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Abstract 

This article provides a detailed description of micellization of binary nonionic surfactant 

system (Lutensol AP9 and AP20) at different compositions and temperatures in aqueous 

medium. Critical micelle concentrations of the individual components (CMCi) and the mixed 

surfactants (CMCm) were determined via surface tension measurements in the temperature 

range of 288.15 - 318.15 K. Based on the magnitude and temperature dependence of CMC 

values the Gibbs energy- (∆micG), enthalpy- (∆micH), and entropy change (∆micS) of 

micellization were evaluated. At 288.15 K the thermodynamic parameters were confirmed by 

isotherm titration calorimetry (ITC). Using the regular solution theory (RST), the 

compositions of the mixed micelles (XM) and molecular interaction parameters (βM) were 

estimated for all molar ratios and temperatures. The results of evaluations based on the closed 

association model and RST were compared. 

Keywords: critical micellization concentration; excess Gibbs free energy; mixed micelles; 

nonionic surfactant; regular solution theory  
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Introduction 

Surface active agents or surfactants, as they are commonly known, are widely used chemicals 

in household detergents, personal care- and food products. Surfactants play an important role 

in these applications as stabilizing- emulsifying-, foaming agents and detergents. 

Nonylphenol ethoxylates (NPE) are the most widely used members of the larger alkylphenol 

ethoxylate family of nonionic surfactants. They are produced in large volumes resulting in 

widespread release to the aquatic environment. National environmental protection agencies 

and the detergent manufacturers have cooperated to reduce their utilization, but NPEs are still 

widely applied in large quantities in industrial cleaning applications.   

 The industrial use (food-, pharmaceutical-, petrochemical industry etc.) of mixed 

micelles of nonionic surfactants in aqueous solution is well-known [1–5]. When there are 

adequate synergistic interactions between the individual components of micelles, the CMC of 

the binary surfactant mixture can be lower and the binary mixed micelle is 

thermodynamically more stable than the single surfactant-containing micelle [6–9]. Deeper 

understanding of the origin of non-ideal and synergistic behavior may help to design more 

efficient surfactant mixtures in order to reduce the amount of chemicals used in industrial 

applications. Several research groups have published reports on mixed micelle formation [10, 

11] and thermodynamic characterization of the micellization [12, 13], but only a few articles 

provide deeper information on the temperature [14] and composition [15] dependence of the 

CMC in mixed nonionic surfactant systems combining the advantages of both approach. The 

aim of this work was to characterize thermodynamically the binary nonionic surfactant 

mixture of octylphenol ethoxylate-9EO (AP9) and octylphenol ethoxylate-20EO (AP20) 

which has not been reported in the literature previously. Moreover, the other goal was also to 

compare the results of evaluations based on the closed association model theory and regular 

solution theory (RST).  

 

Theoretical background 

The mechanism of micelle formation from individual surfactant molecules (S) can be 

described by a series of step-wise equilibrium states: 

 

� + � ��↔ �� + � ��↔ ��…
�
↔ �� + � �
���� …       (1) 
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with a series of equilibrium constants (Kn) for  n = 2 − ∞ , and where the various 

thermodynamic parameters for the aggregation process can be expressed in terms of Kn [16]. 

According to the study of the micellization of surfactants, the determination of the CMC is 

crucial. Furthermore, two models are employed generally in the theoretical thermodynamic 

interpretation of micelles; (i) the phase separation model and (ii) the closed association model 

[17, 18]. The latter concept is often called the mass-action or closed-association model.  Both 

methodologies require the determination of the CMC in order to determine important 

physicochemical properties (e.g. surface tension, conductivity, osmotic pressure etc.) as a 

function of surfactant concentration.  

 In the closed-association model, with the size range of spherical micelles around the 

CMC being very limited, it is assumed that only one of Kn value is dominant, and micelles 

and monomeric species are considered to be in chemical equilibrium: 

 

�� ⟷ ��           (2) 

 

where n the number of surfactant molecules, S, associating to form the micelle (i.e., the 

aggregation number). This model assumes a dissociation–association equilibrium between 

solvated surfactant molecules and micelles – thus an equilibrium constant can be calculated. 

