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Abstract

The presence of a mysterious form of matter constituting 26.8% of the total energy budget of the

present universe, is confirmed indirectly by, rotational velocity of spiral galaxies, gravitational lensing

and collision of galaxies in bullet cluster. This matter is called as dark matter (DM), because it

does not show electromagnetic interaction. The standard model(SM) of particle physics which is

a successful theory, explaining many physical phenomena, does not include a particle candidate of

DM. It also unable to explain the smallness of neutrino mass as confirmed by neutrino oscillation

experiments. In this thesis we explore the viable scenarios of non-zero neutrino mass and DM in

beyond the standard model(BSM) frameworks.

In the first attempt we augmented the SM by adding 3 singlet right handed neutrinos and two

scalars: one doublet and a charged singlet under SU(2)L. A small mass splitting between the lightest

and next to lightest particle among the right handed neutrinos is created. As a result the later can

decay to former by emitting a photon of energy 3.5 keV through a transient dipole moment operator.

The emitted photon can explain the 3.5 keV X-ray line observed in XMM-Newton X-ray observatory.

Both the lightest and next to lightest right handed neutrinos contribute to the relic abundance of

the DM. The SM neutrinos can get small mass in a Type I seesaw mechanism.

To explore a further possibility of a DM candidate, we consider a vector-like fermion, which is

a mixed state of an additional SM doublet and a singlet lepton. The doublet singlet mixing angle

plays an important role in DM phenomenology. Small neutrino mass can be explained in a type II

see saw framework by adding a triplet scalar to the model. The triplet scalar also couples to the DM

and hence changes the phenomenology accordingly. In a very brief manner we also try to explain

the 750 GeV diphoton resonance claimed by the CMS and ATLAS, by adding a singlet scalar and

a vector like quark on top of the doublet-singlet fermion to the SM.

We also consider another drawback of SM further to explain the anomalous magnetic moment

of muon which is a 3� discrepancy between theoretical estimation and experimental observation. A

gauged U(1)Lµ�L⌧
extension of the SM is proposed. The model contains additional 3 right handed

neutrinos, two singlet scalars and a vector like colourless fermion, as a DM candidate, under the SM

gauge group. The magnetic moment of muon gets additional contribution through its coupling to

the new Z 0 gauge boson. The model also predicts an inelastic DM candidate. In the same work we

try to explain the positron excess as observed by PAMELA, FERMI-LAT and AMS-02 through the

annihilation of DM.
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Chapter 1

Introduction

1.1 What is Dark Matter ?

Recent observations in the cosmic microwave background radiation (CMBR) by the satellite borne

experiments, such as PLANCK[9] and WMAP[10] reveal that the visible matter constitutes only

4.9% of the total energy budget of the universe. The remaining 95.1% is unseen and yet to be

explored. However, it has been shown quantitatively that out of 95.1% of the total energy budget,

nearly 26.8% of the universe is made up of some unknown form of matter called Dark Matter (DM)

and rest 68.3% is dark energy. DM does not have electromagnetic interaction. The presence of

DM is confirmed only by its gravitational interaction. However the properties of a DM, apart from

its relic abundance, is not clearly understood yet. There is a huge question mark on DM particle

properties like mass, spin, interaction with standard model (SM) particles etc. This thesis focuses

on understanding the nature of DM in some beyond standard model (BSM) physics frameworks. In

these models we also explore the sub-eV masses of active neutrinos required by oscillation hypothesis.

1.1.1 Observational Evidences of Presence of DM

Rotational velocity of stars in spiral galaxies

The first hint of presence of DM came from the observation of rotational velocity of stars at di↵erent

distances from the center of the spiral galaxy. The structure of a spiral galaxy is having a central

bulge containing almost all the mass and spiral arms extended to fall over a disk. The circular

velocity v(r) of a star with mass m at a distance r from the center can be obtained by using virial

theorem, which states that:

hK.Ei = �1

2
hP.Ei

1

2
mv(r)2 =

GmM(r)

2r
, (1.1)

where M(r) is the mass enclosed in a volume with radius r and G is the gravitational constant.

Now from eq(1.1 ) it can be inferred that, the rotational velocity would increase linearly from center

to a region enclosed by the central hub i.e. v(r) ⇠ r. It is because the mass is proportional to

radius i.e M(r) = 4
3⇡r3⇢ inside the central hub, having average density ⇢. As we move far apart
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Figure 1.1: Rotational velocity curve of spiral galaxy NGC 6503 [3].

from this region the velocity is expected to fall as r�1/2. But the observation suggests that the

velocity remains constant as we go far away from the central bulge. This seems that there is a huge

amount of unseen matter present so that it compensates the mass with distance. A typical example

of rotational velocity of a star as a function of distance, measured in the galaxy NGC6503, is shown

in Fig. 1.1. The DM is largely distributed in the halo region and hence gives a good explanation for

the flatness of the rotational curves of stars in spiral galaxies.

Gravitational Lensing

Figure 1.2: Gravitational lensing e↵ect of Abell 2218 galaxy cluster. Picture credit : NASA web
page

One of the predictions of the General Relativity is that light bends near a heavy gravitational

mass and it gives rise to lensing e↵ect. As a result, distorted or multiple images appear for an

observer if there exist a source behind the enormous lensing mass. The gravitational lensing e↵ect

can be classified into two categories, namely strong and weak lensing. Multiple images of the same

object appears in case of strong lensing, while in case of weak lensing the image gets distorted or

sheared. The brightness of the background object increases for the observer in the foreground of the
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lensing mass in case of weak lensing. This method provides a measurement for the calculation of

total mass of the cluster of galaxies causing the lensing e↵ect. By comparing the lensing mass with

the luminous mass obtained from the mass to light ratio using X-ray emission, one finds that a huge

amount of unseen DM is present in the galaxy cluster. Such an image is shown in Fig. 1.2 for Abell

2218 cluster. In the left central region, a ring like structure is formed due to the lensing e↵ect of

Abell 2218 for the background galaxy or cluster.

Bullet Cluster

Figure 1.3: Image of bullet cluster observed by Chandra X-ray observatory[4]. Picture is taken from
NASA web page.

The evidence of presence of DM is also further confirmed by studying the gravitational e↵ect

of a double galaxy cluster 1E0657-558 named ”bullet cluster” [4]. The galaxy is consisting of two

distinct subclusters and hot gas (observed through its emission of X-rays and nearly constitutes 90%

of luminous matter of the bullet cluster) is concentrated between these subclusters. The cluster

of galaxies have collided. The galaxies which have less chance of collision move mostly on their

original path. However, the two clouds of hot gas have collided and remained closer to the center of

double cluster. Using the gravitational lensing e↵ect of the galaxy cluster the total matter density
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is calculated. It is concluded that most of the matter is not associated with the hot gas, but is likely

with the galaxies forming two groups of subclusters that have passed through each other without

substantial interaction. The associated mass of the bullet cluster is 6 times more as contained in

the hot gas. A picture is shown in Fig. 1.3. So this is a kind of strongest evidence of not only the

presence of DM, but also its feeble interaction with baryonic matter.

Evidence from Cosmic Microwave Background Radiation (CMBR)

The most recent evidence for the existence of DM came from the observation of temperature

anisotropy in the cosmic microwave background radiation (CMBR) which was originated from the

Big-Bang during the time of recombination epoch (roughly 200 thousand years after the big-bang).

The average temperature of CMBR at present is around 2.7� K. However, there is a small temper-

ature fluctuation in the CMBR, only about 30 ± 5µK. This means that the CMBR is uniform to 1

part in 105. On small scales the origin of the anisotropy in CMBR is due to acoustic oscillations.

Photons and protons in the early Universe can be modeled as a photon-baryon fluid before the pho-

ton decoupling temperature. The fluid is then pass through various cycles: i) while falling into the

gravitational potential well (formed due to inflation and further enhanced by the presence of DM),

the fluid is compressed, ii) the pressure increases until it makes the fluid to expand outward, iii) the

pressure of the fluid decreases as it expands until the gravity pulls it back, iv) the process repeats

until the decoupling of the photon. The photons emerging have di↵erent temperatures depending

upon the location in the cycle on the portion of fluid at decoupling time. Thus any fluctuation in

CMBR clearly carries the information about the initial density perturbations that allowed for the

formation of early gravitational wells as well as the dynamics of photon-baryon fluid. Thus the

temperature fluctuations of the CMBR depend on the amount of baryons and DM present during

the time of recombination.

Figure 1.4: CMB temperature fluctuation as a function of multipole moment l. The picture is
borrowed from [5].

The satellite borne experiments like PLANCK [9] and WMAP [10] look for this anisotropy in

the temperature in CMBR. The temperature fluctuation can be analysed in the form of spherical

harmonics so that the angular power spectrum can be obtained. This power spectrum is compared

with cosmological models in order to obtain the best fit values of the model parameters. The position

and amplitude of peaks of the power spectrum of CMBR anisotropies depend on both the baryon
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and DM energy densities. Fitting to 9 year WMAP data [10] one finds ⌦ch
2 = 0.1138 ± 0.0045

and ⌦Bh2 = 0.02264 ± 0.00050, where ⌦ch
2, ⌦Bh2 are the DM energy density and baryon energy

density in terms of critical density respectively. The best fit value of ⌦Bh2 also agrees with the

results obtained from Big Bang Nucleosynthesis. This result shows that nearly 83% of total matter

of the universe is not baryonic but dark. A small change in baryon density is not consistent with the

WMAP observation. So the CMBR gives the strongest evidence of presence of DM in the universe.

A figure showing the anisotropy in CMBR is shown in fig. 1.4.

Inference about DM properties from astrophysical evidences

So far what we have learnt from the above astrophysical evidences is that the DM is surely present

in the universe. However all other interactions of DM except gravity are not known yet. Quantum

numbers like mass, charge, spin, etc. are yet to be established for the DM. Its interaction with other

SM particles is so feeble that its detection is still a major challenge. Again due to the local DM

density being too small, it is very di�cult to detect it in the earth bound laboratories. So additional

assumption of weak interaction is coined for DM [11]. This weak interaction keeps the DM in thermal

equilibrium with the SM particles in the early universe. We will discuss the importance of the weak

interaction assumption of DM and will argue about its validity in the next section.

1.1.2 Thermal freeze out of DM

In the early Universe, the DM remains in thermal equilibrium due to its weak interaction with the

SM particles. As the temperature falls due to the expansion of the universe the DM decouples from

the thermal bath and its density gets diluted afterwards. This happens at a temperature below

the DM mass scale. The evolution of the DM in the early universe can be obtained by solving the

relevant Boltzmann equation.

Let us consider a DM candidate  with f as its distribution function. Then the Boltzmann

equation can be written as

L̂[f ] = C[f ] , (1.2)

where L̂ is the Liouville operator and C is the collision operator. The standard model of cosmology

which is based on the Friedmann Robertson Walker (FRW) metric assumes that the phase space

distribution is spatially homogeneous and isotropic. So the Liouville operator can be given as :

L̂[f(E, t)] = E
@f

@t
� Ṙ

R
|�!p |2 @f

@E
, (1.3)

where R is the scale factor associated with the expansion of the universe using FRW metric. Now

consider the relation:
@f

@E
=
@f

@p

dp

dE
=

E

p

@f

@p
.

Using the above relation in eq. 1.3, we rewrite eq. 1.2 as:

@f

@t
� Ṙ

R
p
@f

@p
=

C[f ]

E
. (1.4)
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The number density of the DM species can be defined in terms of the phase space density as:

n(t) =
g

(2⇡)3

Z
d3pf(E, t) . (1.5)

Taking momentum space integration of equation 1.4 we get,

@n

@t
+ 3

Ṙ

R
n = g

Z
d3p

(2⇡)3
C[f ]

E
. (1.6)

We have used the trick for the integration of the second term in eq. 1.4 as

g

(2⇡)3

Z
d3p p

@f

@p

= g
4⇡

(2⇡)3

Z 1

0

dp p3 @f

@p

= g
4⇡

(2⇡)3


p3f �

Z 1

0

f 3p2dp

�

= 0 � g
4⇡

(2⇡)3
3

Z 1

0

f p2dp

= �3g
1

(2⇡)3

Z
d3p f

= �3n

Writing Hubble parameter as (H = Ṙ/R), eq. 1.6 takes the form :

@n

@t
+ 3Hn = g

Z
d3p

(2⇡)3
C[f ]

E
. (1.7)

This is the Boltzmann equation governing the number density of the DM particle. We will make it

more formal for an annihilation process. Consider there is only one species of DM ( ) and it is in

thermal equilibrium due to the process:

 +  () �+ � .

where � is a very small mass particle and it is very tightly coupled with the thermal plasma. The

collision term for this process is given by:

g

(2⇡)3

Z
d3p 
(2⇡)3

C[f ]

E 
= �

Z
d⇧ d⇧ ̄ d⇧� d⇧�̄

⇥ (2⇡)4�4(p + p ̄ � p� � p�̄)

⇥
h
|M|2 + ̄!�+�̄ f f ̄ (1 ± f�)(1 ± f�̄)

� |M|2�+�̄! + ̄ f� f�̄ (1 ± f )(1 ± f ̄)
i

,

(1.8)

where f ’s denote the phase space density of the respective particles, and

d⇧ ⌘ g
1

(2⇡)3
d3p

2E
(1.9)
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with g as the total number of internal degrees of freedom. The 1+fi represents the Bose enhancement

while 1 � fi stands for Pauli Blocking factor. The four dimensional � function ensures the energy

and momentum conservation, while |M|2 represents the square of the scattering amplitude for the

given type of reaction.

Using the standard definition of cross-section, we get

Z
d⇧k d⇧l ⇥ (2⇡)4�4(pi + pj � pk � pl)[|M|2ij!kl] = 4gigj�ijv ⇥ EiEj (1.10)

Dropping the Bose enhancement and Pauli Blocking factors and substituting the above expression

in Eq.1.8, we get

g

(2⇡)3

Z
d3p 
(2⇡)3

C[f ]

E 
= �

Z ⇥
dn dn ̄ (�  ̄!��̄) v � dn� dn�̄ (���̄!  ̄) v

⇤
(1.11)

Since cross-section times velocity varies very slowly with change in number density of initial and

final state particles it can be taken out of the integrand to give

ṅ + 3Hn = �h(�  ̄!��̄)vin n ̄ + h(���̄!  ̄) vin�n�̄ (1.12)

The � particles, which are SM particles, are still in equilibrium in the thermal plasma with the

photon. When the DM was also in equilibrium with the SM particles, the principle of detailed

balance dictates that

h(�  ̄!��̄)vi(neq
 )2 = h(���̄!  ̄) vineq

� neq
�̄ .

Using the above expression in eq 1.12, we get

ṅ + 3Hn = �h�vi[n2
 � (neq

 )2] , (1.13)

where h�vi = h(�  ̄!��̄)vi
Now we shall use the dimensionless variable Y ⌘ n /s (similarly the equilibrium number with

Y eq ⌘ neq
 /s), which is the actual number of  particles in a comoving volume with s being the

comoving entropy density. Applying conservation of entropy i.e. sR3 = constant, we get

R3ṡ + 3R3 Ṙ

R
s = 0 (1.14)

) ṡ + 3Hs = 0

Using new variable Y eq. 1.13 can be rewritten as:

ṡY + Ẏ s + 3HsY = �h�|v|i[Y 2
 � (Y eq

 )2]s2 (1.15)

) dY

dt
= �sh�|v|i[Y 2

 � (Y eq
 )2] .

We define a new dimensionless variable x ⌘ m/T with m being the mass of the  particle. In the

high temperature limit, x ⌧ 1, the reaction rate is so fast that Y follows its equilibrium value Y eq.

For large x the equilibrium number su↵ers a Boltzmann suppression exp(�x). So the  particles

will become so rare that they will never find each other. As a result the reaction rate is too small to
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maintain the equilibrium. This is the time when the particle  freezes out from the thermal bath

and its number in a comoving volume is not changing afterwards. To change the variable from t to

x, we have to find the Jacobian as:

dx

dt
= m

d

dt

1

T
= m

d

dt
R = Hx (1.16)

In the previous expression we used the fact that in radiation dominated era, R _ 1
T as the DM

freeze out falls in this era. Also in this era the energy density scales as T 4, so H = H(m)/x2. After

all this information, the evolution equation becomes:

dY 
dx

= �sh�|v|ix
H(m)

[Y 2
 � (Y eq

 )2] (1.17)

This is a form of Ricatti equation for which no general solution exists. A numerical solution is

presented in fig. 1.5.

Figure 1.5: Solution to Boltzmann equation for freeze out mechanism. The solid black line cor-
responds to the Y eq, while the dashed lines corresponds to h�|v|i = 2.6 ⇥ 10�10GeV�2 (Red),
h�|v|i = 2.6 ⇥ 10�9GeV�2 (Blue) , h�|v|i = 2.6 ⇥ 10�8GeV�2 (Green) respectively.

We can see from the figure that as the cross-section increases, the departure from equilibrium is

also delayed. The freeze out occurs nearly at a value of xf = m
Tf

= 20 � 30, with Tf as the freeze

out temperature. The relic density of the DM  can be computed as:

⌦ =
⇢ 
⇢cr

, (1.18)

where ⇢cr is the critical density today. The DM density at present epoch can be given as

⇢ = ms0Y1 (1.19)

where Y1 = Y (x ! 1), and s0 is the entropy density today. We can do an order of estimation for
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the relic density as observed today:

⌦h2 ' 0.1
⇣xf

20

⌘ ⇣ m

100GeV

⌘ 2 ⇥ 10�9GeV �2

h�|v|i (1.20)

Since the cross-section is falling in the weak interaction range for getting the observed relic abun-

dance, we can safely assume that the DM has weak interaction apart from gravitational interaction.

This observation is called WIMP (Weakly Interacting Massive Particle) miracle. It is one of the

best choices available for the particle candidates of DM. We will consider some of the very simple

WIMP possibilities in this thesis in the subsequent chapters.

1.1.3 Experimental Detection of DM

The detection of DM is very challenging. A concrete evidence of its detection is yet to come. But

there are various experiments running globally for its detection. The detection of DM is carried out

in three di↵erent ways :

(a) Direct Detection

(b) Indirect Detection

(c) Collider signature

Figure 1.6: Schematic Diagram showing various ways of detection of DM

A schematic diagram has been shown in fig. 1.6 for the detection of DM in experiments. We will

briefly discuss the various experimental methods to detect the DM in the following.

Direct Detection

The earth passes through the DM halo as the solar system is rotating around the center of galaxy.

So there is a probability that the DM can hit the nucleus whose e↵ect can be read in terms of recoil

energy. This method is known as direct detection of DM. The DM velocity in the vicinity of solar

system is nearly 200 km/s. So the recoil energy in terms of momentum transfer gives the idea about
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Figure 1.7: Constraint on Spin Independent DM-nucleon cross-section. The picture is taken from
[6]

the e↵ective nucleus-DM cross-section. Since the momentum transfer for DM-nucleon scattering is

small ⇠ keV, a detector with low background and threshold is required. The interaction of DM with

nucleus is of two types : Spin dependent (SD) and Spin independent (SI) depending on whether the

DM interaction with the nucleus depends on its spin or not. Also the interaction can be classified

as elastic or inelastic scattering. In case of elastic scattering the DM scatters from the nucleus as

a whole and deposits a certain fraction of energy as recoil. However in inelastic scattering the DM

either interacts with the electron and ionises the medium or it interacts with the nucleus leaves it in

an excited state. The cross-section is enhanced as A2, with A being the mass number of the nucleus

due to coherent scattering in SI case. Whereas the cross-section depends on J(J + 1) value for SD

case for a total spin of the nucleus as J .

There are various DM direct search experiments are looking for a signal of DM like LUX [6],

XENON100 [12], DarkSide [13], PandaX-II [14] etc. Figure 1.7 is drawn to show the status of

various experiments.

In recent times the stringent limit on SI direct detection cross-section (�SI) is coming from

LUX [6] and XENON100 [12] experiments. The null observation of any DM in these experiments

puts an upper bound on the DM-nucleon scattering crosssection �SI .

Indirect Detection

The indirect way of detection of DM is based on its annihilation or decay to SM particles. By

looking at any excess of neutrinos, photons, antiparticle or any cosmic rays flux in the universe can

probe a possibility of detection of DM. The DM while streaming freely can have a probability to be

captured by the heavy massive objects like galactic center (GC), dwarf galaxies core, sun etc due to

the strong gravitational force. When the density of the DM increases, they can annihilate or decay

to high energetic photons or neutrinos. So these objects become a source of detecting DM through

observing the excess of flux in the earth.
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There are various experiments running in the world to detect such excesses. In recent times the AMS

-02 collaboration declared about an excess in cosmic rays positron flux around 0.5-500 GeV [15, 2].

This result is also further established by excess in positron fraction above 10 GeV by PAMELA [16,

17] collaboration.

Collider Signatures

The DM detection in the colliders is very challenging due to very weak interaction as well as its longer

lifetime. Moreover, it is neutral. So it can skip the detector without depositing any energy. The

only way to probe DM in colliders by studying the missing energy. If the dark matter is produced

due to the high energy collisions, then it can give a significant missing energy and hence can be

probed in the colliders. Currently the two experiments, ATLAS and CMS at Large hadron collider

(LHC) are focusing on detection of DM. The International Linear Collider (ILC) can probe DM in

near future.

1.2 Neutrino mass and See Saw Models

Within the SM, the lepton number is an accidental global symmetry. This leads to exactly zero

mass of all the left-handed neutrinos in the SM. However, the long baseline neutrino oscillation

experiments [18, 19, 20, 21, 22, 23, 24, 25, 26] confirmed that the neutrinos have non-zero masses

and also they mix with each other. But the nature of neutrinos, either Dirac or Majorana is not

confirmed yet. Therefore, it is crucial to introduce additional degrees of freedom to the SM to

explain non-zero masses of the neutrinos. Assuming that the neutrinos are Majorana (which leads

to violation of lepton number by two units), the non-zero masses of left-handed neutrinos can be

introduced by using Weinberg’s dimension five operator [27]:

�Ld=5
⌫ =

1

2
(lL�)(�T lCL ) + H.c . (1.21)

Here  is a complex matrix having dimension inverse of mass. When the Higgs field � gets a vacuum

expectation value (vev), a Majorana mass term is generated for the neutrinos:

�LM =
1

2
⌫LML⌫

C
L + H.c. , (1.22)

with ML = v2. In general this mass matrix is not diagonal. So one can diagonalize it by taking a

transformation of the fields as

⌫L = U⌫0
L (1.23)

The matrix U is chosen in such a way that it diagonalises the mass matrix in a way:

UT MLU = MDiag (1.24)

The see-saw models are an attractive way to explain the sub-eV masses of active neutrinos.

These models contain heavy degrees of freedom such that in the low energy limit the heavy degrees

of freedom get integrated out and the dimension 5 e↵ective operator is generated. At tree level there

are three ways to generate the Weinberg operator.
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(i) The TypeI see-saw model, where an additional SM singlet fermion per generation, mainly a right

handed neutrino, is introduced.

(ii) The TypeII see-saw model, where a SU(2)L scalar triplet is introduced.

(iii) In TypeIII seesaw model, where an additional SU(2)L triplet fermion per generation is intro-

duced.

TypeI seesaw mechanism

In this case, three right handed neutrinos(RHN) (⌫R fields), which are SM singlet fermions, are

introduced to the SM. Then a gauge invariant mass term can be written as :

�LM =
1

2
MR⌫

T
RC�1⌫R + h.c (1.25)

This leads to a Majorana mass for the heavy right-handed neutrinos. Similarly the Yukawa term

involving left and right-handed neutrinos is given as:

LY = `L�̃Y †⌫R + h.c. (1.26)

where ` is the lepton doublet and � is the Higgs doublet. During electroweak symmetry breaking

the Higgs acquires a vacuum expectation value (vev) (v/
p

2) and generate a Dirac mass term MD =
vp
2
Y †. Hence we get a mass matrix of neutrino as:

M =

 
0 MD

MD MR

!
(1.27)

Since MR >> MD, the mass eigenvalues are given by a heavy MR and light M⌫ = �MDM�1
R MT

D .

Assuming MR ⇠ O(1015) GeV and a Dirac mass of electroweak scale MD ⇠ O(102) GeV, one gets

the light neutrino mass M⌫ ⇠ O(10�2) eV.

