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Abstract 

 

During the last decade, heavy alkaline-earth organometallic chemistry has emerged from obscurity 

to becoming a vibrant area of research, owing to a number of synthetic pathways that provide 

reliable access to these highly reactive target compounds. The complexes of heavy alkaline-earth 

metals were employed in various catalytic applications such as ring-opening polymerization of 

various cyclic esters, polymerization of styrene and dienes, and hydroamination and 

hydrophosphination reactions of alkenes and alkynes. Particularly, Group 2 metal complexes have 

been received considerable attention as initiators for the ROP of cyclic esters and some of them 

have demonstrated impressive results. Aliphatic polyesters are currently considered as alternatives 

to synthetic petrochemical-based polymers. Their biodegradable and biocompatible nature along 

with their mechanical and physical properties make them prospective thermoplastics with broad 

commercial applications such as single-use packaging materials, medical sutures and drug delivery 

systems. Ring-opening polymerization (ROP) of cyclic esters promoted by alkaline-earth & rare-

earth metal initiators proved to be the most efficient way for preparing polyesters with controlled 

molecular weight and microstructure and narrow molecular-weight distribution. Therefore, the 

design and synthesis of new well-defined single-site catalysts that exhibits good activity, 

productivity and selectivity for cyclic ester polymerization is needed.  

In my doctoral research work, we have mainly focused on the syntheses and structural 

characterization of various alkaline-earth metal complexes having various amidophosphine-

chalcogenides and boranes in their coordination sphere as multi-dentate chelate ligands. We have 

studied the catalytic efficiency of alkaline-earth metal complexes as initiators for the Ring-opening 

polymerization of -caprolactone. We have developed a series of homoleptic alkaline earth metal 

complexes with amidophosphine chalcogenide ligands. To improve the catalytic activity, we have 

also synthesized homoleptic metal complexes with monoanionic amidophosphine boranes and 

heteroleptic complexes with dianionic bis(phosphino-selenoicamide) ligands. We have observed 

that metal complexes having larger ionic radii and less shielded by ligand moieties showed better 

activity and better control in catalytic ring opening polymerization of -caprolactone. 
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Figure 6.1. Solid state structure of bulky iminopyrrolyl ligand 40. 

Figure 6.2. Solid state structure of lithium complex 41. Hydrogen atoms are omitted for 

clarity. 

Figure 6.3. Solid state structure of sodium complex 42. Hydrogen atoms are omitted except 

H13 for clarity. 

Figure 6.4. Solid state structure of potassium complex 43. Hydrogen atoms are omitted 

except H24 for clarity. 
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Figure 6.5. Solid state structure of magensium complex 44. Hydrogen atoms are omitted for 

clarity. 

Figure 6.6. Solid state structure of magnesium complex 45. Hydrogen atoms are omitted for 

clarity. 

Figure 6.7. Solid state structure of calcium complex 46. Hydrogen atoms are omitted for 

clarity. 

Figure 6.8. Solid state structure of strontium complex 47. Hydrogen atoms are omitted for 

clarity. 

Figure 6.9. Solid state structure of barium complex 48. Hydrogen atoms are omitted for 

clarity. 
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Introduction 
 

Alkaline-earth metals are typically belong to Group 2 in the periodic table, for these metals stable 

oxidation state is +2. Among the alkaline-earth metals, the lighter metals beryllium and 

magnesium, with their small radii, display relatively high charge/size ratios, coinciding with the 

capacity for bond polarization and the induction of bond covalency. Therefore, BeC and MgC 

bonds are much more polar indeed, and affording relatively stable species. Due to the toxicity of 

beryllium and its compounds,1 little work has been done, but magnesium containing compounds 

have been most intensely studied as evidenced by the established use of Grignard and 

diorganomagnesium reagents in synthetic applications.2 The wide utility and facile synthesis of 

RMgX compounds3 led to the assumption that the heavier alkaline-earth metal analogues would 

shortly follow. But due to larger radius, strongly negative redox potentials  (Eº = -2.87 V(Ca2+); 

Eº = -2.89 V(Sr2+); Eº = -2.90 V(Ba2+)),4 combined with high hydro- and oxophilicity, high 

electropositive character, and the lack of energetically accessible and empty d-orbitals, the 

organometallic compounds of heavier alkaline-earth metals are highly unstable or difficult to form. 

These metals react easily with oxygen or water under formation of oxides or hydroxides; the 

resulting compounds are highly sensitive to hydrolysis. Furthermore, the metal–ligand bond is 

typically quite weak, resulting in significant lability due to large differences in electronegativity; 

metal–ligand bonds are largely electrostatic, further contributing to the lability of the target 

compounds. Their large ionic radii (for CN = 6, Ca2+ = 1.00; Sr2+ = 1.18; Ba2+ = 1.35Å )5 do not 

only promote metal ligand bonds but are also responsible for low solubility, as the metals’ steric 

saturation is often achieved by aggregation requiring the use of polar co-solvents to break up the 

aggregates. However, Beckmann et al. in 19056 and later Eisch et al. in 19817 reported an 

arylcalcium derivatives, but their incomplete characterization and difficult access did not establish 

this group of compounds. It wasn’t until the early 1980’s that the first structurally characterized 

organometallic calcium species, polymeric calcocene, [Ca(C5H5)2]n, was reported by Zerger et. 

al.8 This was soon followed by extensive synthetic work by the Hanusa group, reporting on 

monomeric metallocenes using sterically demanding cyclopentadienides, such as 

[M(C5Me5)2(THF)2] (M = Ca, Sr, Ba).9 Indeed, these were ground-breaking achievements towards 

the development of the heavier alkaline-earth metal chemistry which would not have been possible 

without applying key principles learnt from organolanthanoid chemistry. The similarity between 
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size and charge radii between the divalent lanthanide ions Eu2+, Yb2+ and Sm2+ with Ca2+ and Sr2+ 

suggests a similar structural chemistry, and to a limited extent chemical principles.5 Concepts 

learned include the necessity for steric shielding of the rather large metal centers via the 

introduction of sterically hindered ligands, and the further decrease of nuclearity via coordination 

of neutral basic Lewis co-ligands.10 

Table I. Similarities between the heavier alkaline-earth metals and divalent lanthanides 

 

Atomic 

No. 

Atomic 

Symbol 

Name Element, M 

Electronic 

Configuration 

Ion, M2+ 

Electronic 

configuration 

Ionic 

radius 

(Å) 

(CN≥6) 

EN Eº(V) 

M2+
(aq)+ 

2e- = M(s) 

20 Ca Calcium [Ar]4s2 [Ar] 1.06 1.00 -2.87 

38 Sr Strontium [Kr]5s2 [Kr] 1.18 0.95 -2.89 

56 Ba Barium [Xe]6s2 [Xe] 1.35 0.89 -2.90 

62 Sm Samarium [Xe]4f66s2 [Xe]4f6 1.36 1.17 -2.68 

63 Eu Europium [Xe]4f76s2 [Xe]4f7 1.31 1.20 -2.81 

70 Yb Ytterbium [Xe]4f146s2 [Xe]4f14 1.16 1.10 -2.76 

 

With this in mind, Lappert et al. were able to prepare the first non-cyclopentadienyl derivative, 

[Ca{CH(SiMe3)}2(diox)2] by the activation of the metal using co-condensation in toluene.11 While 

structural data are available on the compound, Lappert et al. were unable to reproduce the 

synthesis. The isolation of Eaborn’s et al. unique donor-free [Ca{C(SiMe3)3}2] compound 

impressively documented difficulties associated with the organometallic chemistry of the heavier 

alkaline-earth metals.12 Since then, a significantly extended list of compounds have been prepared, 

including alkyl, alkynyl, benzyl derivatives.13 These compounds demonstrate the high reactivity 

and decomposes at temperatures above -35 oC.14 The further developments in the organometallic 

chemistry of heavier alkaline-earth metals is the introduction of the alkaline-earth metal 

bis(trimethylsilyl))amides.15 In the recent times, these are the versatile starting materials for the 

syntheses many critical organometallic compounds of heavier alkaline-earth metals. 
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Chart I. A selection of ligand systems that are introduced into the alkaline-earth metal 

chemistry. 

 

Because of these achievements in the heavier alkaline-earth metals and non-toxic nature of these 

metals compared to several late transition metals, large abundance of these metals have been 

attracted by the number research groups, and therefore, there are number nitrogen based ancillary 

ligands were successfully introduced into the heavier alkaline-earth metal coordination sphere to 

stabilize these highly oxophilic and electropositive metals. The various ligand systems that are 

introduced into the heavier alkaline-earth metals are represented in the Chart I. All these ligand 

system are useful to understand the basic reactivity, stability and coordination chemistry of the 



27 
 

alkaline-earth metals in various organic solvents which would not possible before a decade. 

Interest in alkaline-earth metal compounds was further increased as the organometallic compounds 

of heavier alkaline-earth metals are gaining prominence, in the recent years, as efficient catalysts 

for the polymerization of cyclic esters16 , polymerization of dienes and styrene,17 hydroamination 

and hydrosylilation of alkenes and alkynes,18 hydroposhination reactions.19 Very recently, these 

alkaline-earth metal species were also successfully introduced into the field of asymmetric 

synthesis by introducing various sterically demanding chiral ligands into their coordination sphere. 

The use of alkaline-earth metal species in asymmetric synthesis as chiral catalyst, has been quite 

limited compared with that of transition metal catalysts.20 Recently it was revealed that several 

catalytic asymmetric carbon–carbon bond-forming and related reactions proceeded smoothly in 

high enantioselectivites using the chiral Ca, Sr, and Ba catalysts.21 Their strong Brønsted basicity 

and mild Lewis acidity are promising and attractive characteristics and can influence their catalytic 

activity as well as their chiral modification capability in a positive manner. However, the vast 

potentially of this field was still to be developed. Aside from these catalytic application, interest 

in alkaline-earth metals was further increased as these metals are critical components in a multitude 

of materials with technical applications. Examples include BaTiO3 (ferroelectric ceramics),22 

Sr2AlTaO6 (dielectric materials),23 CaGa2S4 (memory devices and optoelectronics)24 and high 

temperature superconductors25 among others. Further uses include the application as modulators 

of the semiconductor band gap.26 However; suitable precursors for some of these materials are still 

lacking due to the limited volatility of the commonly used alkaline-earth metal sources. As an 

example, the industrial production of Pr1-xCaxMnO3 (x = 1/3 and 1/2) remains highly challenging, 

since the commonly utilized and available calcium source, calcium -diketonate, is not sufficiently 

volatile.22,27 The lack of volatility is likely due to the oligomeric nature of the precursors, with 

strontium being trimeric,28a and barium tetrameric.28b 

Among the various potential applications of alkaline-earth metal compounds, particularly in 

catalysis, these were best recognized as good initiators for ring-opening polymerization of cyclic 

esters affording biocompatible materials that are currently being used in medical research for 

biodegradable sutures or bone scaffolding.29,30 
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Chapter 1 

Syntheses of aminophosphines and their corresponding 

chalcogenide derivatives and structural studies of sodium 

and potassium complexes 
 

1.1 Introduction 

 

Use of various P-N ligands is one of the alternatives of cyclopentadienyl ligands and using 

this approach, amide ligands are successfully used today for the design of new transition-

metal compounds having well defined reaction centers.1,2 Recently, there has been a 

significant research effort in employing inorganic amines and imines. The P-N systems 

like monophosphanylamides (R2PNR'),3-6 diphosphanylamides ((Ph2P)2N),4,7,8 

phosphoraneiminato (R3PN),9 phosphiniminomethanides [((RNPR'2)2CH)],10-14 

phosphiniminomethandiides ((RNPR'2)2C),15-18 and diiminophosphinates (R2P(NR')19 are 

well known today as ligands and proved their potency into the transition and f-block metals. 

Roesky and co-workers introduced one chiral phosphinamine [HN(CHMePh)(PPh2)] into 

the early transition-metal chemistry as well as in lanthanide chemistry.20 It was shown that 

some of the early transition metal complexes having P-N ligands in the coordination 

sphere, may not only exhibit unusual co-ordination modes but also can be used for a 

number of catalytic transformations such as polymerization reactions.21 Very recently, 

Fryzuk and co-workers have reported a series of three member lanthanide phosphinamido 

complexes by using alkane elimination route.22 Other approach to introduce the ligand 

system into the metal chemistry is salt metathesis reaction. 

1.1.1. Aminophosphines 

 

Aminophosphines of the type PR2NHR' containing a direct polar P(III)-N bonds have 

received considerable attention in recent years as versatile ligands for transition23 as well 

as for rare earth metals.20b,24 They are accessible in large quantities through the use of 

relatively simple condensation processes from inexpensive starting materials, i.e., primary 

amines and PR2Cl compounds which contain dialkyl or diaryl substituents. Thus, variation 
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of electronic, steric, and stereochemical parameters may be achieved in a very fascinating 

way. Due to the presence of soft/ hard donor atoms as well their acidic N-H hydrogen, 

these poly functional ligands exhibit numerous coordination modes as illustrated in Scheme 

1.1. 

 

 

Scheme 1.1. Most common bonding modes of aminophosphine and amidophosphine 

ligands. 

As middle and late transition metals M are concerned, PR2NHR' ligands are typically 

coordinated in 1(P)-fashion I,25 while 1(N)-coordination is yet to know for these metals. 

Upon deprotonation of the PR2NHR' ligands, anionic amidophosphines [PR2NR']- are 

readily obtained which exhibit a higher affinity toward electropositive metals due to their 

increased nucleophilicity at the N-site. Thus, in conjunction with early transition metals 

M', amidophosphine ligands were shown to display 2(P,N) coordination II, and, albeit less 

common, also 1(N)-coordination III, while in the presence of both early and middle/late 

transition metals, amidophosphine ligands were shown to act as 2 bridging ligand thereby 

forming hetero-bimetallic complexes of the type IV.26,27 

 

1.1.2. Amidophosphine-chalcogenides 

 

Amidophosphine-chalcogenides have attracted much attention in the recent times because 

of their structural novelty, reactivity and catalytic activity.28-39 Presence of three different 

types of donor sites N, P and E makes the chemistry of these ligands more fascinating as 

they can coordinate to the metal center in bidentate fashion or in tridentate way. The most 

possible coordinating modes are illustrated in Scheme 1.2.  
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Scheme 1.2. Most possible bonding modes of amidophosphine-chalcogenides 

                        

The stability and reactivity of the metal complexes bearing amidophosphine chalcogenide 

lignads heavily dependent on the nature substituents attached to nitrogen and phosphorus 

atoms. The weak M-E bond which is a result of hard acid and soft base interaction can 

cleaved to create a vacant site which can pave the way to incoming substrates which is a 

prerequisite for oxidative addition reactions. Thus, such types of hemilabile ligands have 

great impact on oxidative addition reactions40-43 which is a key step in many catalytic 

trasformations.  

In this chapter, we have described the detailed synthetic procedures, characterizations by 

various spectroscopic and analytical methods. The molecular structures of the 

aminophosphines and their chacogenides have been established by single crystal X-ray 

diffraction analysis. The bonding modes of various amidophosphine-chalcogenides with 

group 1 metals were explored by the preparation of alkali metal complexes using sodium 

and potassium bis(trimethylsilyl)amide and various amidophosphine-chalcogenides in 1:1 

molar ratio in toluene/THF. The corresponding sodium and potassium complexes are also 

fully characterized and their solid stae structures were established by single crystal X-ray 

diffraction technique.  

 

1.2 Results and Discussion 

 

1.2.1. Synthesis of different aminophosphines 

 

The phosphineamines [Ph2PNHCHPh2] (1) and [Ph2PNH(CPh3)] (2) were prepared in good 

yield by the aminolysis reaction using the respective amines and chlorodiphenylphosphine 

in the presence of triethylamine as base in 1: 2 ratio of THF and CH2Cl2 solvent mixture at 

room temperature (Scheme 1.3).44,45  
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Scheme 1.3. Synthesis of different aminophosphine ligands 

 

Both the ligands were characterized by using standard spectroscopic and analytical 

techniques. In addition, crystal structures of compounds 1 and 2 were established by the 

single crystal X- ray diffraction analysis. 

 

(1) (2) 

Figure 1.1. Solid State structure of compound 1 and 2. Selected bond distances (Å) and 

bond angles (º): 1: P1-N1 1.673(6), N1-C1 1.453(8), P1-C20 1.841(6), P1-C14 1.842(6), 

C1-N1-P1 118.2(4), N1-P1 C20 103.0(3), N1-P1-C14 104.2(3), C20-P1-C14 98.1(3); 2: 

P1-N1 1.692(4), N1-C1 1.487(6), P1-C20 1.844(6), P1-C28 1.831(5),C1-N1-P1 125.2(3), 

N1-P1-C20 101.3(2), N1-P1-C26 101.5(2), C26-P1-C20 99.5(2). 

31P{1H} NMR spectrum of compound 1 shows a signal at 35.2 ppm which is slightly 

downfield shifted to the corresponding value of compound 2 (26.3 ppm). Compound 1 

crystallizes in monoclinic space group Cc whereas compound 2 crystallizes in monoclinic 

space group P21/c. The Structural parameters are given in Table 1.1.  Figure 1.1 shows the 

solid state structures of compound 1 and 2 respectively.  In the solid state structures, 
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compound 1 and 2 shows similar P-N distances 1.673(6) Å for compound 1 and 1.692(4) 

Å for compound 2 are within the range of reported values.46 

1.2.2. Synthesis of different amidophosphine-chalcogenides 

 

The phosphinicamides [Ph2P(O)NHCHPh2] (1a) and [Ph2P(O)NH(CPh3)] (2a) were 

prepared in good yield and high purity by the straight forward reactions involving 

compounds 1 or 2 with 30% hydrogen peroxide in 1:1 molar ratio at room temperature in 

THF (Scheme 1.4).45 In FT-IR spectra of compound 1a and 2a, strong absorption bands at 

1181 and 1184 cm were observed and can be assigned to P=O bond stretching frequency 

along with the absorbance for P-N (997 for 1 and 866 cm-1 for 2), and N-H (3196 for 1 and 

3300 cm-1 for 2) bond stretching which are well in the expected ranges [47]. In the 31P{1H} 

NMR spectra one signal is observed at 23.4 and 18.4 ppm for compound 1a and 2a 

respectively (Figure 1.2), representing slightly high field shift compared to their respective 

phosphineamine resonances. 

 

 

Scheme 1.4. Synthesis of various amidophosphine-chalcogenides 

 

The compounds 1b and 2b were prepared over 90% yield by the reactions involving either 

compound 1 or 2 and elemental sulfur in 1:1 molar ratio at ambient temperature in THF 
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(Scheme 1.4).45 In FT-IR spectra of compounds 1b and 2b, the strong absorptions at 625 

and 640 cm-1 respectively were observed which can be assigned to the P=S bond stretching 

frequency for each compound. In the 31P{1H} NMR spectra, one singlet resonance (60.3 

ppm for 1b, and 53.4 ppm for 2b) was observed (Figure 1.2) with significant low field shift 

compared to that of respective phosphineamine compounds 1 and 2.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2. Comparison of 31P{1H} NMR signals of various amidophosphine-

chalcogenides recorded at 25ºC in CDCl3. 

In the solid state, compound 2b crystallizes in the monoclinic space group P21/c having 

four molecules in the unit cell (See Table 1.1). The Solid state structure of compound 2b 

was shown in Figure 1.3. The phosphorus atom is tetra-coordinated by two phenyl carbons, 

one nitrogen atom and one sulfur atom (See Figure. 1.3). The P-S distance 1.9472(8) Å  is 

well agreement to consider the P-S bond as double bond and compatible with literature 

values (1.9421(7) Å).46,47 

(1a) 

(2a) 
(1b) 

(2b) 

(1c) 

(2c) 

Upfield shift 35.2 (1) 

26.3 (2) 
Downfield shift 
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Figure 1.3. Solid State structures of compounds 2b, 1c and 2c. Selected bond distances 

(Å) and bond angles (º): 2b: P1-N1 1.6768(17), P1-S1 1.9472(7), P1-C20 1.816(2), P-C26 

1.822(2), N1-C1 1.485(2), P1-N1AC1 129.55(13), N1-P1-S1 116.70(6), S1-P1-C20 

112.56(7), S1-P1-C26 114.19(7). 1c: P1-Se1 2.1086(12), P1-N1 1.642(4), P1-C14 

1.804(4), P1-C20 1.812(4), N1-C1 1.459(6), C1-C2 1.543(5), C1-C8 1.541(6), Se1-P1-N1 

113.75(14), P1-N1-C1 124.1(3), C14–P1–C20 104.16(19), C20–P1–Se1 111.19(14), C14–

P1–Se1 114.48(14). 2c: P1-N1 1.664(2), P1-Se1(1) 2.1166(8), P1-C20 1.826(3), P1-C26 

1.825(3), N1-C1 1.496(4), C1-C2 1.541(4), C1-C14 1.540(4), C1-C8 1.547(4), P1-N1-C1 

129.4(2), N1-P1-Se1 119.90(10), Se1-P1-C20 111.13(11), Se1-P1-C26 112.96(11). 

(2b) (1c) 

(2c) 
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The phosphinoselenoic amines [Ph2P(Se)NH(CHPh2)] (1c) and [Ph2P(Se)NH(CPh3)] (2c) 

were prepared in quantitative yield by the treatment of the respective phosphineamines, 

[Ph2PNH(CHPh2)] (1) and [Ph2PNH(CPh3)] (2) respectively, with little excess amount of 

elemental selenium in 1 : 1.2 molar ratio at ambient temperature in THF solvent (Scheme 

1.4).45 Both the compounds 1c and 2c have been characterized by standard 

analytical/spectroscopic techniques and the solid-state structures were established by 

single crystal X-ray diffraction analysis. In the FT-IR spectrum of compounds 1c and 2c, 

strong absorption bands at 568 cm-1 and 599 cm-1 respectively, were observed for 

characteristic P=Se bond stretching frequencies and are comparable with the reported value 

555 cm-1.48 The characteristic signal of the methine proton (δ 5.62–5.68 ppm) in the 1H 

NMR spectrum of compound 1c is slightly downfield shifted compared to free 

phosphineamine 1 (δ = 5.26–5.37 ppm). 31P{1H} NMR spectra is more informative as the 

compound 1c shows a signal at 58.0 ppm and compound 2c shows a signal at 62.6 ppm 

(Figure 1.2), which are slightly downfield shifted from those of compounds 1 (35.2 ppm) 

and 2 (26.3 ppm) upon addition of selenium atom to phosphorus atom. In the solid state 

structures, both compounds 1c and 2c crystallize in the monoclinic space group P21/c, 

having four independent molecules along with one THF molecule in the unit cell (Figure. 

1.3). The details of the structural parameters are given in Table 1.2. The P–Se bond 

distances (2.1086(12) Å for 1c and 2.1166(8) Å for 2c) are almost the same and in good 

agreement with our previously observed values 2.1019(8) Å for [Ph2P(Se)NH(2,6-

Me2C6H3)],
49 and can be considered as phosphorus–selenium double bond. P1–N1 bond 

distances (1.642(4) Å for 1c and 1.664(2) Å for 2c) and C1–N1 distances (1.459(6) for 1c 

and 1.496(4) for 2c) are also similar to those of phosphineamine compounds 1 (P1–N1 

1.673(6) Å and C1–N1 1.453(8) Å) and 2 (P1–N1 1.692(4) Å and C1–N1 1.487(6) Å) 

respectively as shown in the Figure 1.1. 

1.2.3. Sodium and potassium complexes 

 

The dimeric sodium complex of molecular formula [{(THF)2Na(Ph2P(O)NCPh3)}2] (3) 

was prepared by the reaction of compound 2a with sodium bis(trimethyl)silylamide in 

toluene through the elimination of volatile bis(trimethyl)silylamine (Scheme 1.5).45  
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Scheme 1.5. Synthesis of dimeric sodium complex [{(THF)2Na(Ph2P(O)NCPh3)}2] (3) 

The complex 3 crystallizes in triclinic space group P-1 having one molecule in the unit cell 

(Table 1.2). The solid-state structure and selected bond length and bond angles are shown 

in Figure 1.4. The sodium complex 3 is centrosymmetric and dimeric in nature where each 

sodium atoms are coordinated by two P, P-diphenyl-N-tritylphosphinicamido groups via 

one oxygen, one phosphorous and one amido nitrogen atom exhibiting a diamond shaped 

Na2O2 core with mean O1-Na-O1i of 82.70(10)º and Na1-O1-Na1i of 97.30(10)º angles. 

Both the oxygen atoms are bridging coordinated with two sodium atoms. In addition, each 

phosphorus atom is coordinated to each sodium atom to form highly strained three 

membered metallacycles having P1-Na1 3.0348(17) Å. In complex 3, two parallel planes 

containing Na1,O1, P1,N1 and Na1i, O1i, P1i, N1i atoms are placed at a distance of 0.429 

Å and two planes containing Na1, O1, P1, N1 and Na1, O1, Na1i, O1i make a dihedral 

angle of 10.25º. A short contact NaH between sodium and one of the phenyl proton 

(Na1C19 (3.086(4) Å and Na1H1a 2.598 Å) is observed which can be attributed as 

remote or secondary MCH interaction.50 However, in solution all phenyl protons are 

appeared equivalent as observed in 1H NMR study presumably due to dynamic behavior 

of the complex. Thus in the solid state, two additional five member metallacycles Na1-N1-

C1-C14-C19 and Na1i-N1i-C1i-C14i-C19i are formed. An unusual structural motif is 

formed by fusion of four three member and two five member metallacycle rings.  
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Figure 1.4. Solid state structure of compound 3. Hydrogen atoms are omitted for clarity 

except H1A: (a) represents the 8-membered metallacyclic ring in 3; (b) represents the 

geometry around each sodium ion in 3 (phenyl groups are omitted and represented as single 

carbon atom in (a) and (b) for clarity). Selected bond distances (Å) and bond angles (º): 

Na1-N1 2.792(3), Na1-P1 3.0348(17), Na1-O1 2.369(3), Na1-C19 3.086(4), Na1-O1i 

2.218(3), Na1-O2 2.363(3), Na1-O3 2.338(3), Na1-N1-P1 83.20(12), P1-O1 1.520(2), P1-

N1 1.564(3), Na1-P1-O1 50.16(10), Na1-O1-P1 100.31(13), N1-Na1-P1 30.79(6), P1-

Na1-O1 29.52(6), Na1-N1-C1 118.3(2), C19-Na1-O1 78.12(10), C19-Na1-O2 82.93(11), 

C19-Na1-O3 149.33(11), C19-Na1-P1 68.72(8), C19-Na1-N1 57.91(9), N1-Na1-O1 

59.85(9), O1-Na1-O1i 82.70(10), O3-Na1-O1 110.59(11), O2-Na1-O1 160.76(12), O1i-

Na1-P1 112.19(9), O1i-Na1-C19 107.54(11), O1-P1-N1 114.94(15), Na1-O1-Na1i 

97.30(10).  

(3) 

(a) (b) 



41 
 

The sulfur analogue of complex 3 having molecular formula 

[{(THF)2Na(Ph2P(S)NCHPh2)}2] (4) was prepared by the reaction of compound 1b and 

sodium bis(trimethyl)silylamide in THF through the elimination of volatile 

bis(trimethyl)silylamine (Scheme 1.6).45  

 

Scheme 1.6. Synthesis of Na and K complexes of diphenylphosphinothioic amide (1b) 

The sodium complex 4 crystallizes in triclinic space group P-1 having one molecule in the 

unit cell (Table 1.3).The solid-state structure of complex 4 and selected bond lengths and 

bond angles were shown in Figure 1.5. In the centrosymmetric molecule 4, two 

phosphinthioic amide ligands are coordinating to two sodium atoms by one sulfur, one 

phosphorus and one amido nitrogen atom exhibiting a diamond shaped Na2S2 core with 

mean S1-Na-S1i of 99.43(4)º and Na1-S1-Na1i of 80.57(4)º angles. The Na1-S1 and Na1-

S1i bond distances are also almost similar 2.9521(15), and 2.8570(16) Å. Each of the sulfur 

atoms is µ-coordinated in between the two sodium atoms. Additionally, each phosphorus 

atom is coordinated to each sodium atom to form highly strained three  
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Figure 1.5. Solid state structure of compound 4. Hydrogen atoms are omitted for clarity; a 

represents the 8-membered mettallacyclic ring having chair conformation of 4; (b) 

represents the geometry of the each sodium ion in 4 (phenyl groups are omitted and 

represented as single atom in (a) and (b) for clarity). Selected bond distances (Å) and bond 

angles (º): Na1-N1 2.381(3), Na1-P1 3.1733(14), Na1-S1 2.9521(15), Na1-S1i 2.8570(16), 

Na1-O1 2.378(3), N1-O2 2.418(3), N1-P1 1.593(3), P1-S1 1.9934(12), N1-Na1-P1 

29.11(6), N1-Na1-S1 66.87(7), N1-Na1-S1i 118.37(8), P1-Na1-S1 37.77(3), P1-Na1-S1i 

115.24(5), S1-Na1-S1i 99.43(4), N1-Na1-O1 112.89(11), N1-Na1-O2 109.53(10), Na1-

P1-S1 77.15(4), Na1-S1-Na1i 80.57(4), P1-Na1-O1 141.01(9), P1-Na1-O2 98.46(7), S1-

(4) 

(a) (b) 
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Na1-O1 171.28(8), S1-Na1-O2 84.45(7), Na1-S1i-P1i 115.85(5), O1-Na1-O2 87.59(10), 

O1-Na1-S1i 88.36(7), O2-Na1-S1i 129.39(8), N1-P1-C1 113.26(14). 

membered metallacycles having P1-Na1 3.1733(14) Å. In complex 4, two additional THF 

molecules are also coordinated to each sodium atom and the geometry of each sodium atom 

can be best described as distorted trigonal bipyramidal. The bond distances Na1-N1 

2.381(3), Na1-O1 2.378 (3), and Na1-O2 2.418(3) Å are in the range of Na-O distances 

observed in complex 3 [2.338(3) to 2.363(3) Å]. The whole structure consists four three 

member rings fused together forming a penta-metallacyclo [4.2.0.01,7.02,5.02,4] octane 

structure. To the best of our knowledge, this is the first example of such kind of structural 

motif in sodium complexes.51  

The dimeric potassium complex of molecular formula [{K(THF)2Ph2P(S)N(CHPh2)}2] (5) 

was prepared by the reaction of diphenylphosphinothioicamine [Ph2P(S)NH(CHPh2)] (1b) 

and potassium bis(trimethyl)silylamide in THF at ambient temperature through the 

elimination of volatile bis(trimethyl)silylamine (Scheme 1.6).45 In FT-IR spectra of the 

compound 5 shows strong absorption at 632 cm-1 can be assigned to P=S bond stretching 

frequency which is comparable with observed value 625 cm-1 for the sodium complex 4.  

In 1H NMR spectra of the potassium complex 5 measured in C6D6, one set of signals were 

observed indicating the dynamic behavior of compound 5. The characteristic doublet for 

the methine proton ( 5.91 ppm) is slightly downfield shifted compare to free 1b ( 5.61 

ppm). The coupling constant of 23.6 Hz (for 5) was observed due to the coupling of α-

proton and the phosphorus atom attached to nitrogen. The multiplet signals  3.58 and 1.40 

ppm for compound 5 could be assigned to solvated THF molecules coordinated to the 

potassium ion. Additionally, one set of signals for the phenyl protons is also observed 

which is in the same range to that of ligand 1b, indicating no significant effects of metal 

atoms on the phenyl groups due to complex formation. 31P{1H} NMR spectra of compound 

5 shows a signal at 73.2 ppm which is slightly downfield shifted to that of compound 1b 

(60.3 ppm) upon addition of potassium atom onto the diphenylphosphinothioicamido 

moiety.  
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(5) 

 

 

 

 

 

 

 

Figure 1.6. Solid state structure of compound 5. Hydrogen atoms are omitted for clarity; 

(a) represents the 8-membered mettallacyclic ring having chair conformation of compex 5; 

(b) represents the geometry of the each potassium ion present in complex 5 (phenyl groups 

are omitted and represented as single carbon atom in (a) and (b) for clarity). Selected bond 

distances (Å) and bond angles (º): K1-N1 2.725(3), K1-S1 3.3702(13), K1-S1i 3.2394(13), 

K1-O1 2.711(3), K1-O2 2.668(3) , K1-C33 3.514(4), K1-C28 3.194(4), K1-C29 3.326(4), 

K1-P1 3.5354(14), N1-P1 1.590(3), P1-S1i 1.9933(12), S1-K1-S1i 89.94(3), S1i- K1-N1 

59.32(6), S1i-K1-P1 33.86(2), S1i-K1-O1 98.68(8), S1i-K1-O2 166.56(8), N1-K1-P1 

(b) (a) 
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25.46(6), N1-K1-O1 101.94(10), N1-K1-O2 107.39(10), N1-K1-S1 91.58(7), K1-S1-K1i 

90.06(3), O1-K1-S1 166.33(8), O2-K1-S1 88.41(7). 

Complex 5 crystallizes in triclinic space group P-1 having one molecule in the unit cell. 

The details of the structural parameters are given in Table 1.3. The solid state structure of 

the complex 5 is given in Figure 1.6. Each potassium ion in the dimeric complex 5 is 

coordinated by one {Ph2P(S)N(CHPh2)}
- ligand and two THF molecules. In complex 5, a 

diamond shaped K2S2 core with mean S1-K1-S1i of 89.94(3)º and K1-S1-K1i of 90.06(3)º 

angles is observed. The K1-S1 bond distance (3.3702(13) Å), is slightly elongated 

compared to K1-S1i bond distance (3.2394(13) Å). Each of the sulfur atoms is µ-

coordinated to each of the two potassium atoms. Additionally, each phosphorus atom is 

weakly coordinated to each potassium atom to form highly strained three membered 

metallacycles having P1-K1 distance of 3.5354(14) Å. Two additional THF molecules are 

also coordinated to each potassium atom to adopt as distorted trigonal bipyramidal 

geometry for each potassium metal atom. Short contacts between phenyl carbons and the 

potassium atom (K1…C28 (3.194(4) Å, K1…C29 (3.326(4) Å and K1...C33 3.514(4) Å) 

indicate a strong electron donation from the phenyl group to the positively charged 

potassium ion. However, in solution all phenyl carbon atoms appeared equivalent as 

observed in 13C{1H} NMR study presumably due to dynamic behavior of the complex 5. 

Considering all the interactions between potassium and other atoms, an unusual poly 

metallacyclic structural motif is formed. However, to the best of our knowledge, this is the 

first example of this kind of structural motif in potassium complexes having adjacent 

nitrogen, phosphorus and sulfur atoms in the coordination sphere. 

The dimeric sodium salt [{(THF)2Na(Ph2P(S)NCPh3)}{(THF)Na(Ph2P(S)NCPh3)}] (6) 

was prepared in a similar fashion involving the reaction of bulky phosphinthioic amide 2b 

with sodium bis(trimethyl)silyl amide in toluene at room temperature via the elimination 

of volatile hexamethyldisilazane (Scheme 1.7).45 



46 
 

Scheme 1.7. Synthesis of dimeric sodium complex of triphenylphosphinothioicamide (2b)  

In the solid state, the sodium complex 6 is non-centrosymmetric and dimeric and two 

phosphinthioic amide ligands are coordinating to two sodium ions by sulfur, phosphorus 

and one amido nitrogen atom exhibiting a diamond shaped Na2S2 core with mean S1-Na1-

S2 of 96.02 (4)º and S1-Na2-S2 88.10 (4)º and Na1-S1-Na2 84.96(4)º and Na1-S2-Na2 

89.65(4)º angles. Each of the sulfur atoms is µ-coordinated in between the two sodium 

atoms. In complex 6, sodium atom Na2 is attached to two THF molecules and adopts 

distorted octahedral geometry whereas the second sodium atom Na1 is coordinated only 

with one THF molecule and one phenyl carbon (C10) making a distance of 3.017 Å 

(Na1H 2.649 Å) can be attributed as short M-C-H interactions.50 However, in solution 

all phenyl protons are equivalent as observed in 1H NMR spectra. Thus, a five member 

metallacycle Na1-N1-C1-C9-C10 is formed and the geometry of Na1 is best described as 

distorted trigonal bipyramidal. In complex 6, whole structure consists three four membered 

rings along with one five member ring fused together forming a hexametallacyclo-

[5.4.0.01,5.01,6.08,10.08,11] undecane structure (Figure 1.7). To the best of our knowledge, 

this kind of structural motif is not previously described in the literature for sodium 

compounds.51 The three member metallacycles are highly strained as we can observe from 

the angles Na1-N1-P1 29.73(5)º, N1-P1-S1 60.15(4)º, P1-S1-N1 80.56(4)º and S1-Na1-N1 

68.52(6)º. Even though the complex 6 is non-centrosymmetric in the solid state, only one 

set of signals were recorded in the 1H, 31P{1H} and 13C{1H} NMR spectra. 
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(6) 

 

Figure 1.7. Solid state structure of compound 6. Hydrogen atoms are omitted for clarity. 

(a) represents the geometry of the each sodium ion in 6 (phenyl groups are omitted in a for 

clarity). Selected bond distances (Å) and bond angles (º): Na1-O1 2.271(3), Na1-N1 

2.430(2), Na1-S1 2.7580(15), Na1-S2 2.8498(15), Na1-P1 3.1367(13), Na2-O2 2.299(3), 

Na2-N2 2.419(2), Na2-O3 2.535(3), Na2-S2 2.8307(14), Na2-S1 3.1553(16), Na2-P2 

3.1616(13), Na1-C10 3.017(3), O1-Na1-N1 120.41(10), O1-Na1-S1 141.00(10), N1-Na1-

S1 68.52(6), O1-Na1-S2 98.54(8), N1-Na1-S2 134.94(8), S1-Na1-S2 96.02(4), O1-Na1-

C10 111.15(11), N1-Na1-C10 60.86(8), S1-Na1-C10 105.86(7), S2-Na1-C10 85.67(7), 

O1-Na1-P1, 142.72(8), N1-Na1-P1 29.73(5), S1-Na1-P1 39.29(2), S2-Na1-P1 118.67(5), 

C10-Na1-P1 76.08(6), O1-Na1-Na(2) 136.71(8), N1-Na1-Na2 102.78(7), O2-Na2-N2 

118.77(10), O2-Na2-O3 90.38(10), N2-Na2-O3 106.30(10), O2-Na2-S2 172.92(8), N2-

Na2-S2 68.14(6), O3-Na2-S2 88.87(8), O2-Na2-S1 87.01(8), N2-Na2-S1 118.34(8), O3-

Na2-S1 130.16(8), S2-Na2-S1 88.10(4), O2-Na2-P2 147.99(8), N2-Na2-P2 29.25(5), O3-

Na2-P2 100.55(8), S2-Na2-P2 38.89(2), S1-Na2-P2 107.49(4), P1-S1-Na1 80.56(4), P1-

S1-Na2 119.37(5), Na1-S1-Na2 84.96(4), P2-S2-Na2 79.45(4), P2-S2-Na1 128.52(5), 

Na2-S2-Na1 89.65(4), N1-P1-S1 108.69(9), S1-P1-Na1 60.15(4), N2-P2-S2 110.01(9), 

N2-P2-Na2 48.35(8), S2-P2-Na2 61.66(4). 

 

(a) 
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1.3 Conclusion  

 

We have reported two bulky phosphinamines and their respective chalcogenide derivatives 

which can able to stabilize the group 1 metal ions through coordination of amido nitrogen, 

phosphorous and chalcogenide atoms. Using the phsophinamine chalcogenides three 

different sodium and one potassium complexes were prepared where two different unusal 

structural motifs of pentametallacyclo-[4.2.0.01,7.02,5.02,4] octane and hexametalla-cyclo-

[5.4.0.01,5.01,6.08,10.08,11] undecane are observed. The sodium or potassium complexes 

having various structural motifs can serve as the structural synthon for group 2, d-block 

and f-block metallacycles via salt metathesis reaction.  

1.4  Experimental Procedures 

 

1.4.1. General 

 

All manipulations of air-sensitive materials were performed with the rigorous exclusion of 

oxygen and moisture in flame-dried Schlenk-type glassware either on a dual manifold 

Schlenk line, interfaced to a high vacuum (10-4 torr) line, or in an argon-filled M. Braun 

glove box. THF was pre-dried over Na wire and distilled under nitrogen from sodium and 

benzophenone ketyl prior to use. Hydrocarbon solvents (toluene and n-pentane) were 

distilled under nitrogen from LiAlH4 and stored in the glove box. 1H NMR (400 MHz), 

13C{1H} and 31P{1H} NMR (161.9 MHz) spectra were recorded on a BRUKER AVANCE 

III-400 spectrometer. BRUKER ALPHA FT-IR was used for FT-IR measurement. 

Elemental analyses were performed on a BRUKER EURO EA at the Indian Institute of 

Technology Hyderabad. The starting materials chlorodiphenylphosphine, 

benzdihydrylamine, triphenylmethyl amine, adametylamine, sulfur-S8, selenium metal 

powder and sodium/potassium bis(trimethyl)silylamides  were purchased from Sigma 

Aldrich and used without further purification. The NMR solvents C6D6 and CDCl3 were 

purchased from sigma Aldrich. 
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1.4.2. Synthesis of [Ph2PNHCHPh2] (1) 

 

In a flame dried Schlenk flask 1.32 g (6.0 mmol) of chlorodiphenylphosphene was 

dissolved in 5 ml of dry THF. To this, benzhydrylamine (1.09 g ,6.0 mmol) and 

triethylamine (0. 62 g, 6.0 mmol) in 10 ml of mixture of THF and CH2Cl2 solvents in 1:2 

ratio was added dropwise at ice-cold temperature under constant stirring. Immediate white 

turbidity was observed. The solution mixture was stirred for another 3h at room 

temperature, and then white precipitate formed due to triethylammoniumchloride was 

filtered off by using G4 frit and filtrate was collected. Pale yellow powder was obtained 

upon evaporation of solvent and pure compound 1 was obtained after recrystallization from 

the hot toluene or THF/n-pentane mixture. Yield was 2.0 g (90%).  

1H NMR (400 MHz, CDCl3):  7.00-7.34 (m, 20H, ArH), 5.26-5.37 (dd, 1H, J = 6.67 Hz, 

2.37 Hz, CH), 2.52 (br t, 1H, J = 6.5 Hz, NH) ppm. 13C{1H} NMR (100 MHz, CDCl3):  

144.8 (ArC), 144.7(ArC), 141.9 (P-ArC), 141.8 (P-ArC), 131.4 (P attached o-ArC), 131.2 

(P attached o-ArC), 128.5 (m-ArC), 128.4 (o-ArC), 128.2 (P attached p-ArC), 128.1 (P 

attached p-ArC) 127.4 (P attached m-ArC), 126.9 (p-ArC), 65.2, 65.0 (CH) ppm. 

31P{1H}NMR (161.9 MHz, CDCl3):  35.2 ppm. FT-IR (selected frequencies): ν = 3262 

(N-H), 1432 (P-C), 876 (P-N) cm-1. Elemental analysis (C25H22NP): Calcd. C 81.72, H 

6.04, N 3.81; Found C 80.96, H 5.82, N 3.43. 

1.4.3. Synthesis of [Ph2PNHCPh3] (2) 

 

Same as above for 1 Yield is 2.0 g (90%). 1H NMR (400 MHz, CDCl3):  7.29-7.31 (m, 

6H, ArH), 7.06-7.16 (m, 19H, ArH), 3.06 (d, 1H, J = 9.8 Hz, NH) ppm. 13C{1H} NMR 

(100 MHz, CDCl3):  147.4 (ArC),147.3 (ArC), 135.3 (P-ArC), 135.2 (P-ArC), 131.3 (P 

attached o-ArC), 131.2 (P attached o-ArC), 128.9 (o-ArC), 128.2 (P attached p-ArC), 128.1 

(P attached m-ArC), 128.0 (P attached m-ArC), 127.8 (m-ArC), 126.5 (p-ArC), 71.32 

(triphenylmethyl C) ppm. 31P{1H}NMR (161.9 MHz, CDCl3):  26.3 ppm. FT-IR (selected 

frequencies): ν = ≈ 3300 (very week broad N-H), 1434 (P-C), 896 (P-N) cm-1. Elemental 

analysis (C31H26NP): Calcd. C 83.95, H 5.91, N 3.16; Found C 83.26, H 5.72, N 2.91. 
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1.4.4. Synthesis of [Ph2P(O)NHCHPh2] (1a) 

 

A 30% solution of H2O2 (0.15 ml) was added to a THF solution (10 ml) of N-benzhydryl-

1,1-diphenylphosphinamine (500 mg, 1.46 mmol) with stirring and cooling. When the 

exothermal process was finished the mixture was evaporated in vacuo. A white powder 

was isolated, which was washed with n-pentane and then dried in vacuo. Yield was 0.525 

g (100%).  

1H NMR (400 MHz, CDCl3):  7.73-7.78 (m, 4H, ArH), 7.36-7.39 (m, 2H, ArH), 7.26-

7.31 (m, 4H, ArH), 7.14-7.24 (m, 10H, ArH), 5.34-5.40 (t, 1H, J = 10.84 Hz, CH), 3.16-

3.19 (t, 1H, J = 9.09 Hz, NH) ppm. 13C{1H} NMR (100 MHz, CDCl3):  143.4 (ArC), 

143.3 (ArC), 132.9 (P-ArC), 132.3 (P attached o-ArC), 132.2 (P attached o-ArC), 131.9 (P 

attached p-ArC), 131.6 (P-ArC), 128.5 (m-ArC), 128.4 (P attached m-ArC), 128.3 (P 

attached m-ArC), 127.6 (o-ArC), 127.2 (p-ArC), 58.6 (CH) ppm. 31P{1H}NMR (161.9 

MHz, CDCl3):  23.4 ppm. FT-IR (selected frequencies): ν = 3196 (N-H), 1435 (P-C), 997 

(P-N), 1181 (P=O) cm-1. Elemental analysis (C25H22NPO): Calcd. C 78.31, H 5.78, N 3.65; 

Found C 77.79, H 5.61, N 3.42. 

1.4.5. Synthesis of [Ph2P(O)NHCPh3] (2a) 

 

Same as above for compound 1a Yield was 0.525 g (100%). 1H NMR (400 MHz, CDCl3): 

 7.61-7.66 (m, 4H, ArH), 7.15-7.28 (m, 13H, ArH), 7.08-7.09 (m, 8H, ArH), 4.20-4.19 

(d, 1H, J = 5.12 Hz, NH) ppm. 13C{1H} NMR (100 MHz, CDCl3):  144.0 (ArC), 143.9 

(ArC), 134.3 (P-ArC), 133.0 (P-ArC), 130.6 (P attached o-ArC), 130.5 (P attached o-ArC), 

130.0 (P attached p-ArC), 128.5 (m-ArC), 127.2 (P attached m-ArC), 127.1 (P attached m-

ArC), 126.6 (o-ArC), 126.2 (p-ArC), 70.2 (triphenylmethyl C) ppm. 31P{1H}NMR (161.9 

MHz, CDCl3):  18.4 ppm. FT-IR (selected frequencies): ν ≈ 3300 (very week broad N-

H), 1439 (P-C), 866 (P-N), 1184 (P=O) cm-1. Elemental analysis (C31H26NPO): Calcd. C 

81.03, H 5.70, N 3.05; Found C 80.75, H 5.31, N 2.87. 
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1.4.6. Synthesis of [Ph2P(S)NHCHPh2] (1b) 

 

N-benzhydryl-1,1-diphenylphosphinamine (300 mg, 0.82mmol) and elemental sulfur S8 

(26.3 mg, 0.82 mmol) were heated to 60 ºC in toluene (5 ml) for 6 h. After removal of 

solvent in vacuo white solid was obtained. The title compound [Ph2P(S)NHCHPh2] was 

recrystallized from hot toluene. (Yield: 300 mg, (92%). 

1H NMR (400 MHz, CDCl3):  7.74-7.79 (m, 4H, ArH), 7.32-7.36 (m, 2H, ArH), 7.12-

7.28 (m, 12H, ArH), 5.58-5.64 (dd, 1H, J = 8.71 Hz, 5.72 Hz, CH), 3.16-3.19 (dd, 1H, J = 

5.21 Hz, J = 2.58 Hz, NH) ppm. 13C{1H} NMR (100 MHz, CDCl3):  143.2 (ArC),143.1 

(ArC), 134.7 (P-ArC), 133.7 (P-ArC), 131.8 (P attached o-ArC), 131.7 (P attached o-ArC), 

131.6 (P attached p-ArC), 131.5 (P attached p-ArC), 128.4 (m-ArC), 128.3 (P attached m-

ArC), 128.2 (P attached m-ArC), 127.8 (o-ArC), 127.2 (p-ArC), 58.9 (CH) ppm. 31P{1H} 

NMR (161.9 MHz, CDCl3):  60.3 ppm. FT-IR (selected frequencies):  = 3261 (N-H), 

1432 (P-C), 902 (P-N), 625 (P=S) cm-1. Elemental analysis (C25H22NPS): Calcd. C 75.16, 

H 5.55, N 3.51; Found C 74.87, H 5.44, N 3.37. 

1.4.7. Synthesis of [Ph2P(S)NHCPh3] (2b) 

 

Same as above for 1b Yield: 500 mg, (92%). 1H NMR (400 MHz, CDCl3):  7.20-7.31 (m, 

13H, ArH), 7.08-7.17 (m, 12H, ArH), 3.92 (d, 1H, J = 4.2 Hz, NH) ppm. 13C{1H} NMR 

(100 MHz, CDCl3):  143.8 (ArC),143.7 (ArC), 135.8 (P-ArC), 134.8 (P-ArC), 130.4 (P 

attached o-ArC), 130.3 (P attached o-ArC), 129.9 (P attached p-ArC), 129.8 (P attached p-

ArC), 128.8 (m-ArC), 127.2 (P attached m-ArC), 127.1 (P attached m-ArC), 126.5 (o-

ArC), 126.2 (p-ArC), 70.9 (triphenylmethyl C) ppm. 31P{1H}NMR (161.9 MHz, CDCl3): 

 53.3 ppm. FT-IR (selected frequencies):  = 3359 (N-H), 1437 (P-C), 860 (P-N), 640 

(P=S) cm-1. Elemental analysis (C31H26NPS): Calcd. C 78.29, H 5.51, N 2.95; Found C 

77.86, H 5.32, N 2.71 

1.4.8. Synthesis of [Ph2P(Se)NHCHPh2] (1c) 

 

N-Benzhydryl-1,1-diphenylphosphinamine 1 (1.0 gm, 2.72 mol) and elemental selenium 

(250 mg, 3.16 mol) were heated to 60 °C in THF (10 ml) for 12 h. Unreacted selenium was 
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filtered off through a G4 frit and the filtrate was collected. After evaporation of filtrate in 

vacuo, a light yellow solid residue was obtained. The title compound was recrystallized 

from THF at room temperature. (Yield: 1.20 gm, 99%). 

1H NMR (400 MHz, CDCl3): δ 7.72-7.77 (m, 4H, ArH), 7.12-7.33 (m, 16H, ArH), 5.62-

5.68 (dd, 1H, J = 14.8 Hz, 6.4 Hz, CH), 3.17-3.14 (br t, 1H, J = 5.2 Hz, NH) ppm. 13C{1H} 

NMR (100 MHz, CDCl3): δ 142.9 (ArC), 142.8 (ArC), 134.2 (P-ArC), 133.3 (P-ArC), 

131.9 (P attached o-ArC), 131.8 (P attached o-ArC), 131.6 (P attached p-ArC), 128.4 (m-

ArC), 128.3 (P attached m-ArC), 128.1 (P attached m-ArC), 127.8 (o-ArC), 127.2 (p-ArC), 

59.8 (CH) ppm. 31P{1H}NMR (161.9 MHz, CDCl3): δ 58.0 ppm. FT-IR (selected 

frequencies): ν = 3242 (N–H), 1435 (P–C), 898 (P–N), 568 (P=Se) cm−1. Elemental 

analysis (C25H22NPSe). Calcd. C 67.27, H 4.97, N 3.14; Found C 66.99 H 4.43, N 2.93. 

1.4.9. Synthesis of [Ph2P(Se)NHCPh3] (2c) 

 

Similar to compound 1c. Yield 1.20 g (100%). 1H NMR (400 MHz, C6D6): δ 7.74-7.79 (m, 

4H, ArH), 7.19-7.22 (m, 6H, ArH), 6.59-6.99 (m, 15H, ArH), 3.71 (d, 1H, JH-H = 3.2 Hz, 

CH), ppm. 13C{1H} NMR (100 MHz, C6D6): δ 143.9 (ArC), 143.8 (ArC), 136.1 (P-ArC), 

135.1 (P-ArC), 130.8 (P attached o-ArC), 130.6 (P attached m-ArC), 129.5 (P attached p-

ArC), 129.4 (P attached p-ArC), 129.1 (o-ArC), 126.7 (m-ArC), 126.1 (p-ArC), 71.3 (CH) 

ppm. 31P{1H}NMR (161.9 MHz, C6D6): δ 62.6 ppm. FT-IR (selected frequencies): ν = 

3300 (N–H, very week), 1435 (P–C), 910 (P–N), 599 (P=Se) cm−1. Elemental analysis 

(C35H34NOPSe) (1c·THF). Calcd. C 70.70, H 5.76, N 2.36; Found C 70.13 H 5.39, N 2.18. 

1.4.10. Synthesis of [{(THF)2Na(Ph2P(O)NCPh3)}2] (3) 

 

In a 10 ml sample vial 1 equivalent (50 mg, 0.105 mmol) of ligand 2a and 1 equivalent of 

sodium bis(trimethyl)silylamide (23 mg, 0.125 mmol) were mixed together with small 

amount of toluene (3 ml), after 6 h small amount of THF (1 ml) and n-pentane (2 ml) were 

added to it and kept in -40 0C freezer, after 24 h, crystals of  complex 3 were obtained. 1H 

NMR (400 MHz, C6D6):  7.73-7.68 (m, 3H, ArH), 7.39-7.38 (m, 4H, ArH), 7.06-6.82 (m, 

18H, ArH) ppm. 13C{1H} NMR (100 MHz, C6D6): 143.8 (ArC), 143.7 (ArC), 135.8 (P-

ArC), 134.8 (P-ArC), 130.4 (P attached o-ArC), 130.3 (P attached o-ArC), 129.9 (P 
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attached p-ArC), 129.8 (P attached p-ArC), 128.8 (m-ArC), 127.2 (P attached m-ArC), 

127.1 (P attached m-ArC), 126.5 (o- ArC), 126.2 (p-ArC), 70.9 (triphenylmethyl C) ppm. 