For a very dilute solutions of nonionic surfactant, where charge effects are absent and the 

activities of the substances in the solution closely approach the formal concentration, the 

single equilibrium can be described the equilibrium constant (Keq) which is given by 

following equation: 

 

��� = ���������
���
����
 = � 
!

� !
         (3) 

 

where amicelles is the activity of the spherical micelles and amonomers is the activity of the 

monomeric surfactant molecules. The standard free energy change of micellization which is 

actually the reaction Gibbs energy change of micelle formation (∆micG
0) can be expressed 

using Equation 4.   

 

−∆$%&'( = − ∆)
� = *+

� ,���� = *+
� ,����! − -.,���!       (4) 
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For the most surfactant systems, n > 50 in this way the first term on the right-hand side of 

Equation (4) could be ignored. After simplification, the (∆micG
0) is given by: 

    

∆$%&'( = -.,���! = -.,��/0/!                  (5) 

 

which matches the appropriate result of the phase-separation model [19]. The close action 

model tolerates a simple extension to be made to the case of ionic surfactants, in which 

micelles attract a substantial proportion of counter ions, into an attached layer [20].  

 The thermodynamics of micellization can be determined from the study of the 

temperature-dependence of the CMC.  For aqueous solutions of ionic and nonionic 

surfactants, the plots of CMC vs. temperature are usually U-shaped with a minimum at a 

characteristic temperature, generally around room temperature. The function of the 

temperature-dependence of the CMC can be described by either a polynomial equation or an 

equation in which case the analytical form is fully consistent with the van’t Hoff equation. 

Furthermore, the variation of the natural logarithm of the CMC as a function of T can be 

approximated by a second-order polynomial [21].  

 

,�121 = 3 + 4. + /.�         (6) 

 

Herein, CMC is expressed in mole fraction units and a, b and c are the fitting constants. At a 

constant external pressure (P), the isosteric enthalpy of micelle formation (∆micHvh) for non-

ionic surfactants can be calculated by means of the van’t Hoff relation [22]. 

 

∆$%&567 = −-.� 89:�;<;
9+ =

>
         (7) 

 

Furthermore, the entropy term (T∆micS) and the heat capacity change (∆micCp) of micellization  

can also be given by the following equations [23, 24]. 

 

.∆$%&� = ∆$%&5 − ∆$%&'         (8) 

 

∆$%&1> = 89?∆���@A
9+ =

>
         (9) 
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Additionally, besides the above described van’t Hoff analysis the calorimetry is also a 

powerful method to obtain information directly on the enthalpy of micelle formation. 

Numerous researchers have reported on the enthalpy of micelle formation of single surfactant 

systems obtained by calorimetry [22] as well as there are some calorimetry studies on the 

micelle formation of surfactants in mixed solvent [25] or in the presence of cosurfactant [26]. 

By contrast,  only a few studies demonstrate the enthalpy of mixed micelle formation 

obtained by calorimetry [27].   

 Beyond the above described theories and experimental evidences of micelle 

formation, the interactions between two surfactants in a mixed monolayer at the air/aqueous 

solution interface or their interaction in a mixed micelle in the aqueous phase play an 

important aspects for the detailed  knowledge of the equilibrium properties of the self-

assembly surfactant-based associated colloids [28]. Synergistic interactions between the 

surfactants in binary mixed systems can be predicted by some theories. There are common 

models used to describe the interactions and they are classified as the ideal and non-ideal 

representations. In the case of ideal solution theory (IST) which describes the mixing of the 

surfactants, the phase separation model can be used to calculate the CMC of the mixture 

(cmcmix) from the individual CMC, CMC1, and CMC2, and the respective mole fractions of 

surfactants (α). Based on the theoretical work by Clint [10] the CMCm can be calculated using 

the following fundamental equation. 

 

B
&$&�

= C
&$&

+ C�
&$&�

          (10) 

 

The non-ideal model creates the opportunity to calculate the extent of synergistic interaction 

provided by Rubingh [29]. A non-ideality parameter (β) is required in the RST description of 

a binary system. Rubingh’s treatment considers the activity coefficients given by the RST: 

 

,�DB = E?1 − GBA�          (11) 

 

,�D� = EGB�           (12) 

 

where f1 and f2 are activity coefficients of the mixed surfactants, X1 is mole fraction of 

surfactant 1 in mixed micelle and β is the molecular interaction parameter, which takes into 
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account the interaction energy between the monomers of surfactant 1, surfactant 2, and 

monomers of surfactants 1 and 2 in the mixed micelle, respectively.  