TypeII seesaw mechanism

In the TypeII seesaw model a scalar triplet �(1, 3, 2) is added to the SM, where the quantum

numbers in the parenthesis are under the gauge group SU(3)C ⇥ SU(2)L ⇥ U(1)Y . Due to presence

of the triplet �, new contribution to Yukawa interaction is given by:

LY = Y lT C�1⌧.� l + h.c (1.28)

After electroweak symmetry breaking the neutral component of � gets an induced vev u�. This

vev gives a mass term to the neutrinos as:

�u�p
2
Y ⌫T

L C�1⌫L (1.29)

Thus the neutrino mass is given by :

M⌫ =
p

2Y u� (1.30)

If Y ⇠ O(1), then the sub-eV neutrino mass can be explained if u� ⇠ O(10�1) eV.
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TypeIII seesaw mechanism

The TypeIII seesaw mechanism is very similar to the type I seesaw mechanism except that the right

handed neutrinos are replaced by fermion triplets (⌃ ⌘ (⌃+, ⌃0, ⌃�)T ) with null hypercharge. The

contribution to the Yukawa term due to the additional fermion triplet is:

�LY = lLY †
⌃ (⌧.⌃) �̃+ h.c (1.31)

After electroweak symmetry breaking this Yukawa term leads to a mass matrix for the neutrinos

and is given by :

M =

 
0 MT

D

MD M⌃

!
(1.32)

where MD = vp
2
Y⌃ is the Dirac mass term and M⌃ is the Majorana mass of ⌃ particle. If M⌃ >> v,

then the small neutrino mass is given by

M⌫ = MT
DM�1

⌃ MD . (1.33)

1.3 Muon g � 2 anomaly

The magnetic moment (µ) of a particle is given as

�!µ = g
⇣ q

2m

⌘�!
S , (1.34)

where
�!
S is the spin of the particle and g being the gyromagnetic ratio. Stern and Gerlach for the

first time measured the gyromagnetic ratio of electron. For a spin 1/2 structureless particle, Dirac

equation predicts the value of g = 2. However due to various e↵ects g is not exactly two. Since muon

is a point particle, it must be expected that the gyromagnetic ratio should be equal to 2. However

due to quantum corrections, the gyromagnetic ratio di↵ers from 2. All the quantum corrections to

Figure 1.8: Contribution to magnetic moment of muon. (a) corresponds to g = 2, (b) corresponds
to general diagram showing correction to g � 2 value.

the magnetic moment is expressed in

aµ ⌘ gµ � 2

2
(1.35)

where aµ is called as the anomalous magnetic moment of muon with gyromagnetic ratio gµ. In the

SM the anomalous magnetic moment is coming from corrections from (i) Quantum Elctrodynamics

18



interactions, (ii) Weak interactions , (iii) Hadronic or Quantum chromodynamics interactions. In a

simpler way

aSM
µ = aQED

µ + aWeak
µ + aHad

µ (1.36)

The recent observational evidence suggests that there is more than 3� discrepancy in the measured

value[28] and the SM prediction of aµ value [29]. The di↵erence is given by:

�aµ = aexpt
µ � aSM

µ = (295 ± 88) ⇥ 10�11 . (1.37)

So this discrepancy motivates one to think of a beyond SM interactions contributing to aµ value.

In this thesis we will address this issue in an extended U(1) model of the SM.

1.4 Observed 3.5 keV X-ray line by XMM-Newton Observa-

tory

Recently the XMM-Newton observatory reported a (3.55 � 3.57)± 0.03 keV X-ray signal from the

spectrum of 73 galaxy clusters [7]. There is more than 3� confidence level of the detected X-ray.

To verify that whether this line is originating from one of the dominating clusters in the sample

Figure 1.9: The excess of 3.5 keV line as observed in XMM Newton Observatory in the full sample
of 73 cluster of galaxies. Picture is borrowed from [7].

a method is implemented by dividing the full sample into 3 di↵erent sub samples namely-Perseus,

Centaurus + Coma + Ophiuchus, and all others, and then studying separately these 3 sub samples.

In the results they conclude that the line was found in all these three sub samples with a flux of

1.6+0.3
�0.4 ⇥10�5 photons per cm�2 s�1 at 3.57 keV. The authors [7] also argued that this line does not

correspond to any atomic transition present in the plasma. The possible origin could be a decaying
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sterile neutrino. So this observation is also inviting physics beyond the SM to explain it. In this

thesis we try to explain the origin of this signal due to a dipolar DM which will be explained in full

detail in the next chapter.

1.5 Aim of the Thesis

From the discussions of the previous sections we conclude that the SM may not be su�cient to

explain various experimental observations. To explain the various observed phenomena, such as

existence of DM, non-zero masses of active light neutrinos, muon g � 2 anomaly, 3.5 KeV X-ray line

etc. we need to explore physics beyond the SM while satisfying the existing experimental constraints.

Our goal will be to build up models which can explain more than one phenomena simultaneously.

As a result strong constraints on the model parameters can be emerged which can be measured at

di↵erent experiments.

1.6 Thesis Overview

The thesis is organised as follows. In chapter 1 the basic introduction about the DM is presented.

The evidence of DM from various experiments is discussed. The physics of DM and its freeze out from

the thermal bath is also studied. The freeze out mechanism is presented in a lucid manner by solving

the Boltzmann equation. A brief summary of the experimental detection of DM is discussed. The

massiveness of the neutrinos is presented in various seesaw models. Then the anomalous magnetic

moment of the muon and the observed 3.5 keV X-ray line by the XMM Newton observatory is

mentioned. In chapter 2 a dipolar DM model is proposed in order to explain neutrino mass and

DM. The model also explains the 3.5 keV X-ray signal as observed by XMM Newton observatory

by introducing a transition magnetic moment operator. In chapter 3, a mixed singlet-doublet DM

model is considered. The DM parameter space is explored in the model by considering di↵erent

constraints from relic density of DM and direct detection experiments. In the same model the

smallness of neutrino mass is also presented in a Type II seesaw scenario. In a further application

of the model, the 750 GeV diphoton resonance is also explained by the model as claimed by CMS

and ATLAS. In chapter 4, a U(1) gauge extension of the SM is considered. In the model the new

U(1) gauge boson couples to the muon, and hence can contribute to the magnetic moment. So the

anomaly of the muon magnetic moment is explained. In the same model the DM phenomenology as

well as the neutrino mass are also explored. In chapter 5 conclusion is drawn in a very brief manner.

20



Chapter 2

Dipolar Dark Matter and 3.5 keV

x-ray line

2.1 Introduction

In 2014, the XMM-Newton X-ray observatory reported an X-ray signal of 3.5 keV in the energy

spectrum of 73 galaxy clusters [7, 30]. Since the galaxy clusters are huge sources of dark matter

(DM) the origin of this line may be related to the DM. If confirmed by others this can give a strong

hint for the non-gravitational interaction of DM. There are a few attempts in order to explain the

origin of this X-ray line with relation to the DM. The possible processes which can give rise to such a

signal are : (i) decaying dark matter or annihilating DM [31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42],

(ii) magnetic dipolar dark matter (via up scattering of DM into an excited states and subsequent

decay of excited states into DM and an X-ray photon) [43, 44, 45, 46, 47, 48, 49], (iii) others

[50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73]. The

decay/annihilation of a multi keV dark matter or the decay of next to lightest stable particle to the

lightest stable particle with a keV mass splitting can explain the origin of the signal. However the

SM does not accommodate such particles. So to explain such a phenomena we have to look beyond

the SM scenario.

Apart from this, there is also evidence of new physics in order to explain the DM of the universe

which is mentioned in chapter 1. Moreover, the small neutrino mass can not be explained in SM (see

sec 1.2). To explain the various phenomena mentioned above in a single framework, we extended the

SM by adding a new set of 3 right handed fermions (N1, N2, N3) , an extra Higss doublet (⌃) and a

singlet charged scalar H+. With these minimal set of particles a discrete symmetry Z2 ⇥ Z 0
2 is also

imposed, which does not allow a mixing in the right handed neutrinos(RHN) sector. A soft breaking

of the discrete symmetry allows a mixing between N1 and N2 which creates a mass splitting between

the two. This small mass splitting allows the next to lightest stable particle (NLSP) N2 to decay

N1 through the electromagnetic dipole moment operator. If the mass splitting between the two is

order of 3.5 keV, then the emitted photon can explain the findings of XMM-Newton observatory.

Again the lifetime of N2 is larger than the universe so that it is decaying in the current epoch and it

can also contribute to the relic abundance of DM. The decay of N2 to N1 converts its density to N1

while keeping the total DM density intact. Due to the presence of RHNs, a lepton number violating
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Majorana mass term is possible for the heavy neutrinos. As a result the light neutrinos get sub-eV

order of mass either in the tree level or in the loop level.

2.2 The Model

We extended the SM by adding three right handed SM singlet fermions(NiR). A charged scalar

particle (H+) and a Higgs (⌃) are also added which transform like singlet and doublet under SU(2)L

respectively. The masses of all these particles are O (TeV). In order to stabilize the lightest singlet

fermion a Z2 ⇥ Z 0
2 symmetry is also imposed. As a result the lightest stable particle (LSP) serves

as a viable DM candidate. The particle content of the Model and corresponding quantum numbers

are displayed in the table. 2.1 The complete Lagrangian can be written as :

Table 2.1: Particle content of the proposed Model.
Field SU(3)C ⇥ SU(2)L ⇥ U(1)Y Z2 ⇥ Z 0

2

Fermions QL ⌘ (u, d)T
L (3, 2, 1/6) + +

uR (3, 1, 2/3) + +
dR (3, 1, �1/3) + +

`L ⌘ (⌫, e)T
L (1, 2, �1/2) + +

eR (1, 1, �1) + +
N1R (1, 1, 0) - +
N2R (1, 1, 0) + -
N3R (1, 1, 0) + +

Scalars � (1, 2, +1/2) + +
⌃ (1, 2, +1/2) + -

H+ (1, 1, +1) - +

L = LSM + LNew

where LSM is the SM Lagrangian while the new physics Lagrangian LNew contains all terms con-

taining any of the new particles including the right handed neutrinos and is given by:

LNew 3 (YH)1↵ NT
1RC`↵RH+ + (Y⌃)↵2`↵L⌃̃N2R

+ (Y⌫)↵3`↵L�̃N3R + (Ye)↵�`↵L�`�R

+
1

2
(NiR)CMNiNiR + h.c. + V (�, ⌃, H+) (2.1)

where the scalar potential can be given by:

V (�, ⌃, H+) = �µ2
�|�|2 + M2

⌃|⌃|2 + M2
H |H±|2

+ ��|�|4 + �⌃|⌃|4 + �H |H±|4

+ ��H(�†�) |H±|2 + �⌃H(⌃†⌃)|H±|2

+ f |�|2|⌃|2 +
��⌃

2

⇥
(�†⌃)2 + h.c.

⇤
. (2.2)

Since ⌃ is ascribed a positive mass squared term it does not get any vacuum expectation value
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(vev). It is also assumed that the individual masses of the newly added scalar particles are greater

than the right handed fermions i.e. M⌃, MH± > M , with M1 ⇠ M2 ⇠ M3 = M , so that the decays

N1 ! `RH+ and N2 ! ⌫L + ⌃0 are kinematically forbidden. As a result N1, N2 are individually

stable. However under Z2 ⇥ Z 0
2 symmetry, N3 goes to itself and hence it is not stable. It can decay

through the process: N3 ! ⌫i�0. The smallness of neutrino mass can be explained in a type I

seesaw scenario by N3.

The mixing between N1 and N2 is forbidden by the Z2 ⇥ Z 0
2 symmetry. A small mixing between

them is generated by breaking Z2 ⇥ Z 0
2 softly with:

Lsoft =
⇥
µs ⌃� (H+)⇤ + h.c.

⇤
, (2.3)

where the scale of µs will be determined from the observed phenomenon. The Z2 ⇥ Z 0
2 symmetry

breaking term generates a mixing between N1 and N2 and as a result N2 can decay via N2 ! N1+�.

The emitted photon can be identified with the recent observation of 3.5 keV X-ray line signal by the

XMM-Newton X-ray observatory.

2.2.1 Constraints on new particles

The scalar doublet ⌃ also has interaction with SM Z particle. As a result it can modify the decay

width of the Z boson. In order to forbid the decay of Z to ⌃ we impose the constraint M⌃ > MZ/2.

As a result the decay is not kinematically allowed. In other words

M⌃ > 45GeV . (2.4)

The mass of the singlet charged scalar H± is lower bounded by LEP. It is given to be [74]

MH > 80GeV . (2.5)

2.2.2 Mass splitting between N1 and N2

N2

⌃
H+

N1

h�i

`L
`R

h�i

Figure 2.1: Mass splitting between N1 and N2 due to radiative correction through breaking of Z2⇥Z 0
2

symmetry.

The breaking of Z2 ⇥ Z 0
2 symmetry generates a mixing between N1 and N2 as mentioned above.
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The mixing can be calculated from the Fig. 2.1 as

�M12 = �Y ?
H1↵Y⌃↵2µsvew

Z
d4k

(2⇡)4
i(�p � �k + m`)

[(p � k)2 � m2
` + i✏]

i

(k2 � M2
H)

i

(k2 � M2
⌃)

(2.6)

Before doing the integration we note that we will calculate this integral in the limit p ! 0. And the

integration involving �k will go to zero due to the symmetry argument. So we will end up with the

expression :

�M12 = iY ?
H1↵Y⌃↵2µsvew

Z
d4k

(2⇡)4
m`

[k2 � m2
` + i✏]

1

(k2 � M2
H)

1

(k2 � M2
⌃)

(2.7)

At this point we will perform the Wick rotation, so that we can go from Minkowski space to the

Euclidean space by changing the variables to :

k0 = ik0
E ,

�!
k =

�!
kE

Now the expression becomes:

�M12 =(iY ?
H1↵Y⌃↵2µsvewm`)

�i

(2⇡)4

Z
d4kE

1

(k2
E + m2

`)

1

(k2
E + M2

H)

1

(k2
E + M2

⌃)

= (Y ?
H1↵Y⌃↵2µsvewm`)

1

(2⇡)4
(2⇡2)

Z 1

0

k2
EdkE

1

(k2
E + m2

`)

1

(k2
E + M2

H)

1

(k2
E + M2

⌃)

= (Y ?
H1↵Y⌃↵2µsvewm`)⇥

m2
`(M

2
H � M2

⌃) ln(m2
`) + M2

H(M2
⌃ � m2

`) ln(M2
H) + M2

⌃(m2
` � M2

H) ln(M2
⌃)

(m2
` � M2

H)(m2
` � M2

⌃)(M2
H � M2

⌃)

(2.8)

Since m` << M⌃,H , we can safely neglect the terms involving m2
l . So the mixing is given by :

�M12 =
Y ⇤

H1↵ Y⌃↵2

16⇡2

µs vew m`

(M2
⌃ � M2

H)
ln

✓
M2

⌃

M2
H

◆
(2.9)

The Majorana mass matrix in the basis of (N1, N2, N3) is given by:

0

BBBBBB@

M1 �M12 0

�M12 M2 0

0 0 M3

1

CCCCCCA
(2.10)

Diagonalizing the mass matrix, we get the mass eigenvalues M1 + �M12 and M2 � �M12 and M3.

Thus the mass splitting between the two eigenstates N1 and N2 is given by

� = 2�M12 . (2.11)

If mass of N2 is heavier than N1 then , the N2 can decay to N1 and a monochromatic photon with

energy equal to the mass di↵erence between the two. The lifetime of N2 should be greater than the

age of the universe so that it can decay in the current epoch. The recent observation of the X-ray
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line can be explained if the mass splitting is ⇠ 3.5 keV. Using these information from eq. 2.9, we

can estimate the soft symmetry breaking term to be:

µs ' 1.6 ⇥ 10�2GeV

✓
(M2

⌃ � M2
H)/ln[M2

⌃/M2
H]

104 GeV2

◆ ✓
�M12

3.5keV

◆ ✓
0.52

Y?
HY⌃

◆✓
246GeV

vEW

◆ ✓
1.7GeV

ml

◆

(2.12)

In the above equation the normalization of
⇣

(M2
⌃�M2

H)/ln[M2
⌃/M2

H]
104 GeV2

⌘
holds for M⌃ ⇠ MH = O(100)

GeV and M⌃ �MH = O (keV-GeV). From eq. 2.12 we see that for M⌃ ⇠ MH ⇠ 100GeV the mixing

between ⌃ and H particles is tan 2✓ ⇡ µsvEW/(M2
⌃ � M2

H) ⇡ O(10�4).

2.3 Magnetic DM and explanation to 3.5 keV X-ray line

The RH neutrinos Ni are Majorana in nature. As a result the diagonal magnetic moment vanishes.

But there is transition magnetic moment possible for them. The electromagnetic coupling for the

heavy neutrinos with photons, via the dimension five e↵ective magnetic dipole moment (MDM)

operator is given by

LMDM = � i

2
NR j C�1 µjk�↵� NR k F↵� + h.c. (j 6= k). (2.13)

where F↵� is the electromagnetic field tensor and µ12 is the transition magnetic moment between

the first and second generation of heavy right-handed Majorana neutrinos N2, N1. The possible

Feynman diagrams which yield transitional magnetic moment µ12 and decay process N2 ! N1� are

shown in Fig. 2.2. The magnetic moment of DM is calculated from the figure as (see appendix B) :

µ12 = � �e

64⇡2

(Y ⇤
H Y⌃ µs vew)

M2
⌃ � M2

H

m`

M2
⌃

Itot (2.14)

where

Itot '
Z 1

0

dx


x(1 � x)2

(1 � x)M2
H/M2

⌃ + x(x � 1)M2
2 /M2

⌃ + x

� x(1 � x)2

(1 � x) + x(x � 1)M2
2 /M2

⌃ + xM2
H/M2

⌃

�
. (2.15)

Since N2 is little bit heavier than N1 with a di↵erence in mass lying in O(3.5keV), the former can

decay to later by emitting a monochromatic photon. The decay width is given by

�(N2 ! N1�) =
M3

2

8⇡

✓
1 � M2

1

M2
2

◆3

|µ12|2

=
|µ12|2
⇡

�3 , (2.16)

where

� ⌘ E� =
M2

2

✓
1 � M2

1

M2
2

◆
(2.17)

is the energy of the emitted photon, which is nothing but the mass di↵erence between N1 and N2.

To explain the observed X-ray line the we use � = 3.5keV, and the decay width to be �(N2 !
N1�) = (0.36� 3.3)⇥ 10�52GeV(M2/3.5keV) [7, 36, 49] for the decaying DM. Since the life time of
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Figure 2.2: Feynman diagram for magnetic DM decay: N2 ! N1�.

the DM is longer than the age of the Universe, we get from the observed X-ray line an upper bound

on the mass of DM to be M2 < (16� 146)TeV. This implies that a DM mass varying between a few

keV to O(100)TeV can in principle give the observed X-ray line. In particular, for M2 = 100 GeV,

the decay rate is O(10�44)GeV. In other words the life time of N2 is O(1019) sec, which is longer

than the age of the Universe. From Eq. (2.16) one can also estimate the required magnetic moment

to be µ12 = O(10�14) GeV�1, which is consistent with Eq. ( 2.14).

2.3.1 Estimation of the new physics scale and collider search

To estimate the scale of new physics, let us define a ratio R ⌘ µ12

� . Using Eqs. (2.9), ( 2.11) and

( 2.14) we get

R =
e

8

1

M2
⌃

Itot

ln(M2
⌃/M2

H)
. (2.18)

In the above equation Itot can be evaluated numerically. For a typical set of values, 350 GeV DM

mass, using � = 3.5keV and µ12 = 2.46 ⇥ 10�14 GeV�1 we get M⌃ ⇡ MH = 380GeV. Thus the

mass scale of the new particles are not far from the electroweak scale and hence can be searched

at colliders. In particular, the charged scalars H± and ⌃± are important. These particles can be

pair produced at LHC via the exchange of SM Higgs particle. For example, pp ! h ! H+H� !
e+e� + missing energy. Similarly, pp ! h ! ⌃+⌃� ! e+e� + missing energy. ⌃± particles

can also be detected through other decay processes, such as: ⌃± ! W±⌃0(⌃0⇤
) ! ff̄f1f̄2, where

f, f1, f2 are SM fermions.
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2.4 Neutrino mass

After the electro-weak phase transition one of the Yukawa term (Y⌫)↵3`↵L�̃N3R generates a Dirac

mass term: (MD)↵3 = (Y⌫)↵3vew, where vew = h�i and ↵ = e, µ, ⌧ . At the same time the N3 particle

also has a Majorana mass term M3N3N3 which breaks the lepton number by two units. As a result

a Majorana mass matrix for the light neutrinos is obtained which is

(m⌫)↵� =
v2

M3
(Y⌫)↵3(Y⌫)�3 (2.19)

After diagonalisation of the above mass matrix, the eigen values are given by Tr [(Y⌫)↵3(Y⌫)�3] v2
ew/M3,

0, 0. Thus at tree level one of the light neutrinos say ⌫3 gets mass. This is because of the exact

Z2 ⇥ Z 0
2 symmetry in the Lagrangian which prevents the Yukawa terms `↵�N1R and `↵�N2R. On

the other hand, the fact that M2
⌃ > 0 prevents a vacuum expectation value for ⌃ field, we can not

generate a Majorana mass of light neutrinos at the tree level through the coupling: Y⌃↵2`↵L⌃̃N2R.

However the light neutrinos can get mass in radiative corrections in one loop level. The diagram

relevant for the neutrino mass generation is shown in fig. 2.3.

⌫↵

N2

⌃ ⌃

⌫�

h�i
h�i

N2

M2y⌃ y⌃

Figure 2.3: One loop diagram contributing to Majorana mass of light neutrinos.

Due to the presence of a quartic coupling ��⌃

2

⇥
(�†⌃)2 + h.c.

⇤
, the electroweak phase transition

generates a mass splitting : ��⌃v2 between the real (⌃0
R) and imaginary (⌃0

I) components of ⌃0,

the neutral component of ⌃ field. The neutrino mass matrix can be calculated from the diagram

(see appendix A) [75]

(mloop
⌫ )↵� =

(Y⌃)↵2(Y⌃)�2 M2

16⇡2


M2

⌃R�
M2

⌃R
� M2

2

� ln

✓
M2

⌃R

M2
2

◆

� M2
⌃I�

M2
⌃I

� M2
2

� ln

✓
M2

⌃I

M2
2

◆�
(2.20)

Diagonalizing the above radiative mass matrix we get only one of the state massive, say ⌫2. Since

the origin of the masses of the two eigen states ⌫2 and ⌫3 are di↵erent they can easily satisfy the

solar and atmospheric mass splitting constraint.

2.5 Relic abundance of DM

The lightest stable particle (LSP), which is odd under Z2 ⇥ Z 0
2 symmetry, is N1 and hence serves

as a viable dark matter candidate. The next to lightest stable particle N2 can decay to N1 and a

photon. But the Electromagnetic coupling of N1 and N2 with photon is too small, the life time of N2
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is large and is comparable with the age of the universe. Therefore N2 is also stable on cosmological

time scale. Hence N2 can also be a DM candidate. When N2 decays its density gets converted to

N1 keeping the net DM abundance intact.

The DM can not be in thermal equilibrium with so small an electromagnetic coupling. For the

DM to be in thermal equilibrium the dipole moment required is µ12 ⇠ O(10�4)GeV�1 [76]. So

the only way the right handed neutrinos are in thermal equilibrium is through the interaction of

N1 with singlet charged Higgs(H+) and right handed charged leptons (`R) and that of N2 with

the SU(2)L doublets `L and ⌃. The O (keV) mass splitting between the N1 and N2 is irrelevant

for DM relic abundance. So for all practical purpose we assume M1 = M2 = MDM. In order to

calculate the relic abundance of DM we use the freeze out mechanism. When the temperature of

the universe falls below the mass scale of DM it freezes out from the thermal bath and its number

density in a comoving volume remains constant afterwards. The decoupling temperature is given by

Tf = MDM/xf , where xf ⇡ 25. The relic abundance obtained through co-annihilation of N1 with

H+ and that of N2 with ⌃ can be given by [77, 78]

⌦DMh2 =
1.09 ⇥ 109GeV�1

g
1/2
⇤ MPl

⇥ 1

J(xf )
(2.21)

where

J(xf ) =

Z 1

xf

h�|v|ie↵
x2

dx (2.22)

with

h�|v|ie↵ = h�|v|iN1

e↵ + h�|v|iN2

e↵ . (2.23)

In the above equation the e↵ective co-annihilation cross-sections of N1 with H+ and that of N2 with

that of ⌃ are given as:

h�|v|iNi

eff = h�|v|iNi�XgigX(1 + �X)3/2 ⇥
✓

e�x�X

g2
e↵

◆
(2.24)

where gi, i = 1, 2 represents the internal degrees of freedom of N1 and N2, gX represents the internal

degrees of freedom of X-particle (H+, ⌃) co-annihilating with Ni, i = 1, 2 and

ge↵ = gi + gX(1 + �X)3/2e�x�X . (2.25)

where �X = (MX � MDM)/MDM. The various cross-sections relevant to the relic density are given

below.

h�|vi(N1R + H+ , `R + �) =
(YH)21↵

64⇡MH(s � m2
↵)2

m2
f

h�i2 s
p

s

✓
1 � M2

�

s

◆2

(2.26)

h�|vi(N1R + H+ , `R + Z) =
1

32⇡MH

✓
g(YH)1↵(T3 � sin2✓W Q)

cos✓W (s � m2
↵ + i✏)

◆2

s
p

s

✓
1 � m2

Z

s

◆2

(2.27)

h�|vi(N1R + H+ , `R + �) =
e2

32⇡MH

(YH)21↵
(s � m2

↵)2
s
p

s (2.28)

where ↵ = e, µ, ⌧
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The relic abundance of N2 is obtained through its co-annihilation with ⌃ particles via the fol-

lowing processes are

h�|vi(N2R + ⌃0 , lL + W ) =
1

64⇡M⌃

g2(Y⌃)22↵p
s

✓
1 � m2

W

s

◆2

(2.29)

h�|vi(N2R + ⌃0 , ⌫L + Z) =
1

128⇡M⌃

g2(Y⌃)22↵
cos2✓W

p
s

✓
1 � m2

Z

s

◆2

(2.30)

h�|vi(N2R + ⌃� , ⌫L + W ) =
1

64⇡M⌃

g2(Y⌃)22↵
(s � m2

↵ + i✏)2
s
p

s

✓
1 � m2

W

s

◆2

(2.31)

h�|vi(N2R + ⌃� , eL + Z) =
1

32⇡M⌃

g2(Y⌃)22↵(T3 � sin2✓W Q)2

cos2✓W (s � m2
↵ + i✏)2

s
p

s

✓
1 � m2

Z

s

◆2

(2.32)

h�|vi(N2R + ⌃� , eL + �) =
e2(Y⌃)22↵

32⇡M⌃(s � m2
↵ + i✏)2

s
p

s (2.33)

h�|vi(N2R + ⌃� , eR + �) =
(Y⌃)22↵

64⇡M⌃(s � m2
↵ + i✏)2

m2
f

< � >2
s
p

s

✓
1 � M2

�

s

◆2

(2.34)

The contribution to the relic density of DM can be estimated by defining the branching ratios

as:

r1 =
h�|v|iN1

h�|v|iN1
+ h�|v|iN2

r2 =
h�|v|iN2

h�|v|iN1 + h�|v|iN2

(2.35)

A plot is shown in fig. 2.4 with r1 and r2 as a function of MDM taking the couplings Y⌃ = YH = Y .
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Figure 2.4: r1 and r2 as a function of MDM for Y⌃ = YH . For simplicity we set MDM = MX .

