that performed better.

The prediction values of the linear regression model were continuous
and did not necessarily map into one of the five grades. Therefore, a
nearest-integer rounding function was applied to make the predictions
valid. As a result, the RMSE of the rounded predictions, which was slightly
higher than the RMSE computed for the actual predictions, is reported.

The IG1 model had a 10-fold cross-validation RMSE of 1.12, a significant
decrease from the previous model’s RMSE of 2.93. Again, when tested
with unseen data coming from PR2, the model scored a much lower RMSE
of 1.44. This was in contrast with the previous score of 3.44, for the
same setting. All of the random sampling techniques discussed earlier were
applied with 10000 runs in order to evaluate the performance of the new
model. However, instead of sampling from kernel distributions, sampling
of grades was performed using a normal distribution as the new grades
resembled this distribution. The new model had consistently lower errors
than any of the randomly generated samples of grades.

The prediction errors of the new model are presented in figures 5.3 and
5.4 and comparisons between the new model and the baselines are presented
in table 5.3.

Due to the discrete nature of the transformed dataset, it was possible to
analyze the performance of the new model in terms of accuracy. In order to
demonstrate how the model’s performance varied with the range predicted,
the results reported in table 5.4 include its exact prediction accuracy and
its within-one-grade-point and within-two-grade-point accuracies.

The new model is given by:
FS(i) = CTSi + 5.75

where S is a 14-by-n matrix (14 parameters by n students)
Si is the ith column in S representing student i
CT is the transpose of the column vector C given by:
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C =



−0.16
0

0.06
−0.02
−0.01
0.05
−0.47
6.29
−4.95
0.16
2.10
1.55
−3.53
−0.30



andSi =



TAi
TC i
QAS i
QAN i
V C i
QP i
V E i
VEDi
V ERi
V EI i
SQDi
SQRi
SQI i
NAi
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Figure 5.5: IG1 grade prediction errors
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Figure 5.6: PR2 grade prediction errors
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Table 5.3: Prediction errors - Root Mean Squared Error (RMSE)

Prediction Method IG1 PR2
Sampling from a uniform distribution 1.83 1.83
Sampling from a normal distribution 1.68 1.65
Sampling from previous scores 1.53 1.53
Linear regression model 1.12 1.44

Table 5.4: Prediction errors - Root Mean Squared Error (RMSE)

Course Exact Within 1 Grade Point Within 2 Grade Points
IG1 0.30 0.83 0.99
PR2 0.24 0.63 0.97

Similar to the previous model, this model rewarded students who earned
votes for answering questions that were regarded as difficult and interesting,
as well as for asking questions which were challenging and relevant.

The experiments showed that the new model could predict whether a
grade would fall within one grade point of a prediction for over 60% of
the students for both courses. This is an important observation, especially
when interest is not in pinpointing actual grades of students but in the
likelihood that they would perform poorly.

5.5 Conclusion

Performance prediction in educational activities has been studied before.
Most previous studies, however, were limited to analyzing performance
history of students to make such predictions. Much of this information
came from high school level performance data and college entrance
examination scores. as well as demographic data As discussed in the second
chapter, recent studies have used current semester student data such as
take-home assignments and midterms to provide such predictions.

This chapter has gone even further to demonstrate how constantly
evolving data gathered from online peer-assessment activities may be used

96



to make similar predictions. The focus was to build predictive models
that would serve as a mechanism for early detection of students who might
have difficulties in successfully completing their courses. This focus is
an extension of previous chapters whose aim revolved around developing
methodologies that promoted student engagement in order to tackle the
problem of dropouts from courses, and analyzed whether peer-assessment
had a positive role in fostering such engagement. Here, performance
prediction using linear regression was used to demonstrate the validity
of the peer-assessment methodology by proving that there is a strong
correlation between participation in online peer-assessment activities and
course completion. Concretely, the models discussed in this chapter showed
that final scores or grades could be predicted by observing the degree of
participation and success in online peer-assessment activities.

In summary, it was determined that peer-assessment data can be used as
an indicator of expected student performance. It is true that the prediction
models will wrongly identify some percentage of students as being at-risk.
However, given the relatively smaller size of the dataset, the fact that
they are strong enough to identify many of those who are indeed at risk
and that all the data came from a peer-assessment system that required
minimal teacher supervision makes them very promising candidates in the
search for semi-supervised early intervention techniques.

One drawback of the predictive models discussed in this chapter was
that they used peer-assessment data that spanned the entire duration of
courses. Although all peer-assessment activities were completed well ahead
of final exams, this approach may not prove to be a very practical tool of
early intervention as a significant amount of time needs to pass after the
course has started in order to make strong predictions.

A more reliable and timely prediction would tackle this issue by
making low-error predictions in time for teachers to make the necessary
arrangements to help students who may be at risk.

The next chapter demonstrates how prediction models could be built
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using incomplete peer-assessment data and yet provide reliable predictions
as early as the first few weeks of a course to help teachers intervene in a
timely manner.

98



6

Monitoring Student Progress from
Peer-Assessment Activities

6.1 Introduction

When used in a formative manner, peer-assessment may have much
more to offer than promoting student engagement. Coupled with incentives
such as some degree of contribution to final marks, it promotes voluntary
student involvement.

This makes it possible to gather large amounts of online peer-assessment
data. It was believed that data from such an automated environment could
be used to build prediction models that would reflect expected student
performance. Automation of PA tasks, together with minimal teacher
intervention, would make online peer-assessment an efficient platform for
gathering student activity data in a continuous manner.

It was hypothesized that, even during the early weeks of courses,
participation in peer-assessment tasks could provide sound insight into
student progress and that this insight could evolve with the progress of the
course. The experiments conducted to examine this hypothesis adopted
two different interpretations of student progress. Consequently, prediction
models that explored each interpretation were built and evaluated.
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Although the size of the data used in this investigation came from two
courses, data from earlier versions of the courses were integrated to improve
the performance of the models. It was found that, depending on the type of
progress under consideration, the models could fairly trace student progress
throughout both courses. In particular, encouraging results were obtained
when targeting students who were likely to be at-risk of not completing
their course successfully.

The findings of the previous chapter are strengthened by those discussed
here and show how predictions may be applied to partial peer-assessment
data so that intervention is made possible much earlier during the course.

6.2 Two Interpretations of Student Progress

Monitoring student progress using prediction models requires making
predictions using evolving student data at several intervals. Through years
of experience, teachers are usually able to make educated guesses about
how students are likely to perform at end- of-course exams by studying
their activities throughout the course. The goal of this study was to build
prediction models that used data from previous editions of the same course
in order to adopt and formalize such experience with greater efficacy.

Two interpretations of student progress were identified in relation to the
peer-assessment data at hand.

One interpretation compared a student’s standing at any point in the
course to the standings of students at a similar point but from previous
editions of the course. For example, if one collected student performance
data at every week of the course, together with end-of-course grades,
one would be able to compare a student’s performance at any week of
a course to the performance data of students from a previous edition of the
course, for that specific week. If the data are good predictors of expected
performance of different students in subsequent courses, one could build
prediction models that would capture a teacher’s expectations. Indeed,
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many teachers select questions that appear in exams by assessing how
students from past cohorts performed on those questions. In this study,
this interpretation of student progress will be referred to as Progress Type
A.

Another interpretation of student progress focuses on determining how
far a student is from meeting course objectives. Simply stated, this
evaluation may be made by comparing the expected final grade of a student
at any point during a course to what is deemed to be a desirable outcome
at the end of the course. This desired outcome would possibly be in the
range A+ to B-. From hereon, this interpretation will be referred to as
Progress Type B.

6.3 The Data and Evaluation Metrics

Peer-assessment data collected during the course were divided into
weekly data according to the three sets of tasks discussed discussed in
previous chapters. The final score of each student for the course was then
converted into one of four letter grades.