31P{1H}  NMR (161.9 MHz, C6D6):  73.1 ppm. Elemental analysis (C74H74N2Na2O3P2S2): 

Calcd. C 73.37, H 6.16, N 2.31; Found C 73.05, H 5.96, N 1.99. 

1.4.11. Synthesis of [{(THF)2Na(Ph2P(S)NCHPh2)}2] (4) 

 

In a 10 ml sample vial 1 equivalent (50 mg, 0.125 mmol) of ligand 1b and 1 equivalent of 

sodium bis(trimethyl)silylamide (23 mg, 0.125 mmol) were mixed together with small 

amount of toluene (3 ml). After 6 hs, small amount of THF (1 ml) and n-pentane (2 ml) 

were added to it and kept in -40 0C freezer and after 24 h crystals of complex 4 were 

obtained. 1H NMR (400 MHz, C6D6):  7.82-7.87 (m, 4H, ArH), 7.07 (m, 4H, ArH), 6.82-

7.06 (m, 12H, ArH), 5.78-5.84 (dd, 1H, J = 8.88 Hz, 5.88 Hz CH) ppm, 3.45-3.48 (m, 

THF), 1.29-1.33 (m, THF) ppm. 13C{1H} NMR (100 MHz, C6D6):   143.8 (ArC), 143.7 

(ArC), 135.9 (P-ArC), 134.9 (P-ArC), 132.2 (P attached o-ArC), 132.1 (P attached o-ArC), 

131.2 (P attached p-ArC), 131.1 (P attached p-ArC), 128.4 (P attached m-ArC), 128.2 (m-

ArC), 127.9 (o-ArC), 127.1 (p-ArC), 58.9 (CH) ppm. 31P{1H} NMR (161.9 MHz, C6D6): 

 73.3 ppm. Elemental analysis (C66H74N2Na2O4P2S2): Calcd. C 70.07, H 6.59, N 2.48; 

Found C 69.88, H 6.25, N 2.33. 

1.4.12. Synthesis of [{K(THF)2Ph2P(S)N(CHPh2)}2] (5) 

 

In a 10 ml sample vial one equivalent (100 mg, 0.25 mmol) of ligand 1b and one equivalent 

of potassium bis(trimethylsilyl)amide (50.0 mg, 0.25 mmol) were mixed together with 

THF (2 ml). After 6 h of stirring at ambient temperature, n-pentane (2 ml) was added and 

placed in -40 oC freezer; after 24 h colorless crystals of the title compound 5 were obtained. 

Yield 140.0 mg (95%). 1H NMR (400 MHz, C6D6): δ 7.92-7.98 (m, 4H, ArH), 7.16-7.18 

(m, 4H, ArH), 6.90-7.06 (m, 12H, ArH), 5.91 (d, 1H, JH-P = 23.6 Hz, CH) ppm, 3.58 (m, 

THF), 1.40 (m, THF) ppm. 13C{1H} NMR (100 MHz, C6D6): δ 143.9 (ArC), 143.8 (ArC), 

135.9 (P-ArC), 134.9 (P-ArC), 132.3 (P attached o-ArC), 132.1 (P attached o-ArC), 131.4 

( P attached p-ArC), 131.3 (P attached p-ArC), 128.5 (P attached m-ArC), 128.3 (m-ArC), 

128.2 (o-ArC), 127.2 (p-ArC), 67.9 (THF), 58.9 (CH), 25.7 (THF) ppm. 31P{1H} NMR 

(161.9 MHz, C6D6): δ 73.2 ppm. FT-IR (selected frequencies): ν = 1436 (P-C), 925 (P-N), 
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632 (P=S) cm-1. Elemental analysis: C66H72K2N2O4P2S2 (1161.54): Calcd. C 68.24 H 6.25 

N 2.41; Found C 67.89 H 5.91 N 2.22. 

1.4.13. Synthesis of [{(THF)2Na(Ph2P(S)NCPh3)}{(THF)Na(Ph2P(S)NCPh3)}] (6) 

 

In a 10 ml sample vial 1equivalent (50 mg, 0.105 mmol) of ligand 2b and 1 equivalent of 

sodium bis(trimethyl)silylamide (23 mg, 0.125 mmol) were mixed together with small 

amount of toluene (3 ml), after 6 h small amount of THF (1 ml) and n-pentane (2 ml) were 

added and kept in -40 ºC freezer; after 24 h, crystals of complex 6 were obtained. 1H NMR 

(400 MHz, C6D6):  7.73-7.68 (m, 3H, ArH), 7.39-7.38 (m, 4H, ArH), 7.06-6.82 (m, 18H, 

ArH) ppm. 13C{1H} NMR (100 MHz, C6D6):  143.8 (ArC), 143.7 (ArC), 135.8 (P-ArC), 

134.8 (P-ArC), 130.4 (P attached o-ArC), 130.3 (P attached o-ArC), 129.9 (P attached p-

ArC), 129.8 (P attached p-ArC), 128.8 (m-ArC), 127.2 (P attached m-ArC), 127.1 (P 

attachedm-ArC), 126.5 (o-ArC), 126.2 (p-ArC), 70.9 (triphenylmethyl C) ppm. 

31P{1H}NMR (161.9 MHz, C6D6):  73.1 ppm. Elemental analysis (C74H74N2Na2O3P2S2): 

Calcd. C 73.37, H 6.16, N 2.31; Found C 73.05, H 5.96, N 1.99. 

1.5 X-ray Crystallographic Studies 

 

In each case a crystal of suitable dimensions was mounted on a CryoLoop (Hampton 

Research Corp.) with a layer of light mineral oil and placed in a nitrogen stream at 150(2) 

K. All measurements were made on an Agilent Supernova X-calibur Eos CCD detector 

with graphitemonochromatic CuKa (1.54184 Å) radiation. Crystal data and structure 

refinement parameters are summarized in Table 1.1-1.3. The structures were solved by 

direct methods (SIR92)52 and refined on F2 by full-matrix least-squares methods; using 

SHELXL-97.53 Non-hydrogen atoms were anisotropically refined. H-atoms were included 

in the refinement on calculated positions riding on their carrier atoms. The function 

minimized was [w(Fo2- Fc2)2] (w = 1 / [2 (Fo
2) + (aP)2 + bP]), where P = (Max(Fo

2,0) + 

2Fc2) / 3 with 2(Fo
2) from counting statistics.  The function R1 and wR2 were (||Fo| - |Fc||) 

/ |Fo| and [w(Fo
2 - Fc

2)2 / (wFo4)]1/2, respectively.  The Diamond-3 program was used 

to draw the molecule. Crystallographic data (excluding structure factors) for the structures 
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reported in this chapter have been deposited with the Cambridge Crystallographic Data 

Centre as a supplementary publication no. CCDC 889246-889251.  
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1.6 Tables 

Table 1.1. Crystallographic data of compounds 1, 2 and 2b 

 

Crystal 1 2 2b 

CCDC No. 889249 889247 889251 

Empirical formula C25H22N1P1  C31H26N1P1 C31H26N1P1S1 

Formula weight                     367.41 443.50 475.56 

T (K)                           150(2)  150(2)  150(2)  

λ (Å)                         1.54184                  1.54184 1.54184  

Crystal system  Monoclinic,   Monoclinic   Monoclinic   

Space group        Cc P21/c P21/c 

a  (Å)     22.237(4) 8.9955(8) 14.5362(5) 

b  (Å)        10.648(2) 18.6976(16) 10.9798(4) 

c  (Å)     9.551(2) 15.5059(19)   15.6321(4)   

 ( o)     90 90 90 

  ( o)     112.38(3) 108.089(9)   90.970(3) 

  ( o)                                         90 90 90 

V  ( Å3)                        2091.1(7) 2479.1(4) 2494.60(14) 

Z  4 4 4   

Dcalc g cm-3 1.167 1.188  1.266  

µ (mm-1) 1.208 1.106  1.896  

F (000)                             776 936 1000 

Theta range for data 

collection    

4.30 to 71.760 3.82 to 70.76 o 3.04 to 70.81o 

Limiting indices                   -27  h  18,  

-11  k  12,  

-10  l  11 

-10  h  9,  

-16  k  22,  

-15  l  18 

-16  h  17,  

-13  k  11,  

-19  l  18 

Reflections collected / 

unique     

3859 / 2385  

[R(int) = 0.0432] 

10162 / 4624  

[R(int) = 0.0776] 

10314 / 4704  

[R(int) = 0.0287] 

Completeness to theta 

= 71.25      

97.1 % 97.0 % 97.8 % 

Absorption correction              Multi-scan 

 

Multi-scan 

 

Multi-scan 

 

Max. and min. 

transmission         

0.880 and 0.790 0.876 and 0.81 0.738 and 0.616 

Refinement method                  Full-matrix  

least-squares on F2 

Full-matrix  

least-squares on F2 

Full-matrix  

least-squares on F2 

Data / restraints / 

parameters     

2385 / 2 / 245 4624 / 0 / 299 4704 / 0 / 307 

Goodness-of-fit on F2             0.962 0.960 1.028 

Final R indices 

[I>2sigma(I)]      

R1 = 0.0774,  

wR2 = 0.1949 

R1 = 0.0807,  

wR2 = 0.1766 

R1 = 0.0446,  

wR2 = 0.1143 

R indices (all data)               R1 = 0.0889,  

wR2 = 0.2104 

R1 = 0.1970,  

wR2 = 0.2671 

R1 = 0.0541,  

wR2 = 0.1232 

Absolute structure 

parameter       

0.12(7) 0.0029(4)  

Largest diff. peak and 

hole        

0.303 and -0.262  

e.A-3 

0.326 and -0.365  

e.A-3 

0.580 and -0.345  

e.A-3 
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Table 1.2. Crystallographic data of compounds 1c, 2c and 3 

 

 

 

 

Crystal 1c.THF 2c.THF 3 

CCDC No. 903851 903856 889248 

Empirical formula C29H30NOPSe C35H34NOPSe C78H82N2Na2O6P2 

Formula weight                     518.47 594.56 1251.38 

T (K)                           150(2)  150(2)  150(2)  

λ (Å)                         1.54184                  1.54184  1.54184                  

Crystal system  Monoclinic,   Monoclinic   Triclinic,   

Space group        P21/c P21/c P – 1 

a  (Å)     9.4326(8) 12.2406(3) 11.0777(13) 

b  (Å)        14.8835(14) 13.6069(4) 13.3008(18) 

c  (Å)     20.239(2) 20.4841(6) 14.0442(19) 

 ( o)     90 90 100.720(11) 

  ( o)     116.921 121.334(2) 112.259(12) 

  ( o)                                         90 90 111.066(12) 

V  ( Å3)                        2533.4(4) 2914.16(14) 1658.1(4) 

Z  4 4 1 

Dcalc g cm-3 1.359 1.355 1.253 

µ (mm-1) 2.760 2.474 1.163 

F (000)                             1072 1232 664 

Theta range for data 

collection    

3.85 to 70.860 4.12 to 70.78° 3.67 to 71.07º 

Limiting indices                   -10  h  11,  

-18  k  17,  

-19  l  24 

−14 ≤ h ≤ 11, 

−16 ≤ k ≤ 16, 

−21 ≤ l ≤ 24 

-12   13,  

-15  k  16,  

-17  l  11 

Reflections collected / 

unique     

10946 / 4807 

[R(int) = 0.0516] 

12004/5495 

[R(int) = 0.0354] 

11,652/6230 

[R(int) = 0.0643] 

Completeness to theta 

= 71.25      

98.2 % 98.1% 97.1 % 

Absorption correction              Multi-Scan Multi-Scan Multi-Scan 

Max. and min. 

transmission         

0.79 and 0.578 0.660 and 0.560 0.890 and 0.810 

Refinement method                  Full-matrix  

least-squares on F2 

Full-matrix least-

squares on F2 

Full-matrix  

least-squares on F2 

Data / restraints / 

parameters     

4807 / 0 / 298 5495/0/352 6230/0/406 

Goodness-of-fit on F2             1.028 0.757 1.054 

Final R indices 

[I>2sigma(I)]      

R1 = 0.0595,  

wR2 = 0.1534 

R1 = 0.0426,  

wR2 = 0.1209 

R1 =  0.0679 ,  

wR2 =  0.1603 

R indices (all data)               R1 = 0.0761,  

wR2 = 0.1675 

R1 = 0.0562,  

wR2 = 0.1386 

R1 =  0.1215 ,  

wR2 =  0.1965 

Largest diff. peak and 

hole        

1.569 and -0.746  

e.A-3 

1.741 and -0.734  

e Å−3 

0.274 and ˗0.434   

e.A-3 
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Table 1.3. Crystallographic data of compounds 4, 5 and 6 

 

 

 
 

Crystal 4 5 6 

CCDC No. 889246 928617 889250 

Empirical formula C66H74N2Na2O4P2S2 C66H72K2N2O4P2S2 C74H74N2Na2O3P2S2 

Formula weight                     1131.33 1161.54 1211.42 

T (K)                           150(2)  150(2)  150(2)  

λ (Å)                         1.54184  1.54184  1.54184  

Crystal system  Triclinic,   Triclinic,   Triclinic,   

Space group        P - 1 P – 1 P – 1 

a  (Å)     10.5054(11) 10.6191(11) 10.7308(6) 

b  (Å)        12.9521(12) 12.9110(13) 11.6146(8) 

c  (Å)     13.3762(13) 13.4716(15) 26.1362(17) 

 ( o)     108.731(9) 108.184(9) 79.662(6) 

  ( o)     108.054(9) 96.182(9) 85.030(5) 

  ( o)                                         104.940(9) 113.202(9) 78.126(5) 

V  ( Å3)                        1504.2(3) 1555.6(3) 3131.8(3) 

Z  1   1 2 

Dcalc g cm-3 1.249 1.240 1.285 

µ (mm-1) 1.830 2.831 1.784 

F (000)                             600 614 1280 

Theta range for data 

collection    

3.86 to 70.69o 3.58 to 70.76° 3.44 to 71.04º 

Limiting indices                   -12  h  12,  

-15  k 15,  

-16  l  16 

-12<=h<=12, 

-15<=k<=15, 

-16<=l<=10 

-12  h  11,  

-14  k 14,  

-31  l  22 

Reflections collected / 

unique     

10,292/5570  

[R(int) = 0.0514] 

11200/5836 

[R(int) = 0.0401] 

20,573/11,831 

[R(int) = 0.0346] 

Completeness to theta 

= 71.25      

96.2 % 97.8 % 97.6 % 

Absorption correction              Multi-Scan Multi-Scan Multi-Scan 

Max. and min. 

transmission         

0.71 and 0.60 1.000 and 0.605 0.740 and 0.630 

Refinement method                  Full-matrix  

least-squares on F2 

Full-matrix  

least-squares on F2 

Full-matrix  

least-squares on F2 

Data / restraints / 

parameters     

5570/0/352 5836/0/356 11,831/1/782 

Goodness-of-fit on F2             1.036 1.171 1.027 

Final R indices 

[I>2sigma(I)]      

R1 = 0.0582,  

wR2 = 0.1528 

R1 = 0.0521,  

wR2 = 0.1553 

R1 = 0.0600,  

wR2 = 0.1639 

R indices (all data)               R1 = 0.0862,  

wR2 = 0.1721 

R1 = 0.0746,  

wR2 = 0.1694 

R1 = 0.0857,  

wR2 = 0.1883 

Largest diff. peak and 

hole        

0.551 and -0.376  

e.A-3 

0.509 and -0.341  

e Å−3 

0.681 and -0.500  

e Å−3 
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Chapter 2 

 

Homoleptic complexes of alkaline-earth metals having bulky 

amidophosphine-chalcogenides in their coordination sphere: 

evidence for direct M-Se bond  
 

2.1 Introduction- 
 

Homoleptic and heteroleptic alkaline-earth metal complexes are attractive to 

organometallic chemists because of their oxophilic and electropositive nature compare to 

those of early d-transition metals.1The alkaline earth metal compounds have recently been 

employed in various catalytic applications for ring-opening polymerization of various 

cyclic esters,2-3 polymerization of styrene and dienes,4 and hydroamination and 

hydrophosphination reactions of alkenes and alkynes.5 Determining the structure and 

reactivity of alkaline-earth metal species is an important step toward the design and 

development of efficient catalysts; however, full realization of the catalytic potential of 

these elements still requires substantial advances in understanding their basic coordination 

and organometallic chemistry. To stabilize these extremely oxophilic and electropositive 

metals, a wide variety of nitrogen-based ancillary ligands, such as tris(pyrazolyl)borates,6 

aminotroponiminates,7β-diketiminates,8 iminopyrroles,9  and 1,4-diaza-1,3-butadiene10 

have been introduced to prepare well defined alkaline-earth metal complexes revealing that 

the catalytic activity and selectivity of the alkaline-earth metal complexes can be controlled 

via the well-defined nitrogen-based ligand architecture. Another important application of 

alkaline-earth metal chalcogenolates is in high temperature superconductors and 

ferroelectrics. In particular, alkaline-earth metal oxide compounds used as suitable 

precursors.11 Much less attention has been paid to the alkaline-earth-metal thiolates and 

selenates, although many heavier chalcogenates are known as potential dopants for 

chalcogen-based semiconductors.12 The chelating ligands having selenium as the donor 

atom to stabilize the heavier alkaline-earth metal complexes are rare. Over the last few 

years very few alkaline–earth selenium-based complexes have been reported and 
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structurally characterized, among these are [Mg(SeMes”)2(THF)2] (Mes” = 2,4,6-

tBu3C6H2),
13 [M(SeMes)2(THF)4] (M = Ca, Sr, Ba),14-16 [Ca{CH(Py)(Se)PPh2}2(THF)2]2 

(Py = pyridine),17 [(TMEDA)2Ca(SeSi(SiMe3)3)],
18 Full structural characterization of 

strontium selenidesis even scarce.14,19 The complex having barium selenium bond is 

limited as the structurally authenticated examples are mostly restricted for the various 

sulfur derivatives [{(H2O)2Ba(tmtH2)2}n] (tmt = 2,4,6-trimarcaptotriazine, S3C3N3),
20 

[([18]crown-6)Ba(hmpa)SMes*][SMes*](Mes* = 2,4,6-tBu3C6H2),
21 [Ba(hmpa)3{Na-

PhNNNNC(S)}2],
22 [Ba-(hmpa)3(C(=S)NOPh2],

23 and few more examples including 

[Ba(SCMe3)2,
24 [Ba(tmeda)2(SeSi(SiMe3)3)2]

25 are reported. Ruhlandt-Senge and 

coworkers reported barium selenoates like [Ba(THF)4(SeMes*)2], [([18] crown-

6)Ba(hmpa)2(SMes*)2], [Ba(Py)3(THF)(SeTrip)2}2] (Trip =2,4,6 iPr3C6H2), and 

[Ba([18]crown-6)(SeTrip)2],
26 however vast potential of this field of chemistry is still to be 

developed. In chapter 1, we have described a number of alkali metal poly-cyclic 

compounds using various phosphineamine chalcogenide ligands. In addition to those 

phosphineamine chalcogenides we have also introduced new bulky seleno-

phosphineamines [Ph2P(Se)NH(CHPh2)] (1c) and [Ph2P(Se)NH(CPh3)] (2c) derived from 

the bulky phosphineamines [Ph2PNH(CHPh2)] (1) and [Ph2PNH(CPh3)] (2) respectively 

with elemental selenium, having (Se, P, N)-chelating coordination sites, into alkaline-earth 

metal chemistry. This unique ligand is potentially capable of coordinating through hard 

nitrogen and phosphorus donor atoms along with the soft selenium donor atom. Thus, by 

deprotonation reactions of the amine group present in these ligands, the neutral ligands can 

be converted to monoanionic ligands which can potentially form complexes with heavier 

alkaline-earth metals via coordination of three donor atoms (N, P and Se). The work will 

enable us to better understand the alkaline-earth metal–selenium bond strengths and 

characteristics, and provide important information on the association and aggregation 

behaviour depending on selenium atoms, ligands and donors.  

In this chapter, the selenium-containing alkali metal  complexes of composition 

[{(THF)2MPh2P(Se)N(CHPh2)}2](M′ = Na (7) and K (8)) were prepared by the reaction of 

compound 1c and sodium bis(trimethyl)silylamide (or potassium bis(trimethylsilyl)amide 

in case of 8) in THF through the elimination of volatile bis(trimethylsilyl)amine and 

heavier alkaline-earth metal complexes [M(THF)2{Ph2P(Se)N(CHPh2)}2] (M = Ca (9), Sr 
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(10), Ba (11)) are described, which can be prepared in good yield and high purity by two 

synthetic routes. We have also synthesized the homoleptic complex 

[Ba(THF)2{Ph2P(S)NCHPh2}2] (12) by two synthetic routes. Thus, the heavier alkaline 

earth metal complexes described in this chapter, [M(THF)2{Ph2P(X)N(CHPh2)}2] (M = Ca 

(9), Sr (10), Ba (11) and X = Se; M = Ba (12) and X = S), are examples of a rare class of 

complexes with a direct chalcogenide–alkaline-earth metal contact. This chapter covers the 

full accounts of two synthetic routes and the solid state structures of all the complexes.  

2.2 Results and Discussion  
 

2.2.1. Alkali metal complexes  

 

The dimeric sodium and potassium complexes of molecular formula 

[{(THF)2M′Ph2P(Se)N(CHPh2)}2] (M′ = Na (7) and K (8)) were prepared by the reaction 

of compound 1c and sodium bis(trimethyl)silylamide (or potassium 

bis(trimethylsilyl)amide in case of 8) in THF through the elimination of volatile 

bis(trimethylsilyl)amine (Scheme 2.1).27 

 

Scheme 2.1.  Synthesis of alkali metal and alkaline earth metal phosphinoselenoic amide 

complexes. 
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Complex 7 crystallizes in triclinic space group P-1 having one molecule in the unit cell. 

The solid state structure of complex 7 is given in Figure 2.1. The details of the structural 

parameters are given in Table 2.1. In the centrosymmetric molecule 7, two 

phosphinoselenoic amide ligands are coordinated to each of two sodium atoms by one 

selenium, one phosphorus and one amido nitrogen atom exhibiting a diamond shaped 

Na2Se2 core with mean angles Se1–Na–Se1i of 99.14(3)° and Na1–Se1–Na1i of 80.86(3)°.  

 

Figure 2.1. Solid state structure of compounds 7. Hydrogen atoms are omitted for clarity. 

Selected bond distances (Å) and bond angles (º): Na1-N1i 2.380(2), Na1-Se1 2.9956(12), 

Na1-Se1i 3.0694(11), Na1-O1 2.426(2), Na1-O2 2.399(2), Na1-P1i 3.2214(13), N1-P1 

1.594(2), P1-Se1 2.1519(8), Se1-Na1-Se1i 99.14(3), Se1-Na1-N1i 115.92(6), Se1i-Na1-P1i 

39.915(19), Se1-Na1-P1i 114.01(4), Se1i-Na1-O1 83.95(6), Se1i-Na1-O2 171.24(6), N1i-

Na1-P1i 28.30(5), N1i-Na1-O1 108.79(8), N1i-Na1-O2 112.65(8), N1i-Na1-Se1i 68.15(5), 

Na1-Se1-Na1i 80.86(3), O1-Na1-Se1i 83.95(6), O2-Na1-Se1i 171.24(6). 

The Na1–Se1 and Na1–Se1i bond distances of 2.9956(12) Å and 3.0694(11) Å are similar, 

each of the selenium atoms is μ-coordinated between the two sodium atoms. Additionally, 

each phosphorus atom is weakly coordinated to each sodium atom to form highly strained 

three membered metallacycles having P1–Na1-distance 3.2214(14) Å. In complex 7, two 

additional THF molecules are also coordinated to each sodium atom and the geometry of 

each sodium atom can be best described as distorted trigonal bipyramid. The bond 

distances Na1–N1 2.380(2), Na1–O1 2.426(2), and Na1–O2 2.399(2) Å are in the range of 
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the previously observed sodium phosphinthioic amide complexes described in the Chapter 

1. The whole structure consists of four three-member rings fused together forming a penta-

metallacyclo[4.2.0.01,7.02,5.02,4]octane structure.  

The potassium phosphinoselenoic amido complex 8 crystallizes in the triclinic space group 

P-1 having one molecule in the unit cell and is isostructural with the sodium complex 7 

due to the similar ionic radii of sodium and potassium. The details of the structural 

parameters are given in Table 2.1. The solid state structure of complex 8 is given in Figure 

2.2. Each potassium atom in the dimeric complex 8 is coordinated by one 

{Ph2P(Se)N(CHPh2)}
− ligand and two THF molecules. Similar to complex 7, a diamond-

shaped K2Se2 core with mean angles Se2A–K–Se2Ai of 91.12(2)° and K–Se2A–Ki of 

88.88(2)° is observed. The K–Se2A and K–Se2Ai bond distances are also similar at 

3.3090(10) and 3.5150(10) Å, respectively. Each of the selenium atoms is μ-coordinated 

between each of the two potassium atoms. Additionally, each phosphorus atom is weakly 

coordinated to each potassium atom to form highly strained three-membered metallacycles 

having P–K-distance 3.5579(13) Å. Two additional THF molecules are also coordinated to 

each potassium atom to adopt a distorted trigonal bipyramidal geometry for each potassium 

metal atom. The bond distances K–N 2.725(3), K–O1 2.659(3), and K–O7 2.695(3) Å are 

slightly elongated compare to that of sodium complex 7, but are in the range of the 

previously observed potassium complexes reported in literature. Unlike the analogous 

sodium complex, a short contact between potassium and one of the phenyl carbons 

(K⋯C1C (3.194(3) Å)) is observed, which can be interpreted as a remote or secondary M–

C interaction. However, in solution all phenyl carbons appeared equivalent in the 13C{1H} 

NMR study, presumably due to dynamic behavior of the complex. Thus in the solid state, 

two additional five member metallacycles K1–C1C–C20–P1–Se1 and K1i–C1Ci–C20i–

P1i–Se1i are formed. An unusual structural motif is formed by fusion of four threemember 

and two five-member metallacycle rings. To the best of our knowledge, this is the first 

example of such kind of structural motif in potassium complexes. Even the complexes 7 

and 8 are dimeric in the solid state, only one set of signals were recorded in the 1H, 31P{1H} 

and 13C{1H} NMR spectra in each case due to the dynamic nature of the complexes in 

solution. 
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Figure 2.2. Solid state structure of compounds 8. Hydrogen atoms are omitted for clarity. 

Selected bond distances (Å) and bond angles (º): K-N 2.725(3), K-Se2a 3.3090(10), K-

Se2ai 3.5150(9), K-O1 2.659(3), K-O7 2.695(3), K-C1ci 3.194(3), K-P 3.5579(12), N-P 

1.589(3), P-Se2a 2.1476(9), Se2a-K-Se2ai 91.12(2), Se2a-K-N 61.31(6), Se2a-K-P 

36.22(17), Se2a-K-O1 171.26(8), Se2a-K-O7 94.77(10), N-K-P 25.09(6), N-K–O1 

109.95(10), N-K-O7 102.29(10), N-K-Se2ai 90.75(6), K-Se2a-Ki 88.88(2), O1-K-Se2ai 

88.87(8), O7-K-Se2ai 166.95(9). 

2.2.2. Alkaline-earth metal complexes of phosphinoselenoic amide ligand 

 

Reaction of 1c with alkaline-earth metal bis(trimethylsilyl)amides [M{N(SiMe3)2}2 

(THF)n] (M = Ca, Sr, Ba) in a 2 : 1 molar ratio in THF followed by crystallization from 

THF/n-pentane, homoleptic phosphinoselenoic amido alkaline-earth metal complexes of 

composition [M(THF)2{Ph2P(Se)N(CHPh2)}2] (M = Ca (9), Sr (10), Ba (11)) were 

obtained in good yield via the elimination of hexamethyldisilazane (Scheme 2.1).27 The 

same alkaline-earth metal complexes 9–11 can also be prepared by another route, salt 

metathesis reaction involving the alkali metal phosphinoselenoic amides with alkaline-

earth metal diiodides in THF. The silylamide route was followed for all the three complexes 

9–11, whereas both the routes were used for calcium complex 9 only. The new complexes 

have been characterized by standard analytical/spectroscopic techniques, and the solid-

state structures were established by single-crystal X-ray diffraction analysis. A strong 
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absorption at 570 cm-1 (for 9), 569 cm-1 (for 10) and 569 cm-1 (for 11) in FT-IR spectra 

indicates the evidence of P=Se bond into the each complex. The resonance of the methine 

proton (δ 5.93–5.87 ppm for 9, 5.40–5.33 ppm for 10 and 5.46–5.39 ppm for 11) in the 1H 

NMR spectrum of the diamagnetic complexes 9–11 are unaffected due to complex 

formation. In 31P{1H} NMR spectra, complexes 9–11 show only one signal at 71.9 ppm, 

71.8 ppm and 71.9 ppm, respectively, and these values are significantly downfield shifted 

compared to that of compound 1c (58.0 ppm) upon coordination of calcium, strontium or 

barium atom onto the selenium atom of the phosphinoselenoic amido ligand. The two 

phosphorus atoms present in the two {Ph2P(Se)N(CHPh2)}
− moieties are chemically 

equivalent.  

The calcium and strontium complexes 9 and 10 crystallize in the triclinic space group P-1, 

having one molecule of either 9 or 10 and two THF molecules as solvate in the unit cell. 

The details of the structural parameters are given in Table 2.1 & Table 2.2. The solid-state 

structures of the complexes 9 and 10 are shown in Figure 2.3 and 2.4 respectively. 

                                   

Figure 2.3. Solid state structure of compounds 9.  Hydrogen atoms are omitted for clarity. 

Selected bond distances (Å) and bond angles (º): Ca1–N1 2.479(5), Ca1–P1 3.2737(16), 

Ca1–Se1 2.9889(8), Ca1–O1 2.427(5), N1–Ca1–O1 89.23(17), N1–Ca1–P1 28.95(13), 

P1–Se1–Ca1 77.31(5), P1–Ca1–Se1 39.73(3), Se1–Ca1 N1 68.20(13), O1–Ca1–Oi 

180.00(1), Se1–Ca–Se1i 180.0. 
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Both the complexes 9 and 10 are isostructural to each other due to similar ionic radii (1.00 

and 1.18 Å for coordination number 6).28 In the centrosymmetric molecule 9, the 

coordination polyhedron is formed by two monoanionic {Ph2P(Se)N(CHPh2)}
− ligands, 

and two THF molecules which are trans to each other. Each {Ph2P(Se)N(CHPh2)}
− ligand 

coordinates to the calcium atom via chelation of one amido nitrogen atom and one selenium 

atom and a very weak P–Ca interaction (3.274 Å) of the {Ph2P(Se)N(CHPh2)}
− moiety is 

observed. Thus the {Ph2P(Se)N(CHPh2)}
− group can be considered as a pseudo-bidentate 

ligand. The central atom calcium adopts a distorted octahedral geometry due to 

coordination from two {Ph2P(Se)N(CHPh2)}
− moieties and two THF molecules. The Ca–

N distance (2.479(5) Å) is slightly elongated compare with the calcium–nitrogen covalent 

bond (2.361(2) and 2.335(2)) reported for [Ca(Dipp2DAD) (THF)4] (Dipp2DAD = N,N′-

bis(2,6-diisopropylphenyl)-1,4-diaza-1,3-butadiene in the literature.29 The most interesting 

thing is that the Ca–Se bond 2.989(8) Å is within the same range of Ca–Se bond (2.945(1) 

Å) reported for [(THF)2Ca{(PyCH) (Se)PPh2}2] and (2.93 to 3.00 Å) reported for 

[(THF)4Ca(SeMes′)2] and (2.958(2) to 3.001(2) Å) reported for [(THF)2Ca(Se2PPh2)2] in 

the literature.13,15Thus the compound 9 is one example of the few complexes known having 

a direct calcium–selenium bond.11-13 The P–Se distance (2.1449(2) Å) in complex 9 is 

slightly elongated (2.111(2) Å) but within the same range as that of free ligand 1c indicating 

no impact on P–Se bond upon coordination of the calcium atom to the selenium atom.  

In compound 10, the strontium atom is hexa-coordinated by two selenium atoms, two 

amido nitrogen atoms of two {Ph2P(Se)N(CHPh2)}
− ligands and two THF molecules. The 

solvate THF molecules are trans to each other and the strontium atom adopts a distorted 

octahedral geometry (Figure 2.4). Like compound 9, a weak interaction (P–Sr 3.426(2) Å) 

between phosphorus and metal atom is noticed. The strontium nitrogen bond distance 

(2.609(3) Å) fits well (2.6512(2) and 2.669(2) Å) with our previously observed strontium 

complex [(ImpDipp)2Sr(THF)3] (ImpDipp = 2,6-iPr2C6H3N=CH)-C4H3N).30 The Sr–Se 

bond distance (3.136(9) Å) is slightly elongated compare to that of Ca–Se bond distance 

(2.989(8) Å) observed in complex 9 due to the larger ionic radius of strontium than calcium 

ion. The observed Sr–Se distance in our compound 10 is within the range of Sr–Se 

distances (3.138(7) to 3.196(9) Å) of structurally characterized complex 

[(THF)3Sr(Se2PPh2)2] published very recently by Westerhausen and coworkers16b and that 
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(3.066(1) Å) for the complex [Sr{Se(2,4,6-tBu3C6H2)}2(THF)4].
16a Thus our 

phosphinoselenoic amido strontium complex 10 is another example of a fully structurally 

characterized strontium complex having direct Sr–Se bond. 

  

 

Figure 2.4. Solid state structure of compounds 10. Hydrogen atoms are omitted for clarity. 

Selected bond distances (Å) and bond angles (º): Sr1–N1 2.609(3), Sr1–P1 3.4255(15), 

Sr1–Se1 3.1356(9), Sr1–O1 2.567(3), N1–Sr1–O1 91.72(9), N1–Sr1–P1 26.86(6), P1–

Sr1–Se1 37.89(2), Se1–Sr1–N1 64.23(7), O1–Sr1–Oi 180.00(10), Se1–Sr–Se1i 180.0. 

Unlike compounds 9 and 10, the barium complex 11 crystallizes in the monoclinic space 

group P21, having two molecules in the unit cell. The details of the structural parameters 

are given in Table 2.2. The solid-state structure of complex 11 is given in Figure 2.5. 

Similar to the calcium and strontium complexes, in the barium complex 11 the coordination 

polyhedron is formed by two {Ph2P(Se)N(CHPh2)}
− ligands and two trans THF molecules. 

The amido nitrogen atom along with the selenium atom of each of the phosphinoselenoic 

amido ligands coordinates to the barium atoms to adopt a distorted octahedral geometry 

for the barium atom, considering the {Ph2P(Se)N(CHPh2)}
− ligand as bidentate. The Ba–

P distance is even larger (3.662(2) Å) compare to that of complexes 9 (3.2737(16) Å) and 

10 (3.4255(15) Å), indicating a very weak interaction between the barium atom and 

phosphorus atom. The Ba–N distances (2.777(6) and 2.778(6) Å) are similar to the values 

(2.720(4) and 2.706(4) Å) for [Ba((Dipp)2DAD)(μ-I)(THF)2]2 reported in the literature.30 
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Figure 2.5. Solid state structure of compound 11.  Hydrogen atoms are omitted for clarity. 

Selected bond distances (Å) and bond angles (º): Ba1–N1 2.777(6), Ba1–P1 3.662(2), Ba1–

Se1 3.3553(10), Ba1–O1 2.716(6), Ba1–N2 2.778(6), Ba1–P2 3.665(2), Ba1–Se2 

3.3314(10), B1–O2 2.734(6), N1–Ba1–O1 91.2(2), N1–Ba1–P1 24.34(15), P1–Ba1–Se1 

35.37(4), Se1–Ba1–N1 59.62(15), O1–Ba1–O2 177.3(2), Se1–Ba–Se2 175.66(3), N1–

Ba1–N2 175.8(2), N2–Ba1–O2 94.8(2), N2–Ba1–Se2 59.46(15). 

The Ba–Se distance (3.3553(1) Å) is the largest among the above mentioned M–Se 

distances for calcium and strontium complexes (2.9889(8) and 3.1355(9) Å, respectively; 

vide supra) and can be attributed to the larger ionic radii of the barium atoms compared to 

calcium and strontium atoms. The Ba–Se distance (3.3553(1) Å) of compound 11 is similar 

to the reported values of 3.2787(11) Å for the complex [Ba(THF)4(SeMes*)2] (Mes* = 

2,4,6-tBu3C6H2) and 3.2973(3) Å for [{Ba(Py)3(THF)(SeTrip)2}2] (Trip = 2,4,6-iPr3C6H2) 

reported by Ruhlandt-Senge and coworkers.23 Nevertheless complex 11 is a unique 

example of a barium-seleno complex where two other heteroatoms, nitrogen and 

phosphorus, coordinate to the barium atom. The P–Se bond (2.152(2) Å) is slightly 

elongated upon coordination of selenium to the barium atom. A weak interaction between 

barium and phosphorus (Ba1–P1 3.662(2) and 3.665(2) Å) is also observed. Upon 

coordination to the barium atom each of the ligand fragments form two three-member 

metallacycles which are fused together to give a four-member metallacycle Se1–P1–N1–

Ba1. The bite angles (Se1–Ba1–N1 59.62(15)° and Se2–Ba1–N2 59.46(15)°, P1–Se1–Ba1 

80.11(6)° and 80.77(6)°) indicate a highly strained structure of the molecule. 



74 
 

2.2.3. Barium complex of diphenylphosphinothioic amido ligand 

  

The barium complex 12 was prepared by two synthetic routes. In the first route, known as 

the silylamide route, the barium bis(trimethylsilyl)amide [Ba{N(SiMe3)2}2(THF)3] was 

treated with neutral ligand 1b in 1:2 molar ratio in THF to afford 95% of the product via 

the elimination of silylamine. In the second method, potassium complex 5 of the 

diphenylphosphinothioic ligand 1b was treated with barium diiodide in THF to yield the 

same product 12 in 85% yields (Scheme 2.2).27 

 

Scheme 2.2. Synthesis of barium complex of phosphinothioic amide ligand. 

The complex 12 has been characterized by using standard analytical/spectroscopic 

techniques and the solid-state structure of 12 was established by using single crystal X-ray 

diffraction analysis. In FT-IR spectra of the compound 12, strong absorption at 613 cm-1 

was observed which can be assigned as characteristic P=S bond stretches and is comparable 

with the reported values 625 cm-1 for P=S (See Chapter 1). In 1H NMR spectra of the 

barium complex 12 measured in C6D6, one set of signals were observed indicating the 

dynamic behavior of compound 12. The characteristic doublet for the methine proton ( 

5.81 ppm for 12) is slightly downfield shifted compare to free 

diphenylphosphinothioicamine 1b  = 5.61 ppm) reported by us (See Chapter 1). The 
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coupling constant of 23.8 Hz (for 12) can be observed due to the coupling of -proton and 

the phosphorus atom attached to nitrogen. The multiplet signals (3.45 and 1.30 ppm for 12) 

could be assigned to resonance of solvated THF molecules coordinated to the barium ion. 

Additionally, one set of signals for the phenyl protons is also observed which is in the same 

range to that of ligand 1b, indicating no significant effects of metal atom on the phenyl 

groups due to complex formation. 31P{1H} NMR spectra is more informative as complex 

12 shows 73.3 ppm, which is slightly downfield shifted to that of compound 1b (60.3 ppm) 

upon addition of barium atom onto the diphenylphosphinothioicamido moiety. 

 

Figure 2.6. Solid state structure of compound 12.  Hydrogen atoms are omitted for clarity. 

Selected bond distances (Å) and bond angles (º): Ba1-N1 2.744(7), Ba1-P1 3.531(2) , Ba1-

S1 3.179(2), Ba1-O1 2.737(7) , Ba1-N1i 2.744(7), Ba1-P1i 3.531(2), Ba1-S1i 3.179(2), 

Ba1-O1i 2.737(7), N1-Ba1-O1 86.1(2), N1-Ba1-P1 25.99(15), P1-Ba1-S1 33.97(5), S1-

Ba1-N1 59.50(15) , O1-Ba1-O1i 180.0, S1-Ba1-S1i 180.0, N1-Ba1-N1i 180.0, N1i-Ba1-O1 

93.9(2), N1i-Ba1-S1i 59.50(15). 

The homoleptic barium phosphinothioic amido complex 12 crystallizes in triclinic space 

group P-1 having one molecule of 12 and one molecule of THF in the unit cell. The details 

of the structural refinement parameters are given in Table 2.2. The solid state structure of 

the complex 12 is given in Figure 2.6. In the barium complex 12, the coordination 

polyhedron is formed by two {Ph2P(S)N(CHPh2)}
- ligand and two THF molecules. The 

Ba1-O1 (2.737(7) Å), and Ba1-N1 (2.744(7) Å) distances of complex 12 are almost similar 

to that (2.716(6), 2.778(6) Å respectively) of the corresponding values to our previously 
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observed complex [Ba(THF)2{Ph2P(Se)N(CHPh2)}2] (See Figure 2.5). The Ba1-S1 

distance 3.179(2) Å is comparable to the Ba-S distance 3.133(2) Å for [Ba(THF)4(S-2,4,6-

tBu3C6H2)2] but slightly shorter than that of 3.396(2)-3.629(2) Å for [Ba(H2O)4(H22,4,6-

S3C3N3)2] reported by Ruhlandt-Senge and coworkers.26 Thus the central atom barium 

adopts a distorted octahedral geometry due to coordination from two {Ph2P(S)N(CHPh2)}
- 

ligand moieties and two THF molecules. Two four membered metallacycles Ba1-S1-P1-

N1 and Ba1-S1i-P1i-N1i are formed due to ligation of two ligand moieties via sulfur atoms 

and the amido nitrogen atoms. The P1-Ba1 distance is quite long 3.531(2) Å for complex 

12 indicating a very weak interaction from the phosphorus to barium atoms. Similar P-Ba 

distances (3.662(2) Å) are also observed in [Ba(THF)2{Ph2P(Se)N(CHPh2)}2] (Figure 2.5). 

In complex 12, the four-membered Ba-S-P-N metallacycle is non-planar and the atoms S1 

(0.062 Å and N1 (0.092 Å) are placed above and P1 atom is placed below (0.110 Å) the 

weighted least-squares best plane having Ba1, S1, P1, N1 atoms. Complex 12 is another 

example of barium sulfur complex having a barium sulfur direct contact.  

2.2.4. Strontium, barium and lithium complexes of diselenoimidodiphosphinato ligand 

[HN(PPh2Se)2] 

 

In continuation of our study regarding heavier group 2 metal selenoate complexes, we 

observed that diselenoimidodiphosphinato ligand [HN(PPh2Se)2] (13) is introduced to a 

wide range of metal coordination sphere including alkali metals,31-32 group 12,33 group 

13,34-35 group 14,33,36-37 group15,38 group16,39-40 transition metals (V and Cr,41 Mn42-43 and 

Re44; Ru, Rh, Ir32,45-46; Os,47 Co48; group 10: Ni,49 Pd,49-52 Pt32,45,49 and group 1152-53 and to 

rare earth metals54-56 and this can be due to the flexible nature of the ligand moieties to 

adopt several metallacyclic ring depending upon coordination to the metal center. To our 

surprise, the reports for heavier alkaline-earth metal diselenoimidodiphosphinato are 

missing in this series which could give more information about the alkaline-earth metal 

selenoates and therefore there is a scope to develop the heavier alkaline-earth metal 

complexes with diselenoimidodiphosphinato ligand. In this chapter, the heavier alkaline-

earth metal selenium containing complexes [{η2-N(PPh2Se)2}2Sr(THF)2] (14) and [{η2-

N(PPh2Se)2}2Ba(THF)3] (15) are presented, which can be prepared in good yield and high 

purity by two synthetic routes. Additionally we also present the synthesis and structure of 
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lithium complex [η2-N(PPh2Se)2Li(THF)2] (16) which were obtained by using ligand 13 

and LiCH2SiMe3 in THF solution. The heavier alkaline-earth metal complexes 14 and 15 

were prepared in good yield by two synthetic routes. In the first route the 

diselenoimidodiphosphine (13) is treated with alkaline-earth metal 

bis(trimethylsilyl)amide in THF at ambient temperature to afford the respective strontium 

and barium complexes of molecular formula [{2-N(PPh2Se)2}2Sr(THF)2] (14) and [{2-

N(PPh2Se)2}2Ba(THF)3] (15) via the elimination of volatile bis(trimethylsilyl) amine 

(Scheme 2.3).27 

 

Scheme 2.3. Synthesis of strontium (14) and sarium (15) complex of [HN(PPh2Se)2] 

ligand. 

In second method, the compounds 14 and 15 were obtained by the reaction of respective 

alkaline-earth metal diiodides with potassium salt of diselenoimidodiphosphine 

[K{N(Ph2PSe)2}] which was prepared according to the literature procedure involving 13 

and potassium bis-trimethylsilylamide as described in chapter 1. The novel alkaline-earth 

metal complexes 14 and 15 were characterized by analytical/spectroscopic techniques and 

the molecular structures of both strontium and barium diselenoimidodiphosphinato 

complexes were determined by single crystal X-ray diffraction analysis.  

A strong absorption at 539 cm-1 (for 14), and 538 cm-1 (for 15) in FT-IR spectra indicates 

the evidence of P=Se bond into the each complex. However, the P=Se bond stretching 

frequencies for compound 14 and 15 is shifted to lower value compared to the neutral 
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ligand 13 (595 cm-1) due slight elongation of P=Se bond.57 In 1H NMR spectra, the amino 

proton of the ligand 13 which was present at 4.42 ppm is absent. The multiplet signals at 

3.49 and 1.26 ppm (for 14) 3.58 and 1.39 ppm (for 15) can be assigned for resonance of 

solvated THF molecules coordinated to the metal centre. One set of signals for the phenyl 

protons are also observed which is in the same range to that of ligand 13 indicating no 

significant effect of metal atoms onto the phenyl groups due to complex formation. In 

31P{1H} NMR spectra, in complexes 14-15, all the phosphorus atoms present in the two 

diselenoimidodiphosphinato moieties are chemically equivalent and show only one signal 

at 43.3 ppm and 43.7 ppm respectively and these values are significantly high field shifted 

to that of compound 13 (52.6 ppm) upon coordination of strontium or barium atom onto 

the selenium atom of the diselenoimidodiphosphinato ligand. This observation is opposite 

to our previous studies where we noticed a down field shift for the resonance of phosphorus 

atoms (71.9 ppm for Ca, 71.8 ppm for Sr and 71.9 for Ba respectively; vide supra) bound 

to heavier alkaline-earth metals compared to free phosphinoselenoic amido ligand (58.0 

ppm). Although there has been ongoing interest in alkaline-earth organometallics and 

particularly in the cyclopentadienyl chemistry of these elements,58 the complexes 14-15 

represents to the best of our knowledge the first diselenoimidodiphosphinato alkaline-earth 

metal complexes. Therefore, their molecular structures in the solid state were determined 

by X-ray diffraction analysis.  

The strontium complex 14 crystallizes in orthorhombic space group P bca having four 

molecules in the unit cell. The details of the structural refinement parameters are given in 

Table 2.3. The molecular structure of compound 14 is shown in Figure 2.7. In the 

centrosymmetric molecule 14, the coordination polyhedron is formed by two monoanionic 

{N(Ph2P(Se))2}
- ligands, and two THF molecules which are trans to each other. Each 

{N(Ph2P(Se)2}
- ligand coordinates to the strontium atom via chelation of two selenium 

atoms having a distance of 3.1013(4) Å. 
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Figure 2.7. Solid state structure of compound 14.  Hydrogen atoms are omitted for clarity. 

Selected bond distances (Å) and bond angles (º): P1-N1 1.588(3), P2-N1 1.581(3), P1-Se1 

2.1515(8), P2-Se2 2.1583(8), P1-C1 1.822(3), P1-C7 1.819(3), P2-C13 1.821(3), P2-C19 

1.823(3), Sr1-Se1 3.1013(4), Sr1-Se1i 3.1013(3), Sr1-Se2 3.1262(3), Sr1-Se2i 3.1262(3), 

Sr1-O1 2.523(2) Sr1-O1i 2.523(2) N1-P1-Se1 120.79(10), N1-P2-Se2 120.01(10), P1-N1-

P2 141.44(18), Se1-Sr1-Se2 94.512(9), P1-Se1-Sr1 104.96(2), P2-Se2-Sr1 103.23(2), N1-

P1-C1 106.95(14), N1-P1-C7 105.39(14), N1-P2-C13 105.45(14), N1-P2-C19 110.25(14), 

O1-Sr1-Se1 91.43(6), O1i-Sr1-Se1 88.57(6), O1i-Sr1-O1 180.0, O1-Sr1-Se2 86.89(6), O1-

Sr1-Se2i 93.11(6). 

The amido nitrogen is not coordinating to the strontium atom as Sr1-N1 distance of 4.422 

Å is very high. The Sr1-Se distance (3.1013(4) and 3.1262(3) Å) are within the range of 

Sr-Se distance 3.1356(9) Å  for [Sr(THF)2{Ph2P(Se)N(CHPh2)}2] as described in section 

2.2.2, (3.138(7)-3.196(9) Å) for [(THF)3Sr(Se2PPh2)2] published very recently by 

Westerhausen et al., and (3.066(1) Å) for the complex [Sr{Se(2,4,6-tBu3C6H2)}2(THF)4].
60 

The center metal is additionally ligated by two THF molecules having Sr-O distance of 

2.523(2) Å to adopt the strontium atom distorted octahedron geometry. The P1-N1-P2 

angle of 141.44(18) Å  is slightly more than that (130.3(3) and 133.1(3) º) of 

diselenoimidodiphosphinato cobalt complex [Co{N(Ph2PSe)2}2] reported by Novosad et 

al.61 Thus two six-membered metallacycles Sr1-Se1-P1-N1-P2-Se2 and Sr1-Se1i-P1i-N1i-

P2i-Se2i are formed due to ligation of two ligand moieties via selenium atoms. The plane 

containing P1, Se1, Sr1 makes a dihedral angle of 28.39 º with the plane having P2, Se2, 

Sr1 atoms. The six-membered Sr-Se2-P2-N metallacycle is nonplanar and adopt a twisted 
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boat conformation. For the metallacycle Sr1-Se1-P1-N1-P2-Se2, the atoms P2 and Se1 

reside 0.668 Å  and 0.521 Å  above the mean plane having Sr1, Se1, P1, N1, P2, Se2 atoms 

respectively whereas Sr1 (0.076 Å), Se2 (0.092 Å), N1(0.046 Å) and P1(0.312 Å) are 

located below the mean plane. The P-Se bond distances (2.1515(8) and 2.1583(8) Å) and 

P-N bond distances (1.588(3) and 1.581(3) Å) are within the range to that of (2.0992(14) 

and 2.1913(13) Å) and (1.577(7) and 1.609(4) Å) respectively for [Co{N(Ph2PSe)2}2].
61  

In contrast to the strontium complex 14, barium diselenoimidodiphosphinato complex 15 

crystallizes in the monoclinic space group C2/c having four molecules of 15 in the unit 

cell. The details of the structural refinement parameters are given in Table 2.3. The solid 

state structure of the complex 15 is given in Figure 2.8. Similar with strontium complex, 

in the barium complex 15, the coordination polyhedron is formed by two {{N(Ph2PSe)2}
- 

ligands, and three THF molecules. As expected from the larger atomic radius of Ba2in 

the compound 15, Ba1-O (2.707(5), 2.796(8) Å), and Ba1-Se (3.3842(8), 3.3524(8) Å) 

distances are elongated in comparison with the corresponding values determined for the 

Sr2+ complex 14 (Sr-O 2.523(2) Å and Sr-Se 3.1013(4) and 3.1262(3) Å). However the Ba-

O and Ba-Se distances are within the range to that (Ba-O 2.716(6) and Ba-Se 3.3553(10) 

Å) our previously observed barium compound [Ba(THF)2{Ph2P(Se)N(CHPh2)}2] and also 

within the range of reported value 3.2787(11) Å  for the complex [Ba(THF)4(SeMes*)2] 

(Mes*  2,4,6-tBu3C6H2) and 3.2973(3) Å  for [Ba(Py)3(THF)(SeTrip)2}2] (Trip = 2,4,6-

iPr3C6H2) reported by Ruhlandt-Senge et al.14 Thus the central atom barium adopts a 

distorted pentagonal bipyramidal geometry due to coordination from two {N(Ph2P(Se))2}
- 

moieties and three THF molecules. Two six-membered metallacycles Ba1-Se1-P1-N1-P2-

Se2 and Ba1-Se1i-P1i-N1i-P2i-Se2i are formed due to ligation of two ligand moieties via 

selenium atoms. In complex 15, the six-membered Ba-Se2-P2-N metallacycle is nonplanar 

and adopts a twisted boat conformation similar to that of strontium complex 14. For the 

metallacycle Ba1-Se1-P1-N1-P2-Se2, the atoms P2 and Se1 reside 0.437 Å  and 0.527 Å  

above the mean plane having Ba1, Se1, P1, N1, P2, Se2 atoms respectively whereas Ba1 

(0.140 Å), Se2 (0.129 Å), N1(0.083 Å) and P1(0.613 Å) are located below the mean plane. 
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Figure 2.8. Solid state structure of compound 15. Hydrogen atoms are omitted for clarity. 