For simplicity the masses of new scalars also assumed to be equal MH+ = M⌃ = MX. To see the

e↵ect of mass splitting between the coannihilaton partner (MX ) and the DM (MDM) on the relic

abundance we plotted the ⌦h2/(⌦h2)deg as a function of MX � MDM as shown in fig. 2.5. Where

(⌦h2)deg is the relic abundance in the zero mass splitting limit. We can clearly read from the fig. 2.5,
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the relic abundance increases as the mass splitting increases. It is because the coannihilation cross

section depends on the mass splitting which su↵ers a Boltzmann suppression i.e h�|v|i / e�x�X . As

a result the e↵ective cross section decreases with increase in mass splitting hence leading to increase

of relic abundance. To explore more on the parameter space we calculate the relic abundance of
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Figure 2.5: Ratio of DM abundance as a function of MX � MDM for a typical mass of DM, MDM =
1000GeV and Y⌃ = YH = 0.55

DM for various couplings. This is shown in fig. 2.6. We have plotted the correct relic abundance as

allowed by PLANCK as a function of MDM and �M = MX � MDM for di↵erent Yukawa coupling

strength Y = 0.1, 0.5, 1.0, 2.0, 3.5. The coannihilation cross-section is proportional to e��M , as a
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Figure 2.6: Scatter plots for observed relic abundance in the plane of MX � MDM versus MDM for
di↵erent values of the Yukawa couplings: Y = Y⌃ = YH .

result for small value of mass splitting the cross-section will be large. That’s why we get more points

near �M ⇠ 0 for the correct relic abundance. Again for a fixed DM mass, if the coupling increases

we need large mass splitting so that the e↵ective crossection will be in the correct range as to give
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the observed relic abundance. This can be read easily from the fig 2.6 as we increase the coupling

from Y = 0.1 to Y = 3.5, the perturbative limit. For smaller DM mass, the crosssection increases

with further decrease in DM mass. So we need a mass splitting of the order of 10 GeV in order to

get the correct relic abundance.

Let us now discuss the compatibility of parameter space satisfying relic abundance as well as

explaining the 3.5 keV X-ray line. As we have mentioned in section (2.3), the decay width of DM,

giving the X-ray line, is given by: �(N2 ! N1�) = 0.36 � 3.3 ⇥ 10�52GeV(M2/3.5keV) [7, 36, 49].

This implies that for a decaying DM, the allowed mass range by observed X-ray line is about 7 keV

to 146 TeV, where the lower bound is obtained from kinematics while the upper bound is obtained

assuming the life time of DM is longer than the age of the Universe. On the other hand the relic

abundance of DM allows one to go all the way to 6000 GeV in the perturbative limit. So, the mass

of DM allowed by the correct relic abundance is a subset of the mass allowed by the observed X-ray

line.

2.6 Direct Detection of DM

We know that the direct detection of DM is a very challenging task. The null observation of any

signal through direct interaction with the nucleon thus puts a constraint on the e↵ective nucleon-

DM scattering cross-section. In this section we study the constraint on model parameters from the

bound obtained in the LUX experiment [6]. We note that the mass splitting between N2 and N1 is

only 3.5 keV, so for all practical purposes we consider the spin independent DM-nucleon interaction

N1n ! N2n, mediated by SM Higgs exchange and photon to be elastic. The Feynman diagram for

DM-nucleon interaction for direct detection is shown in Fig. 2.7.

N1

H+ ⌃

N2`R `L

q q0

�

N2 N1

�

q q

µeff

Figure 2.7: Elastic scattering of magnetic dipolar DM with target nuclei.

Contribution from Higgs exchange diagram

The diagram contributing to the direct detection via Higgs exchange is shown in the left panel of

fig. 2.7. The e↵ective coupling between N2 � N1 � � entering into this interaction can be given by:

�e↵ ' �µS

16⇡2
Y⌃Y ⇤

Hm`F
�
M2

H , M2
⌃, m2

`

�
, (2.36)
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where

F �M2
H , M2

⌃, m2
`

�
=

1

M2
H � M2

⌃

⇥


1
m2

`

M2
H

� 1
ln

✓
m2
`

M2
H

◆
� 1

m2
`

M2
⌃

� 1
ln

✓
m2
`

M2
⌃

◆�
. (2.37)

The function F �M2
H , M2

⌃, m2
`

�
follows from eq. 2.8. Thus the spin independent DM-nucleon cross-

section can be given as:

�SI =
µ2

n

4⇡
�2

e↵

✓
fnmn

vew

◆2 1

M4
h

(2.38)

where µn = MN1
mn/(MN1

+ mn) is the reduced DM-nucleon mass with mn = 0.946GeV and

Mh = 125GeV is the SM Higgs mass. The e↵ective coupling between the SM Higgs and nucleon

is given by: fnmn/vew which depend upon the quark content of the nucleon for each quark flavor.

The Higgs-nucleon coupling fn is given by:

fn =
X

q

fq =
mq

mn
hn|q̄q|ni (2.39)

where the sum is over all quark flavors. In the present analysis, we have used fn = 0.32 [79]

though its value can lie within a range fn = 0.26 � 0.33 [80]. Using M⌃ ⇡ MH = 100GeV and

YH = Y⌃ = 0.5 we get �SI ⇡ O(10�59)cm2, which is much smaller than the current stringent limit:

�SI = 7.5 ⇥ 10�46 cm2 from LUX.

Photon exchange contribution

From Fig. 2.7 (b) the spin independent DM-nucleon cross-section is given by

�SI =
e2µ2

12

16⇡
(Zfp + (A � Z)fn)2 (2.40)

where fp = fn for the case of iso-spin conserving interaction and is given by Eq. (2.39). For LUX

experiment Z = 54 while A varies between 74 to 80. Moreover, µ12 is given by Eq.(2.14). Using the

same set of parameters used in section 2.3, we get �SI ⇡ O(10�57)cm2, which is much smaller than

the current LUX limit. We note that, in this case, the LUX bound cannot be directly applied because

the mediator is the massless photon that a↵ects the event spectra of DM-nucleon scattering [81].

2.7 Summary and Outlook

In this chapter the minimal extension of the SM is presented to explain simultaneously the observed

3.5 keV X-ray line, neutrino mass as well as the DM phenomenology. Three right handed neutrinos

(N1, N2, N3) with two scalars, a charged singlet H+ and a doublet ⌃ are added to the SM. The non

trivial transformation of the new fields under a discrete Z2 ⇥ Z 0
2 symmetry makes the lightest RHN

(N1) stable. Hence it serves as a viable DM candidate. The next to lightest stable particle (N2)

whose mass is only 3.5 keV greater than N1 decays to N1 + � in the present epoch. The number

density of N2 is then converted into N1 while keeping the total DM abundance intact. The emerged
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� can be identified as the observed 3.5 keV X-ray line. Since N3 couples to SM leptons and the Higgs

doublet, a small Majorana mass is generated for one of the light neutrinos through canonical see-saw

mechanism. The other neutrinos get their mass in one loop level. We have shown that the observed

relic abundance requires the masses of the new scalars (H+, ⌃+ ) are not far from electroweak scale.

So these particles can be pair produced and their subsequent decay can be searched in LHC. The

direct detection cross-section is very much suppressed. Hence there is no constraint coming from

the LUX bound on the DM parameter space.
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Chapter 3

Vector like mixed singlet-doublet

fermionic Dark Matter and

application to 750 GeV diphoton

excess signal

3.1 Introduction

As mentioned in chapter 1 the SM is incomplete in the sense that it does not contain a dark matter

(DM) particle. Again the smallness of neutrino mass is also not explained in the SM. So the limita-

tion of SM theory suggests to look for physics in BSM frameworks.

In a simplistic approach to BSM scenario, a non-zero hypercharge particle generally gives large

direct detection cross-section through the Z mediated DM-nucleon cross-section and hence ruled

out unless some fine tune mechanism is employed to validate. Alternatively, a vector-like colour-

less fermion with zero hypercharge is a simple possibility to be considered as a candidate of DM

in the BSM scenario. These fermions are similar to SM leptons even though they may not carry

any leptonic charge. While the singlet and triplet leptons with hypercharge (Y) zero need an extra

symmetry for their stability, the quintet fermion with Y = 0 is stable by itself [82]. The neutral

component of these fermions can be a viable candidate of DM. Hence, the simplest fermionic DM

is to introduce a singlet fermion (�0) odd under a Z2 symmetry. However, without introducing

additional fields, such DM can only have an e↵ective interaction to the SM via a dimension five

operator of the form �̄0�0H†H/⇤. In order to obtain a full theory of such an operator, one needs

to introduce an additional scalar singlet (⌘) that mixes with the SM Higgs and thus yielding an

e↵ective Yukawa interactions of the fermionic DM to SM through terms like �̄0�0⌘ ! �̄0�0h (see

for example [83]). On the other hand, the neutral component of a vector-like doublet or a quartet

lepton with non-zero hypercharge can not qualify itself to be a candidate of DM even in presence

of an extra symmetry due to its large Z-mediated WIMP-nucleon elastic cross-section. However, a

vector-like doublet DM can be reinstated in presence of a heavy scalar triplet [84, 85] where the relic
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abundance mostly arises from an asymmetric component. The symmetric component of DM gets

annihilated to the SM particles. On the other hand, if the SM is extended by multiple vector-like

doublets and singlets, supplemented by a symmetry under which the new fermions are odd while

all other SM fields are even, then the DM can emerge as an admixture of the neutral component

of the doublets and singlets [86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97]. We consider a model

by augmenting the SM with two additional vector-like leptons: one doublet N ⌘ (N0, N�)T and a

singlet �. A Z2 symmetry is also imposed under which N and � are odd while all other fields are

even. As a result the DM emerges out to be a mixed state of singlet and neutral component of the

doublet vector-like leptons.

In order to explain the smallness of neutrino mass as well as DM in the same model, a triplet

scalar � is added with hypercharge 2 (for some earlier attempts, see [98, 99, 100, 101, 102, 103, 78])

on top of two additional vector-like leptons. We will see the e↵ect of the scalar triplet on the DM

phenomenology. Since the scalar triplet can be light, it contributes to the relic abundance of DM

through s-channel resonance on top of Z and H mediation. Moreover, it relaxes the strong con-

straints coming from direct detection.

The triplet scalar not only couples to the SM lepton and Higgs doublets, but also to the additional

vector-like lepton doublet N . The Majorana couplings of � with N , L and H is then be given by

fN�NN + fL�LL + µ�†HH. Note that if the triplet is heavier than the DM and leptons, it can

be integrated out and hence e↵ectively generating the dimension five operators:

✓
LLHH

⇤
+

NNHH

⇤

◆
,

where ⇤ ⇠ M�. After EW symmetry breaking � acquires an induced vacuum expectation value

(vev) of O(1) GeV which in turn give Majorana masses to light neutrinos as well as to N0. Since N0

is a vector-like Dirac fermion, it can have a Dirac mass too. As a result N0 splits up into two pseudo-

Dirac fermions, with a mass splitting of sub-GeV order, whose elastic scattering with the nucleon

mediated by Z-boson is forbidden. This feature of the model leads to a survival of larger region of

parameter space from direct search constraints given by the latest data from Xenon-100 [12] and

LUX [6]. On the other hand, the Higgs mediated elastic scattering of the DM with the nucleon gives

an excellent opportunity to detect it at future direct search experiments such as XENON1T [104].

It is harder to see the signature of only DM production at collider as they need to recoil against

an ISR jet for missing energy. However, the charged partner of the DM (which is next-to-lightest

stable particle) can be produced copiously which eventually decays to DM giving rise to leptons

and missing energy. More interestingly, the charged companion can also give large displaced vertex

signature as we will elaborate.

3.2 The Model

The model contains two vector like fermions: a doublet NT (⌘ (N0, N�)) (1,2,-1) and a singlet �0

(1,1,0), where the numbers inside the parentheses are the quantum numbers corresponding to the

SM gauge group SU(3)c ⇥ SU(2)L ⇥ U(1)Y in addition to the SM particles. Since the particles
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transform vector like under the SM gauge group, the anomaly is cancelled by exactly by the left

and right component of the new fermions. As a result, the model is free from any gauge anomaly.

A discrete symmetry Z2 is also imposed under which N and �0 are odd, while all other fields are

even. As a result the DM emerge as an admixture of N0 and �0. The relevant Lagrangian can be

given as :

�LYuk � MNNN + M��0�0 +
h
Y N eH�0 + h.c.

i
, (3.1)

where MN and M� are mass parameters corresponding to the doublet and singlet vector like leptons

and Y denotes the interaction strength among them. Note here that due to vector-like nature, mass

terms are perfectly gauge invariant. In Eq. (3.1), eH = i⌧2H
⇤, where H is the SM Higgs iso-doublet

H =

0

B@
H+

H0

1

CA. After electroweak phase transition, the vacuum expectation value (vev) of SM Higgs

hHi =

0

B@
0

v

1

CA gives rise to a mixing between N0 and �0. In the basis (�0, N0), the mass matrix is

given by

M =

0

B@
M� mD

mD MN

1

CA . (3.2)

where mD = Y v and v = 174 GeV. Diagonalizing the above mass matrix we get two mass eigenvalues:

M1 ⇡ M� � m2
D

MN � M�

M2 ⇡ MN +
m2

D

MN � M�
(3.3)

where we have assumed mD << MN , M�. The corresponding mass eigenstates are given by:

N1 = cos ✓�0 + sin ✓N0

N2 = cos ✓N0 � sin ✓�0 , (3.4)

where the mixing angle is:

tan 2✓ =
2mD

MN � M�
. (3.5)

Note that N2 is dominantly a doublet with a small admixture of singlet component. On the other

hand, N1 is dominantly a singlet with a small admixture of doublet component, which makes it a

viable candidate of DM.

In the physical spectrum we also have a charged vector-like fermion N± whose mass in terms of

M1 and M2 and the mixing angle ✓ can be given as:

M± = M1 sin2 ✓ + M2 cos2 ✓ ' MN . (3.6)

We will see later that the allowed values of the mixing angle is quite small, i.e. sin ✓ ' 0.1. Therefore,

we have M2 ⇡ MN . This implies that the vector-like lepton N± is almost degenerate to neutral
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vector-like lepton N2, M2 ⇡ M±. Since sin ✓ ⇠ 0.1, we always get MN < M2 unless M1 is quite

large, say M1 > O(104) GeV. For M1 . O(104) GeV and sin ✓ . 0.1, we can have four possibilities

in the mass spectrum of additional vector-like leptons as shown in the Fig. 3.1. From Fig. 3.1 (c)

and (d) we see that the charged lepton is the lightest stable fermion and hence excluded from DM

consideration. So, the remaining possibilities are Fig. 3.1 (a) and (b), where N1 is the lightest stable

particle (LSP) and is a suitable DM candidate. The next to lightest stable particle (NLSP) is the

charged vector-like fermion N� and next to next lightest stable particle (NNLSP) is N2. The mass

splitting between N1 and N� is (MN �M�)+m2
D/(MN �M�), where as the mass splitting between

N1 and N2 is (MN � M�) + 2m2
D/(MN � M�). Depending on the choice of M1 and M2, the mass

splitting between N1 and N2 can be either large (Fig. 3.1 (a)) or small (Fig.3.1 (b)).

Figure 3.1: Pictorial presentation of the possible mass spectrum for additional vector-like leptons.

Let us now turn to the interaction terms in the mass basis of N1 and N2. The Yukawa interaction

term can be re-written as:

Y N eH�0 + h.c. ! Y N0h�0 + h.c.

= Y
⇥
sin 2✓(N1hN1 � N2hN2) + cos 2✓(N1hN2 + N2hN1)

⇤
. (3.7)

Similarly the charge current and neutral current gauge interaction in the mass basis of N1 and N2

can be given as:

gp
2
N0�µW+

µ N� + h.c. ! g sin ✓p
2

N1�
µW+

µ N� +
g cos ✓p

2
N2�

µW+
µ N� + h.c. , (3.8)

g

2 cos ✓w
N0�µZµN0 ! g

2 cos ✓w

�
sin2 ✓N1�

µZµN1 + sin ✓ cos ✓(N1�
µZµN2 + N2�

µZµN1) + cos2 ✓N2�
µZµN2

�
.

(3.9)

The neutral current of N� is not a↵ected by the singlet-doublet mixing and is given by:

e�µN�AµN� +
g

2 cos ✓W
(1 � 2 sin2 ✓W )N��µZµN� . (3.10)

Essentially, the model contains three independent parameters in terms of

{M1, M2, sin ✓ } or {Y, M1, M2} (3.11)

where, Y and sin ✓ are related by

Y =
�Msin2✓

2v
, (3.12)

37



as seen from Eq. (3.5).

We use sin ✓ as an independent parameter in our analysis. We will see that the mixing angle

plays a vital role in the DM phenomenology. In particular, the relic abundance of DM gives an

upper bound on the singlet-doublet mixing angle to be sin ✓ . 0.4. For larger mixing angle the

relic abundance is less than the observed value due to large annihilation cross-sections in almost

all parameter space. We also found that a lower bound on sin ✓ coming from the decay of N2 and

N� after they freeze out from the thermal bath. In principle these particles can decay on, before

or after the DM (N1) freezes out depending on the mixing angle. In the worst case, N2 and N�

have to decay before the onset of Big-Bang nucleosynthesis. In that case, the lower bound on the

mixing angle is very much relaxed and the out-of-equilibrium decay of N2 and N� will produce an

additional abundance of DM. Therefore, in what follows, we demand that N2 and N� decay on or

before the freeze out of DM (N1). As a result we get a stronger lower bound on sin ✓, which of course

depends on their masses.

If the mass splitting between N� and N1 is larger than W±-boson mass, then N� decay prefer-

ably through the two body process: N� ! N1 + W�. However, if the mass splitting between N�

and N1 is less than W±-boson mass then N� decay through the three body process: N� ! N1`
�⌫`.

For the latter case, we get a stronger lower bound on the mixing angle than the former. The three

body decay width of N� is given by (see appendix C):

� =
G2

F sin2✓

24⇡3
M5

NI (3.13)

where GF is the Fermi coupling constant and I is given as:

I =
1

4
�1/2(1, a2, b2)F1(a, b) + 6F2(a, b) ln

✓
2a

1 + a2 � b2 � �1/2(1, a2, b2)

◆
. (3.14)

In the above Equation F1(a, b) and F2(a, b) are two polynomials of a = M1/MN and b = m`/MN ,

where m` is the charged lepton mass. Up to O(b2), these two polynomials are given by

F1(a, b) =
�
a6 � 2a5 � 7a4(1 + b2) + 10a3(b2 � 2) + a2(12b2 � 7) + (3b2 � 1)

�

F2(a, b) =
�
a5 + a4 + a3(1 � 2b2)

�
. (3.15)

In Eq. (3.14), �1/2 =
p

1 + a4 + b4 � 2a2 � 2b2 � 2a2b2 defines the phase space. In the limit b =

m`/MN ! 1 � a = �M/MN , �1/2 goes to zero and hence I ! 0. The life time of N� is then given

by ⌧ ⌘ ��1. We take the freeze out temperature of DM to be Tf = M1/20. Since the DM freezes

out during radiation dominated era, the corresponding time of DM freeze-out is given by :

tf = 0.301g
�1/2
?

mpl

T 2
f

, (3.16)

where g? is the e↵ective massless degrees of freedom at a temperature Tf and mpl is the Planck

mass. Demanding that N� should decay before the DM freezes out (i.e. ⌧ . tf ) we get

sin ✓ & 1.1789 ⇥ 10�5

✓
1.375 ⇥ 10�5

I

◆1/2✓
200GeV

MN

◆5/2 ⇣ g?
106.75

⌘1/4
✓

M1

180GeV

◆
. (3.17)
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Notice that the lower bound on the mixing angle depends on the mass of N� and N1. For a typical

value of MN = 200 GeV, M1 = 180 GeV, we get sin ✓ & 1.17⇥10�5. Since ⌧ is inversely proportional

to M5
N , larger the mass, smaller will be the lower bound on the mixing angle.

3.3 Constraints on Model Parameters

3.3.1 Invisible Z-decay

The non observation of Z decay width to a fourth generation charged lepton pairs prohibit to

M± > Mz/2. As M± ' M2 ' MN , this implies that the mass of N� and N2 has to be larger than

45 GeV. On the other hand M1 can be as light as 1 GeV [105]. Due to singlet-doublet mixing, the

Z-boson can decay to N1 and N2. Since N2 is heavier than MZ/2, the decay of Z to N2N2 is also

forbidden. Hence the relevant decay widths of the processes Z ! N1N1 and Z ! N1N2 can be

given as:

�(Z ! N1N1) =
1

48⇡
MZ

✓
g2 sin4 ✓

cos2 ✓w

◆✓
1 +

2M2
1

M2
Z

◆✓
1 � 4M2

1

M2
Z

◆1/2

�(Z ! N1N2) =
1

96⇡
MZ

✓
g2 sin2 ✓ cos2 ✓

cos2 ✓w

◆✓✓
1 � (M2

1 + M2
2 )

M2
Z

◆
+

6M1M2

M2
Z

+

✓
1 � (M2

1 � M2
2 )2

M4
Z

◆◆

✓
1 � 2

(M2
1 + M2

2 )

M2
Z

+
(M2

1 � M2
2 )2

M4
Z

◆1/2

(3.18)

The invisible Z-decay width in the SM is �(invisible) = 499 ± 1.5MeV [106]. Therefore, if Z is

allowed to decay to N1N1 and N1N2 then the decay width should not be more than 1.5 MeV. Under

this condition we have shown the constraints on sin ✓ for various values of M1 in Fig. (3.2), while

fixing M2 = Mz/2 = 45 GeV, the minimum possible value, for simplicity. We see that the DM mass

M1 can be allowed below Mz/2 = 45 GeV only if sin ✓ < 10�3.

Figure 3.2: The allowed values of sin ✓ for di↵erent DM mass M1 < MZ/2 = 45 GeV from invisible
Z decay constraints. We assume here M2 = Mz/2 = 45 GeV.
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3.3.2 Invisible Higgs decay
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Figure 3.3: Scatter plot for allowed parameter space in sin 2✓�M1 (GeV) plane from invisible Higgs
decay. All possible values of M2 used that keeps the decay chain open.

The SM Higgs can decay to N1 and N2 and therefore strongly constrained by the observation.

In particular, the branching ratio for the invisible Higgs decay width is given by

Brinv =
�inv

h

�SM
h + �inv

h

, (3.19)

where �SM
h = 4MeV. The invisible Higgs decay width is given by:

�inv
h = �(h ! N1N1) + �(h ! N2N2) + �(h ! N1N2) (3.20)

where

�(h ! NiNi) =
(Y sin 2✓)2

8⇡
Mh

✓
1 � 4M2

i

M2
h

◆3/2

�(h ! NiNj) =
(Y cos 2✓)2

8⇡
Mh

 
1 � M2

i + M2
j

M2
h

� 2MiMj

M2
h

!

⇥
 

1 � 2(M2
i + M2

j )

M2
h

+
(M2

i � M2
j )2

M4
h

!1/2

. (3.21)

Taking Brinv < 0.3 [107, 108, 109] we have shown the allowed region in the plane of sin 2✓ versus

M1 in Fig. (3.3). We saw that for small DM mass, typically 1 < M1 < MH/2 = 63 GeV, sin 2✓

is strongly constrained, while for M1 & 63 GeV, large sin 2✓ is allowed from invisible Higgs decay

constraints. In the scan, we are choosing all possible values of M2 that keeps the decay chain open.
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Clearly, the invisible Z� decay puts stronger constraint on the mixing angle than the invisible decay

of Higgs does.

3.4 Constraint on Model parameters from Direct Search Ex-

periments of DM

N1
N1

Z

N1 N1

H

Figure 3.4: Feynman diagrams for direct detection of N1 DM.