 

E$ = HIH��JH�
*+           (13) 

 

Based on the phase separation model with ideal behavior of surfactants in the mixed micelle 

the surfactant concentrations in solution can be expressed using the individual and mixed 

CMC for the mixture and mole fraction of surfactants in mixed micelles and solution phase 

[30]. 

 

1B = GB/0/BDB = KB/0/$         (14) 

 

1� = ?1 − GBA/0/�D� = ?1 − KBA/0/$       (15) 

 

Equation 16, easily derived based on Equations (11, 12, 14 and 15), can be solved by an 

iterative calculation method that gives the mixed micelle composition (X1) from the 

experimental value of the CMCm. 

 

L�:�8
M����
N���

=

?BJLA�:�8
?OMA����
?ONA����

=
= 1         (16) 

 

The molecular interaction parameter for micelles (βM) can be evaluated using the equations 

(14 and 17). Hence, the βM is given as: 

 

E< =
:�8M����

N���
=

?BJLA�
          (17) 

 

The nature and strength of the interaction between the surfactants are characterized by the 

value of the βM parameter, which indicates the degree of non-ideality of the interaction in a 

mixed micelle. Based on the above defined relations, RST is able to describe clearly the 

interactions occurring in the mixed surfactant systems. Negative value of β
M indicates the 

synergistic nature of the interactions between these surfactants [31] while positive value of 

β
M signifies antagonism between components of surfactant combination [32].  

Page 6 of 27Journal of Surfactants and Detergents

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Experiment methods 

Chemicals 

Nonionic surfactants (nonaethylene glycol mono(p-octylphenyl)ether/Lutensol® AP9 and 

icosaethylene glycol mono(p-octylphenyl) ether/Lutensol® AP20) (Figure S1) were 

purchased from BASF Hungary Ltd. The surfactant solutions and their equimolar mixture-

containing solutions were prepared in a 100 mL volumetric flask and then diluted in 

deionized water (18 MΩ cm−1, Milli Q, Millipore) to the desired concentration. All the 

starting materials were used without further purification. 

 

Surface tension measurements 

The surface tension measurements of surfactant solutions were performed on a K100 MK2 

Tensiometer (Krüss Co., Germany) using the Wilhelmy ring method in the concentration 

range of 4.5 mM – 4.5 µM using different compositions (0 < α1 < 1) as well. Before each 

measurement, the plate was carefully cleaned with deionized water and flamed. The surface 

tension of deionized water was measured to calibrate the tensiometer and to check the 

cleanliness of the sample pool. At a constant temperature and composition, the surface 

tension was measured at different concentrations by placing 50 mL volume of stock 

surfactant solution in sample pool and diluting with deionized water from a connected 

Dosimat 765 (Metrohm) titration stand. The solutions were immersed in a constant-

temperature bath at the desired temperature (0.02 °C). Sets of measurements were taken at 

certain intervals until the surface tension was constant for 3 min. The standard deviation for 

surface tension measurements was less than 0.1 mN/m. Each measurement was performed at 

288.15, 298.15, 308.15 and 318.15 K. During the automatized surface tension measurements 

the tensiometer and the dosing unit was controlled by the modularly constructed LabDesk™ 

software. 

 

Isotherm titration calorimetry 

Thermometric titration experiments were performed at 288.15 K with a computer-controlled 

VP-ITC power-compensation microcalorimeter (MicroCal). Deionized water (1.1 mL) in the 

sample cell was titrated under constant stirring with 300 µL of concentrated surfactant 

solution in aliquots of 10 µL in periodic time intervals of 5 min. The heat evolved or 

absorbed during the stepwise dilution experiment was recorded in the form of a series of 
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calorimeter peaks. The enthalpograms (calorimeter power signal vs time) were evaluated by 

means of Origin Microcal 7.1. software. 