Selected bond distances (Å) and bond angles (º): P1-N1 1.588(5), P2-N1 1.585(5), P1-Se1 

2.1393(14), P2-Se2 2.1440(17), P1-C1 1.818(6), P1-C7 1.819(6), P2-C13 1.821(7), P2-

C19 1.811(6), Ba1-Se1 3.3842(8), Ba1-Se1i 3.3842(8), Ba1-Se2 3.3524(8), Ba1-Se2i 

3.3524(8), Ba1-O1 2.796(8), Ba1-O2 2.707(5), Ba1-O2i 2.707(5), N1-P1-Se1 119.5(2), 

N1-P2-Se2 121.0(2), P1-N1-P2 135.3(3), Se1-Ba1-Se2 82.371(19), P1-Se1-Ba1 

101.68(4), P2-Se2-Ba1 114.06(5), N1-P1-C1 103.8(3), N1-P1-C7 110.1(3), N1-P2-C13 

107.9(3), N1-P2-C19 105.0(3), O2-Ba1-O1 76.69(14), O2-Ba1-O2i 153.4(3), O1-Ba1-Se2 

67.253(17), O2-Ba1-Se2 78.68(11). 

Similar to strontium complex, no interaction between the amido nitrogen and barium atom 

was observed. Nevertheless complex 15 is another example of barium seleno complex 

having barium selenium direct contact.  

Lithium complex: Alkali metal salts are important precursors for salt metathesis reaction. 

Various alkali metal salts of {N(PR2Se)2}
- ligand are known, however the 

[Li{N(P(iPr)2Se)2}] was prepared by Chivers et al. involving the reaction of n-BuLi and 

[HN(P(iPr)2Se)2] in the presence of TMEDA at -78ºC.62 Here we describe an alternative 

method to synthesize the lithium salt of diselenoimidodiphosphinato ligand without using 

TMEDA. The treatment of 13 with LiCH2SiMe3 in 1:1 molar ratio in THF at ambient 

temperature afforded the lithium salt of molecular formula [2-N(PPh2Se)Li(THF)2] (16) 

through the elimination of volatile tetramethylsilane in good yield (Scheme 2.4).  
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Scheme 2.4. Synthesis of lithium complex 16 

The compound 16 was characterized by analytical/spectroscopic technique and the solid 

state structure of the complex 16 was determined by single crystal X-ray diffraction 

analysis. In 1H NMR spectra of 16, the resonance of coordinated THF molecules appear at 

3.49 and 1.26 ppm as multiplets along with the phenyl protons in the expected range. In 

the 31P{1H} NMR spectra, one singlet is observed at 42.9 ppm indicating both the 

phosphorus atoms are magnetically equivalent. Compound 16 was recrystallized from 

THF/n-pentane (1:2) and crystallizes in monoclinic space group Cc having four molecules 

in the unit cell. The details of the structural refinement parameters are given in Table 2.3. 

The solid state structure of the complex 16 is given in Figure 2.9. The coordination 

polyhedron of the complex 16 is formed by the chelation of two selenium atoms of the 

ligand moiety along with two THF molecules. No interaction between amido 

nitrogen and lithium atoms was observed. Li-Se distances 2.598(7) and 2.606(7) Å are 

within the range to that of (2.556(9) and 2.52( 2-

N(P(iPr)2Se)Li(TMEDA)] complex.62 The Li-O distances of 1.950(7) and 1.932(7) Å are 

within the reported values. The lithium atom adopts a distorted tetrahedral geometry due 

to the ligation of two selenium atoms and two THF molecules. The six-membered ring Li1-

Se1-P2-N1-P1-Se2 is not coplanar and adopts a twisted boat conformation similar to that 

of strontium complexes 14 and barium complex 15. 
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Figure 2.9. Solid state structure of compound 16. Hydrogen atoms are omitted for clarity. 

Selected bond distances (Å) and bond angles (º): P1-N1 1.594(3), P2-N1 1.597(3), P1-Se2 

2.1453(9), P2-Se1 2.1462(9), P1-C1 1.827(3), P1-C7 1.819(4), P2-C13 1.822(3), P2-C19 

1.825(3), Li1-Se1 2.598(7), Li1-Se2 2.606(7) Li1-O1 1.950(7), Li1-O2 1.932(7), N1-P1-

Se2 120.19(12), N1-P2-Se1 119.79(11), P1-N1-P2 133.7(2), Se1-Li1-Se2 113.2(2), P1-

Se2-Li1 93.27(15), P2- Se1-Li1 98.44(15), N1-P1-C1 108.56(16), N1-P1-C7 103.27(16), 

N1-P2-C13 104.41(16), N1-P2-C19 108.17(17), O2-Li1-O1 109.7(3), O2-Li1-Se1 

105.5(3), O1-Li1-Se1 105.5(3), O2-Li1-Se2 111.9(3). 

For the metallacycle Li1-Se1-P2-N1-P1-Se2, the atoms Se2 (0.403 Å), P2 (0.509 Å), N1 

(0.013 Å) above the weighted least-squares best plane having Ba1, Se1, P1, N1, P2, Se2 

atoms whereas Li1 (0.053 Å), P1 (0.566 Å) and Se1 (0.280 Å) are located below the mean 

plane. 

2.3 Conclusion 
 

We have successfully introduced the amidophosphine chalcogenides (Se and S) into the 

alkali and alkaline-earth metal coordination chemistry. We have described a series of 

heavier alkaline-earth metal-selenium complexes having direct metal–selenium bonds via 

two synthetic routes using phosphinoselenoic amide ligand. In the first method the 

silylamide route was used to prepare the target compounds, and in the second method the 

salt metathesis route was used. Due to similar ionic radii, calcium and strontium complexes 
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are isostructural, and also the M–Se bond distances increase from Ca–Se to Sr–Se and a 

further increase is observed for the Ba–Se bond. We have also described the missing group 

2 metal complexes of diselenoimidodiphosphinato by synthesizing strontium and barium 

complexes via two synthetic routes using diselenoimidodiphosphinato ligand. Strontium 

complex 14 adopted distorted octahedral geometry whereas geometry of the larger barium 

atom in complex 15 can be best described as distorted pentagonal bipyramidal and the M-

Se bond distances are increasing from Sr-Se to Ba-Se bond. Finally, synthesis of the lithium 

diselenoimidodiphosphonato complex was achieved by the deprotonation of the ligand 

with LiCH2SiMe3, and the molecular structure of the lithium complex obtained was 

confirmed by the X-ray analysis. 

2.4  Experimental procedures 

 

2.4.1. General 

 

All manipulations of air-sensitive materials were performed with the rigorous exclusion of 

oxygen and moisture in flame-dried Schlenk-type glassware either on a dual manifold 

Schlenk line, interfaced to a high vacuum (10-4 torr) line, or in an argon-filled M. Braun 

glove box. THF was pre-dried over Na wire and distilled under nitrogen from sodium and 

benzophenone ketyl prior to use. Hydrocarbon solvents (toluene and n-pentane) were 

distilled under nitrogen from LiAlH4 and stored in the glove box. 1H NMR (400 MHz), 

13C{1H} and 31P{1H} NMR (161.9 MHz) spectra were recorded on a BRUKER AVANCE 

III-400 spectrometer. BRUKER ALPHA FT-IR was used for FT-IR measurement. 

Elemental analyses were performed on a BRUKER EURO EA at the Indian Institute of 

Technology Hyderabad. The starting materials alkaline-earth metal diiodides MI2 (where 

M = Ca, Sr and Ba), sodium/potassium bis(trimethyl)silylamides  were purchased from 

Sigma Aldrich and used without further purification. The alkaline-earth metal 

bis(trimethylsilyl)amides and LiCH2SiMe3 were prepared according to literature 

procedures.63, 64 The NMR solvent C6D6 and CDCl3 were purchased from sigma Aldrich.  

2.4.2. Synthesis of [{(THF)2NaPh2P(Se)N(CHPh2)}2] (7) 
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In a 10 ml sample vial one equivalent (50 mg, 0.112 mmol) of ligand 1c and one equivalent 

of sodium bis(trimethylsilyl)amide (20.5 mg, 0.112 mmol) were mixed together with a 

small amount (2 ml) of toluene. After 6 h, a small amount of THF (2 ml) and n-pentane (2 

ml) were added to it and kept at −40 °C. After 24 h, colorless crystals of 7 were obtained. 

Yield (65.2 mg) 95%. 1H NMR (400 MHz, C6D6): δ 7.73–7.67 (m, 4H, ArH), 6.96–6.94 

(m, 4H, ArH), 6.84–6.66 (m, 12H, ArH), 5.82–5.76 (dd, 1H, JH-P = 16.0 Hz, 6.0, 8.0 Hz 

CH) ppm. 13C{1H} NMR (100 MHz, C6D6): δ 143.6 (ArC), 143.5 (ArC), 135.4 (P-ArC), 

134.5 (P-ArC), 132.3 (P attached o-ArC), 132.2 (P attached o-ArC), 131.3 (P attached p-

ArC), 131.2 (P attached p-ArC), 128.4 (P attached m-ArC), 128.2 (m-ArC), 128.0 (o-ArC), 

127.1 (p-ArC), 59.6 (CH) ppm. 31P{1H}NMR (161.9 MHz, C6D6): δ 71.9 ppm. FT-IR 

(selected frequencies): ν = 3365 (N–H), 1435 (P–C), 894 (P–N), 570 (P=Se) cm−1. 

Elemental analysis: (C66H74N2Na2O4P2Se2) Calcd. C 64.70, H 6.09, N 2.29; Found C 64.15 

H 5.82, N 1.76. 

2.4.3. Synthesis of [{(THF)2KPh2P(Se)N(CHPh2)}2] (8) 

 

In a 10 ml sample vial, one equivalent (50 mg, 0.112 mmol) of ligand 3 and one equivalent 

of potassium bis(trimethylsilyl)amide (22.4 mg, 0.112 mmol) were mixed together with 2 

ml of toluene. After 6 h, a small amount of THF (2 ml) and n-pentane (2 ml) were added 

to it and kept at −40 °C. After 24 h, colorless crystals of 8 were obtained. Yield (63.4 mg) 

90%. 1H NMR (400 MHz, C6D6): δ 7.88–7.82 (m, 4H, ArH), 7.07–7.06 (m, 4H, ArH), 

6.96–6.82 (m, 13H, ArH), 5.84–5.78 (dd, 1H, J = 8.8 Hz, 6.0 Hz CH) ppm, 3.46 (m, THF), 

1.31 (m, THF) ppm. 13C{1H} NMR (100 MHz, C6D6): δ 143.8 (ArC), 143.7 (ArC), 135.9 

(P-ArC), 134.9 (P-ArC), 132.2 (P attached o-ArC), 132.1 (P attached o-ArC), 131.2 (P 

attached p-ArC), 131.1 (P attached p-ArC), 128.4 (P attached m-ArC), 128.2 (m-ArC), 

127.9 (o-ArC), 127.1 (p-ArC), 58.9 (CH) ppm. 31P{1H}NMR (161.9 MHz, C6D6): δ 71.9 

ppm. FT-IR (selected frequencies): ν = 3373 (N–H), 1436 (P–C), 931 (P–N), 569 (P=Se) 

cm−1.   Elemental analysis: (C66H74K2N2O4P2Se2) Calcd. C 63.04, H 5.93, N 2.23; Found 

C 62.68, H 5.62, N 1.78. 

2.4.4. Synthesis of [M(THF)2{Ph2P(Se)N(CHPh2)}2] (M = Ca (9), Sr (10) and Ba (11)) 
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Route 1: In a 10 ml sample vial, two equivalents (100 mg, 0.224 mmol) of ligand 1c and 

one equivalent of [M{N(SiMe3)2}2(THF)n] (M = Ca, Sr, Ba) were mixed together with 2 

ml of toluene. After 6 h of stirring another 2 ml of THF and n-pentane (2 ml) were added 

to it and kept at −40 °C. After 24 h, colorless crystals were obtained.  

Route 2: In a 25 ml pre-dried Schlenk flask, potassium salt of ligand 1c (200 mg, 0.32 

mmol) was mixed with CaI2 (46.8 mg, 0.16 mmol) in 10 ml THF solvent at ambient 

temperature and stirring continued for 12 h. The white precipitate of KI was filtered off 

and filtrate was evaporated in vacuo. The resulting white compound was further purified 

by washing with n-pentane and crystals suitable for X-ray analysis were grown from 

THF/n-pentane (1:2) mixture at −40° C.  

9:  Yield: Route 1. (204.6 mg) 85% and Route 2 (192.6 mg) 80%. 1H NMR (400 MHz, 

C6D6): δ 7.84–7.78 (m, 4H, ArH), 7.07–7.05 (m, 4H, ArH), 6.95–6.78 (m, 12H, ArH), 

5.93–5.87 (dd, 1H, J = 15.3 Hz, 6.5 Hz, CH) ppm, 3.46 (m, THF), 1.31 (m, THF) ppm. 

13C{1H} NMR (100 MHz, C6D6): δ 143.6 (ArC), 143.5 (ArC), 135.4 (P-ArC), 134.5 (P-

ArC), 132.3 (P attached o-ArC), 132.2 (P attached o-ArC), 131.3 (P attached p-ArC), 131.2 

(P attached p-ArC), 128.4 (P attached m-ArC), 128.3 (m-ArC), 128.0 (o-ArC), 127.1 (p-

ArC), 67.7 (THF) 59.6 (CH), 25.6 (THF) ppm. 31P{1H} NMR (161.9 MHz, C6D6): δ 71.9 

ppm. FT-IR (selected frequencies): ν = 3381 (N–H), 1436 (P–C), 930 (P–N), 570 (P=Se) 

cm−1. Elemental analysis: (C66H70CaN2O4P2Se2) (7·2THF) Calcd. C 65.23, H 5.81, N 2.31; 

Found C 64.88, H 5.32, N 2.11. 

10: Yield (196.2 mg) 78%. 1H NMR (400 MHz, C6D6): δ 7.84–7.78 (m, 4H, ArH), 7.33–

7.31 (m, 4H, ArH), 6.95–6.79 (m, 12H, ArH), 5.40–5.33 (d, 1H, J = 27.6 Hz, CH) ppm, 

3.48 (m, THF), 1.27 (m, THF) ppm. 13C{1H} NMR (100 MHz, C6D6): δ 143.6 (ArC), 143.5 

(ArC), 135.4 (P-ArC), 134.5 (P-ArC), 132.3 (P attached o-ArC), 132.2 (P attached o-ArC), 

131.3 (P attached p-ArC), 131.2 (P attached p-ArC), 128.8 (P attached m-ArC), 128.4 (m-

ArC), 127.3 (o-ArC), 127.1 (p-ArC), 68.1 (THF), 59.6 (CH), 25.5 (THF) ppm. 

31P{1H}NMR (161.9 MHz, C6D6): δ 71.9 ppm. FT-IR (selected frequencies): ν = 1436 (P–

C), 931 (P–N), 569 (P=Se) cm−1. Elemental analysis: (C66H74N2O4P2Se2Sr) (8·2THF) 

Calcd. C 62.58, H 5.89, N 2.21; Found C 62.03, H 5.43, N 2.05. 
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11: Yield (217.9 mg) 83%. 1H NMR (400 MHz, C6D6): δ 7.88–7.83 (m, 4H, ArH), 7.26–

7.24 (m, 4H, ArH), 7.06–6.85 (m, 12H, ArH), 5.46–5.39 (d, 1H, J = 26.1 Hz, CH) ppm, 

3.47 (m, THF), 1.30 (m, THF) ppm. 13C{1H} NMR (100 MHz, C6D6): δ 143.6 (ArC), 143.5 

(ArC), 135.4 (P-ArC), 134.5 (P-ArC), 132.3 (P attached o-ArC), 132.2 (P attached m-ArC), 

131.3 (P attached p-ArC), 131.2 (P attached p-ArC), 128.4 (o-ArC), 128.2 (m-ArC), 127.1 

(p-ArC), 67.7 (THF), 59.6 (CH), 25.6 (THF) ppm. 31P{1H}NMR (161.9 MHz, C6D6): δ 

71.9 ppm. FT-IR (selected frequencies): ν = 1437 (P–C), 911 (P–N), 569 (P=Se) cm−1. 

Elemental analysis: (C58H58BaN2O2P2Se2) Calcd. C 59.42, H 4.99, N 2.39; Found C 58.93, 

H 5.01, N 2.08. 

2.4.5. Synthesis of [Ba(THF)2{Ph2P(S)N(CHPh2)}2] (12) 

 

Route 1: In a 10 ml sample vial two equivalents (200 mg, 0.50 mmol) of ligand 1b and one 

equivalent of [Ba{N(SiMe3)2}2(THF)2] (150.5 mg, 0.25 mmol) were mixed together with 

THF (2 ml). After 12 h of stirring at ambient temperature, n-pentane (2 ml) was added and 

the reaction mixture was kept in -40 ºC freezer. After 12 h colorless crystals of 12 were 

obtained. Yield 256.7 mg (95%).  

Route 2: In a 50 ml pre-dried Schlenk flask potassium salt 5 (200 mg, 0.50 mmol) was 

mixed with BaI2 (97.8 mg, 0.25 mmol) in THF (10 ml) at ambient temperature and stirred 

for 12 h. The white precipitate of KI was filtered off and filtrate was dried under vacuo. 

The resulting white compound was further purified by washing with n-pentane and crystals 

suitable for X-ray analysis are grown from THF/n-pentane (1:2) mixture solvent at -40 ºC. 

Yield 230.2 mg (85%). 1H NMR (400 MHz, C6D6): δ 7.82-7.87 (m, 4H, ArH), 7.05-7.07 

(m, 4H, ArH), 6.80-6.96 (m, 12H, ArH), 5.81 (d, 1H, JH-P = 23.8 Hz, CH) ppm, 3.45 (m, 

THF), 1.30 (m, THF) ppm. 13C{1H} NMR (100 MHz, C6D6): δ 143.9 (ArC),143.8 (ArC), 

135.9 (P-ArC), 134.9 (P-ArC), 132.3 (P attached o-ArC), 132.2 (P attached o-ArC), 131.3 

( P attached p-ArC), 131.2 (P attached p-ArC), 128.5 (P attached m-ArC), 128.2 (m-ArC), 

127.8 (o-ArC), 127.2 (p-ArC), 67.8 (THF), 58.9 (CH), 25.7 (THF) ppm. 31P{1H} NMR 

(161.9 MHz, C6D6): δ 73.3 ppm. FT-IR (selected frequencies): ν = 1436 (P-C), 955 (P-N), 

613 (P=S) cm-1. Elemental analysis: C66H74BaN2O4P2S2 (1222.71) Calcd. C 64.83, H 6.10, 

N 2.29; Found C 64.39, H 5.85, N 2.11. 
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2.4.6. Synthesis of [{2-N(PPh2Se)2}2Sr(THF)2] (14) 

 

Route 1: In a 10 ml sample vial 2 equivalents (200 mg, 0.368 mmol) of ligand 13 and 1 

equivalent of [Sr{N(SiMe3)2}2(THF)2] (101.6 mg, 0.184 mmol) are mixed together with 2 

ml of THF. After 6 h of stirring, 2 ml of n-pentane was added to the top of it and the reaction 

mixture was placed in - 40 ºC freezer. After 12 h, pale green colored crystals of 14 were 

obtained. Yield 218.3 mg (90%).  

Route 2: In a 50 ml pre-dried Schlenk flask potassium salt of ligand 13 [K{N(Ph2PSe)2}] 

(200 mg, 0.344 mmol) was mixed with SrI2 (74.0 mg, 0.172 mmol) in 10 ml of THF solvent 

at ambient temperature and stirred for 12 h. The white precipitate of KI was filtered off and 

filtrate was dried under vacuo. The resulting white compound was further purified by 

washing with n-pentane and crystals of 14 suitable for X-ray analysis can be grown from 

THF/n-pentane (1:2) mixture at - 40 ºC.  Yield 196.3 mg (86%).  1H NMR (400 MHz, 

C6D6):  8.07 (bs, 8H, ArH), 6.90 (bs, 12H, ArH), 3.58 (m, 8H, THF), 1.39 (m, 8H, THF) 

ppm. 13C{1H} NMR (100 MHz, C6D6): 128.2 (ArC), 127.9 (ArC), 127.7 (ArC), 67.8 

(THF), 25.6 (THF) ppm. 31P{1H}NMR (161.9 MHz, C6D6): 43.3 ppm. FT-IR (selected 

frequencies): 1433 (P-C), 899 (P-N), 539 (P=Se) cm-1. Elemental analysis: 

C56H56N2O2P4Se4Sr (1316.37) Calcd. C 51.09, H 4.29, N 2.13; Found C 50.88, H 4.06, N 

2.01. 

2.4.7. Synthesis of [{2-N(PPh2Se)2}2Ba(THF)2] (15) 

 

Route 1: in a 10 ml sample vial two equivalents (200 mg, 0.368 mmol) of ligand 13 and 1 

equivalent of [Ba{N(SiMe3)2}2(THF)2] (110.8 mg, 0.184 mmol) were mixed together with 

2 ml of THF. After 3 h of stirring at ambient temperature, 2 ml of n-pentane was added to 

it and the reaction mixture was kept in - 40 ºC freezer. After 12 h pale green colored crystals 

of 15 were obtained. Yield 225.0 mg (85%).  

Route 2: in a 50 ml pre-dried Schlenk flask potassium salt of ligand 13 [K{N(Ph2PSe)2}] 

(200 mg, 0.344 mmol) was mixed with BaI2 (67.3 mg, 0.172 mmol) in 10 ml THF solvent 

at ambient temperature and stirred for 12 h. The white precipitate of KI was filtered off and 

filtrate was dried under vacuo. The resulting white compound was further purified by 
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washing with n-pentane and crystals suitable for X-ray analysis are grown from THF/n-

pentane (1:2) mixture solvent at - 40 ºC. Yield 202.0 mg (82%). 1H NMR (400 MHz, C6D6): 

 8.16 (bs, 8H, ArH), 6.93-6.98 (m, 12H, ArH), 3.57(m, 12H, THF), 1.38 (m, 12H, THF) 

ppm. 13C{1H}NMR (100 MHz, C6D6): 131.7 (P attached o-ArC), 129.9 (P attached ArC), 

128.1 (P attached p-ArC), 127.9 (P attached m-ArC), 67.8 (THF), 25.6 (THF) ppm. 

31P{1H}NMR (161.9 MHz, C6D6): 43.7 ppm. FT-IR (selected frequencies): 1434 (P-C), 

934 (P-N), 538 (P=Se) cm-1. Elemental analysis: C60H64BaN2O3P4Se4 (1438.22) calcd. C 

50.11, H 4.49, N 1.95; Found C 50.02, H 3.93, N 1.73. 

2.4.8. Synthesis of [2-N(PPh2Se)Li(THF)2] (16) 

 

In a 10 ml sample vial one equivalent (100 mg, 0.184 mmol) of ligand 13 and one 

equivalent of LiCH2SiMe3 (17.4 mg, 0.184 mmol) were mixed together along with 2 ml of 

THF. After 6 h of stirring at ambient temperature, 2 ml of n-pentane was added onto it and 

kept in - 40 ºC. After 3 h, cube shaped colorless crystals of 16 were obtained. Yield 114.8 

mg (90%). 1H NMR (400 MHz, C6D6):  8.38-8.44 (m, 8H, ArH), 7.04-7.08 (m, 8H, ArH), 

6.95-6.99 (m, 4H, ArH), 3.49 (m, 8H, THF), 1.26 (m, 8H, THF) ppm. 13C{1H} NMR (100 

MHz, C6D6):  142.6 (P-ArC), 141.7 (P-ArC), 131.6 (P attached o-ArC), 131.5 (P attached 

o-ArC), 129.6 (P attached p-ArC), 128.1 (P attached m-ArC), 127.6 (P attached m-ArC), 

68.3 (THF), 25.3 (THF) ppm. 31P{1H}NMR (161.9 MHz, C6D6):  42.9 ppm. FT-IR 

(selected frequencies):   = 1432 (P-C), 931 (P-N), 540 (P=Se) cm-1. Elemental analysis: 

C32H36LiNO2P2Se2 (693.42) Calcd. C 55.43, H 5.23, N 2.02; Found C 54.99, H 5.01, N 

1.87. 

 

 

2.5  X-ray Crystallographic Studies 
 

In each case a crystal of suitable dimensions was mounted on a CryoLoop (Hampton 

Research Corp.) with a layer of light mineral oil and placed in a nitrogen stream at 150(2) 

K. All measurements were made on an Agilent Supernova X-calibur Eos CCD detector 
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with graphite monochromatic Cu-Ka (1.54184 Å) or Mo-Kα (0.71069 Å) radiation. Crystal 

data and structure refinement parameters are summarized in Table 2.1-2.3. The structures 

were solved by direct methods (SIR92)65 and refined on F2 by full-matrix least-squares 

methods; using SHELXL-97.66 Non-hydrogen atoms were anisotropically refined. H-

atoms were included in the refinement on calculated positions riding on their carrier atoms. 

The function minimized was [w(Fo2- Fc2)2] (w = 1 / [2 (Fo
2) + (aP)2 + bP]), where P = 

(Max(Fo
2,0) + 2Fc2) / 3 with 2(Fo

2) from counting statistics.  The function R1 and wR2 

were (||Fo| - |Fc||) / |Fo| and [w(Fo
2 - Fc

2)2 / (wFo4)]1/2, respectively.  The Diamond-3 

program was used to draw the molecule. Crystallographic data (excluding structure factors) 

for the structures described in this chapter have been deposited with the Cambridge 

Crystallographic Data Centre as a supplementary publication no. CCDC 903850-903855 

(7-11), 928618(12) and 926077-926079 (14-16).  
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2.6 Tables  

Table 2.1. Crystallographic data of compounds 7, 8 and 9. 

 

Crystal 7 8 9 

CCDC No. 903853 903855 903852 

Empirical formula C66H74N2Na2O4P2Se2 C66H72K2N2O4P2Se2 C66H70CaN2O4P2Se2 

Formula weight                     1225.11 1257.33 1215.18 

T (K)                           150(2)  150(2)  150(2)  

λ (Å)                         1.54184                  1.54184  1.54184  

Crystal system  Triclinic   Triclinic   Triclinic   

Space group        P-1 P-1 P-1 

a  (Å)     10.392(17) 10.4891(10) 10.2981(9) 

b  (Å)        12.981(2) 13.1334(10) 10.9898(9) 

c  (Å)     13.463(17) 13.4628(8) 14.4141(13) 

 109.103(13) 67.483(6) 99.955(7) 

 107.189(13) 84.963(6) 101.789(8) 

 104.478(14) 66.685(8) 103.034(7) 

V  ( Å3)                        1513.8(4) 1568.9(2) 1514.2(2) 

Z  1 1   1 

Dcalc g cm-3 1.344 1.331  1.333 

µ (mm-1) 2.549 3.512  3.144 

F (000)                             636 652 630 

Theta range for data 

collection    

3.81 to 70.740 3.56 to 70.72o 3.22 to 70.990 

Limiting indices                   -11  h  12,  

-14  k  15,  

-16  l  11 

-12  h  12,  

-16  k  14,  

-16  l  15 

−12≤ h ≤ 12, 

−13 ≤ k ≤ 12, 

−17 ≤ l ≤ 17 

Reflections collected / 

unique     

11164 / 5681 

[R(int) = 0.0303] 

11473 / 5891  

[R(int) = 0.0445] 

11585/5710 

[R(int) = 0.0533] 

Completeness to theta 

= 71.25      

97.5 % 97.9 % 97.6 % 

Absorption correction              Multi-Scan Multi-Scan Multi-Scan 

Max. and min. 

transmission         

0.660 and 0.560 0.685 and 0.585 0.590 and 0.460 

Refinement method                  Full-matrix  

least-squares on F2 

Full-matrix  

least-squares on F2 

Full-matrix least-

squares on F2 

Data / restraints / 

parameters     

5681 / 6 / 362 5891 / 6 / 382 5710 / 0 / 349 

Goodness-of-fit on F2             1.036 1.063 1.186 

Final R indices 

[I>2sigma(I)]      

R1 = 0.0379,  

wR2 = 0.0987 

R1 = 0.0470,  

wR2 = 0.1155 

R1 = 0.0762,  

wR2 = 0.1998 

R indices (all data)               R1 = 0.0452,  

wR2 = 0.1065 

R1 = 0.0635,  

wR2 = 0.1270 

R1 = 0.0897,  

wR2 = 0.2068 

Largest diff. peak and 

hole        

0.337 and -0.452  

e.A-3 

0.586 and -0.741  

e.A-3 

1.321. and -0.546  

e Å−3 
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Table 2.2. Crystallographic data of compounds 10, 11 and 12. 

 

Crystal 10 11 12 

CCDC No. 903854 903850 928618 

Empirical formula C66H74N2O4P2Se2Sr C58H58Ba2N2O2P2Se2 C66H74BaN2O4P2S2 

Formula weight                     1266.75 1172.26 1222.67 

T (K)                           150(2)  150(2)  150(2)  

λ (Å)                         0.71069                  1.54184  1.54184  

Crystal system  Triclinic   Triclinic   Triclinic   

Space group        P-1 P21 P-1 

a  (Å)     10.191(5) 15.7828(7) 10.1569(6) 

b  (Å)        10.912(5) 11.0357(3) 10.7253(5) 

c  (Å)     14.641(5) 16.9825(7) 14.9439(9) 

 99.369(5) 90 98.296(4) 

 101.195(5) 117.366(5) 101.989(5) 

 103.621(5) 90 103.632(4) 

V  ( Å3)                        1514.7(11) 2626.9(2) 1515.24(15) 

Z  1 2   1 

Dcalc g cm-3 1.389 1.482  1.340 

µ (mm-1) 2.193 8.372  6.616 

F (000)                             652 1180 634 

Theta range for data 

collection    

1.45 to 25.79º 2.93 to 70.78º 4.33 to 70.84º 

Limiting indices                   -10  h  12,  

-11  k  13,  

-17  l  13 

-19  h  19,  

-13  k  10,  

-20  l  20 

−12 ≤ h ≤ 12, 

−12 ≤ k ≤ 9, 

−16 ≤ l ≤ 18 

Reflections collected / 

unique     

10504 / 5692 

[R(int) = 0.0312] 

10905 / 7106  

[R(int) = 0.0451] 

10949/5688 

[R(int) = 0.0512] 

Completeness to theta 

= 71.25      

97.8 % 98.4 % 97.4% 

Absorption correction              Multi-Scan Multi-Scan Multi-Scan 

Max. and min. 

transmission         

0.760 and 0.610 0.245 and 0.115 1.000 and 0.142 

Refinement method                  Full-matrix  

least-squares on F2 

Full-matrix  

least-squares on F2 

Full-matrix least-

squares on F2 

Data / restraints / 

parameters     

5692 / 0 / 349 7106 / 1 / 604 5688 / 0 / 349 

Goodness-of-fit on F2             1.063 1.026 1.067 

Final R indices 

[I>2sigma(I)]      

R1 = 0.0444,  

wR2 = 0.1149 

R1 = 0.0545,  

wR2 = 0.1354 

R1 = 0.0854,  

wR2 = 0.2360 

R indices (all data)               R1 = 0.0503,  

wR2 = 0.1201 

R1 = 0.0583,  

wR2 = 0.1396 

R1 = 0.0869,  

wR2 = 0.2366 

Absolute structure 

parameter       

 0.114(5)  

Largest diff. peak and 

hole        

0.818 and -0.625  

e.A-3 

1.801 and -1.495  

e.A-3 

3.746 and -1.111 

e Å−3 
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Table 2.3. Crystallographic data of compounds 14, 15 and 16. 

 

Crystal 14 15 16 

CCDC No. 926079 926077 926078 

Empirical formula C56H56N2O2P4Se4Sr C60H60BaN2O3P4Se4 C32H36LiNO2P2Se2 

Formula weight                     1316.37 1434.15 693.42 

T (K)                           150(2)  150(2)  150(2)  

λ (Å)                         1.54184 A 1.54184  1.54184  

Crystal system  Orthorhombic Monoclinic Monoclinic  

Space group        P b c a C 2/c C c 

a  (Å)     10.9194(6) 33.7336(18) 22.0095(5) 

b  (Å)        17.2140(6) 11.8971(10) 9.1496(2) 

c  (Å)     29.4632(9) 18.1604(10) 17.3861(5) 

 90 90 90 

 90  104.155 113.821(3) 

 90 90 90 

V  ( Å3)                        5538.1(4) 7067.1(8) 3202.92(14) 

Z  4   4   4   

Dcalc g cm-3 1.579 1.348 1.438 

µ (mm-1) 5.781  7.879 4.052 

F (000)                             2624 2840 1408 

Theta range for data 

collection    

5.03 to 70.77  deg. 3.95 to 70.96 deg. 5.31 to 70.69 deg. 

Limiting indices                   -4<=h<=13,  

-15<=k<=20, 

 -35<=l<=28 

-41<=h<=40,  

-14<=k<=11,  

-22<=l<=19 

-26<=h<=26,  

-11<=k<=10,  

-20<=l<=21 

Reflections collected / 

unique     

14408 / 5242  

[R(int) = 0.0423] 

14980 / 6696  

[R(int) = 0.0392] 

6127 / 3804  

[R(int) = 0.0200] 

Completeness to theta = 

71.25      

98.6 % 98.0% 97.8 % 

Absorption correction              Multi-scan 

 

Multi-scan 

 

Multi-scan 

 

Max. and min. 

transmission         

1.00000 and 0.53975 1.00000 and 0.50182 1.00000 and 0.54515 

Refinement method                  Full-matrix  

least-squares on F2 

Full-matrix 

least-squares on F2 

Full-matrix  

least-squares on F2 

Data / restraints / 

parameters     

5242 / 0 / 313 6696 / 1 / 335 3804 / 2 / 361 

Goodness-of-fit on F2             1.040 1.085 1.039 

Final R indices 

[I>2sigma(I)]      

R1 a  = 0.0370,  

wR2 b  = 0.0988 

R1 a  = 0.0688,  

wR2 b  = 0.2198 

R1 a  = 0.0292,  

wR2b = 0.0769 

R indices (all data)               R1 a  = 0.0422,  

wR2 b  = 0.1045 

R1 a  = 0.0744,  

wR2 b  = 0.2321 

R1a = 0.0293,  

wR2 b  = 0.0770 

Absolute structure 

parameter       

  0.025 (19) 

Largest diff. peak and 

hole        

0.547 and -0.601  

e.A-3 

2.720 and -0.819  

e.A-3  

0.538 and -0.642  

e.A-3 
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Chapter 3 

 

Novel amidophosphine-boranes into the alkali and heavier 

alkaline-earth metals coordination sphere: syntheses and 

structural studies 
 

 

3.1 Introduction 

  

As described in the previous chapter 2, the organometallic chemistry of the heavier 

alkaline-earth metals has been changed from obscurity to an exciting, rapidly developing 

area of chemistry due their large ionic radius, strong negative redox potentials, high 

oxophilicity and high electropositive character.1 The homoleptic and heteroleptic alkaline-

earth metal complexes have recently been employed in various catalytic applications, 

including the ring-opening polymerization of various cyclic esters,2,3 the polymerization of 

styrene and dienes,4 and the hydroamination and hydrophosphination of alkenes and 

alkynes.5 Determining the structures and reactivities of alkaline-earth metal species is an 

important step towards the design and development of efficient catalyst; however, the 

efficiency of catalyst is further dependence on the steric and electronic properties of the 

chelating ligand system. Therefore, the development of specifically designed donor 

molecules is one of the major steps in the development of the efficient catalysts. A wide 

variety of nitrogen-based ancillary ligands, such as tris(pyrazolyl)borates,6 

aminotroponiminates,7 β-diketiminates,8 iminopyrroles,9 and 1,4-diaza-1,3-butadiene,10 

have been introduced to prepare well-defined alkaline-earth-metal complexes. Various P–

N systems like monophosphanylamides (R2PNR')11,12 diphosphanylamides ((Ph2P)2N),12,13 

phosphoraneiminato (R3PN),14 phosphiniminomethanides ((RNPR'2)2CH),15–17 

phosphiniminomethandiides ((RNPR'2)2C),18,19 and diiminophosphinates (R2P(NR') 20 are 

well known today as ligands and proved their potency into the transition and f-block metals. 

Therefore, use of aminophosphines is another alternative way, to stabilize these extremely 
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oxophilic alkaline-earth metals. We have recently introduced the series of phosphine 

amines [Ph2PNHR] (A; R = 2,6-Me2C6H3, CHPh2, CPh3) and their chalcogen derivatives 

[Ph2P(O)NHR] (NPO), [Ph2P(S)NHR] (NPS), and [Ph2P(Se)NHR] (NPSe) (Chart 1) into 

the chemistry of alkali metals and the heavier alkaline-earth metals.[See Chapter 1 and 2]  

 

 

 

 

 

 

 

Chart 1. Phosphineamine ligands and their chalcogenides 

Phosphineamine A can coordinate to metals through the nitrogen and phosphorus atoms, 

resulting in a highly strained three-membered metallacycle, as reported by Roesky and 

others.21,22 The phosphineamine chalcogenides NPO, NPS, and NPSe can form either a 

four-membered metallacycle, if the nitrogen and the chalcogen atoms (O, S, Se) coordinate 

to the metal center, or two fused three-membered metallacycles to stabilize the metal 

complexes, which is what we observed in alkali-metal and heavier alkaline-earth-metal 

complexes. Thus, due to the presence of three adjacent potential donor atoms, the 

polymetallacyclic structural motif of the metal complexes was explored. The basicity of 

the nitrogen atom adjacent to the phosphorus atom in the amidophosphines A has remained 

the driving factor in the ability of the nitrogen and the phosphorus to effectively coordinate 

to an electron-deficient group. It is well accepted that in acyclic phosphineamines the 

tricoordinate nitrogen atom assumes a planar configuration with respect to its substituents 

and thus demonstrates diminished basicity due to enhanced N(pπ)−P(dπ) bonding.23−25 

From these literature reports and the phosphine amines available to us, we decided to 

synthesize the amidophosphine−borane adduct to exploit the chelating behavior of 

amidophosphines in alkali-metal and alkaline-earth metal chemistry. This idea will also 
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help us to extend our ligand skeleton as NPB (vide infra) and, in a similar fashion, as NPO, 

NPS, and NPSe (Chart 1). The complexation of a divalent metal by the NPB ligand (17) 

potentially leads to complexes that are isostructural with amidophosphine−chalcogenide 

divalent complexes of the type [{η2-Ph2P(X)N-(CHPh2)}2M(THF)2].(See Chapter 2) Very 

recently, Verdaguer and Kolodiazhnyi groups reported a series of chiral 

aminophosphine−borane compounds and their applications in asymmetric catalysis and 

hydrogenolysis.26 However, reports of their use as coordinating ligands toward alkali 

metals and alkaline-earth metals are not available to date. We envision that ligand 17 can 

be deprotonated to generate the monoanionic compound {(Ph2CHNP(BH3)Ph2)}
−, which 

can coordinate to the metal center. Gaumont and co-workers reported that copper(I) 

complexes using an anionic phosphido−borane adduct can be used as pre-catalysts for the 

formation of phosphorus−carbon bonds.27 Most of the structurally characterized complexes 

in this category can be classified into two classes: In alkali-metal complexes, the hard metal 

center is chelated by the borane hydrogen atoms of the ligand, and in transition-metal 

complexes, the soft phosphorus atom shows a preference to bind with the relatively softer 

metal center.28 It has also been reported that the lithium phosphine−borane complex is 

diatopic in nature and can be used to reduce aldehydes to generate the corresponding 

phosphine−borane substituted alcohols at elevated temperatures.29 However, the vast 

potential of this field of chemistry is still underdeveloped. In this chapter, alkali-metal 

amidophosphine−borane complexes with the compositions [(η2-

Ph2CHNP(BH3)Ph2)Li(THF)2] (19), [{(η2-Ph2C-HNP(BH3)Ph2)Na(THF)2}2] (20), and 

[{(η2-Ph2CHNP(BH3)Ph2)K(THF)2}2] (21) are presented. The heavier alkaline-earth-metal 

complexes [M(THF)2{Ph2P- (BH3)N(CHPh2)}2] (M = Ca (22), Sr (23), Ba (24)) are also 

described herein and can be prepared with high yields and purities by two synthetic routes. 

The full accounts of two synthetic routes and the solid-state structures of all the complexes 

are presented. 
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3.2 Results and Discussion 

 

3.2.1. Synthesis of amidophosphine-borane adducts 

  

The amidophosphine–borane adducts [Ph2P(BH3)NH(CHPh2)] (17), [Ph2P(BH3)NH(C- 

Ph3)] (18) were prepared in good yield by Lewis acid base reaction between the 

corresponding phosphineamine and H3B.SMe2 in 1:1 molar ratio in toluene at room 

temperature and followed by recrystallization either from hot toluene or dichloromethane 

(Scheme 3.1).30 The compounds 17 and 18 were fully characterized by spectroscopic 

/analytical techniques and the solid state structures of both the compounds were established 

by using single crystal X-ray diffraction analysis.  

 

Scheme 3.1. Synthesis of various amidophosphine-borane adducts 

The formation of the amidophosphine borane 17and 18 from the respective 

phosphineamine [Ph2PNHR] can easily be followed by 1H NMR spectroscopy, since an 

additional resonance is observed for the borane (BH3) group attached to the phosphorus 

atom as broad peak at  1.17 (17) and 0.68 (18) ppm respectively. The resonance of the 

amidophosphine moiety in 17 and 18 are only slightly shifted in comparison to the starting 

material [Ph2PNHR] with those reported for the corresponding phosphineamines. (See 

Chapter 1). The resonance at 5.45 ppm (17) as a broad singlet can be assigned to the 

methine proton of the CH group attached to the nitrogen and this is very close to the that 

(5.25 ppm) of precursor 1. In addition, a broad signal at 2.84 (17) and 3.45 ppm (18) has 

been observed for the corresponding amine protons of the phosphineamine moieties. In 

31P{1H} NMR spectra, a doublet is observed at 57.1 (17) and 53.3 ppm (18) which is 

significantly shifted compare to that (35.2 (1), 26.3(2) ppm) of respective phosphineamines 

[Ph2PNHR]. A coupling constant of 85.8 Hz (for 17) can be observed which can be 
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assigned as JP-B coupling between the 31P and 11B atoms adjacent to each other. The JP-B is 

within the range of the reported value (80.1 Hz) for [(R2PBX2)4] (R= CH3, X = H).31 In 

11B{1H} NMR spectra, we observed a broad peak for the boron atom at –38.1 (17) and –

36.0 (18) ppm. The broadening of the signals for boron resonances can be attributed to the 

coupling with adjacent phosphorus atom present in the respective amidophosphine-borane 

adducts. These observations clearly indicate that the BH3 group forms the 

phosphine−borane adduct rather than the amido−borane adduct, which is usually formed 

in homogeneous middle- or late-transition-metal catalysis.32 In FT-IR spectra characteristic 

signal for P–B bond stretching at 602 (17) and 609 (18) cm-1 was observed along with 

another characteristic signal at 2383 (17) and 2386 (18) cm-1 assigned for B–H stretching 

frequency. These values are well agreement with the values reported in literature.33 To 

study the molecular structures of 17 and 18 in solid state, the structures of the compound 

17 and 18 were established by using single crystal X-ray diffraction analysis. 

 

 

 

 

 

 

 

  (17)                    (18) 

Figure 3.1. Solid state structures of compounds 17 and 18. Selected bond distances (Å) 

and bond angles (º): 17: P1−N1 1.638(3), P1−B1 1.918(6), P1−C14 1.812(4), P1−C20 

1.815(4), N1−C1 1.468(5), C1−C2 1.537(6), C1−C8 1.532(6); B1−P1−N1 107.8(3), 

B1−P1−C14 112.7(3), B1−P1−C20 115.4(3), P1−N1−C1 127.5(3), N1−C1−C8 113.4(3), 

N1−C1−C2 110.4(3). 18: P1–N1 1.687(6), P1–B1 1.953(13), P1–C20 1.831(9), P1–C26 

1.829(11), N1–C1 1.503(10), C1–C2 1.550(12), C1–C8 1.561(11), C1–C14 1.520(11), 

B1–P1–N1 119.2(5), B1–P1–C20 111.2(5), B1–P1–C26 109.5(6), P1–N1–C1 126.5(5), 
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N1–C1–C2 109.9(6), N1–C1–C8 107.4(6), N1–C1–C14 109.2(6), N1–P1–C20 112.2(4), 

N1–P1–C26 99.1(4). 

Compound 17 crystallizes in the triclinic space group P-1 and has two independent 

molecules in the unit cell (Figure 3.1). The details of the structural parameters of compound 

17 are given in the Table 3.1. The P1−B1 bond distance in compound 17 (1.918(6) Å) is in 

agreement with the reported value of 2.1019(8) Å for [{Ph2P(BH3)}2CH2] and can be 

considered a phosphorus−boron dative bond. The bond distances P1−N1 (1.638(3) Å) and 

C1−N1 (1.468(5) Å) are also similar to those of the phosphineamine compound 

[Ph2PNH(CHPh2)] (P1−N1 = 1.673(6) Å and C1−N1 = 1.453(8) Å), as we previously 

observed. Compound 18 crystallizes in the monoclinic space group P21/c having four 

independent molecules in the unit cell (Figure 3.1). The P1–B1 bond distance (1.953(13) 

Å for 18), is almost similar and slightly shorter than the reported values 2.1019(8) Å for 

[{Ph2P(BH3)}2CH2] and can be consider as phosphorus boron dative bond.33b Thus the 

molecular structures of both the aminophosphine-borane compounds clearly indicate that 

enhanced basicity upon the phosphorus atom to coordinate compare to that of adjacent 

nitrogen atom in the respective aminophosphines. P1–N1 bond distance (1.687(6) Å for 

18), C1–N1 distance (1.503(10) Å for 18), are also similar to that of phosphineamine 

compound [Ph2PNHCHPh2] (P1–N1 1.673(6) Å and C1–N1 1.453(8) Å) previously 

observed by us (Chapter 1). The angles C1–N1–P1 (126.5(5)º (18), is slightly widened 

upon coordination of BH3 onto the phosphorus [118.24(4)º (1)] but similar range with 

compound 17 (127.5(3)º). The solid state structures of both the aminophosphine-borane 

compounds confirmed the dynamic nature of the molecules observed in multinuclear NMR 

spectra (vide supra). 

3.3  Synthesis and characterization of the alkali-metal complexes 
 

Diphenylphosphineamido-borane ligand 17 was reacted with (trimethylsilyl)- 

methyllithium in THF at ambient temperature in a 1:1 molar ratio to afford a lithium 

amidophosphine−borane complex with the composition [{η2-Ph2CHNP(BH3)Ph2} 

Li(THF)2] (19) through the elimination of the volatile tetramethylsilane (Scheme 3.2).30  
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Scheme 3.2. Synthesis of Alkali-metal complexes 

Compound 19 was recrystallized from THF and n-pentane (1:2 ratio) and was found to 

crystallize in the monoclinic space group P21/c, which has four molecules in the unit cell. 

The solid-state structure of complex 19 is given in Figure 3.2. The details of the structural 

parameters are given in the Table 3.1. The lithium coordination polyhedron of complex 19 

is formed by the chelation of the amido nitrogen, the phosphorus atom of the ligand moiety, 

and two THF molecules. Notably, the borane group does not participate in the coordination 

to the lithium metal, which can be explained as being due to the smaller size of the lithium 

metal in comparison to the other metals used in this work. The Li1−N1 distance of 1.971(3) 

Å is very similar to the lithium−amido bond distances reported in the literature.34 The 

Li1−O1 (1.945(3) Å) and Li1−O2 (1.929(3) Å) bond distances are also consistent with 

reported values. The Li1−P1 distance of 2.925(3) Å is slightly greater than the distances of 

2.611(6) and 2.527(3) Å reported for [[{(Me3Si)2CH}P(BH3)(C6H4-2-SMe)]Li(THF)]2 in 

the literature34 and can be termed as a very weak interaction between the phosphorus and 

lithium atoms. 
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Thus, a three-membered metallacycle, Li1−N1−P1, is formed that has the bond angles 

Li1−P1−N1 39.61(7)°, N1−Li1−P1 31.50(6)°, and Li1−N1−P1 108.88(11)°. Similar three-

membered lithium metallacycles can be found in the literature.34 The P1−B1 distance 

(1.9199(18) Å) remained unchanged in comparison to that of ligand 17 (1.918(6) Å).  

 

Figure 3.2. Solid state structure of lithium-complex 19. Selected bond distances (Å) and 

bond angles (º): P1−N1 1.638(3), P1−B1 1.918(6), P1−C14 1.812(4), P1−C20 1.815(4), 

N1−C1 1.468(5), C1−C2 1.537(6), C1−C8 1.532(6); B1−P1−N1 107.8(3), B1−P1−C14 

112.7(3), B1−P1−C20 115.4(3), P1−N1−C1 127.5(3), N1−C1−C8 113.4(3), N1−C1−C2 

110.4(3). 

The 1H, 31P{1H}, and 11B{1H} NMR spectra also confirmed the solid-state structure of 19. 

In the 1H NMR spectra, a doublet at 5.41 ppm can be assigned to the methine proton of 

ligand moiety 17 having a coupling constant (3JH-P) of 21.5 Hz. The three protons of the 

free BH3 group gave a broad signal at 1.45 ppm, which is similar to the signal from 

compound 17. Coordinated THF signals are also observed as two broad singlets at 3.32 

and 1.17 ppm. The proton-decoupled 31P{1H} NMR spectrum shows a doublet at 71.1 ppm, 

which exhibits a significant low-field shift in comparison to the corresponding signal of 

ligand 17 (56.8 ppm). The 11B{1H} NMR spectrum is also informative and shows a doublet 

signal at −36.1 ppm, which is shifted slightly to low field in comparison to that of the free 

ligand 17 (−38.1 ppm).  
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The dimeric sodium and potassium amidophosphine−borane complexes with molecular 

formulas [{(η2-Ph2CHNP(BH3)Ph2)Na(THF)2}2] (20) and [{(η2-Ph2CHNP(BH3)Ph2)K- 

(THF)2}2] (21) were prepared via the reaction of ligand 17 and sodium 

bis(trimethylsilyl)amide (or potassium bis(trimethylsilyl)amide in the case of 21) in THF 

at ambient temperature through the elimination of volatile bis(trimethylsilyl)amine 

(Scheme 3.2). Both of the complexes were characterized by spectroscopic and analytical 

techniques, and the solid-state structures of complexes 20 and 21 were established by 

single-crystal X-ray diffraction analyses. In the 1H NMR spectra of 20 and 21, the 

resonance signals are similar, due to their similar structural properties. The characteristic 

doublet at 5.46 ppm for 20 (5.73 ppm for 21) can be assigned to the methine proton of the 

CH group attached to the nitrogen having coupling constants (3JP-H) of 25.0 Hz (for 20) 

and 21.5 Hz (for 21), and they are shifted slightly to low field in comparison to the 

corresponding signal (5.45 ppm) of ligand 17. In the 31P{1H} NMR spectra, a doublet is 

observed at 46.2 ppm for 20 (73.2 ppm for 21). Thus, for complex 20, the resonance for 

the phosphorus is shifted slightly to high field, whereas in complex 21, the resonance of 

the phosphorus atom is shifted significantly to low field in comparison to that (56.8 ppm) 

of 17. This result can be attributed to the fact that the phosphorus atom is highly influenced 

by the electron-deficient borane (BH3) group attached to it. The doublet signal is caused 

by the coupling between the 31P and 11B atoms adjacent to each other, and a coupling 

constant (135.9 Hz for 20) is observed. In the 11B{1H} NMR spectra, we obtained a broad 

doublet signal at −34.2 ppm for 20 (−37.4 ppm for 21), and the broadening is presumably 

caused by the coupling to the adjacent phosphorus atom. In the FT-IR spectra, the 

characteristic signal for the P−B bond stretching at 610 cm−1 for 20 (607 cm−1 for complex 

21) was observed along with another characteristic signal at 2379 cm−1 for 20 (2380 cm−1 

for 21) assigned as the B−H stretching frequency. These values correspond well with the 

values (602 and 2383 cm−1) of the neutral ligand 17 as well (vide supra). Single crystals of 

the sodium and potassium salts 20 and 21 were obtained from a mixture of THF and n-

pentane, and in the solid state, both the complexes crystallized in the triclinic space group 

P-1 and had one molecule in the unit cell. The solid-state structures of complexes 20 and 

21 are given in Figure 3.3 and 3.4 respectively. All of the hydrogen atoms were located in 

the Fourier difference map and were subsequently refined. 
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Figure 3.3. Solid state structure of sodium-complex 20. Hydrogen atoms (except H1a, 

H1b; H, and H1ai, H1bi, Hi) are omitted for clarity. Selected bond distances (Å) and bond 

angles (º): P1−N1  1.6060(19), P1−B1 1.921(3), P1−Na1 3.2078(11), B1−Na1 2.949(3), 

B1i-Na1 2.862(3), N1−Na1 2.387(2), Na1−O1 2.337(2), Na1−O2 2.377(2), B1−H 1.15(3), 

B1−H1a 1.07(3), B1−H1b 1.10(3), Na1−H 2.57(3); B1−P1−N1 110.35(11), P1−B1−Na1 

79.34(10), P1−B1−Na1i 170.67(15), P1−N1−Na1 105.23(9), O1−Na1−O2 106.96(8), 

B1−Na1−N1  64.87(7), B1−Na1−P1 36.05(5), P1−Na1−N1 28.89(5), O1−Na1−B1 

127.09(9), O2−Na1−B1 125.71(9), O1−Na1−P1 118.68(6), O2−Na1−P1 122.16(6), 

N1−Na1−H 75.5(6), B1−Na1−H 22.7(6), P1−Na1−H  48.5(6), H−B1−H1a 110(2), 

H−B1−H1b 115(2), H1a−B1−H1b 112(2), Na1−B1−Nai 94.27(9), B1−Na1−B1i 85.73(9). 