It is very di�cult to probe the DM in direct search experiments. The non observation of DM

signal in direct search experiments like XENON100 [12] and LUX [110] thus puts a stringent con-

straint on the e↵ective nucleon-DM cross-section as a function of DM mass. As a result the direct

search experiments also put a constraint over the model parameters. The relevant diagrams through

which the DM interacts with the nuclei in this model is shown in Fig. 3.4. There is a constraint on

mixing angle sin ✓ for spin independent DM-nucleon interaction mediated via the Z-boson (see in

the left of Fig. (3.4)). The cross-section per nucleon for Z mediation is given by [111, 112]

�Z
SI =

1

⇡A2
µ2

r|M|2 (3.22)

where A is the mass number of the target nucleus, µr = M1mn/(M1+mn) ⇡ mn is the reduced mass,

mn is the mass of nucleon (proton or neutron) and M is the amplitude for Z-mediated DM-nucleon

cross-section given by

M =
p

2GF [Z(fp/fn) + (A � Z)]fn sin2 ✓ , (3.23)

where fp and fn are the interaction strengths (including hadronic uncertainties) of DM with proton

and neutron respectively and Z is the atomic number of the target nucleus. For simplicity we

assume conservation of isospin, i.e. fp/fn = 1. The value of fn vary within a range: 0.14 < fn <

0.66 [113, 114, 115, 116]. If we take fn ' 1/3, the central value, then from Eqs. (3.22) and (3.23),

we get the Z-mediated cross-section per nucleon to be

�Z
SI ' 3.75 ⇥ 10�39cm2 sin4 ✓ . (3.24)
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In the above equation the only unknown is the sin ✓ and hence can be constrained from observation.

Using the data from Xenon-100 and LUX we have shown the allowed values of sin ✓ in the left panel

of Fig. (3.5) as a function of the DM mass.

Figure 3.5: Constraint on sin ✓ (left) from Z mediated direct detection process and Y sin 2✓ (right)
from H mediated direct detection process using Xenon-100 and LUX data for di↵erent values of DM
mass M1 .

Another possibility of having spin-independent DM-nucleon interaction is through the exchange

of SM Higgs (see in the right of Fig. (3.4)). The cross-section per nucleon is given by:

�h
SI =

1

⇡A2
µ2

r [Zfp + (A � Z)fn]2 (3.25)

where the e↵ective interaction strengths of DM with proton and neutron are given by:

fp,n =
X

q=u,d,s

f
(p.n)
Tq ↵q

m(p,n)

mq
+

2

27
f

(p,n)
TG

X

q=c,t,b

↵q
mp.n

mq
(3.26)

with

↵q =
Y sin 2✓

M2
h

⇣mq

v

⌘
. (3.27)

In Eq. (3.26), the di↵erent coupling strengths between DM and light quarks are given by [117]

f
(p)
Tu = 0.020 ± 0.004, f

(p)
Td = 0.026 ± 0.005,f (p)

Ts = 0.118 ± 0.062, f
(n)
Tu = 0.014 ± 0.004,f (n)

Td = 0.036 ±
0.008,f (n)

Ts = 0.118 ± 0.062. The coupling of DM with the gluons in target nuclei is parameterized

by

f
(p,n)
TG = 1 �

X

q=u,,d,s

f
(p,n)
Tq . (3.28)

Thus from Eqs. (3.25,3.26,3.27,3.28) the spin-independent DM-nucleon cross-section is given to be:

�h
SI =

4

⇡A2
µ2

r

Y 2 sin2 2✓

M4
h


mp

v

✓
fp

Tu + fp
Td + fp

Ts +
2

9
fp

TG

◆
+

mn

v

✓
fn

Tu + fn
Td + fn

Ts +
2

9
fn

TG

◆�2
.

(3.29)

In the above equation the only unknown quantity is Y or sin 2✓ which can be constrained by requiring
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that �h
SI is less than the current DM-nucleon cross-sections at Xenon-100 and LUX. This is shown

in the right panel of Fig. (3.5).

Figure 3.6: Spin independent direct detection cross-section for N1 DM as a function of DM mass
for sin ✓ = {0.05 � 0.1} (Green), sin ✓ = {0.1 � 0.15} (Purple), sin ✓ = {0.15 � 0.2} (Lilac), sin ✓ =
{0.2 � 0.25} (Red). Fixed values of �M = {100, 700} GeV (left and right respectively) have been
used. XENON 100, LUX data are shown with XENON 1 T prediction.

Now a combined analysis is made by taking into account both Z and H mediated diagrams

together. The value of mixing angle sin ✓ as well as DM mass are changed by keeping a fixed value of

�M and hence changing Y = �M sin 2✓/2v accordingly. In Fig 3.6, we show the spin-independent

cross-section for N1 DM within its mass range M1 : 50 � 1200 GeV. The plot is obtained by

varying sin ✓ within {0.05 � 0.25} with sin ✓ = {0.05 � 0.1} (Green), sin ✓ = {0.1 � 0.15} (Purple),

sin ✓ = {0.15 � 0.2} (Lilac), sin ✓ = {0.2 � 0.25} (Red) by choosing a fixed set of �M = {100, 700}
GeV (left and right respectively). It clearly shows that the larger is sin ✓, the stronger is the

interaction strength (through larger contribution from Z mediation) and hence the larger is the

DM-nucleon cross-section. Similarly, the larger is �M , the greater is the Y -value and hence larger

is the DM-nucleon cross-section (through larger contribution from Higgs mediation). Hence, it turns

out that direct search experiments constraints sin ✓ to a great extent. For example, we see that with

sin ✓ = 0.1, the DM mass M1 > 350 GeV. The e↵ect of �M on DM-nucleon cross-section is much

smaller as we can see from the left and right panel of Fig. (3.6). However, we note that �M plays a

dominant role in the relic abundance of DM. Approximately, sin ✓  0.1 (Green points) are allowed

for most of the parameter space except for smaller DM masses. Further small mixing angles are still

allowed and that will have a non-trivial outcome in collider search.

It is also noticed that there is a very tiny amount of spin-dependent cross-section arises through

Z mediation, but the cross-section lies far far below than the observed limit and hence it e↵ectively

doesn’t constrain the parameter space at all. For example, with {M1 = 80, M2 = 120, sin ✓ = 0.1},

the spin dependent cross-section for proton is as low as 3.2 ⇥ 10�49 pb compared to 4.2 ⇥ 10�9 pb

for spin independent one.
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3.5 Constraints from Electroweak precision tests on Vector-

like leptons

Any vector like fermion doublet beyond SM framework contribute to the electroweak precision test

parameters S, T and U [118, 119, 120, 121]. In fact, a more generalized set of parameters for

electroweak precision test are Ŝ, T̂ , W and Y [1], where the Ŝ, T̂ are related to Peskin-Takeuchi

parameters S, T as Ŝ = ↵S/4 sin2 ✓w, T̂ = ↵T , while W and Y are two new set of parameters. The

observed values of these parameters at LEP-I and LEP-II set a lower bound on the mass scale of

new fermions. Global fit of the electroweak precision parameters for a light Higgs [1] 1 is shown in

the following Table.

103Ŝ 103T̂ 103W 103Y
Light Higgs 0.0 ± 1.3 0.1 ± 0.9 0.1 ± 1.2 �0.4 ± 0.8

Table 3.1: Global fit for the electroweak precision parameters taken from ref. [1].

In our present model, we have two neutral fermions N1, N2 and a charged one N�. Note that

N1 is dominantly a singlet and a small admixture of doublet component, while N2 is dominantly a

doublet and a small admixture of singlet component. Therefore, the mixing is important for their

contribution to Ŝ, T̂ , W and Y . In terms of M1, M2, M± and sin ✓ we can compute Ŝ as [90]:

Ŝ =
g2
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⇢
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✓
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2
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(3.30)

where µ is at the EW scale. We have plotted Ŝ as a function of M2 for di↵erent values of the mixing

angles while keeping M1 = 150 GeV, in the left panel of fig. 3.7. On the other hand, in the right

panel, we have shown the allowed values of Ŝ in the plane of M2 � M± versus M2 for sin ✓ = 0.05.

We observed that Ŝ does not put strong constraints on M1 and M2. Moreover, small values of sin ✓

allows a small mass splitting between N2 and N� which relaxes the constraint on T̂ parameter as

we discuss below. In terms of M1, M2, M± and sin ✓ one can compute T̂ as [90]:

T̂ =
g2

16⇡2M2
W

⇥
2 sin2 ✓ cos2 ✓ ⇧(M1, M2, 0) � 2 cos2 ✓ ⇧(M±, M2, 0) � 2 sin2 ✓ ⇧(M±, M1, 0)

⇤
,

(3.31)

where ⇧(a, b, 0) is given by:

⇧(a, b, 0) = �1

2
(M2
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✓
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✓
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◆◆
� 1

4
(M2
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b )

4(M2
a � M2

b )
ln

M2
b

M2
a

+MaMb
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✓
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MaMb

◆
+ 1 +

(M2
a + M2

b )

2(M2
a � M2

b )
ln

M2
b

M2
a

�
(3.32)

1The value Ŝ, T̂ , W and Y are obtained using a Higgs mass mh = 115 GeV. However, we now know that the SM
Higgs mass is 125 GeV. Therefore, the value of Ŝ, T̂ , W and Y are expected to change. But this e↵ect is nullified by
the small values of sin ✓.
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Figure 3.7: In the left panel, Ŝ is shown as a function of M2 for M1 = 150 GeV and sin✓ = 0.05
(Green colour, bottom), sin✓ = 0.075 (Blue color, middle) and sin✓ = 0.1 (Red color, top). In the
right panel, allowed values of Ŝ in the plane of M2 � M± versus M2 for sin ✓ = 0.05.

Figure 3.8: In the left panel, T̂ is shown as a function of M2 for M1 = 150 GeV and sin✓ = 0.05
(Green colour, bottom), sin✓ = 0.075 (Blue color, middle) and sin✓ = 0.1 (Red color, top). In the
right panel, allowed values of T̂ in the plane of M2 � M± versus M2 for sin ✓ = 0.05.

From the left panel of Fig. (3.8) we see that for sin ✓ < 0.05 we don’t get strong constraints on

M2 and M1. Moreover, small values of sin ✓ restricts the value of M2 � M± to be less than a GeV.

As a result large M2 values are also allowed. Near M2 ⇡ M±, T̂ vanishes as expected. The value of

Y and W are usually suppressed by the masses new fermions. Since the allowed masses of N1, N2

and N± are above 100 GeV by the relic density constraint, so Y and W are naturally suppressed.
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3.6 Relic Abundance of DM

3.6.1 Relics of Inert fermion doublet DM

In the present model, there are potentially two possible DM candidates �0 and the neutral component

N0. In absence of the singlet fermion �0, the neutral component (N0) of the fermion doublet is

stable due to the imposed Z2 symmetry. However, this does not guarantee that the N0 alone is a

viable DM candidate. Under this circumstance it is crucial to check if N0 can give rise correct relic

abundance observed by WMAP and PLANCK.

The relic abundance of a DM is characterised by the number changing processes in which the

candidate is involved. In this case, on top of annihilations to SM particles, the DM (N0) can also

participate in co-annihilations with heavier particles N± which are odd under the same Z2 sym-

metry. The relevant annihilation and co-annihilation channels in order to keep the inert fermion

doublet DM in the thermal equilibrium in the early universe are listed below.

N0N0 ! hh, Zh, W+W�, ZZ, , f f̄

N0N± ! W±�, W±h, W±Z, f 0f̄

N±N⌥ ! W±W⌥, Zh, �Z, ��, ZZ, f f̄ ,

where f, f 0 are SM fermions. The relic abundance is calculated using micrOMEGAs [122]. The relic
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Figure 3.9: Relic abundance (green line) of N0, the neutral component of the doublet as DM, plotted
as a function of doublet mass (MN ) in GeV. Black horizontal line shows the observed relic abundance
by PLANCK data. The solid red vertical line is shown to mark MZ

2 = 45 GeV; for MN > MZ

2 the
DM does not contribute to the invisible Z decay width.

abundance as a function of its mass is shown in Fig. 3.9. In a conservative limit we take the mass

splitting between N0 and its charged partner N� to be 1 GeV. We see that the large annihilation

and co-annihilation cross-sections always yield much smaller relic density than required and hence

the model is ruled out with the mass range of the order of TeV. The dominant channels, contributing

to the relic density, are N0N0 ! hh, Zh, W+W�, ZZ and N±N⌥ ! W±W⌥. We can also clearly

spot the resonance at MN = MZ

2 , where the relic density drops due to enhancement in the cross-
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section due to s-channel Z mediation. Thus we infer that the neutral component of the doublet

alone can not be a viable DM candidate as its relic abundance is much below the observed limit.

Therefore, in the next section we will consider a mixed singlet-doublet state as the candidate of DM.

3.6.2 Relics of Singlet-Doublet mixed fermion DM

After the electroweak phase transition, the singlet (�0) and neutral component of the doublet (N0)

fermion mix with each other. In this scenario, the lightest particle N1 = cos ✓�0 + sin ✓N0, which

is stabilized by the imposed Z2 symmetry, serves as a viable candidate of DM. In order to estimate

the relic abundance of the N1 DM, we need to calculate the various cross-sections through which

N1 abundance depletes.

The main annihilation processes have been indicated in Fig. 3.10. The dominant channels are

N1N1 ! hh and N1N1 ! W+W�. The other relevant channels are mainly coannihilation of N1

with N2 and N±. We have shown N1N2 ! SM in Fig 3.11. The annihilation of N2N2 ! SM

is very similar to N1N1 ! SM and are not shown explicitly. If N1 is degenerate to N±, then we

find co annihilations of N1N
± ! SM (in Fig. 3.12), N2N

± ! SM (similar to N1N
± ! SM) and

N⌥N± ! SM (in Fig. 3.13) are also important for correct relic density of DM.

Relic abundance for N1 is given by [77]

⌦N1
h2 =

1.09 ⇥ 109Gev�1

g
1/2
? mpl

1

J(xf )
, (3.33)

where J(xf ) is given by

J(xf ) =

Z 1

xf

h�|v|ie↵
x2

dx, (3.34)

where h�|v|ie↵ is thermal average of annihilation and coannihilation cross-sections of the DM particle.

The expression for e↵ective cross-section can be written as :

h�|v|ie↵ =
g2
1

g2
e↵

�(N1N1) + 2
g1g2

g2
e↵

�(N1N2)(1 + !)3/2exp(�x!)

+ 2
g1g3

g2
e↵

�(N1N
�)(1 + !)3/2exp(�x!)

+ 2
g2g3

g2
e↵

�(N2N
�)(1 + !)3exp(�2x!) +

g2
2

g2
e↵

�(N2N2)(1 + !)3exp(�2x!)

+
g2
3

g2
e↵

�(N�N�)(1 + !)3exp(�2x!).

(3.35)

In this equation g1, g2, g3 represent spin degrees of freedom for particles N1, N2, N
� respectively

and their values are 2 for all. ! stands for the mass splitting ratio, given by ! = Mi�M1

M1
, where Mi

is the mass of N2 and N±. The e↵ective degrees of freedom denoted by ge↵ , and is given by

ge↵ = g1 + g2(1 + !)3/2exp(�x!) + g3(1 + !)3/2exp(�x!) (3.36)

Relic density of the DM is calculated using micrOMEGAs [122]. In Fig. 3.14, relic density of DM

is plotted as a function of its mass for three di↵erent values of the mixing angle: sin ✓ = 0.1, 0.2, 0.3,

shown in red (top), green (middle), purple (bottom) respectively. The mass di↵erence M2 � M1 =
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Figure 3.10: Dominant Annihilation processes to Higgs and gauge boson productions along with ff̄ ,
where f stands for all the SM fermions.

48



N1

N1

h

N̄2 h

N1

N2

h

N̄2 h

N1

N̄2

h
h

h

1

N1

N2

h

N̄2 Z

N1

N1

h

N̄2 Z

N1

N1

Z

N̄2 h

1

N1

N̄2

Z
h

Z

N1

N2

Z

N̄2 h

1

N1

N̄2

Z

W+

W�

N1

N�

W+

N̄2 W�

N1

N̄2

h

W+

W�

1

N1

N̄2

h
Z

Z

N1

N1

Z

N̄2 Z

N1

N2

Z

N̄2 Z

1

N1

N̄2

Z

f

f̄

N1

N̄2

h

f

f̄

1

Figure 3.11: Dominant Coannihilation processes with N2 to Higgs, gauge boson pair and ff̄ , where
f stands for all fermions.
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ductions along with ff̄ , where f stands for all the SM fermions.

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1  10  100  1000

Ω
 h

2

M1 (GeV)

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1  10  100  1000

Ω
 h

2

M1 (GeV)

Figure 3.14: Relic density of DM as a function of its mass M1 for di↵erent values of sin ✓ =
0.1, 0.2, 0.3, shown by red (top), green (middle) and purple (bottom) respectively. The value of
the mass splitting: M2 � M1 = 50, 500GeV is fixed respectively for left and right panel.

50, 500 GeV is fixed for left and right panel of Fig. 3.14. The black horizontal line corresponds to

the observed relic density: ⌦DMh2 = 0.1199 by PLANCK [9]. As seen from the figure there is a

sharp drop in relic density near two resonance points for s-chanel mediated process through Z and

h. Naturally, the right panel of fig. 3.14 with larger mass di↵erence and hence a larger Yukawa
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coupling Y shows more prominent h resonance. From these figures it is clear that as sin ✓ increases

relic density decreases. It is due to the fact that the Z mediated cross-section increases for increase

in sin ✓, and hence yield a low relic density. As the mass splitting between N1 and N2 is taken to

be very large in the above cases, the dominant contribution to relic density comes from annihilation

channels while co-annihilation channels are Boltzmann suppressed.
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Figure 3.15: Scatter plot for correct relic density in the plane of M1 and �M , shown by green, red,
blue and purple coloured points for sin ✓ = 0.1, 0.15, 0.2, 0.3 respectively.

Now we will show how the mass splitting between N1 and N2 a↵ects the relic density of the

DM. In fig. 3.15, we have shown a scatter plot for correct relic density in the plane of M1 and

�M = M2 � M1. Green, red, blue and purple coloured points satisfy the constraint of relic density

for sin ✓ = 0.1, 0.15, 0.2, 0.3 respectively (from outermost to innermost contour). Let us first consider

the vertical bars in the left hand side of the allowed parameter space. In this region of small DM

mass, annihilation cross-section achieves large enhancement due to s-channel Z and h mediation

at MN1
= MZ

2 and at MN1
= MH

2 respectively where the annihilation cross-section is independent

of �M . Annihilation cross-sections contribute significantly for large �M to provide correct relic

abundance. As the mass splitting decreases co-annihilation channels contribute significantly to add

to the annihilation channels. As seen from the figure 3.15, we can divide the relic density allowed

parameter space into two regions with same sin ✓ value: i) The region in which �M is increasing

with DM mass to satisfy correct relic density constraint. In this region, the contribution to relic

density comes from both annihilation and dominantly from co-annihilation channels as the mass

splitting is small. Here, due to small, �M , the Yukawa coupling Y (see Eq. 3.12) is small and

so is the Higgs mediated cross-sections. Hence, co-annihilation channels provide with the rest of

the requirement for correct relic density and allowed parameter space requires �M ⇠ M1. ii) The

second region corresponds to a large �M while insensitive to DM mass satisfying the correct relic

abundance. In this region, the dominant contribution to relic density comes from the annihilation

channels (large �M indicates large Yukawa Y and large Higgs mediation cross-sections), and the

co-annihilation channels are Boltzmann suppressed. Z mediated annihilation cross-sections are fixed

by the choice of a specific mixing angle (in the DM mass region within ⇠ TeV). Therefore, the larger

is the mixing the larger is the Z mediated annihilation. This correctly balances the Higgs mediated

annihilation cross-sections to yield correct relic density. That is why we notice that a smaller mass

splitting (�M) is required for larger sin ✓ for a fixed value of DM mass. Hence green lines with
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smaller mixing (sin ✓ = 0.1) requires larger �M and appears on top. With larger mixing, red, blue

and purple lines, the required �M are smaller and appears below. It is easy to extend the analysis

for even larger mixing angles, where the triangle becomes smaller and smaller in size and covers

the innermost regions to yield the correct relic density. For sin ✓ & 0.5 we can not get any relic

abundance.

Points below “correct annihilation lines” (for a specific value of sin ✓) provide more than required

annihilation and hence those are under abundant regions. Similarly just above those, the annihilation

will not be enough to produce correct density and hence are over abundant regions. Points below

(above) the “correct co-annihilation regions” produce more (less) co-annihilations than required and

hence depict under (over) abundant regions.
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Figure 3.16: Left : ⌦ h2 versus DM mass MDM in GeV for sin ✓ = 0.1 and �M = 10, 20, 30, 40, 100
GeV (Blue, Green, Orange, Purple, Red respectively from bottom to top). Right : ⌦ h2 versus
DM mass MDM in GeV for sin ✓ = 0.0001 and �M = 10, 20, 30, 40, 100 GeV (Blue, Green, Orange,
Purple, Red respectively from bottom to top). Horizontal line shows the correct relic density.

The �M dependency on the relic density for a specific choice of mixing angle is shown in Fig.

3.16, particularly for small mixing regions where co-annihilations play a crucial role in yielding

correct relic density. In the left panel we use sin ✓ = 0.1 and that in the right panel sin ✓ = 0.0001.

We plot di↵erent slices with constant �M = 10, 20, 30, 40, 100 GeV as shown in Blue, Green, Orange,

Purple, Red respectively from bottom to top. We note here that with larger �M , the annihilation

cross-section increases due to enhancement in Yukawa coupling Y / �M . However, co-annihilation

decreases due to increase in �M as � / e��M . Note that in the small sin ✓ limit the dominant

contribution to relic density comes from the channels involving only N2 and N± in the initial state

going to SM gauge bosons, as mentioned in the beginning of this section. The processes involving

N1N1 ! SM are heavily suppressed with small sin ✓. As a result, we first get relics of N2 and N�

which subsequently decay to N1 before N1 freezes out. In particular, if the mass splitting between

N� and N1 is more than 80 GeV, then N� decays through two body process: N� ! N1 + W�.

Notice that the mixing angles sin ✓ = 0.1, 0.0001 used simultaneously in the left and right-panel of

Fig. (3.16) are much larger than the lower bound obtained on the singlet-doublet fermion mixing

angle as given in eq. 3.17 by considering the 3-body decay of N�, namely sin ✓ > O(10�5).
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For large �M the co-annihilation cross-sections decrease, which are the dominant processes in

the small sin ✓ limit. As a result relic abundance increases for a particular value of M1 with larger

�M . Hence we require a larger mass di↵erence �M for larger DM mass to account for correct

co-annihilation so that the relic density will be in the observed limit.

3.7 Collider Signature

If the new leptons are ' 500 GeV, they can be produced at the Large Hadron Collider (LHC). They

will eventually decay to the lightest stable particle N1. The DM N1 is stable, charge neutral and

will escape from the detector, while its charged partner N± may give promising signature if it is

produced. For example, N± can be pair produced via the Drell-Yan process mediated by � and

Z-boson. Note that the production of N± is independent of singlet-doublet mixing. So the small

values of sin ✓, required for evading Xenon-100 and LUX bound at direct detection of DM, does not

a↵ect the pair production of N±. On the other hand, production of N1N
± pair via the exchange

of SM W± will be suppressed by low values of sin ✓. Therefore, in what follows we will discuss

signature of vector-like charged fermions N±, pair produced mainly through � and Z mediated

Drell-Yan process.
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Figure 3.17: Left panel: Feynman graph producing N+N� pair at LHC and its subsequent decays.
Right panel: Variation in production cross section �pp!N+N� (pb) at LHC with respect to M± for
Ecm = 8 TeV (Green, below) and Ecm = 14 TeV (Blue, above).

Once the N± is produced it decays via N± ! N1W
±. If the mass splitting between N± and N1,

which is equivalent to �M = M2 � M1 ⌘ M± � M1, is larger than W mass, then the two body is

favorable, otherwise the decay will proceed through o↵-shell W . So the relevant signatures in case of

pair production of N+N� at LHC will be as follows: pp ! N+N� ! N1N1W
+W�; subsequently

the possible final states are:

1. One lepton + Di-jet + Missing energy (`2jET/)

2. Two oppositely charged leptons + Missing energy (2`ET/)

3. 4 jets + Missing energy (4jET/)

depending on whether the W’s decay hadronically or leptonically. See for example, the Feynman

graph in the left of Fig. (3.17). We also show the variation in production cross-section �pp!N+N�
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(pb) for N+N� at LHC with respect to M±(GeV ) for Ecm = 8 TeV (Green, below) and Ecm = 14

TeV (Blue, above). Accordingly, we tabulate in Table (3.2) the production cross-sections as well

as the cross-sections in hadronically quiet dilepton final state as well as in single lepton state for

the benchmark points chosen above. For reference, contributions to the leptonic final states from

dominant SM background; namely W+W�, ZZ, tt̄ has also been tabulated in Table (3.3) and Table

(3.4) for Ecm = 8 TeV and Ecm = 14 TeV respectively. It is seen that the only way to tame down

the background is to put a very high missing energy cut, ET/ > 100 GeV. The amount of signal that

will be left after MET cut, depends on the amount of transverse momentum that is transferred to

N1 from the decay of N±, which is proportional to the mass di↵erence. However, as W± is less

massive than the DM, the significant part of the momentum will be carried by the DM. hence, it

is expected that the peak of MET will be much higher than 100 GeV and a cut hence will retain

a significant part of the signal. CalcHep [123] and Pythia [124] event generators have been used to

produce the cross-sections. Just for clarifications, we also note here that missing energy is identified

in terms of the visible momenta as follows: vector sum of the x and y components of the momenta

separately for all visible objects form visible transverse momentum (pT )vis and that is precisely the

missing energy from momentum conservation.