 

Results and discussion  

Surface tension values of the aqueous solutions of AP9 (α1 = 1) and AP20 (α1 = 0) and their 

mixtures (α1 = 0.2, α1 = 0.4, α1 = 0.6 and α1 = 0.8) are plotted against the logarithm of the 

total surfactant concentration at 298.15 K; the results are presented in Figure 1. As can be 

clearly seen, there are two linear intervals of the curves, connected by a short curved section. 

There are indications of negative deviations from linearity at the lowest concentrations, while 

the horizontal portion of the surface tension curves often had a minor positive slope. In spite 

of the mentioned nonlinearity, clear breaks can be observed in these curves which correspond 

to the individual CMC. Furthermore, the shape of curves is similar for both surfactants and 

their mixtures a linear dependence exists between interfacial tension and lnC near the CMC. 

In the case of single surfactants (α1 = 1 and α1 = 0)  the value of CMC agrees well with 

former experimental studies of micellization of polyethylene glycol mono(p-

octylphenyl)ether type surfactants [33]. The interfacial tensions gradually decrease in the 

increasing analytical concentration of the surfactant until the air/solution interface becomes 

saturated with the surfactant where the micelle formation occurs. After complete interfacial 

saturation the γ vs. lnC function remains nearly unchanged. The break points of the γ vs. lnC 

curves were determined by linear regression founded routine via fitting of the both decreasing 

and the nearly horizontal portions of the curves (presented with gray dashed lines on Figure 

1 only for the pure AP20 (●)). The determined CMC value of the AP20 solution as a result of 

fitting is presented in Figure 1 with black dashed line. For each sample, similar evaluation 

was performed. Based on the uncertainty of the slope and the intercept of a least squares 

fitted straight lines [34] as well as the basic rules of uncertainty calculations [35] the standard 

deviations of the CMC values can be easily determined. The CMC values of the investigated 

surfactants and their mixtures (α1 = 0.2; 0.4; 0.6; 0.8) with the corresponding standard 

deviations at different temperatures are presented in Table 1.  

 The experimentally determined CMC values of the mixed surfactants as a function of 

α1 (Figure 2) show differences from the predicted values of ideal mixing based on equation 

(10) when the AP9 mole fraction is smaller than 0.5. As it can be seen on Figure 2 in the 

range of α1 = 1.0-0.8 the measured CMC values are similar to the predicted values calculated 

by the IST. The existence of non-ideal behavior is evident upon analysis of the data 
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summarized in Table 1, based on the difference (∆cmc) between the calculated (cmcideal) and 

the experimental (cmcexp) CMC values (∆cmc = cmcideal - cmcexp). The Figure 3 visualizes the 

temperature- and composition- (α1) dependence of ∆cmc. We can conclude that measurable 

deviations from ideal behavior are observed over the entire investigated temperature and 

mole fraction range. As seen in Figure 3 the maximum ∆cmc is established at 288.15 K and 

at α1 = 0.2.  

 Moreover, the CMC values determined by surface tension shows the typical 

temperature-dependence which is presented in Figure S2. In many cases, the CMC of 

nonionic surfactants decrease as the temperature is increased. This is due to destruction of 

hydrogen bonds between water molecules and the hydrophilic headgroups. In this way, the 

CMC vs. T plot is nearly linear. Similar to the different studies of the temperature-

dependence of CMC published previously for polyoxyethylenated non-ionic surfactant 

derivatives [36] our result also shows a slight nonlinearity; there is a minimum of the CMC-

temperature curve in aqueous solution. As can be clearly seen, the CMC vs. T plots show the 

minimum at 298.15 K which was observed for both single surfactant as well as their 

mixtures. Besides the experimental CMC data, Figure S2 shows the CMC predicted from 

equation (10).  

 According to the van‘t Hoff analysis, the natural logarithm of the CMC values were 

plotted against the absolute temperature as presented in Figure 4. As Figure 4 shows the 

characteristics of lncmc – temperature data pairs can be described as a convex curve. The 

enthalpy change of micelle formation were obtained by a Microsoft Excel based nonlinear 

regression analysis [37] using equation (7). This procedure can determine the values for the 

parameters (a, b and c) of the second-order polynomial [equation (6)] by the minimalization 

the residual sum of squares of the distances of the experimental data points to the curve for 

the equation. The results of the nonlinear regression for each mole fraction are presented as 

dashed lines beside the experimental data of AP9 (♦), AP20 (●) in Figure 4.  