In the centrosymmetric molecule 20, two amidophosphine−borane ligands coordinate to 

two sodium atoms by one BH3 group, one phosphorus atom, and one amido nitrogen atom 

and exhibit a diamond-shaped Na2(BH3)2 core with the mean bond angles B1−Na1−B1i 

85.73(9)° and Na1−B1−Na1i 94.27(9)°. The BH3 borane groups of the two ligands 

coordinate to the sodium atom in a η2 fashion with a Na1−B1 bond distance of 2.949(3) Å 

and a Na1−B1i bond distance of 2.862(3) Å. The P1−Na1 distance of 3.2078(11) Å is 

slightly longer than the bond distances of 2.9661(17) and 2.9474(16) Å reported for 

[[{(Me3Si)2CH}P(BH3)(C6H4-2-SMe)]Na(tmeda)]∞ by Izod and co-workers,34c,d and is 

also larger than the sum of the covalent radii (3.00 Å) of sodium and phosphorus. Thus, it 

can be concluded that no interaction between the phosphorus and sodium atoms can be 
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observed. In complex 20, two additional THF molecules are also coordinated to each 

sodium atom, and the geometry of each sodium atom can best be described as a distorted 

trigonal bipyramidal having two THF molecules in the apical position. The bond distances 

Na1−N1 2.387(2) Å, Na1−O1 2.337(2) Å, and Na1−O2 2.4377(2) Å are in the range of the 

previously reported values (Chapter 1 and 2). The P1−B1 distance [1.921(3) Å] remains 

almost unchanged compared to that of the free ligand 17 (1.918(6) Å). If the BH3 group is 

considered monodentate, the entire structure consists of three four-membered rings 

forming a trimetallacyclo [4.2.0.02,5]-octane structure. To the best of our knowledge, this 

is the first example of that type of structural motif in sodium complexes using borane 

groups.35 

 

Figure 3.4. Solid state structure of potassium-complex 21. Hydrogen atoms (except H1a, 

H1b, H1c and H1ai, H1bi and H1ci) are omitted for clarity. Selected bond lengths (Å) and 

bond angles (º): P1−N1 1.604(2), P1−B1i 1.920(3), P1−K1 3.5148(10), B1i−K1  3.192(4), 

B1−K1 3.043(3), N1−K1 2.691(2), K1−O1 2.713(3), K1−O2 2.651(3), K1−C13 3.468(3), 

B1−H1a 1.09(4), B1−H1b 1.15(4), B1−H1c 1.16(3), K1−H1a 2.69(4), K1−H1b 2.93(3), 

K1−H1c 3.01(3), K1−K1i 4.5732(13); B1i−P1−N1 110.73(14), P1i−B1−K1i 82.86(12), 

P1−N1−K1 107.11(11), O1−K1−O2 105.99(9), B1i−K1−N1 58.44(8), B1i−K1−P1 

32.82(6), P1−K1−N1 25.86(5), B1−K1−B1i 85.68(9), B1−K1−O1 94.50(9), B1−K1−O2 

89.70(9), H1a−B1−H1b 106(3), H1a−B1−H1c 112(3), H1b−B1−H1c 112(2), K1−B1−K1i 

94.32(9).  
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The potassium complex 21 is centrosymmetric and dimeric in nature, where each 

potassium atom is coordinated by two amidodiphenylphosphine−borane ligands 17 via one 

phosphorus atom and one amido nitrogen atom along with one BH3 group. It exhibits a 

diamond-shaped K2(BH3)2 core with a mean B1−K1−B1i bond angle of 85.68(4)° and a 

mean K1−B1−K1i bond angle of 94.32(9)°. Each BH3 borane group of the two ligands 

coordinates to two potassium atoms in a η3 fashion with a K1−B1 bond length of 3.043(3) 

Å and a K1−B1i bond length of 3.193(4) Å. The P1−K1 bond distance of 3.5148(10) Å is 

even more elongated in comparison to the P1−Na1 distance (3.2078(11) Å) and is also 

longer than the sum of the covalent radii (3.45 Å) of potassium and phosphorus.34d, 35 Each 

potassium atom is bound to two THF molecules, having the bond distances K1−O1 

2.713(3) Å and K1−O2 2.651(3) Å. The P1−B1 distance (1.917(4) Å) remains almost 

unperturbed in comparison to that of ligand 17 (1.920(3) Å). A short contact between the 

potassium and one of the phenyl carbon atoms (K1···C13 (3.469(3) Å) is observed, which 

can be attributed to a remote or secondary M−C interaction. However, in solution, all 

phenyl protons appear to be equivalent, as observed in the 1H NMR study, presumably due 

to the dynamic behavior of the complex. Thus, in the solid state, the two additional five-

membered metallacycles K1−N1−C1−C8−C13 and K1i−N1i−C1i−C8i−C13i are formed.  

3.4 Synthesis and characterization of the alkaline-earth-metal complexes 

 

The reaction of ligand 17 with alkaline-earth metal bis(trimethylsilyl)amides 

[M{N(SiMe3)2}2(THF)n] (M = Ca, Sr, Ba) in a 2:1 molar ratio in THF followed by 

crystallization from THF and n-pentane yields the respective heavier alkaline-earth metal 

amidophosphine−borane complexes [M(THF)2{Ph2P(BH3)N(CHPh2)}2] (M = Ca (22), Sr 

(23), Ba (24)) at ambient temperatures with the loss of bis(trimethylsilyl)amine, 

[(Me3Si)2NH]. The same alkaline-earth metal complexes, 22−24, can also be prepared by 

a salt metathesis reaction involving 20 or 21 with alkaline-earth metal diiodides in THF at 

ambient temperature (Scheme 3.3).30 The silylamide route was followed for all three 

complexes 22−24, whereas both routes were used to prepare the calcium complex 22. The 

silylamide route gave higher purity metal complexes in comparison to the salt metathesis 

reaction.36 All of the new complexes 22−24 were characterized using standard analytical 

and spectroscopic techniques, and the solid-state structures were established by single-
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crystal X-ray diffraction analyses.  A strong absorption at 610 cm−1 (for 22), 610 cm−1 (for 

23), and 603 cm−1 (for 24) in the FT-IR spectra is evidence of the P−B bond in each 

complex. The 1H NMR spectra of 22−24 in C6D6 are very similar to the spectra recorded 

for complexes 20 and 21 (vide supra) and reveals time-averaged Cs symmetry in solution. 

The presence of solvated THF is also indicated by two broad signals: 3.32 and 1.17 ppm 

for 22; 3.45 and 1.29 ppm for 23; 3.38 and 1.24 ppm for 24. The doublet signals due to the 

resonance of the methine protons (5.49 ppm for 22, 5.53 ppm for 23, and 5.48 ppm for 24) 

in the 1H NMR spectra of complexes 22−24 remained almost unaffected in comparison to 

the signals of the free ligand (5.45 ppm) after complex formation with the metals.  

 

Scheme 3.3. Synthesis of alkaline-earth metal complexes 22, 23 and 24. 

The coupling between the phosphorus and the methane proton is also evident from their 

respective coupling constants (23.3 Hz for 22, 24.5 Hz for 23, and 22.3 Hz for 24), which 

are within the range reported in the literature.37 The resonances of the three protons 

attached to the boron atom appeared as a broad signal (1.62 ppm for 22, 1.63 ppm for 23, 

and 1.72 ppm for 24) in the 1H NMR spectra. In the proton-decoupled 31P{1H} NMR 

spectra, complexes 22−24 show only one doublet signal at 46.9 ppm for 22, 46.3 ppm for 

23, and 46.9 ppm for 24, respectively, and these values are shifted significantly to high 

field in comparison to the value for compound 17 (56.8 ppm) upon the coordination of 

calcium, strontium, or barium atoms to the amidophosphine−borane ligand. The 

phosphorus atoms present in the two {Ph2P(BH3)N(CHPh2)}
− moieties are chemically 

equivalent. Although there has been ongoing interest in alkaline-earth organometallics 38a 

and particularly in the cyclopentadienyl chemistry of these elements,38b complexes 22−24 
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represent, to the best of our knowledge, the first amidophosphine−borane alkaline-earth 

metal complexes containing three hetero atoms, N, P, and B, adjacent to each other in the 

ligand. Therefore, their molecular structures in the solid state were determined by X-ray 

diffraction analysis. The calcium and strontium complexes 22 and 23 crystallize in the 

triclinic space group P-1 and have one molecule of either 22 or 23 and two THF molecules 

as solvent in the unit cell. The details of the structural parameters are given in the Table 

3.2 & 3.3 respectively. The solid-state structures of complexes 28 and 29 are shown in 

Figures 3.5 and 3.6, respectively.  

 

Figure 3.5. Solid state structure of complex 22. Hydrogen atoms (except H1a, H1b, H3 

and H1ai, H1bi, H3i) are omitted for clarity. Selected bond lengths (Å) and bond angles (º): 

P1−N1 1.6217(14), P1−B1 1.921(2), P1−Ca1 3.2308(4), N1−Ca1 2.4534(14), B1−Ca1  

2.850(2), Ca1−O1 2.5111(12), Ca1−H1a 2.4961, Ca1−H1b 2.4651, B1−H3 1.0598, 

B1−H1b 1.1340, B1−H1a 1.1547; O1−Ca1−O1i 180.0, N1−Ca1−B1 65.15(5), 

N1−Ca1−P1 29.28(3), P1−Ca1−B1 36.15(4), N1−P1−B1 108.18(8), H1a−B1-H1b 105.3, 

N1−Ca1−H1a 74.4, N1−Ca1−H1b 77.3, P1−Ca1−H1a 50.0, P1−Ca1−H1b 49.2, 

B1−Ca1−H1a 23.8, B1−Ca1−H1b 23.2, H1b−Ca1−H1b  43.0, P1−Ca1−P1i 180.000(14), 

N1−Ca1−N1i 180.0, B1−Ca1−B1i 180.000(1). 

Complexes 22 and 23 are isostructural with each other, due to the similar ionic radii for the 

metal ions (1.00 and 1.18 Å) for a coordination number of 6.39 In the centrosymmetric 

molecule 22, the metal coordination polyhedron is formed by two monoanionic 
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{Ph2P(BH3)N(CHPh2)}
− ligand moieties and two THF molecules, which are trans to each 

other. Each of the {Ph2P(BH3)N(CHPh2)}
− ligands coordinates to the calcium atom via the 

chelation of one of the amido nitrogen atoms and the BH3 group. The P−Ca distance of 

3.2308(4) Å in 22 is significantly larger than the sum of the covalent radii (3.07 Å) of 

phosphorus and calcium, which indicates that there is no interaction between these two 

atoms. The borane (BH3) group coordinates through the hydrogen atoms in a η2 fashion 

and has a Ca1−B1 bond length of 2.850(2) Å. Thus, the {Ph2P(BH3)N(CHPh2)}
−  group 

can be considered a pseudo-bidentate ligand. The Ca1−B1 distance is slightly longer than 

the 2.751(2) Å distance reported for [[(Me3Si)2{Me2(BH3)P}C]2Ca(THF)4].
40 The central 

atom, calcium, adopts a distorted-octahedral geometry due to the coordination of two 

{Ph2P(BH3)N(CHPh2)}
−  moieties and two THF molecules. The N1, P1, B1, and Ca1 atoms 

are not coplanar; rather, a dihedral angle of 10.11° is observed between the planes 

containing the P1, N1, and Ca1 atoms and the P1, B1, and Ca1 atoms. The Ca1−N1 distance 

of 2.4534(14) Å is slightly elongated in comparison with the calcium−nitrogen covalent 

bond distances (2.361(2) and 2.335(2) Å) reported for [Ca(Dipp2DAD)(THF)4] 

(Dipp2DAD = N,N′-bis(2,6-diisopropylphenyl)-1,4-diaza-1,3-butadiene) in the literature19 

but is close to the corresponding distance (2.479(5) Å) of our recently reported complex 

[Ca(THF)2{Ph2P(Se)N(CHPh2)}2] using the analogous phosphine selenoicamido ligand 

(See Chapter 2). It is noteworthy that the P1−B1 distance (1.921(2) Å) remains almost 

unperturbed in comparison to that of the ligand 17 (1.918(6) Å), even after the coordination 

of the BH3 group to the calcium center. 

In compound 23, the strontium atom is hexa-coordinated by two borane groups, two amido 

nitrogen atoms of two 17 ligands, and two coordinating THF molecules. The solvated THF 

molecules are trans to each other, and the strontium atom adopts a distorted-octahedral 

geometry. 
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Figure 3.6. Solid state structure of complex 23. Hydrogen atoms (except H1, H2, H3 and 

H1i, H2i, H3i) are omitted for clarity. Selected bond lengths (Å) and bond angles (º): P1−N1 

1.623(5), P1−B1 1.915(7), P1−Sr1 3.3849(13), N1−Sr1 2.591(4), B1−Sr1 2.995(6), 

Sr1−O1 2.626(4), Sr1−H1 2.70(6), Sr1−H2 2.60(7), B1−H1 1.11(6), B1−H2 1.12(7), 

B1−H3 1.14(7); O1−Sr1−O1i 180.0, N1−Sr1−B1 61.60(16), N1−Sr1−P1 27.65(10), 

P1−Sr1−B1 34.24(13), N1−P1−B1 108.8(3), H1−B1−H2 104(4), H1−B1−H3 111(5), 

H2−B1−H3 110(5), B1−Sr1−H1 21.6(13), B1−Sr1−H2 21.5(15), P1−Sr1−H1 49.2(12), 

P1−Sr1−H2 45.2(14), N1−Sr1−H1 73.1(12), N1−Sr1−H2 71.7(14), P1−Sr1−P1i 180.00(5), 

N1−Sr1−N1i 180.0, B1−Sr1−B1i 180.0(2). 

In comparison to the P−Ca distance (3.2308(4) Å) in compound 22, the considerably 

elongated P−Sr distance of 3.385(2) Å, which is also longer than the sum of the covalent 

radii (3.25 Å) of the phosphorus and strontium atoms, indicates no interaction between the 

phosphorus and the metal atom. A dihedral angle of 10.65° is observed between the planes 

formed by the P1, B1, and Sr1 and the P1, N1, and Sr1 atoms, which indicates a slight 

deviation from coplanarity by the P1, B1, N1, and Sr1 atoms. The strontium−nitrogen bond 

distance (2.591(14) Å) corresponds well with the distances (2.6512(2) and 2.669(2) Å) in 

our previously reported strontium complex [(ImpDipp)2Sr(THF)3] (ImpDipp = 2,6-

iPr2C6H3N=CHC4H3N).18d The borane (BH3) group is coordinated through the hydrogen 

atoms in a η2 fashion and has a Sr1−B1 bond length of 2.995(6) Å, which is longer than in 

the calcium complex (2.850(2) Å) due to the greater ionic radius of strontium in 
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comparison to calcium. However, the Sr1−B1 distance (2.995(6) Å) is slightly longer than 

the reported values [2.893(4) and 2.873(4) Å] observed for 

[[(Me3Si)2{Me2(BH3)P}C]2Sr(THF)5].
40 

In accordance with complexes 22 and 23, the barium amidophosphine−borane complex 24 

also crystallizes in the triclinic space group P-1 having one molecule of 24 and two THF 

molecules in the unit cell. The details of the structural parameters are given in the Table 

3.3. The solid-state structure of complex 24 is given in Figure 3.7.  

 

Figure 3.7. Solid state structure of complex 24. Hydrogen atoms (except H1a, H1b, H1c 

and H1ai, H1bi, H1ci) are omitted for clarity. Selected bond lengths (Å) and bond angles 

(º): P1−N1 1.617(6), P1−B1 1.927(8), P1−Ba1 3.5273(18), N1−Ba1 2.733(6), B1−Ba1 

3.159(9), Ba1−O1 2.790(5), Ba1−H1b 1.77(7), B1−H1a 1.21(7), B1−H1b 1.13(8), 

B1−H1c 1.19(10); O1−Ba1−O1i 180.0, N1−Ba1−B1 58.78(19), N1−Ba1−P1 26.22(12), 

P1−Ba1−B1 32.92(15), N1−P1−B1 110.4(3), P1−B1−Ba1 84.1(3), P1−B1−H1a 113(3), 

P1−B1−H1b 107(4), N1−Ba1−H1b 70.3(15), H1a)−B1−H1c 105(6), H1b−B1−H1c 

115(6), P1−Ba1−P1i 180.0, N1−Ba1−N1i 180.0, B1−Ba1−B1i 179.999(1). 

Similar to the calcium and strontium complexes, the coordination polyhedron of the barium 

complex 24 is formed by two {Ph2P(BH3)N(CHPh2)}
− ligands and two trans THF 

molecules. As expected because of the larger atomic radius of Ba(II)41,42 the Ba1−N1 

(2.733(6) Å), Ba1−O1 (2.790(5) Å), and Ba1−P1 (3.527 (2) Å) distances are elongated in 

comparison with the corresponding values determined for the Ca2+ and Sr2+ complexes 22 
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and 23, respectively. The considerably elongated P−Ba distance of 3.527(2) Å in 24, which 

is greater than the sum of the covalent radii of barium and phosphorus (3.34 Å), indicates 

that barium and phosphorus have no interaction between themselves. Thus, the central 

atom barium adopts a distorted-pseudo-octahedral geometry due to the ligation from two 

17 moieties and two THF molecules. This high distortion can be mainly attributed to the 

coordination of adjacent atoms present in the ligand and is indicated by the large 

N1−Ba1−B1 angle of 58.78(19)°. The borane (BH3) group is coordinated through the 

hydrogen atoms in a η1 fashion and has a Ba1−B1 bond length of 3.159(9) Å. In complex 

24, a dihedral angle of 12.24° is observed between the planes containing P1, B1, and Ba1 

and P1, N1, and Ba1 atoms, which indicates a slight deviation from planarity by the P1, 

N1, B1, and Ba1 atoms. The slight increase in the dihedral angle (12.24°) for 24 in 

comparison to 22 (10.11°) and 23 (10.65°) can be attributed to the larger ionic radius of 

barium in comparison to the calcium and the strontium atoms. The Ba1−N1 distance of 

2.733(6) Å is similar to the barium−nitrogen covalent bond lengths of 2.720(4) and 

2.706(4) Å reported for [Ba((Dipp)2DAD)(μ-I)(THF)2]2 (Dipp2DAD = bis(2,6-

diisopropylphenyl)-1,4-diaza-1,3-butadiene) in the literature19 and is also similar to that 

(2.776(6) Å) of our recently described complex [Ba(THF)2{Ph2P(Se)N(CHPh2)}2] using 

the analogous phosphine selenoicamido ligand.(see Chapter 2) It is noteworthy that the 

P1−B1 distance (1.927(8) Å) remains almost unperturbed in comparison to that of the 

ligand 17 (1.918(6) Å) even after the coordination of the BH3 group to the barium center. 

The Ba1−B1 bond length of 3.159(9) Å is the longest among the metal−B distances of 

19−24 due to barium having the largest ionic radius among Ca, Sr, and Ba. However, the 

Ba1−B1 distance (3.159(9) Å) is similar to the reported values (3.027(8) and 3.023(8) Å) 

observed for [[(Me3Si)2{Me2(BH3)P}C]2Ba(THF)5].
40 

3.5 Conclusion 
  

We have successfully synthesized and characterized the novel amidophosphine-borane 

ligands by using single crystal X-ray diffraction analysis and spectroscopic/analytical 

techniques and we have successfully introduced these borane ligands into the alkali metals 

as well as to the heavier alkaline-earth metal coordination sphere by synthesizing various 

alkali and alkaline-earth metal complexes using diphenylphosphinoamido borane ligand 
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17.  The strong electron-donating capacity of the N, P, and BH3 moieties effectively 

stabilizes the unusual three-membered or four-membered metallacycles. The alkaline-earth 

metal complexes obtained by amidophsphino-borane ligand are useful as good reducing 

agent.  

3.6 Experimental Procedures  
 

3.6.1.  General 

 

All manipulations of air-sensitive materials were performed with the rigorous exclusion of 

oxygen and moisture in flame-dried Schlenk-type glassware either on a dual manifold 

Schlenk line, interfaced to a high vacuum (10-4 torr) line, or in an argon-filled M. Braun 

glove box. THF was pre-dried over Na wire and distilled under nitrogen from sodium and 

benzophenone ketyl prior to use. Hydrocarbon solvents (toluene and n-pentane) were 

distilled under nitrogen from LiAlH4 and stored in the glove box. 1H NMR (400 MHz), 

13C{1H} and 31P{1H} NMR (161.9 MHz) spectra were recorded on a BRUKER AVANCE 

III-400 spectrometer. BRUKER ALPHA FT-IR was used for FT-IR measurement. 

Elemental analyses were performed on a BRUKER EURO EA at the Indian Institute of 

Technology Hyderabad. The aminophosphines [Ph2PNH(CHPh2)] (1), [Ph2PNH(CPh3)] 

(2) were prepared as described in the Chapter 1 and [M{N(SiMe3)2}2(THF)n] (M = Ca, Sr 

and Ba) and LiCH2SiMe3 were synthesized according to the literature procedure.43,44 The 

starting materials chlorodiphenylphosphine, benzdihydrylamine, triphenylmethylamine, 

borane-dimethylsulfide, sodium/potassium bis(trimethyl)-silylamides and metal diiodides 

MI2 (M =  Ca, Sr and Ba)  were purchased from Sigma Aldrich and used without further 

purification. The NMR solvent C6D6 and CDCl3 were purchased from sigma Aldrich. 

3.6.2. Synthesis of [Ph2P(BH3)NH(CHPh2)] (17) 

  

In a pre-dried schlenk flask 1.0 g (2.72 mmol) of N-benzhydryl 1,1diphenylphosphinamine 

(1) in 10 ml toluene was taken and to this borane-dimethylsulfide (0.26 ml, 2.72 mmol) in 

5 ml of toluene was added drop wise under the stirring at room temperature. Stirring 

continued for 12 h. White precipitate was formed, and it was filtered through G4-frit and 

dried in vacuo. Pure compound was obtained after washing with n-pentane. (Yield: 1.20 g, 
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(100%). The title compound Ph2P(BH3)NHCHPh2 (17) is soluble in CDCl3, CH2Cl2, THF 

and hot toluene. The compound 17 was re-crystallized from hot toluene. 1H NMR (400 

MHz, CDCl3):  7.44-7.49 (m, 4H, ArH), 7.34-7.38 (m, 2H, ArH), 7.24-7.28 (m, 4H, ArH), 

7.05-7.19 (m, 10H, ArH), 5.45 (d, 1H, J = 9.4 Hz, CH), 2.83 (br, 1H, NH), 1.17 (br, 3H, 

BH3) ppm. 13C{1H} NMR (100 MHz, CDCl3):  143.5 (ArC),143.4 (ArC), 132.1 (P 

attached ArC), 131.9 (P attached ArC), 131.2 (P attached o-ArC), 131.1 (P attached o-

ArC), 128.5 (P attached p-ArC), 128.4 (P attached m-ArC), 128.3 (m-ArC), 127.3 (o-ArC), 

127.1 (p-ArC), 60.8 (CH) ppm. 31P{1H}NMR (161.9 MHz, CDCl3):  56.8 (d, J = 85.8 Hz) 

ppm. 11B{1H} NMR (128.4 MHz, CDCl3):  = -38.1 (br) ppm. FT-IR (selected 

frequencies):  = 3338 (N-H), 1434 (P-C), 999 (P-N), 2383 (B-H), 602 (P-B) cm-1. 

Elemental analysis: C25H25BNP (381.24): Calcd. (%) C 78.76, H 6.61, N 3.67; Found C 

78.30, H 6.38, N 3.22. 

3.6.3. Synthesis of [Ph2P(BH3)NHCPh3] (18) 

  

Same as above for 17. Yield is 1.2 gm, (90%). 1H NMR (400 MHz, CDCl3):  7.43–7.48 

(m, 4H, ArH), 7.29–7.33 (m, 2H, ArH), 7.20–7.25 (m, 4H, ArH), 7.16–7.19 (m, 6H, ArH), 

7.08–7.11 (m, 9H, ArH), 3.45 (s, 1H, NH), 0.68 (br, 3H, BH3) ppm. 13C{1H} NMR (100 

MHz, CDCl3):  145.5 (ArC),145.4 (ArC), 134.3 (P-ArC), 133.7 (P-ArC), 131.9 (P 

attached o-ArC), 131.8 (P attached o-ArC), 130.8 (P attached p-ArC), 130.7 (P attached p-

ArC), 129.5 (o-ArC), 128.4(P attached m-ArC), 128.3 (P attached m-ArC), 127.8 (m-ArC), 

127.2 (p-ArC), 71.8 (CH) ppm. 31P{1H}NMR (161.9 MHz, CDCl3):  53.3 (br, s) ppm. 

11B{1H} NMR (128.4 MHz, CDCl3):  - 36.0 (br) ppm. FT-IR (selected frequencies):  = 

3212 (N–H), 1436 (P–C), 999 (P–N), 2386 (B–H), 609 (P–B) cm-1. Elemental analysis: 

C31H29BNP (457.33): Calcd (%) C 81.41, H 6.39, N 3.06; Found C 80.97, H 6.13, N 2.82. 

3.6.4. Synthesis of [(η2-Ph2CHNP(BH3)Ph2)Li(THF)2] (19) 

 

In a 10 ml sample vial 1 equiv (100 mg, 0.264 mmol) of ligand 17 and 1 equiv of 

LiCH2SiMe3 (25.0 mg, 0.264 mmol) were mixed together with a small amount of THF (2 

ml). After 6 h of stirring, a small amount of n-pentane (2 ml) was added to the solution, 

and it was stored at −40 °C. After 12 h, colorless crystals of 19 were obtained. Yield: 120 
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mg (85%). 1H NMR (400 MHz, C6D6): δ 7.53−7.58 (m, 4H, ArH), 7.06−7.10 (m, 4H, ArH), 

6.81−6.90 (m, 12H, ArH), 5.41 (d, JH-P = 21.5 Hz, 1H, CH), 1.45 (br, 3H, BH3), 3.32 (br, 

THF), 1.17 (br, THF) ppm. 13C{1H} NMR (100 MHz, C6D6): δ 146.8 (ArC), 146.7 (ArC), 

135.7 (P attached ArC), 135.2 (P attached ArC), 132.9 (P attached o-ArC), 129.8 (P 

attached p-ArC), 129.1 (P attached m-ArC), 128.5 (m- ArC), 127.8 (o-ArC), 126.5 (p-ArC), 

68.4 (THF), 66.1 (CH), 25.7 (THF) ppm. 31P{1H} NMR (161.9 MHz, C6D6): δ 71.1 (d) 

ppm. 11B{1H} NMR (128.4 MHz, C6D6): δ − 36.06 (d) ppm. FT-IR (selected frequencies): 

ν = 3373 (N−H), 2382 (B−H), 1447 (P−C), 931 (P−N), 617 (P−B) cm−1. Elemental 

analysis: C33H40BLiNO2P (531.40): Calcd. C 74.59, H 7.59, N 2.64, Found: C 74.19, H 

7.44, N 2.43.  

3.6.5. Synthesis of [{(η3-Ph2CHNP(BH3)Ph2)Na(THF)2}2] (20) 

 

In a 10 ml sample vial, 50 mg (0.132 mmol) of ligand 17 and 24.2 mg (0.132 mmol) of 

sodium bis(trimethylsilyl)amide were mixed together with a small amount of THF (2 ml), 

and the mixture was then stirred for 6 h. A small amount of n-pentane (2 ml) was added on 

top of the solution, and it was stored at −40 °C. After 24 h, colorless crystals of 20 were 

obtained. Yield: 65 mg (90%). 1H NMR (400 MHz, C6D6): δ 7.65−7.70 (m, 4H, ArH), 

7.21−7.23 (d, 4H, ArH), 6.95−7.00 (m, 12H, ArH), 5.46 (d, 1H, JH-P = 25.0 Hz, CH), 3.35 

(br, THF), 0.94−1.49 (m, 3H, BH3), 1.22 (br, THF) ppm. 13C{1H} NMR (100 MHz, C6D6): 

δ 148.3 (ArC), 148.2 (ArC), 136.7 (P attached ArC), 136.3 (P attached ArC), 130.1 (P 

attached o-ArC), 126.5 (P attached p-ArC), 125.9 (P attached m-ArC), 125.3 (m-ArC), 

125.1 (o-ArC), 123.2 (p-ArC), 65.4 (THF), 62.8 (CH), 22.9 (THF) ppm. 31P{1H} NMR 

(161.9 MHz, C6D6): δ 46.2 (d, JP-B = 135.9 Hz) ppm. 11B{1H} NMR (128.4 MHz, C6D6): 

δ − 34.2 (d) ppm. FT-IR (selected frequencies): ν = 3330 (N−H), 2379 (B−H), 1440 (P−C), 

929 (P−N), 610 (P−B) cm−1. Elemental analysis: C66H80B2N2Na2O4P2 (1094.86): Calcd. C 

72.40, H 7.36, N 2.56, Found: C 71.98, H 7.05, N 2.43. 

3.6.6. Synthesis of [{(η3-Ph2CHNP(BH3)Ph2)K(THF)2}2] (21) 

 

In a 10 ml sample vial, 1 equiv of ligand 17 (50 mg, 0.132 mmol) and 1 equiv of potassium 

bis(trimethylsilyl)amide (26.2 mg, 0.132 mmol) were mixed together with a small amount 

of THF (2 ml). After 6 h, a small amount of n-pentane (2 ml) was added to the solution, 
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and it was stored at −40 °C. After 24 h, colorless crystals of 21 were obtained. Yield: 66.9 

mg (90%). 1H NMR (400 MHz, C6D6): δ 7.58 (m, 6H, ArH), 6.96−7.01 (m, 14H, ArH), 

5.73 (d, JH-P = 21.5 Hz, 1H, CH), 3.55 (br, THF), 1.42 (br, THF), 1.82 (br m, 3H, BH3) 

ppm. 13C{1H} NMR (100 MHz, C6D6): δ 146.4 (ArC), 144.3 (ArC), 132.3 (P-ArC), 132.2 

(P-ArC), 130.7 (P attached o-ArC), 128.4 (P attached p-ArC), 128.3 (P attached m-ArC), 

128.2 (m-ArC), 127.9 (o-ArC), 127.2 (p-ArC), 67.6 (THF), 59.9 (CH) 25.6 (THF) ppm. 

31P{1H} NMR (161.9 MHz, C6D6): δ 73.2 ppm. 11B{1H} NMR (128.4 MHz, C6D6): δ −37.4 

(d) ppm. FT-IR (selected frequencies): ν = 3328 (N−H), 2380 (B−H), 1435 (P−C), 999 

(P−N), 607 (P−B) cm−1. Elemental analysis: C66H80B2K2N2O4P2 (1126): Calcd. C 70.33, 

H 7.15, N 2.49. Found: C 70.03, H 6.89, N 2.21. 

3.6.7. Synthesis of [M(THF)2{Ph2P(BH3)N(CHPh2)}2] (M = Ca (22), Sr (23) and Ba (24)) 

 

Complex 22: Route 1: In a 10 ml sample vial, 2 equiv of ligand 17 (100 mg, 0.264 mmol) 

and 1 equiv of [Ca(N(SiMe3)2(THF)2] (40.4 mg, 0.132 mmol) were mixed together with a 

small amount of THF (2 ml). After 12 h, a small amount of n-pentane (2 m) was added, 

and it was stored in a −40 °C freezer. After 24 h, colorless crystals of 22 were obtained. 

Yield: 123 mg (86%).  

Route 2. In a 25 ml predried Schlenk flask, a potassium salt of ligand 17 (200 mg, 0.32 

mmol) was mixed with CaI2 (46.8 mg, 0.16 mmol) in 10 ml of THF solvent at ambient 

temperature, and the solution was continuously stirred for 12 h. The white precipitate of 

KI was filtered off, and the filtrate was dried in vacuo. The resulting white compound was 

further purified by washing it with n-pentane, and crystals suitable for X-ray analysis were 

grown from a THF and n-pentane solvent mixture (1:2) at −40 °C. Yield: 160 mg (92%). 

1H NMR (400 MHz, C6D6): δ 7.60−7.65 (m, 4H, ArH), 7.35−7.37 (d, 4H, ArH), 6.80−6.98 

(m, 12H, ArH), 5.49 (d, 1H, JH-P = 23.3 Hz, CH), 1.62 (br, 3H, BH3), 3.32 (br, THF), 1.17 

(br, THF) ppm. 13C{1H} NMR (100 MHz, C6D6): δ 148.7 (ArC), 148.6 (ArC), 136.3 (P 

attached ArC), 135.8 (P attached ArC), 132.9 (P attached o-ArC), 132.8 (P attached o-

ArC), 129.8 (P attached p-ArC), 128.5 (P attached m-ArC), 128.2 (m-ArC), 127.9 (o-ArC), 

125.9 (p-ArC), 68.2 (THF) 66.1 (CH), 25.3 (THF) ppm. 31P{1H} NMR (161.9 MHz, C6D6): 

δ 46.9 (d, JP-B = 121.4 Hz) ppm. 11B{1H} NMR (128.4 MHz, C6D6): δ −31.8 (d) ppm. FT-

IR (selected frequencies): ν = 3373 (N−H), 1443 (P−C), 972 (P−N), 2380 (B−H), 610 
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(P−B) cm−1. Elemental analysis: C66H80B2CaN2O4P2 (1088.96): Calcd. C 72.79, H 7.40, N 

2.57. Found: C72.57, H 7.24, N 2.21. 

Complex 23: In a 10 ml sample vial, 2 equiv of ligand 17 (100 mg, 0.264 mmol) and 1 

equiv of [Sr(N(SiMe3)2(THF)2] (53.9 mg, 0.132 mmol) were mixed together with a small 

amount of THF (2 ml). After 12 h, a small amount of n-pentane (2 ml) was added to it, and 

it was stored in a −40 °C freezer. After 24 h, colorless crystals of 23 were obtained. Yield: 

136 mg (91%). 1H NMR (400 MHz, C6D6): δ 7.63−7.68 (m, 4H, ArH), 7.24−7.26 (d, 4H, 

ArH), 6.82−6.96 (m, 12H, ArH), 5.53 (d, 1H, JH-P = 24.5 CH), 1.63 (br, 3H, BH3), 3.45 

(br, THF), 1.29 (br, THF) ppm. 13C{1H} NMR (100 MHz, C6D6): δ 144.1 (ArC), 144.0 

(ArC), 133.1 (P-ArC), 133.0 (P-ArC), 132.5 (P attached o-ArC), 132.3 (P attached o-ArC), 

131.1 (P attached p-ArC), 131.0 (P attached p-ArC), 128.6 (P attached m-ArC), 128.3 (m-

ArC), 128.0 (o-ArC), 127.2 (p-ArC), 68.4 (THF) 61.1 (CH), 25.7 (THF) ppm. 31P{1H} 

NMR (161.9 MHz, C6D6): δ 46.3 ppm. 11B{1H} NMR (128.4 MHz, C6D6): δ − 31.7 (d) 

ppm. FT-IR (selected frequencies): ν = 3376 (N−H), 1444 (P−C), 930 (P−N), 2380 (B−H), 

610 (P−B) cm−1. Elemental analysis: C66H80B2N2O4P2Sr (1136.50):  Calcd. C 69.75, H 

7.09, N 2.46. Found: C 69.35, H 6.86, N 2.32. 

Complex 24: In a 10 ml sample vial, 2 equiv of ligand 17 (100 mg, 0.264 mmol) and 1 

equiv of [Ba{N(SiMe3)2}(THF)2] (79.5 mg, 0.132 mmol) were mixed together with a small 

amount of THF (2 ml). After 12 h of stirring, a small amount of n-pentane (2 ml) was added 

to the reaction mixture, and it was stored in a −40 °C freezer. After 24 h, colorless crystals 

of 24 were obtained. Yield: 147 mg (94%). 1H NMR (400 MHz, C6D6): δ 7.58−7.63 (m, 

4H, ArH), 7.25−7.26 (d, 4H, ArH), 7.02−7.06 (m, 12H, ArH), 5.48 (d, 1H, JH-P = 22.3 Hz, 

CH), 1.72 (br, 3H, BH3), 3.38 (br, THF), 1.24 (br, THF) ppm. 13C{1H} NMR (100 MHz, 

C6D6): δ 148.7 (ArC), 134.5 (P attached ArC), 132.8 (P attached o-ArC), 132.6 (P attached 

o-ArC), 129.4 (P attached p-ArC), 128.9 (P attached m-ArC), 128.1 (m-ArC), 127.6 (o-

ArC), 126.1 (p-ArC), 68.2 (THF) 66.5 (CH), 25.3 (THF) ppm. 31P{1H} NMR (161.9 MHz, 

C6D6): δ 46.9 ppm. 11B{1H} NMR (128.4 MHz, C6D6): δ − 30.9 (d) ppm. FT-IR (selected 

frequencies): ν = 3328 (N−H), 1449 (P−C), 929 (P−N), 2378 (B−H), 603 (P−B) cm−1. 

Elemental analysis: C66H80B2BaN2O4P2 (1186.22):  Calcd. C 66.82, H 6.80, N 2.36. Found: 

C 66.44, H 6.33, N 2.09. 
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3.7 X-ray Crystallographic Studies 
  

In each case a crystal of suitable dimensions was mounted on a CryoLoop (Hampton 

Research Corp.) with a layer of light mineral oil and placed in a nitrogen stream at 150(2) 

K. All measurements were made on an Agilent Supernova X-calibur Eos CCD detector 

with graphite monochromatic Cu-K (1.54184 Å) or Mo-Kα (0.71069 Å) radiation. 

Crystal data and structure refinement parameters are summarized in Table 3.1-3.3. The 

structures were solved by direct methods (SIR92)45 and refined on F2 by full-matrix least-

squares methods; using SHELXL-97.46 Non-hydrogen atoms were anisotropically refined. 

H-atoms were included in the refinement on calculated positions riding on their carrier 

atoms. The function minimized was [w(Fo2- Fc2)2] (w = 1 / [2 (Fo
2) + (aP)2 + bP]), 

where P = (Max(Fo
2,0) + 2Fc2) / 3 with 2(Fo

2) from counting statistics.  The function R1 

and wR2 were (||Fo| - |Fc||) / |Fo| and [w(Fo
2 - Fc

2)2 / (wFo4)]1/2, respectively.  The 

Diamond-3 program was used to draw the molecule. Crystallographic data (excluding 

structure factors) for the structures described in this chapter have been deposited with the 

Cambridge Crystallographic Data Centre as a supplementary publication no. CCDC 

923124 (17), 927524 (18), 923127 (19), 923125 (20), 923129 (21), 923123 (22), 923126 

(23), 923128 (24). 
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3.8 Tables 

Table 3.1. Crystallographic data of compounds 17, 18 and 19 

 

Crystal 17 18 19 

CCDC No. 923124 927524 923127 

Empirical formula C25H25BNP  C31H29BNP C33H40BLiNO2P  

Formula weight                      381.24 457.33 531.38 

T (K)                           150(2)  293(2) 150(2)  

λ (Å)                         1.54184                  1.54184 1.54184 

Crystal system  Triclinic,   Monoclinic   Monoclinic   

Space group        P-1 P 21/c P 21/c 

a  (Å)     9.1468(10) 14.0654(9) 15.4438(5) 

b  (Å)        10.0257(19) 14.3444(7) 13.1276(8) 

c  (Å)     12.941(2) 13.8285(8) 19.1155(11) 

 73.657(16) 90 90 

 71.578(14)  114.495(7) 127.859(3) 

 82.298(13) 90 90 

V  ( Å3)                        1079.1(3) 2538.9(3) 3059.8(3) 

Z  2  4   4 

Dcalc g cm-3 1.173 1.196 1.154 

µ (mm-1) 1.178  1.087 1.007 

F (000)                             404 968 1136 

Theta range for data 

collection    

3.72 to 70.80  deg. 3.45 to 49.99 deg. 3.62 to 70.95 deg. 

 

Limiting indices                   -7<=h<=11,  

-12<=k<=11, 

 -13<=l<=15 

-13<=h<=11,  

-14<=k<=9,  

-13<=l<=13 

-17<=h<=18,  

-14<=k<=16,  

-23<=l<=16 

Reflections collected / 

unique     

7294 / 4027  

[R(int) = 0.0423] 

6688 / 2603  

[R(int) = 0.0283] 

13134 / 5780 

[R(int) =  0.0287] 

Completeness to theta 

= 71.25      

97.1 % 100.0% 98.1 % 

Absorption correction              Multi-scan Multi-scan Multi-scan 

Max. and min. 

transmission         

0.850 and 0.795 1.000 and 0.750 0.855 and 0.790 

Refinement method                  Full-matrix  

least-squares on F2 

Full-matrix 

least-squares on F2 

Full-matrix  

least-squares on F2 

Data / restraints / 

parameters     

4027 / 0 / 265 2603 / 0 / 323 5780 / 0 / 364 

Goodness-of-fit on F2             1.092 2.318 1.035 

Final R indices 

[I>2sigma(I)]      

R1 a  = 0.0800,  

wR2 b  = 0.2450 

R1 a  = 0.1530,  

wR2 b  = 0.4625 

R1 =  0.0426, 

wR2 =  0.1115 

R indices (all data)               R1 a  = 0.1117,  

wR2 b  = 0.2652 

R1 a  = 0.1578,  

wR2 b  = 0.4685 

R1 =  0.0500, 

wR2 =  0.1190 

Largest diff. peak and 

hole        

0.956 and -0.341 

e.A-3 

3.348 and -0.622   

e.A-3  

0.411 and -0.245 

e.A-3 
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Table 3.2. Crystallographic data of compounds 20, 21 and 22 

 

Crystal 20 21 22 

CCDC No. 923125 923129 923123 

Empirical formula C66H80B2N2Na2O4P2  C66H80B2K2N2O4P2  C66H80B2CaN2O4P2  

Formula weight                     1094.86 1127.08 1088.96 

T (K)                           150(2) K 150(2) K 150(2)  

λ (Å)                         1.54184  1.54184 1.54184  

Crystal system  Triclinic Triclinic Triclinic  

Space group        P-1 P-1 P -1 

a  (Å)     10.1516(10) 10.1635(10) 10.3720(4) 

b  (Å)        12.2992(12) 12.5894(13) 10.7801(5) 

c  (Å)     13.0193(13) 13.2261(12) 14.3830(6) 

 76.553(9) 76.773(8) 100.239(4) 

 77.197(9) 75.288(8) 102.076(4) 

 86.976(8) 85.431(8) 101.623(4) 

V  ( Å3)                        1541.7(3) 1593.0(3) 1499.20(11) 

Z  1 1 1   

Dcalc g cm-3 1.179 1.175 1.206 

µ (mm-1) 1.146 2.146 1.780 

F (000)                             584 600 582 

Theta range for data 

collection    

3.57 to 70.82 deg. 3.54 to 69.97 deg. 3.23 to 70.73 deg. 

Limiting indices                   -11<=h<=12, 

-14<=k<=14, 

-11<=l<=15 

-12<=h<=9, 

-15<=k<=11, 

-16<=l<=16 

-12<=h<=11,  

-13<=k<=12,  

-17<=l<=17 

Reflections collected / 

unique     

10676 / 5798 

[R(int) =  0.0350] 

11636 / 5952 

[R(int) =  0.0418] 

10728 / 5632 

[R(int) =  0.0266] 

Completeness to theta 

= 71.25      

97.6 % 98.4 % 97.9 % 

Absorption correction              Multi-scan Multi-scan  Multi-scan 

Max. and min. 

transmission         

0.846 and 0.811 0.715 and 0.598 0.741 and 0.641 

Refinement method                  Full-matrix least-

squares on F2 

Full-matrix  

least-squares on F2 

Full-matrix  

least-squares on F2 

Data / restraints / 

parameters     

5798 / 0 / 372 5952 / 0 / 374 5632 / 0 / 349 

Goodness-of-fit on F2             1.046 1.050 1.046 

Final R indices 

[I>2sigma(I)]      

R1 =   0.0557, 

wR2 =    0.1446 

R1 =  0.0769, 

wR2 =  0.2055 

R1  =  0.0443,  

wR2 =  0.1210 

R indices (all data)               R1 =   0.0689, 

wR2 =    0.1562 

R1 =  0.0908, 

wR2 =  0.2253 

R1 =  0.0480,  

wR2   =  0.1244 

Largest diff. peak and 

hole        

0.380 and -0.442 

e.A-3  

0.801 and -0.596 

e.A-3 

0.415 and -0.399  

e.A-3 
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Table 3.3. Crystallographic data of compounds 23 and 24 

 

Crystal 23 24 

CCDC No. 923126 923128 

Empirical formula C66H80B2N2O4P2Sr C66H78B2BaN2O4P2   

Formula weight                     1136.50 1186.22 

T (K)                           150(2)  150(2)  

λ (Å)                         0.71069  1.54184  

Crystal system  Triclinic   Triclinic 

Space group        P -1 P -1 

a  (Å)     10.2490(5) 10.1805(7) 

b  (Å)        10.6953(5) 10.6809(6) 

c  (Å)     14.7358(9) 15.0344(10) 

 98.806(4) 98.317(5)  

 102.559(5)  102.864(6) 

 102.225(4) 102.762(5) 

V  ( Å3)                        1506.93(14) 1521.75(17) 

Z  1   1  

Dcalc g cm-3 1.252 1.294 

µ (mm-1) 2.116 5.940 

F (000)                             600 618 

Theta range for data 

collection    

3.14 to 69.98 deg. 3.08 to 69.98 deg. 

Limiting indices                   -12<=h<=8,  

-13<=k<=12, 

 -16<=l<=18 

-12<=h<=11,  

-12<=k<=9,  

-18<=l<=18 

Reflections collected / 

unique     

10490 / 5496 

[R(int) =  0.0673] 

10422 / 5580 

[R(int) =  0.0661] 

Completeness to theta 

= 71.25      

96.2 % 96.7% 

Absorption correction              Multi-scan Multi-scan 

Max. and min. 

transmission         

0.725 and 0.540 0.395 and 0.287 

Refinement method                  Full-matrix  

least-squares on F2 

Full-matrix 

least-squares on F2 

Data / restraints / 

parameters     

5496 / 0 / 361 5580 / 0 / 361 

Goodness-of-fit on F2             1.053 1.059 

Final R indices 

[I>2sigma(I)]      

R1  =  0.0832,  

wR2   =  0.2065 

R1  =  0.0702,  

wR2  =  0.1878 

R indices (all data)               R1  =  0.0901,  

wR2  =  0.2092 

R1  =  0.0834,  

wR2   =  0.2054 

Largest diff. peak and 

hole        

2.432 and -0.61  

e.A-3 

3.290 and -1.480  

e.A-3 
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Chapter 4 
 

Bis(phosphinoselenoicamides) as versatile chelating ligands 

for alkaline earth metal (Mg, Ca, Sr and Ba) complexes: 

syntheses, structure and -caprolactone polymerization 

 

4.1 Introduction 
  

Aliphatic polyesters are currently considered as alternatives to synthetic petrochemical-

based polymers and are attractive to the researcher, since the starting materials for their 

synthesis can be obtained from annually renewable resources. Their biodegradable and 

biocompatible nature along with their mechanical and physical properties make them 

prospective thermoplastics with broad commercial applications (e.g., single-use packaging 

materials, medical sutures and drug delivery systems).1,2 It is well established that polymer 

properties are highly dependent on their intrinsic structural parameters, such as polymer 

composition, molecular weight, polydispersity, tacticity, and polymer chain ends.3,4 Ring-

opening polymerisation (ROP) of cyclic esters promoted, for example, by metal initiators, 

proved to be the most efficient manner for preparing polyesters with controlled molecular 

weight and microstructure and narrow molecular-weight distribution.5–7 This makes for the 

design and synthesis of new, well-defined, single-site catalysts that exhibit good activity, 

productivity and selectivity for cyclic ester polymerisation and allow crucial polymer 

architecture control. Group 2 metal complexes have attracted considerable attention as 

initiators for the ROP of cyclic esters, and some of them have demonstrated impressive 

results.8 Recently, we described the synthesis of alkaline-earth metal complexes with 

iminopyrrolyl and amidopyrrolyl ligands and they proved to be highly active for the ROP 

of ε-caprolactone, affording high-molecular-weight poly(ε-caprolactone)s.9 We have 

continuously studied the complexation reaction of amidophosphine-chalcogen–based 

ligands to alkaline-earth metal precursors; for example, synthesis of homoleptic alkaline-

earth metal complexes of composition [M(THF)2{Ph2P(Se)N(CHPh2)}2] (M = Ca, Sr, 
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Ba).(Chapter 2) We also described the amidophosphine-borane complexes of 

[M(THF)2{Ph2P(BH3)N(CHPh2)}2] (M = Ca (22), Sr (23), Ba (24)).(Chapter 3) All these 

ligands are monoanionic and form homoleptic mono-nuclear complexes. To explore the 

chemistry of heavier alkaline-earth metal and their application in -caprolactone 

polymerization, we focused on the dianionic system N,N'-(ethane-1,2-diyl)bis(P,P-

diphenylphos-phinoselenoicamide) [Ph2P(Se)NCH2CH2NP Ph2(Se)}]2- (25) which was 

recently prepared by Woollins et al.10 However, their detailed study of alkaline-earth metal 

chemistry has not been available so far. In this chapter, the synthetic and structural details 

of bis(phosphinoselenoicamide) alkaline-earth metal complexes with the compositions 

[(THF)3M{Ph2P(Se)NCH2CH2NPPh2(Se)}] [M = Ca (26), Sr (27), Ba (28) and Mg (29)] 

are presented. We also describe the ROP study of -caprolactone using complexes 26–28 

as catalysts. In addition, we described the synthesis and structure of the 

bis(amidophosphino borane) ligand [Ph2P(BH3)NHCH2CH2 NHPPh2(BH3)}] (30) and the 

corresponding dimeric barium complex [(THF)2Ba{Ph2P (BH3)NCH2CH2NPPh2(BH3)}]2 

(31). 

4.2 Results and Discussion  
 

4.2.1. Bis(phosphinoselenoicamide) ligand 

 

N,N'-(ethane-1,2-diyl)bis(P,P'-diphenylphos-phinoselenoicamide) was prepared according 

to the method prescribed by Woollins et al. by the reaction of 

bis(diphenylphosphino)ethane1,2-diamine, [Ph2PNHCH2CH2NHPPh2] and elemental 

selenium in 1:2 molar ratio at room temperature in THF.10 The spectroscopic data for 

compound 25 was in full agreement with the reported values. The solid-state structure of 

compound 25 was established using single crystal X-ray diffraction analysis. When 

compound 25 was re-crystallised from a mixture of THF/n-pentane (1:2) at –35º C, a trans 

product (25-trans) was obtained. However, crystallisation from dichloromethane at room 

temperature afforded a cis product (25-cis). This indicates that there is equilibrium between 

cis and trans forms in solution (see Scheme 4.1).  
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Scheme 4.1. Cis and trans forms of ligand 25. 

Ligand 25-trans crystallises in orthorhombic space group P bca, with one molecule of 25-

trans and THF in the asymmetric unit. In contrast, 25-cis crystallises in monoclinic space 

group C 2/c, with four isolated molecules in the unit cell. The molecular structure of 25-

cis and 25-trans are shown in Figures 4.1 and 4.2 respectively. The details of the structural 

parameters are given in the Table 4.2.  

 

Figure 4.1. Solid-state structure of compound 25-cis. Selected bond lengths (Å) and bond 

angles(º): P1–N1 1.665(2), P1–Se1 2.1194(7), P1–C1 1.810(3), P1–C8 1.810(3), N1–C7 

1.468(3), C7–C7i 1.512(5), C7i–C7–N1 112.9(2), N1–P1–C8 102.55(12), N1–P1–Se1 

116.97(8), N1–P1–C1 104.95(12), P1–N1–C7 120.73(18), Se1–P1–C8 113.29(10), Se1–

P1–C1 111.36(9). 
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Figure 4.2. Solid-state structure of compound 25-trans. Selected bond lengths (Å) and 

bond angles (º): P1–N1 1.6660(18), P1–Se1 2.1057(5), P1–C2 1.817(2), P1–C8 1.816(2), 

N1–C1 1.468(3), C1–C1i 1.507(4), C1i–C1–N1 109.4(2), N1–P1–C8 101.65(9), N1–P1–

Se1 118.10(7), N1–P1–C2 102.72(10), P1–N1–C1 117.58(14), Se1–P1–C8 112.19(7), 

Se1–P1–C2 112.45(7). 

The P–Se bond distances [2.1194(7) Å for 25-cis and 2.1057(5) Å for 25-trans] are in the 

range similar to that of [Ph2P(Se)NH(CHPh2)] [2.1086(12) Å], [Ph2P(Se)NH(CPh3)] 

[2.1166(8) Å] and [Ph2P(Se)NH(2,6-Me2C6H3)] [2.1019(8) Å], previously we described to 

consider as phosphorus–selenium bond as double bond.11 P1–N1 bond distances of 

1.665(2) Å and 1.116(2) Å for 25-cis and 25-trans respectively are in the expected range, 

as reported for other phosphinoselenoic amido compounds in the literature.11 In the centro-

symmetric 25-trans form, C1–N1 and C1i–N1i bonds are trans to each other. The 

compound 25–cis also possesses a centre of inversion i in the middle of the C7–C7i bond. 