(pT )vis =
q

(
X

px)2 + (
X

py)2 = ET/ (3.37)

where,
P

px =
P

(px)` +
P

(px)jet and similarly for
P

py.

What we see from the table, is that BP1 has a very small MN and hence results with a huge

cross-section. Hence, this point lies close to what has been discarded from non-observation of any

excess in semi-leptonic or leptonic channels so far from 7 TeV data at LHC. However, for BP3 and

BP4, there is a strong possibility that one might see an excess in the next run of LHC after careful

background reduction. While for BP2, it seems very hard to see any excess in above channels unless

we go to high luminosity LHC. The analysis presented here is more indicative than exhaustive.

For generic collider implications of vector like DM, see [125, 126, 127], which also imply additional

constraints on the DM parameter space.

Benchmark Points [�pp!N+N� ]
8

[�`2jET/]8 [�2`ET/]8 [�pp!N+N� ]
14

[�`2jET/]14 [�2`ET/]14
BP1 284 80 12.5 700 197 31
BP2 0.58 0.16 0.025 3.3 0.93 0.15
BP3 10.13 2.85 0.45 35.1 9.88 1.55
BP4 27.02 7.6 1.19 82.5 23.2 3.64

Table 3.2: Production Cross-sections �pp!N+N� for the benchmark points at LHC for Ecm = 8 and
14 TeV. The leptonic final states �`2jET/ and �2`ET/ are also mentioned. All cross-sections are in fb.

There is another very interesting signature of the model. For example, if the mass splitting

between N± and N1 is less than 90 GeV, then N� will decay via three body suppressed process:

N� ! N1`⌫` and N� ! N1 + di � jets, due to small values of sin ✓. The latter one may not be a

suitable process to search at LHC, while the former one is useful to look for via a displaced vertex

signature as discussed below. The decay rate is given in equation 3.13. In the left-panel of Fig.

(3.18), we have shown ��1(cm) as a function of �M by taking MN = 150 GeV and m` = 150

MeV. We see that for small �M , say �M < 10 GeV, we get a displaced vertex more than 1 cm. In
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SM Background [�`2jET/]8 [�`2jET/]8, ET/ > 100 [�2`ET/]8 [�2`ET/]8, ET/ > 100
WW 2.30 1.04 0.74  0.35
ZZ 0.38 0.005 10.4  0.5
tt̄ 5.43 0.16 0.09 ' 0

Table 3.3: SM background at LHC for Ecm = 8 TeV for `2jET/ and 2`ET/ channels before and after
missing energy cut ET/ > 100 GeV. All cross-sections are in fb.

SM Background [�`2jET/]14 [�`2jET/]14, ET/ > 100 [�2`ET/]14 [�2`ET/]14, ET/ > 100
WW 4.37 0.027 1.26  0.7
ZZ 0.83 0.01 16.9  1
tt̄ 21.4 0.88 0.41  0.1

Table 3.4: SM background at LHC for Ecm = 14 TeV for `2jET/ and 2`ET/ channels before and after
missing energy cut ET/ > 100 GeV. All cross-sections are in fb.

Figure 3.18: Left panel: Displaced vertex of N� for M± = 150 GeV, m` = 105 MeV and sin ✓ =
3 ⇥ 10�4. Right panel: ��1 values varying between (1 - 10) cm in the plane of �M versus M± for
sin ✓ = 3⇥10�4 (in Green), 2⇥10�4 (in Red) and 10�4 (in Black) simultaneously from left to right.

the right panel of Fig.(3.18), we show ��1 values varying between (1 - 10) cm in the plane of �M

versus MN for sin ✓ = 3 ⇥ 10�4 (in Green), 2 ⇥ 10�4 (in Red) and 10�4 (in Black) simultaneously

from left to right. The important point to be noted here is that to get a large displaced vertex

we need a small mixing angle between the singlet and doublet. In the left panel of Fig. 3.19, a

scatter plot is shown taking relic abundance as a function of DM mass keeping the mass splitting

less than 50 GeV. Here, we fix the singlet-doublet mixing angle to be sin ✓ = 3⇥ 10�4, a moderately

smaller value. We have also shown the correct relic abundance as allowed by the PLANCK data

with a horizontal solid black line. We choose those set of points from the relic abundance data

which are allowed by the PLANCK result and use them to calculate the displaced vertex signature

of N± (��1) and plotted as a function of M± in the right-panel of Fig. (3.19). We observe that the

displaced vertex becomes very small for larger values of M±, as the inverse of decay width ��1 is

inversely proportional to the mass of decaying charged particle. However, for smaller masses with
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Figure 3.19: Left panel: Scatter plot showing relic abundance as a function of DM mass with mass
splitting less than 50 GeV. Black solid line shows the correct relic abundance as allowed by PLANCK
data. Right panel: Displaced vertex (��1) in cm as a function of M± (GeV) for relic density allowed
points. Value of mixing angle sin ✓ = 3 ⇥ 10�4 is used in both the plots for illustration.

M± ⇠ 200 GeV, the displaced vertex can be as large as 2.5 mm to be detected in Large Hadron

Collider (LHC). The important point to be noted here is that to get a large displaced vertex we need

a small mixing angle between the singlet and doublet. In fact, the small mixing angle is favoured

by all the constraints we discussed in previous sections, such as correct relic abundance and null

detection of DM at direct search experiments. However, from Eq. (3.17) we also learnt that the

singlet-doublet mixing can not be arbitrarily small and therefore, the displaced vertex can not be

too large.

3.8 Addition of Scalar triplet to the Inert Fermion DM Model

In order to explain the neutrino mass and DM in a single framework, a scalar triplet �(1, 3, 2) is

added to the inert fermion DM model. The numbers inside the parenthesis are quantum numbers

under the SM gauge group SU(3)c⇥SU(2)L⇥U(1)Y . After electroweak symmetry breaking when �

gets an induced vev, neutrinos get mass through the coupling with triplet scalar �. In the presence

of the scalar triplet, new chanels open up for DM annihilation hence can alter the relic density

of DM. As the DM also couples to �, a gauge invariant Majorana mass term is also possible for

the DM. Hence it splits up into two Majorana states with a small mass splitting. As a result the

direct detection cross-section through Z mediation is suppressed. We will address these issues in the

subsequent sections.

The new terms possible in addition to the Lagrangian 3.1 is:

Lnew = (Dµ�)†(Dµ�) + Lyuk � V (�, H) , (3.38)

where Dµ is the covariant derivative involving SU(2) (Wµ) and U(1)Y (Bµ) gauge bosons and is

given by :

Dµ = @µ � i
g

2
⌧.Wµ � ig0 Y

2
Bµ .
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The scalar potential involving SM doublet (H) and triplet (�) in Eq. (3.38) is given by

V (�, H) = �µ2
HH†H + �H(H†H)2 + µ2

�(�†�) + ��(�†�)2

+ �H�(H†H)(�†�) +
1

2

⇥
µ�†HH + h.c.

⇤
, (3.39)

where � in matrix form is

� =

 
�+
p

2
�++

�0 ��+
p

2

!
. (3.40)

We assume that µ2
� is positive. So it doesn’t acquire a vacuum expectation value (vev). But it gets

an induced vev after EW phase transition. The vev of � is given by

h�i ⌘ u� ⇡ � µv2

p
2(µ2

� + �H�v2/2)
(3.41)

where v is the vev of Higgs field and its value is 174 GeV.

The Yukawa interaction in Eq. (3.38) is given by:

Lyuk =
1p
2

⇥
(fL)↵�Lc

↵i⌧2�L� + fNN ci⌧2�N + h.c
⇤

, (3.42)

where L is the SM lepton doublet and ↵,� denote family indices. The Yukawa interactions impor-

tantly inherit the source of neutrino masses.

3.8.1 Mixing in the scalar sector

There are two scalar particles in the model, one is a doublet and another is a triplet under SM gauge

group. The quantum fluctuations around the vacuum is given as:

H0 =
1p
2
(v + h0 + i⇠0), �0 =

1p
2
(u� + �0 + i⌘0) (3.43)

The mass matrix is given as :

M2
sc =

0

B@
M2

H µv/2

µv/2 M2
�

1

CA (3.44)

where M2
� = µ2

� + �H�v2/2 and M2
H = 2�Hv2. The two neutral Higgs fields (CP - even) mass

eigenstates are given by

H1 = cos ✓0h
0 + sin ✓0�

0, H2 = � sin ✓0h
0 + cos ✓0�

0 (3.45)

where H1 is the SM like Higgs and H2 is the triplet like Higgs. The mixing angle is given by

tan 2✓0 =
µv

(M2
� � M2

H)
. (3.46)
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The corresponding mass eigenvalues are MH1
(SM Higgs like) and MH2

(triplet like) and are given

as :

M2
H1

⇡ M2
H � (µv/2)2

M2
� � M2

H

M2
H2

⇡ M2
� +

(µv/2)2

M2
� � M2

H

. (3.47)

Since the addition of a scalar triplet can modify the ⇢ parameter, which is not di↵ering from SM

value: ⇢ = 1.00037 ± 0.00023 [128], so we have a constraint on the vev u� as:

u�  3.64GeV . (3.48)

For di↵erent values of M� we have shown µ as a function of sin ✓0 in Fig. (3.20). Here we see that

smaller is the triplet scalar mass, the smaller is the dependence on mixing angle sin ✓0.
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Figure 3.20: Contours of di↵erent values of M� (in GeV) in the plane of µ versus sin ✓0.

From Eqs.(3.46), (3.41) and (3.48) we see that there exist an upper bound on the mixing angle

sin ✓0 < 0.02

✓
174GeV

v

◆0

@ 1

1 � 0.39 (MH/125GeV)2

(M�/200GeV)2

1

A . (3.49)

We may also get a constraint on sin ✓0 from the decay of SM Higgs to di↵erent channels. For

example, let us take the decay of H1 to ⌧ leptons. The decay width is given by:

� =
MH1

8⇡

m2
⌧

v2

✓
1 � 4m2

⌧

M2
H1

◆3/2

(1 � sin2 ✓0) (3.50)

Comparing with the experimental branching fraction Br(H1 ! ⌧⌧) = 6.272 ⇥ 10�2, we found that

sin ✓0 = 0.176. So any value of the mixing angle less than this will be allowed by the corresponding

decay experiment. Similarly one can easily derive the limit on the doublet-triplet mixing from

branching fraction of SM Higgs decaying to W+W�⇤, ZZ⇤, which are much precisely measured at
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LHC. For example, if we choose Higgs decay to W+W�⇤ state, the observed branching fraction is

Br(H1 ! W+W�⇤) : 2.317 ⇥ 10�1. In order to obtain a limit on the doublet-triplet mixing angle

sin ✓0, we need to calculate the decay width of this process process as given in [129] :

�H1!WW ⇤!Wff̄ 0 =
3g4MH1

512⇡3
(g sin ✓0u�/(4Mw) � cos ✓0)

2 F (x) , (3.51)

where

F (x) = �|1�x2|
✓

47

2
x2 � 13

2
+

1

x2

◆
+3(1�6x2+4x4)|Ln(x)|+3(1 � 8x2 + 20x4)

|p4x2 � 1| arccos


3x2 � 1

2x3

�
,

with x = MW /MH1
. In the small mixing limit sin ✓0 ! 0, the decay reproduces same branching ratio

as that of the SM prediction. However, as we increase the value of the mixing angle, the branching

ratio to this particular final state reduces due to larger triplet contributions. For example, with

sin ✓0 = 0.05, 0.07, 0.1, Br(H1 ! WW ⇤) is changed by 0.27%, 0.51%, 1.04% respectively from the

central value. Hence, in a conservative limit, if we take sin ✓0 ⇠ 0.05 or smaller, it is consistent with

the experimental observation of Higgs decay to WW ⇤ final state.

Thus we see that the bound obtained on the mixing angle from Higgs decay is less constraining

than that from the ⇢ parameter. Therefore, we will use the constraint on the mixing angle, obtained

from ⇢ parameter, while calculating the DM-nucleon elastic scattering in section (3.11.2). Since the

doublet-triplet scalar mixing is found to be small we assume that the flavour eigenstates are the

mass eigenstates and treat MH1 = MH , MH2 = M� through out the calculation.

We assume that there is no mixing between the neutral CP-odd states as well as in the charged

states. So that the ⇠0 is absorbed in the unitary gauge by the gauge bosons after the symmetry

breaking and the charged triplet scalar fields will remain as the mass eigen fields.

3.9 Small neutrino mass

The coupling of scalar triplet � to SM lepton and Higgs doublets combinely break the lepton number

by two units as given in Eq. (3.42). As a result the �L↵L� coupling yields Majorana masses to

three flavors of active neutrinos as [130, 131, 132, 133, 134, 135, 136]:

(M⌫)↵� =
p

2(fL)↵�h�i ⇡ (fL)↵�
�µv2

p
2M2

�

. (3.52)

Taking µ ' M� ' O(1014) GeV, we can explain neutrino masses of order 0.1eV with a coupling

strength fL ' 1. However, the scale of M� can be brought down to TeV scales by taking the smaller

couplings.

To get the neutrino mass eigen values, the above mass matrix can be diagonalised by the usual

UPMNS matrix as :

M⌫ = UPMNS Mdiag
⌫ UT

PMNS , (3.53)

60



where UPMNS is given by

UPMNS =

0

B@
c12c13 s12c13 s13e

�i�13

�s12c23 � c12s23s13e
i�13 c12c23 � s12s23s13e

i�13 s23c13

s12s23 � c12c23s13e
i�13 �c12s23 � s12c23s13e

i�13 c23c13

1

CA .Uph , (3.54)

with cij , sij stand for cos ✓ij and sin ✓ij respectively and Uph is given by

Uph = Diag
�
e�i�1 , e�i�2 , 1

�
. (3.55)

Where �1, �2 are two Majorana phases. The diagonal matrix Mdiag
⌫ = Diag (m1, m2, m3) with

diagonal entries are the mass eigen values for the neutrinos. The current neutrino oscillation data

at 3� confidence level give the constraint on mixing angles [128] :

0.259 < sin2 ✓12 < 0.359, 0.374 < sin2 ✓23 < 0.628, 0.0176 < sin2 ✓13 < 0.0295 (3.56)

However little information is available about the CP violating Dirac phase � as well as the Majorana

phases. Although the absolute mass of neutrinos is not measured yet, the mass square di↵erences

have already been measured to a good degree of accuracy :

�m2
0 ⌘ m2

2 � m2
1 = (6.99 � 8.18) ⇥ 10�5eV2

|�m2
atm| ⌘ |m2

3 � m2
1| = (2.23 � 2.61) ⇥ 10�3eV2 (3.57)

One of the main issues of neutrino physics lies in the sign of the atmospheric mass square di↵erence

|�m2
atm| ⌘ |m2

3 � m2
1|, which is still unknown. This yields two possibilities: normal hierarchy (NH)

(m1 < m2 < m3) or inverted hierarchy (IH) (m3 < m1 < m2). Another possibility, yet allowed, is

to have a degenerate (DG) neutrino mass spectrum (m1 ⇠ m2 ⇠ m3). Assuming that the neutrinos

are Majorana, the mass matrix can be written as :

M⌫ =

0

B@
a b c

b d e

c e f

1

CA (3.58)

Using equations 3.53, 3.54, 3.56 and 3.57, we can estimate the unknown parameters in neutrino mass

matrix of Eq. (3.58). To estimate the parameters in NH, we use the best fit values of the oscillation

parameters. For a typical value of m1 = 0.0001 eV, we get the mass parameters (in eV) as :

a = 0.003833, b = 0.00759, c = 0.002691

d = 0.023865, e = 0.02083, f = 0.03038 (3.59)

Similarly for IH case, choosing m3 = 0.001 eV, we get the mass parameters (in eV) as :

a = 0.0484, b = �0.00459, c = �0.00573

d = 0.02893, e = �0.02366, f = 0.02303 (3.60)
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In both the cases, we put the Dirac and Majorana phases to be zero for simplicity.

The mass of the scalar triplet can also be brought down to TeV scale by choosing appropriate

Yukawa coupling. If the mass is order of a few hundreds of GeV, then it can give interesting dilepton

signals in the collider. See for example, [137, 138, 139, 140, 141, 142] for a detailed discussion

regarding the dilepton signatures at collider.

We would like to note that the presence of scalar triplet addresses the issue of generating neutrino

masses as we discussed here, and has minor dependence on DM relic density. However, the scalar

triplet plays a major role in the direct detection by forbidding Z-mediated DM-nucleon interaction

and thereby increasing the limit on singlet-doublet mixing as we will discuss shortly.

3.10 Pseudo-Dirac nature of DM

3.10.1 Pseudo-Dirac nature of Inert fermion doublet DM

Let us assume the case where the singlet fermion �0 is absent in the spectrum. In this case, the

imposed Z2 symmetry stabilizes the neutral component of the fermion doublet N ⌘ (N0, N�)T .

From Eq. (3.42) we see that after EW phase transition the induced vev of the triplet yields a

Majorana mass to N0 and is given by:

m =
p

2fN h�i ⇡ fN
�µv2

p
2M2

�

. (3.61)

Thus the N0 has a large Dirac mass MN as given in Eq. (3.38) and a small Majorana mass m as

shown in the above Eq. (3.61). Therefore, we get a mass matrix in the basis {N0
L, (N0

R)c} as:

M =

 
m MN

MN m

!
(3.62)

The presence of small Majorana mass of the doublet DM splits the Dirac state N0 into two pseudo-

Dirac states:  0
1,2, whose mass eigenvalues are given by MN ± m for mixing angle ⇡/4, which is the

maximal mixing. Hence the mass splitting between the two states {N0
L, (N0

R)c} is:

�M = 2m = 2
p

2fNu� . (3.63)

Notice that the above mass splitting �M << MN and hence does not play any role in the relic

abundance calculation, where both the components act as degenerate DM components. However,

the small mass splitting between the two pseudo-Dirac states prohibits N0 to interact to the detector

through Z mediation in the non-relativistic inelastic scattering limit and is crucial to escape from

the strong direct detection constraints mediated via Z-boson. For example, to explain the DAMA

signal through the inelastic scattering of DM with the nuclei the required mass splitting should be

O(100keV) [85, 84, 143].

A crucial observation from Eq. (3.52) and (3.61) is that the ratio:

R =
(M⌫)

m
=

fL

fN
(3.64)
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is extremely small. In particular, if M⌫ ⇠ O(eV) and m ⇠ O(100KeV) then R ⇠ 10�5. In other

words the triplet scalar coupling to SM sector is highly suppressed in comparison to the DM sector.

3.10.2 Pseudo-Dirac nature of singlet-doublet fermion DM

Next we adhere to the actual scenario where DM is the lightest one among the mixed states of

singlet and doublet fermions �0 and N0. As discussed in section 3.2, the DM is assumed to be

N1 = cos ✓�0 + sin ✓N0 with a Dirac mass M1. However, from Eq. (3.42) we see that the vev of �

induces a Majorana mass to N1 due to singlet-doublet mixing and is given by:

m1 =
p

2fN sin2 ✓h�i ⇡ fN sin2 ✓
�µv2

p
2M2

�

. (3.65)

Thus the Majorana mass m1 splits the Dirac spinor N1 into two pseudo-Dirac states  a,b
1 with masses

M1 ± m1. The mass splitting between the two pseudo-Dirac states ( a,b
1 ) is given by

�M1 = 2m1 = 2
p

2fN sin2 ✓u� (3.66)

Note that again �M1 << M1 from the estimate of induced vev of the triplet and hence does not

play any role in the relic abundance calculation. However, the sub-GeV order mass splitting plays

a crucial role in direct detection by forbidding the Z-boson mediated DM-nucleon elastic scattering.

We will come back to this issue while discussing the inelastic scattering of DM with nucleon in

sec. 3.11.1. Now from Eq. (3.52) and (3.65) we see that the ratio:

R =
(M⌫)

m1
=

fL

fN sin2 ✓
. (3.67)

Thus in comparison to Eq. (3.64), we see that the ratio between the two couplings R = fL/fN

is improved by two orders of magnitude (i.e. R ⇠ 10�3) if we assume sin ✓ = 0.1, which is the

rough order of magnitude of singlet-doublet mixing being used in relic abundance calculation as we

demonstrate in the next section.

3.10.3 Relics of Singlet-Doublet mixed fermion DM in presence of scalar

triplet

In the presence of light scalar triplet �, there will be additional s-channel processes through �0

mediation as well as processes involving � particles in the final states in addition to the channels

mentioned in sec 3.6. The relevant processes are :

N1N1
�0

��! ff̄ , hh, W+W�, ZZ

N1N1 ! �++���, �+���0�0, W±�±, �0H, �0Z

N1N2
�0

��! ff̄ , hh, W+W�, ZZ

N1N2 ! �++���, �0�0, �+��, W±�±, �0h, �0Z

N1N
+ ! ���++, W��++, �0�+, h�+, Z�+, ��+, W+�0

N2N2
�0

��! ff̄ , hh, W+W�, ZZ

N2N2 ! �++���, �+���0�0, W±�±, �0H, �0Z
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N2N
+ ! ���++, W��++, �0�+, h�+, Z�+, ��+, W+�0

N±N± ! �++���, �+��, W+��, Z�0,

where f 0s are SM fermions and � is the photon field.
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Figure 3.21: Relic density of DM as a function of its mass M1 for di↵erent values of sin ✓ =
0.1, 0.2, 0.3, shown by red (top), green (middle) and purple (bottom) respectively. The value of
the triplet mass: M� = 200, 1000GeV is fixed respectively for left and right panel. All these plots
are generated keeping a fixed value of the mass splitting M2 � M1 = 500 GeV. Ratio of Majorana
couplings are fixed at : fL

fN
= 10�3 for illustration.

Relic density of the DM is calculated using micrOMEGAs [122]. In Fig. 3.21, relic density of DM

is plotted as a function of its mass keeping the mass di↵erence fixed at M2�M1 = 500 GeV, for three

di↵erent values of the mixing angle: sin ✓ = 0.1, 0.2, 0.3, shown in red (top), green (middle), purple

(bottom) respectively. In the left panel of the fig. 3.21 we use M� = 200 GeV, whereas in the right

panel of fig. 3.21 we use M� = 1000 GeV. The black horizontal line corresponds to the observed

relic density: ⌦DMh2 = 0.1199 ± 0.0027 by PLANCK [9]. For both the plots in fig 3.21 we fix the

ratio of Majorana couplings to be: fL

fN
= 10�3. The analysis is same here as presented in sec 3.6.2.

For a comparison see fig 3.14. From the plots in the fig. 3.21, it can be seen that the contribution

of � field to the relic density is coming only near the resonance points. The triplet scalar does not

contribute significantly apart from the resonant annihilation through s-chanel process mediated via

�0. This is because the total cross-section is dominated by N1N̄1 ! W+W� and the �-mediated

s-channel contribution is suppressed due to the large triplet scalar mass present in the propagator.

Therefore, we can not expect any change in relic density allowed parameter space if we vary the ratio

of Majorana couplings: fL

fN
. The cross-sections involving scalar triplet in the final states also do not

a↵ect the relic abundance since those are suppressed by phase space due to heavy triplet masses

and as in this region of parameter space (M1 > M�) the cross-sections involving gauge bosons in

the final state dominate. In summary, we don’t see almost any di↵erence in relic density of DM

in left and right panel of Fig. 3.21 due to change in triplet masses. We can however see that the

resonance drop due to s-channel triplet mediation is reduced for large triplet mass M� = 1000 GeV

(shown in right panel) in comparison to M� = 200 GeV (shown in left panel) for obvious reasons.

As the mass splitting between N1 and N2 is taken to be very large in the above cases, the dominant

contribution to relic density comes from annihilation channels while co-annihilation channels are
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Boltzmann suppressed.
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Figure 3.22: Scatter plot for correct relic density in the plane of M1 and �M , shown by green,
red, blue and purple coloured points for sin ✓ = 0.1, 0.15, 0.2, 0.3 respectively. Two di↵erent triplet
masses are chosen M� = 200, and 1000 GeV respectively for the left and right panel plots. We
fixed the value of Majorana coupling ratio: fL/fN = 10�3 in both the figures for illustration.

Now we will show how the mass splitting between N1 and N2 a↵ects the relic density of the

DM. In fig. 3.22, we have shown a scatter plot for correct relic density in the plane of M1 and

�M = M2 � M1. Green, red, blue and purple coloured points satisfy the constraint of relic density

for sin ✓ = 0.1, 0.15, 0.2, 0.3 respectively (from outermost to innermost contour). The mass of scalar

triplet M� = 200, 1000 GeV is used in left and right panel respectively. There is not much di↵erence

in the parameter space if we vary the scalar triplet mass except few points in the resonance region.