The data for each week incorporate the data from all previous weeks.
In this manner, the prediction model for any one week is built using more
performance data than its predecessors. Naturally, the data used to build
the model for the first week would be modest and the data for the final
week model would be complete. In general, the performances of models
from consecutive weeks were expected to be better.

Similar to the models discussed in the previous chapter, the weekly
prediction models were built using linear regression of the same features
as before. The same performance evaluation metric, RMSE, was applied
here as well. Conversion of actual scores to grades also allowed the use of
other evaluation metrics.

When evaluating student performance prediction models, the two
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questions that are more critical than others are:

• How many of the students the model predicted not to be at-risk were
actually at-risk and eventually performed poorly (False Positives) and

• How many of the students that the model predicted to be at-risk of
failing were indeed at-risk (True Negatives).

Although phrased in a different manner, technically, False Positive
Rates (FPR) and and True Negative Rates (TNR) provide two
interpretations of the same outcome and they are inversely
proportional: FPR = 1− TNR.

A prediction model with a high FPR largely fails to identify students
who are at risk of failing. Conversely, a model with a high TNR identifies
the majority of at-risk students. The ideal prediction model would have a
very low FPR and, consequently, a very high TNR.

In order to use these metrics, the parameters used to compute them
needed to be adopted to this specific problem. Hence, they were defined
as follows.

• Grade – Any of the letters A, B, C, D – A and B denote high
performance levels and C and D, otherwise. Although C is usually
a pass grade, it is generally not favourable and was considered here as
a low grade.

• Positive – A prediction that is either A or B

• Negative – A prediction that is either C or D

• True – A prediction that is either the exact outcome or falls within a
one grade-point range of the actual outcome

• False – A prediction that is not True
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6.4 Modelling Progress Type A

This type of progress monitoring compares a student’s current progress
at any week during the course to the progress data of past students at
the same week of the course. The question that such an approach aims to
answer is: ’Compared to how other students were doing at this stage in
the past, how well is this student doing now?’

’How well’ the student is doing is predicted as follows. First, a linear
regression model is built using data collected from the first week up to the
week of interest. This data comes from a previous edition of the course and
the predicted variable is the final score or grade, which is already available.
Then, the student’s performance at the week in question is fed to the model
to make a prediction. Provided that the model performs well, such weekly
information shall provide insight into whether the student is likely to fall
behind other students or not.

For both courses, which spanned eight weeks, a linear regression model
was built per week after partitioning the complete dataset into eight
respective weeks. The first week dataset contained only performance data
about the first week and the final week contained contained the entire
performance data. Each week contained data from the respective week plus
data from all previous weeks. Hence, the comprehensive weekly dataset
grew as the course progressed.

The performance of the linear regression models throughout the eight
weeks was traced for each of the courses. As expected, prediction errors,
measured in terms of RMSE, gradually decreased for PR2. For IG1,
however, early decreases in prediction errors were followed by initial
increases as the course progressed, which were followed by slight decreases
towards the end of the course. In general, the decrease in errors for IG1
was not particularly satisfactory. The immediate and long-term variations
in the degree of RMSE for both courses are depicted in figure 6.1.

However, RMSE measured deviations from actual scores. It would be
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more important for the teacher to identify performance groups than specific
performance levels. Therefore, scores were transformed using the scales
discussed in the previous chapter.

Yet, prediction of exact grades did not yield strong results. Specifically,
high false positive rates persisted throughout the eight week period for
both courses. This meant that, a significant number of students who were
predicted to have obtained desirable grades did not. This observation is
provided in figures 6.2 and 6.3 for PR2 and IG1, respectively.

Therefore, it was decided to explore whether the prediction models
performed better in identifying the performance levels of students within
a one-grade-point range. Here, it was found that performance levels of the
models for both courses increased significantly. Low False Positive Rates
and, consequently, high True Negative Rates were recorded, even in the
earliest of weeks and False Positive Rates diminished over the eight-week
period.

The within-one-grade-point prediction models performed well from the
very first week of the course. Although predictions were not made on exact
grades, the wider range helped lower the rate of false positives and increase
true positives. The same consideration may lead one to conclude that
false negatives would increase, and hence, true positives would decrease.
Nonetheless, the high precision and recall values for these models attested
that this was not the case. The charts in figures 6.4 and 6.5 provide a
visual information of the within-one-grade-point prediction performances
for both courses.

The observation that the performance of the models when predicting
whether a student’s grade would fall within one-grade-point of the
predicted value was high even at the beginning of the course and remained
so throughout. This observation attested that the models could be used
to identify students that may have difficulties with a course as early as the
first week of the course.

The fact that the predictive models were built using data from previous
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editions of the course and could make predictions in a consistent manner
throughout the course strongly supported the hypothesis that these models
could be employed as tools of early intervention for subsequent editions
of courses. Tracking student progress Type A was therefore deemed a
practical application of the peer-assessment methodology.
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Figure 6.1: Type A Score Prediction Errors for the models of each course over eight weeks
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6.5 Modelling Progress Type B

The focus of this type of modeling progress is to predict how a student
would perform at the end of the course by observing their current level
of performance. It would be similar to asking how the student would
eventually perform in final exams if their performance level did not change
throughout the following weeks. This is an important question because the
answer to it, if correct, would indicate whether the student has acquired
all the required knowledge and skills to complete the course. Ideally, the
performance levels from the first week of the course would reveal a much
wider gap between current performance levels and desirable performance
levels, than would those from the final weeks of the course. The ideal
predictive model, would hence measure the gap between performance level
at any point during the course and the desired end-of-course performance.

Modeling this type of progress only required building a single linear
regression model using peer-assessment data gathered during the entire
course. In order to predict a student’s level of performance at any week,
the student’s performance levels for that week were fed to the model, which
then predicted the actual score. If performance predictions from every week
were concatenated to form a chain, they would provide useful information
in tracking performance levels throughout the course.

The prediction performance of this model was also evaluated using
several metrics. First, its exact score prediction was evaluated via
RMSE. Then its performances in making exact grade as well as
within-one-grade-point predictions were evaluated using the same metrics
as before.

Actual score prediction errors decreased in a consistent manner from
week to week, in line with the assumption that a student’s expected level of
performance could be predicted with higher confidence as more data about
the student became available. Although this was true for both courses, IG1
prediction errors showed a much sharper decrease throughout the course.
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Figure 6.2: Type A Exact grade prediction performance for PR2

Figure 6.3: Type A Exact grade prediction performance for IG1
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Figure 6.4: Type A Within-one-grade-point prediction performance for PR2

Figure 6.5: Type A Within-one-grade-point prediction performance for IG1
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Nonetheless, prediction errors for PR2 were lower than those for IG1 for
any of the weeks.

The statement that a student’s end-of-course performance could be
predicted with low degrees of error in the earliest weeks of the course
may be construed as simplistic, or even disheartening for the student. If
students knew that they were going to perform poorly in the course without
even progressing through the first few weeks, they would possibly become
frustrated and possibly drop out. It should be underlined, however, the aim
of these prediction models is to indicate the risk of failure and that there
is no harm in identifying students who may need additional assistance.
Indeed, a student who finds out that they are falling behind in the course
may take the appropriate measures to avoid undesired outcomes. After all,
this is what early intervention is intended for.

Exact score prediction errors for both courses are depicted in figure 6.6.

Figure 6.6: Type B Prediction Errors for the models of each course over eight weeks
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The second stage of evaluation involved converting actual scores into
grades and constructing a prediction model using those grades. Exact
grade predictions were better than those for progress type A but still low
for both courses. False Positive Rates decreased throughout the weeks but
were still not satisfactorily low.

Exact grade prediction performances for both courses are depicted in
figures 6.7 and 6.8.