 Besides the calculated values of enthalpy by nonlinear parameter estimation, the 

uncertainty of the thermodynamic data is also important.  To calculate the standard deviations 

of the fitting parameters, a weighted resampling “jackknife” procedure was used [38, 39]. 

Nonlinear parameter estimation-based fitting of the experimental data pairs (4 different ln 

cmc vs. T data pairs) was repeated four times using different starting conditions. In the first 

case, all the data pairs were used for the calculation resulting in the mean value of the fitting 

parameters. For second run, the first data pair was neglected, while for third case the second 

data pairs was neglected and so on. After these procedure the standard deviation of the 
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pending parameters were calculable based on the recognized four different parameter set. The 

nonlinear parameter estimation-calculated van’t Hoff enthalpies (in kJ mol-1) of micelle 

formation and the values of “jackknife” resampling technique evaluated standard deviations 

are listed in Table 1.   

 Figure S3 shows that ∆micH is reduced by raising the temperature.  As a result, ∆micH 

goes from positive to negative in the range 295-300 K in the case of single OPE (AP9 : α1 = 1 

and AP20 : α2 = 1)  and their mixtures (α1 = 0.2, α1 = 0.4, α1 = 0.6 and α1 = 0.8), thus the 

micelle formation changes from endothermic to exothermic at about 298 K. Before the 

inversion, the process is entropy-driven (T∆micS > 0 and ∆micH > 0), but after inversion, both 

the entropy and enthalpy terms favor micelle formation (T∆micS > 0 and ∆micH < 0). Linear 

extrapolations suggest that micellization becomes purely enthalpy-driven (T∆micS < 0 and 

∆micH < 0) above 340 K. Furthermore, there is a minimum in ∆micH when the mole fraction of 

AP9 in the bulk phase is equal to 0.2. This nonlinear tendency of ∆micH vs. α1 plots and a 

minimum at α1 = 0.2 is unambiguously noticeable in the case of all the examined 

temperatures. According to simple algebraic calculations, the difference of the evaluated 

∆micH from the ideal behavior-predicted values increases as the temperature rising from 

288.15 to 318.15 K and based on the value of determination coefficient (R2 = 0.9974 at α1 = 

0.2) the relationship between the degree of the difference and T is almost completely linear.  

 In addition to the surface tension measurement based investigations at 288.15 K, the 

CMC and ∆micH values were determined by isotherm titration calorimetry (ITC). The typical 

experimental titration curves obtained for the dilution of aqueous solutions of AP9 (α1 = 1) 

and AP20 (α1 = 0) into water are given in Figure 5. Moreover the single surfactants their 

mixtures (α1 = 0.2, α1 = 0.4, α1 = 0.6 and α1 = 0.8) were also examined via ITC technique, 

their thermograms and calorimetric enthalpies are not presented here. At the applied 

temperature the micellization process was exothermic for both the single surfactants and their 

mixtures equally. Taking into consideration the fact that the regular sigmoidal character is 

strongly distorted in both the premicellar and postmicellar regions the CMC and ∆micH values 

were determined by a modified version of the sigmoidal Boltzman equation [23, 40].  The 

mentioned parameters and their standard deviations are presented in Table 1. Based on the 

ITC measurements we found that at 288.15 K the calorimetric enthalpies of micellization 

agree well with the van’t Hoff enthalpies. 

 At the second stage of the evaluation process, the mixed micelle composition (X1) was 

determined from the experimental value of the CMCm based on equation (16) which can be 

solved iteratively [41] to obtain the value of X1. After determination of the X1, the non-ideality 
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parameter (βM) which characterizes the nature and strength of the interaction between the 

surfactants can be calculated using Equation (17); the appropriate X1 and β
M values are 

presented in Table 2. As Table 2 shows, all of the βM values are negative, which indicates the 

appearance of a possible synergistic effect. To further verify the synergism the data 

summarized in Table 1 and in Table 3 should be analyzed according to the condition |βMǀ > 