Also the fig 3.22 is not much di↵ering than fig 3.15 apart from �0 resonance points and hence the

analysis. It can be clearly seen in left and right panel of the fig. 3.22 with scalar triplet mass 200 GeV

and 1000 GeV respectively. The Yukawa coupling ratio fL/fN = 10�3 is fixed for both the plots.

Again, if we change this ratio to a di↵erent value, no significant change in the allowed parameter

space is expected.

3.11 Direct Detection in presence of the scalar triplet

In the presence of the scalar triplet, a Majorana mass term is possible for the DM. As a result, the

Majorana mass splits the Dirac state into two Majorana states. Due to which the DM interactions

with the nucleus becomes inelastic through Z boson mediation. However elastic scattering is still be

possible through scalar mediation. We will discuss the details in the following.

3.11.1 Direct Detection of DM through inelastic scattering with the

nuclei

As we have seen in section (3.6.1), the inert fermion doublet N0 alone does not produce correct relic

abundance. Therefore, we refrain ourselves to consider the inelastic scattering of N0 only with the
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nuclei mediated via Z boson. Rather we will consider the inelastic scattering of DM N1, which is

an admixture of doublet N0 and singlet �0.

From Eq. (3.38), the relevant interaction for scattering of N1 with nucleon mediated via the

Z-boson is given by

LZ�DM � N1 (�µ@µ + igz�
µZµ) N1 , (3.68)

where gz = g
2 cos ✓w

sin2 ✓. However the presence of scalar triplet, as discussed in section (3.10.2),

splits the Dirac state N1 into two pseudo-Dirac states  a,b
1 with a small mass splitting m1. Therefore,

the above interaction in terms of the new eigenstates  a,b
1 can be rewritten as:

LZ�DM �  a
1 i�µ@µ 

a
1 +  b

1i�
µ@µ 

b
1 + igz a

1�
µ b

1Zµ . (3.69)

One can notice from the above equation that the dominant gauge interaction is o↵-diagonal,

while the diagonal interaction vanishes. As a result there will be inelastic scattering of DM with the

nucleus is possible. Note that the mass splitting between the two mass eigen states  a,b
1 is given by:

�M1 = 2
p

2fN sin2 ✓ u� . In this case, the minimum velocity of the DM needed to register a recoil

inside the detector is given by [144, 145, 85, 84, 143] :

vmin = c

r
1

2mnER

✓
mnER

µr
+ �M1

◆
, (3.70)

where ER is the recoil energy of the nucleon and µr is the reduced mass. If the mass splitting

is above a few hundred keV, then it will be di�cult to excite  b
1 with the largest possible kinetic

energy of the DM  a
1 . So the inelastic scattering mediated by Z-boson will be forbidden. As a

result constraints coming from direct detection can be relaxed significantly. This in an important

consequence in presence of the scalar triplet � in this model, which makes a sharp distinction with

the existing analysis in this direction.

3.11.2 Direct Detection of DM through elastic scattering with the nuclei

Figure 3.23: Feynman diagrams for direct detection of N1 DM via Higgs mediation.

The Z mediated DM-nuclei scattering becomes inelastic, but the elastic interaction is still be

possible through the scalar mediation. The relevant diagram through which N1 talks to the nucleus
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is shown in Fig. 3.23. The constraint on the model parameters as coming from the experiments like

Xenon-100 [12] and LUX [6] which at present give strongest constraint on spin-independent DM-

nucleon cross-section from the null detection of DM yet. In our model, this in turn puts a stringent

constraint on the singlet-doublet mixing angle sin ✓ for spin independent DM-nucleon interaction

mediated via the H1 and H2-bosons (see in the Fig. (3.23)). The cross-section per nucleon is given

by [111, 112]

�SI =
1

⇡A2
µ2

r|M|2 (3.71)

where A is the mass number of the target nucleus, µr = M1mn/(M1 + mn) ⇡ mn is the reduced

mass, mn is the mass of nucleon (proton or neutron) and M is the amplitude for DM-nucleon cross-

section. There are two t-channel processes through which DM can interact with the nucleus which

is shown in the fig 3.23. The amplitude is given by:

M =
X

i=1,2

⇥
Zf i

p + (A � Z)f i
n

⇤
(3.72)

where the e↵ective interaction strengths of DM with proton and neutron are given by:

f i
p,n =

X

q=u,d,s

f
(p.n)
Tq ↵i

q

m(p,n)

mq
+

2

27
f

(p,n)
TG

X

q=c,t,b

↵i
q

mp.n

mq
(3.73)

with

↵1
q =

Y sin 2✓ cos2 ✓0
M2

H

⇣mq

v

⌘
(3.74)

↵2
q = �Y sin 2✓ sin2 ✓0

M2
�

⇣mq

v

⌘
. (3.75)

In Eq. (3.26), the di↵erent coupling strengths between DM and light quarks are given by [117]

f
(p)
Tu = 0.020 ± 0.004, f

(p)
Td = 0.026 ± 0.005,f (p)

Ts = 0.118 ± 0.062, f
(n)
Tu = 0.014 ± 0.004,f (n)

Td = 0.036 ±
0.008,f (n)

Ts = 0.118 ± 0.062. The coupling of DM with the gluons in target nuclei is parameterized

by

f
(p,n)
TG = 1 �

X

q=u,,d,s

f
(p,n)
Tq . (3.76)

We have plotted the spin independent direct detection cross-section as a function of DM mass

in the Fig.3.24 by taking the value of M� = 200 GeV for two di↵erent values of M2 � M1 =

100, 500 GeV in the left and right panel respectively. The plot is generated using di↵erent values of

the singlet-doublet mixing angle: sin ✓ ={0.05-0.1} (Purple), sin ✓ ={0.1-0.15} (Pitch), sin ✓ ={0.15-

0.2} (Green), sin ✓ ={0.2-0.25} (Gray), sin ✓ ={0.25-0.3}(Orange), sin ✓ ={0.3-0.35}(Red). The top

Black dotted line shows the experimental limit on the SI nuclei-DM cross-section with DM mass

predicted from LUX 2016 and the one below shows the sensitivity of XENON1T. The constraint

from XENON 100 is loose and weaker than the LUX data and hence not shown in the figure. One

of the main outcome of the figure in the left panel is that with larger sin ✓, due to larger Yukawa

coupling direct search cross-section through Higgs mediation is larger. Hence, LUX data constrains

the singlet-doublet mixing to sin ✓ ⇠ 0.3 for DM mass ⇠ 600 GeV with �M = 100 GeV (on the

left hand side of Fig. 3.24). The constraint on the mixing is even more weaker for larger DM mass
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Figure 3.24: Spin Independent direct detection cross-section for DM as a function of DM mass for
sin ✓ ={0.05-0.1} (Purple), sin ✓ ={0.1-0.15} (Pitch), sin ✓ ={0.15-0.2} (Green), sin ✓ ={0.2-0.25}
(Gray), sin ✓ ={0.25-0.3} (Orange), sin ✓ ={0.3-0.35} (Red). Black dotted curves show the data
from LUX and XENON 1T prediction. Value of �M = 100, 500 GeV are fixed for left and right
panel figures respectively. The scalar triplet mass is fixed at M� = 200 GeV and scalar mixing angle
is fixed at sin ✓0 = 0.05 for the calculation.

⇠ 900 GeV and can be as large as sin ✓ ⇠ 0.4. This presents a strikingly di↵erent outcome than

what we obtained in absence of scalar triplet, the mixing angle was constrained there significantly to

sin ✓  0.1 to account for the null observation in LUX data. Again this is simply due to the absence

of Z mediated direct search processes due to the mass splitting generated by the triplet as discussed

in the above section and hence allows the DM to live in a much larger region of relic density allowed

parameter space. In the right panel of the Fig. 3.24 with larger �M = 500 GeV, the constraint on

sin ✓ is more stringent than the left one. It is because the SI cross-section is enhanced due to the

increase in Yukawa coupling Y / �M for larger �M as expected. In the right panel, for DM mass

of ⇠ 300 GeV: sin ✓ ⇠ 0.1 and for DM mass around ⇠ 1000 GeV and above: sin ✓ ⇠ 0.15 can be

accommodated. Since the mixing between � � h is small: sin ✓0 < 5 ⇥ 10�2 , the contribution to

the cross-section by the H2 mediated diagram is suppressed. This is also further suppressed by the

large mass of M� present in the propagator. For this reason no striking di↵erence in direct search

cross-section for higher values of M� is found as the cross-section is dominated by H1 mediation

only.

3.12 Summary of constraints of the model

We summarize the constraints on the parameters in Fig. 3.25, where we have shown the allowed

values in the plane of M1 � M2 using sin ✓ = 0.1 in the left and for sin ✓ = 0.3 on the right. The

green points are allowed by the relic abundance of DM by taking the constraint from PLANCK

data. The main constraint comes from non observation of DM from direct search data of LUX

experiment. On the left, for small sin ✓ = 0.1, direct search constraint is less severe as has already

been discussed and the whole relic density allowed points are consistent with direct search bound.

However, for larger sin ✓ = 0.3, on the right hand side of Fig. 3.25, a significant part of the relic

density allowed space is submerged into direct search bound excepting for the low DM mass region

upto ⇠ 400 GeV. The direct search bound gets more stringent with larger �M and that is one of
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Figure 3.25: Summary of all constraints in the plane of M1 � M2 using sin ✓ = 0.1 (left) and
sin ✓ = 0.3 (right).

the primary reasons that relic density allowed parameter space with large sin ✓ = 0.3 is disfavoured.

This is still significantly new in contrast to the model without the triplet, where larger mixing

� 0.1, was completely forbidden by direct search data. There are other small regions which are

disfavoured by various experimental searches. For example, the region in cyan colour is disfavoured

by the collider search of N± and hence the allowed values are given by M± ⇠ M2 > 100GeV. The

mass of N1 (DM), i.e., M1 > 45 GeV, is required in order to relax the severe constraints from the

invisible Z boson decay. The charged partner of the DM gives interesting signatures at colliders if

M± �M1 . 80 GeV. As a result the two body decay of N± is forbidden. The only way it can decay

is the three body decay. For example, the notable one is N� ! N1`
�⌫`. In the small singlet-doublet

mixing limit we get a displaced vertex of 10 cm for M± ⇠ 100 GeV and a mass splitting of few tens

of GeV while satisfying the constraint from observed relic abundance.

3.13 Application to Diphoton Excess

Recently CMS and ATLAS detectors at the Large Hadron Collider (LHC) experiment[146, 147, 148]

reported an excess of �� events in the proton-proton collision with centre-of-mass energy (Ecm =
p

s)

13 TeV. In fact, CMS reported the excess around 750 GeV with a local significance of 2.6 �, while

ATLAS reported the same excess around 750 GeV with a local significance of 3.6 � in the invariant

mass distribution of ��. This excess could be simply due to the statistical fluctuations or due to the

presence of a new Physics and needs future data for its verification. From ATLAS [147] and CMS

[148] experiments, the production cross-section times the branching ratio of any resonance X with

a mass around 750 GeV is given as:

�ATLAS (pp ! X) Br (X ! ��) ' (10 ± 3)fb ,

�CMS (pp ! X) Br (X ! ��) ' (6 ± 3)fb .

Amazingly the diphoton excesses observed by the two experiments are at the same energy bin.

This gives enough indication for new physics beyond the SM which can be confirmed or ruled out

by future data. In the following we consider the diphoton excess observed at LHC to be a signature
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of new physics and provide a viable solution.

If the diphoton events observed at LHC are due to a resonance, then the Landau-Yang’s theo-

rem [149, 150] implies that the spin of the resonance can not be 1. In other words the resonance

could be a spin zero scalar or a spin two tensor similar to graviton. Another feature of the resonance

is that the production cross-section times branching ratio is quite large (⇡ 10fb), which indicates its

production is due to strongly interacting particles. The most important feature of the resonance is

that it’s width is quite large (⇡ 45 GeV). For large width of the resonance, the branching fraction

to �� events decreases significantly. Therefore, the main challenge for any theory beyond the SM is

to find a large production cross-section: � (pp ! X ! ��) to fit the data. For earlier attempts to

explain the signal see [151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166,

167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187,

188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208,

209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229,

230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250,

251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271,

272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292,

293, 294, 295, 296, 297, 298, 299, 300]

In this section we will try to explain the diphoton excess by the resonant decay of a scalar particle.

To explain the signal we add a scalar and a vector like quark to the singlet-doublet DM model.

3.14 The Model for Dark Assisted scalar decay

We extend the SM with a scalar singlet S(1, 1, 0) and a dark sector, comprising of a vector like lepton

doublet NT = (N0, N�) (1,2,-1) and a leptonic singlet �0 (1,1,0), where the quantum numbers in

the parentheses are under the gauge group SU(3)c ⇥ SU(2)L ⇥ U(1)Y . In addition to the SM gauge

symmetry, we impose a discrete symmetry Z2 under which the dark sector fermions: N and �0 are

odd, while all other fields are even. The motivation for introducing such a dark sector is two fold: i)

firstly, the linear combination of the neutral component of the lepton doublet (N0) and singlet (�0)

becomes a viable candidate of DM, ii) secondly, the charged component of the vector like lepton

doublet assists the scalar resonance S to give rise the diphoton excess of invariant mass 750 GeV.

The relevant Lagrangian can be given as:

�L � MNNN + fNSNN + M��0�0 + f�S�0�0

+
h
Y N eH�0 + h.c.

i
+ V (S, H) , (3.77)

where H is the SM Higgs isodoublet and eH = i⌧2H
⇤. The scalar potential in Eq. (3.77) is given by

V (S, H) = µ2
HH†H + �H(H†H)2 +

1

2
µ2

SS2 +
�S

4
S4

+
�SH

2
(H†H)S2 + µSHSH†H , (3.78)

where �H ,�S > 0 and �SH > �2
p
�S�H is required for vacuum stability. We assume that µ2

S > 0

and µ2
H < 0, so that S does not acquire a vacuum expectation value (vev) before electroweak phase

transition. After H acquires a vev: hHi = v =
p�µ2

H/2�H , S gets an induced vev which we neglect
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in the following calculation.

After electroweak phase transition, S mixes with the H through the tri-linear term SH†H. Due

to the mixing we get the mass matrix for the scalar fields as:

M2 =

0

B@
2�Hv2 µSHv

µSHv µ2
S + �SHv2

1

CA , (3.79)

where the trilinear parameter µSH (with mass dimension one) decides the mixing between the two

scalar fields, which can be parameterized by a mixing angle ✓hS as

tan ✓hS =
µSHv

µ2
S + �SHv2 � 2�Hv2

. (3.80)

The above equation shows that the mixing angle ✓hS between the two scalar fields vanishes if

µSH ! 0. For finite mixing, the masses of the physical Higgses can be obtained by Diagonalizing

the mass matrix (3.79) and is given by:

M2
h =

✓
�Hv2 +

1

2
µ2

S +
1

2
�SHv2

◆
+

1

2
D

M2
S =

✓
�Hv2 +

1

2
µ2

S +
1

2
�SHv2

◆
� 1

2
D , (3.81)

where D =
q

(2�Hv2 � µ2
S � �SHv2)

2
+ 4 (µSHv)2, corresponding to the mass eigenstates h and S,

where we identify h as the SM Higgs with Mh = 125 GeV and S is the new scalar with MS =

750 GeV. Using Eq. (3.81) we have plotted contours for Mh = 125 GeV and MS = 750 GeV in

the plane of
p

2�Hv and
p

µ2
S + �SHv2 for di↵erent choices of µSH = {10, 750, 1400} GeV (Red

thick, Blue dashed and Green dotted lines respectively), as shown in Fig. 3.26. We observe that

for small mixing (µSH = 10 GeV, represented by red solid line) contours of MS = 750 GeV and

Mh = 125 GeV intersect vertically as expected while for larger mixing, µSH > 1400 GeV, we can

not get simultaneous solution for MS = 750 GeV and Mh = 125 GeV. This implies that the largest

allowed mixing for which we get the simultaneous solution is sin ✓hS ⇡ 0.467. However, such large

values of the mixing angles are strongly constrained from other observations (See for instance [203]).

The electroweak phase transition also gives rise a mixing between N0 and �0 as mentioned in

sec. 3.2. In the physical spectrum we also have a charged fermion  ± whose mass in terms of the

masses of N1,2 (M1,2) and the mixing angle ✓ is given by

M± = M1 sin2 ✓ + M2 cos2 ✓ (3.82)

In the limit of vanishing mixing in the dark sector, sin ✓ ! 0, M± = MN . Therefore, a non-zero

mixing also gives rise to a mass splitting between N± and N2 is given by �M = m2
D

MN�M�
.

71



Figure 3.26: Contours of Mh = 125 GeV and MS = 750 GeV in the plane of
p

2�Hv andp
µ2

S + �SHv2 for µSH = 10 GeV (Solid red), µSH = 750 GeV (Dashed blue), and µSH = 1400 GeV
(Dotted green).

3.14.1 Explanation for Diphoton Excess

S ! �� and production of S through mixing with the SM Higgs

The LHC search strategy for diphoton events, if possible via a scalar resonance S with mass around

750 GeV, is mostly decided by the production and subsequent decay of the resonant particle to ��,

which can be parameterised as:

�ATLAS/CMS (pp ! S ! ��) ' �prod (pp ! S) · Br. (S ! ��) . (3.83)

The above cross-section has to be compared with the experimental data

�ATLAS (pp ! X ! ��) ' (10 ± 3)fb , (3.84)

�CMS (pp ! X ! ��) ' (6 ± 3)fb . (3.85)

In absence of the additional vector-like fermions, the production of S and its subsequent decay to �

� can occur through the mixing with the SM Higgs, which can be given as:

�(pp ! S ! ��) ' �prod (pp ! h) · sin4 ✓hS · � (h ! ��)

�(S ! All)
, (3.86)

where �(S ! All) ⇡ 45 GeV as indicated by ATLAS data [147]. Within the SM, the decay width:

h ! �� can be estimated to be ⇡ 4 ⇥ 10�6GeV for Mh = 125 GeV and �(h ! All) = 4 MeV.

The total production cross-section of Higgs at centre of mass energy of 13 TeV is given by ⇡ 50 pb

[301]. Thus with a maximal mixing between the SM Higgs and S, i.e. (sin ✓hS ⇡ 0.4, we see that

� (pp ! S ! ��) ⇡ 10�4fb, which is much smaller than the required value given in Eq. (3.84).
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Therefore, we conclude that the production of the scalar resonance S giving diphoton excess at LHC

can not be possible through its mixing with the SM Higgs.

In the following sub-section 3.14.1 we set the S � h mixing to be zero and adopt an alternative

scenario for � (pp ! S ! ��) using vector-like quarks.

Dark sector assisted S decays

Since S is a singlet scalar, it can not directly couple to the gauge bosons. On the other hand, S can

couple to vector-like dark sector fermions which can couple to SM gauge bosons as discussed in the

previous section. As the charged component of the Z2 -odd fermion doublet assist the decay of S, we

term it as dark sector assisted decay. Defining Bµ⌫ and W i
µ⌫ as the respective field strength tensors

for the gauge group U(1)Y and SU(2)L, one can write down the e↵ective operators for coupling

between the scalar S and the vector bosons by integrating out the vector-like fermions in the loop

as:

LEFT � 2SW i
µ⌫W

i,µ⌫ + 1SBµ⌫B
µ⌫ (3.87)

where the e↵ective couplings 1 and 2 can be expressed in terms of Yukawa coupling fN connecting

scalar with vector-like fermion N as [179]:

k1 =
fNg2

Y

32⇡2MN
and k2 =

3fNg2

64⇡2MN
(3.88)

Since the vector-like dark sector particles carry no color charge and hence, can not contribute to

the decay of S ! gg and gg ! S for production of scalar particle. However, one can produce

large cross-section for scalar S via gluon fusion process by introducing additional vector-like particle

carrying color charge, for example, see ref. [157, 164]. We will also adopt a similar strategy that will

be discussed in the next sub-section. After rotation to the physical gauge boson states the decay

rates can be given as:

� (S ! WW ) =
1

16⇡

"
2 +

✓
1 � M2

S

2M2
W

◆2
#

✓
1 � 4M2

W

M2
S

◆1/2

k2
WW M3

S

� (S ! ZZ) =
1

32⇡

"
2 +

✓
1 � M2

S

2M2
Z

◆2
#

✓
1 � 4M2

Z

M2
S

◆1/2

k2
ZZM3

S

� (S ! Z�) =
3

16⇡

✓
1 � M2

Z

M2
S

◆
k2

Z�M
3
S

� (S ! ��) =
1

8⇡
k2
��M

3
S

(3.89)
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where the e↵ective couplings are given by [179]:

kWW =
g2

32⇡2

fN

MN
A1/2(xN )

k�� =
e2

16⇡2
Q2

N

fN

MN
A1/2(xN )

kZZ = kWW (1 � tan2 ✓W ) + k�� tan2 ✓W

kZ� = kWW cos 2✓W tan ✓W � k��2 tan ✓W

(3.90)

The factors involved in Eq. (3.90) are given by

A1/2(xN ) = 2xN [1 + (1 � xN )f(xN )] ,

xN =
4M2

N

M2
S

,

f(x) =

8
<

:
arcsin2 p

x x  1

� 1
4

h
ln
⇣

1+
p

1�x
1�

p
1�x

⌘
� i⇡

i2
x � 1.

(3.91)

Dark sector assisted S ! �� and quark-like vector particles for gg ! S

As discussed in section 3.14.1, we see that the required cross-section for the scalar resonance S

production can not be achieved through S-h mixing. As an alternative, we introduce an iso-singlet

quark-like vector fermion Q of mass MQ to the framework discussed in the above section. The

main reason for introducing additional quark-like vector particle is to provide the large production

cross-section for scalar S via gluon gluon fusion process as shown in the left-panel of Fig. 3.27 even

with ✓hS ! 0. The subsequent decay S ! �� mediated by N± is shown in right-panel of Fig. 3.27.

S

S

g

g

Q
N

Production and Decay of Scalar    with    

S

S hS 0
gg S

Figure 3.27: Feynman diagrams for production of scalar S through gluon gluon fusion mediated by
quark-like vector particle Q and its subsequent decay to SM particles mediated by the dark sector
particle N±. The other decay modes of S via its mixing with the SM Higgs are suppressed in the
limit ✓hS ! 0.

The Yukawa coupling of the scalar S to Q can be given as fQSQ̄Q. This coupling helps in

producing S via gluon gluon fusion process. The production of scalar S, arising from gluon gluon

fusion process, and its subsequent decay to �� can be expressed in terms of the decay rate �(S ! gg)

74



as [302, 161]:

�(pp ! S ! ��) =
1

MS ŝ
Cgg�(S ! gg)Br(S ! ��) (3.92)

where
p

ŝ = 13 TeV is the centre of mass energy at which LHC is collecting data. The dimensionless

coupling

Cgg =
⇡2

8

Z 1

M2
S/ŝ

dx

x
g(x)g(M2

S/ŝx) . (3.93)

At
p

ŝ = 13 TeV, Cgg = 2137 [161]. In Eq. (3.92), the decay rate �(S ! gg) is given by:

� (S ! gg) =
1

8⇡
k2

ggM
3
S (3.94)

where the e↵ective coupling of S to gg through the exchange of Q in the loop is given by

kgg =
g2

S

16⇡2

fQ

MQ
NcA1/2(xQ) (3.95)

where A1/2(x) is given by Eq. (3.91).
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Figure 3.28: Contours of �(pp ! S ! ��) in the plane of fN versus MN for fN = fQ, MN = MQ

and sin ✓hS = 0.

In Fig. (3.28), we have shown the contours of �(pp ! S ! ��) in the plane of fN versus MN

by assuming that fN = fQ and MN = MQ. From Fig. (3.28), we see that to get a production

cross-section of 10 fb, we need the S coupling to fN = fQ > 5 . The mass of these vector-like

fermions are chosen to be larger than 375 GeV in order to avoid the tree level decay of S ! Q̄Q.

The corresponding total decay width and branching fraction are shown in Fig. (3.29) and (3.30).

We see that the total decay width can be as large as 30 GeV, while the branching fraction is order

of 10�4. Since the mass of the vector-like fermions are heavier than 375 GeV, the decay of S to

SM particles occurs via the triangle loop constituting N±. However, the tree level decay of S to

hh is allowed. It may increase the total width depending on the mixing between SM Higgs and S.
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Figure 3.29: Contours of �(S ! All) (in GeV)in the plane of fN versus MN for fN = fQ, MN = MQ

and sin ✓hS = 0.
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Figure 3.30: Contours of Br (S ! ��) in the plane of fN versus MN for fQ = 5 and MQ = 600
GeV. We set sin ✓hS = 0.

However, we have checked that for sin ✓hS < 0.1, the tree level decay of S to hh does not a↵ect the

above result.

3.15 Summary and Outlook

A vector like mixed singlet-doublet fermion is studied as a DM candidate in a BSM framework.