Figure 6.7: Type B Exact grade prediction performance for PR2

Figure 6.8: Type B Exact grade prediction performance for IG1

The next phase of the experiment studied how the model performed in
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making predictions that lied at a one-grade-point distance from actual
grades. Similar to the models of progress type A, this model had
very high levels of performance when making such predictions. Indeed,
high prediction performance was obtained as early as the first week
of courses. Throughout the eight weeks, False Positive Rates were
either nonexistent or significantly low for both courses. This implied
that a student’s expected end-of-course performance could be predicted,
within-a-grade-point distance, as early as the first week of the course by
observing their performance in online peer-assessment activities.

Within-one-grade-point grade prediction performances for both courses
are depicted in figures 6.9 and 6.10.
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Figure 6.9: Type B Within-one-grade-point prediction performance for PR2

Figure 6.10: Type B Within-one-grade-point prediction performance for IG1

6.6 Conclusion

From peer-assessment tasks that were conducted over an eight-week
period in two courses, data were used to build several prediction models
according to two distinct interpretations of performance. The first
interpretation focused on comparing the performance of a student at
any week during the course to performance data of past students in the
equivalent week. The second focused on measuring how far a student was
from achieving the desired level of performance at the end of the course.
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Although exact grade predictions did not produce satisfactory levels
of performance for either approach, high levels of performance were
observed for both interpretations of student progress when making
within-one-grade-point predictions. This observation highlighted the
promising potential of the peer-assessment methodology to serve as a tool
of early intervention.

The similar performance of the models across the courses IG1 and PR2,
especially in making within-one-grade-point predictions, demonstrated
that the results were not anecdotal but consistent across both courses.
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7

Estimation of Student Proficiency
and Test Item Difficulty from
Peer-Assessment Data

7.1 Introduction

Pedagogical roles of the peer-assessment methodology and the models
that can be constructed on top of it have been discussed so far. The
peer-assessment data provide another opportunity to explore whether
online peer-assessment may serve yet another purpose with respect to
automated question selection and measurement of student proficiency.
These potentials are explored in detail in this chapter.

Peer-assessment is one of many educational practices that stand
to benefit from the automation of learning and assessment activities.
Digital traces of student activities carry much information. How
to predict student performance using such information obtained from
a peer-assessment experiment was explored previously. This chapter
discusses how peer-assessment data may help build models that predict
student performance on individual test items. The semi-automated
peer-assessment platform discussed in previous chapters was once again
utilized in a course involving over 170 students of a first-year undergraduate
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computer programming course.

The main goal of the experiments discussed in this chapter is to
determine if peer-assessment has the potential to be included in the
category of student performance predictors that are obtained from both
traditional student activity data such as performance on home works and
midterms and activity on online educational platforms.

The practice of estimating student proficiency on specific test items
hardly uses data from peer-assessment activities. For this reason, it should
be noted that, at this stage, it is too early to delve into a discussion of
the relative performance of the approach discussed here. Yet, an initial
comparison of performance with a similar approach is provided.

Item Response Theory (IRT) is a well-researched topic in psychometrics
and has wide applications in standardized testing, Computer Adaptive
Testing (CAT) and Intelligent Tutoring Systems (ITS). IRT, in general,
seeks to model the probability of a specific response by a person to an
item [40]. Items may be dichotomous, with two possible responses, or
polytomous, with more than two possible responses.

One of the simplest IRT models is a 1-parameter IRT logistic model,
which estimates the probability of a correct response to an item with
a certain level of difficulty, given a student’s ability. There are many
other variations such as the 2-parameter IRT model, which also takes into
account the test item’s discriminative power. The 3-parameter IRT model
is more sophisticated as it includes a guessing parameter. Depending on
whether responses are dichotomous or polytomous, many variations of IRT
exist. The general representation of the IRT models with one, two and
three parameters is:

p(uij = 1 | θi) = ci + 1− ci

1 + exp(−aj(θi − bj))
(7.1)

where p(uij = 1 | θi) represents the probability p that the response u
of a student i with ability θi is correct, ci is a guessing parameter, aj is
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a parameter that models how good item j is at discriminating between
students with close ability levels and bj is the difficulty level b of item j.

The 1-parameter IRT model is a special case of the model where
the pseudo-guessing parameter does not exist (c = 0) and the item’s
discriminative power is fixed at 1. That is, the 1-parameter IRT model
is given by the formula:

p(uij = 1 | θi) = 1
1 + exp(bj − θi)

(7.2)

The Item Characteristic Curve (ICC) of an IRT model explains the
relationship between item difficulty and student ability graphically. An
ICC with a theoretically modeled question is shown in figure 7.1. The
x−Axis of the ICC represents the range of abilities. Although, technically,
ability values may have a much wider range, values outside the range −4 to
+4 are rarely of interest. The y−Axis of the ICC represents probabilities
of a correct response.

Figure 7.1: A hypothetical Item Characteristic Curve
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The ICC traces a question’s level of difficulty across these abilities and
the probabilities with which students of varying ability levels can provide a
correct response to a question. A question such as the one shown in figure
7.1 is considered to be neither easy nor difficult because a student with an
ability of 0 has a 50% chance of providing a correct response to it.

Research that applies IRT to peer-assessment is modest. Ueno and
Okamoto [91] explored how to improve accuracy of peer-assigned scores
using a graded response model that considered a rater-characteristics
parameter. Some studies that implemented IRT in other e-learning
environments used several methods to model student abilities and item
difficulties. Chen et al. [18] used a 1-parameter IRT model and applied a
collaborative voting approach to model item difficulties. To model student
abilities, they applied the Maximum Likelihood Estimation (MLE) to a
student’s previous responses to questions and the voting-based difficulties
of those questions.

Johns et al. [45] used data about 70 multiple choice items obtained from
a web-based tutor and built four IRT models, two using two parameters
and two others using three parameters. They also used MLE to estimate
parameters. Each experiment varied in how the parameter values were
selected. They were either estimated constants based on the data or drawn
from a lognormal distribution. Five-fold cross-validation of the models
produced accuracy levels as high as 72% and Mean Absolute Errors (MAE)
and Mean Squared Errors (MSE) of 0.37 and 0.19, respectively.

The IRT model discussed here is a 1-parameter logistic function which
models a student’s response to an item based on the student’s ability and
the item’s difficulty. The objective here was to model parameters from the
peer-assessment data as difficulty and ability parameters so the original
model, without any additional parameters, could be applied to the problem
at hand.

A Linear Regression model was built for predicting performance on
individual open-questions. The model had a significant bootstrapped
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performance of F-statistic 212 and R2 .48. The model was then applied to
over 40000 unlabeled instances and the predicted scores were fed into the
2-parameter IRT model. A validation framework was developed to test the
performance of the IRT model using 1146 instances. Depending on several
settings, the IRT model had accuracy values as high as 0.64, True Positive
Rates as high as 0.67, and True Negative Rates as high as 0.87.

The results supported the argument that peer-assessment may yet
extend to another dimension and highlighted its potential as an alternative
psychometric instrument as well as its applicability to test item selection
processes in Computerized Adaptive Testing and Intelligent Tutoring
Systems.

7.2 A Recent Version of the Peer-Assessment System

In this study, a recent version of the semi-automated peer-assessment
platform was used in a second-year introductory computer programming
course. As before, the peer-assessment activities involved cycles of three
tasks in which students were required to (a) submit a question about topics
already discussed in class, (b) respond to a subset of the questions that
were submitted and (c) rate the responses of their peers to those questions.

Unlike in previous versions, when rating responses of their peers to a
question, students were assigned a specific number of points, computed
using the number of answers submitted to that question. For the purpose
of the peer-assessment activities, these points were referred to as coins.
Students distributed these coins over the responses, where each response
was assigned a range of coins between zero and five, inclusive.