ǀln(cmc1/cmc2)ǀ. The value of the calculated βM parameters for all the investigated mixtures 

are smaller than the required level which leads to the conclusion that our binary surfactant 

system does not fulfill the second condition of the existence of synergism. Meanwhile, the 

deviation from the ideal behavior is observed from all the investigated temperatures and mole 

fraction ranges taking into account the negative sign of βM parameters. According the 

composition- (α1) and temperature-dependence of βM results were found as in the case of the 

evolution of ∆micH in the mole fraction-, temperature- and enthalpy-determined three 

dimensional parameter space. Namely, viewing the system from the aspect of composition 

the value of βM takes a minimum when the mole fraction of AP9 in the bulk phase is equal 

0.2. This type of minimum curve is noticeable the whole investigated temperature range. 

Values of β
M

 increase as the temperature increases from 288.15 to 318.15 K and the 

relationship between βM and T is almost fully linear.  

 As final outcomes of the investigation of the mixed micelle formation we compared 

the evolution of the experimentally CMCm-based Gibbs free energy (∆micGm), the IST-based 

(∆micGideal) and the RST-predicted excess Gibbs free energy (GE) [42, 43]. Firstly, we 

calculated the ∆micGm values using equation (5), the ∆micGideal values by equation (13) 

analogously and composed the difference of this data pairs (∆micGm - ∆micGideal). The absolute 

values of these differences were plotted against the molar ratio of surfactant mixture (α1) in 

the case of the four different temperature can be seen in Figure 6. Besides the previously 

mentioned differences which characterize the degree of non-ideal behavior, the GE were also 

calculated and the values are represented on Figure 6 as well. GE were calculated as linear 

functions of the mixed micelle composition (X1) and activity coefficients of the mixed 

surfactants (f1 and f2) according to GE = RT(X1lnf1 + X2lnf2) expression. In this manner, the 

various calculations were successfully applied in order to determine the excess properties of 

mixed surfactants in the mixed micelles. In Figure 6, the difference of experimental cmcm 

based (∆micGm) and IST predicted (∆micGideal) Gibbs free energy is symbolized by full-, while 

the RST based excess Gibbs free energy (GE) represented as hollow symbols. Dotted lines are 

drawn to guide the eye.  As can be seen on Figure 6 analogous trends were observed for both 

approximation originated excess quantities. A deeper interpretation of this result provides the 
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existence of a nearly synergistic interaction which can be characterized by well-defined 

excess Gibbs free energy.  

 

Conclusions 

Based on the tensiometric profile of the aqueous solutions of AP9 and AP20 surfactants and 

their mixtures, the CMC values and the corresponding standard deviations were determined 

at different temperatures and compositions. In the investigated temperature (288.15 – 318.15 

K) and bulk mole fractions (from 0.0 up to 1.0 for AP9) range we found that the CMC values 

are lower than CMCideal calculated from ideal mixing model. The CMC versus T curve of 

single and mixed surfactants passes through a minimum just below room temperature. 

Results of the nonlinear regression analysis showed that ∆micH is reduced upon raising the 

temperature and there is a minimum of the ∆micH when the mole fraction of AP9 in the bulk 

phase is equal to 0.2. The calorimetric enthalpies of micelle formation agreed well with the 

enthalpies calculated via the van’t Hoff relation. The Gibbs free energy of single and mixed 

micelle formation was nearly constant as the temperature was increased, due to 

enthalpy/entropy compensation. Comparison of the experimentally, IST-based and the RST-

predicted excess Gibbs free energy resulted in similar trends for both approximation initiated 

excess quantities which provides the presence of a synergistic type interaction.     
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Figure captions 

Fig. 1. Representative equilibrium surface tension data of the aqueous solutions of AP9 (♦), 

AP20 (●) and their mixtures (unfilled symbols) close to cmc at 298.15 K. Mole fraction (α1) 

data relate to the AP9. 

Fig. 2. ∆cmc data as a function of AP9 mole fraction (α1) at 288.15 K (dotted line). The 

dashed grey line corresponds to the calculated cmc values according to IST [equation (10)]. 

Fig. 3. ∆cmc data derived from IST predicted values (∆cmc = cmcideal - cmcexp) as a function 

of AP9 mole fraction (α1) and temperature. 