The model contains a doublet(N) and singlet(�0) fermion under SU(2) group which are odd under

a Z2 symmetry. Thus there are 3 physical states in the model N1 = cos ✓�0 + sin ✓N0 and N2 =
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cos ✓N0 � sin ✓�0 and N± the charged partner of N0, where ✓ is the mixing angle. The lightest

among the three physical states which is N1 and is stable by the imposed Z2 symmetry, hence a

suitable candidate of DM.The relevant constraints on sin ✓ from the invisible Z and Higgs decay,

electroweak precision data and direct detection of DM are discussed. For M1 < 45 GeV, N1 is

strongly constrained by the invisible Z-decay width, while for M1 > 45 GeV, the direct detection of

N1 DM at Xenon-100 and LUX give the strongest constraint on sin ✓, thus ruling out its viability

for sin ✓ & 0.1. However this constraint is also a↵ected by the presence of a scalar triplet. We found

that the constraint from null detection of DM at direct search experiments and relic abundance can

be satisfied in a large region of parameter space for mixing angle: sin ✓ ⇠ 0.3 and smaller values. If

the scalar triplet is light, say M� . 500 GeV, then it contributes to relic abundance only near the

resonance i.e with MN1
⇠ M�

2 . On the other hand, if M� & 1 TeV, then it decouples and hence

does not contribute to relic abundance of DM.

The scalar triplet couples symmetrically to lepton doublets as well as to the doublet component

of the DM. Therefore, when the scalar triplet acquires an induced vev, it not only gives Majorana

masses to the light neutrinos but also induce a sub-GeV Majorana mass to the DM. As a result

the DM, which was originally a vector-like Dirac fermion splits into two pseudo-Dirac fermions with

a mass separation of sub-GeV order. Due to this reason the Z-mediated inelastic scattering of the

DM with nucleon is suppressed. However, we found that the spin independent direct detection

of DM through the SM Higgs mediation is in the right ballpark of Xenon-1T. The absence of Z

mediated DM-nucleon cross-section relaxes the constraint on mixing angle sin ✓ as we can go as high

as sin ✓ = 0.3 for DM mass M1 > 400 GeV for small mass splitting �M < 100 GeV. This high

value of sin ✓ is also well satisfied by the correct relic abundance. So the spin independent direct

detection cross-section does not put stronger constraint on the mixing angle if the mass splitting is

not so large and allows large region of parameter space unlike the model in absence of a triplet.

The ⇢ parameter in the SM restricts the vev of scalar triplet to u�  3.64 GeV. This in turn

gives the mixing between the SM Higgs and � to be sin ✓0 O(10�2) even if the M� . 500 GeV.

Therefore, � does not contribute significantly to the spin independent direct detection cross-section.

We have illustrated how the recent diphoton excess signal pp ! S ! �� around an invariant mass

of 750 GeV can be accounted by a Dark sector assisted scalar decay. The framework considered is a

simple extension of SM with additional scalar singlet S having mass around 750 GeV, an iso-singlet

vector-like quark Q and a dark sector constituted by a vector-like lepton doublet N and a neutral

singlet �0. We argue that the extra particles added in this framework are minimal when we explain

diphoton excess signal and DM component of the Universe. We note that the masses of the new

particles added are below TeV scale, but above MS/2 = 375 GeV.
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Chapter 4

Muon g-2 anomaly, neutrino mass

and DM phenomenology in U(1)

gauged extension of standard

model

4.1 Introduction

The incompatibility of the SM with various experimental observations like neutrino mass, anomalous

muon magnetic moment, presence of DM, etc. motivates us to look for physics beyond the SM. A

gauged U(1) model has been paid much attention. Among various U(1) extended models, the

di↵erences between two lepton flavours, i.e., Li �Lj , with i, j = e, µ, ⌧ , are anomaly free and can be

gauged without any addition of extra fermions to the SM [303]. The most discussed model among

these is the gauged Lµ�L⌧ model [304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317,

318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 33, 332, 333, 334, 335, 336]. The

interactions of the corresponding gauge boson Z 0 are restricted to only µ and ⌧ families of leptons

and therefore it significantly contributes to muon g � 2 anomaly, which is a discrepancy between

the observation and SM prediction with more than 3� confidence level. Moreover, Z 0 does not have

any coupling with the electron family. Therefore, it can easily avoid the LEP bound: M 0
Z/g0 > 6

TeV [337]. So, in this scenario a Z 0- mass can vary from a few MeV to TeV which can in principle

be probed at LHC and at future energy frontiers.

Gauged U(1)Lµ�L⌧ models have been discussed extensively in the literature in light of sub-eV

neutrino masses [316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331] and

DM phenomenology [33, 332, 333, 334, 335, 336]. All these models are devoted to predict either

non-zero neutrino masses or DM content of the Universe, while satisfying the constraints from muon

g � 2 anomaly. We noticed that all the U(1)Lµ�L⌧
models discussing DM phenomenology [33, 332,

333, 334, 335, 336] predict a candidate of DM, which is elastic in nature.

In this chapter we revisit the gauged U(1)Lµ�L⌧
model in light of muon g � 2 anomaly, non-

zero neutrino mass and DM phenomenology simultaneously, while including the latest constraints
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from various observations. We found that the DM is required to be inelastic to reconcile the relic

abundance constraints with null detection of DM at direct search experiments. We augment the

SM by including three right handed neutrinos: Ne, Nµ and N⌧ , which are singlets under the SM

gauge group, and a vector like colorless neutral fermion �. We also add an extra SM singlet scalar

S. All these particles except Ne, are charged under U(1)Lµ�L⌧
, though singlets under the SM gauge

group. When S acquires a vacuum expectation value (vev), the U(1)Lµ�L⌧
breaks to identity and

gives masses to Z 0 as well as to the neutral fermions Ne, Nµ, N⌧ . We also impose an additional Z2

symmetry under which � is odd and all other fields are even . As a result � serves as a candidate

of DM. The smallness of neutrino mass is also explained using type-I see-saw with the presence of

right handed neutrinos Ne, Nµ and N⌧ , whose masses are generated from the vev of scalar field S.

In this model the relic abundance of DM (�) is obtained via its annihilation to muon and tauon

family of leptons through the exchange of U(1)Lµ�L⌧
gauge boson Z 0. We show that the relic density

crucially depends on U(1)Lµ�L⌧
gauge boson mass MZ0 and its coupling g0. In particular, we find

that the observed relic density requires g0 & 5 ⇥ 10�3 for M 0
Z & 100 MeV. However, if g0 . 5 ⇥ 10�3

then we get an over abundance of DM, while these couplings are compatible with the observed muon

g � 2 anomaly. We resolve this conflict by adding an extra singlet scalar ⌘, doubly charged under

U(1)Lµ�L⌧
, which can drain out the large DM abundance via the annihilation process: �� ! ⌘†⌘.

As a result, the parameter space of the model satisfying muon g � 2 anomaly can be reconciled

with the observed relic abundance of DM. We also show that the acceptable region of parameter

space for observed relic density and muon g � 2 anomaly is further constrained by null detection

of DM at Xenon-100 [12] and LUX [110]. Moreover, we noticed that the allowed parameter space

is severely constrained by the neutrino trident production [8], the creation of a muon pair from

the scattering of muon-neutrino o↵ the coulomb field of a target nucleus. The neutrino trident

production cross-section, reported by CHARM-II (�CHARM/�SM = 1.58 ± 0.57) [338] and CCFR

(�CCFR/�SM = 0.82 ± 0.28) [339] collaborations, does not seem to deviate significantly from the

SM prediction. On the other hand, a new Z 0 gauge boson, corresponding to a U(1)Lµ�L⌧ gauge

symmetry, contributes constructively to the production cross-section of the above mentioned process.

In fact, combine constraints from muon g � 2 anomaly and neutrino trident production restricts

MZ0 . 400MeV [8]. However, in a large region of the parameter space spanned by MZ0 & 400MeV

and g0 & 10�3, where contribution to muon g � 2 anomaly comes partially and yet not ruled out by

neutrino trident production, the positron excess, observed at PAMELA [16, 17], Fermi-LAT [340]

and AMS-02 [15, 2], can be explained via the DM annihilation.

4.2 The model

We extend the gauge sector of the SM by introducing a U(1)Lµ�L⌧
gauge symmetry (from now

on referred to as “gauged U(1)Lµ�L⌧
model”) where the di↵erence between muon and tau lepton

numbers is defined as a local gauge symmetry [303, 304, 305, 306, 307, 308, 309, 310, 311, 312,

313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 33, 332,

333, 334, 335, 336]. The advantage of considering the gauged U(1)Lµ�L⌧
model is that the theory is

free from any gauge anomaly, so there is no need for introduction of additional fermions. The non

zero neutrino mass can be explored after breaking the gauge symmetry. A Z2 is also imposed under
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which � is odd while all other fields are even. Thus the discrete symmetry imposed makes � stable

and as a result it serves as a candidate of DM.

4.2.1 Spontaneous breaking of gauge symmetry

The spontaneous symmetry breaking of gauged U(1)Lµ�L⌧
model is given by:

GLµ�L⌧

hSi,h⌘i�! GSM
hHi�! SU(3)C ⇥ U(1)em , (4.1)

where

GLµ�L⌧
⌘ SU(3)C ⇥ SU(2)L ⇥ U(1)Y ⇥ U(1)Lµ�L⌧

,

GSM ⌘ SU(3)C ⇥ SU(2)L ⇥ U(1)Y

At first, the spontaneous symmetry breaking of GLµ�L⌧
! GSM is achieved by assigning non-

zero vacuum expectation values (vevs) to complex scalar field S and ⌘. The subsequent stage of

symmetry breaking GSM ! SU(3)C ⇥ U(1)em is obtained with the SM Higgs H providing masses

to known charged fermions.

Field SU(3)C ⇥ SU(2)L ⇥ U(1)Y Lµ L⌧ Lµ � L⌧

Quarks QL ⌘ (u, d)T
L (3,2, 1/6) 0 0 0

uR (3,1, 2/3) 0 0 0
dR (3,1, �1/3) 0 0 0

Leptons Le ⌘ (⌫e, e
�)T

L (1,2, � 1/2) 0 0 0
Lµ ⌘ (⌫µ, µ�)T

L (1,2, � 1/2) 1 0 1
L⌧ ⌘ (⌫⌧ , ⌧�)T

L (1,2, � 1/2) 0 1 �1
eR (1,1, � 1) 0 0 0
µR (1,1, � 1) 1 0 1
⌧R (1,1, � 1) 0 1 �1
Ne (1,1, 0) 0 0 0
Nµ (1,1, 0) 1 0 1
N⌧ (1,1, 0) 0 1 �1
� (1,1, 0) 1

Scalars H (1,2, 1/2) 0
S (1,1, 0) 1
⌘ (1,1, 0) 2

Table 4.1: Particle content of the minimal U(1)Lµ�L⌧
gauge extension of the SM and their trans-

formation under the SM gauge group.

The complete model with all details of the particles and their corresponding quantum numbers

under the gauge group SU(3)C ⇥ SU(2)L ⇥ U(1)Y ⇥ U(1)Lµ�L⌧
is written in the Table 4.1. Apart

from the SM quarks and leptons, three neutral fermions Ne, Nµ, N⌧ are added to explain the light

neutrino mass via seesaw mechanism and a Z2 odd vector like Dirac fermion � is also added, which

acts as DM candidate.

80



4.2.2 Interaction Lagrangian

The complete interaction Lagrangian for the gauged U(1)Lµ�L⌧ model is given by

LLµ�L⌧ = i Ne /@Ne + i Nµ

�
/@ + i gµ⌧ Z 0

µ�
µ
�

Nµ + i N⌧

�
/@ � i gµ⌧ Z 0

µ�
µ
�

N⌧

� gµ⌧

�
µ�µµ + ⌫µ�

µPL⌫µ � ⌧�µ⌧ � ⌫⌧�
µPL⌫⌧

�
Z 0

µ

� MeeN c
eNe � (�eµS?N c

eNµ + h.c) � (�e⌧SN c
eN⌧ + h.c)

� (�µµ⌘
?N c

µNµ + h.c) � (�⌧⌧⌘N c
⌧N⌧ + h.c)

�
⇣
YeeLeH̃Ne + YµµLµH̃Nµ + Y⌧⌧L⌧ H̃N⌧ + h.c

⌘

+ i�
�
/@ + i gµ⌧ Z 0

µ�
µ
�
�� M���� f��c�⌘?

� 1

4
Fµ⌫

Z0 FZ0

µ⌫ +
✏

4
Fµ⌫

Z0 Fµ⌫

+ | �@µ + i gµ⌧ Z 0
µ

�
S|2 � µ2

SS†S + �S(S†S)2 + | �@µ + i 2gµ⌧ Z 0
µ

�
⌘|2 � µ2

⌘⌘
†⌘ + �⌘(⌘

†⌘)2

+ �HS(H†H)(S†S) + �H⌘(H
†H)(⌘†⌘) + �⌘S(⌘†⌘)(S†S) + µ⌘SSS⌘? + LSM , (4.2)

where LSM is the SM Lagrangian. We denote here Z 0
µ as the new gauge boson for U(1)Lµ�L⌧

and

the corresponding field strength tensor as FZ0

µ⌫ = @µZ 0
⌫ � @⌫Z

0
µ. The gauge coupling corresponding

to U(1)Lµ�L⌧
is defined as gµ⌧ ⌘ g0 (as mentioned in sec. 4.1.)

4.2.3 Scalar masses and mixing

The scalar potential of the model is given by

V(H, S) = �µ2
HH†H + �H(H†H)2 � µ2

⌘⌘
†⌘ + �⌘(⌘

†⌘)2 � µ2
SS†S + �S(S†S)2

+ �SH(H†H)(S†S) + �H⌘(H
†H)(⌘†⌘) + �⌘S(⌘†⌘)(S†S) + µ⌘SSS⌘? (4.3)

where H is the SM Higgs doublet and S, ⌘ are the complex scalar singlets under SM, while charged

under U(1)Lµ�L⌧
. The neutral complex scalars H0 , S and ⌘ can be parameterised as follows:

H0 =
1p
2
(vH + h) +

ip
2
G0 ,

S =
1p
2
(vS + s) +

ip
2
A ,

⌘ =
1p
2
(v⌘ + ⌘) +

ip
2
B ,

(4.4)

The mass matrix for the neutral scalars is given by

M2 =

0

B@
2�H v2

H �SH vH vS �H⌘ vH v⌘

�SH vH vS 2�S v2
S �⌘S vS v⌘ + µ⌘S vS

�H⌘ vH v⌘ �⌘S vS v⌘ + µ⌘S vS 2�⌘ v2
⌘

1

CA (4.5)
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This is a symmetric mass matrix. So it can be diagonalized by a unitary matrix:

V †M2V = Diagonal(M2
h, M2

S, M2
⌘) (4.6)

We identify Mh as the physical mass of the SM Higgs, while MS and M⌘ are the masses of additional

scalars S and ⌘ respectively. Since S and ⌘ are singlets, their masses can vary from sub-GeV to TeV

region. For a typical set of values: vH = 174GeV, vS = 1200GeV, v⌘ = 50GeV,�H = 0.2585,�SH =

0.0005,�S = 0.4,�⌘ = 0.00021,�⌘H = 0.00001,�⌘S = 0.0015, µ⌘S = 0.1GeV , the physical masses are

found to be Mh = 125 GeV, MS = 1073 GeV, M⌘ = 1 GeV and the mixing between h and ⌘ field is

sin ✓⌘h = 5.56 ⇥ 10�6. We will study the importance of ⌘ field while calculating the relic abundance

of DM. The mixing between ⌘ and h field is required to be small as it plays a dominant role in the

direct detection of DM. We will show in Fig.4.5 that if the mixing angle is large then it will kill

almost all the relic abundance parameter space.

4.2.4 Mixing in the Gauge sector

The Z 0 boson becomes massive after the spontaneous breaking of U(1)Lµ�L⌧
symmetry, when ⌘ and

S gets vev. In the tree level there is no mixing between the SM gauge boson Z and Z 0. However at

one loop level, the mixing is possible through the exchange of muon and tauon families of leptons

as shown in fig. 4.1. The loop factor can be estimated as (see appendix D)

Figure 4.1: The mixing between the SM gauge boson Z and the U(1)Lµ�L⌧
gauge boson Z 0 arising

through the exchange of muon and tauon families of leptons.

⇧µ⌫(q2) =
�
q2gµ⌫ � qµq⌫

� 4

3

1

16⇡2

✓
gµ⌧

CV g

2 cos ✓W

◆
Log

✓
m2

f

⇤2

◆
(4.7)

where ✓W is the Weinberg angle, CV is the vector coupling of SM fermions with Z boson, ⇤ is the

cut o↵ scale of the theory and mf is the mass of the charged fermion running in the loop. In the

gauge basis, the mass matrix is given by

M2
2 =

 
M2

Z0
⇧

⇧ M̃2
Z0

!
(4.8)

where ⇧ is given by ⇧ = ⇧µ⌫ ⇤ gµ⌫ and MZ0
= 91.1876 GeV. Thus the mixing angle is given by

tan 2✓Z =
2⇧

M̃2
Z0 � M2

Z0

(4.9)
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Diagonalizing the mass matrix (4.8) we get the eigen values:

M2
Z =

M2
Z0 � M2

Z0 sin2 ✓Z

cos2 ✓Z

M2
Z0 =

M̃2
Z0 � M2

Z sin2 ✓Z

cos2 ✓Z
(4.10)

where MZ and MZ0 are the physical masses of Z and Z 0 gauge bosons. The mixing angle ✓Z has to

be chosen in such a way that the physical mass of Z-boson should be obtained within the current

uncertainty of the SM Z boson mass [106]. It can be computed from equation (4.10) as follows:

MZ � MZ0

MZ0

=
M2

Z0 � M2
Z0

2M2
Z0

tan2 ✓Z  4.6 ⇥ 10�5 (4.11)

For MZ0 � MZ0 & MZ0 we get tan ✓Z . 10�2.

4.3 BBN constraint on ⌘� h mixing

The scalar ⌘ does not decay to SM particles directly. However it can decay to SM fermions through

⌘ � h mixing. The decay width is given by

�⌘ '
X

2mf<M⌘

M⌘

8⇡
✓2⌘h

2m2
f

v2
H

, (4.12)

where mf is the mass of the SM fermion. Thus lifetime of ⌘ is estimated to be

⌧⌘ ' 1s ⇥
✓
✓⌘h

10�6

◆�2✓1GeV

M⌘

◆
. (4.13)

For ⌘ to decay before big bang neucleosynthesis (BBN) we demand that ⌧⌘ . ⌧BBN ⇠ 1 s [341,

342, 343, 344], so that it does not a↵ect the predictions of BBN. Therefore we get ✓⌘h & O(10�6)

for M⌘ & 1GeV. We will see that the parameter space is well compatible with BBN constraint for

direct detection as well as the relic abundance of DM in subsequent sections.

4.4 Muon g � 2 anomaly

As mentioned in the chapter 1 that there is a discrepancy between the experimental result [28] and

the SM prediction [29] of the magnetic moment of muon. The result is an agreement in 3� range

and is given as

�aµ = aexpt
µ � aSM

µ = (295 ± 88) ⇥ 10�11 . (4.14)

In this gauged extension of the SM, the new gauge field Z 0 couples to the muon, hence can contribute

to its magnetic moment. Its contribution is given by [336]

�aµ =
↵0

2⇡

Z 1

0

dx
2m2

µx2(1 � x)

x2m2
µ + (1 � x)M2

Z0
⇡ ↵0

2⇡

2m2
µ

3M2
Z0

, (4.15)
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where ↵0 = g2
µ⌧/4⇡.

The above equation implies that the discrepancy between the experimental measurement [28] and

the SM prediction [29] of aµ value can be explained in a large region of parameter space as shown

by black shaded region in Fig. (4.3). Thus any value of (gµ⌧ , MZ0) below the black shaded region is

insu�cient to account for anomalous g � 2 values, while the corresponding points above the black

shaded region give excess g � 2 values.

However the allowed parameter space is severely constrained by the neutrino trident produc-

tion [8], the creation of a muon pair from the scattering of muon-neutrino o↵ the coulomb field of a

target nucleus. The neutrino trident production cross-section, reported by CHARM-II (�CHARM/�SM =

1.58 ± 0.57) [338] and CCFR (�CCFR/�SM = 0.82 ± 0.28) [339] collaborations, does not seem to

deviate much from the SM prediction. On the other hand, a new Z 0 gauge boson, corresponding to a

U(1)Lµ�L⌧
gauge symmetry, contributes constructively to the production cross-section of the above

mentioned process. In fact, combining the constraints from muon g�2 anomaly and neutrino trident

production restricts MZ0 . 400MeV and g0 . 10�3 [8]. However, this region does not produce the

correct relic abundance of DM. We will discuss it more in sec 4.6.

4.5 Neutrino mass

The additional neutral fermions Ne(0), Nµ(1), N⌧ (�1) where the quantum numbers in the parenthe-

ses are the Lµ � L⌧ charge, can generate small neutrino masses in a Type I seesaw mechanism. The

relevant Yukawa interactions are given by :

L = � 1

2
MeeN c

eNe � 1

2
Mµ⌧N c

µN⌧ � (�eµS?N c
eNµ + h.c) � (�e⌧SN c

eN⌧ + h.c)

� (�µµ⌘
?N c

µNµ + h.c) � (�⌧⌧⌘N c
⌧N⌧ + h.c)

�
⇣
YeeLeH̃Ne + YµµLµH̃Nµ + Y⌧⌧L⌧ H̃N⌧ + h.c

⌘

= � 1

2
NT
↵ C�1MR↵�N� + MD↵�⌫↵N� + h.c. (4.16)

where the Dirac and Majorana neutrino mass matrices are given by

MR =

0

B@
Mee �eµvS �e⌧vS

�eµvS �µµv⌘ Mµ⌧

�e⌧vS Mµ⌧ �⌧⌧v⌘

1

CA , MD =

0

B@
YeevH 0 0

0 YµµvH 0

0 0 Y⌧⌧vH

1

CA (4.17)

Using seesaw approximation, the light neutrino mass matrix can be read as

m⌫ ' �MDM�1
R MT

D . (4.18)

We point out here that the resulting Dirac neutrino mass matrix is not only diagonal but also

degenerate. As a result, we can express MD = mdI3⇥3. One can express heavy Majorana neutrino

mass matrix in terms of light neutrino mass matrix as

MR = m2
dm

�1
⌫ . (4.19)
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Thus, one can reconstruct MR using neutrino oscillation parameters and md ' 10�4 GeV. As we

know that light neutrino mass matrix is diagonalized by the PMNS mixing matrix as

mdiag.
⌫ = U†

PMNSm⌫U
⇤
PMNS = diag.{m1, m2, m2}

where mi are the light neutrino mass eigenvalues. The PMNS mixing matrix is generally parame-

terized as

UPMNS =

0

B@
c12c13 s12c13 s13e

�i�

�s12c23 � c12s13s23e
i� c12c23 � s12s13s23e

i� c13s23

s12s23 � c12s13c23e
i� �c12s23 � s12s13c23e

i� c13c23

1

CA · P (4.20)

where cij ⌘ cos ✓ij , sij ⌘ sin ✓ij (for ij = 12, 13, 23), and P = diag.{1, ei↵, ei�}. Here we denoted

Dirac phase as � and Majorana phases as ↵,�.

For a numerical example, we consider the best-fit values of the oscillation parameters, the at-

mospheric mixing angle ✓a ⌘ ✓23 ' 41.2�, solar angle ✓s ⌘ ✓12 ' 34.2�, the reactor mixing angle

✓r ⌘ ✓13 ' 9�, and the Dirac CP phase � = 0.8⇡ (Majorana phases assumed to be zero here for sim-

plicity i.e, ↵,� = 0). The PMNS mixing matrix for this best-fit oscillation parameters is estimated

to be

UPMNS =

0

B@
0.8168 0.5552 �0.1265 � 0.0919 i

�0.3461 � 0.0510 i 0.6604 � 0.0347 i 0.6634

0.4551 � 0.0563 i �0.5028 � 0.0382 i 0.7316

1

CA . (4.21)

We also use the best-fit values of mass squared di↵erences �m2
s ⌘ m2

2 � m2
1 = 7.56 ⇥ 10�5eV2

and �m2
a ⌘ |m2

3 � m2
1| = 2.5 ⇥ 10�3eV2. As we do not know the sign of �m2

a, the pattern of light

neutrinos could be normal hierarchy (NH) with m1 < m2 < m3,

m2 =
q

m2
1 + �m2

s , m3 =
q

m2
1 + �m2

a ,

or, the inverted hierarchy (IH) with m3 < m1 < m2,

m1 =
q

m2
3 + �m2

a , m2 =
q

m2
3 + �m2

a + �m2
s . .

Now, one can use these oscillation parameters and md ' 10�4 GeV, the mass matrix for heavy

neutrinos is expressed as

MR = 10�8 GeV2
�
UPMNSmdiag.

⌫ UT
PMNS

��1
. (4.22)

Using m1 = 0.001 eV, the masses for heavy neutrinos are found to be MN1
' 100 GeV, MN2

'
1000 GeV and MN3

' 8000 GeV. The same algebra can be extended for inverted hierarchy and

quasi-degenerate pattern of light neutrinos for deriving structure of MR.
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Figure 4.2: Possible annihilation channels for relic abundance of DM, where f represents muon and
tauon families of leptons while  represents the SM fermion.

4.6 Relic Abundance of DM

The discrete Z2 symmetry makes the � particle stable and hence can serve a DM candidate in our

present model. We explore the parameter space in two di↵erent scenarios, in the absence and in the

presence of the singlet scalar ⌘.