In order to counter the effect of low task completion rates, the number
of points earned for answering a question was reported in terms of Effective
Coins (EC). This number is the proportion of coins an answer was awarded.
High EC values for an answer implied that the answer was found by raters
to be superior to other answers and low EC values indicated otherwise.
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7.3 The Prediction Models

At the end of the course, peer-assessment data for 172 students
and student performance statistics about 272 questions were collected.
Through elementary preprocessing, a dataset about how each student fared
against their peers on each question they responded to was constructed.
Each instance of the dataset was formed by combining statistics about a
student’s performance and statistics about a question’s characteristics. In
plain language, an instance of the dataset could be aptly rephrased as given
the performance of student s on other questions, s would earn p points on
question q. In order not to introduce unintended bias into the dataset, all
information about a question that would be included in the information
about a student, and vice versa, were removed from each instance.

Linear regression was then applied to determine which characteristics
of students and questions were good predictors of the number of effective
coins earned.

The dataset for building the linear regression model included 1146
instances. A total of 12 parameters were considered, most of which had
already been used for building the models discussed in previous chapters.
After initial examination of the the coefficients and p-values of these
parameters, only three parameters of a question and two parameters of
a student were included in the final model. The parameters are as follows.

• QTOTALSC - The total number of points (coins) that were
distributed to all answers for a question

• QMINEC - The minimum number of EC that was earned for
answering a question.

• QECSD - The standard deviation of the ECs for a question.

• STOTALEC - The total number of ECs a student earned, not
including the EC earned for this question
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• SSQAVERAGEDIFF - The average difficulty of a question,
submitted by the student and rated by peers, which the teacher
selected to distribute to students for answering.

The linear regression model was validated using bootstrapping with
10000 iterations. Table 7.1 reports statistics for the linear regression
parameters. Table 7.2 provides information about the overall performance
of the linear regression model.

Peer-assessment tasks were designed so that questions were answered by
at least four students. This, however, did not provide plenty of information
about either students or questions. It was then decided to generate more
information by creating a significant amount of prediction instances from
the current dataset, apply 1PL-IRT to those predictions and evaluate the
IRT model’s performance using the current dataset.

Prediction instances were generated by pairing each student with
each question. Because each student could be represented in terms
of STOTALEC and SSQAVERAGEDIFF and each question could be
represented in terms of QTOTALSC, QMINEC and QECSD, pairing
a student and a question entailed constructing a vector of these five
parameters. Those were then fed to the linear regression model to predict
the outcome in terms of EC.

Combining 172 students with 272 questions in this manner resulted in
46784 prediction instances. The linear regression model was then applied
to predict a student’s EC for each question. The IRT model was then
constructed using these predictions.

7.4 Experiments and Results

A common approach to assessing a student’s performance on a set of
questions is to determine how many of the questions the student answers
correctly. Typically, a ratio of the number of correct responses to the total
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Table 7.1: Coefficients of the linear regression parameters and their statistical significance

SECEarnedForQ Observed Coefficient Standard Error P > |z|
qtotalsc -0.002 0.000 0.00
qminec 0.617 0.049 0.00
qecsd 0.830 0.122 0.00

stotalec 0.042 0.004 0.00
ssqaveragediff 0.012 0.000 0.00

Table 7.2: Overall performance of the linear regression model

Statistic Observed Coefficient Standard Error
RMSE .079 .002

F-Statistic 212 22
R-Squared .481 .026

number of responses is reported. Similarly, how easy a question is can be
determined by observing the ratio of the number of correct responses to
the question to the total number of responses to the question.

Conversely, how difficult a question is can be determined by subtracting
this value (easiness) from 1 or by computing the ratio of incorrect responses
to the question to the total number of responses to the question.

In typical IRT models such as the 1PL-IRT model that was applied here,
no partial credits are assigned to responses. That is, a response is either
correct (1) or incorrect (0). Direct application of the 1PL model to the
current dataset was, however, not possible because responses were assigned
a point (EC), which was continuous between 0 and 1. In order to apply
the 1PL model, EC values needed to be converted into binary values. It
should, nonetheless, be noted that a score of 0 in this specific setting does
not necessarily imply an incorrect response or vice versa.

In order to apply the conversion, a threshold that would determine one
of the binary outcomes needed to be chosen. Inspection of the standard
deviations of the EC points earned for answers revealed that EC values for
many responses were very close to each other. Five potential thresholds
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Table 7.3: Thresholds explored for converting continuous EC values to binary outcomes

Threshold Above Threshold Below Threshold Ratio
Max EC - Min EC 842 304 2.77
Min EC + EC SD 703 443 1.59
Max EC - EC SD 520 626 0.83
Min EC * 1.2 767 379 2.02
Max EC * 0.8 569 577 0.99

were investigated and the threshold that yielded a zero-to-one EC ratio
closest to 1 was selected. The thresholds and their ratios are reported in
Table 7.3. Min EC represents the minimum EC earned for answering a
question, Max EC the maximum EC earned for answering a question and
EC SD represents the standard deviation of ECs earned for answering a
question.

In order to obtain question difficulties and student abilities, the natural
logarithms of the odd ratios (logits) of responses were computed. Applying
the logit helped reduce the unequal spacing that existed between responses
by a student and responses to a question so that comparisons between
difficulties and abilities could be made on the same scale [101]. The
formulas used for computing question difficulties and student abilities were:

ai = ln(ncorrect

ntotal
) (7.3)

and
bj = ln(nincorrect

ntotal
) (7.4)

where

• ai is the ability a of student i,

• bj is the difficulty b of question j,

• ncorrect is the number of correct responses,

• nincorrect is the number of incorrect responses,
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• ntotal is the total number of responses and

• ln is the natural logarithm.

In contrast with that of ability, the odds ratio of a question’s difficulty
is expressed as the ratio of incorrect responses to the total number of
responses because the difficulty of a question is commonly interpreted as
how many students fail to provide a correct response to it.

Once question difficulties and student abilities were computed, each
question difficulty was paired with each student ability. The 1PL IRT
formula was then applied to each pair to construct a matrix of probabilities.
This matrix was then consulted to infer relationships between question
difficulties and student abilities.

The Item Characteristic Curves for the 272 questions are presented in
Figure 7.2. They depict a more realistic situation where many of the curves
intersected the y-axis well above and below the 50% probability mark.

Figure 7.2: An ICC for the 272 questions in the dataset
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Table 7.4 shows the estimated probabilities of scoring beyond the
threshold for students with varying abilities. The IRT data suggested that
a student with an ability of 0 had at least a 50% chance of scoring above the
chosen threshold for about 42% of the questions. That is, for 42% of the
questions, a 0-ability student was predicted to have a 50% or more chance
of earning an EC that was at least 80% (the threshold) of the maximum
EC earned for that question.

Table 7.4: Proportions of questions for which students of varying abilities could earn a
score beyond the threshold depicted across different probability levels. *Correctness is
relative to the chosen threshold.

Ability Proportion of questions answered correctly* with
probability of at least

10% 25% 50% 75%
-3.1 5% 0% 0% 0%
-1.5 75% 18% 1% 0%
0 100% 89% 42% 5%
1.4 100% 100% 94% 61%
3 100% 100% 100% 99%

The conversion of student performances from mere correct-incorrect
ratios into logits identified 70 ability levels across the 172 students.
Similarly, 69 levels of difficulty were identified for the 272 questions. The
histograms in figures 7.3 and 7.4 depict the distributions for the entire
range of abilities and difficulties.
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Figure 7.3: Distributions of abilities

Figure 7.4: Distributions of difficulties
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Abilities were spread across the entire range, with a standard deviation
of 3.42. The mean ability was -0.42. There was a significant number of
students with abilities far below and above average. In fact, only 56% of
the students had abilities that ranged between -3 and 3, with 25% below
-3 and 19% above 3.