C7–N1 and C7i–N1i bonds are cis to each other and a dihedral angle of 67.09º is formed 

by the planes containing C7, N1, P1 and C7i, N1i, P1i atoms. Thus, planes containing the 

N1, P1, Se1 and N1i, P1i, Se1i atoms are not coplanar, but almost orthogonal (86.90º) to 

each other. 
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4.2.2. Alkaline-earth metal complexes 

 

The title compounds [(THF)3M{Ph2P(Se)NCH2CH2NPPh2(Se)}] [M = Ca (26), Sr (27), Ba 

(28) and Mg (29)] can be obtained by two different synthetic approaches. Both the 

approaches were used for the calcium complex 26, whereas the other complexes were 

obtained using a one-pot reaction only. In the first approach, the well-established 

compound [(THF)2Ca{N(SiMe3)2}2],
12,13 was made to react with compound 25 in a 1:1 

molar ratio in THF at room temperature to afford the corresponding 

bis(diphenylphosphinoselenoicamide) complex 26 via the elimination of volatile 

bis(trimethylsilyl)amine (see Scheme 4.2). However, the most convenient approach to 

obtaining complexes 26–29 is a one-pot reaction, in which the ligand, 

[Ph2P(Se)NHCH2CH2NHP(Se)Ph2], is made to react with anhydrous potassium 

bis(trimethylsilyl)amide in a 1:2 molar ratio in THF to generate in situ potassium salt of 

ligand 25, followed by the addition of anhydrous alkaline-earth metal diiodide to the 

reaction mixture (see Scheme 4.2).14 

 

Scheme 4.2. Syntheses of alkaline-earth metal phosphinoselenoic amide complexes 26-

29. 
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The corresponding magnesium complex [(THF)3Mg{Ph2P(Se)NCH2CH2NPPh2(Se)}] (29) 

was obtained by the second route, using ligand 25 and [KN(SiMe3)2], followed by addition 

of magnesium diiodide in THF solvent (see Scheme 4.2). The new complexes were 

characterised using standard analytical and spectroscopic techniques, and the solid-state 

structures of all four alkaline earth metal complexes were established by single crystal X-

ray diffraction analysis. A strong absorption band at 550 cm-1 (for complex 26), 552 cm-1 

(for complex 27), 555 cm-1 (for complex 28) and 551 cm-1 (for complex 29) in FT-IR 

spectra indicates a P=Se bond in the each complex. The P=Se stretching frequencies are 

within the range reported by us.11 The 1H NMR spectra of the diamagnetic compounds 26–

29 show a multiplet signal [3.39 ppm (complex 26), 2.87 ppm (complex 27), 3.14 ppm 

(complex 28) and 3.09 ppm (complex 29)] for the four methylene protons and this is very 

close to resonance signal ( 3.16 ppm) of the analogous methylene protons present in free 

ligand 25. Each of the complexes 26–29 shows a sharp signal in the 31P{1H} NMR spectra 

[ 71.8 (complex 26), 71.9 (complex 27), 73.3 ppm (complex 28) and 43.7 ppm (complex 

29)], which is significantly low field shifted for complexes 26–28 and high field shifted for 

the complex 29 and to free ligand 25 ( 59.6 ppm),10 showing that both the phosphorous 

atoms in each complex are chemically equivalent in solution. All three complexes are 

coordinated to THF molecules, as is evident from the typical multiplet signals at 3.65–3.55 

ppm and 1.35–1.33 ppm observed in 1H NMR spectra. Although there is ongoing interest 

in alkaline-earth organometallics15 and particularly in the cyclopentadienyl chemistry of 

these elements,16 complexes 26–29 represent, to the best of our knowledge, the first 

alkaline earth metal complexes containing a bis(diphenylphosphinoselenoicamide) ligand 

having two sets of three heteroatom, N, P and Se, adjacent to each other in the ligand. 

Therefore, their molecular structures in the solid state were determined by X-ray diffraction 

analysis. 
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Figure 4.3. Solid-state structures of compounds 26 and 27. Hydrogen atoms are omited for 

clarity. Selected bond lengths (Å) and bond angles (º):  

26: P1–N1 1.592(8), P1–Se1 2.148(3), P1–C9 1.824(10), P1–C3 1.832(10), N1–C1 

1.450(13), P2–N2 1.595(8), P2–Se2 2.155(3), P2–C15 1.833(9), P2–C21 1.824(10), N2–

C2 1.433(13), C1–C2 1.526(13), Ca1–N1 2.386(8), Ca1–Se1 3.252(2), Ca1–P1 3.359(3), 

Ca1–N2 2.418(8), Ca1–Se2 3.300(2), Ca1–P2 3.364(3), Ca1–O1 2.374(7), Ca1–O2 

2.429(7), Ca1–O3 2.385(7), C2–C1–N1 108.0(8), N1–P1–C9 112.3(4), N1–P1–Se1 

108.4(3), N1–P1–C3 111.0(4), P1–N1–C1 123.0(7), Se1–P1–C9 110.3(3), Se1–P1–C3 

111.3(3), C1–C2–N2 109.2(8), N2–P2–C15 111.9(4), N2–P2–Se2 108.8(3), N2–P2–C21 

112.4(5), P2–N2–C2 123.6(7), Se2–P2–C15 111.8(3), Se2–P2–C21 110.1(3), N1–Ca1–

Se1 63.3(2), N1–Ca1–N2 68.6(3), Se1–Ca1–Se2 165.42(7), O1–Ca1–O2 79.6(3), O1–

Ca1–O3 159.1(3), O2–Ca1–O3 80.4(3), P1–Se1–Ca1 73.76(8), P2–Se2–Ca1 72.76(8).  

27: P1–N1 1.592(5), P1–Se1 2.1548(17), P1–C9 1.823(7), P1–C3 1.826(7), N1–C1 

1.465(7), P2–N2 1.589(5), P2–Se2 2.1559(17), P2–C15 1.837(6), P2–C21 1.819(6), N2–

C2 1.463(7), C1–C2 1.524(8), Sr1–N1 2.517(5), Sr1–Se1 3.2788(10), Sr1–P1 3.4456(18), 

Sr1–N2 2.540(5), Sr1–Se2 3.3259(10), Sr1–P2 3.4521(16), Sr1–O1 2.568(5), Sr1–O2 

2.529(5), Sr1–O3 2.537(5), C2–C1–N1 108.4(5), N1–P1–C9 111.3(3), N1–P1–Se1 

109.13(19), N1–P1–C3 112.7(3), P1–N1–C1 122.7(4), Se1-P1–C9 110.3(2), Se1–P1–C3 

109.1(2), C1–C2–N2 109.3(5), N2–P2–C15 112.2(3), N2–P2–Se2 108.72(19), N2–P2–

C21 112.6(3), P2–N2–C2 123.4(4), Se2–P2–C15 111.2(2), Se2–P2–C21 109.8(2), N1–
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Sr1–Se1 62.35(11), N1–Sr1–N2 65.80(15), Se1–Sr1–Se2 170.54(2), O1–Sr1–O2 

80.67(18), O1–Sr1–O3 80.37(17), O2–Sr1–O3 159.22(17), P1–Se1–Sr1 75.57(5), P2–

Se2–Sr1 74.67(5). 

The calcium, strontium bis(diphenylphosphinoselenoicamido) complexes 26 and 27 

crystallise in the triclinic space group P-1, with two molecules of 26 and 27 in the unit cell 

respectively. The slightly larger barium compound 28 also crystallises in the triclinic space 

group P-1, with two independent molecules of complex 28 in the asymmetric unit. The 

details of the structural parameters are given in the Table 4.2 & 4.3. The solid-state 

structures of complexes 26-28 are shown in the figure 4.3 & 4.4 respectively. Complexes 

26–28 are isostructural to each other due to the similar ionic radii of the metal ions (1.00 

Å, 1.18 Å and 1.35 Å respectively) for a coordination number of 6.17 In all three complexes, 

the coordination polyhedron is formed by dianionic bis(diphenylphosphinoselenoicamide) 

[Ph2P(Se)NCH2CH2NP(Se)Ph2]
2- ligands, and three THF molecules which are present as 

solvates to provide the metal ion seven-fold coordination. 

 

Figure 4.4. Solid-state structure of compound 28. Hydrogen atoms are omitted for clarity. 

Selected bond lengths (Å) and bond angles (o): P1–N1 1.585(6)), P1–Se1 2.1583(19)), P1–

C14 1.834(7), P1–C3 1.835(7), N1–C1 1.458(9), P2–N2 1.591(6), P2–Se2 2.1490(18), P2–

C15 1.833(7), P2–C21 1.837(7), N2–C2 1.478(8), C1–C2 1.517(9), Ba1–N1 2.657(5), 

Ba1– Se1 3.4706(9), Ba1–P1 3.6129(17), Ba1–N2 2.654(6), Ba1–Se2 3.4071(9), Ba1–P2 

3.5929(18), Ba1–O1 2.716(5), Ba1–O2 2.812(5), Ba1–O3 2.721(5), C2–C1–N1 110.6(6), 
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N1–P1–C14 112.6(3), N1–P1–Se1 110.1(2), N1–P1–C3 111.6(3), P1–N1–C1 122.3(5), 

Se1–P1–C14 109.4(2), Se1–P1–C3 110.0(2), C1–C2–N2 108.8(6), N2–P2–C15 111.8(3), 

N2–P2–Se2 109.5(2), N2–P2–C21 112.3(3), P2–N2–C2 121.9(5), Se2–P2–C15 110.4(2), 

Se2–P2–C21 110.0(3), N1–Ba1–Se1 58.71(12), N1–Ba1–N2 63.45(17), Se1–Ba1–Se2 

175.44(2), O1–Ba1–O2 74.26(18), O1–Ba1–O3 155.90(19), O2–Ba1–O3 85.91(18), P1–

Se1–Ba1 75.90(5), P2–Se2–Ba1 76.91(5). 

The ligand 25 coordinates to the alkaline earth metal ion via chelation of two amido 

nitrogen atoms and two selenium atoms attached to the phosphorus atoms. The phosphorus-

metal distances (3.365 and 3.359 Å for complex 26, 3.452 and 3.446 Å for complex 27, 

and 3.593 and 3.613 Å for complex 28) are significantly greater than the sum of the 

covalent radii of the respective metal ion and phosphorus atom (3.07 Å for complex 26, 

3.25 Å for complex 27 and 3.34 Å for complex 28). This indicates that the metal ion and 

phosphorous have no interaction between themselves. Thus, in each case, the central metal 

ion adopts a distorted pentagonal bi-pyramidal geometry around it, with two selenium 

atoms, two nitrogen atoms of ligand 25, along with one oxygen atom from THF molecule, 

which is in the basal plane, whereas two remaining THF molecules occupy the apical 

positions. In complex 26-28, the M–N distances [2.386(8) Å and 2.418(8) Å for complex 

26 , 2.517(5) Å and 2.540(5) Å for complex 27, and 2.657(5) Å and 2.654(6) Å for complex 

28] and M–Se distances [3.252(2) and 3.300(2) for complex 26, 3.2788(1) Å and 3.3259(1) 

Å for complex 27 and 3.4706(9) Å and 3.4071(9) Å for complex 28] indicate a slight 

asymmetrical attachment of the tetra-dentate ligand 25 to the alkaline earth metal ion. This 

is due to the presence of four phenyl rings attached to two phosphorus atoms. However, 

similar M–N distances and M–Se distances were observed in our previously reported 

complexes [(THF)2M{Ph2P(Se)N(CHPh2)}2] (M = Ca, Sr, Ba) (Chapter 2) and heavier 

alkaline earth metal complexes reported by other groups.18 Thus, we observe that 

bis(diphenylphos-phinoselenoicamide 25 behaves as a tetra-dentate chelating ligand to 

form a five-member metallacycle M1–N1–C1–C2–N2, where two four-membered 

metallacycles M1–Se1–P1–N1 and M1–Se2–P2–N2 are fused together to construct a 

polymetallacyclic motif tricyclometalla[5.2.0.01,4]nonane structure. To the best of our 

knowledge, this is the first example of such a structural motif in alkaline earth metal 

complexes, with three adjacent hetero donor atoms—selenium, phosphorus and nitrogen. 
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Among the three M–O distances for each complex, M–O distance [2.429(7) Å for complex 

26, 2.568(5) Å for complex 27, 2.812(5) Å for complex 28], the THF molecule resides in 

the basal plane of the distorted pentagonal bi-pyramidal structure and is slightly elongated 

compared to the remaining M–O distances [2.374(7) Å, 2.385(7) Å for complex 26, 

2.537(5) Å, 2.568(5) Å for complex 27, 2.716(5) Å and 2.721(5) Å for complex 28] 

measured for the THF molecules placed in apical position. This slight elongation can be 

explained by the extensive electron release from the two anionic basal nitrogen atoms 

opposite the THF molecule in the metal complex. 

 

Figure 4.5. Solid-state structure of compound 29. Hydrogen atoms are omitted for clarity. 

Selected bond lengths (Å) and bond angles(º): P1–N1 1.606(3), P1–Se1 2.1308(10), P1–

C3 1.831(3), P1–C9 1.825(3), N1–C1 1.477(4), P2–N2 1.612(3), P2–Se2 2.1240(10), P2–

C15 1.833(3), P2–C21 1.834(3), N2–C2 1.482(4), C1–C2 1.524(4), Mg1–N1 2.083(3), 

Mg1–N2 2.066(3), Mg1–O1 2.124(3), Mg1–O2 2.137(2), Mg1–O3 2.106(2), C2–C1–N1 

108.9(3), N1–P1–C9 112.57(15), N1–P1–Se1 110.69(10), N1–P1–C3 111.46(15), P1–N1–

C1 121.0(2), Se1–P1–C9 109.18(11), Se1–P1–C3 111.65(11), C1–C2–N2 109.0(3), N2–

P2–C15 111.99(15), N2–P2–Se2 111.98(11), N2–P2–C21 110.05(15), P2–N2–C2 

118.6(2), Se2–P2–C15 109.14(11), Se2–P2–C21 110.70(11), N1–Mg1–N2 83.40(12), O1–

Mg1–O2 80.49(10), O1–Mg1–O3 160.13(11), O2–Mg1–O3 80.11(10), N1–Mg1–O1 

94.85(11), N2–Mg1–O1 99.30(11), N1–Mg1–O3 97.76(11), N2–Mg1–O2 134.70(12), 

N2–Mg1–O1 99.30(11), N2–Mg1–O3 97.36(11).  
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The magnesium ion has the smallest ionic radius among the Mg2+ to Ba2+ ions and thus 

different coordination behaviours can be anticipated.19 As we have observed that ligand 25 

is acting as tetra-dentate chelating ligand towards moderately larger ions (Ca2+ to Ba2+) it 

would be interesting to study its solid-state structure to learn more about its flexible nature. 

The magnesium compound 29 was crystallized from THF/n-pentane mixture as a 

colourless solid. Compound 29 crystallizes in the triclinic space group P-1, with two 

molecules in the unit cell. Table 4.3 contains the details of structural refinement parameters 

for compound 29 and its solid-state structure is shown in Figure 4.5. In contrast to 

compounds 26–28, it is observed that for complex 29, a five magnesa-metallacycle Mg1–

N1–C1–C2–N2 is formed by the chelation of two amido nitrogen atoms of ligand 25. Two 

selenium atoms, which coordinated to Ca, Sr andBa ions to make two four-membered rings 

in complexes 26–28, are unable to interact with the smaller magnesum ion (Mg1–Se13.661 

Å and Mg1–Se2 3.769 Å). This is an instance of flexibility of the chelating ligand 25, 

switching from tetra-dentate to bi-dentate fashion depending upon the nature of the metal 

ion. As three THF molecules are chelated to magnesium ion, the geometry around it is best 

described as a distorted trigonal bi-pyramidal geometry, having the amido nitrogens and 

one THF at the equatorial position and two THF molecules in the apical position. As 

expected, the Mg–N bond distances [2.066(3) Å and 2.083(3) Å] are among the shortest 

with respect to M–N distances [2.386(8) and 2.418(8) Å for Ca, 2.517(5) and 2.540(5) Å 

for Sr, and 2.657(5) and 2.654(6) Å for Ba]. Five-membered magnesium metllacycles are 

reported in the literature.20 

4.2.3. Bis(amidodiphenylphosphene borane) ligand 

 

In the chapter 3 we have introduced a novel amidophosphine-borane adduct as a ligand and 

exploited its chelating behaviour in alkali metal and alkaline earth metal chemistry. The 

amidophosphine-borane [Ph2P(BH3)NHR] acts as a monoanionic ligand and coordinates 

to the metal ions through amido nitrogen and borane hydrogens. We intended to extend the 

idea of amidophosphine-borane to bis(amidodiphenylphosphene-borane) by introducing 

one spacer of ethylene bridge. Thus, bis(amidodiphenylphosphene-borane) would form a 

dianion and act as a tetra-dentate ligand towards metal ions. In this chapter we present the 

synthesis and structure of bis(amidophosphine-orane) ligand 
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[Ph2P(BH3)NHCH2CH2NHPPh2(BH3)}] (30) and the corresponding dimeric barium 

complex [(THF)2Ba{Ph2P(BH3)N-CH2CH2NPPh2(BH3)}]2 (31) to  demonstrate our 

concept of versatility of the amidophosphine backbone. The bis(amidodiphenylphosphine-

borane) ligand [Ph2P(BH3)NHCH2CH2NHPPh2(BH3)] (30) was isolated as a white 

precipitate from the reaction between bis(phosphineamine) [Ph2PNHCH2CH2NHPPh2] and 

the borane adduct [H3B.SMe2] at room temperature in a 1:2 molar ratio in toluene as the 

solvent (see Scheme 4.3).14 

 

Scheme 4.3. Synthesis of the bis(amidodiphenylphosphene-borane) ligand 30 

The formation of the amidophosphine-borane ligand 30 from [Ph2PNHCH2CH2NHPPh2] 

can easily be followed by 1H NMR spectroscopy measured in CDCl3, since additional 

resonances for the two chemically equivalent borane (BH3) groups attached to the 

phosphorus atoms appear as a broad signal at  1.4 ppm. In the 1H NMR spectra, the 

resonances of the amidophosphine moiety in ligand 30 are only slightly shifted in 

comparison to the starting material with those reported for the phosphine amines.21 The 

multiplet signals at 2.78 ppm can be assigned to the four methylene protons of ligand 30 in 

which both the hydrogen atoms are diastereotopic to each other. This indicates that 

methylene signals are slightly high field shifted compared to the selenium analogue 25 

(3.16 ppm). Another broad signal at 3.02 ppm corresponding to the two NH protons of 

ligand 30 is observed and also shifted to the higher field (3.24 ppm) compared to 25. Ligand 

30 shows a doublet signal in the 31P{1H} NMR spectrum at 58.8 ppm with a coupling 

constant of 67.9 Hz due to coupling with adjacent boron atom. In 11B{1H} NMR spectrum, 

the signal at –38.1 ppm can be assigned to the BH3 group attached with phosphorus. This 

observation is in agreement with our previously reported values. (See Chapter 3) In the FT-

IR spectra, a characteristic signal for P–B bond stretching at 606 cm-1 was observed along 

with another characteristic signal at 2380 cm-1 assigned to the B–H stretching frequency. 

These values are in agreement with those reported in literature.22 The molecular structure 
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of ligand 30 was established using single crystal X-ray diffraction analysis. It crystallizes 

in the monoclinic space group Cc, with four independent molecules in the unit cell (see 

Figure 4.6). The details of the structural parameters are given in Table 4.4. The P1–B1 

bond distances in 30 [1.9091(2) Å and 1.916(1) Å] are almost similar and in agreement 

with reported values 1.918(6) Å for [Ph2P(BH3)NH(CHPh2)], 2.1019(8) Å for 

[{Ph2P(BH3)}2CH2] and 1.921(3) Å for [(CH2-o-CF3C6H4)-(Ph)P(BH3)C4H8P(BH3)(Ph)( 

CH2-o-CF3C6H4)] to be considered as the phosphorus–boron dative bond reported by us 

and others.17,23 The P1–N1 bond ranges from 1.659(1) Å to 1.660(9) Å and C1–N1 bond 

distances of 1.443(1) Å and 1.480(1) are also similar to those reported by us previously: 

P1–N1 1.673(6) Å and C1–N1 1.453(8) Å) for Ph2PNH(CHPh2) (Chapter 1) and P1–N1 

1.638(3) Å and C1–N1 1.468(5) Å for [Ph2P(BH3)NH(CHPh2)].(See Chapter 3). 

 

Figure 4.6. Solid-state structure of compound 30. Selected bond lengths (Å) and bond 

angles(º): P1–N1 1.668(3), P1–B1 1.920(5), P1–C3 1.805(4), P1–C9 1.815(4), N1–C1 

1.463(5), C1–C2 1.523(5), C2–N2 1.437(5), P2–N2 1.660(3), P2–B2 1.896(5), P2–C15 

1.810(4), P2–C21 1.817(4), B1–H1c 0.9600, B2–H2c 0.9600, B1–P1–N1 110.0(2), C3–

P1–B1 110.3(2), C9–P1–B1 117.1(2), N1–P1–C3 106.20(19), N1–P1–C9 107.62(17), P1–

N1–C1 121.4(3), N1–C1–C2 110.3(3), C1–C2–N2 111.9(3), C2–N2–P2 128.8(3), B2–P2–

N2 106.7(2), B2–P2–C15 111.7(2), B2–P2–C21 116.8(2), N2–P2–C15 108.20(18), N2–

P2–C21 107.85(17). 
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4.2.4. Bis(amidodiphenylphosphene-borane) barium complex  

 

Ligand 30 was made to react with [K{N(SiMe3)2}] in THF at an ambient temperature in a 

1:2 molar ratio followed by addition of barium diiodide to afford the dimeric barium 

bis(amidodiphenylphosphene-borane) complex [(THF)2Ba{Ph2P(BH3)NCH2CH2NPPh2 

(BH3)}]2 (31) through the elimination of KI and volatile tetramethylsilane (see Scheme 

4.4).14 

 

Scheme 4.4. Synthesis of barium complex 31 

In FT-IR spectra, strong absorption band at 605 cm-1 is assigned to the P–B bond of 

complex 31, which is in the range of that of  ligand 30 (606 cm-1). The 1H NMR spectrum 

of complex 31 in C6D6 is very similar to the spectra recorded for compound 30 and reveals 

time-averaged Cs-symmetry in solution. The four methylene protons in the ligand 

backbone appear as a multiplet at 2.69 ppm. The resonances of the three protons attached 

to the boron atom appear as a multiplet at 1.38 ppm in the 1H NMR spectra. In the proton 

decoupled 31P NMR spectra, complex 31 shows only one doublet signal at 70.8 ppm and 

these values are significantly low-field shifted compared to the value for compound 30 

(58.8 ppm) upon the coordination of barium atoms to the bis(amidophosphine-borane) 

ligand. The phosphorus atoms present in the [Ph2P(BH3)NCH2CH2NPPh2(BH3)]
2- moieties 

are chemically equivalent. A broad signal at –37.6 ppm was observed in the 11B{1H} NMR 

spectra of complex 31. 
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Figure 4.7. Solid state structure of compound 31. Hydrogen atoms are omitted for clarity 

except for boran atoms. Selected bond lengths (Å) and bond angles(º): P1–N1 1.595(5), 

P1–B1 1.938(7), C1–N1 1.468(7), C1–C2 1.531(8), C2–N2 1.475(7), P2–N2 1.596(5), P2–

B2 1.943(8), B1–Ba1i 3.245(7) , B1–H2aa 1.16(6), B1–H2bb 1.07(7), B1–H2cc 1.10(5), 

B2–H1aa 1.10(5), B2–H1bb 1.12(6), B1–H1cc 1.11(6), Ba1–N1 2.671(5), Ba1–N2 

2.647(5), Ba1–B1 3.332(6), Ba1–B2 3.251(7), Ba1–P1 3.6169(16), Ba1–P2 3.5540(16), 

Ba1–O1 2.730(5), Ba1–O2 2.744(5), Ba1–B1i 3.245(7), Ba1–H1bb 2.90(6), Ba1–H2bb 

2.95(7), B1–P1–N1 107.2(3), P1–N1–C1 125.3(4), N1–Ba1–N2 62.32(15), O1–Ba1–O2 

169.80(14), N1–C1–C2 109.1(5), C1–C2–N2 109.2(5), N2–P2–B2 108.1(3).  

Compound 31 was re-crystallised from THF and n-pentane (1:2 ratio) and was found to 

crystallize in the triclinic space group P-1, which has two molecules in the unit cell. The 

solid-state structure of complex 31 is given in Figure 4.7. The details of the structural 

parameters are given in Table 4.4 Compound 31 is dimeric and two barium ions are 

coordinated by four amido nitrogen atoms and four BH3 groups of two ligands 30. Out of 

four borane groups, two are in mode to coordinate to the two barium ions. Each of the 

borane (BH3) group coordinates through the hydrogen atoms in a 1 fashion and has a Ba1–

B1 bond length of 3.332(6) and Ba1–B2 3.251(7) Å. Thus, ligand 30 can be considered a 

tetra-dentate ligand, similar to what was observed for ligand 25 in the Ca–Ba complexes 

(see above). Additionally, two THF molecules are coordinated to each barium ion and the 
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geometry around each barium ion is best described as distorted pentagonal bi-pyramidal. 

It is noteworthy that the P–B distances [1.938(7) and 1.943(8) Å] are slightly elongated 

compared to that of the ligand, 30, [1.920(5) and 1.896(5) Å] even after the coordination 

of the BH3 group to the barium centre. The Ba–N [2.671(5), 2.647(5) Å], Ba1–O1 [2.730(5) 

and 2.744(5) Å] distances are in the range similar to that of the previously described barium 

complex in chapter 3. 

4.3 Ring-Opening Polymerization study  

  

Catalytic activities of the calcium, strontium and barium complexes 26, 27 and 28 were 

performed (see Scheme 4.5). Polymerization studies were typically conducted in toluene, 

with various monomer/catalyst ratios at 25 °C. Selected data obtained with respect to 

complexes 26, 27 and 28 are given in Table 4.1. 

 

 

 

Scheme 4.5. ROP of ε-CL in toluene with calcium, strontium and barium complexes 26–

28. 

The catalytic ability of the newly synthesised mono-nuclear calcium complex 26 to 

promote the ROP of ε-CL was first evaluated (Table 4.1, entries 1–4). Indeed, the sluggish 

reactivity of the calcium complexes is very similar to that observed in some previously 

reported studies using other calcium complexes for ROP of -caprolactone.8 Since the 

larger strontium derivatives have been reported to be more active than the calcium 

congeners in ROP,24,25 we tested compound 27 as a catalyst and observed enhanced rate of 

the polymerisation (Table 4.1, entries 5–8). In both cases, higher reactivity was observed 

for conversion of -caprolactone to poly-caprolactone and up to 500 ε-CL units were 
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successfully converted in high yields (90 per cent and 80 per cent) within 15 and 10 minutes 

respectively at 25 °C. 

Table 4.1. Polymerization of -Caprolactone initiated by alkaline earth metal complexes 

of type [MC2H4(NPh2P=Se)2(THF)3] (where M = Ca, Sr, Ba)[a] 

Entry [M] 
[ԑCL]0/ 

[M]0 

Reac. 

time[b] 

[min] 

Conv.[c] 

[%] 

Mn(theo)
[d] 

[g mol-1] 

Mn(GPC)
[e] 

[g mol-1] 

Mw(GPC)
[e] 

[g mol-1] 
Mw/Mn[f] 

1 Ca 200 10 75 15000 17065 11658 1.473 

2 Ca 300 15 96 28872 31027 17769 1.746 

3 Ca 400 20 89 35689 27238 19883 1.370 

4 Ca 500 20 64 32080 33618 24744 1.359 

5 Sr 100 10 99 17759 28789 17338 1.660 

6 Sr 200 10 98 35159 50353 44198 1.139 

7 Sr 300 10 95 51125 60384 53266 1.134 

8 Sr 400 10 72 28872 29925 22051 1.357 

9 Sr 500 15 80 40100 31590 22461 1.406 

10 Ba 200 5 82 16441 24947 18278 1.365 

11 Ba 300 5 94 28270 29965 20262 1.479 

12 Ba 400 5 85 34085 35033 25045 1.399 

13 Ba 500 5 70 35087 43215 34650 1.247 

 

[a] Results are representative of at least two experiments. [b] Reaction times were not necessarily optimized. 

[c] Monomer conversions were determined by 1H NMR spectroscopy. [d] Theoretical molar mass values 

calculated from the relation: [monomer]0/[M]0 × monomer conversion where  [M]0 = 8.76 x 10-3 mmol and 

Monomer weight of ε-CL = 114 g mol−1,  [e] Experimental molar masses were determined by GPC versus 

polyethylene glycol standards. [f] Molar mass distribution was calculated from GPC. 

The control over the ROP process was rather good, affording PCLs, featuring a good match 

between the observed (as determined by GPC) and calculated molar mass values, as well 

as moderate dispersity data (PDI = Mw/Mn < 1.80). The overall efficiency of the calcium 

initiator 26 towards the ROP of ε-CL was weaker than that of the strontium analogue 27. 

Being the largest ionic radius of the barium atom, it was anticipated that complex 28 would 

show the highest reactivity among all the three alkaline earth metal complexes.26,27 In 
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reality we observed that up to 500 ε-CL units were successfully converted in good yields 

(70 per cent) within 5 minutes at 25 °C (Table 4.1, entries 10–13). The poly-caprolactone 

produced by the use of the barium catalyst was a good match between the observed and 

calculated molar mass values, and we observed a relatively narrow poly-dispersity data 

(PDI up to 1.25, entry 13 in Table 4.1). Thus, among three metal complexes 26, 27 and 28, 

the barium complex showed the highest activity for ROP of -caprolactone. 

4.4 Conclusion 
 

We have demonstrated a series of alkaline earth metal complexes with 

bis(phosphinoselenoicamine) ligand via two synthetic routes. In the solid-state structures 

of Ca–Ba complexes, the bis(phosphinoselenoicamine) acts as a tetra-dentate ligand by the 

chelation of two amido nitrogen and two selenium atoms, whereas due to the smaller size 

of magnesium, the same ligand behaves as a bidentate ligand through chelation of two 

amido-nitrogen atoms only, showing its flexible nature. We have also introduced another 

poly-dentate ligand bis(amidodiphenylphosphene borane) in barium chemistry to prepare 

the barium dimeric complex. We have tested complexes 26–28 as catalysts for the ROP of 

-caprolactone and observed that the barium complex, being the largest ionic radius, acts 

as best catalyst among the three analogues complexes. 

4.5. Experimental Procedures 
 

4.5.1. General 

 

All manipulations of air-sensitive materials were performed with the rigorous exclusion of 

oxygen and moisture in flame-dried Schlenk-type glassware either on a dual manifold 

Schlenk line, interfaced to a high vacuum (10-4 torr) line, or in an argon-filled M. Braun 

glove box. THF was pre-dried over Na wire and distilled under nitrogen from sodium and 

benzophenone ketyl prior to use. Hydrocarbon solvents (toluene and n-pentane) were 

distilled under nitrogen from LiAlH4 and stored in the glove box. 1H NMR (400 MHz), 

13C{1H} and 31P{1H} NMR (161.9 MHz) spectra were recorded on a BRUKER AVANCE 

III-400 spectrometer. BRUKER ALPHA FT-IR was used for FT-IR measurement. 
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Elemental analyses were performed on a BRUKER EURO EA at the Indian Institute of 

Technology Hyderabad. Metal iodides (MgI2, CaI2, SrI2 and BaI2), KN(SiMe3)2, 

Me2S•BH3 and -caprolactone were purchased from Sigma Aldrich and used as such. The 

bis(phosphinamine) [Ph2PNHCH2CH2NHPPh2], and bis(phosphinoselenoicamine) 

[Ph2P(Se)NHCH2CH2NHPPh2(Se)] (25) were prepared according to procedure prescribed 

in the literature.10,21 The NMR solvent C6D6 was purchased from Sigma Aldrich and dried 

under Na/K alloy prior to use. 

4.5.2. Preparation of [(THF)3Ca{Ph2P(Se)NCH2CH2NPPh2(Se)}] (26) 

 

In a 50 ml dry Schlenk flask ligand 25 (200 mg, 0.34 mmol), KN(SiMe3)2 (136 mg, 0.68 

mmol) and CaI2 (100 mg, 0.34 mmol) were mixed together in 10 ml of THF at an ambient 

temperature and stirred for 14 hours. The precipitate of KI was filtered using a filter dropper 

and filtrate was dried in vacuo. The resulting white compound was further purified by 

washing with n-pentane and crystals of compound 26 suitable for X-ray analysis were 

grown from THF/n-pentane (1:2) mixture solvent at –40 ºC. Yield 202.0 mg (70.6 %). 1H 

NMR (400 MHz, C6D6): δ = 8.04-7.99 (m, 8H, ArH), 7.10-7.05 (m, 12H, ArH), 3.77-3.74 

(m, THF), 3.39 (m, 4H, CH2), 1.36-1.33 (m, THF) ppm; 13C{1H} NMR (100 MHz, C6D6): 

δ = 133.1 (P-ArC), 131.9 (o-ArC), 131.8 (m-ArC), 129.7 (p-ArC), 68.5 (THF), 42.9 (CH2), 

25.3 (THF) ppm; 31P{1H} NMR (161.9 MHz, C6D6): δ = 71.8 ppm; FT-IR (selected 

frequencies): 3052 (ArC-H), 2920 (C-H), 1435 (P-C), 969 (P-N), 550 (P=Se) cm-1. 

Elemental analysis: C38H48CaN2O3P2Se2 (840.74). Calcd. C 54.29, H 5.75, N 3.33. Found: 

C 53.83, H 5.39, N 2.98. 

 

 

4.5.3. Preparation of [(THF)3Sr{Ph2P(Se)NCH2CH2NPPh2(Se)}] (27) 

 

In a 50 ml dry Schlenk flask ligand 25 (130 mg, 0.23 mmol), KN(SiMe3)2 (89 mg, 0.45 

mmol) and SrI2 (100 mg, 0.23 mmol) were mixed together in 10 ml of THF at an ambient 

temperature and stirred for 14 hours. The precipitate of KI was filtered using a filter dropper 
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and filtrate was dried in vacuo. The resulting white compound was further purified by 

washing with n-pentane and crystals suitable for X-ray analysis were grown from THF/n-

pentane (1:2) mixture solvent at –40 ºC. Yield 176.5 mg (87.8 %). 1H NMR (400 MHz, 

C6D6): δ = 8.05–7.99 (m, 8H, ArH), 7.12–6.97 (m, 12H, ArH), 3.57–3.53 (m, THF), 2.87 

(m, 4H, CH2), 1.41–1.37 (m, THF) ppm; 13C{1H} NMR (100 MHz, C6D6): δ = 133.8 (P-

ArC), 132.9 (P-ArC), (131.0 (o-ArC), 130.8 (m-ArC), 130.2 (p-ArC), 66.4 (THF), 40.9 

(CH2), 24.4 (THF) ppm; 31P{1H} NMR (161.9 MHz, C6D6): δ = 71.9 ppm; FT-IR (selected 

frequencies): 3052 (Ar C-H), 2922 (C–H), 1435 (P–C), 998 (P–N), 552 (P=Se) cm-1. 

Elemental analysis: C38H48N2O3P2Se2Sr (888.26): Calcd. C 51.38, H 5.45, N 3.15. Found: 

C 50.65, H 5.08, N 3.01. 

4.5.4. Preparation of [(THF)3Ba{Ph2P(Se)NCH2CH2NPPh2(Se)}] (28) 

 

In a 50 ml dry Schlenk flask ligand 25 (150 mg, 0.256 mmol), KN(SiMe3)2 (102 mg, 0.512 

mmol) and BaI2 (100 mg, 0.256 mmol) were mixed together in 10 ml of THF at ambient 

temperature and stirred for 14 hours. The precipitate of KI was filtered using a filter dropper 

and filtrate was dried in vacuo. The resulting white residue was further purified by washing 

with n-pentane and crystals suitable for X-ray analysis were grown from THF/n-pentane 

(1:2) mixture solvent at –40 ºC. Yield 210.0 mg (87.5 %). 1H NMR (400 MHz, C6D6): δ = 

8.14–8.02 (m, 8H, ArH), 7.11–7.03 (m, 12H, ArH), 3.57–3.53 (m, THF), 3.14 (m, 4H, 

CH2), 1.41–1.38 (m, THF) ppm; 13C{1H} NMR (100 MHz, C6D6): δ = 133.1 (P-ArC), 

132.8 (P-ArC), 131.5 (o-ArC), 131.3 (m-ArC), 130.7 (p-ArC), 67.5 (THF), 48.5 (CH2), 

25.5 (THF) ppm; 31P{1H} NMR (161.9 MHz, C6D6): δ = 73.3 ppm; FT-IR (selected 

frequencies): 3052 (Ar C-H), 2951 (C–H), 1434 (P–C), 997 (P–N), 555 (P=Se) cm-1. 

Elemental analysis: C38H48BaN2O3P2Se2 (937.97): Calcd. C 48.66, H 5.16, N 2.99. Found: 

C 47.88, H 4.72, N 2.69. 

4.5.5. Preparation of [(THF)3Mg{Ph2P(Se)NCH2CH2NPPh2(Se)}] (29) 

 

In a 50 ml dry Schlenk flask ligand 25 (210 mg, 0.36 mmol), KN(SiMe3)2 (143 mg, 0.72 

mmol) and MgI2 (100 mg, 0.36 mmol) were mixed together in 10 ml of THF at an ambient 

temperature and stirred for 14 hours. The precipitate of KI was filtered using a filter dropper 
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and filtrate was dried in vacuo. The resulting white compound was further purified by 

washing with n-pentane and crystals suitable for X-ray analysis were grown from THF/n-

pentane (1:2) mixture solvent at –40 ºC. Yield 202.0 mg (70.6 %). 1H NMR (400 MHz, 

C6D6): δ = 7.92–7.87 (m, 8H, ArH), 7.01–6.90 (m, 12H, ArH), 3.61–3.58 (m, THF), 3.09 

(m, 4H, CH2), 1.32–1.26 (m, THF) ppm; 13C{1H} NMR (100 MHz, C6D6): δ = 132.1 (P-

ArC), 131.9 (P-ArC), 131.7 (o-ArC),131.6 (m-ArC), 129.6 (p-ArC), 68.1 (THF) 29.9 

(CH2), 25.4 (THF) ppm; 31P{1H} NMR (161.1 MHz, C6D6): δ = 43.7 ppm; FT-IR (selected 

frequencies): 3052 (Ar C-H), 2917 (C-H), 1435 (P–C), 997 (P–N), 551 (P=Se) cm-1. 

Elemental analysis: C38H48MgN2O3P2Se2 (824.95): Calcd. C 55.32, H 5.86, N 3.40. Found: 

C 54.83, H 5.49, N 3.18. 

4.5.6. Preparation of [Ph2P(BH3)NHCH2CH2NHPPh2(BH3)}] (30) 

 

To a stirring solution of ethylenediamine (325.2 mg, 5.4 mmol) and triethylamine (1.09 g, 

1.5 ml, 10.8 mmol) in THF/CH2Cl2 mixture solvent (10 ml), was added a solution of 

chlorodiphenylphosphine (2.39 g, 10.8 mmol) in THF (5 ml), drop-wise, and stirred for 3 

hours. The precipitate formed was filtered and the solvent removed in vacuo. To this 

residue, 20 ml of dry toluene and two equivalents of borane-dimethyl sulphide (822.2 mg, 

10.8 mmol) was added and stirred for another 12 hours. The title compound was formed as 

a white precipitate and it was further purified by washing several times with n-hexane. 

Crystals suitable for X-ray diffraction analysis were obtained from THF/n-pentane 

combination in 1:2 ratio. Yield 1.45 g (58.7 %). 1H NMR (400 MHz, CDCl3): δ = 7.66-

7.57 (m, 8H, ArH), 7.55-7.32 (m 12H, ArH), 3.03–3.01 (m, 2H, P(BH3)NH), 2.81–2.75 

(m, 4H, CH2), 1.87-0.95 (m, 6H, BH3) ppm; 13C{1H} NMR (100 MHz, CDCl3): δ = 134.3 

(P-ArC), 134.2 (P-ArC), 132.9 (o-ArC), 132.8 (o-ArC), 132.2 (p-ArC), 132.1 (p-ArC), 

131.4 (m-ArC), 131.2 (m-ArC), 44.2 (CH2) ppm; 31P{1H}NMR (161.9 MHz, CDCl3): δ = 

58.8 (d, JP-B = 67.9 Hz) ppm; 11B{1H} NMR (128.4 MHz, CDCl3): δ −38.1 ppm. FT-IR 

(selected frequencies): 3366 (N–H), 3056 (Ar C–H), 2960 (C–H), 2380 (B–H), 1436 (P–

C), 935 (P–N), 606 (P–B) cm-1. Elemental analysis: C26H32B2N2P2 (456.10). Calcd. C 

68.46, H 7.07, N 6.14. Found: C 67.98, H 6.79, N 5.88. 

4.5.7. Preparation of [(THF)2Ba{Ph2P(BH3)NCH2CH2NPPh2(BH3)}]2 (31) 
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In a 50 ml dry Schlenk flask, ligand 6 (116.8 mg, 0.256 mmol), KN(SiMe3)2 (102 mg, 

0.512 mmol) and BaI2 (100 mg, 0.256 mmol) were mixed together in 10 ml of THF at an 

ambient temperature and stirred for 14 hours. The precipitate of KI was filtered using a 

filter dropper and filtrate was dried in vacuo. The resulting white compound was further 

purified by washing with n-pentane and crystals suitable for X-ray analysis were grown 

from THF/n-pentane (1:2) mixture solvent at –40 ºC. Yield 153.0 mg (85.0 %). 1H NMR 

(400 MHz, C6D6): δ = 7.59–7.54 (m, 8H, ArH), 7.15–7.01 (m, 12H, ArH), 2.71–2.67 (m, 

4H, CH2), 1.96–0.80 (m, 6H, BH3) ppm; 13C{1H} NMR (100 MHz, C6D6): δ = 133.3 (P-

ArC), 132.6 (P-ArC), 132.2 (o-ArC), 132.1 (o-ArC), 131.3 (p-ArC), 131.2 (p-ArC), 128.8 

(m-ArC), 128.7 (m-ArC), 44.4 (CH2) ppm; 31P{1H} NMR (161.9 MHz, C6D6): δ = 70.8 (d, 

JP-B = 62.4 MHz) ppm; 11B{1H} NMR (128.4 MHz, C6D6): δ −37.6 ppm. FT-IR (selected 

frequencies): 3056 (Ar C-H), 2957 (C–H), 2375 (B–H), 1434 (P–C), 996 (P–N), 605 (P–

B) cm-1. Elemental analysis: (C34H46B2BaN2O2P2) (735.62). Calcd. C 55.51, H 6.30, N 

3.81; Found: C 54.92, H 6.02, N 3.31. 

4.5.8. Typical polymerisation experiment 

 

In a glove box under argon atmosphere, the catalyst was dissolved in the appropriate 

amount (1.0 ml) of dry toluene. -caprolactone in 1.0 ml of toluene was then added under 

vigorous stirring. The reaction mixture was stirred at room temperature for 5–20 minutes, 

after which the reaction mixture was quenched by addition of a small amount of (1.0 ml) 

methanol and then added acidified methanol little excess. The polymer was precipitated in 

excess methanol and it was filtered and dried under vacuum. The final polymer was then 

analysed by NMR and SEC. 

 

4.6 X-Ray crystallographic studies 

 

Single crystals of compounds 26–29 and 31 were grown from THF and n-pentane mixture 

at –40 ºC under inert atmosphere. The single crystal of 25-cis, 25-trans and 30 suitable for 

X-ray measurement were grown at room temperature. For compounds 26-29 and 31, a 

crystal of suitable dimensions was mounted on a CryoLoop (Hampton Research Corp.) 
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with a layer of light mineral oil and placed in a nitrogen stream at 150(2) K. However for 

compounds 25-cis, 25-trans and 30, the data were collected at 293 K. All measurements 

were made on an Agilent Supernova X-calibur Eos CCD detector with graphite-

monochromatic Cu-Kα (1.54184 Å) radiation. Crystal data and structure refinement 

parameters are summarised in Table 4.1-4.3. The structures were solved by direct methods 

(SIR92)28 and refined on F2 by full-matrix least-squares methods; using SHELXL-97.29 

Non-hydrogen atoms were anisotropically refined. H atoms were included in the 

refinement in calculated positions riding on their carrier atoms. For compounds 26 and 29, 

two carbon atoms which are part of two coordinated THF molecules are slighly thermally 

disorder and treated anisotrpoically. The function minimised was [w(Fo2- Fc2)2] (w = 1 / 

[2 (Fo
2) + (aP)2 + bP]), where P = (Max(Fo

2,0) + 2Fc2) / 3 with 2(Fo
2) from counting 

statistics.  The function R1 and wR2 were (||Fo| - |Fc||) / |Fo| and [w(Fo
2 - Fc

2)2 / 

(wFo4)]1/2, respectively. The Diamond-3 program was used to draw the molecule. 

Crystallographic data (excluding structure factors) for the structures reported in this paper 

have been deposited with the Cambridge Crystallographic Data Centre CCDC 987282-

987289.  
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4.7 Tables 

Table 4.2. Crystallographic data of compounds 25-cis, 25-trans and 26 

 

Crystal 25-cis 25-trans 26 

CCDC No. 987282 987283 987285 

Empirical formula C26H26N2P2Se2 C34H40N2O2P2Se2 C38H48CaN2O3P2Se2 

Formula weight                     586.35 728.54 840.72 

T (K)                           293(2) 293(2) 150(2)  

λ (Å)                         1.54184                  1.54184 1.54184  

Crystal system  Monoclinic,   Orthorhombic  Triclinic 

Space group        C 2/c P b c a P-1 

a  (Å)     23.2423(12) 16.5026(5) 9.8642(10) 

b  (Å)        12.0610(7) 11.4432(3) 13.4955(12) 

c  (Å)     9.2715(5) 18.3315(5) 16.8868(12) 

 90 90 106.675(7) 

 102.372(6) 90 101.705(8) 

 90 90 106.697(9) 

V  ( Å3)                        2538.7(2) 3461.77(17) 1960.4(3) 

Z  4 4 2 

Dcalc g cm-3 1.534 1.398 1.424 

µ (mm-1) 4.957 3.790 4.567 

F (000)                             1176 1488 864 

Theta range for data 

collection    

3.89 to 70.74 deg. 4.82 to 70.73 deg. 

 

2.87 to 65.00 deg. 

Limiting indices                   -28<=h<=27, 

-14<=k<=14, 

-8<=l<=11 

-15<=h<=20,  

-13<=k<=13,  

-17<=l<=22 

-11<=h<=11, 

-14<=k<=15, 

-19<=l<=14 

Reflections collected / 

unique     

4948 / 2396 

[R(int) =  0.0296] 

8871 / 3273  

[R(int) = 0.0251] 

12666 / 6651 [R(int) = 

0.0738] 

Completeness to theta 

= 71.25      

98.2 % 98.3 % 99.6 % 

Absorption correction              Multi-scan 

 

Multi-scan 

 

Multi-scan 

 

Max. and min. 

transmission         

1.000 and 0.634 1.000 and 0.659 1.000 and 0.179 

Refinement method                  Full-matrix  

least-squares on F2 

Full-matrix  

least-squares on F2 

Full-matrix  

least-squares on F2 

Data / restraints / 

parameters     

2396 / 0 / 145 3273 / 0 / 193 6651 / 0 / 433 

Goodness-of-fit on F2             1.041 1.080 1.104 

Final R indices 

[I>2sigma(I)]      

R1 =  0.0340,  

wR2 =  0.0859 

R1 =  0.0329, 

wR2 =  0.0888 

R1 =   0.0674, 

wR2 =    0.2624 

R indices (all data)               R1 =  0.0426,  

wR2 =  0.0938 

R1 =  0.0346, 

wR2 =  0.0903 

R1 =   0.0974, 

wR2 =    0.2936 

Largest diff. peak and 

hole        

0.417 and -0.48 

e.A-3 

0.475 and -0.458  

e.A-3 

0.164 and -1.222 

e.A-3 
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Table 4.3. Crystallographic data of compounds 27, 28 and 29 

 

Crystal 27 28 29 

CCDC No. 987287 987284 987289 

Empirical formula C38H48N2O3P2Se2Sr C38H48BaN2O3P2 

Se2 

C38H48MgN2O3P2 

Se2 

Formula weight                     888.26 937.97 824.95 

T (K)                           150(2)  150(2)  150(2) 

λ (Å)                         1.54184 1.54184                  1.54184 

Crystal system  Triclinic Triclinic,   Triclinic 

Space group        P-1 P-1 P-1 

a  (Å)     9.8678(11) 9.6600(5) 9.6053(11) 

b  (Å)        13.4550(14) 17.2064(10) 13.3939(14) 

c  (Å)     17.0933(17) 25.4384(14) 16.644(3) 

 106.687(9) 105.952(5) 107.905(13) 

 101.184(9) 90.358(4) 99.522(12) 

 106.567(10) 102.056(5)                                     105.115(10) 

V  ( Å3)                        1987.4(4) 3966.6(4) 1895.5(5) 

Z  2 4 2 

Dcalc g cm-3 1.484 1.571 1.445 

µ (mm-1) 5.028 10.938 3.701 

F (000)                             900 1872 848 

Theta range for data 

collection    

3.68 to 70.77 deg. 3.62 to 71.13 deg. 2.90 to 70.69  deg. 

Limiting indices                   -10<=h<=12, 

-16<=k<=16, 

-20<=l<=15 

-11<=h<=11, 

-21<=k<=18, 

-21<=l<=31 

-10<=h<=11 

-16<=k<=11 

-20<=l<=20 

Reflections collected / 

unique     

14710 / 7443 

 [R(int) = 0.0610] 

31367 / 14953  

[R(int) = 0.0555] 

13867 / 7151  

[R(int) = 0.0400] 

Completeness to theta 

= 71.25      

97.5 % 97.4 % 98.0 % 

Absorption correction              Multi-scan 

 

Multi-scan 

 

Multi-scan 

 

Max. and min. 

transmission         

1.000 and 0.586 1.000 and 0.564 1.000 and 0.849 

Refinement method                  Full-matrix  

least-squares on F2 

Full-matrix  

least-squares on F2 

Full-matrix  

least-squares on F2 

Data / restraints / 

parameters     

7443 / 0 / 433 14953 / 0 / 865 7151 / 0 / 433 

Goodness-of-fit on F2             1.277 1.088 1.045 

Final R indices 

[I>2sigma(I)]      

R1 =  0.0497, 

wR2 =  0.1484 

R1 =  0.0572,  

wR2 =  0.1524 

R1 = 0.0415, 

wR2 =  0.0979 

R indices (all data)               R1 =  0.0773, 

wR2 =  0.1581 

R1 =  0.0799,  

wR2 =  0.1694 

R1 = 0.0555, 

wR2 =   0.1080 

Largest diff. peak and 

hole        

0.553 and -0.617 

e.A-3 

1.769 and -1.288 

e.A-3 

0.872 and -0.605 

e.A-3 
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Table 4.4. Crystallographic data of compounds 30 and 31 

 

Crystal 30 31 

CCDC No. 987288 987286 

Empirical formula C26H32B2N2P2 C34H46B2BaN2O2 P2 

Formula weight                     456.10 735.62 

T (K)                           293(2) 150(2)  

λ (Å)                         1.54184 1.54184  

Crystal system  Monoclinic   Triclinic 

Space group        C c P-1 

a  (Å)     12.7050(6) 9.2659(9) 

b  (Å)        13.7069(7) 14.0750(13) 

c  (Å)     14.7809(7) 14.9320(15) 

 90 111.894(9) 

 91.387(4) 91.583(8) 

 90 101.013(8) 

V  ( Å3)                        2573.3(2) 1763.2(3) 

Z  4 2 

Dcalc g cm-3 1.177 1.386 

µ (mm-1) 1.640 9.855 

F (000)                             968 752 

Theta range for data 

collection    

4.75 to 70.77 deg. 

 

3.71 to 70.77deg. 

Limiting indices                   -15<=h<=15,  

-10<=k<=16,  

-15<=l<=18 

-8<=h<=11, 

-17<=k<=15, 

-18<=l<=15 

Reflections collected / 

unique     

4908 / 3221  

[R(int) = 0.0330] 

13627 / 6641  

[R(int) = 0.0755] 

Completeness to theta 

= 71.25      

97.9 % 97.7 % 

Absorption correction              Multi-scan 

 

Multi-scan 

Max. and min. 

transmission         

1.000 and 0.790 1.000 and 0.527 

Refinement method                  Full-matrix  

least-squares on F2 

Full-matrix  

least-squares on F2 

Data / restraints / 

parameters     

3221 / 2 / 292 6641 / 0 / 412 

Goodness-of-fit on F2             1.073 1.010 

Final R indices 

[I>2sigma(I)]      

R1 =  0.0456, 

wR2 =  0.1263 

R1 =   0.0527, 

wR2 =    0.1148 

R indices (all data)               R1 =  0.0491, 

wR2 =  0.1312 

R1 =   0.0768, 

wR2 =    0.1350 

Largest diff. peak and 

hole        

0.195 and -0.235 

e.A-3 

1.068 and -1.276  

e.A-3 
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Chapter 5 
 

Novel alkaline-earth metal complexes having chiral 

phosphinoselenoic amides and boranes in the coordination 

sphere: chiral alkaline earth metal complexes having M-Se 

direct bond (M = Mg, Ca, Sr, Ba) 
 

5.1 Introduction 
 

Efficient synthesis of optically active compounds is one of the most important tasks in 

synthetic organic chemistry. The most promising methodology is catalytic asymmetric 

synthesis using chiral metal center. Among many useful metal species, alkaline-earth 

metals have long been recognized as belonging to less toxic and less harmful metals.1-5 

However, besides the potential high utility of alkaline-earth species as homogeneous 

catalyst for ring-opening polymerization of various cyclic esters,6,7 polymerization of 

styrene and dienes,8 and hydroamination and hydrophosphination reactions of alkenes and 

alkynes,9 their use in synthetic organic chemistry, especially in asymmetric synthesis as 

chiral catalyst, has been quite limited compared with that of transition metal catalysts.1-5 

Recently it was revealed that several catalytic asymmetric carbon–carbon bond-forming 

and related reactions proceeded smoothly in high enantioselectivites using the chiral Ca, 

Sr, and Ba catalysts.10-20 Their strong Brønsted basicity and mild Lewis acidity are 

promising and attractive characteristics and can influence their catalytic activity as well as 

their chiral modification capability in a positive manner. Bearing these characteristic 

features in mind and our on-going interest on highly electropositive alkaline-earth metals, 

catalytic activity and vast potentiality of the field in asymmetric synthesis, we have planned  

to synthesize various novel chiral alkaline-earth metal complexes stabilized by chiral 

amidophosphine selenoids and boranes to explore the chemistry of alkaline-earth metals in 

asymmetric synthesis. To achieve our target compounds with high-purity and good yield, 

we have chosen  chiral phosphineamines HN(R-*CHMePh)(PPh2) and HN(S-

*CHMePh)(PPh2) were originally introduced by Brunner into coordination chemistry of 
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the late transition metals.21 Peter W. Roesky et al. introduced the same ligands into the 

zirconium chemistry,22 Group 3 and lanthanide chemistry.23 We have synthesized the 

corresponding enantiomeric pure amidophosphine-selenoids [HN(R-*CHMePh)P(Se)Ph2] 

(32a) and [HN(S-*CHMe Ph)P(Se)Ph2] (32b) in a similar fashion as we described in the 

Chapter 1 and we have successfully introduced into the alkaline-earth metal chemistry. 