Fig. 4. Natural logarithm of cmc as a function of the temperature for single surfactants (AP9: 

α1 = 1 and AP20: α1 = 0). The dashed grey lines represent the fitting of the measured data via 

nonlinear regression fits based on equation (7). 

Fig. 5. Typical thermograms and calorimetric enthalpies of dilution obtained from ITC 

experiments for single surfactants at 288.15 K. Results from a fit of the experimental data to 

the modified Boltzmann equation (solid lines). 

Fig. 6. Different evaluation process resulted excess Gibbs free energy of mixed micelle 

formation as a function of composition (α1) at different temperatures.  

Table captions 

Table 1. Surface tension- and ITC measurement determined cmc and  ∆micH values of single 

(AP9: α1 = 1 and AP20: α2 = 1) and mixed (α1 = 0.2, α1 = 0.4, α1 = 0.6 and α1 = 0.8) 

surfactants at a different mole fractions (α1) and temperatures. 

Table 2. Calculated micelle compositions (X1) and molecular interactions parameters (βM) of 

the investigated surfactant mixtures at different mole fractions (α1) and temperatures. 
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Table captions 

Table 1. Surface tension- and ITC measurement determined CMC and  ∆micH values of single 

(AP9: α1 = 1 and AP20: α2 = 1) and mixed (α1 = 0.2, α1 = 0.4, α1 = 0.6 and α1 = 0.8) 

surfactants at a different mole fractions (α1) and temperatures. 

Table 2. Calculated micelle compositions (X1) and molecular interactions parameters (β
M

) of 

the investigated surfactant mixtures at different mole fractions (α1) and temperatures. 
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Table 1. 

  mole fraction (α1) 

T (K) 1.0 0.8 0.6 0.4 0.2 0.0 

288.15  
0.052±0.005 0.060±0.006 0.068±0.007 0.078±0.008 0.095±0.009 0.163±0.015 

0.066±0.005
#
 0.062±0.005

#
 0.080±0.004

#
 0.068±0.005

#
 0.092±0.003

#
 0.186±0.022

#
 

298.15 0.048±0.004 0.055±0.005 0.063±0.006 0.074±0.007 0.093±0.008 0.157±0.014 

308.15 0.053±0.005 0.061±0.006 0.071±0.007 0.083±0.008 0.105±0.009 0.170±0.015 

318.15 0.062±0.006 0.071±0.007 0.084±0.008 0.102±0.010 0.132±0.011 0.201±0.018 

  ∆micH (kJ mol
-1

) 

T (K) 1.0 0.8 0.6 0.4 0.2 0.0 

288.15  
8.51±1.52 7.98±1.54 7.13±1.28 6.30±1.13 4.85±0.90 5.78±1.36 

7.75±0.51
#
 7.4±0.55

#
 5.24±0.28

#
 4.68±0.34

#
 3.49±0.12

#
 5.74±0.68

#
 

298.15 0.09±0.75 -0.32±0.75 -1.21±0.63 -2.32±0.39 -3.69±0.31 -1.47±0.13 

308.15 -9.54±0.42 -9.91±0.42 -10.74±0.36 -12.15±1.47 -13.43±1.17 -9.75±0.47 

318.15 -20.44±1.35 -20.71±1.39 -21.53±1.14 -23.27±2.94 -24.43±2.35 -19.12±2.35 
#
 data determined by ITC studies  
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Table 2. 

α1 

288.15 K 298.15 K 308.15 K 318.15 K 

X1 β
M 

X1 β
M 

X1 β
M 

X1 β
M 

1.0 - - - - - - - - 

0.8 0.91 -0.23 0.92 -0.20 0.92 -0.10 0.92 -0.07 

0.6 0.79 -0.39 0.80 -0.31 0.81 -0.22 0.82 -0.12 

0.4 0.64 -0.57 0.66 -0.45 0.66 -0.36 0.67 -0.18 

0.2 0.45 -0.78 0.46 -0.62 0.45 -0.46 0.45 -0.24 

0.0 - - - - - - - - 
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Figure 1. 
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Figure 3. 
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Figure 5. 
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Figure 6. 
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