The distribution of difficulties, however, resembled a normal
distribution, with a mean of 0.22 and a standard deviation of 0.73. The
large majority of the questions (69%) fell within the difficulty range -0.7
to 0.7, and almost all (93%) within the range -1.4 to 1.4. A total of 7% of
the questions were outside this range, implying that they were either very
easy or very difficult.

Despite the fact that the majority of the questions were close to
the 0 difficulty level, they managed to identify students of varying
abilities. Although the IRT model did not consider the item discrimination
parameter, it could be inferred from this observation that many of the
questions did exhibit significant discriminative powers. For instance, a
comparison between a student with ability of 1.4 and another with ability
of 3 (Table 7.4) showed that a 25% increase in probability (from 50%
to 75%) was expected to reduce the proportion of "correctly answered"
questions for the student with lower ability by 33%. The same increase
was predicted to lead to only a 1% reduction in the expected proportion
for the student with higher ability.

7.5 Validation of the Results

The IRT model predicted probabilities that students with varying
abilities would provide "correct responses" to questions with varying
levels of difficulty. Validating a model which emitted probabilities
of outcomes instead of the outcomes themselves required yet another
transformation of the probabilities. Hence, the model was evaluated by
setting several thresholds for converting the predicted probabilities into
predicted outcomes.
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Table 7.5: Validation results of the IRT model across several thresholds and against two
baseline predictors

Method Accuracy P R TPR TNR
IRT (p >= 50%) 0.64 0.63 0.67 0.67 0.61
IRT (p >= 60%) 0.63 0.63 0.62 0.62 0.65
IRT (p >= 70%) 0.64 0.65 0.57 0.57 0.7
IRT (p >= 80%) 0.62 0.67 0.47 0.47 0.77
IRT (p >= 85%) 0.62 0.67 0.44 0.44 0.79
IRT (p >= 90%) 0.61 0.69 0.39 0.39 0.82
IRT (p >= 95%) 0.6 0.71 0.33 0.33 0.87

Always predict Correct 0.5 0.5 1 1 0
Always predict Incorrect 0.5 - 0 0 1

In order to compare the converted values to the actual EC values, the
actual EC values needed to be converted into binary outcomes as well.
This, however, was a straightforward task as the same threshold chosen
earlier was applied.

The 1146 instances that were used for training the linear regression
model were then used to validate the IRT model. Results are reported
in Table 7.5, according to the various probability thresholds that were
investigated. Performances of two baseline predictors, where one always
predicted a correct response and the other always predicted otherwise,
are also reported. Results are reported in terms of accuracy, precision
(P) and recall (R). In order to shed light on whether the predictors have
a consistent performance across predicted outcomes, True Positive Rates
(TPR) and True Negative Rates (TNR) are reported as well.

The results in Table 7.5 indicated that the IRT model’s performance
was consistent across the five evaluation metrics. A trade-off was observed
between precision and recall as well as between TPR and FPR. A fair
balance in performance across evaluation metrics could be struck by
choosing thresholds in the range between 70% and 80%.

Extreme values of performance were recorded by the baseline predictors.
Any predictor that always predicts one outcome is bound to correctly
predict either all negatives or all positives, given that the ratio of actual
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outcomes is higher than zero. Regardless, it would fail to make correct
predictions for any of the instances that belong to the other class.

Many studies that discussed how to make use of IRT in Computer
Adaptive Testing (CAT) for item selection evaluated the performance of the
item selection process indirectly through qualitative evaluation of the CAT
module. They did not provide comparisons with other similar studies and
rarely performed quantitative validation of results [72, 18, 42, 104]. Due
to this and the diversity of datasets used in experiments, it was difficult to
make direct comparison of IRT models in a quantitative manner.

Johns et al. [45], however, reported the accuracies of several IRT models.
Although the number of questions evaluated was much less, a comparison
of the highest reported accuracies and the number of questions is presented
in Table 7.6.

Table 7.6: Comparison of the IRT model by [45] and the IRT model in this study

Study Highest Reported Accuracy Number of Questions
[45] 72% (experiments 1 and 2) 70

This study 64% (experiments 1 and 3) 272

7.6 Conclusion

Although Item Response Theory has been used in many educational
environments, there are hardly any studies that utilize peer-assessment
data to estimate question difficulty and student ability. The goal of this
study was to extend the original goals of peer-assessment by demonstrating
that it could be a useful tool in estimating test item characteristics and
student abilities.

Although IRT is commonly used to estimate these characteristics
in Computer Adaptive Testing environments and Intelligent Tutoring
Systems, most of the data in those applications are usually gathered over
long periods of time and require manually labeling correct answers. A
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carefully designed peer-assessment methodology has a high potential to
reduce the amount of time needed to collect and label question and answer
data as it distributes the load among students.

Whether student grades are valid and reliable is a topic that has been
explored in great detail ever since the introduction of early forms of
peer-assessment over four decades ago [27]. Although results have not
been strongly positive across the hundreds of studies published since then,
specific settings have been shown to lead to more valid and reliable results
[27, 6]. The most significant of these is the number of assessors per
task. The peer-assessment platform used in this study used a best-effort
algorithm to distribute each assessment task to at least four students.

In order to assign four students to a single assessment task, the system
observed the number of students and suggested how many questions should
be selected from the question pool. Despite this measure, not all students
completed their assigned tasks. Because the number of points distributed
to answers depended on the number of assessors who completed their tasks,
low task completion rates led to some answers receiving an unfairly low
number of points or no points at all. In order to alleviate this problem,
proportions of points earned or Effective Coins (EC) were introduced.

The entire prediction pipeline, from the linear regression model to the
IRT model, relied on EC values. Due to the nature of the 1PL IRT model,
thresholds had to be introduced during estimation and result validation
phases.

Unlike the case of many IRT applications, the results of the IRT model
should be interpreted according to the conversion threshold applied and not
necessarily in terms of correct or incorrect responses. That is, a point below
the specified threshold may, in reality, not imply an incorrect response.
While absolute outcomes may be preferred, it is hoped that the use of
thresholds will help estimate test item difficulty and student ability relative
to certain points across the measurement scale.

In light of the fact that the attempt here was to demonstrate how
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online peer-assessment may have more to offer to the realm of predictive
modeling and learning analytics, it is believed that the results of the
experiments support the claim that online peer-assessment offers a source of
digital traces of student activities, which may be used to build meaningful
predictive models that profile both students and test items.
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8

Online Peer-Assessment Datasets

8.1 Introduction

Peer-assessment experiments were conducted among first and second
year students at the University of Trento. The experiments spanned entire
semesters and were conducted in five computer science courses between
2013 and 2016.

Peer-assessment tasks included question and answer submission as
well as answer evaluation tasks. The peer-assessment datasets are
complimented by the final scores of participating students for each course.

Teachers were involved in filtering out questions submitted by students
on a weekly basis. Selected questions were then used in subsequent
peer-assessment tasks. However, expert ratings are not included in the
dataset. A major reason for this decision was that peer-assessment tasks
were designed with minimal teacher supervision in mind. Arguments in
favor of this approach are presented.

The datasets are designed in a manner that would allow their utilization
in a variety of experiments. They are reported as parsable data structures
that, with intermediate processing, can be molded into NLP or ML-ready
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datasets. Potential applications of interest include performance prediction
and text similarity tasks.

8.2 The Datasets

Separate datasets were constructed for the five courses. For each
dataset, the version of the peer-assessment system is reported as the course
version. Version 1 courses used simple votes whereas version 2 courses used
point-based rating of answers. Student grades have also been included in
the datasets. The Italian higher education system uses a 0-30 grading scale,
with 18 the minimum passing score. For students who did not complete
the course successfully but participated in peer-assessment tasks, a score
of 0 is reported.