These ligands typically coordinate through the amido nitrogen atom, and selenium atom 

and hence forming four membered mettallacycle with centre metal atom.    

In this chapter, detailed synthetic and structural features of the chiral phosphinoselenoic 

amide ligands {HN(R-*CHMePh)(P(Se)Ph2)}  (32a) and {HN(S-*CHMePh)(P(Se)Ph2)} 

(32b) and the corresponding homoleptic complexes of alkaline-earth metals of molecular 

composition [M{N(R-*CHMePh)P(Se)Ph2}2(THF)2] [M = Mg(34a), Ca(35a), Sr(36a) and 

Ba (37a)] and [M{N(S-*CHMePh)P(Se)Ph2}2(THF)2] [M = Mg (34b), Ca (35b), Sr (36b) 

and Ba (37b)] were described. In addition, we described the synthesis and structures of the 

chiral amidophosphine-borane ligands {HN(R-*CHMePh)(P(BH3)Ph2)}  (38a) and 

{HN(S-*CHMePh)(P(BH3)Ph2)} (38b) and the corresponding homoleptic barium 

complexes of composition  [Ba{N(R-*CHMePh)P(BH3)Ph2}2(THF)2] (39a) and [Ba{N(R-

*CHMePh)P(BH3)Ph2}2(THF)2] (39b) are described. 

5.2 Results and Discussion 
 

5.2.1 Synthesis of chiral phosphinoselenoicamides  

 

The chiral phosphinoselenoicamides {HN(R-*CHMePh)(Ph2P(Se)} (32a) and  {HN(S-

*CHMePh)(Ph2P(Se)}  (32b) were prepared in enantiomeric pure forms in a similar fashion 

as [Ph2P(Se)NHCHPh2] (1c) and [Ph2P(Se)NHCPh3] (2c) were synthesised in quantitative 

yield by the treatment of the respective 1,1-diphenyl-N-(1-phenylethyl)phosphinamines  

{HN(R-*CHMePh)(Ph2P)} and {HN(S-*CHMePh)(Ph2P)} with excess elemental 

selenium in 1:1.2 molar ratio at ambient temperature in THF solvent (Scheme 5.1).24,25 

Both enantiomeric pure compounds  32a and 32b have been characterized by using 

standard analytical/spectroscopic techniques and the solid-state structures were established 

by single crystal X-ray diffraction analysis.   
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Scheme 5.1. Synthesis of chiral-phosphinoselenoicamide ligands. 

 

The enantiomeric pure compounds 32a and 32b shows strong absorption at 559 cm-1 in 

their FT-IR spectrum can be assigned as characteristic P=Se bond stretching frequency and 

it is comparable with the previously observed values 568 cm-1 for [Ph2P(Se)NHCHPh2] 

(1c), 599 cm-1 for [Ph2P(Se)NHCPh3] (2c) (See Chapter 2) and 535 cm-1 for 

[Ph2P(Se)NHC(CH3)3] reported by our group.26 1H NMR spectrum of both the enantiomers 

(32a and 32b)  shows doublet resonance signals at  1.42 ppm (JH-H = 6.76 Hz)  and 

multiplates at 4.52 ppm corresponds to the methyl protons and CH proton attached to the 

 position of amine nitrogen atom respectively. A broad resonance signal at  2.57 ppm 

represents the amine N-H proton of the ligand moiety. These values are observed as slightly 

downfield shifted when compared to free chiral phosphineamine [Ph2PNH{R-*CHMePh}] 

or [Ph2PNH{S-*CHMePh}] due to addition of the selenium atom on to the phosphorous 

atom.21a The solid state structures of 32a and 32b were confirmed by single crystal X-ray 

diffraction analysis. The details of the structural parameters are given in Table 5.1. The 

solid-state structures of both enantiomers and selected bond lengths and bond angles were 

shown in Figure 5.1. From the molecular structure of two compounds, it is clear that both 

enantiomers are non-superimposable mirror images and crystalizes in the triclinic space 

group P1 having one molecule in the unit cell. The P=Se bond distance is found to be 

2.1219(15) Å (for 32a) and 2.126(2) Å (for 32b) are in good agreement with values 

reported by us previously: 2.1019(8) Å for [Ph2P(Se)NH(2,6-Me2C6H4)],
25 2.1086(12) Å 

for [Ph2P(Se)NHCHPh2] (1c), 2.1166(8) Å for [Ph2P(Se)NHCPh3] (2c) and 2.1187(8) Å 

for [Ph2P(Se)NHC(CH3)3]. P1-N1 distance (1.671(5) for 32a and 1.645(5) Å for 32b) and 

C1-N1 distance (1.454(7) for 32a and 1.470(9) Å for 32b) are also similar to those of 

phosphinoselenoicamides [Ph2P(Se)NHR], which we previously reported: P1–N1 1.656(3) 

Å, C1–N1 1.441(4) Å for R = 2,6-Me2C6H4, P1–N1 1.642(4) Å, C1–N1 1.459 (6) Å for R 
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= CHPh2, P1–N1 1.664(2) Å, C1–N1 1.496(4) Å for R = CPh3 and P1-N1 1.655(3) Å, C1-

N1 1.494(4) Å).(See Chapter 1) 

 

 

 

 

 

 

 

 

 

 

Figure 5.1. Solid state structures of ligands 32a and 32b. Selected bond lengths (Å) and 

bond angles (º):  

32a: P1-Se1 2.1219(15), P1-N1 1.671(5), P1-C9 1.818(6), P1-C15 1.815(6), C1-N1 

1.454(7), C1-C2 1.551(10), C1-C3 1.517(9), N1-P1-Se1 116.4(2), C9-P1-C15 106.5(3), 

C9-P1-Se1 111.0(2), C15-P1-Se1 112.8(2), C9-P1-N1 105.7(3), C15-P1-N1 103.6(3), P1-

N1-C1 120.8(4), N1-C1-C2 110.7(6), N1-C1-C3 112.4(5), C2-C1-C3 109.7(5).  

32b: P1-Se1 2.126(2), P1-N1 1.645(5), P1-C9 1.808(7), P1-C15 1.802(7), C1-N1 1.470(9), 

C1-C2 1.532(11), C1-C3 1.521(10), N1-P1-Se1 116.0(2), C9-P1-C15 106.5(3), C9-P1-Se1 

110.5(3), C15-P1-Se1 112.9(3), C9-P1-N1 106.2(3), C15-P1-N1 104.1(3), P1-N1-C1 

121.5(5), N1-C1-C2 110.4(7), N1-C1-C3 111.9(6), C2-C1-C3 110.2(6) 

5.2.2. Chiral phosphineamidoselenoicamide potassium complexes 

 

The potassium salt of molecular composition [K{N(R-*CHMePh)(Ph2P(Se)}{THF}n]
 

(33a) or [K{N(S-*CHMePh)(Ph2P(Se)}{THF}n]
 (33b) were readily prepared by the 

reaction of compound 32a or 32b and potassium bis(trymethylsilyl)amide in THF solvent 

through the elimination of volatile bis(trimethylsilyl)amine (see Scheme 5.2).24 The 

complexes 33a-b were characterized by spectroscopic and analytical techniques. However 

Mirror 32a (R-isomer) 32a (S-isomer) 
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crystals suitable for X-ray diffraction analysis were not obtained due to high solubility of 

the compound (33a,b) in THF solvent. In FT-IR spectra, compound (33a,b) showed  a 

strong absorption band at 570 cm-1 which can be best assigned to characteristic P=Se bond 

stretching and it is in good agreement with our previously described potassium salts of 

phosphinoselenoicamides:  569 cm-1 for  [{(THF)2KPh2P(Se)N(CHPh2)}2] (See Chapter 2) 

and 570 cm-1 for [K(THF)2{Ph2P(Se)N(CMe3)}]n.[26] 31P{1H} NMR spectra of 

compounds (33a,b) show a sharp singlet resonace signal at  48.6 ppm, which is upfield 

shifted  to that of ligand moiety (56.1 ppm), is a clear evidence for the formation of 

potassium salt. The multiplet signals in the rigion of 3.50-3.53 ppm and 1.37-1.40 ppm in 

1H spectra also confirm the coordinated THF molecules present in the complex 33a,b. One 

set of signals were observed for compound (33a,b) in the 1H and 13C{1H} NMR spectra 

similar to free ligand moiety due to the dynamic behaviour of the complexes in the solution 

state.  

 

Scheme 5.2. Synthesis of potassium salts of chiral phosphinoselenoicamides. 

5.2.3. Synthesis of alkaline-earth metal complexes 

  

The enantiomeric pure chiral alkaline-earth metal complexes of composition 

[(THF)2M{Ph2P(Se)N(R-*CHMePh}2] (M = Mg (34a), Ca (35a), Sr (36a) and Ba (37a)) 

and [(THF)2M{Ph2P(Se)N(S-*CHMePh}2] (M = Mg (34b), Ca (35b), Sr (36b) and Ba 

(37b)) were prepared by two synthetic methods. In the first method, the ligands 32a or 32b 

were treated with alkaline-earth metal bis(trimethylsilyl)amides [M{N(SiMe3)2}2(THF)n] 

(M = Ca, Sr and Ba) in 2:1 molar ratio at ambient temperature in THF solvent through the 

elimination of volatile trimethylsilylamine (see Scheme 5.3).24 The second method 

involves a salt metathesis reaction in which alkaline-earth metal diiodies MI2 (M = Mg, 
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Ca, Sr and Ba) are treated with potassium salt [K{N(R-*CHMePh)(Ph2P(Se)}{THF}n] 

(33a) or [K{N(S-*CHMePh)(Ph2P(Se)}{THF}n] (33b) in 1:2 molar ratio (which can be 

obtained in situ by reaction involving potassium bis(trimethylsilyl)amide and chiral 

phosphinoselenoicamides 32a or 32b) at ambient temperature in THF solvent (see Scheme 

5.3).24 The compounds 35a,b-37a,b were recrystallized from THF/n-pentane mixture 

solvents in 1:2 ratio at -40º C. The solid-state structures of all the compounds 35a,b-37a,b 

were established by single crystal X-ray diffraction analysis and fully characterized by 

standard analytical/spectroscopic techniques.  

                             

 

   

 

 

    

       

           Scheme 5.3. 

Synthesis of alkaline-earth metal complexes of chiral phosphinoselenoic amides. 

A strong absorption at 562 cm−1 for 34a,b, 559 cm−1 for 35a,b, 552 cm−1 for 36a,b and 553 

cm−1 for 37a,b in FT-IR spectra indicates the evidence of P=Se bond into the each metal 

complex. The resonance of the methine proton (CH)  to amido nitrogen were observed as 

multiplates ( 4.58-4.62 ppm for 34a,b, 4.26-4.34 ppm for 35a,b, 4.47-4.55 ppm for 36a,b 

and 4.21-4.29 ppm for 37a,b) in the 1H NMR spectra of the diamagnetic complexes 34–37 

and are unaffected due to complex formation. Doublet signals at  1.86 for 34a,b, 1.68 for 

35a,b, 1.20 for 36a,b and 1.48 ppm for 37a,b were observed with coupling constants of 

range JH-H = 6.20-6.85 Hz in the 1H NMR spectra can be assigned to methyl protons (-CH3) 

group attached to the chiral carbon atom in each complex.  In 31P{1H} NMR spectra, 

complexes 34a,b showed sharp resonance signal at 45.1 ppm which is upfield shifted 

compared to free ligands 32a or 32b, whereas the complexes 35a,b–37a,b showed one 

resonance signal at  68.9 ppm which  is significantly downfield shifted compared to that 
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of free ligands 32a or 32b ( 56.1 ppm) upon coordination of calcium, strontium or barium 

atom onto the selenium atom of the chiral phosphinoselenoicamido ligand. This can be 

endorsed because of high electropositive character of heavier alkaine-earth metals 

compared to magnesium.27 Both the phosphorus atoms present in the two 

{Ph2P(Se)N(*CHMePh)}− moieties are chemically equivalent. The structures of all the 

complexes 35a,b-37a,b were confirmed by the single crystal X-ray diffraction analysis in 

the solid-state. The details of the structural parameters are given in the Table 5.1-5.3. As a 

result of the similar ionic radii of the alkaline-earth metals, the solid state structures of 

compounds 35a-37a are isostructural, whereas 35b-37b forms the corresponding 

enantiomers (Figures 5.2-5.4). All the compounds crystallize in the monoclinic space group 

P21 having two molecules in the unit cell. The coordination polyhedron is formed by the 

two {N(*CHMePh)(P(Se)Ph2)}
- ligands and two THF molecules. The 

{N(*CHMePh)(P(Se)Ph2)}
- ligand is coordinated to the metal atom in a similar fashion to 

{Ph2P(Se)N(CHPh2)}
- ligand as we described in chapter 2. Thus, the 

{N(*CHMePh)(P(Se)Ph2)}
- ligand coordinates to the center metal atom through amido 

nitrogen atom (N) and the selenium  atom (Se) forming a four membered mettallacycle M-

Se-P-N. In contrast to our previous results discrided in chapter 2 such as 

[M{Ph2P(Se)NCHPh2}2(THF)2] (M = Ca, Sr and Ba) and  

[M{Ph2P(Se)NC(CH3)3}(THF)2] (M = Mg and Ca) reported by our group,26 the compounds 

35a,b-37a,b are non-centrosymmetric in the solid-state and the orientation of two ligand 

moieties are almost perpendicular to each other.  

In the calcium complexes 35a and 35b, the central calcium atom in each case adopts a 

distorted octahedral geometry due to coordination from two {N(*CHMePh)P(Se)Ph2}
¯  

moieties and two THF molecules. Each ligand {N(R-*CHMePh)P(Se)Ph2}
¯ (for 35a) and 

{N(S-*CHMePh)P(Se)Ph2}¯ (for 35b) coordinates through the amido nitrogen atom and 

one selenium atom. Thus the {N(*CHMePh)P(Se)Ph2}
¯  ligand group can be considered 

as pseudo-bidentate ligand. The Ca–N distances (2.441(3) and 2.426(3) Å) for 35a and 

(2.444(5) and 2.430(5) Å) for 35b are in good agreement with our structurally characterized 

calcium complexes: 2.479(5) Å for [Ca{Ph2P(Se)NCHPh2}2(THF)2] (9) (Chapter 2), 

2.4534(14) Å for [Ca{Ph2P(BH3)NCHPh2}2(THF)2] (22) (Chapter 3), 2.451(3) Å for 

[Ca{Ph2P(Se)NC(CH3)3}2(THF)2]
26 and 2.386(8) Å for [Ca{C2H4(N- Ph2P=Se)2}(THF)3] 
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(26) (Chapter 4). The observed calcium-nitrogen bond distances  are slightly elongated 

compare to the calcium–nitrogen covalent bond (2.361 (2) and 2.335(2) Å) reported for 

[Ca(Dipp2DAD)(THF)4] (Dipp2DAD = N,N′-bis(2,6-diisopropylphenyl)-1,4-diaza-1,3-

butadiene in the literature.28 The observed Ca–Se bond distances of 3.0303(9) and 

3.0794(9) Å  for 35a and 3.0327(15) and 3.0817(14) Å for 35b were slightly elongated but 

within the range of the reported Ca–Se distance of 2.9889(8) Å for structurally 

characterized complex  [Ca{Ph2P(Se)NCHPh2}2(THF)2] (9) and 2.9619(3) Å for the 

complex [Ca{Ph2P(Se)NC(CH3)3}(THF)2]
26 and 3.252(2) Å for the complex [Ca{C2H4(N- 

Ph2P=Se)2}(THF)3] (26) we have described in the Chapters 2 and 4 respectively. In the 

literature, we have found 2.945(1) Å reported for [(THF)2Ca{(PyCH)(Se)PPh2}2],
29 2.93 

Å to 3.00 Å reported for [(THF)4Ca(SeMes′)2] and 2.958(2) Å to 3.001(2) Å reported for 

[(THF)2Ca(Se2PPh2)2].
30,31  The considerably elongated Ca-P distance of [3.2960(13), 

3.3013(11) Å in 35a and 3.295(2), 3.3069(19) Å in 35b], were greater than the sum of the 

covalent radii of calcium and phosphorus (3.07 Å), indicates that calcium and phosphorus 

have no interaction between themselves. The P–Se distances (2.1444(10), 2.1389(10) Å 

for 35a and 2.1443(17), 2.1420(16) Å for 35b) are slightly elongated but within the same 

range as that of free ligand 32a (2.1219(15) Å) indicating no impact on P–Se bond upon 

coordination of the calcium atom to the selenium atom. P-N distances (1.603(3), 1.607(3) 

Å for 35a and 1.611(5), 1.602(5) Å for 35b) are slightly shortened compared to free ligand 

32a (1.671(5) Å). The central calcium atom is additionally ligated by two THF molecules 

having Ca-O distance of 2.400(3), 2.444(3) Å for 35a and 2.440(5), 2.394(5) Å for 35b to 

adopt the calcium atom distorted octahedron geometry. Thus two four-membered 

metallacycles Ca1-Se1-P1-N1 and Ca1-Se2-P2-N2 are formed due to ligation of two ligand 

moieties via selenium and amide nitrogen atoms. The plane containing N1, P1, Se1 and 

Ca1 makes a dihedral angle of 82.02º (for 35a) and 82.38º (for 35b) with the plane having 

N2, P2, Se2 and Ca1 indicating that two four-membered mettallacycles are almost 

perpendicular to each other. O1-Ca1-O2 bond angle is found to be 79.03(13)º for 35a and 

78.8(2)º for 35b. Thus the enantiomeric pure compounds 35a and 35b are known to be 

fully structurally characterized calcium complexes and best of our knowledge these are the 

first examples of chiral calcium complexes having calcium-selenium direct bond.  
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Figure 5.2. Solid state structures of calcium complexes 35a and 35b. Hydrogen atoms are 

omitted for clarity except methyl and methine hydrogen atoms. Selected bond lengths (Å) 

and bond angles (º):  

35a: P1-Se1 2.1444(10), P1-N11.603(3), P1-C9 1.829(4), P1-C15 1.831(4), C1-

N11.489(5), C1-C2 1.536(6), C1-C3  1.523(5), P2-Se2 2.1389(10), P2-N2 1.607(3), P2-

C35 1.840(4), C21-N2 1.488(4), C21-C22 1.527(5), C21-C23 1.531(6), Ca1-Se1 

3.0303(9), Ca1-N1 2.441(3), Ca1-O1 2.400(3), Ca1-O2 2.444(3), Ca1-Se2 3.0794(9), Ca1-

N2 2.426(3), N1-P1-Se1108.33(12), C1-N1-P1 119.8(2), C2-C1-N1111.9(3), C9-P1-

C1599.44(17), N1-Ca1-Se166.88(8), O1-Ca1-O2 79.03(13), N2-Ca1-Se2 66.15(7), N2-

P2-Se2 108.42(12), C21-N2-P2 116.9(3), N1-Ca1-N2 104.74(11), Se1-Ca1-Se2 162.60(3). 

35b: P1-Se1 2.1443(17), P1-N11.611(5), P1-C9 1.835(6), P1-C15 1.825(6), C1-N1 

1.482(8), C1-C2 1.527(9), C1-C3 1.526(8), P2-Se2 2.1420(16), P2-N2 1.602(5), P2-C35 

1.838(7), C21-N2 1.498(7), C21-C22 1.533(8), C21-C23 1.510(10), Ca1-Se1  3.0327(15), 

Ca1-N1 2.444(5), Ca1-O1 2.440(5), Ca1-O2 2.394(5), Ca1-Se2 3.0817(14), Ca1-N2 

2.430(5), N1-P1-Se1 108.3(2), C1-N1-P1 119.8(4), C2-C1-N1  111.9(5), C9-P1-C15 

Mirror 35a (R-isomer) 35b (S-isomer) 
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99.8(3), N1-Ca1-Se1 66.92(13), O1-Ca1-O2 78.8(2), N2-Ca1-Se2 66.19(11), N2-P2-Se2 

108.7(2), C21-N2-P2 117.1(4), N1-Ca1-N2  104.37(18), Se1-Ca1-Se2 162.75(5). 

The strontium complex 36a is isostructural to calcium complex 35a due to similar ionic 

radii of the metal centers (Ca2+ = 1.00 Å; Sr2+ = 1.18 Å for CN = 6)27 and the strontium 

complex 36b forms the corresponding enantiomer (see Figure 5.3). The details of the 

structural parameters are given in the Table 5.2 and the solid-state structures of strontium 

complexes 36a and 36b are shown in the Figure 5.3. In the enantiomeric pure strontium 

complexes 36a and 36b the coordination polyhedron was formed by the two monoanionic 

{N(*CHMePh)P(Se)Ph2}
¯ ligands and two THF molecules. Each ligand 

{N(*CHMePh)P(Se)Ph2}
¯ coordinates through the amido nitrogen atom and one selenium 

atom. The central strontium atom adopts a distorted octahedral geometry due to 

coordination from two {N(*CHMePh)P(Se)Ph2}
-  moieties and two THF molecules. The 

Sr–N distances [(2.570(7) and 2.542(7) Å ) for 36a and (2.564(5) and 2.569(5) Å) for 36b] 

well fit with our previously reported strontium-nitrogen bond distances: 2.609(3) Å for the 

complex [Sr{Ph2P(Se)NCHPh2}2(THF)2] (10) and 2.591(4) Å for 

[Sr{Ph2P(BH3)NCHPh2}2(THF)2]  (23) and 2.540(5) Å for [Sr{C2H4(NPh2P=Se)2} 

(THF)3] (27) (See Chapter 2-4). The Sr–Se bond distances of 3.1726(10) and 3.2141(10) 

Å for 36a, 3.2151(8) and 3.1722(9) Å for 36b are observed, which are quite long, compared 

to the calcium analogue [3.0327(15) to 3.0817(14) Å] due to the larger ionic radius of the 

Sr2+ ion. The observed Sr–Se distance in the  compounds 36a and 36b are within the range 

of Sr–Se distances (3.138(7) to 3.196(9) Å) of structurally characterized complex 

[(THF)3Sr(Se2PPh2)2] published by Westerhausen and coworkers32b and  3.066(1) Å for 

the complex [Sr{Se(2,4,6-tBu3C6H2)}2(THF)4][32a] and 3.1356(9) Å for the complex 

[Sr{Ph2P(Se)NCHPh2}2(THF)2]  (10) and 3.2788(10) Å for the complex 

[Sr{C2H4(NPh2P=Se)2}(THF)3] (27) reported by us (See chapter 2 & 4). The considerably 

elongated Sr-P distance of [3.449(2), 3.4586(19) Å in 36a and 3.4520(17), 3.4539(15) Å 

in 36b], were greater than the sum of the covalent radii of strontium and phosphorus (3.25 

Å), indicates that strontium and phosphorus have no interaction between themselves. The 

central strontium metal ion is additionally ligated by two THF molecules to adopt the 

distorted octahedron geometry around the Sr2+ ion. Therefore, two four-membered 

metallacycles Sr1-Se1-P1-N1 and Sr1-Se2-P2-N2 are formed due to ligation of two ligand 
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moieties via selenium and amido nitrogen atoms. The plane containing N1, P1, Se1 and 

Sr1 makes a dihedral angle of 81.13º (for 36a) and 81.14º (for 36b) with the plane having 

N2, P2, Se2 and Sr1 indicating that two four-membered mattellacycles are almost 

perpendicular to each other as we observed in the calcium case (35a and 35b). Thus the 

enantiomeric pure compounds 36a and 36b are known to be new and best of our knowledge 

these are the first examples for chiral strontium complexes having strontium-selenium 

direct bond. 

 

 

     

 

 

 

 

 

 

 

 

 

Figure 5.3. Solid state structures of strontium complexes 36a and 36b. Hydrogen atoms 

are omitted for clarity except methyl and methine hydrogen atoms. Selected bond lengths 

(Å) and bond angles (º):  

36a: P1-Se1 2.149(2), P1-N1 1.611(7), P1-C9 1.829(9), P1-C15 1.839(8), C1-N1 

1.492(10), C1-C2 1.550(12), C1-C3 1.550(12), P2-Se2 2.153(2), P2-N2 1.607(7), P2-C35 

1.838(8), C21-N2 1.492(10), C21-C22 1.545(11), C21-C23 1.528(12), Sr1-Se1 

3.1726(10), Sr1-N1 2.570(7), Sr1-O1 2.579(6), Sr1-O2 2.553(6), Sr1-Se2 3.2141(10), Sr1-

N2 2.542(7), N1-P1-Se1 108.5(3), C1-N1-P1 119.1(5), C2-C1-N1 110.2(7), C9-P1-C15 

103.1(4), N1-Sr1-Se1 63.56(15), O1-Sr1-O2 78.2(2), N2-Sr1-Se2 63.16(14), N2-P2-Se2 

108.5(3), C21-N2-P2 118.9(5), N1-Sr1-N2 103.6(2), Se1-Sr1-Se2 166.47(3).  

Mirror 36a (R-isomer) 36b (S-isomer) 
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36b: P1-Se1 2.1537(17), P1-N1 1.597(5), P1-C9 1.825(7), P1-C15 1.826(6), C1-N1 

1.480(7), C1-C2 1.529(8), C1-C3 1.528(9), P2-Se2 2.1459(18), P2-N2 1.604(5), P2-C35 

1.829(6), C21-N2 1.504(8), C21-C22 1.535(10), C21-C23 1.503(9), Sr1-Se1  3.2151(8), 

Sr1-N1 2.564(5), Sr1-O1 2.585(5), Sr1-O2 2.544(4), Sr1-Se2 3.1722(9), Sr1-N2 2.569(5), 

N1-P1-Se1 109.1(2), C1-N1-P1 120.6(4), C2-C1-N1  109.3(5), C9-P1-C15 102.3(3), N1-

Sr1-Se1 63.06(11), O1-Sr1-O2 78.24(15), N2-Sr1-Se2 63.44(11), N2-P2-Se2 108.59(19), 

C21-N2-P2 118.9(4), N1-Sr1-N2   103.50(16), Se1-Sr1-Se2 166.41(3). 

Similar to calcium and strontium complexes (35a,b-36a,b), the analogous chiral barium 

complexes 37a and 37b were also crystalize in monoclinic space group P21  having two 

molecules in the unit cell. The details of the structural parameters are given in the Table 

5.3. Figure 5.4 shows the both enantiometric forms of the barium complexes 37a and 37b 

along with selected bond anlges and selected bond lengths. The coordination sphere of the 

central barium ion of each enantiomer was occupied by the two monoanionic 

{N(*CHMePh)P(Se)Ph2}
¯ ligand moieties where each ligand coordinating via amido 

nitrogen and one selenium atom and two THF molecules coordinating through oxygen 

atoms. Therefore, the central Ba2+ ion in the each enantiomer is having distorted octahedral 

geometry. The Ba-N bond distances of 2.693(4) and 2.679(5) Å for 37a and 2.693(6) and 

2.672(7) Å for 37b were observed which are quite long when compared to analogous 

calcium (2.441(3) to 2.430(5) Å) and strontium (2.542(7) to 2.570(7) Å) complexes. The 

observed Ba-N distances are similar to our previously reported values 2.777(6) and 

2.778(6) Å for [Ba{Ph2P(Se)NCHPh2}2(THF)2] (11), 2.733(6) Å for 

[Ba{Ph2P(BH3)NCHPh2}2(THF)2] (24), (2.657(5) and 2.654(6) Å) for  

[Ba{C2H4(NPh2P=Se)2}(THF)3] (28) (See Chapters 2-4), (2.774(5) Å, 2.790(5) and 

2.789(5) Å) for polymeric ate complex of  [K(THF)Ba{Ph2P(Se)N(CMe3)}3]n reported by 

us26 and 2.706(4) Å for [Ba((Dip)2DAD)(μ-I)(THF)2]2 reported in the literature.28 The Ba-

Se bond distances of [3.3181(6) and 3.3524(7) Å for 37a and 3.3172(9) and 3.3537(9) Å 

for 37b] were observed and these are within the range of the Ba–Se distances [3.366(1) Å 

and 3.324(1) Å] for the complex [{BaI(4,5-(P(Se)Ph2)2tz)}2(thf)7] reported by Raymundo 

Cea-Olivares et al.,33 3.2787(11) Å for [Ba(THF)4(SeMes*)2] (Mes* = 2,4,6-t-Bu3C6H2) 

and 3.2973(3) Å for [{Ba(Py)3(THF)(SeTrip)2}2] (Trip = 2,4,6-iPr3C6H2) reported by 

Ruhlandt-Senge et al.,34 [3.3553(10) and 3.3314(10) Å] for 
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[Ba{Ph2P(Se)NCHPh2}2(THF)2], 3.3842(8)Å for [{2-N(PPh2Se)2}2Ba(THF)3] and 

[3.3274(7) Å, 3.3203(7) Å (See Chapterts 2 & 4)  and 3.3518(7) Å] for 

[K(THF)Ba{Ph2P(Se)N(CMe3)}3]n previously reported by us.26  

  

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4. Solid state structures of barium complexes 37a and 37b. Hydrogen atoms are 

omitted for clarity except methyl and methine hydrogen atoms. Selected bond lengths (Å) 

and bond angles (º):  

37a: P1-Se1 2.1447(15), P1-N1 1.597(5), P1-C9 1.833(5), P1-C15 1.832(6), C1-N1 

1.483(7), C1-C2 1.533(9), C1-C3 1.511(8), P2-Se2 2.1514(15), P2-N2 1.607(5), P2-C35 

1.823(7), C21-N2 1.486(6), C21-C22 1.535(8), C21-C23 1.515(9), Ba1-Se1 3.3181(6), 

Ba1-N1 2.693(4), Ba1-O1 2.690(5), Ba1-O2 2.719(5), Ba1-Se2 3.3524(7), Ba1-N2 

2.679(5), N1-P1-Se1 109.88(17), C1-N1-P1 120.0(4), C2-C1-N1 111.3(5), C9-P1-C15 

103.1(2), N1-Ba1-Se1 60.56(10), O1-Ba1-O2 78.94(19), N2-Ba1-Se2 60.19(9), N2-P2-

Se2 109.23(18), C21-N2-P2 120.6(4), N1-Ba1-N2 103.52(15), Se1-Ba1-Se2 168.708(19).   

37b: P1-Se1 2.144(2), P1-N1 1.601(6), P1-C10 1.826(8), P1-C16 1.837(7), C1-N1 

1.481(10), C1-C3 1.534(11), C1-C4 1.511(11), P2-Se2 2.150(2), P2-N2 1.612(7), P2-C35 

1.826(9), C2-N2 1.486(9), C2-C22 1.530(11), C2-C23 1.523(12), Ba1-Se1 3.3172(9), Ba1-

Mirror 37a (R-isomer) 37b (S-isomer) 
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N1 2.693(6), Ba1-O1 2.729(7), Ba1-O2 2.696(7), Ba1-Se2 3.3537(9), Ba1-N2 2.672(7), 

N1-P1-Se1 109.9(2), C1-N1-P1 119.7(5), C3-C1-N1 110.8(6), C10-P1-C16 102.9(3), N1-

Ba1-Se1 60.64(13), O1-Ba1-O2 79.2(3), N2-Ba1-Se2 60.23(14), N2-P2-Se2 109.1(3), C2-

N2-P2 120.0(6), N1-Ba1-N2 103.4(2), Se1-Ba1-Se2 168.72(3). 

The considerably elongated Ba-P distance of [3.5838(13), 3.5959(15) Å in 37a and 

3.5837(18), 3.595(2) Å in 37b], were greater than the sum of the covalent radii of barium 

and phosphorus (3.34 Å), indicates that barium and phosphorus have no interaction 

between themselves. The Ba2+ ion is additionally ligated by two THF molecules to adopt 

the distorted octahedron geometry around the Ba2+ ion. Therefore, two four-membered 

metallacycles Ba1-Se1-P1-N1-Ba1 and Ba1-Se2-P2-N2-Ba1 are formed due to ligation of 

two ligand moieties via selenium and amide nitrogen atoms. The plane containing N1, P1, 

Se1 and Ba1 makes a dihedral angle of 81.37º (for 37a) and  81.29º (for 37b) with the plane 

having N2, P2, Se2 and Ba1 indicating that two four-membered mattellacycles are almost 

perpendicular to each other as we observed in the case of calcium (35a and 35b) and 

strontium (36a and 36b). Thus the enantiomeric pure compounds 37a and 37b are known 

to be new class of alkaline-earth metal molecules and best of our knowledge these are the 

first examples for chiral barium complexes having barium-selenium direct bond. 

5.2.4. Chiral amidophosphine-borane ligands 

 

In the Chapter 3 & 4, we have introduced an monoanionic amidophosphine-borane 

{Ph2P(BH3)NR}- (R = CHPh2 and CPh3) and dianionic bis(amidodiphenylphosphine-

borane) {Ph2P(BH3)NCH2CH2NP(BH3)Ph2}
2- as a chelating ligand and exploited their 

chelating behaviour in alkali metal and alkaline-earth metal chemistry. The monoanionic 

amidophosphine-borane {Ph2P(BH3)NR}¯ act as bidentate ligand and coordinates to the 

metal ions through amido nitrogen and borane hydrogens. Whereas bis(amido-

diphenylphosphine-borane) would form a dianion and act as a tetradentate ligand towards 

metal ion. To extend our research work on amidophosphine-boranes and demonstrate the 

versatility of the amidophosphine-boranes mainly in the alkaline-earth metals, here we 

have described the synthesis and structures of chiral amidophosphine-borane ligands 

{HN(R-*CHMePh)(P(BH3)Ph2)} (38a) and {HN(S-*CHMePh)(P(BH3)Ph2)} (38b) and 

the corresponding homoleptic barium complexes [Ba{N(R-*CHMePh)-
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P(BH3)Ph2}2(THF)2] (39a) and [Ba{N(R-*CHMePh)P(BH3)Ph2}2(THF)2] (39b) to  

demonstrate our concept of versatility of the amidophosphine backbone. The chiral 

amidophosphine-borane ligands {HN(R-*CHMePh)(P(BH3)Ph2)}  (38a) and {HN(S-

*CHMePh)(P(BH3)Ph2)} (38b) was isolated as a white precipitate from the reaction 

between chiral phosphineamines {HN(R-*CHMePh)(PPh2)} and {HN(S-

*CHMePh)(PPh2)} and the borane adduct [H3BSMe2] at room temperature in a 1:1 molar 

ratio in toluene as the solvent (see Scheme 5.4).24 

 

              

 

Scheme 5.4. Synthesis of chiral amidophosphine-boranes. 

The formation of the chiral amidophosphine-borane ligands 38a and 38b from {HN(R-

*CHMePh)(PPh2)} and {HN(S-*CHMePh)(PPh2)} can easily be followed by 1H NMR 

spectroscopy measured in CDCl3, since additional resonances for the two chemically 

equivalent borane (BH3) groups attached to the phosphorus atoms appear as a broad signal 

at  0.96 ppm. In the 1H NMR spectra, the resonances of the amidophosphine moiety in 

ligand 38a,b are only slightly shifted in comparison to the starting material with those 

reported for the phosphineamines.21a The multiplet signals at  4.47-4.37 ppm can be 

assigned to the methine proton (–CH)  to amino nitrogen of ligand 38a,b. Another broad 

signal at  2.48 ppm corresponding to the NH proton of ligand 38a,b is observed and also 

shifted to the higher field (3.24 ppm) compared to 32a,b. Ligand 38a,b shows a doublet 

signal at  1.40 ppm with coupling constant of JH-H = 6.76 Hz corresponds to the methyl (–

CH3) protons of the ligand 38a,b. In the 31P{1H} NMR spectra, the doublet resonance 

signal at  54.9 ppm with a coupling constant of JP-B = 80.95 Hz can be attributed  to 

coupling of phosphorus atom with adjacent boron atom. In 11B{1H} NMR spectrum, the 
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broad signal at –37.9 ppm can be assigned to the BH3 group attached to the phosphorus 

atom. This observation is in agreement with our previously reported values (See Chapter 3 

and 4). In the FT-IR spectra, a characteristic signal for P–B bond stretching at 608 cm-1 

was observed along with another characteristic signal at 2379 cm-1 assigned to the B–H 

stretching frequency. These values are in agreement with those reported in literature. (See 

Chapter 3 and 4). 

 

 

 

 

 

 

 

Figure 5.5. Solid state structures of two enantiomers 38a and 38b. Selected bond lengths 

(Å) and bond angles (º):  

38a: P1-B1 1.915(5), P1-N1 1.638(3), P1-C9 1.817(3), P1-C15 1.818(4), C1-N1 1.466(4), 

C1-C2 1.531(5), C1-C3 1.530(4), B1-H1A 0.9600, B1-H1B 0.9600, B1-H1C 0.9600, N1-

P1-B1 113.73(19), C9-P1-C15 104.54(14), C9-P1-B1 110.97(19), C15-P1-B1 112.8(2), 

C9-P1-N1 109.58(16), C15-P1-N1 104.62(16), P1-N1-C1 125.8(3), N1-C1-C2 109.3(3), 

N1-C1-C3 109.8(3), C2-C1-C3 114.3(3), H1A-B1-H1B 109.5. 

38b: P1-B1 1.892(3), P1-N1 1.653(2), P1-C9 1.802(3), P1-C20 1.816(2), C1-N1 1.478(3), 

C1-C2 1.528(4), C1-C3 1.502(4), B1-H1B 0.9600, B1-H1C 0.9600, B1-H1D 0.9600, N1-

P1-B1 116.4(2), C9-P1-C20 104.94(12), C9-P1-B1 111.89(15), C20-P1-B1 112.13(13), 

C9-P1-N1 105.00(12), C20-P1-N1 109.45(12), N1-C1-C2 110.2(3), N1-C1-C3 110.8(2), 

C2-C1-C3 113.0(3).  

The solid state structures of enatiomers 38a and 38b were established by using single 

crystal X-ray diffraction analysis. R-isomer (38a) crystalizes in the monoclinic space group 

38a (R-isomer) 38b (S-isomer) 
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P21, with two independent molecules in the unit cell, whereas the corresponding S-isomer 

(38b) crystalizes in orthorhombic space group P 212121 having 8 independent molecules in 

the unit cell (see Figure 5.5). The details of the structural parameters are given in Table 

5.4. The P1–B1 bond distances  [1.915(5) Å (38a) and 1.892(3) Å (38b)] are almost similar 

and in full agreement with reported values-1.918(6) Å for [Ph2P(BH3)NH(CHPh2)] (17), 

1.9091(2) and 1.916(1) Å for [{Ph2P(BH3)N-CH2-CH2-NP(BH3)Ph2] (30) (See Chapters 3 

and 4) and 2.1019(8) Å for [{Ph2P(BH3)}2CH2] and 1.921(3) Å for [(CH2-o-CF3C6H4)-

(Ph)P(BH3)C4H8P(BH3)(Ph)-(CH2-o-CF3C6H4)] to be considered as the phosphorus–boron 

dative bond reported by us and others.35 The P1–N1 bond ranges from 1.638(3) Å to 

1.653(2) Å and C1–N1 bond distances of 1.466(4) Å and 1.478(3) are also similar to those 

reported by us previously: P1–N1 1.673(6) Å and C1–N1 1.453(8) Å) for 

[Ph2PNH(CHPh2)] (1) and P1–N1 1.638(3) Å and C1–N1 1.468(5) Å for 

[Ph2P(BH3)NH(CHPh2)] (17) (See Chapters 1 and 3). 

5.2.5. Chiral-amidophosphine-borane barium complexes 

 

Ligand 38a or 38b was made to react with [K{N(SiMe3)2}] in THF at an ambient 

temperature in a 1:1 molar ratio followed by addition of barium diiodide to afford the 

barium complexes [(THF)2Ba{N(R-*CHMePh)(P(BH3)Ph2)}2] (39a) and [(THF)2Ba{N(S-

*CHMePh)(P(BH3)Ph2)}2] (39b) through the elimination of KI and volatile 

tetramethylsilane (see Scheme 5.5).24 

  

Scheme 5.5. Synthesis of barium complexes 39a and 39b of chiral amidophosphine-

boranes. 

In FT-IR spectra, strong absorption band at 602 cm-1 is assigned to the P–B bond of 

complexes 39a,b which is in the range to that of  ligand 38a or 38b (608 cm-1). The 1H 



178 
 

NMR spectra of complex 39a,b in C6D6 are very similar to the spectra recorded for ligand 

38a or 38b  and reveals time-averaged Cs-symmetry in solution. Methyl protons in the 

ligand backbone appear as a doublet at  1.40 ppm with coupling constant of 6.76 Hz. The 

resonances of the three protons attached to the boron atom appear as multiplets at  1.22 

ppm in the 1H NMR spectra. Methine proton of the anionic ligand in the barium complex 

39a,b observed as multiplet signal in the region of  4.39-4.48 in the 1H NMR spectra. In 

the proton decoupled 31P NMR spectra, complexes 39a,b show only one doublet signal at 

 46.9 ppm and this value is significantly up-field shifted compared to the value for 

compound 38a or 38b (54.9 ppm) upon the coordination of barium atoms to the ligand 38a 

or 38b. The phosphorus atoms present in the {N(*CHMePh)P(BH3)Ph2}
- moieties are 

chemically equivalent. –34.9 ppm was observed in the 11B{1H} NMR 

spectra of complexes 39a,b. Compounds 39a and 39b were re-crystallised from THF and 

n-pentane (1:2) and was found to crystallize in the monoclinic space group P21 having two 

molecules in the unit cell. The solid-state structures of complex 39a,b are given in Figure 

5.6. The details of the structural parameters are given in Table 5.4. The enantiomeric pure 

barium compounds 39a,b were non-centrosymetric and each barium ion in 39a and 39b 

were coordinated by two amido nitrogen atoms and two BH3 groups of two ligands 38a or 

39b. 

 

 

 

 

 

 

 

 

 

 

 

Mirror 39a (R-isomer) 39b (S-isomer) 
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Figure 5.6. Solid state structures of enantiomeric pure barium complexes 39a and 39b. 

Hydrogen atoms are omitted for clarity except for methyl, methine as well as for borane 

hydrogen atoms. Selected bond lengths (Å) and bond angles (º):  

39a: P1-B1 1.929(6), P1-N1 1.610(4), P1-C9 1.826(5), P1-C15 1.826(5), C1-N1 1.482(6), 

C1-C2 1.527(7), C1-C3 1.523(7), P2-B2 1.924(6), P2-N2 1.604(4), P2-C29 1.839(5), C21-

N2 1.486(6), C21-C22 1.534(7), C21-C23 1.514(6), Ba1-B1 3.221(6), Ba1-N1 2.674(4), 

Ba1-O1 2.759(4), Ba1-O2 2.697(4), Ba1-B2 3.155(6), Ba1-N2 2.684(4), Ba1-H1b 2.68(6), 

Ba2-H1d 2.87(6), B1-H1b 1.03(6), B2-H1d 1.14(6), N1-P1-B1 110.8(2), C1-N1-P1 

119.3(3), C2-C1-N1 108.9(4), C9-P1-C15 103.8(2), N1-Ba1-B1 58.48(13), O1-Ba1-O2 

82.20(14), N2-Ba1-B2 58.90(13), N2-P2-B2 110.2(2), C21-N2-P2 121.4(3), N1-Ba1-N2 

104.51(12), B1-Ba1-B2 167.87(15). H1b-Ba1-H1d 162.4(17), P1-Ba1-H1b 44.3(13), P2-

Ba1-H1d 45.8(12), N1-Ba1-H1b 70.0(13), N2-Ba1-H1d 69.1(12).    

39b: P1-B1 1.920(5), P1-N1 1.608(4), P1-C9 1.823(4), P1-C15 1.835(5), C1-N1 1.477(5), 

C1-C2 1.534(6), C1-C3 1.520(6), P2-B2 1.920(5), P2-N2 1.607(4), P2-C29 1.819(4), C21-

N2 1.475(5), C21-C22 1.537(6), C21-C23 1.521(6), Ba1-B1 3.228(5), Ba1-N1 2.677(3), 

Ba1-O1 2.694(3), Ba1-O2 2.778(4), Ba1-B2 3.153(5), Ba1-N2 2.683(3), Ba1-H1b 2.69(5), 

Ba2-H1d 2.90(5), B1-H1b 1.12(5), B2-H1d 1.01(6), N1-P1-B1 111.0(2), C1-N1-P1 

119.5(3), C2-C1-N1 108.4(4), C9-P1-C15 103.5(2), N1-Ba1-B1 58.22(12), O1-Ba1-O2 

81.96(12), N2-Ba1-B2 58.96(12), N2-P2-B2 110.4(2), C21-N2-P2 121.2(3), N1-Ba1-N2 

104.66(11), B1-Ba1-B2 167.70(14), H1b-Ba1-H1d 156.8(13), P1-Ba1-H1b 44.8(10), P2-

Ba1-H1d 46.4(11), N1-Ba1-H1b 70.3(10), N2-Ba1-H1d 70.4(11).  

One of the borane (BH3) group coordinates through the hydrogen atoms in a 1 fashion and 

has a Ba1–B1 bond length of 3.221(6) Å. the second borane (BH3) group coordinates in 2 

fashion and has Ba1–B2 bond distance of 3.155(6) Å. Thus, ligand 38a or 38b can be 

considered as pseudo bi-dentate ligand, similar to {Ph2P(BH3)N(CHPh2)}  which is 

previously introduced into the alkaline-earth metal chemistry by us (See Chapter 3). 

Additionally, two THF molecules are coordinated to each barium ion and the geometry 

around each barium ion is best described as distorted octahedral. It is noteworthy that the 

P–B distances [1.929(6) and 1.924(6) Å] are slightly elongated compared to that of the 
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ligands, 38a [1.915(5)] and 38b [1.892(3 Å] even after the coordination of the BH3 group 

to the barium centre. The Ba–N [2.674(4), 2.684(4) Å], Ba1–O1 [2.759(4) and 2.697(4) Å] 

distances are in the range similar to that of the reported complexes (See Chapters 2-4). 

5.3 Ring-opening polymerisation study 
  

Catalytic activities of the chiral strontium and barium complexes 36a or 36b and 37a or 

37b were performed (see Scheme 5.6). Polymerisation studies were typically conducted in 

toluene, with various monomer/catalyst ratios at 25 oC. Selected data obtained with respect 

to complexes 36 and 37 are given in Table 5.  

 

Scheme 5.6. Ring-opening polymerisation of ε-CL with strontium (36a,b) and barium 

(37a,b) complexes 

The catalytic ability of the newly synthesised enantiomeric pure mono-nuclear strontium 

complexes 36a or 36b to promote the ROP of ε-CL was first evaluated (Table 5, entries 1–

5). Indeed, the moderate reactivity of the strontium complexes is very similar to that 

observed in previously reported studies using other strontium complexes for ROP of ε-

caprolactone.36 Since the larger ion radius barium complexes have been reported to be more 

active than the calcium and strontium congeners in ROP,37,38 we tested compound 37a or 

37b as a catalyst and observed an enhanced rate of polymerisation (Table 5, entries 6–10). 

In the case of strontium, higher reactivity was observed for conversion of ε-caprolactone 

to poly-caprolactone and up to 500 ε-CL units were successfully converted in high yields 

(75–90 per cent), within 15 and 10 minutes respectively, at 25 C. The control over the 

ROP process was rather good, affording PCLs, featuring a considerable match between the 

observed (as determined by GPC) and calculated molar mass values, as well as moderate 

dispersity data (PDI  Mw/Mn < 1.94). However, the overall efficiency of the strontium  
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Table 5. Polymerization of ε-caprolactone initiated by alkaline earth metal complexes of 

type [(THF)2M{Ph2P(Se)N(R/S-*CHMePh)}2] (where M = Sr, Ba)a 

Entry [M] 
[ԑCL]0/ 

[M]0 

Reac. 

time[b] 

[min] 

Conv.[c] 

[%] 

Mn(theo)
[d] 

[g mol-1] 

Mn(GPC)
[e] 

[g mol-1] 

Mw(GPC)
[e] 

[g mol-1] 
Mw/Mn[f] 

1 Sr 100 15 90 9001 8797 17108 1.94 

2 Sr 200 15 80 16603 10515 17153 1.63 

3 Sr 300 15 73 21904 12717 19707 1.54 

4 Sr 400 15 82 32807 20492 32065 1.56 

5 Sr 500 15 75 37508 22261 24295 1.09 

6 Ba 100 10 98 9802 8829 11512 1.30 

7 Ba 200 10 90 18003 10351 14450 1.39 

8 Ba 300 10 85 25505 11735 17467 1.48 

9 Ba 400 10 80 32007 12620 19581 1.55 

10 Ba 500 10 83 43509 32338 37336 1.15 

[a] Results are representative of at least two experiments. [b] Reaction times were not necessarily optimized. 

[c] Monomer conversions were determined by 1H NMR spectroscopy. [d] Theoretical molar mass values 

calculated from the relation: [monomer]0/[M]0 × monomer conversion where  [M]0 = 8.76 x 10-3 mmol and 

Monomer weight of ε-CL = 114 g mol−1,  [e] Experimental molar masses were determined by GPC versus 

polyethylene glycol standards. [f] Molar mass distribution was calculated from GPC. 

initiator 36a,b towards the ROP of ε-CL was weaker than that of the barium analogue 

37a,b. Being the largest ionic radius of the barium atom, it was anticipated that complex 

37a,b would show the highest reactivity among all the three alkaline earth metal 

complexes.39,40 In reality we observed that up to 500 ε-CL units were successfully 

converted in good yields (80–98 per cent) within 10 minutes at 25 oC (Table 5, entries 6–

10). The polycaprolactone produced by the use of the barium catalyst was a considerable 

match between the observed and calculated molar mass values, and we observed a 

relatively narrow poly-dispersity data (PDI up to 1.55, entry 9 in Table 5). Thus, among 

strontium and barium metal complexes, the barium complexes 37a,b showed the highest 

activity for ROP of ε-caprolactone. 
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5.4 Conclusion 
  

We have synthesized two enantiomeric pure chiral phosphinoselenoic amides and these 

enantiomeric pure ligands were successfully introduced into the alkaline-earth metal 

chemistry. In each complex, the monoanionic ligand coordinates to metal centre through 

the amido nitrogen and selenium atoms indicates chiral phosphinoselenoic amide act as 

pseudo-bidentate ligand can able to stabilize highly electropositive metal centers. Thus the 

enantiomeric pure compounds 34-37 are known to be new class of alkaline-earth metal 

molecules and best of our knowledge these are the first examples for chiral alkaline earth 

metal complexes having metal-selenium direct bond. We have also introduced chiral 

amidophosphine-boranes into the barium metal chemistry where a mixed ligantion 1 and 

2 from BH3 groups are observed.  

5.5 Experimental Procedures 

     

5.5.1. General 

 

All manipulations of air-sensitive materials were performed with the rigorous exclusion of 

oxygen and moisture in flame-dried Schlenk-type glassware either on a dual manifold 

Schlenk line, interfaced to a high vacuum (10-4 torr) line, or in an argon-filled M. Braun 

glove box. THF was pre-dried over Na wire and distilled under nitrogen from sodium and 

benzophenone ketyl prior to use. Hydrocarbon solvents (toluene and n-pentane) were 

distilled under nitrogen from LiAlH4 and stored in the glove box. 1H NMR (400 MHz), 

13C{1H} and 31P{1H} NMR (161.9 MHz) spectra were recorded on a BRUKER AVANCE 

III-400 spectrometer. BRUKER ALPHA FT-IR was used for FT-IR measurement. 

Elemental analyses were performed on a BRUKER EURO EA at the Indian Institute of 

Technology Hyderabad. Metal diiodides (MgI2, CaI2, SrI2 and BaI2), KN(SiMe3)2, 

selenium and Me2S•BH3 were purchased from Sigma Aldrich and used as such. The chiral-

aminophosphines [HN(R-*CHMePh)(PPh2)],  [HN(S-*CHMePh)(PPh2)] were prepared 

according to procedure prescribed in the literature.21a The NMR solvent C6D6 and CDCl3 

were purchased from Sigma Aldrich and dried under Na/K alloy prior to use. 
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5.5.2. Synthesis of [Ph2P(Se)HN(R-*CHMePh] (32a):  

1,1-diphenyl-N-(R-1-phenylethyl)phosphinamine  (1.0 g, 3.27 mmol) and elemental 

selenium (392 mg, 4.91 mmol) were heated to 60º C in THF (10 ml) solvent for 12 h. Excess 

selenium metal was filtered through a G4 frit to collect the yellow colour filtrate. After 

evaporation of solvent from filtrate in vacuo, a light yellow solid residue was obtained 

which was further purified by washing with n-hexane.  Compound 32a was recrystallized 

from THF at room temperature.   1H NMR (400 MHz, CDCl3): δ 7.88-7.94 (m, 2H, ArH), 

7.71-7.77 (m, 2H, ArH), 7.30-7.39 (m, 4H, ArH), 7.12-7.25 (m, 7H, ArH), 4.43-4.52 (m, 

1H, CH), 2.57 (br, 1H, NH), 1.42 (d, JH-H = 6.76 Hz, 3H, CH3) ppm. 13C{1H} NMR (100 

MHz, CDCl3): δ 144.7 (ArC), 132.0 (P-ArC), 131.8 ( P attached o-ArC), 131.6 (o-ArC), 

128.5 (P attached m-ArC), 128.3 (m-ArC), 127.1 (p-ArC), 126.3 (P attached p-ArC), 52.7 

(CH), 25.2 (CH3) ppm. 31P{1H} NMR (161.9 MHz, CDCl3): δ 56.1 ppm. FT-IR (selected 

frequencies): ν = 3501 (N-H), 1434 (P-C), 954 (P-N), 556 (P=Se) cm−1. Elemental analysis: 

C20H20NPSe (385.05): Calcd. C 62.50, H 5.25, N 3.64. Found C 61.89, H 5.13, N 3.29  

5.5.3. Synthesis of [Ph2P(Se)HN(S-*CHMePh] (32b): Same as above for 32a 

1H NMR (400 MHz, CDCl3): δ 7.88-7.94 (m, 2H, ArH), 7.71-7.77 (m, 2H, ArH), 7.30-

7.39 (m, 4H, ArH), 7.12-7.25 (m, 7H, ArH), 4.43-4.52 (m, 1H, CH), 2.57 (br, 1H, NH), 

1.42 (d, JH-H = 6.76 Hz, 3H, CH3) ppm. 13C{1H} NMR (100 MHz, CDCl3): δ 144.7 (ArC), 

132.0 (P-ArC), 131.8 ( P attached o-ArC), 131.6 (o-ArC), 128.5 (P attached m-ArC), 128.3 

(m-ArC), 127.1 (p-ArC), 126.3 (P attached p-ArC), 52.7 (CH), 25.2 (CH3) ppm. 31P{1H} 

NMR (161.9 MHz, CDCl3): δ 56.1 ppm. FT-IR (selected frequencies): ν = 3501 (N-H), 

1434 (P-C), 954 (P-N), 556 (P=Se) cm−1. Elemental analysis: C20H20NPSe (385.05): Calcd. 