It is worth stressing that peer-assessment tasks were designed with
minimal teacher supervision in mind. This is evident in that none of the
answers have been assigned teacher grades. While the datasets may not
directly be used in peer-assessment validity experiments, they can certainly
be used to build models that explore whether such validity may be inferred
from course grades assigned by the teacher. Moreover, researchers may
employ expert rating of answers to the datasets if they wish to carry out
validity experiments. The datasets can also be readily utilized in Inter-rater
reliability experiments.

The decision to make participation in peer-assessment tasks
non-compulsory is reflected by the fact that some answers were assessed
by a fewer number of peers than others. It is also worth noting that task
incompletion rates increased towards the final weeks for all five courses.
Despite this, a total of 83% of students for three of the courses completed
at least a third of the tasks.
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8.2.1 Dataset Structure

Because weekly peer-assessment tasks started with the submission of
questions, a subset of which were used as inputs to subsequent tasks, it
was decided to structure the datasets in a similar manner. Every course
consisted of lectures, which in turn were composed of questions submitted
in the first task of the week, "Ask A Question". Question attributes
such as the number of evaluations and ratings of difficulty, relevance and
interestingness are included. For questions that were not evaluated, values
of 0 are reported.

The question text, information about the student who submitted it and,
answers are also reported. Each answer structure contains the answer text,
the student who provided it and its peer-ratings. Depending on the version
of the course, which is also reported as a course attribute, this rating may
be reported as a simple vote or as a set of coins awarded to the answer. For
every student that provided an answer to a question, their course grade is
reported as well.

8.2.2 Metadata

The complete structure of the datasets is presented in table 8.1 and an
explanation for each attribute is provided in table 8.2. Over 4800 questions
and over 5000 answers were submitted by more than 800 students that
enrolled in the five courses between 2013 and 2016. A breakdown is
provided in table 8.3.

The datasets are formatted as JavaScript Open Notation (JSON)
objects. A variety of programming languages support, natively or via the
use of external libraries, parsing JSON objects. A Java library that readily
parses the datasets into Java objects is provided. It is hoped that, with
intermediate level of processing, the JSON files can be streamlined and
transformed into datasets that can be used in several machine learning
and NLP tasks.
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Table 8.1: Structure of the datasets

Course Lecture Question Asker Task

{
"courseId":Integer,
"version":Integer,
"courseName": String,
"lectures":[Lecture]
}

{
“lectureId”:Integer,
“lectureTitle:String,
"questions":[Question]
}

{
"questionId":Integer,
"asker":Asker,
"task":Task,
"questionText":String,
"totalDifficultyLevel":Integer,
"totalInterestingnessLevel":Integer,
"totalRelevanceLevel":Integer,
"numEvaluators":Integer,
"chosenForAnswering":boolean,
"chosenForMultipleChoice":boolean,
"keywords":[Keyword],
"notes":String,
"answers":[Answer]
}

{
"courseId":Integer,
"askerId":Integer,
"courseFinalScore":Integer
}

{
"taskId":Integer,
"taskName":Integer
}

Keyword Answer Responder Coin Rater

{
"keyword":String
}

{
"answerId":Integer,
"task":Task,
"responder":Responder,
"answerText":String,
"notes":String,
"rating": Integer,
"coins": [Coin]
}

{
"courseId":Integer,
"reponderId":Integer,
"courseFinalScore":Integer
}

{
"coinId":Integer,
"rater":Rater,
"task":Task,
"value":Integer
}

{
"courseId":Integer,
"raterId":Integer,
"courseFinalScore":Integer
}
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Table 8.2: Description of dataset attributes with primitive datatypes – Integer, String
and Boolean

Name Type Description
courseId Integer The course’s unique identifier
version Integer The version of the system used, either 1 or 2

courseName String Name of the course
lectureId Integer The lecture’s unique identifier

lectureTitle String The lecture’s title
questionId Integer The question’s unique identifier
askerId Integer Id of the student who asked the question

courseFinalScore Integer The student’s final score for the course
taskId Integer The task’s unique Identifier

taskName String The task’s name, E.g. "Ask A Question"
questionText String The text of the question

totalDifficultyLevel Integer The question’s difficulty as rated by students

Table 8.3: Additional course metadata

Course Name Questions Answers Students Dataset Filename
Informatica Generale 1 1303 1398 204 2_ig1.json
Programmazione 2 1013 1041 163 4_pr2.json
Programmazione 1 547 728 132 5_pr1.json

Linguaggi Programmazione 1 1087 1146 179 100_lp1.json
Lingauggi Programmazione 2 858 972 183 102_lp2.json

The dataset files and the java parser library are freely available
at https://github.com/dataset-owner/t4e_datasets. All personally
identifiable information has been removed from the datasets.

8.3 Conclusion

Significant amounts of peer-assessment data may give back to research
in the practice itself, such as large-scale validity and reliability studies as
well as bring learning analytics to peer-assessment. Student performance
prediction, automated essay scoring and domain specific Question
Answering studies may all benefit from peer-assessment data.
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The purpose of the datasets presented here is to promote such
studies. None of the frameworks or studies in the literature make their
peer-assessment data openly available.

The datasets contain not only information about peer-assessment
experiments but also question and answer texts that may be used in
Italian NLP tasks such as Question Answering and Automated Essay
Scoring. Experiments using some of these datasets have demonstrated
the promising potential of peer-assessment in predicting student success
and modeling progress. The datasets were therefore constructed with no
specific experiment in mind. However, it is hoped that their representation
allows extraction of only required pieces of information with minimal effort.

One potential of use of the datasets is in research that aims to
investigate the correlation between student perception of peer-assessment
and performance in peer-assessment tasks. Whether participation in
peer-assessment tasks contributes to successful course completion may also
be investigated using these datasets.

Low task completion rate was one of the challenges faced in all rounds
of peer-assessment. It influenced the completeness of the datasets and, to a
degree, the fairness of points earned by students who participated in online
peer-assessment tasks. Naturally, students not completing answer-rating
tasks implied students whose answers were not evaluated missing out on
points. Research on rating calibration to counter this effect may also be
conducted using these datasets.
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Discussion and Conclusion

Peer-assessment has been practiced in classes of varying sizes for over
five decades. Hundreds of studies investigating the validity, reliability
and applicability of the practice at different levels of education have been
conducted. Despite uncertainties that have been highlighted about its
effectiveness in both formative and summative assessment environments,
the practice has been widely used by institutions across the globe.

However, the majority of peer-assessment practices are conducted using
traditional means of communication, namely pen-and-paper. Conducting
peer-assessment in this manner requires significant time and effort, both
on parts of the teacher and students. Distribution and collection of
assignments reduce the efficiency and effectiveness of the practice because
they take considerable amount of time and energy away from the actual
task of assessment.

This undesired effect makes having peer-assessment in large classes
prohibitive. Indeed, the majority of peer-assessment studies conducted in
such environments deal with much smaller class sizes than would otherwise
be encountered at freshman and sophomore years of college. Conducting
traditional peer-assessment activities in such classes is impractical.

Perhaps the most important limitation of peer-assessment experiments
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conducted in such environments is the difficulty to extend those
experiments to large-scale, reproducible versions. Large-scale manual
peer-assessment experiments require involvement of many faculty members
and, in general, require long periods of time to complete. This makes it
difficult to reconstruct similar settings and reproduce experiments.

While the importance of formative peer-assessment in engaging students
and helping identify at-risk students had been explored in some studies,
none of those studies conducted multiple rounds of experiments with the
support of online peer-assessment systems in order to explore these roles
of peer-assessment in detail.

Automating peer-assessment activities, at least to a certain degree,
opens the door to conducting experiments in an efficient and effective
way that would be virtually impossible otherwise. Automated solutions
from similar practices can be adopted, with little or no modification, to
address issues that would be challenging to tackle in traditional assessment
environments. Use of monitoring software and social network analysis
tools, for example, could identify dishonest such as plagiarism and collusive
behavior among peers.

Most importantly, automation may allow conducting large-scale
experiments that may attest the role of peer-assessment in promoting
student engagement as well as its potential in serving as a tool of early
intervention. Automated peer-assessment data may also contain enough
information to measure student proficiency and the suitability of questions
that may appear in tests.

In order to explore whether these roles could indeed be served by online
peer-assessment, a methodology was developed and applied in several
undergraduate and postgraduate-level computer science courses at the
University of Trento.

The methodology was developed with the goal of encouraging students
to be more involved in class and keep up with the pace of courses, especially
in classes with a large number of enrollments such as freshman and Massive
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Open Online Courses. The methodology employed a mildly competitive
social game where students would compete to earn a high number of points
for providing answers to questions submitted by their peers.

A web-based peer-assessment system that implemented this
methodology was utilized in several classes over the course of four
years. End-of-course surveys of student perspectives revealed that the
methodology was widely perceived as positive by students and that,
according to a significantly large majority of students, it elicited increased
involvement throughout.

Further analyses were conducted to determine whether there was a
correlation between participation in peer-assessment tasks and successful
course completion. For the three courses that were considered, a consistent
relationship was found between low degrees of participation in online
peer-assessment and difficulty in successfully completing courses.

These findings supported the hypothesis that the peer-assessment
methodology improves student involvement and helps reduce dropout or
course incompletion. They also revealed that most students who had
difficulty passing final exams or successfully completing courses tended
to stop participating in online peer-assessment activities during the first
few weeks of courses. This supported the other hypothesis that the
peer-assessment methodology serves as a tool of early intervention.

In order to explore whether the role of the methodology could be
extended to identifying at-risk students before they sat final exams
weeks after the completion of the courses, several prediction models
were constructed using peer-assessment data gathered via the web-based
platform. It was found that the prediction models could predict the final
exam outcome of students with low degrees of error.

Then, it was considered that when attempting to identify students who
might risk failing, teachers would be more interested in learning which
performance group a student would fall in. Therefore, the efficiency of these
models in making predictions within a range of grades was investigated.
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The performance of the models in making such predictions improved
significantly and, once again, the role of the methodology in identifying
students who may require early supervision was verified.

The performance of any model that predicts events is measured not
only by how good its predictions are but also by how early it can make
them. Although the models discussed earlier provided low-error predictions
several weeks before final exams, it was believed that true early intervention
should occur at a point where there is ample time for students to adjust
and for teachers to provide the necessary supervision. Hence, a later study
focused on providing meaningful prediction in such a timely manner.

The focus of early identification of at-risk students shifted to weekly
tracking of student progress and identification of students who might need
supervision as early as halfway through a course. In doing so, two main
interpretations of student progress were identified.

One compared the current performance of a student with the
performances of students from previous editions of the course at the
same point. This would be equivalent to asking how a student would
eventually perform, judging by the outcomes of students who had a similar
performance at the same stage in a previous edition of the course.

The other considered end-of-course performance of students from
previous editions of the courses and sought to measure the gap between
the current performance of a student and the ideal level of performance
expected at the end of the course. This would be equivalent to asking how
far a student is from achieving the objectives of the course.

Prediction models implementing both interpretations of student
progress were thus implemented using the online peer-assessment data.
Although the models did not perform particularly well when making exact
score predictions on a weekly basis, they performed significantly better
when predicting if student scores would fall within a range of scores.
Indeed, for both interpretations of progress, a large majority of at-risk
students were identified well before halfway through the course.
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Therefore, continuous prediction of student progress in this manner
strengthened the argument that the peer-assessment methodology could
play the role of early intervention and supervision of at-risk students.

A revision of the peer-assessment methodology led to the redesign of
the web-based platform to allow rating each answer for a question instead
of having to choose a single answer as the best. This allowed students who
provided answers to be rated consistently and led to the transformation of
the peer-assessment dataset into one with much more information about
each student and each question that was answered by students.

The information that was available in the recent peer-assessment dataset
was deemed suitable enough to construct Item Response Theory (IRT)
models. Such models rely on the argument that, given enough information
about respondents and test items, it could be stated with a probability how
a respondent would respond to a test item that they did not encounter
before. Since the dataset was composed of information about both
students and questions, such a model could be utilized, albeit with certain
transformations of the dataset.

The resulting model provided information about how students would
perform on questions that they had never responded to. A validation
framework was developed to measure the performance of the IRT model.
Although the results from these experiments were not outstanding, they
were strong enough to suggest that the peer-assessment methodology, and
well-designed peer-assessment practices in general, have a promising future
in influencing related disciplines such as Computerized Adaptive Testing
and Intelligent Tutoring Systems.

Several improvements in the peer-assessment system and the
methodology are foreseen. Currently, the teacher still has to inspect and
filter questions during every week of the course. This will prove to be
unscalable if the number of enrollments grows significantly. Current and
future efforts aim to apply advanced computing techniques such as Natural
Language Processing and Machine Learning to identify and group similar
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questions to help with the question selection process. Another alternative
is to utilize student judgments to identify and filter out those questions
which are deemed inappropriate or irrelevant to the topics of the course.

For reasons that have to do beyond pedagogy, it was not possible to
make peer-assessment tasks mandatory. Although it is informally accepted
that not being obliged to participate in tasks may eventually affect student
performance, a formal study regarding this issue is yet to be conducted.
Admittedly, the non-compulsory nature of peer-assessment tasks affected
the completeness of the dataset and, to a degree, the fairness of points
earned by students who participated in online peer-assessment tasks.

Possible remedies to this issue include calibration of peer ratings, which
also has a positive effect on the reliability of peer-assigned scores. Training
students on how to assess answers has also been shown to improve their
capability and experience in judging the quality of their peers’ responses.
This is another prospect that shall be adopted by the peer-assessment
methodology as well.

Peer-assessment is a well-seasoned practice that has been utilized in
all levels of education but has yet to take advantage of advances in
Information and Communication Technologies. It is hoped that this
thesis has demonstrated how this long-standing practice can benefit from
automation of activities in furthering its adoption and advancing research
into how it may evolve as a technology-supported educational discipline.
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Appendix A

Evaluation of Selected Prediction
Studies

After analysis of the studies, seven parameters that most of the studies
had reported were chosen to provide comparisons. These parameters are
reported in the following table. Remarks regarding whether predictions are
one-off, continuous or have to potential to be transformed into continuous
predictions are also provided. Where possible, F1 scores have been
calculated using precision and recall.

Acronyms

CS – Computer Science NB – Naïve Bayes NBC – Naïve Bayes Classifier
BN – Bayesian Networks NN – Neural Networks DR – Decision Rules
IBL – Instance-Based Learning DTR – Decision Trees DTA – Decision Tables
RF – Random Forest LiR – Linear Regression LoR – Logistic Regression
SVM – Support Vector Machines PCA – Principal Component Analysis LDA – Latent Dirichlet Allocation
MN – Markov Networks PLS – Partial Least Squares MAE – Mean Absolute Error
MSE – Mean Squared Error RMSE – Root Mean Squared Error AAPE – Average Absolute Prediction Error
TP – True Positive TN – True Negative FP – False Positive
FN – False Negative TPR – True Positive Rate FPR – False Positive Rate
FNR – False Negative Rate P – Precision R – Recall
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Study Course Level &
Discipline

Student and/or
Data Size

Predictor
Details

Outcome
and Type

Algorithm
or Technique

Evaluation
Metric

Performance Remarks

[32] Undergrad
CS

153 students Partial
& Final marks

Final Marks NN not reported not
reported one-off

[62] Undergrad
physics 227 records 184 problems

online success rate
Final grades BN, NN, DTR Accuracy <= 82.3% one-off

[3] not at
course level 101 records

Secondary
school marks
+ college
entry test

college
performance NN accuracy mean acc.