C 62.50, H 5.25, N 3.64. Found C 61.91, H 5.12, N 3.32  

5.5.4. Synthesis of [K{N(R-*CHMePh)(Ph2P(Se)}(THF)n] (33a) 

In a 50 ml pre-dried Schlenk flask, one equivalent (1.00 g, 2.60 mmol) of ligand 32a and 

one equivalent of potassium bis(trimethylsilyl)amide (520 mg, 2.60 mmol) were mixed 

together with 10 ml of dry THF. After 6h of stirring THF solvent was evaporated in vacuo 

and dry compound was further purified by washing with n-pentane (5 ml) twice. The title 

compound 33a was obtained as light orange powder. Yield: 1.24 g, (90%) (33a) and Yield: 
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1.20 g (86 %) (33b). 1H NMR (400 MHz, C6D6): δ 7.92-8.08 (m, 4H, ArH), 7.34 (bs, 2H, 

ArH), 7.01-7.19 (m, 9H, ArH), 4.31-4.37 (m, 1H, CH), 3.50-3.53 (m, THF), 1.37-1.40 (m, 

THF), 1.30 (d, JH-H = 6.20 Hz, 3H, CH3) ppm. 13C{1H} NMR (100 MHz, C6D6): δ 144.7 

(ArC), 132.0 (P-ArC), 131.8 (P attached o-ArC), 131.6 (o-ArC), 128.7 (P attached m-ArC), 

128.4 (m-ArC), 127.7 (p-ArC), 126.7 (P attached p-ArC), 67.6 (THF), 52.7 (CH), 26.1 

(CH3), 25.6 (THF) ppm. 31P{1H} NMR (161.9 MHz, C6D6): δ 42.7 ppm. FT-IR (selected 

frequencies): ν = 1435 (P-C), 955 (P-N), 550 (P=Se) cm−1. Elemental analysis: 

C28H35KNO2PSe (567.12): Calcd. C 59.35, H 6.23, N 2.47. Found C 58.84, H 5.99, N 2.23.  

5.5.5. Synthesis of [{(THF)2Mg{Ph2P(Se)N(R-*CHMePh}2] (34a) :  

Route 2: In a 25 ml pre-dried Schlenk flask, potassium salt of ligand 32a (304 mg, 0.72 

mmol) was mixed with MgI2 (100 mg, 0.36 mmol) in 10 ml THF solvent at ambient 

temperature and stirring continued for 12 hours. The white precipitate of KI was filtered 

off and filtrate was evaporated in vacuo. The resulting white residue was further purified 

by washing with n-pentane and crystals suitable for X-ray analysis were grown from 

THF/n-pentane (1: 2) mixture at −40° C. Yield: 154.0 mg, (90%) (34a) and Yield: 125 mg 

(80%) (34b).  1H NMR (400 MHz, C6D6): δ 8.06-8.12 (m, 1H, ArH), 7.91-7.98 (m, 2H, 

ArH), 7.76-7.82 (m, 1H, ArH), 7.40-7.42 (m, 1H, ArH), 6.89-7.11 (m, 10H, ArH), 4.58-

4.62 (m, 1H, CH), 3.68-3.74 (m, THF), 1.86 (d, JH-H = 6.72 Hz, 3H, CH3), 1.42-1.44 (m, 

THF) ppm. 13C{1H} NMR (100 MHz, C6D6): δ 144.7 (ArC), 132.0 (P-ArC), 131.8 (P 

attached o-ArC), 131.6 (o-ArC), 128.5 (P attached m-ArC), 128.3 (m-ArC), 127.1 (p-ArC), 

126.3 (P attached p-ArC), 52.7 (CH), 25.2 (CH3) ppm. 31P{1H} NMR (161.9 MHz, C6D6): 

δ 45.1 ppm. FT-IR (selected frequencies): ν = 1435 (P-C), 955 (P-N), 562 (P=Se) cm−1. 

Elemental analysis: C38H48MgN2O3P2Se2 (826.13): Calcd. C 55.32, H 5.86, N 3.40. Found 

C 54.93, H 5.62, N 3.13.  

5.5.6. Synthesis of [{(THF)2Ca{Ph2P(Se)N(R-*CHMePh}2] (35a) :  

 

Route 1: In a 10 ml sample vial, two equivalents (200 mg, 0.52 mmol) of ligand 35a and 

one equivalent of [Ca{N(SiMe3)2}2(THF)2] (130.8 mg, 0.26 mmol) were mixed together 

with 5 ml of THF. After 6 hours of stirring, 2 ml of n-pentane (2 ml) was added to it and 
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kept at −40° C freezer. After one day, colourless crystals suitable for X-ray diffraction 

analysis were obtained.  

Route 2: In a 25 ml pre-dried Schlenk flask, compound 33a (288 mg, 0.68 mmol) was 

mixed with CaI2 (100 mg, 0.34 mmol) in 10 ml THF solvent at ambient temperature and 

stirring continued for 12 hours. The white precipitate of KI was filtered off and filtrate was 

evaporated in vacuo. The resulting white residue was further purified by washing with n-

pentane and crystals suitable for X-ray analysis were grown from THF/n-pentane (1: 2) 

mixture at −40° C. Yield: 154.0 mg, (90%) (35a) and Yield: 149 mg (86%) (35b).  1H 

NMR (400 MHz, C6D6): δ 7.95-8.00 (m, 2H, ArH), 7.63-7.94 (m, 2H, ArH), 7.43-7.45 (m, 

2H, ArH), 6.85-7.06 (m, 9H, ArH), 4.26-4.34 (d, 1H, CH), 3.63 (m, THF), 1.68 (d, JH-H = 

6.56 Hz, 3H, CH3), 1.21 (m, THF) ppm. 13C{1H} NMR (100 MHz, C6D6): δ 150.2 (ArC), 

150.1 (ArC), 132.6 (P-ArC), 132.4 (P attached o-ArC), 130.2 (o-ArC), 129.9 (P attached 

m-ArC), 128.6 (m-ArC), 126.6 (p-ArC), 125.9 (P attached p-ArC), 69.0 (THF), 58.7 (CH), 

30.0 (CH3), 25.5 (THF) ppm. 31P{1H} NMR (161.9 MHz, C6D6): δ 69.8 ppm. FT-IR 

(selected frequencies): ν = 1435 (P-C), 954 (P-N), 559 (P=Se) cm−1. Elemental analysis: 

C48H54CaN2O2P2Se2 (950.87): Calcd. C 60.63, H 5.72, N 2.95. Found C 59.36, H 5.66, N 

2.86.  

 

5.5.7. Synthesis of [{(THF)2Sr{Ph2P(Se)N(R-*CHMePh}2] (36a) :  

 

Route 1: In a 10 ml sample vial, two equivalents (200 mg, 0.52 mmol) of ligand 32a and 

one equivalent of [Sr{N(SiMe3)2}2(THF)2] (143.6 mg, 0.26 mmol) were mixed together 

with 5 ml of THF. After 6 hours of stirring, 2 ml of n-pentane was added to it and kept at 

−40° C freezer. After 24 hours, colourless crystals suitable for X-ray diffraction analysis 

were obtained.  

Route 2: In a 25 ml pre-dried Schlenk flask, compound 33a (245 mg, 0.58 mmol) was 

mixed with SrI2 (100 mg, 0.29 mmol) in 10 ml THF solvent at ambient temperature and 

stirring continued for 12 hours. The white precipitate of KI was filtered off and filtrate was 

evaporated in vacuo. The resulting white residue was further purified by washing with n-

pentane (3 ml) and crystals suitable for X-ray analysis were grown from THF/n-pentane 

(1: 2) mixture at −40° C. Yield: 154.0 mg, (90%) (36a) and Yield 145 mg (85%) (36b).  
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1H NMR (400 MHz, C6D6): δ 7.98-8.03 (m, 2H, ArH), 7.78-7.84 (m, 4H, ArH), 6.90-6.97 

(m, 2H, ArH), 6.78-87 (m, 7H, ArH), 4.47-4.55 (m, 1H, CH), 3.45-3.48 (m, THF), 1.29-

1.32 (m, THF), 1.20 (d, JH-H = 6.80 Hz, 3H, CH3) ppm. 13C{1H} NMR (100 MHz, C6D6): 

δ 145.4 (ArC), 145.3 (ArC), 135.4 (P-ArC), 134.5 (P-ArC), 132.3 (P attached o-ArC), 

131.2 (o-ArC), 128.1 (P attached m-ArC), 127.9 (m-ArC), 127.7 (p-ArC), 126.4 (P attached 

p-ArC), 67.6 (THF), 52.5 (CH), 25.6 (THF), 25.1 (CH3) ppm. 31P{1H} NMR (161.9 MHz, 

C6D6): δ 69.8 ppm. FT-IR (selected frequencies): ν = 1434 (P-C), 955 (P-N), 552 (P=Se) 

cm−1.  Elemental analysis: C48H54N2O2P2Se2Sr (998.41): Calcd. C 57.74, H 5.45, N 2.81. 

Found C 56.32, H 4.97, N 2.61.  

5.5.8. Synthesis of [{(THF)2Ba{Ph2P(Se)N(R-*CHMePh}2] (37a) :  

 

Route 1: In a 10 ml sample vial, two equivalents (200 mg, 0.52 mmol) of ligand 33a and 

one equivalent of [Ba{N(SiMe3)2}2(THF)3] (156.7 mg, 0.26 mmol) were mixed together 

with 5 ml of THF. After 6 hours of stirring, 2 ml of n-pentane was added to it and kept at 

−40° C freezer. After 24 hours, colourless crystals suitable for X-ray diffraction analysis 

were obtained.  

Route 2: In a 25 ml pre-dried Schlenk flask, compound 33a (216 mg, 0.52 mmol) was 

mixed with BaI2 (100 mg, 0.26 mmol) in 10 ml THF solvent at ambient temperature and 

stirring continued for 12 hours. The white precipitate of KI was filtered off and filtrate was 

evaporated in vacuo. The resulting white residue was further purified by washing with n-

pentane and crystals suitable for X-ray analysis were grown from THF/n-pentane (1: 2) 

mixture at −40° C. Yield: 154.0 mg, (90%) (37a) and Yield 156 g, (91%) (37b).  1H NMR 

(400 MHz, C6D6): δ 7.96-7.99 (m, 2H, ArH), 7.62-7.66 (m, 2H, ArH), 7.19-7.29 (m, 4H, 

ArH), 6.90-7.06 (m, 7H, ArH), 4.21-4.29 (m, 1H, CH), 3.54-3.57 (m, THF), 1.48 (d, JH-H 

= 6.20 Hz, 3H, CH3), 1.35-1.38 (m, THF) ppm. 13C{1H} NMR (100 MHz, C6D6): δ 144.7 

(ArC), 132.1 (P-ArC), 130.2 (P attached o-ArC), 129.5 (o-ArC), 127.8 (P attached m-ArC), 

126.8 (m-ArC), 126.4 (p-ArC), 126.3 (P attached p-ArC), 68.0 (THF), 52.7 (CH), 25.2 

(CH3), 25.6 (THF)  ppm. 31P{1H} NMR (161.9 MHz, C6D6): δ 69.8 ppm. FT-IR (selected 

frequencies): ν = 1435 (P-C), 956 (P-N), 553 (P=Se) cm−1. Elemental analysis: 

C48H54BaN2O2P2Se2 (1048.12): Calcd. C 55.00, H 5.19, N 2.67. Found C 54.32, H 4.96, N 

2.41.  
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5.5.9. Synthesis of [Ph2P(BH3)HN(R-*CHMePh] (38a):  

 

In a predried Schlenk flask was placed 1.0 g (3.27 mmol) of 1,1-diphenyl-N-(R-1-

phenylethyl)phosphinamine in 10 ml of toluene, and to this solution, borane−dimethyl 

sulfide (0.30 ml, 3.27 mmol) in 5 ml of toluene was added drop wise with constant stirring 

at room temperature. The reaction mixture was then stirred for another 12 h. A white 

precipitate was formed and was filtered through a G4 frit and dried in vacuo. Pure 

compound was obtained after washing with n-pentane. Yield: 1.20 g (100%). Compound 

38a was soluble in CDCl3, CH2Cl2, THF, and hot toluene. It was recrystallized from hot 

toluene. 1H NMR (400 MHz, CDCl3): δ 7.60-7.54 (m, 4H, ArH), 7.45-7.30 (m, 6H, ArH), 

7.24-7.15 (m, 5H, ArH), 4.47-4.37 (m, 1H, CH), 2.48 (br, 1H, NH), 1.40 (d, JH-H = 6.76 

Hz, 3H, CH3), 1.17-0.75 (br, 3H, BH3) ppm. 13C{1H} NMR (100 MHz, CDCl3): δ 145.1 

(ArC), 132.4 (P-ArC), 131.9 ( P attached o-ArC), 131.1 (o-ArC), 128.5 (P attached m-

ArC), 128.3 (m-ArC), 127.0 (p-ArC), 125.8 (P attached p-ArC), 53.1 (CH), 25.9 (CH3) 

ppm. 31P{1H} NMR (161.9 MHz, CDCl3): δ 54.9 (d, JP-B = 80.95 Hz) ppm. 11B{1H} NMR 

(128.4 MHz, CDCl3): δ −37.9 (br) ppm. FT-IR (selected frequencies): ν 3438 (N−H), 1436 

(P−C), 909 (P−N), 2379 (B−H), 608 (P−B) cm−1. Elemental analysis: C20H23BNP (319.17): 

Calcd. C 75.26, H 7.26, N 4.39. Found C 74.14, H 6.86, N 3.99. 

 

5.5.10. Synthesis of [Ph2P(BH3)HN(S-*CHMePh] (38b): Same as above for 38a. 

 

1H NMR (400 MHz, CDCl3): δ 7.60-7.54 (m, 4H, ArH), 7.45-7.30 (m, 6H, ArH), 7.24-

7.15 (m, 5H, ArH), 4.47-4.37 (m, 1H, CH), 2.48 (br, 1H, NH), 1.40 (d, JH-H = 6.76 Hz, 3H, 

CH3), 1.17-0.75 (br, 3H, BH3) ppm. 13C{1H} NMR (100 MHz, CDCl3): δ 145.1 (ArC), 

132.4 (P-ArC), 131.9 (P attached o-ArC), 131.1 (o-ArC), 128.5 (P attached m-ArC), 128.3 

(m-ArC), 127.0 (p-ArC), 125.8 (P attached p-ArC), 53.1 (CH), 25.9 (CH3) ppm. 31P{1H} 

NMR (161.9 MHz, CDCl3): δ 54.9 (d, JP-B = 80.95 Hz) ppm. 11B{1H} NMR (128.4 MHz, 

CDCl3): δ −37.9 (d, JB-P = 62.91 Hz) ppm. FT-IR (selected frequencies): ν 3438 (N−H), 

1436 (P−C), 909 (P−N), 2379 (B−H), 608 (P−B) cm−1.  Elemental analysis: C20H23BNP 

(319.17): Calcd. C 75.26, H 7.26, N 4.39. Found C 74.23, H 6.89, N 3.92. 
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5.5.11. Synthesis of [{(THF)2Ba{Ph2P(BH3)N(R-*CHMePh}2] (39a) :  

 

Route 1: In a 25 ml pre-dried Schlenk flask, ligand 38a or 38b, potassium 

bis(trimethylsilyl)amide and BaI2 (100 mg, 0.26 mmol) were mixed in 10 ml THF solvent 

at ambient temperature and stirring continued for 12 hours. The white precipitate of KI was 

filtered off and filtrate was evaporated in vacuo. The resulting white residue was further 

purified by washing with n-pentane and crystals suitable for X-ray analysis were grown 

from THF/n-pentane (1: 2) mixture at −40° C. Yield: 154.0 mg, (90%) (39a) and Yield 156 

g, (91%) (39b).  1H NMR (400 MHz, C6D6): δ 7.60-7.54 (m, 4H, ArH), 7.45-7.30 (m, 6H, 

ArH), 7.24-7.15 (m, 5H, ArH), 4.48-4.39 (m, 1H, CH), 2.48 (br, 1H, NH), 1.40 (d, JH-H = 

6.76 Hz, 3H, CH3), 1.49-0.94 (br, 3H, BH3) ppm. 13C{1H} NMR (100 MHz, C6D6): δ 144.7 

(ArC), 132.0 (P-ArC), 131.8 ( P attached o-ArC), 131.6 (o-ArC), 128.5 (P attached m-

ArC), 128.3 (m-ArC), 127.1 (p-ArC), 126.3 (P attached p-ArC), 52.7 (CH), 25.2 (CH3) 

ppm. 31P{1H} NMR (161.9 MHz, C6D6): δ 46.9  ppm. 11B{1H} NMR (128.4 MHz, C6D6): 

δ −34.9 (d) ppm. FT-IR (selected frequencies): ν 1434 (P−C), 999 (P−N), 2383 (B−H), 602 

(P−B) cm−1. Elemental analysis: C48H60B2BaN2O2P2 (917.87): Cacld. C 62.81, H 6.59, N 

3.05. Found C 61.94, H 6.20, N 2.83.  

5.6 X-Ray crystallographic studies 

 

Single crystals of compounds 35–39 were grown from THF and n-pentane mixture at –40 

ºC under inert atmosphere. The single crystals of 32a,b and 38a,b suitable for X-ray 

measurement were grown from CH2Cl2/THF at room temperature. For compounds 32-39, 

a crystal of suitable dimensions was mounted on a CryoLoop (Hampton Research Corp.) 

with a layer of light mineral oil and placed in a nitrogen stream at 150(2) K. However for 

compounds 32a,b and 38a,b, the data were collected at 293 K. All measurements were 

made on an Agilent Supernova X-calibur Eos CCD detector with graphite-monochromatic 

Cu-Kα (1.54184 Å) radiation. Crystal data and structure refinement parameters are 

summarised in Table 5.1-5.4. The structures were solved by direct methods (SIR92)41 and 

refined on F2 by full-matrix least-squares methods; using SHELXL-97.42 Non-hydrogen 

atoms were anisotropically refined. H atoms were included in the refinement in calculated 

positions riding on their carrier atoms. The function minimised was [w(Fo2- Fc2)2] (w = 
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1 / [2 (Fo2) + (aP)2 + bP]), where P = (Max(Fo2,0) + 2Fc2) / 3 with 2(Fo2) from counting 

statistics. The function R1 and wR2 were (||Fo| - |Fc||) / |Fo| and [w(Fo2 - Fc2)2 / 

(wFo4)]1/2, respectively. The Diamond-3 program was used to draw the molecule.  
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5.7 Tables 

Table 5.1. Crystallographic data of compounds 32a, 32b and 35a 

 

Crystal 32a 32b 35a 

CCDC No.    

Empirical formula C20H20NPSe C20H20NPSe C48H54CaN2O2P2Se2 

Formula weight                     384.30 384.30 950.87 

T (K)                           293(2) 293(2) 150(2) 

λ (Å)                         1.54184 1.54184 1.54184 

Crystal system  Triclinic Triclinic Monoclinic 

Space group        P 1 P 1 P 21 

a  (Å)     6.0159(11) 6.0127(12) 13.0607(5) 

b  (Å)        9.3867(17) 9.368(3) 14.5382(5) 

c  (Å)     9.5866(17) 9.581(3) 13.6308(6) 

 106.872(16) 106.91(3) 90 

 107.869(16) 107.98(2) 118.032(5) 

 103.345(15) 103.26(2) 90 

V  ( Å3)                        461.65(14) 459.9(2) 2284.57(15) 

Z  1 1 2 

Dcalc g cm-3 1.382 1.388 1.382 

µ (mm-1) 3.545 3.558 3.971 

F (000)                             196 196 980 

Theta range for data 

collection    

5.26 to 70.94 deg. 5.27 to 71.98 deg. 3.67 to 70.76 deg. 

Limiting indices                   -7<=h<=7 

-11<=k<=8 

-11<=l<=11 

-7<=h<=6 

-11<=k<=11 

-11<=l<=11 

-14<=h<=15  

-9<=k<=17  

-16<=l<=16 

Reflections collected / 

unique     

3019 / 2114  

[R(int) = 0.0216] 

3475 / 2382  

[R(int) = 0.0218] 

9628 / 6006 [R(int) = 

0.0310] 

Completeness to theta 

= 71.25      

96.6 % (70.94) 95.2 % (71.98) 97.9 % (70.76) 

Absorption correction              Multi-scan 

 

Multi-scan 

 

Multi-scan 

 

Max. and min. 

transmission         

1.00000 and 0.25106 1.00000 and 0.78826 1.00000 and 0.62045 

Refinement method                  Full-matrix least-

squares on F^2 

Full-matrix least-

squares on F^2 

Full-matrix least-squares 

on F^2 

Data / restraints / 

parameters     

2114 / 3 / 210 2382 / 3 / 211 6006 / 1 / 517 

Goodness-of-fit on F2             1.086 1.015 1.025 

Final R indices 

[I>2sigma(I)]      

R1 = 0.0544, wR2 = 

0.1402 

R1 = 0.0542, wR2 = 

0.1610 

R1 = 0.0342, wR2 = 

0.0874 

R indices (all data)               R1 = 0.0547, wR2 = 

0.1417 

R1 = 0.0552, wR2 = 

0.1657 

R1 = 0.0359, wR2 = 

0.0895 

Absolute structure 

parameter 

0.00(5) 0.01(5) 0.002(13) 

Largest diff. peak and 

hole        

0.885 and -0.394  

e.A-3 

0.618 and -0.735  

e.A-3 

0.455 and -0.607  

e.A-3 
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Table 5.2. Crystallographic data of compounds 35b, 36a and 36b 

 

Crystal 35b 36a 36b 

CCDC No.    

Empirical formula C48H54CaN2O2P2Se2 C48H54N2O2P2 

Se2Sr 

C48H54N2O2P2 Se2Sr 

Formula weight                     950.87 998.41 998.41 

T (K)                           150(2) 150(2) 150(2) 

λ (Å)                         1.54184 1.54184 1.54184 

Crystal system  Monoclinic Monoclinic Monoclinic 

Space group        P 21 P 21 P 21 

a  (Å)     13.0797(10) 12.5000(7) 12.4934(6) 

b  (Å)        14.5246(8) 14.6217(4) 14.6187(7) 

c  (Å)     13.6284(14) 13.9074(8) 13.9134(6) 

 90 90 90 

 117.984(11) 115.038(7) 115.041(5) 

 90 90 90 

V  ( Å3)                        2286.4(3) 2303.0(2) 2302.25(19) 

Z  2 2 2 

Dcalc g cm-3 1.381 1.440 1.439 

µ (mm-1) 3.968 4.391 4.393 

F (000)                             980 1016 1014 

Theta range for data 

collection    

3.67 to 70.73 deg. 3.51 to 70.58 deg. 3.51 to 70.63 deg. 

Limiting indices                   -11<=h<=15 

-17<=k<=10 

-16<=l<=15 

-14<=h<=15 

-17<=k<=17 

-17<=l<=16 

-15<=h<=14 

-13<=k<=17 

-16<=l<=16 

Reflections collected / 

unique     

6276 / 4644 [R(int) = 

0.0327] 

10051 / 6833 [R(int) = 

0.0397] 

11230 / 6302 [R(int) = 

0.0424] 

Completeness to theta 

= 71.25      

83.8 % (70.73) 97.8 % (70.58) 98.2 % (70.63) 

Absorption correction              Multi-scan 

 

Multi-scan 

 

Multi-scan 

 

Max. and min. 

transmission         

1.00000 and 0.64464 1.00000 and 0.71299 1.00000 and 0.52179 

Refinement method                  Full-matrix least-

squares on F^2 

Full-matrix least-

squares on F^2 

Full-matrix least-

squares on F^2 

Data / restraints / 

parameters     

4644 / 1 / 517 6833 / 1 / 517 

 

6302 / 1 / 517 

Goodness-of-fit on F2             1.052 1.049 1.032 

Final R indices 

[I>2sigma(I)]      

R1 = 0.0425, wR2 = 

0.1123 

R1 = 0.0602, wR2 = 

0.1622 

R1 = 0.0402, wR2 = 

0.0979 

R indices (all data)               R1 = 0.0456, wR2 = 

0.1169 

R1 = 0.0650, wR2 = 

0.1697 

R1 = 0.0464, wR2 = 

0.1032 

Absolute structure 

parameter 

-0.05(3) 0.00(3) 0.00(2) 

Largest diff. peak and 

hole        

0.381 and -0.530  

e.A-3 

1.680 and -0.805  

e.A-3 

0.722 and -0.756  

e.A-3 
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Table 5.3. Crystallographic data of compounds 37a, 37b and 38a 

 

Crystal 37a 37b 38a 

CCDC No.    

Empirical formula C48H54BaN2O2P2Se2 C48H54BaN2O2P2Se2 C20H23BNP 

Formula weight                     1048.12 1048.12 319.17 

T (K)                           150(2) 150(2) 293(2) 

λ (Å)                         1.54184 1.54184 1.54184 

Crystal system  Monoclinic Monoclinic Monoclinic 

Space group        P 21 P 21 P 21 

a  (Å)     12.5451(2) 12.5571(3) 11.3581(10) 

b  (Å)        14.6496(3) 14.6478(3) 6.1729(5) 

c  (Å)     14.0905(2) 14.0913(4) 13.3347(12) 

 90 90 90 

 115.323(2) 115.305(3) 90.752(8) 

 90 90 90 

V  ( Å3)                        2340.73(7) 2343.16(10) 934.85(14) 

Z  2 2 2 

Dcalc g cm-3 1.487 1.486 1.134 

µ (mm-1) 9.319 9.309 1.264 

F (000)                             1052 1052 340 

Theta range for data 

collection    

3.47 to 70.86 deg. 3.47 to 71.12 deg. 3.31 to 70.69 deg. 

Limiting indices                   -14<=h<=15 

-14<=k<=17 

-16<=l<=17 

-13<=h<=15 

-12<=k<=17 

-16<=l<=17 

-13<=h<=13 

-7<=k<=7 

-16<=l<=13 

Reflections collected / 

unique     

9480 / 6551 [R(int) = 

0.0284] 

10629 / 6444 [R(int) = 

0.0436] 

3685 / 2609  

[R(int) = 0.0280] 

Completeness to theta 

= 71.25      

98.2 % (70.86) 98.1 % (71/12) 97.7 % 

Absorption correction              Multi-scan 

 

Multi-scan 

 

Multi-scan 

 

Max. and min. 

transmission         

1.00000 and 0.39804 1.00000 and 0.31944 1.00000 and 0.86951 

Refinement method                  Full-matrix least-

squares on F^2 

Full-matrix least-

squares on F^2 

Full-matrix least-squares 

on F^2 

Data / restraints / 

parameters     

6551 / 1 / 519 6444 / 1 / 516 2609 / 1 / 211 

Goodness-of-fit on F2             1.031 1.061 1.044 

Final R indices 

[I>2sigma(I)]      

R1 = 0.0391, wR2 = 

0.1042 

R1 = 0.0538, wR2 = 

0.1402 

R1 = 0.0478, wR2 = 

0.1179 

R indices (all data)               R1 = 0.0394, wR2 = 

0.1047 

R1 = 0.0543, wR2 = 

0.1412 

R1 = 0.0573, wR2 = 

0.1285 

Absolute structure 

parameter 

-0.009(3) -0.004(4) 0.00(4) 

Largest diff. peak and 

hole        

1.081 and -1.064  

e.A-3 

1.568 and -1.383  

e.A-3 

0.140 and -0.297  

e.A-3 
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Table 5.4. Crystallographic data of compounds 38b, 39a and 39b 

 

Crystal 38b 39a 39b 

CCDC No.    

Empirical formula C20H23BNP C48H60B2BaN2O2P2 C48H60B2BaN2O2P2 

Formula weight                     319.17 917.87 917.87 

T (K)                           293(2) 150(2) 150(2) 

λ (Å)                         1.54184 1.54184 1.54184 

Crystal system  Orthorhombic Monoclinic Monoclinic  

Space group        P 21 21 21 P 21 P 21 

a  (Å)     8.8785(2) 13.1696(9) 13.1465(5) 

b  (Å)        18.0839(4) 14.8039(4) 14.7929(3) 

c  (Å)     23.6013(6) 13.7579(9) 13.7413(7) 

 90 90 90 

 90 117.394(9) 117.316(5) 

 90 90 90 

V  ( Å3)                        3789.38(15) 2381.5(2) 2374.34(16) 

Z  8 2 2 

Dcalc g cm-3 1.119 1.280 1.284 

µ (mm-1) 1.247 7.403 7.425 

F (000)                             1360 948 948 

Theta range for data 

collection    

3.08 to 70.72 deg. 3.62 to 70.75 deg. 3.62 to 70.78 deg. 

 

Limiting indices                   -9<=h<=10 

-18<=k<=21 

-28<=l<=26 

-16<=h<=12 

-16<=k<=18 

-10<=l<=16 

-16<=h<=15,  

-10<=k<=17,  

-15<=l<=16 

Reflections collected / 

unique     

10266 / 5991  

[R(int) = 0.0257] 

10805 / 7370 [R(int) = 

0.0310] 

11397 / 6453  

[R(int) = 0.0320] 

Completeness to theta 

= 71.25      

98.0 % (70.72) 98.1 % (70.75) 97.5 % 

Absorption correction              Multi-scan 

 

Multi-scan 

 

Multi-scan 

 

Max. and min. 

transmission         

1.00000 and 0.66265 1.00000 and 0.66652 1.00000 and 0.51058 

Refinement method                  Full-matrix least-

squares on F^2 

Full-matrix least-squares 

on F^2 

Full-matrix  

least-squares on F2 

Data / restraints / 

parameters     

5991 / 0 / 420 7370 / 1 / 540 6453 / 1 / 541 

Goodness-of-fit on F2             1.034 1.004 1.021 

Final R indices 

[I>2sigma(I)]      

R1 = 0.0418, wR2 = 

0.1102 

R1 = 0.0357, wR2 = 

0.0905 

R1 =  0.0333, 

wR2 =  0.0843 

R indices (all data)               R1 = 0.0482, wR2 = 

0.1183 

R1 = 0.0387, wR2 = 

0.0935 

R1 =  0.0338, 

wR2 =  0.0850 

Absolute structure 

parameter 

0.000(19) -0.021(4) -0.019(4) 

Largest diff. peak and 

hole        

0.212 and -0.286  

e.A-3 

0.611 and -1.613  

e.A-3 

0.693 and -1.307 

e.A-3 
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Chapter 6 
 

Alkali and alkaline-earth metal complexes having rigid 

bulky-iminopyrrolyl ligand in the coordination sphere: 

syntheses, structures and -caprolactone polymerization 
 

6.1 Introduction 
 

In recent years, monoanionic bidentate or tridentate nitrogen ligands are of particular 

interest because they can able to stabilize vast number of metal complexes. Among such 

type of ligands, 2-iminopyrrolyl bidentate chelating ligands have attracted in the recent 

times. 2-iminopyrrolyls contains an anionic pyrrolyl ring substituted in position 2 by a 

neutral imine donor moiety, and these are structurally similar to salicylaldiminate, 

anilidoimine or 2-(2-pyridyl)indolyl ligands. The 2-iminopyrrolyls are appealing ligands 

because they are readily accessible and easy to modify, either sterically or electronically, 

via straightforward Schiff-base condensation procedures.1 The first examples of 

homoleptic 2-iminopyrrolyl metal complexes of Co(II), Ni(II), Pd(II), Cu(II) and Zn(II) 

have been described in the 1960s.2 However, recently this class of ligands has been 

commonly employed in the synthesis of several transition-metals and rare-earth metal 

compounds.3 The metal complexes including main group metals, transition metals as well 

as rare-earth metals having 2-iminopyrrolyl in their coordination sphere are act as efficient 

polymerization catalysts.4 Very recently, Roesky et al. reported the heavier alkaline earth 

metal complexes of tridentate 2,5 bis{N-2,6-(diisopropylphenyl)iminomethyl}-pyrrolyl 

ligands as hydroamination catalysts.5 Recently, Mashima group also reported the synthesis 

and characterization of the group 2 metal complexes supported by bidentate iminopyrrolyl 

ligands and their application for catalytic ring-opening polymerization of ε-caprolactone 

with respect to the effects of the ionic radii of the group 2 metal centers.6 Inspired by these 

results and as a part of my thesis work to develop highly efficient and well-characterized 

homogenous single-site ROP catalysts by using alkaline-earth metals, we were interested 

to synthesize a very rigid bulky iminopyrrolyl system by using pyrrole-2-carboxyaldhyde 
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and tritylamine involving simple Schiff-base condensation procedure.1 In this chapter, we 

have described the detailed synthesis and structural characterization of bidentate rigid 

bulky-iminopyrrolyl ligand (2-(Ph3CN=CH)-C4H3NH) (40) and their corresponding alkali 

metal complexes of molecular composition {Li(2-(Ph3CN=CH)-C4H3N)(THF)2} (41) and 

{Na(2-(Ph3CN=CH)-C4H3N)(THF)2}2 (42) and [(2-(Ph3CN=CH)C4H3N)K(THF)0.5]4 (43). 

The detailed syntheses and solid state structures of two magnesium complexes of 

composition {Mg(CH2Ph)(2-(Ph3CN=CH)-C4H3N)(THF)2} (44) and {Mg(2-

(Ph3CN=CH)-C4H3N)2(THF)2} (45) were also described. The heavier alkaline-earth metal 

complexes of composition {M(2-(Ph3CN=CH)-C4H3N)2(THF)n} (M = Ca (46), Sr (47) and 

n = 2; M = Ba (48), n = 3) were synthesized by using two synthetic routes and solid state 

structures were discussed in detailed. In this chapter, Ring-Opening Polymerization study 

of ε-caprolactone by using alkaline-earth metal complexes (44-48) with different 

monomer/catalyst ratios were discussed in detailed.  

6.2 Results and Discussion 
 

6.2.1. Ligand synthesis: 

 

(E)-N-((1H-pyrrol-2-yl)methylene)-1,1,1-triphenylmethanamine ligand {2-(Ph3CN=CH)-

C4H3NH} (40) was prepared by the condensation reaction of pyrrol-2-carboxyaldehyde 

with 1 equiv. of tritylamine in the presence of a catalytic amount of glacial acetic acid in 

methanol solvent (Scheme 6.1). The bidentate ligand 40 was fully characterized by using 

standard spectroscopic/analytical techniques and solid state structure was established by 

using single crystal X-ray diffraction analysis.  

 

Scheme 6.1. Synthesis of bulky iminopyrrolyl ligand 40. 

A strong absorption band observed at 1629 cm-1 in FT-IR spectra indicates a C=N bond in 

the ligand 40. This value is within the range of the literature reports.7,8 1H NMR spectrum 

of ligand 40 shows broad signal at  9.50 ppm for the N-H proton of the pyrrole moiety 
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and singlet peak assignable to imine N=C-H proton was observed at  7.67 ppm. In addition 

to these, the singlet resonance signal at 6.87 ppm, doublet at 6.39 ppm and multiplets at 

6.22 ppm in the 1H NMR spectra clearly represents the pyrrole ring protons. 13C{1H} NMR 

spectra also very informative in this case, we have observed  strong resonance signal at  

150.3 ppm for the imine carbon atom which is in good agreement with reported value  

153.2 ppm for the compound [2-(2,6- iPr2C6H3N=CH)-C4H3NH] and  148.7 ppm for the 

compound [2-(2-Ph2PC6H4N=CH)-C4H3NH].8  Another strong peak at  77.8 ppm 

corresponds to the tertiary carbon atom of the CPh3 group. The bulky iminopyrrolyl ligand 

40 was readily crystalizes in CH2Cl2 at room temperature and therefore, the solid state 

structure of the iminopyrrolyl ligand 40 was also established by using single crystal X-ray 

diffraction analysis. The solid state structure of ligand 40 was shown in the Figure 6.1 and 

details of the structural parameter are given in the Table 6.2.  

 

Figure 6.1. Solid-state structure of ligand 40. Selected bond lengths (Å) and bond angles 

(º): C1-N1 1.357(6), C1-C2 1.364(8), C2-C3 1.410(7), C3-C4 1.372(7), C4-C5 1.433(6), 

N2-C5 1.260(6), N2-C6 1.485(6), C6-C7 1.544(7), C6-C13 1.552(6), C6-C19 1.530(6); 

C1-N1-C4 109.3(4), C4-C5-N2 122.6(5), C5-N2-C6 120.6(4), N2-C6-C7 104.2(4). 

 

The bidentate iminopyrrolyl ligand 40 was crystalizes in monoclinic space group P 21/c 

having 2 independent molecules in the asymmetric unit. The pyrrole ring showed bond 
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distances within 1.35-1.38 Å and a longer value of 1.410(7) Å for C2-C3 bond was 

observed.  The C1-N1 bond distance 1.357(6) Å was observed which is in good agreement 

with the value 1.354(4) Å reported for the compound [2-(2,6- iPr2C6H3N=CH)-C4H3NH]9 

and 1.3604(17) Å for the [2-(2,6- iPr2C6H3N=CMe)-C4H3NH].10 The C5-N2 bond distance 

was 1.260(6) Å which is slightly shorter value compared to the C2-N5 distance 1.2835(19) 

Å for the compound [2-(2,6- iPr2C6H3N=CMe)-C4H3NH].10 The coplanarity of the pyrrole 

ring with the acetimine group with torsion angle N1-C4-C5-N2 of 8.667(10)º was 

observed. The C4-C5 bond distance 1.433(6) Å, a value shorter than the typical C-C single 

bond distance, indicates the fact that extension of the pyrrole ring π-electron delocalization 

towards the its acetimine substituent.    

6.2.2. Synthesis and characterization of alkali metal complexes: 

 

Treatment of LiCH2SiMe3 with 1 equiv. of bulky iminopyrrolyl ligand 40 in THF solvent 

resulted the corresponding lithium complex of molecular formula {Li(2-(Ph3CN=CH)-

C4H3N)(THF)2} (41) and treatment of ligand 40 with 1 equiv. of either sodium or 

potassium bis(trimethylsilyl)amide in THF solvent resulted the corresponding dimeric 

sodium complex of composition [(2-(Ph3CN=CH)C4H3N)Na(THF)]2 (42) and tetra-

nuclear potassium complex of molecular composition [(2-(Ph3CN=CH)C4H3N) 

K(THF)0.5]4 (43) in very good yield (Scheme 6.2).11 

 

Scheme 6.2. Synthesis of alkali-metal complexes of bulky iminopyrrolyl ligand 40. 
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The alkali-metal complexes 41-43 were fully characterized by using standard 

spectroscopic/analytical techniques and solid state structures of 41-43 were established by 

using single crystal X-ray diffraction analysis. 1H NMR spectra of compoundes 41-43 

showed a singlet resonance signal at  8.17 (for 41), 8.03 (for 42) and 7.99 (for 43) indicate 

the presence of iminie proton in each complex. 13C{1H} NMR spectra also further 

supported the presence of iminie carbon atom in the each complex by showing the 

resonance signals at  149.3 (for 41), 147.8 (for 42) and 149.1 (for 43). The other pyrrole 

protons and aromatic protons were showed a resonance signals in each complex at expected 

regions. Alkali-metal complexes 42-43 showed only one set of signals in each case, which 

indicates that dynamic behavior of the complex 42-43 in the solution state.  The details of 

the structural parameters were given in the Table 6.2-6.3. In the solid state, lithium complex 

of composition {Li(2-(Ph3CN=CH)-C4H3N)(THF)2} (41) was crystalizes in orthorhombic 

space group P bca  having 16 molecules in the unit cell. The solid state structure and 

selected bond lengths and bond angles are shown in Figure 6.2.  

 

Figure 6.2. Solid state structure of lithium complex 41. Hydrogen atoms are omitted for 

clarity. Selected bond lengths (Å) and bond angles (º): Li1-N1 1.993(8), Li1-N2 2.097(7), 

Li1-O1 1.944(7), Li-O2 1.946(9), N1-C1 1.345(4), C1-C2 1.397(6), C2-C3 1.401(5), C3-

C4 1.408(5), N1-C4 1.366(4), C4-C5 1.431(4), N2-C5 1.289(5), N2-C6 1.492(4), C6-C13 

1.550(5); N1-Li-N2 87.7(3), N1-Li1-O1 114.0(4), N1-Li1-O2 110.9(3), N2-Li1-O1 

115.5(4), N2-Li1-O2 120.5(4), O1-Li1-O2 107.2(3), C4-C5-N2 122.4(3), N1-C4-C5 
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121.3(3), N1-C4-C3 111.4(3), N1-C1-C2 112.3(3), Li1-N1-C4 104.6(3), Li1-N2-C5 

103.6(3), Li1-N2-C6 138.4(3), N2-C6-C13 107.3(2). 

In the lithium complex 41, the central lithium ion is surrounded by one ligand moiety and 

two THF molecules. The iminopyrrolyl ligand (40) act as a bidentate chelating ligand and 

coordinates to the metal center through the pyrrolide nitrogen and imine nitrogen atoms. 

Therefore, the geometry of the lithium ion in the complex 41 was best described as distorted 

tetrahedral geometry with bond angles of N1-Li1-N2 87.7(3)º, O1-Li1-N1 114.0(4)º, O2-

Li1-N1 110.9(3)º, N2-Li1-O1 115.5(4)º, N2-Li1-O2 120.5(4)º, and O1-Li1-O2 

107.20(18)º. The Li-N bond lengths of 1.993(8) and 2.097(7) Å were observed in the 

compound 41 are in good agreement with the Li-N bond lengths found in the reported 

molecules. For example, Li-N bond length of 2.068(3) and 2.085(3) Å were observed in 

the complex {[η2:η1-2-(2,6-Me2C6H3N=CH)-C4H3N]Li(THF)}2 and 2.105(4) and 2.088(4) 

Å were observed in the lithium complex {[η2:η1-2-(2,6-iPr2C6H3N=CH)-C4H3N]Li 

(THF)}2.
12 The C1-N1 bond distance 1.345(4) Å and C5-N2 bond distance of 1.289(5) Å 

of anionic ligand moiety are slightly changed when compared to the free ligand 40 (C1-N1 

1.357(6) Å and C5-N2 1.260(6) Å) upon coordination to the lithium ion. The C4-C5 bond 

distance 1.431(4) Å, a shorter value compared to the value observed in free ligand 40 

(1.433(6) Å) demonstrate the extensive delocalization of pyrrole π-electron density was 

occurring in anionic ligand moiety in the lithium complex 41. The Li-O bond distances of 

1.944(7) and 1.946(9) Å are in within the range to the Li-O bond distances reported in the 

literature. Therefore, in the lithium complex 41 due to presence of bidentate chelating 

ligand, a five membered mettallacycle Li1-N1-C4-C5-N2 was formed with bite angle of 

87.7(3)º. 

The dimeric sodium complex 42, crystalizes in monoclinic space group P 21/n having 2 

molecules in the unit cell. The details of the structural parameters are given in the Table 

6.2. The solid state structure and selected bond lengths and bond angles were shown in the 

Figure 6.3. In the dimeric sodium complex 42, each sodium ion is surrounded by one 

anionic ligand moiety in a bidentate fashion and one THF molecule. Each sodium ion, 

further has interactions with pyrrole ring π-electron density of another ligand to form 

dimeric structure through the bridging Na-pyrrole π-bonding. Therefore, each ligand in the 
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dimeric sodium complex 42 having (σ + π) bonding mode to the sodium ions and η3-

coordination was observed for pyrrolyl ring of the each ligand moiety. Therefore, the 

geometry of the each Na-ion was best described as distorted tetrahedral geometry which is 

formed due to coordination from two nitrogen atoms of the iminipyrrolyl ligand moiety, 

one oxygen atom of the THF molecule and η3-coordination from pyrrolyl ring of the other 

iminopyrrolyl ligand. The bite angles of N1-Na1-N2 95.46(5)º and N1i-Na1-N2 75.44(5)º 

and N1-Na1-N1i 85.56(6)º were observed for each of the iminopyrrolyls chelated to sodium 

atoms. The Na-N bond distances of 2.3586(17) Å and 2.4641(16) Å were in the similar 

range of the reported Na-N distances observed for the compound [µ2:κ2-2-(2,6-

Me2C6H3N=CH)-C4H3N]Na(OEt2)]2 (2.405(3) and 2.4285(3) Å).9 The distance between 

Na-ion with pyrrole ring atoms (C1, N1 and C4 or C1i, N1i and C4i) were found to be 

2.790(2), 2.6998(17) and 2.8670(19) Å respectively. 

 

Figure 6.3. Solid state structure of sodium complex 42. Hydrogen atoms are omitted except 

H13 for clarity. Selected bond lengths (Å) and bond angles (º): Na1-N1i 2.3586(17), Na1-

N2 2.4641(16), Na1-O1 2.3315(17), Na1-N1 2.6998(17), Na1-C1 2.8670(19), Na1-C2 

3.080(2), Na1-C3 3.034(2),  Na1-C4 2.790(2), Na1-C5 3.0870(19), C4-C5i 1.436(3), C5-

N2 1.289(2), N2-C6 1.493(2), C1-N1 1.382(2), C1-C2 1.403(3), C2-C3 1.396(3), C3-C4 

1.396(3); N2-Na1-N1i 75.44(5), N1-Na1-N2 95.46(5), N1-Na1-O1 147.46(6),  N2-Na1-

O1 117.06(6), N1i-Na1-O1 102.83(6), N1-Na1-N1i 85.56(6), C1-Na1-O1 144.32(7), C2-

Na1-O1 117.02(6), C3-Na1-O1 105.33(6), C4-Na1-O1 118.92(6). 
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These distances are somewhat larger when compared to Na-Pyrrolylcentrtroid distances 

2.447(3) Å and 2.494(3) Å found in the polymeric sodium compounds of the type 

[{Na(2:2-N,N-iminopyrrolyl)}2n(OEt2)2x] (n ≥ 1; x = 0 or 1), (aryl = C6H5 or 2,6-

Me2C6H3)
9 indicating that a moderate π-interactions were exists between the Na-ions and 

pyrrolyl rings in the dimeric sodium complex 42. The bond distance of C1-N1 1.349(2) 

and C4-C5 1.436(3) and C5-N2 1.289(2) Å were almost unchanged compared to free ligand 

(C1-N1 1.357(6) and C4-C5 1.433(6) and C5-N2 1.260(6) Å) upon coordination to sodium 

atom. Therefore, each bidentate iminopyrrolyl ligand forms a five membered mettallacycle 

Na1-N1-C4-C5-N2 or Na1i-N1i-C4i-C5i-N2i with sodium atom, where the Na-atoms were 

slightly deviated from the planarity. Each Na-ion in the dimeric complex 42 is further 

stabilized by the coordination from one THF molecule. The Na-O bond distance 

2.3315(17) Å was well fitted with literature reports. A short contact Na between sodium 

and one of the phenyl proton (Na1H13 2.707 Å) is observed which can be attributed as 

remote or secondary MH interaction.13 However, in solution all phenyl protons were 

appeared equivalent as observed in 1H NMR study presumably due to dynamic behavior 

of the complex.  

In contrast to sodium complex 42, the potassium complex 43, crystalizes in monoclinic 

space group P 21/c having 2 molecules in the unit cell. The details of the structural 

parameters are given in the Table 6.3. The solid state structure and selected bond lengths 

and bond angles were shown in the Figure 6.4. The asymmetric unit of potassium complex 

43, having two iminopyrrolyls and two potassium ions and one coordinated THF molecule. 

In the asymmetric unit, one potassium atom (K2) chelated by two iminopyrrolyl ligands in 

a bidentate fashion and one THF molecule, whereas the second potassium ion (K1) was 

surrounded by one iminopyrrolyl ligand in a bidentate fashion and one pyrrolyl group (η5-

mode) of another iminopyrrolyl ligand present in the asymmetric unit. Therefore, in the 

grown structure the two potassium atoms (K1 and K1i) were sandwiched between two 

pyrrolyl ring π-electron densities in η5-fashion and further chelated by imine-nitrogen 

atoms of the iminopyrrolyls. The other two potassium atoms (K2 and K2i) were surrounded 

by iminopyrrolyl moieties in a bidentate fashion and one THF molecule. The potassium 



206 
 

ion K2 further having week interactions with aromatic ring hydrogen atoms (K2H24 and 

K2 H48).    

 

Asymmetric unit 

 

 

 

 

 

 

 

 

 

Figure 6.4. Solid state structure of potassium complex 43. Hydrogen atoms are omitted 

except H24 for clarity. Selected bond lengths (Å) and bond angles (º): K1-N1 3.155(3), 

K1-N2 2.946(3), K1-N3 3.041(3), K1-C1 3.082(4), K1-C2 3.063(4), K1-C3 3.095(4), K1-

C4 3.128(4), K2-N1 2.971(3), K2-N2 3.005(3), K2-N3 2.667(3), K2-N4 3.013(3), K2-O1 

2.668(3), K2-C5 3.419(4), C1-N1 1.355(5), C4-N1 1.396(4), C5-N2 1.292(4), C6-N2 

1.488(5), C25-N3 1.364(5), C28-N3 1.384(4), C29-N4 1.282(4), C30-N4 1.487(5); N1i-
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K1-N2 60.09(8), N1i-K1-N3 74.12(8), N2-K1-N3 97.26(8), N1i-K1-N1 92.85(8), N2-K1-

N1 102.47(8), N3-K1-N1 146.71(9), N3-K2-O1 114.95(9), N3-K2-N1i 77.85(9), O1-K2-

N1i 97.13(9), N3-K2-N2 104.62(8), O1-K2-N2 127.32(8), N1i-K2-N2 58.07(8), N3-K2-

N4 60.28(9), O1-K2-N4 112.87(8), N1i-K2-N4 135.55(8), N2-K2-N4 116.53(8), N2-K2-

C48 133.36(9), N4-K2-C48 50.33(9). 

Therefore, in complex 43 each iminopyrrolyl ligand having (σ+π) coordination from each 

ligand moiety and further η5- coordination was observed for pyrrolyl group of each 

iminoyrrolyls. Therefore, the geometry of the each potassium atom was best described as 

distorted trigonal-bipyramidal geometry for K2 and distorted tetrahedral geometry for K1 

respectively. The K1-N1pyrrolyl, K1-N3pyrrolyl bond distances 3.155(3) and 3.041(3) Å 

respectively are well fitted with K-N distances observed in 

[K(THF)2{Ph2P(Se)N(CMe3)}]n (3.047(3) Å).14 The K2-N1pyrrolyl, and K2-N3pyrrolyl bond 

distances 2.971(3) and 2.667(3) Å respectively, which are in good agreement with  K-N 

distances were observed in [{Ph2P(Se)NCHPh2}K(THF)2]2 (2.725(3) Å) and  

[{Ph2P(BH3)NCHPh2}K(THF)2]2 (2.691(2) Å) (see Chapter 2 and 3). The K1-N2imine and 

K2-N4imine bond distances of 2.946(3) and 3.013(3) Å were observed respectively. The 

average potassium-pyrrolyl ring centroid distance of 2.913 Å was observed in potassium 

complex 43 which indicates that highly electropositive and larger potassium atoms are 

having considerable interactions with pyrrolyl π-electron density. In addition, the 

potassium ion (K2) is having very weak interactions with aromatic ring hydrogen atoms 

(K2H24 3.047 Å and K2H48 2.891 Å) to reduce their coordination unsaturation. The 

K2-O1 bond distance of 2.668(3) Å is observed which is in similar range of K-O bond 

distance reported in the literature. The best of our knowledge this is the only example of 

µ2-(η1-η5)-mode observed by a pyrrole ring towards potassium atoms when considering 

different binding modes such as μ2-(η1-ηn)-reported many times in the literature.15  

6.2.3. Synthesis and characterization of alkaline-earth metal complexes: 

 

We have synthesized the various alkaline-earth metal complexes of bulky iminopyrrolyl 

ligand by using alkane elimination, silylamine elimination methods and salt metathesis 

routes. The magnesium complex of composition [(THF)2Mg{CH2Ph){2-(Ph3CN=CH)-
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C4H3N}] (44) was synthesized via alkane elimination process, in which the 

[Mg(CH2Ph)2(OEt2)2] was treated with bulky iminopyrrole ligand 40 in 1:1 molar ratio in 

toluene at ambient temperature (Scheme 6.2). Recrystallization from THF/n-pentane 

combination afforded the magnesium complex 44 in very good yield. The 

bis(iminopyrrolyl)magnesium complex of composition [(THF)2Mg{2-(Ph3CN=CH)-

C4H3N}2] (45) was synthesized by using salt metathesis route, in this process, potassium 

salt (43) of ligand 40 was treated with MgI2 in 2:1 molar ratio in THF solvent afforded the 

complex 45 in 90% yield (Scheme 6.2). The two magnesium complexes 44 and 45 were 

fully characterized by using both spectroscopic/analytical techniques and single crystal X-

ray diffraction analysis. In the 1H NMR spectrum, one singlet resonance assignable to 

imine moiety was observed at  7.91 ppm (for 44) and 7.99 ppm (for 45), additionally one 

singlet resonance at  1.73 ppm observed for complex 44 can be assigned to methylene 

protons of the benzyl group. In the 13C{1H} NMR spectra, strong resonance at  162.7 ppm 

(for 44) and 157.8 ppm (for 45) relates to the imine moiety and strong resonance at  38.4 

ppm (for 44) tells the presence of benzylic carbon atom in the complex 44.         