85% one-off

[53] Grad CS 354 records

Scores on four
written assignments
four optional
face-to-face
meetings with tutors

Final mark m5, NN
LiR, SVM MAE 1.23 - 1.83

could be used
to provide
continuous
predictions

[35] undergrad
CS

85 students
Prev. academic
performance +
demographic data

Cumulative
GPA

LiR Correlation (R) 0.052-0.1 one-off

[66] undergrad
and grad 21428 records academic +

demographic data pass/fail DTR, BN accuracy 93-94% and
71-73% resp. one-off

[68]
business course
level not
provided

1360 records academic data performance
classification

multiple accuracy mean acc.
97.3% one-off

[47] not reported 1407 records demographic data graduation NN MSE, accuracy 0.22 and
68.28% resp. one-off

[4] medical
sciences

306 records academic +
demographic data GPA NN MSE mean MSE

.48
one-off

[55]
grad, course
and level
not reported

60 records prev. semester
marks

5th semester
marks

DTA, DTR TPR, FPR calculated F1 0.94 one-off
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Study Course Level &
Discipline

Student and/or
Data Size

Predictor
Details

Outcome
and Type

Algorithm
or Technique

Evaluation
Metric

Performance Remarks

[88]
undergrad
not at
course level

52 records
high school+
prev. semester
data

exam results LiR-based
pass/fail accuracy 77.8%

can be used
to provide
progress
prediction

[5] undergrad
engineering

392 matriculation
and 505 diploma
students

previous
course
results

GPA NN correlation, MSE R<=0.98
MSE<=0.05 one-off

[9] undergrad
CS

2427 records courses taken degree of
achievement

multiple accuracy 89.5%-94.9% one-off

[31] undergrad
engineering 6584 records

socio-demographic
data + diagnostic
test results

performance-level
classification

NBC accuracy 60% one-off

[42] undergrad
engineering

2151 records
239 students

performance in
other courses
+ partial scores

final score LiR, NN, SVM accuracy SVM 89%-91%
could provide
progress
prediction

[77] undergrad
math & physics 1540 records

SAT +
pre-enrolment
tests

student
risk level

RF accuracy 90.5% one-off

[16] five CS courses
different levels

2994 records demographic +
academic data

grade SVM, NBC, IBL,
DR, DT accuracy 31.4%-42.2% one-off

[43] undergrad
physics 302 records online activity

+ midterm final exam PCA + PLS RMSE 0-0.9 PLS,
0-1.5 PCA

can be used
to provide
progress
prediction

[71]
undergrad
not course
specific

5955 records demographic +
academic data

dropout NN accuracy 75% one-off

[92] CS
undergrad?

66000 records
152 students

online activity pass/fail/
excellent

BN accuracy 78%

can be used
to provide
continuous
predictions
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Study Course Level &
Discipline

Student and/or
Data Size

Predictor
Details

Outcome
and Type

Algorithm
or Technique

Evaluation
Metric

Performance Remarks

[94] CS
undergrad? 45 records exercises marks & grades LiR & custom

algorithm RMSE, accuracy RMSE 6.9%
accuracy 75%

continuous
prediction

[97] arts, math,
business

over 5 million
records +
demographic data

online activity pass/fail SVM F1 <=0.49

can be used
to provide
continuous
predictions

[102] not reported 168 records online activity grade NN accuracy <=90%

can be used
to provide
continuous
predictions

[2] undergrad
engineering 429 students

academic +
demographic data
+ online activity

pass/fail NB, RF,
DTR, LoR accuracy 0.97-0.98

could be used
to provide
continuous
predictions

[10] not reported approx. 30000
students online activity inactivity &

dropout SVM accuracy, Cohen’s
Kappa, P, R, F1

80.4%, 0.07,
0.06, 0.1
resp.

could be used
to provide
continuous
predictions

[19]
undergrad & grad
not at course
level

2687 records demographic +
academic data

dropout DTR accuracy 61.6%-81.5% one-off

[29] undergrad
CS

56 records assignments achievement of
learning objectives SVM P,R calculated F1

0.86-0.98
continuous
prediction

[37] undergrad
CS

627 records tests + academic
year + gender pass/at-risk/fail DTR P, R, F1 mean F1 0.88

can be used
to provide
continuous
prediction

[74] undergrad
biology 37,933 records

first week
assignment
completion +
online activity
+ academic
background

completion &
type of
certificate

LoR accuracy, P, R,
ROC area, F1

F1 positive 0.85
F1 negative 0.95
for completion
F1 positive 0.79
F1 negative 0.8
for certificate type

can be used
to provide
continuous
predictions

[59] undergrad
engineering 1359 records 1st semester

academic data
admission to
2nd semester

NBC, NN,
SVM, DTR

accuracy, TP,
FP, TN, FN

calculated NBC F1
0.77-0.88

one-off
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Study Course Level &
Discipline

Student and/or
Data Size

Predictor
Details

Outcome
and Type

Algorithm
or Technique

Evaluation
Metric

Performance Remarks

[76]
undergrad
not at
course level

149 records demographic +
academic data

at risk/
not at risk

NN
accuracy,
P, R

89.2%, 69%,
91% resp. one-off

[78] undergrad
engineering 300 records demographic data

+ grades grades BN accuracy
for three courses
70.4%, 73.1%,
35.6%

one-off

[79] psychology
MOOC

1.6 million records online activity dropout RF accuracy 88%

can be used
to provide
continuous
predictions

[80] CS
undergrad? 1273 records online activity pass/fail

& final grade SVM P, R
calculated F1
1.0 for pass/fail
mean F1 1.0

can be used
to provide
continuous
predictions

[86]
MOOC, type
and level
not reported

14312 student
logs online activity dropout SVM

accuracy,
Kappa, FNR

0.69, 0.37,
0.16 resp.

can be used
to provide
continuous
predictions

[82] engineering
undergrad? 41,498 records grades grade MN MSE 0-0.65 continuous

prediction

[84] undergrad
CS

123 records
student self-
evaluation
comments

grade SVM, NN accuracy SVM 50.7%
NN 48.7%

may be used
to provide
continuous
predictions

[90]
undergrad
course level
not reported

prev. academic
data, size
not reported

demographic data +
high school grades

1st year
pass/fail NBC, SVM accuracy NBC 65.2%

SVM 73.2%
one-off

[7] undergrad
CS

206 records online activity final score LiR RMSE 2.93-3.44

can be used
to provide
continuous
predictions

[73] psychology MOOC
level not reported

over 3 million
student logs online activity dropout NN accuracy, FNR,

Cohen’s Kappa
0.74, 0.13,
0.43 resp.

can be used
to provide
continuous
predictions
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Study Course Level &
Discipline

Student and/or
Data Size

Predictor
Details

Outcome
and Type

Algorithm
or Technique

Evaluation
Metric

Performance Remarks

[20] physics MOOC
level not reported

37 million
student logs online activity

course
completion LDA

accuracy
TPR, TNR 0.81-0.99 continuous

prediction

[24] multiple courses
level not reported 11,556 records

current GPA
grades
online activity

grades
collaborative
multi-regression
models

RMSE 0.15

can be used
to provide
continuous
predictions

[52] CS
undergrad? 224 students

homework
assignment
practical test
online activity

performance
level
classification

DTR accuracy 0.67-0.73 continuous
prediction

[61] undergrad
engineering

data from
700 students

homework
assignment
midterm

grade custom AAPE, accuracy AAPE 0-0.7
accuracy 76%

can be used
to provide
continuous
predictions

[63]
undergrad
not at
course level

250 students
demographic +
academic +
behavioural data

performance
at end of
1st semester of
2nd year

DTR TPR, P, R
calculated
weighted F1
0.94

one-off

[103] CS
undergrad?

21 million records
195 students

online activity grade NBC
accuracy
sensitivity
specificity

accuracy 0.84-0.86
sensitivity 0.88-0.9
specificity 0.48-0.65

could be used
to provide
continuous
predictions
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