 

Scheme 6.3. Synthesis of magnesium complexes 44 and 45. 

In the solid state the mono(iminopyrrolyl)Mg-complex 44 was crystalizes in triclinic space 

group P-1 having four molecules in the unit cell. The details of the structural parameters 

were given in the Table 6.3. The solid state structure of complex 44 and selected bond 
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lengths and bond angles were shown in the Figure 6.5. In the magnesium complex 44, the 

central magnesium atom was surrounded by one iminopyrrolyl moiety, one benzyl group 

and two solvated THF molecules. Therefore, the geometry of magnesium ion in the 

complex 44 can be best described as distorted trigonal bipyramidal, which is formed due 

to chelation of two nitrogen atoms of the iminopyrrolyl group, one carbon atom of the 

benzyl group and two oxygen atoms of the THF molecules.  

 

Figure 6.5. Solid state structure of magensium complex 44. Hydrogen atoms are omitted 

for clarity. Selected bond lengths (Å) and bond angles (º): Mg1-N1 2.070(2), Mg1-N2 

2.200(2), Mg1-C25 2.185(3), Mg1-O1 2.2040(19), Mg1-O2 2.225(2), C1-N1 1.353(3), 

C1-C2 1.392(4), C2-C3 1.399(3), C3-C4 1.399(3), C4-C5 1.426(3), C4-N1 1.385(3), C5-

N2 1.303(3), N2-C6 1.494(3), C6-C7 1.541(3), C25-C26 1.464(4); N1-Mg1-N2 80.98(8), 

O1-Mg1-O2 173.46(7), N1-Mg1-O1 89.79(8), N1-Mg1-O2 92.71(8), N2-Mg1-O1 

84.74(7), N2-Mg1-O2 89.68(7), N1-Mg1-C25 123.72(10), O1-Mg1-C25 92.51(10), O2-

Mg1-C25 91.13(10), N2-Mg1-C25 155.19(10), C1-N1-C4 105.8(2), N1-C4-C5 119.0(2), 

C4-C5-N2 121.2(2), C5-N2-C6 120.02(19), C4-N1-Mg1 110.34(15), C5-N2-Mg1 

108.06(15). 

The magnesium-nitrogen bond distances Mg1-N1 2.070(2) and Mg1-N2 2.200(2) Å were 

observed for the compound 44; these are well fitted with the Mg-N bond distances reported 
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in the literature. For example, Mg-N bond distance reported as 1.970(3) Å for 

[{(LiPr)2Mg(THF)2}·(THF)], 2.094(3) Å for [{(LiPr)2Mg}·(THF)] (where LiPr = [(2,6-

iPr2C6H3)NC(Me)]2) and 2.051(2) Å for [(LMes)2Mg(THF)3] and 2.070(2) Å 

for[(LMes)2Mg], (where LMes = [(2,4,6 Me3C6H2)-NC(Me)]2).
16 The Mg-N bond distances 

were also well agreement with the Mg-N bond distances [1.987-2.194 Å for {Mg(C4H3N(2-

CH2NMe2))(N(SiMe3)2)}2; 1.992-2.223 Å {Mg(C4H3N(2-CH2NEt2))(N(Si Me3)2)}2; 

1.996-2.064 Å {Mg(C4H3N(2-CH2NHtBu))(N(SiMe3)2)}2] reported by Ting-Yu Lee et 

al.17  Recently, our group also synthesized magnesium complexes of the type 

[Mg{C2H4(NPh2P(Se))2}(THF)3] in which we have observed Mg-N distance  2.066(3) and 

2.083(3) Å which were in good agreement with the observed values 2.070(2) and 2.200(2) 

Å for the complex 44.14 The nitrogen atom of the pyrrolyl ring (N1) and imine nitrogen 

atom (N2) have made bite angle of N1-Mg1-N2 80.98(8)º with the magnesium atom was 

observed.  The Mg1-C25 bond distance of 2.185(3) Å is in good agreement with the Mg-

C bond distance observed in the complexes [(tmeda)Mg(CH2Ph)2] (2.1697(17) Å) and [η2-

HC{C(CH3)NAr’}2Mg(CH2Ph)(thf)] (2.1325(18) Å) reported by P. J. Bailey et al.18   

 

 

Figure 6.6. Solid state structure of magnesium complex 45. Hydrogen atoms are omitted 

for clarity. Selected bond lengths (Å) and bond angles (º): Mg1-N1 2.0813(14), Mg1-N2 

2.5422(14), Mg1-O1 2.1517(12), C1-N1 1.343(2), N1-C4 1.383(2), C4-C5 1.428(2), C5-

N2 1.295(2), N2-C6 1.5030(19); N1-Mg1-N1i 180.0, N2-Mg1-N2i 180.0, O1-Mg1-O1i 

180.0, N1-Mg1-O1 89.87(5), N2-Mg1-O1 90.80(4), N1-Mg1-N2 75.72(5), N1-Mg1-N2i 



211 
 

104.28(5), C1-N1-C4 104.92(13), N1-C4-C5 121.60(14), C4-C5-N2 122.89(15), C5-N2-

Mg1 103.64(10).  

The bis(iminopyrrolyl)Mg-complex 45 was crystalizes in triclinic space group P-1 having 

one molecule in the unit cell. The solid state structure of complex 45 and selected bond 

lengths and bond angles were shown in the Figure 6.6. In complex 45, the central 

magnesium atom was surrounded by two iminopyrrolyl moieties, and two THF molecules. 

Therefore, the geometry of the central magnesium atom in the complex 45 was best 

described as distorted octahedral, which is formed due to the chelation  from four nitrogen 

atoms of two iminopyrrolyl moieties and two oxygen atoms of the THF molecules. The 

Mg1-N1pyrrolyl bond length of 2.0813(14) Å is well fitted with Mg-Npyrrolyl bond distance 

observed in complex 44 (2.070(2) Å) and to the literature reports.14,16,17 Whereas the Mg1-

N2imine bond length 2.5422(14) Å is quite larger than the Mg-Nimine bond distance (2.200(2) 

Å) observed in the complex 44 and also to the literature reports.16,17 This is due to presence 

of bulky triphenyl group attached to the imine nitrogen atom of the bulky iminopyrrolyl 

moiety. In complex 45, the Mg-O bond distance (2.1517(12) Å) is well fitted with the 

literature reports. Due to chelation of Npyrrolyl and Nimine atoms of the bulky iminopyrrolyl 

moiety to the magnesium atom, there exists a five membered mettallacycle N1-C4-C5-N2-

Mg1 or N1i-C4i-C5i-N2i-Mg1 with bite angle of N1-Mg1-N2 or N1i-Mg1-N2i 75.72(5)º.   

The heavier alkaline-earth metal complexes of composition {M(2-(Ph3CN=CH)-

C4H3N)2(THF)n} (M = Ca (46), Sr (47) and n = 2; M = Ba (48), n = 3)  were synthesized 

by using two  synthetic methods; In the first method, the bulky iminopyrrolyl ligand 40 

was directly treated with alkaline-earth metal bis(trimethylsilyl)amides 

[M{N(SiMe3)2}2(THF )n] (where M = Ca, Sr and Ba) in 2:1 molar ratio in THF solvent at 

ambient temperature. The same alkaline-earth metal complexes of composition {M(2-

(Ph3CN=CH)-C4H3N)2(THF)n} (M = Ca (46), Sr (47) and n = 2; M = Ba (48), n = 3) were 

also obtained by using salt metathesis reaction involves the treatment of potassium salt (43) 

of bulky iminopyrrolyl ligand with alkaline-earth metal diiodies MI2 (M = Ca, Sr and Ba) 

in 2:1 molar ratio in THF solvent (Scheme 6.4).11  
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Scheme 6.4. Synthesis of heavier alkaline-earth metal complexes of bulky iminopyrrolyl 

ligand 40.  

In the 1H NMR spectra, each of compounds 46-48 shows sharp singlet resonance at  7.99 

(for 46), 8.04 (for 47) and 7.89 (for 48) ppm indicating the presence of imine -C-H proton 

in the metal complexes which is slightly downfield shifted compared to free ligand (7.67 

ppm). The coordinated THF molecules can be easily recognized by 1H NMR spectra as 

two multiplet signals centered at 3.61 and 1.76 ppm (for 46), 3.38 and 1.18 ppm (for 47) 

and 3.56 and 1.40 ppm (for 48) were observed in each metal complex. One set of resonance 

signals were observed for aromatic ring protons in each metal complex indicating the 

dynamic behavior in solution state. The solid state structure of each alkaline-earth metal 

complex was established by single crystal X-ray diffraction analysis.  

The centrosymmetric bis(iminopyrrolyl) Ca-complex was crystalizes in monoclinic space 

group P 21/n having two molecules in the unit cell. The details of the structural parameters 

are given the Table 6.4. The solid state structure and selected bond lengths and bond angles 

were shown in the Figure 6.7. From the crystallographic data it is evident that the structure 

of calcium complex 46 is iso-structural to bis(iminopyrrolyl)Mg-complex 45, in which the 

central calcium atom was surrounded by two anionic iminopyrrolyl ligands and two trans-

THF molecules. Each ligand moiety coordinating to the metal center through the Npyrrolyl 

and Nimine atoms and therefore there exists five membered mettallacycle N1-C4-C5-N2-

Ca1 or N1i-C4i-C5i-N2i-Ca1 with bite angle of 71.76(13)º. In the calcium complex 46, the 

bond distance of Ca-Npyrrolyl 2.423(4) Å and bond distance of Ca-Nimine 2.567(4) Å were 
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observed, these values are in well agreement with the Ca-N bond distances reported for the 

complexes of composition [(ImpDipp)2Ca(THF)2] (Ca-N1 2.422(2) Å; Ca-N3 2.393(2) Å 

and (Ca-N2 2.526(2) Å; Ca-N4 2.534(2) Å) and [(ImpDipp)Ca(N(SiMe3)2)(THF)2]  (Ca-N1 

2.388(2) Å; Ca-N3 2.312(2) Å and Ca-N2 2.467(2) Å) and [(ImpMe)2Ca(THF)2] (Ca-N1 

2.398(4) Å; Ca-N2 2.448(3) Å) (where ImpDipp
 =  2-(2,6-C6H3

iPr2-CN=CH)-C4H3N) and 

ImpMe
 = 2-(2,6-C6H3Me2-CN=CH)-C4H3N)).19 The Ca-N bond distances were also 

comparable with our previous results discussed in Chapters 2-5. The Ca-O bond distance 

of Ca1-O1 2.361(4) Å is in the range of normal Ca−O bonds.20 Therefore, the geometry of 

the central calcium atom can be best described as distorted octahedral in which the four 

nitrogen atoms of the two iminopyrrolyls occupies the equatorial positions and two oxygen 

atoms of the THF molecules occupies the axial positions and trans to each other.  

 

 

Figure 6.7. Solid state structure of bis(iminopyrrolyl)Ca-complex 46. Hydrogen atoms are 

omitted for clarity. Selected bond lengths (Å) and selected bond angles (º): Ca1-N1 

2.423(4), Ca1-N2 2.567(4), Ca1-O1 2.361(4), C4-N1 1.400(5), C4-C5 1.413(6), C6-N2 

1.504(5); N1-Ca1-N2 71.76(13), N1-Ca1-O1 86.72(14), N2-Ca1-O1 89.32(15), C5-N2-

Ca1 108.3(3), C4-N1-Ca1 111.4(3), C4-C5-N2 125.6(4), O1-Ca1-O1i 180.00(12),  N1-

Ca1-N1i 180.0, N2-Ca2-N2i 180.0.   

Unlike magnesium (45) and calcium (46) complexes, the bis(iminopyrrolyl)Sr-complex 

(47) is non-cetrosymmetric and crystalizes in triclinic space group P-1 having 2 molecules 

in the unit cell. The details of the structural parameters were given in the Table  
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Figure 6.8. Solid state structure of bis(iminopyrrolyl)Sr-complex 47. Hydrogen atoms are 

omitted for clarity. Selected bond lengths (Å) and selected bond angles (º): Sr1-N1 

2.570(5), Sr1-N2 2.677(5), Sr1-N3 2.546(6), Sr1-N4 2.679(5), Sr1-O1 2.621(5), Sr1-O2 

2.593(5), C4-N1 1.382(8), C4-C5  1.442(8), C5-N2 1.291(8), N2-C6 1.494(7), N4-C30 

1.505(8); N1-Sr1-N2 68.35(15), N3-Sr1-N4 68.32(16), N1-Sr1-N3 154.21(18), N1-Sr1-

N4 129.28(16), N2-Sr1-N3 124.93(16), N2-Sr1-N4 116.33(15), O1-Sr1-O2 89.05(17), N1-

Sr1-O1 84.62(17), N1-Sr1-O2 79.56(17), N3-Sr1-O1 80.22(17), N3-Sr1-O2 79.45(17), 

N4-Sr1-O2 80.08(16). 

6.4. The solid state structure and selected bond lengths and selected bond angles were 

shown in Figure 6.8. In the complex 47, the strontium metal center was surrounded by two 

chelating bulky iminopyrrolyls and two THF molecules. Therefore, the geometry of the 

central strontium atom can be best described as distorted octahedral geometry in which two 

coordinated THF molecules are cis to each other. The Sr-Nimine bond distances of Sr1-N2 

2.677(5) Å and Sr1-N4 2.679(5) Å are slightly longer than Sr-Npyrrolyl bond distances of 

Sr1-N1 2.570(5) Å and Sr1-N3 2.546(6) Å were observed in the complex 47. These values 

are in good agreement with the strontium-nitrogen bond distances (2.6512(2) and 2.669(2) 

Å) reported previously for the strontium complex [(ImpDipp)2Sr(THF)3] (ImpDipp = 2,6-

iPr2C6H3N=CH)–C4H3N).19 In the strontium complex 47, each monoanionic bidentate 

chelate ligand forming five membered mettallacycle with strontium atom N1-C4-C5-N2-
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Sr1 with bite angle of 68.35(15)° and N3-C28-C29-N4-Sr1 with bite angle of 68.32(16)°. 

The two planes containing the N1, N2, Sr1 and N3, N4, Sr1 atoms are almost orthogonal 

to each other with dihedral angle of 85.02°. The Sr-O bond distances Sr1-O1 2.621(5) Å 

and Sr1-O2 2.593(5) Å are in the range of normal Sr−O bonds.20 

Like strontium complex 47, the bis(iminopyrrolyl)Ba-complex 48 also non-

centrosymmetric and crystalizes in monoclinic space group P-1 having two molecules in 

the unit cell.  The details of the structural parameters are given the Table 6.4. The solid 

state structure and selected bond lengths and bond angles were shown in the Figure 6.9. In 

the barium complex, Each ligand moiety coordinating to the metal center through the 

Npyrrolyl and Nimine atoms and therefore there exists five membered mettallacycle N1-C1-

C5-N2-Ba1 with bite angle of 63.78(14)º and N3-C28-C29-N4-Ba1 with bite angle of 

63.14(15)º. The plane containing N1, N2 and Ba1 is having dihedral angle of 87.08º with 

plane containing N3, N4 and Ba1 indicates that two five membered mettallacycles are 

almost orthogonal to each other. In the barium complex 48, the Ba-Npyrrolyl bond distance 

of Ba1-N1 2.731(5) Å; Ba1-N3 2.762(5) Å were observed well fitted to the Ba-N bond 

distances reported for the complexes of composition [Ba((Dipp)2DAD)(μ-I)(THF)2]2 

(2.720(4) and 2.706(4) Å)21 and Ba-Nimine bond distance of Ba1-N2 2.946(5) Å; Ba1-N4 

2.933(5) Å are slightly larger than the Ba-N distances reported for the complexes of 

composition [(ImpDipp)2Ba(THF)2] (Ba−N1 2.821(5) Å and (Ba−N2 2.823(4) Å) and 

[Ba((Dipp)2DAD)(μ-I)(THF)2]2 (2.720(4) and 2.706(4) Å) (where ImpDipp
 = 2-(2,6-

C6H3
iPr2-CN=CH)-C4H3N)).19,21 The Ba-N bond distances were also comparable with our 

previous results discussed in Chapters 2-5. The Ba-O bond distance of Ba1-O1 2.812(5), 

Ba1-O2 2.842(4) and Ba1-O3 2.830(4) Å are in the range of normal Ba−O bonds reported 

in the literature.20 Therefore, the geometry of the central barium atom can be best described 

as distorted pentagonal bipyramidal which is formed due to chelation four nitrogen atoms 

of the two iminopyrrolyl moieties and three oxygen atoms of the three coordinated THF 

molecules. 
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Figure 6.9. Solid state structure of bis(iminopyrrolyl)Ba-complex 48. Hydrogen atoms are 

omitted except H24 for clarity. Selected bond lengths (Å) and selected bond angles (º): 

Ba1-N1 2.731(5), Ba1-N2 2.946(5), Ba1-N3 2.762(5), Ba1-N4 2.933(5), Ba1-O1 2.812(5), 

Ba1-O2 2.842(4), Ba1-O3 2.830(4), C4-N1 1.348(8), C4-C5  1.424(8), C5-N2 1.304(7), 

N2-C6 1.481(7), N4-C30 1.499(8), Ba1-C44 3.389(6); N1-Ba1-N2 63.78(14), N3-Ba1-N4 

63.14(15), N1-Ba1-N3 166.32(15), N1-Ba1-N4 127.40(15), N2-Ba1-N3 125.77(14), N2-

Ba1-N4 102.26(13), O1-Ba1-O2 134.20(14), O2-Ba1-O3 65.90(14), O1-Ba1-O3 

68.76(15), N1-Ba1-O1 89.67(16), N1-Ba1-O2 80.25(14), N3-Ba1-O1 84.29(16), N3-Ba1-

O2 95.20(14), N3-Ba1-O3 81.61(15). 

6.3 Ring-Opening Polymerization of -caprolactone study 

  

A series of alkaline-earth metal complexes supported by bulky iminopyrrolyl ligand were 

studied as initiators for living ROP of ε-CL. The typical ring-opening polymerization 

process was depicted in the Scheme 6.5. We were mostly concentrated on living ROP and 

not on immortal ROP of ε-CL in order to understand the influence of steric bulk on rate of 

polymerization and influence of nature of the metal centre. In the living ROP of cyclic 

esters, the metal complex acts an initiator, that is, each metal center produces only one 

polymer chain. On the other hand, an immortal ROP is performed upon addition of a large 

excess of a protic agent (typically an alcohol) acting as an exogenous initiator and a chain 
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transfer agent, and the complex acts as a catalyst: if the transfer between growing and 

dormant macromolecules is fast and reversible, the number of polymer chains generated 

per metal center is equal to the [transfer agent]0-to-[metal]0 The selected data obtained with 

alkaline-earth metal complexes (44-48) as initiators for living ROP of ε-CL are collected 

in table 6.1. The catalytic efficiency of newly synthesized heteroleptic and homoleptic 

magnesium complexes 44 and 45 to promote ROP of ε-CL were first evaluated (table 6.1, 

entries 1-4). Indeed, although some previously reported studies with similar magnesium 

complexes having less-bulky iminopyrrolyls in their coordination sphere gave poor results 

under similar polymerization conditions,21 our preliminary investigations with magnesium 

complexes 44 and 45 showed that they are active in the ROP of ε-CL at 25 °C in toluene 

with conversion over 90% within 15 minutes (table 6.1, entries 1–6).  

 

Scheme 6.5. ROP of ε-CL initiated by alkaline earth metal complexes 44 – 48. 

The molar mass distribution PDI values obtained from GPC analysis are narrow (PDI < 

1.8, for entries 1-6) and controlled molecular weight distribution was observed. We noticed 

that the heteroleptic Mg complex (44) is more active compared to homoleptic Mg complex 

(45). The difference in reactivity could be understand by the initiation steps in both the 

cases. In case of complex 44 polymerization follows a nucleophilic route and is initiated 

by the transfer of an alkyl ligand to the monomer, with cleavage of the acyl-oxygen bond 

and formation of a metal alkoxide-propagating species.22, Similar mechanism was also 

suggested by the A. M. Rodrıguez group for the magnesium complex of composition 

[Mg(CH2SiMe3)(K
2-η5-bpzcp)] (where bpzcp = 2,2-bis(3,5-dimethylpyrazol-1-yl)-1,1-

diphenylethyl cyclopentadienyl) as an initiator for the living ROP of ε-CL .23 The results 

obtained therein (PDI < 1.5 with controlled molecular weights) are comparable with our 

observations (See Table 6.1) suggesting that the ligand steric bulk and nature of the metal 

centre play crucial role in ROP of ε-CL. The calcium complex 46 also showed the 
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comparable activity towards the ROP of ε-CL with magnesium analogues (44 and 45) with 

narrow PDI values and controlled molecular weight distributions (Table 6.1, entries 5–9). 

Indeed, the sluggish reactivity of the calcium complexes is very similar to that observed in 

some previously reported studies using other calcium complexes for ROP of ε-CL,24, 25 we 

have  noticed that living polymerization characteristics at room temperature without using 

any initiating agent like alcohol (entry 9, PDI = 1.5 and Mw = 52483) indicating that 

triphenylmethyl group on ligand backbone strongly influencing the activity of calcium 

complexes towards the ROP of ε-CL.  We anticipated that strontium (47) and barium (48) 

complexes could be more active than those of magnesium and calcium complexes having 

bulky iminopyrrolyls due to the larger ionic radii of Sr2+ and Ba2+ ions.26,27 Both strontium 

and barium analogues showed higher reactivity towards the conversion of ε-caprolactone 

to poly-caprolactone and up to 600 ε-CL units were successfully converted in high yields 

(90 to 98%) within  5-10 minutes at 25 °C. The control over the ROP process was rather 

good, affording PCLs, with controlled molar mass values, as well as very narrow dispersity 

data (PDI < 1.4, entries 10-19). Therefore, overall catalytic efficiency of ring-opening 

polymerization by heavier alkaline-earth metal complexes (Sr2+ and Ba2+) supported by 

sterically hindered iminopyrrolyl ligands were much better and affording poly-

caprolactone with controlled molecular weights and narrow PDI values.  

 

Figure 6.10. 1H NMR spectrum (400 MHz, 25°C, CDCl3) of Poly(ε-Caprolactone) 

initiated by complex (48) 

- end groups 
- CDCl3 
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From the 1H NMR spectrum of low- molecular weight PCL by 48 (run 15), we found 

resonance signals assignable to a terminal iminopyrrolyl group (Figure 6.10), indicating 

that in case of amido complexes of alkaline-earth metal complexes (45-48) initial step of 

the polymerization was a nucleophilic attack of the pyrrolyl nitrogen atom towards the 

carbonyl carbon of the monomer followed by acyl-oxygen cleavage.    

Table 6.1. Ring-Opening Polymerization of ε-caprolactone initiated by alkaline earth 

metal complexes (44-48) 

Entry 
Cat. 

[M] 

[CL]0/ 

[M]0 

Reac. time 

[min] 

Conv. 

[%] 

Mn(theo)
 

[g mol-1] 

Mn(GPC)
 

[g mol-1] 

Mw(GPC)
 

[g mol-1] 
Mw/Mn 

1 44 200/1 10 90 19826 21141 31440 1.48 

2 44 400/1 10 87 34847 21147 31875 1.50 

3 [Mg(CH2SiMe3)(K2-η5-bpzcp)]g 5000/1 10 65 2233 - 151000 1.45 

4 [Mg(CH2SiMe3)(tbpamd)]g 500/1 1  97 3320 - 52000 1.41 

5 45 200/1 15 89 17824 13781 21994 1.59 

6 45 400/1 15 91 36449 39622 72653 1.83 

7 46 150/1 5 96 14419 17263 26204 1.51 

8 46 200/1 5 92 18425 22538 37073 1.64 

9 46 300/1 10 94 28238 32219 50483 1.56 

10 46 400/1 10 92 39613 60613 97678 1.61 

11 46 500/1 15 95 48065 85808 138365 1.61 

12 47 100/1 5 99 11896 11664 12173 1.04 

13 47 200/1 5 97 20397 25190 34481 1.36 

14 47 300/1 5 94 32944 36973 55396 1.49 

15 47 400/1 10 91 35087 76030 93067 1.22 

16 47 500/1 10 93 50288 86307 137623 1.59 

17 48 100/1 5 99 12887 12480 13076 1.04 

18 48 200/1 5 98 20608 36990 46567 1.25 

19 48 300/1 5 95 32343 41739 55528 1.33 

20 48 400/1 10 96 40374 73272 105361 1.43 

21 48 600/1 10 98 61824 107891 139168 1.28 
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6.4 Conclusion 
  

We have successfully prepared alkali metal complexes of the bulky iminopyrrolyl ligand 

and their solid-state structures reveal the flexibility and multidentate behavior of the 

iminopyrrolyl ligand 40. In case of the sodium complex, we observed a dimeric structure 

whereas, due to lower charge density of the potassium ion, a tetranuclear structure was 

found in the solid state. The heteroleptic and homoleptic magnesium complexes 44 and 45 

respectively were successfully synthesized and characterized using X-ray crystallography. 

In the solid state, complex 44 is five-fold coordinated and shows trigonal bipyramidal 

geometry around the magnesium ion, whereas the magnesium ion in complex 45 adopts a 

octahedral arrangement due to the six-fold coordination from ligand 40 and THF 

molecules. The heavier alkaline earth metal complexes 46–48 were synthesized either by 

silylamine elimination or salt metathesis routes using [M{N(SiMe3)2}2(THF)n] or MI2 (M 

= Ca, Sr, and Ba) as starting materials. In the solid state, the effect of the ion radii of the 

central metal ions as well as the steric bulk of the ligand backbone determined the metal 

coordination sphere. The calcium complex 46 is centro-symmetric and adopts an 

octahedral geometry, whereas the strontium and barium complexes (47 and 48), due to 

their larger size, are non-centro-symmetric and adopt distorted octahedral and distorted 

pentagonal-bipyramidal geometries respectively. In addition, the M−Npyr and M–Nimin 

bonds are relatively longer than those of the other amido-metal complexes of barium and 

strontium. The bis(iminopyrrolyl)complexes of strontium (47) and barium (48) were highly 

active for the of ε-CL, affording high molecular weight PCLs compared to the polymers 

produced by the calcium and magnesium complexes. 

6.5 Experimental Procedure: 

 

6.5.1. General  

  

All manipulations of air-sensitive materials were performed with the rigorous exclusion of 

oxygen and moisture in flame-dried Schlenk-type glassware either on a dual manifold 

Schlenk line, interfaced to a high vacuum (10-4 torr) line, or in an argon-filled M. Braun 

glove box. THF was pre-dried over Na wire and distilled under nitrogen from sodium and 
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benzophenone ketyl prior to use. Hydrocarbon solvents (toluene and n-pentane) were 

distilled under nitrogen from LiAlH4 and stored in the glove box. 1H NMR (400 MHz), 

13C{1H} and spectra were recorded on a BRUKER AVANCE III-400 spectrometer. 

BRUKER ALPHA FT-IR was used for FT-IR measurement. Elemental analyses were 

performed on a BRUKER EURO EA at the Indian Institute of Technology Hyderabad. 

Metal diiodides (MgI2, CaI2, SrI2 and BaI2), [NaN(SiMe3)2], [KN(SiMe3)2], pyrrole-2-

carboxyaldehyde, tritylamine and -caprolactone were purchased from Sigma Aldrich and 

used as such. The alkaline-earth metal bis(trimethylsilyl)amides [M{N(SiMe3)2}2(THF)n], 

[Mg(CH2Ph)2(OEt2)2] and LiCH2SiMe3 were prepared according to procedure prescribed 

in the literature.18,28,29 The NMR solvent C6D6 and CDCl3 were purchased from Sigma 

Aldrich and dried under Na/K alloy prior to use. 

6.5.2. Synthesis of [2-(Ph3CN=CH)-C4H3NH] (40) 

 

To a dried MeOH solution (10 ml) of pyrrole-2-carboxyaldehyde (2. 0 g, 21.0 mmol), 

tritylamine in 10 ml of MeOH (5.45 g, 21.0 mmol) and a catalytic amount of glacial acetic 

acid (0.25 ml) were added under stirring. The reaction mixture was stirred for 12 h at room 

temperature. Filtration followed by the washing with cold methanol and then with n-hexane 

and removal of solvent afforded the final product as off-white powder.  Recrystallization 

from hot toluene afforded the crystalline product in 79% yield (5.62 g). 1H NMR (400 

MHz, CDCl3):  9.50 (br, 1H, N-H), 7.67 (s, 1H, N=C-H), 7.29-7.22 (m, 15H, CPh3), 6.87 

(s, 1H, 5-pyr), 6.39 (d, 1H, 3-pyr), 6.22 (m, 1H, 4-pyr) ppm. 13C NMR (100 MHz, CDCl3): 

 150.3 (N=CH), 145.9 (ArC), 130.9 (2-pyr), 129.8 (o-ArC), 127.7 (m-ArC), 126.8 (p-

ArC), 121.6 (5-pyr), 114.6 (3-pyr), 110.0 (4-pyr), 77.8 (CPh3) ppm. FT-IR (Selected 

Frequencies, ν): 3445 (br, N-H), 3025 (w, ArC-H), 1629 (s, C=N) cm-1. Elemental 

Analysis: C24H20N2 (336.42): Calcd. C 85.68, H 5.99, N 8.33. Found C 84.57, H 5.32, N 

7.83. 

6.5.3. Synthesis of [{2-(Ph3CN=CH)-C4H3N}Li(THF)2] (41)  

To a THF solution of LiCH2SiMe3 (50 mg, 0.53 mmol), 1 equivalent of ligand 40 (178.6 

mg, 0.53 mmol) in THF was added dropwise at room temperature. The mixture was then 

stirred for 3 h. Removal of volatile product SiMe4 gave a light yellow product, which was 
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washed by n-pentane and dried under vacuum to afford Li-complex in 85% yield (220.0 

mg). Single crystals suitable for X-ray analysis were grown from THF/n-pentane mixture 

(1:2) solvent at -30 ºC  after 1 d. 1H NMR (400 MHz, C6D6):  8.17 (s, 1H, N=C-H), 7.13-

7.18 (m, 6H, CPh3), 7.11 (s, 1H, 5-pyr), 7.03-7.05 (m, 9H, CPh3), 6.74 (d, 1H, 3-pyr), 6.56 

(m, 1H, 4-pyr), 3.19-3.23 (m, THF), 1.19-1.22 (m, THF) ppm. 13C NMR (100 MHz, C6D6): 

 149.3 (N=CH), 145.7 (ArC), 130.8 (2-pyr), 129.8 (o-ArC), 127.6 (m-ArC), 126.5 (p-

ArC), 120.3 (5-pyr), 113.6 (3-pyr), 110.7 (4-pyr), 78.5 (CPh3), 67.8 (THF), 25.5 (THF) 

ppm. FT-IR (Selected Frequencies, ν): 3025 (w, ArC-H), 1629 (s, C=N) cm-1. Elemental 

Analysis: C32H35LiN2O2 (486.29): Calcd. C 78.99, H 7.25, N 5.76.Found C 77.69, H 6.15, 

N 5.06 

6.5.4. Synthesis of [{2-(Ph3CN=CH)-C4H3N}Na(THF)]2 (42)  

To a THF solution of ligand 40 (300 mg, 0.89 mmol), 1 equivalent of sodium 

bis(trimethylsilyl)amide (163.5 mg, 0.89 mmol) in THF was added dropwise under stirring 

at room temperature. Stirring was continued for another 12 h and then volatile compounds 

were removed under vacuum. The title compounds were obtained as white solids, which 

were further purified by washing with n-pentane. Single crystals suitable for X-ray 

diffraction analysis were obtained from the THF/n-pentane mixture (1:2) solvent at -30 ºC 

after 1 d. 91% Yield (350.0 mg): 1H NMR (400 MHz, C6D6):  8.03 (s, 1H, N=C-H), 7.14-

7.17 (m, 6H, CPh3), 6.98 (s, 1H, 5-pyr), 6.90-6.97 (m, 9H, CPh3), 6.49 (d, 1H, 3-pyr), 6.27 

(m, 1H, 4-pyr), 3.24-3.27 (m, THF), 1.18-1.21 (m, THF) ppm. 13C NMR (100 MHz, C6D6): 

 147.8 (N=CH), 145.9 (ArC), 130.2 (2-pyr), 128.3 (o-ArC), 128.1 (m-ArC), 127.8 (p-

ArC), 126.8 (5-pyr), 119.1 (3-pyr), 111.1 (1C, 4-pyr), 78.3 (CPh3), 67.8 (THF), 25.6 (THF) 

ppm. FT-IR (Selected Frequencies, ν): 3025 (w, ArC-H), 1629 (s, C=N) cm-1. Elemental 

Analysis: C56H54N4Na2O2 (861.01): Calcd. C 78.12, H 6.32, N 6.51. Found C 77.32, H 

5.39, N 5.31.  

6.5.5. Synthesis of [{2-(Ph3CN=CH)-C4H3N}K(THF)0.5]4 (43)  

 

To a THF solution of ligand 40 (300 mg, 0.89 mmol), 1 equivalent of potassium 

bis(trimethylsilyl)amide (177.8 mg, 0.89 mmol) in THF was added drop wise under stirring 

at room temperature. Stirring was continued for another 12 h and then volatile compounds 
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were removed under vacuum. The title compounds were obtained as white solids, which 

were further purified by washing with n-pentane. Single crystals suitable for X-ray 

diffraction analysis were obtained from the THF/n-pentane mixture (1:2) solvent at -30 ºC 

after 1 d. 95% Yield (380.5 mg): 1H NMR (400 MHz, C6D6):  7.99 (s, 1H, N=C-H), 7.12-

7.15 (m, 6H, CPh3), 6.94 (s, 1H, 5-pyr), 6.92-6.95 (m, 9H, CPh3), 6.53 (d, 1H, 3-pyr), 6.31 

(m, 1H, 4-pyr), 3.21-3.24 (m, THF), 1.17-1.21 (m, THF) ppm. 13C NMR (100 MHz, C6D6): 

 149.1 (N=CH), 143.7 (ArC), 131.3 (2-pyr), 128.6 (o-ArC), 128.3 (m-ArC), 128.1 (p-

ArC), 123.3 (1C, 5-pyr), 117.5 (3-pyr), 111.3 (4-pyr), 78.5 (CPh3), 67.3 (THF), 25.8 (THF) 

ppm.. FT-IR (Selected Frequencies, ν): 3026 (w, ArC-H), 1630 (s, C=N) cm-1. Elemental 

Analysis: C104H92K4N8O2 (1642.26): Calcd. C 76.06, H 5.65, N 6.82. Found C 75.42, H 

5.32, N 6.31.  

6.5.6.  Synthesis of [{2-(Ph3CN=CH)-C4H3N}{PhCH2}Mg(THF)2] (44)  

 

In a 25 ml of Schlenk flask one equivalent of ligand 40 (100 mg, 0.297 mmol) was 

dissolved in 10 ml of toluene. To this solution, one equivalent of [Mg(CH2Ph)2(Et2O)2] 

(105.4 mg, 0.297 mmol) in toluene (5 ml) was added  dropwise at room temperature. The 

reaction mixture was stirred for 6 h and then solvents were removed under vacuum. The 

resultant Mg-complex was washed with n-pentane twice and crystals suitable for X-ray 

analysis were grown from THF/n-pentane solvent mixture. Yield 160.5 mg (90%). 1H 

NMR (400 MHz, C6D6):  7.91 (s, 1H, N=C-H), 7.07-7.18 (m, 15H, CPh3), 6.96-7.02 (m, 

5H, Ar-H), 6.74 (d, 1H, 5-pyr), 6.66 (m, 1H, 3-pyr), 6.56 (m, 1H, 4-pyr), 1.73 (s, 2H, 

CH2Ph) ppm. 13C NMR (100 MHz, C6D6):  162.7 (N=CH), 145.5 (ArC), 136.9 (CH2Ph), 

135.3 (2-pyr), 129.1 (o-CH2Ph), 128.7 (o-ArC), 128.1 (m-CH2Ph), 127.2 (m-ArC), 126.1 

(p-ArC), 125.4 (p-CH2Ph), 124.4 (5-pyr), 121.0 (3-pyr), 113.3 (4-pyr), 76.8 (CPh3), 38.4 

(CH2Ph) ppm. FT-IR (Selected Frequencies, ν): 3025 (w, ArC-H), 1631 (s, C=N) cm-1. 

Elemental Analysis: C39H42MgN2O2
 (595.06): Calcd.  C 78.72, H 7.11, N 4.71. Found C 

77.89, H 6.13, N 4.01.  

6.5.7. Synthesis of [{2-(Ph3CN=CH)-C4H3N}2Mg(THF)2] (45)  
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In a pre-dried Schlenk flask potassium salt (43) of ligand 40 (200 mg, 0.448 mmol) and 

MgI2 (62.30 mg, 0.224 mmol) were mixed in THF (10 ml) solvent. The reaction mixture 

was stirred for 12 h at room temperature and then precipitate of KI was removed by 

filtration. Solvent was removed under reduced pressure from the filtrate and then dried in 

vacuo. The magnesium complex (45) was obtained as white solid, which was recrystallized 

from THF/n-pentane (1:2) mixture solvents. Yield: 175 mg (93%).1H NMR (400 MHz, 

C6D6):  7.99 (s, 1H, N=C-H), 7.14-7.25 (m, 15H, CPh3), 6.37 (d, 1H, 5-pyr), 6.10 (s, 1H, 

3-pyr), 5.99 (m, 1H, 4-pyr), 3.62-3.64 (m, THF), 1.27-1.29 (m, THF) ppm. 13C NMR (100 

MHz, C6D6): d 157.8 (N=CH), 147.2 (ArC), 136.3 (2-pyr), 128.9 (o-ArC), 128.2 (m-ArC), 

125.3 (p-ArC), 116.8 (5-pyr), 113.4 (3-pyr), 111.4 (4-pyr), 66.7 (CPh3), 65.5 (THF), 24.6 

(THF) ppm. FT-IR (Selected Frequencies, ν): 3025 (w, ArC-H), 1629 (s, C=N) cm-1. 

Elemental Analysis: C56H54MgN4O2 (839.34): Calcd. C 80.13, H 6.48, N 6.67. Found C 

79.33, H 5.92, N 6.07.  

6.5.8. Synthesis of [{2-(Ph3CN=CH)-C4H3N}2M(THF)n] (M = Ca (46), Sr (47) and n = 2; M = 

Ba (48) and n = 3)  

 

46: Route 1: Ligand 40 (200 mg, 0.594 mmol) and [Ca{N(SiMe3)2}2(THF)2] (150 mg, 

0.297 mmol) were dissolved in THF (5 ml). The reaction mixture was stirred for 6 h at 

room temperature and all volatiles were removed under reduced pressure. The remaining 

white solid was washed with n-pentane and then dried in vacuo to give calcium complex 

(46) as white powder. Recrystallization from THF/n-pentane (1:2) gave colorless crystals 

suitable for X-ray diffraction measurement. Yield: 241 mg (95%).   

Route 2: In a pre-dried Schlenk flask potassium salt (43) of ligand 40 (200 mg, 0.448 mmol) 

and CaI2 (65.8 mg, 0.224 mmol) were mixed in THF (10 ml) solvent. The reaction mixture 

was stirred for 12 h at room temperature and then precipitate of KI was removed by 

filtration. Solvent was removed under reduced pressure from the filtrate and then dried in 

vacuum. The calcium complex (46) was obtained as white solid, which was recrystallized 

from THF/n-pentane (1:2) mixture solvents. Yield: 172 mg (90%). 1H NMR (400 MHz, 

C6D6):  7.99 (s, 1H, N=C-H), 7.14-7.25 (m, 15H, CPh3), 6.37 (d, 1H, 5-pyr), 6.18 (s, 1H, 

3-pyr), 5.92 (m, 1H, 4-pyr), 3.61-3.63 (m, THF), 1.25-1.27 (m, THF) ppm. 13C NMR (100 

MHz, C6D6):  157.7 (N=CH), 147.1 (ArC), 136.3 (2-pyr), 128.9 (o-ArC), 128.2 (m-ArC), 
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125.3 (p-ArC), 116.8 (5-pyr), 113.4 (3-pyr), 111.5 (4-pyr), 66.8 (CPh3), 65.4 (THF), 25.1 

(THF) ppm. FT-IR (Selected Frequencies, ν): 3025 (w, ArC-H), 1632 (s, C=N) cm-1. 

Elemental Analysis: C66H70CaN4O4 (999.32): Calcd. C 77.46, H, 6.89, N 5.47. Found C 

76.89, H 6.23, N 4.93.  

Other heavier alkaline-earth bis(iminopyrrolyl) complexes were prepared in similar 

manner to 46 by using two routes.  

47: Route 1:  Yield 248 mg (92%) and Route 2 Yield 182 mg (90%):  1H NMR (400 MHz, 

C6D6):  8.04 (s, 1H, N=C-H), 6.94-7.16 (m, 15H, CPh3), 6.35 (m, 1H, 5-pyr), 6.17 (m, 

1H, 3-pyr), 5.92 (m, 1H, 4-pyr), 3.35-3.39 (m, THF), 1.17-1.20 (m, THF) ppm. 13C NMR 

(100 MHz, C6D6):  163.9 (N=CH), 148.1 (ArC), 137.3 (2-pyr), 130.3 (o-ArC), 128.6 (m-

ArC), 127.8 (p-ArC), 122.6 (5-pyr), 116.4 (3-pyr), 111.4 (4-pyr), 78.3 (CPh3), 68.3 (THF), 

25.5 (THF) ppm. FT-IR (Selected Frequencies, ν): 3026 (w, ArC-H), 1629 (s, C=N) cm-1. 

Elemental Analysis: C60H62N4O3Sr (974.76): Calcd. C 73.93, H 6.41, N 5.75. Found C 

72.65, H 6.29, N 5.05. 

48: Route 1: Yield 283 mg (93%) and Route 2: Yield 200 mg (88%):  1H NMR (400 MHz, 

C6D6):  7.89 (s, 1H, N=C-H), 7.37-7.39 (m, 6H, CPh3), 7.03-7.16 (m, 9H, CPh3), 6.43 (m, 

1H, 5-pyr), 6.25 (s, 1H, 3-pyr), 6.15 (m, 1H, 4-pyr), 3.55-3.58 (m, THF), 1.39-1.42 (m, 

THF) ppm. 13C NMR (100 MHz, C6D6): 157.7 (N=CH), 147.1 (ArC), 136.3 (2-pyr), 

128.9 (o-ArC), 128.2 (m-ArC), 125.3 (p-ArC), 116.8 (5-pyr), 113.4 (3-pyr), 111.5 (4-pyr), 

66.8 (CPh3), 65.4 (THF), 15.1 (THF) ppm. FT-IR (Selected Frequencies, ν): 3025 (w, ArC-

H), 1629 (s, C=N) cm-1. Elemental Analysis: C68H77BaN4O5 (1167.68): Calcd. C 69.94, H 

6.65, N 4.80. Found C 68.65, H 6.36, N 3.58.  

6.6 X-ray crystallographic studies 
 

Single crystals of compounds 41–48 were grown from THF and n-pentane mixture at –40 

ºC under inert atmosphere. The single crystals of compound 40 suitable for X-ray 

measurement was grown from CH2Cl2 at room temperature. For compounds 40-48, (except 

44 and 46) a crystal of suitable dimensions was mounted on a CryoLoop (Hampton 

Research Corp.) with a layer of light mineral oil and placed in a nitrogen stream at 150(2) 
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K and all measurements were made on an Agilent Supernova X-calibur Eos CCD detector 

with graphite-monochromatic Cu-Kα (1.54184 Å) radiation. Whereas for compounds 44 

and 46, the data were collected at 113(2) K and measurements were made on a Rigaku 

RAXIS RAPID imaging plate area detector or a Rigaku Mercury CCD area detector with 

graphite-monochromated Mo-Kα (0.71075 Å) radiation. Crystal data and structure 

refinement parameters are summarised in Table 6.2-64. The structures were solved by 

direct methods (SIR92)30 and refined on F2 by full-matrix least-squares methods; using 

SHELXL-97.31 Non-hydrogen atoms were anisotropically refined. H atoms were included 

in the refinement in calculated positions riding on their carrier atoms. The function 

minimized was [w(Fo2- Fc2)2] (w = 1 / [2 (Fo2) + (aP)2 + bP]), where P = (Max(Fo2,0) 

+ 2Fc2) / 3 with 2(Fo2) from counting statistics. The function R1 and wR2 were (||Fo| - 

|Fc||) / |Fo| and [w(Fo2 - Fc2)2 / (wFo4)]1/2, respectively. The Diamond-3 program was 

used to draw the molecules.  
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6.7 Tables 

Table 6.2. Crystallographic data of compounds 40, 41 and 42. 

 

Crystal 40 41 42 

CCDC No.    

Empirical formula C24H20N2 C32H35LiN2O2 C56H54N4Na2O2 

Formula weight                     336.42 486.56 861.01 

T (K)                           293(2) 150(2) 150(2)  

λ (Å)                         1.54184 1.54184 1.54184  

Crystal system  Monoclinic Orthorhombic Monoclinic 

Space group        P 21/c P b c a P 21/c 

a  (Å)     11.7601(8) 16.6177(16) 9.3375(5) 

b  (Å)        10.7213(9) 16.4089(8) 17.8616(9) 

c  (Å)     29.0076(15) 39.7532(16) 15.0867(10) 

 90 90 90 

 98.480(7) 90 111.528(5) 

 90 90 90 

V  ( Å3)                        3617.4(4) 10839.8(12) 2340.7(2) 

Z  8 16 2 

Dcalc g cm-3 1.235 1.193 1.222 

µ (mm-1) 0.557 0.570 1.54184 

F (000)                             1424.0 4160 912 

Theta range for data 

collection    

6.16 to 143.63 deg. 3.47 to 71.08 deg. 4.01 to 70.95 deg. 

Limiting indices                   -14<=h<=13 

-11<=k<=13 

-35<=l<=19 

-17<=h<=19 

-18<=k<=19 

-48<=l<=47 

-11<=h<=11, 

-16<=k<=21, 

-15<=l<=18 

Reflections collected / 

unique     

13546 / 6866 

[R(int) = 0.0667] 

24230 / 8741  

[R(int) = 0.0562] 

10068 / 4424  

[R(int) = 0.0266] 

Completeness to theta 

= 71.25      

96.6 % (70.94) 83.3 % (71.08) 97.7 % 

Absorption correction              Multi-scan Multi-scan 

 

Multi-scan 

 

Max. and min. 

transmission         

1.00000 and 0.25106 0.91 and 0.86 0.75 and 0.64 

Refinement method                  Full-matrix least-

squares on F^2 

Full-matrix least-

squares on F^2 

Full-matrix  

least-squares on F2 

Data / restraints / 

parameters     

6866/0/470 8741 / 0 / 679 4424 / 0 / 289 

Goodness-of-fit on F2             1.045 1.028 1.045 

Final R indices 

[I>2sigma(I)]      

R1 = 0.1059, wR2 = 

0.2790 

R1 = 0.0792,  

wR2 = 0.2056 

R1 =   0.0524, 

wR2 =    0.1416 

R indices (all data)               R1 = 0.1878, wR2 = 

0.3599 

R1 = 0.1315,  

wR2 = 0.2412 

R1 =   0.0597, 

wR2 =    0.1492 

Largest diff. peak and 

hole        

0.42 and -0.38  

e.A-3 

0.339 and -0.267  

e.A-3 

0.456 and -0.548 

e.A-3 

 

 



228 
 

Table 6.3. Crystallographic data of complounds 43, 44 and 45. 

 

Crystal 43 44 45 

CCDC No.    

Empirical formula C104H92K4N8O2 C39H42MgN2O2 C56H54MgN4O2 

Formula weight                     1642.26 595.06 839.34 

T (K)                           150(2) 113(2) 150(2)  

λ (Å)                         1.54184 0.71075 1.54184  

Crystal system  Monoclinic Triclinic Triclinic 

Space group        P 21/c P-1 P-1 

a  (Å)     16.7937(12) 9.530(3) 9.9208(12) 

b  (Å)        10.7713(6) 17.850(6) 9.9609(15) 

c  (Å)     24.1946(17) 20.350(7) 12.4778(12) 

 90 109.890(4) 108.752(11) 

 90.543(8) 96.251(2) 92.798(9) 

 90 93.303(3) 106.729(12) 

V  ( Å3)                        4376.4(5) 3219.3(18) 1104.5(3) 

Z  2 4 1 

Dcalc g cm-3 1.246 1.228 1.262 

µ (mm-1) 2.239 0.092 0.722 

F (000)                             1728 1272 446 

Theta range for data 

collection    

3.65 to 70.78 deg. 3.02 to 27.00 deg. 3.787 to 70.588 deg. 

Limiting indices                   -16<=h<=20 

-13<=k<=12 

-29<=l<=29 

-12<=h<=12 

-21<=k<=22 

-25<=l<=25 

-12<=h<=11, 

-9<=k<=12, 

-15<=l<=15 

Reflections collected / 

unique     

21120 / 8234  

[R(int) = 0.0891] 

30518 / 13802  

[R(int) = 0.0333] 

7976 / 4126  

[R(int) = 0.0321] 

Completeness to theta 

= 71.25      

97.7 % (70.78) 98.2 % (27.00) 99.7 % (67.68) 

Absorption correction              Multi-scan Multi-scan 

 

Multi-scan 

Max. and min. 

transmission         

1.00000 and 0.62549 0.9746 and 0.9728 1.00000 and 0.82260 

Refinement method                  Full-matrix least-

squares on F^2 

Full-matrix least-

squares on F^2 

Full-matrix  

least-squares on F2 

Data / restraints / 

parameters     

8234 / 0 / 532 13802 / 0 / 793 4126 / 0 / 290 

Goodness-of-fit on F2             1.029 1.051 1.039 

Final R indices 

[I>2sigma(I)]      

R1 = 0.0796,  

wR2 = 0.2067 

R1 = 0.0651,  

wR2 = 0.1577 

R1 =   0.0417, 

wR2 =    0.1019 

R indices (all data)               R1 = 0.1102,  

wR2 = 0.2461 

R1 = 0.0988,  

wR2 = 0.1893 

R1 =   0.0539, 

wR2 =    0.1114 

Largest diff. peak and 

hole        

0.641 and -0.574  

e.A-3 

0.906 and -0.526  

e.A-3 

0.155 and -0.266  

e.A-3 
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Table 6.4. Crystallographic data of compounds 46, 47 and 48. 

 

Crystal 46 47 48 

CCDC No.    

Empirical formula C66H70CaN4O4 C60H62N4O3Sr C68H77BaN4O5 

Formula weight                     999.32 974.76 1167.68 

T (K)                           113(2) 150(2) 150(2)  

λ (Å)                         0.71075 1.54184 1.54184  

Crystal system  Monoclinic Triclinic Triclinic 

Space group        P 21/n P-1 P-1 

a  (Å)     11.185(18) 11.5131(13) 10.7818(11) 

b  (Å)        13.42(2) 13.2509(13) 14.4888(15) 

c  (Å)     18.43(3) 18.1457(15) 21.2076(19) 

 90 75.334(8) 109.626(9) 

 104.24(2) 78.968(9) 93.344(8) 

 90 71.140(10) 106.825(9) 

V  ( Å3)                        2681(7) 2516.1(4) 2942.1(5) 

Z  2 2 2 

Dcalc g cm-3 1.238 1.287 1.318 

µ (mm-1) 0.170 1.871 5.668 

F (000)                             1068 1024 1218 

Theta range for data 

collection    

3.04 to 26.00 deg. 3.60 to 71.27deg. 3.33 to 71.43 deg. 

Limiting indices                   -13<=h<=12 

-15<=k<=16 

-22<=l<=18 

-14<=h<=14 

-11<=k<=16 

-21<=l<=22 

-12<=h<=13, 

-17<=k<=17, 

-17<=l<=25 

Reflections collected / 

unique     

11436 / 5075  

[R(int) = 0.1009] 

19225 / 9452  

[R(int) = 0.0559] 

21652 / 11049  

[R(int) = 0.0796] 

Completeness to theta      96.3 % (26.00) 96.7 % (71.27) 96.5 % 

Absorption correction              Multi-scan Multi-scan Multi-scan 

 

Max. and min. 

transmission         

0.9668 and 0.9668 1.00000 and 0.92842 1.000 and 0.51963 

Refinement method                  Full-matrix least-

squares on F^2 

Full-matrix least-

squares on F^2 

Full-matrix  

least-squares on F2 

Data / restraints / 

parameters     

5075 / 0 / 331 9452 / 0 / 613 11049 / 0 / 703 

Goodness-of-fit on F2             0.999 1.094 1.009 

Final R indices 

[I>2sigma(I)]      

R1 = 0.0766,  

wR2 = 0.1573 

R1 = 0.0925,  

wR2 = 0.2361 

R1 =   0.0667, 

wR2 =    0.1670 

R indices (all data)               R1 = 0.1713,  

wR2 = 0.2128 

R1 = 0.0975,  

wR2 = 0.2480 

R1 =   0.0874, 

wR2 =    0.2011 

Largest diff. peak and 

hole        

0.393 and -0.361  

e.A-3 

2.717 and -1.215  

e.A-3 

1.832 and -2.737 

e.A-3 
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