4.6.1 Relic abundance in absence of ⌘

For simplicity we assume that the right handed neutrinos Nµ and N⌧ as well as the scalar field S are

heavier than the � mass. So the annihilation of DM to these fields is kinematically forbidden. In the

absence of ⌘, the relevant diagrams that contribute to the relic density are shown in Fig. 4.2. The

first two chanels are s-chanel processes through which DM annihilates to SM fermions and the third

one is a t-chanel process to Z 0, Z 0 final state . The second one is suppressed compared to the first

one due to the small mixing angle between Z �Z 0 is small (tan ✓Z < 10�2), the constraint is coming

from the non observation of DM signal in direct detection in Xenon-100 and LUX experiments. So

the dominant contribution to relic abundance, below the threshold of Z 0, comes form the s-channel

annihilation: �̄� !  ̄ , f̄f through the exchange of Z 0. Due to the resonance e↵ect this cross-section

dominates. We have shown in Fig. 4.3, the correct relic abundance of DM in the plane of MZ0 and

gµ⌧ . Below the red line the annihilation cross-section through Z 0 exchange is small due to small

gauge coupling and therefore, we always get an over abundance of DM. The constraints from muon

g � 2 anomaly, shown by black shaded region, and direct detection of DM via Z � Z 0 mixing, shown

by green shaded region using Z � Z 0 mixing to be 10�3, are given in the same plot for comparison

purpose. We note that region above green line is allowed by direct detection if Z � Z 0 mixing is less

than 10�3. We have also shown the constraint from the neutrino trident production [8] by the brown

dashed curve. The region above the brown dashed curve is ruled out due to the mismatch between

experimental observation [338, 339] and SM prediction induced by large gauge coupling (gµ⌧ ). This

implies that the combine constraints from muon g � 2 anomaly and neutrino trident production

rules out Z 0 mass more than 400 MeV and gµ⌧ & 10�3. On the other hand, for MZ0 . 400MeV and

gµ⌧ . 10�3 we get an overabundance of DM. We resolve this issue by adding an extra singlet scalar

field ⌘(2), where the number inside the parenthesis is the charge under U(1)Lµ�L⌧
.

4.6.2 Relic abundance in presence of ⌘

In presence of the SM singlet scalar field ⌘(2), the new annihilation channels �̄� ! ⌘†⌘, shown in

Fig. 4.4, and �̄� ! h⌘ open up in addition to the earlier mentioned channels, shown in fig. (4.2).
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Figure 4.3: Parameter space for Z 0 boson. The region above the red line is allowed by the correct
relic abundance of DM, the green shaded region is allowed by null detection of DM at LUX using
Z � Z 0 mixing to be 10�3. Black shaded region is allowed by muon g � 2 anomaly. Neutrino trident
production [8] forbids the region above the dashed brown curve.

Figure 4.4: Dominant annihilation channel for relic abundance of DM in the region of small gµ⌧ .

However, in the region of small gauge coupling gµ⌧ , the dominant channel for the relic abundance

of DM is �̄� ! ⌘†⌘. The other channel: �̄� ! h⌘ is suppressed due to the small mixing angle

sin ✓⌘h, required by null detection of DM at direct search experiments. We assume that the mass of

⌘ to be order of a GeV as discussed in section 4.2.3. The analytic expression for the cross-section of

�̄� ! ⌘†⌘ is given by:

h�|vi(�� ! ⌘⌘) =
1

128⇡

1
⇣
1 � M2

⌘

2M2
�

⌘2

f4
�

M2
�

 
1 � M2

⌘

M2
�

!3/2

(4.23)

The cross-section of the above process goes as
f4
�

M2
�

for M⌘ ⌧ M�. The allowed parameter space in

the plane of M⌘/M� and f� for the correct relic abundance as allowed by PLANCK is shown in

Fig. 4.5 for a fixed value of M⌘ = 1 GeV. The green points show the value of analytic approximation

(4.23) while the red points reveal the result from full calculation using micrOMEGAs [122]. The

matching of both points ensures that the contribution to relic density is solely coming from the
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�̄� ! ⌘†⌘ channel. It is also clear from the Fig. 4.5 that as the ratio M⌘

M�
decreases, in other words

as M� increases for a fixed value of M⌘, we need a large coupling to get the correct relic abundance.

For comparison, we also show the DM-nucleon spin independent elastic cross-section: �n ! �n

mediated through the ⌘ � h mixing, in the same plot. We find that the allowed mixing angle by

LUX data is quite small. Typically, for M⌘ & 1 GeV, we need ✓⌘h . O(10�5) to reconcile the relic

abundance with LUX data.

Figure 4.5: Constraints on the parameter space satisfying correct relic abundance (shown by Green
and Red points) and null detection of dark matter at LUX (shown by Cyan lines). For M⌘ = 1 GeV,
we have used sin ✓⌘h = 5 ⇥ 10�6 (dashed-line), 1 ⇥ 10�5 (solid-line) and 3.5 ⇥ 10�5 (dotted-line).

4.7 Constraints from Detection of DM in Direct Search Ex-

periments

The non observation of DM signal in direct search experiments such as Xenon-100 [12] and LUX [110]

put a constraint on the model parameters. We study the constraint coming from the direct detection

of DM in the experiments in the following two cases:

a. In the absence of ⌘

b. In the presence of ⌘ .

We show that in absence of ⌘ field, the elastic scattering of DM with nucleon through Z �Z 0 mixing

give stringent constraint on the model parameters: MZ0 and gµ⌧ , as depicted in fig. (4.3). On the

other hand, in the presence of ⌘ field , the elastic scattering will be possible through the ⌘ � h

mixing, while inelastic scattering with nucleon will be possible via Z � Z 0 mixing. In the following

we discuss in details the possible constraints on model parameters.

4.7.1 Direct Detection in absence of ⌘

The direct detection of DM signal through its elastic scattering with the nuclei is a very challenging

task. The current sensitivity of present direct DM detection experiments sets stringent limits on

parameters of the model, or hopefully enable the observation of signals in near future. In absence

of ⌘ field, the elastic scattering between singlet fermion DM with nuclei is displayed in Fig. 4.6.
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Figure 4.6: Feynman diagrams for direct detection of DM through scattering with nuclei via the
exchange of Z � Z 0 mixing.

The spin independent DM-nucleon cross-section mediated via the loop induced Z � Z 0 mixing is

given by [111, 112]

�Z
SI =

1

64⇡A2
µ2

r tan2 ✓Z
GF

2
p

2

g2
µ⌧

M2
Z0


Z

fp

fn
+ (A � Z)

�2
f2

n , (4.24)

where A is the mass number of the target nucleus, µr = M�mn/(M� + mn) ⇡ mn is the reduced

mass, mn is the mass of nucleon (proton or neutron) and fp and fn are the interaction strengths

(including hadronic uncertainties) of DM with proton and neutron respectively. Here Z is the atomic

number of the target nucleus.

For simplicity we assume conservation of isospin, i.e. fp/fn = 1. The value of fn is varied within

the range: 0.14 < fn < 0.66 [113, 114, 115]. If we take fn ' 1/3, the central value, then from Eqn.

(3.22) we get the total cross-section per nucleon to be

�Z
SI ' 7.6 ⇥ 10�46cm2 tan2 ✓Z

g2
µ⌧

M2
Z0

. (4.25)

for the DM mass of 33 GeV.

The Z-boson mass puts a stringent constraint on the mixing parameter tan ✓Z to be tan ✓Z <

10�2 [345, 346]. For tan ✓Z = 10�3 we show the allowed values of gµ⌧ and MZ0 in fig (4.3) by

choosing LUX limit on spin independent direct DM detection cross-section to be 7.6 ⇥ 10�46cm2

(at a DM mass of 33 GeV ). The plot follows a straight line as expected from equation (3.22) and

shown by the green line in fig. (4.3). Any values below that line will be allowed by the LUX limit.

However the space above the green line will also be allowed if we choose tan ✓Z < 10�3. In other

words, the parameters gµ⌧ and MZ0 are not severely constrained by the direct detection of DM.

4.7.2 Direct Detection in Presence of ⌘

In presence of ⌘ field, the elastic scattering of the DM with the nuclei is mediated through ⌘ � h

mixing. On the other hand the inelastic scattering of the DM with the nuclei is mediated through

the Z � Z 0 mixing.
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Figure 4.7: Elastic scattering of DM with nuclei through ⌘ � h mixing.

Elastic scattering of DM

The spin-independent scattering of DM with nuclei is a t-channel exchange diagram as shown in

Fig. 4.7 through the mixing of scalar singlet ⌘ with the SM Higgs H. The elastic scattering cross

section �n
SI o↵ a nucleon is given by[111, 112] :

�⌘h
SI =

µ2
r

⇡A2
[Zfp + (A � Z)fn]2 (4.26)

where µr is the reduced mass, Z and A are respectively atomic and mass number of the target

nucleus. In the above equation fp and fn are the e↵ective interaction strengths of the DM with the

proton and neutron of the target nucleus and are given by:

fp,n =
X

q=u,d,s

fp,n
Tq
↵q

mp,n

mq
+

2

27
fp,n

TG

X

q=c,t,b

↵q
mp,n

mq
(4.27)

with

↵q =
f� sin ✓⌘h

M2
⌘

✓
mq

vH

◆
(4.28)

In Eq. (4.27), the di↵erent coupling strengths between the DM and light quarks are given by [117,

3, 347, 348] f
(p)
Tu = 0.020 ± 0.004, f

(p)
Td = 0.026 ± 0.005,f (p)

Ts = 0.118 ± 0.062, f
(n)
Tu = 0.014 ±

0.004,f (n)
Td = 0.036±0.008,f (n)

Ts = 0.118±0.062. The coupling of DM with the gluons in target nuclei

is parameterized by

fn
TG = 1 �

X

q=u,,d,s

fn
Tq . (4.29)

Thus from Eqs. 4.26, 4.27, 4.28, 3.28, the spin-independent DM-nucleon interaction through ⌘ � h

mixing is given by:

�⌘h
SI =

µ2
rf

2
� sin2 ✓⌘h

⇡A2M4
⌘

⇥

Z

mp

vH

✓
fp

Tu
+ fp

Td
+ fp

Ts
+

2

9
fp

TG

◆
+ (A � Z)

mn

vH

✓
fn

Tu
+ fn

Td
+ fn

Ts
+

2

9
fn

TG

◆�2
.(4.30)

In the above equation, the unknowns are f�, sin ✓⌘h and M⌘. So using the current limit on spin-

independent scattering cross-section from Xenon-100 [12] and LUX [110] one can constrain these
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parameters f� and M⌘ for a fixed value of mixing angle sin ✓⌘h. Here we use LUX bound and the

corresponding contour lines are drawn in the fig.4.5 by choosing M⌘ = 1GeV (cyan lines). We have

drawn three contour lines for three di↵erent values of mixing angles: sin ✓⌘h = 5 ⇥ 10�6(dashed),

sin ✓⌘h = 10�5 (solid) and sin ✓⌘h = 3.5 ⇥ 10�5 (dotted). The regions on the right of the respective

lines are excluded by LUX data. From fig. (4.5), we see that for a constant value of M⌘, if sin ✓⌘h

decreases then the curves shift towards higher value of f�. Thus for a typical value of ⌘ mass:

M⌘ = 1 GeV, we need ✓⌘h . O(10�5) to be compatible with relic abundance as well as direct search

of DM at LUX. This constraint is also in agreement with bound from BBN as discussed in section

4.3.

Inelastic scattering of DM

As we discussed above, the inelastic scattering [144] of the DM with the target nuclei is also possible

via Z � Z 0 mixing. Let us rewrite the DM Lagrangian in presence of ⌘ field as [145, 85, 84, 143] :

LDM = i�
�
/@ + i gµ⌧ Z 0

µ�
µ
�
�

�M���� 1

2
f1

⇣
�CPL�+ h.c

⌘
⌘? � 1

2
f2

⇣
�CPR�+ h.c

⌘
⌘? , (4.31)

where f1 and f2 are the interaction strengths to left and right components of the vector-like

fermion �. When ⌘ gets a vev, the DM gets small Majorana mass mL = f1v⌘ and mR = f2v⌘. The

presence of small Majorana mass terms for the DM split the Dirac state into two real Majorana

states �1 and �2. The Lagrangian in terms of the new eigenstates is given as

LDM =
1

2
�1i�

µ@µ�1 � 1

2
M1�1�1 +

1

2
�2i�

µ@µ�2 � 1

2
M2�2�2 + igµ⌧�2�

µ�1 Z 0
µ

+
1

2
gµ⌧

m�
M�

�
�2�

µ�5�2 � �1�
µ�5�1

�
Z 0

µ + O(
m2

�
M2
�

)

+
1

2

�
f1 cos2 ✓ � f2 sin2 ✓

�
�1�1⌘ +

1

2

�
f2 cos2 ✓ � f1 sin2 ✓

�
�2�2⌘ ,

(4.32)

where sin ✓ is the mixing angle , M1 and M2 are the two mass eigenvalues and are given by

M1 = M� � m+, M2 = M� + m+ (4.33)

m± =
mL ± mR

2
(4.34)

From the above expression the dominant gauge interaction is o↵-diagonal, and the diagonal inter-

action is suppressed as m�
M�

⌧ 1. The mass splitting between the two mass eigen states is given

by:

� = M2 � M1 = 2m+ = (f1 + f2)v⌘ . (4.35)

The inelastic scattering with the target nucleus due to Z � Z 0 mixing is shown in Fig. 4.8. The

occurrence of this process solely depends on the mass splitting between the two states. In fact, the

minimum velocity of the DM needed to register a recoil inside the detector is given by [144, 145, 85,

84, 143] :

vmin = c

r
1

2mnER

✓
mnER

µr
+ �

◆
, (4.36)
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Figure 4.8: Inelastic scattering of DM with the target nucleus through the Z � Z 0 mixing.

where ER is the recoil energy of the nucleon. If the mass splitting is above a few hundred keV, then

it will be di�cult to excite �2. So the inelastic scattering will be forbidden.

4.8 Indirect detection of DM

We now look at the compatibility of the present framework with indirect detection signals of DM and

in particular AMS-02 positron data. Recently, the AMS-02 experiment reported the results of high

precision measurement of the cosmic ray positron fraction in the energy range of 0.5�500 GeV[15, 2].

This result further confirmed the measurement of an excess in the positron fraction above 10 GeV

as observed by PAMELA[16, 17] and FERMI-LAT[340]. The usual explanation for this excess is

through DM annihilation producing the required flux of positrons. However such an excess was

not observed in the antiproton flux by PAMELA[349], thus suggesting a preference for leptonic

annihilation channels. Recently AMS-02 also announced results from their measurement of the

antiproton flux, which suggests a slight excess above 100 GeV[350]. But this was found to be within

error of the modelling of secondary astrophysical production[351]. In this context we consider the

Lµ � L⌧ symmetry where the DM dominantly annihilates to muons which then subsequently decay

to produce electrons. This ensures a softer distribution of positrons thereby providing a better fit

to the experimental data.

For theoretical explanation for AMS-02 positron excess through DM annihilations in the Lµ �L⌧

symmetric extension of SM we have to calculate propagation of cosmic rays in the galaxy. In order to

do this calculation, the propagation of cosmic rays is treated as a di↵usion process and one therefore

solves the appropriate di↵usion equation. Here we calculate the flux of the cosmic ray electrons

(primary and secondary) as well as secondary positrons at the position of the sun after propagating

through the galaxy. The propagation equation for charged cosmic rays is given by[352]

@ (~r, p)

@t
= q + ~r ·

⇣
Dxx

~r � ~Vc 
⌘

+
@

@p
p2Dpp

@

@p

1

p2
 � @

@p

h
ṗ � p

3

⇣
~r · ~Vc

⌘
 
i

� 1

⌧f
 � 1

⌧r
 (4.37)

where  is the cosmic ray density, ṗ gives the energy loss of cosmic rays, Dxx(pp) is the di↵usion

coe�cient in spatial (momentum) coordinates while the last two terms represent the fragmentation

and radioactive decay of cosmic ray nuclei. The di↵usion coe�cient is parameterized as Dxx =
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M� (GeV) MZ0 (GeV) gµ⌧ ⌦h2 Boost factor
BP1 710 838 0.35 0.116 720
BP2 800 782 0.4 0.113 800

Table 4.2: Benchmark point which satisfies relic density and fits the AMS2 positron fraction data[2].

D0xxE��e��. The primary spectrum of cosmic ray electrons is modeled by

 =
N

2

L

D0xx
E��e�� (4.38)

where N is a normalization constant and L is the half height of the cylindrical di↵usion zone. The

parameters for propagation of cosmic rays are D0, �, N , L, va (Alfven velocity), Vc and �e. We

use the GALPROP package [353, 354] to solve the di↵usion equation in Eq. 4.37 using a di↵usive

re-acceleration model of di↵usion. The cosmic ray primary and secondary electron flux as well

as the secondary positron flux which constitute the astrophysical background are thus obtained.

The positron flux from DM annihilations is calculated using micrOMEGAs[122] while the gauged

U(1)Lµ�L⌧ model is implemented in micrOMEGAs with the help of LanHEP[355]. The ratio of the

DM positron signal thus obtained, to the total astrophysical background gives the positron fraction.

The key feature of this model is that the DM does not couple to quarks at tree level and

hence we do not see any observable contribution to the antiproton flux. We therefore focus on

the possible explanation of positron fraction. However, from fig. 4.3, we noticed that the combine

constraints from muon g � 2 anomaly and neutrino trident production restricts the MZ0 . 400MeV

and gµ⌧ . 10�3. In this limited parameter space, the DM annihilation cross section h�|v|i(�†� !
µ+µ�, ⌧+⌧�) << h�|v|iF ⌘ 3⇥ 10�26cm3/s. Therefore, to explain the observed positron excess one

needs an unnaturally large boost factor. As we describe below, the most favorable cross-section for

DM annihilation to positrons that explains the AMS-02 positron excess occurs near the resonance, Z 0

mass of 2M�, with the DM �Z 0 coupling ⇠ 10�1, which is now ruled out by the combine constraints

from g � 2 anomaly and neutrino trident production. Thus one finds that a reasonable explanation

of the AMS-02 positron excess in the Lµ � L⌧ model under consideration is ruled out. However,

if we choose any point below the dashed brown curve of fig. 4.3, then these points are not ruled

out by neutrino trident production though contribute partially to anomalous g � 2 values. In this

region of parameter space, the DM annihilation can explain the observed positron excess while being

compatible with relic density and direct detection limits. We consider two benchmark points which

satisfy the relic density constraint from PLANCK[5]. The parameters for the two chosen benchmark

points are listed in Table 4.2. We find that for the best fit to AMS-02 data in the current scenario

requires M� & 500 GeV. Also for satisfying the relic density constraint we need MZ0 ⇠ 500 GeV for

M� & 500 GeV.

4.9 Conclusion and Outlook

In this chapter we discussed the muon g � 2 anomaly, light non-zero neutrino mass and DM phe-

nomenology in a gauged U(1)Lµ�L⌧ extension of the SM. We augmented the SM with three right

handed neutrinos Ne, Nµ, N⌧ and a Dirac fermion � which have non zero charges under U(1)Lµ�L⌧

symmetry except Ne which is a complete singlet fermion. The U(1)Lµ�L⌧ was allowed to break
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Figure 4.9: Ratio of positron flux to the total (e� + e+) flux against energy of the cosmic rays with
AMS-02(2014) data[2] for benchmark points listed in Table 4.2. The blue curve is for the benchmark
point BP1 while the black curve is for BP2.

completely at a TeV scale by giving vev to a SM singlet scalar S which bears an unit Lµ � L⌧

charge. The vev of S gave masses not only to the additional gauge boson Z 0, but also to the right

handed neutrinos: Ne, Nµ, N⌧ . As a result, below electroweak symmetry breaking, the light neutri-

nos acquired masses through the type-I seesaw mechanism. A discrete symmetry Z2 is also imposed

under which, � is choosen to be odd while all other fields are even. As a result the stability of � is

ensured. Hence it serves as a viable DM candidate.

The relic abundance of DM is obtained via its annihilation to muon and tauon families with Z 0

exchanged s-chanel processes. To obtain the correct relic abundance we require mass of Z 0 to be

greater than 100 MeV and the gauge coupling to leptons: gµ⌧ > 5 ⇥ 10�3. On the other hand,

the muon g � 2 anomaly requires smaller values of the gauge coupling gµ⌧ for Z 0 mass greater than

100 MeV (see fig. 4.3). So the two problems could not be solved simultaneously. Therefore, a new

SM singlet scalar field ⌘ is introduced into the model having 2 units of charge under U(1)Lµ�L⌧

group. Due to the presence of ⌘ field, new annihilation chanel �̄� ! ⌘†⌘ opens up. As a result we

found a large region of parameter space in which the constraints from muon g � 2 anomaly and relic

abundance of DM could be satisfied simultaneously. The hitherto null detection of DM at direct

search experiments, such as LUX, is also discussed in Fig. 4.3. We found that the constraints from

muon g � 2 anomaly and LUX experiment are compatible in a large parameter space.

The combine constraints from muon g � 2 anomaly and neutrino trident production restricts

MZ0 . 400MeV and gµ⌧ . 10�3. This restricted parameter space is compatible with muon g � 2

anomaly, latest direct detection limits from LUX and relic abundance of DM in presence of ⌘ field. In

this limited parameter space the annihilation cross-section of DM to muon and tauon pairs through

the exchange of Z 0 is much smaller than the DM relic abundance cross-section. So one needs
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unnaturally large boost factor to explain the observed positron flux by PAMELA, Fermi-LAT and

recently by AMS-02 in the cosmic ray shower. However, if we consider the parameter space in the

plane of gµ⌧ versus MZ0 , which is not constrained by neutrino trident production, i.e., points below

the brown dashed curve, then we can explain the observed positron excess by DM annihilation with

suppressed anti-proton flux, as in our model the DM annihilates only to lepton pairs. Note that

these points in the plane of gµ⌧ versus MZ0 contribute partially to the anomalous g � 2 anomaly.

Thus, while explaining the observed positron excess, we need to sacrifice the explanation for g � 2

anomaly and vice versa.
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Chapter 5

Conclusion

In this thesis, di↵erent models by extending the SM has been proposed in order to explore the

possibility of a DM candidate as well as the small neutrino mass. The viability of the model is also

verified by taking the results of various experiments from LHC, direct and indirect DM detection

experiments like LUX and XENON. The smallness of neutrino mass is also explained in the models

using seesaw mechanism.

In chapter 1, the existence of the DM is presented from results of various experiments like galaxy

rotation curve, gravitational lensing, CMBR fluctuation observed by PLANCK. The production of

the DM in the early universe is also studied by solving the Boltzmann equation in a freeze out

mechanism. The method used in this case is only applicable for cold DM which di↵ers from other

possible DM candidates like warm and hot. The status of DM detection in various experiments like

direct and indirect detection is also mentioned. A small review of the neutrino mass as well as the

anomalous magnetic moment of muon particle is also presented. The motivation thus received in

chapter 1 is carried out in various BSM frameworks in subsequent chapters 2,3 and 4.

In chapter 2, a dipolar DM model is studied simultaneously explaining the DM and neutrino

mass. We augmented the SM by adding three right handed neutrinos and two scalars, a doublet

and a charged singlet. The LSP among the right handed neutrinos serves as a DM candidate in the

model. A transition magnetic moment is developed between the NLSP and the LSP. As a result the

former can decay to later by emitting a monochromatic photon of 3.5 keV energy. This photon can

explain the X-ray signal as observed by the XMM Newton observatory. The life time of the NLSP

is of the order of age of the universe, hence it is decaying in the current epoch. As the life time is

so large NLSP also gives contribution to the DM relic abundance. The neutrinos also get mass in a

Type I seesaw scenario.

In chapter 3, a mixed singlet-doublet vector like fermionic DM model is proposed. The model

contains two vector like fermions: a singlet and a doublet under SU(2)L, in addition to the SM. We

argued that a singlet or the neutral component of the doublet alone can not serve as DM candidates.

But after electroweak transition both neutral particles mix together and the lightest of them becomes

a viable candidate of DM. The stability of the DM is ensured by the imposed Z2 symmetry. We

explore the model parameters, considering combined constraints from collider, relic density of DM

as well as null result from direct detection of DM experiments. The possibility of a displaced vertex

signature in the colliders by the charged companion of DM is also studied. The model is further
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extended by adding a scalar triplet under SU(2). The scalar triplet couples to both SM leptons and

fourth generation lepton. After the symmetry breaking, the neutral component of the triplet gets

an induced vev. As a result the neutrinos get mass in a Type II seesaw scenario. Again the DM

phenomenology is also a↵ected by the presence of the scalar triplet. It is seen that the DM becomes

inelastic due to the small Majorana mass induced by the scalar triplet. Hence the Z mediated direct

detection process is forbidden. As a result the constraint on the singlet-doublet mixing angle is little

bit relaxed. In a very brief way, the diphoton resonance at 750 GeV energy as claimed by CMS and

ATLAS is also explained by adding a singlet scalar of mass 750 GeV and a vector like quark to the

singlet-doublet vector like fermion model.

The inadequacy of SM in order to explain the muon anomalous magnetic moment is considered

in chapter 4. The motivation received in chapter 1 is carried out further to explain the muon g � 2

anomaly, neutrino mass as well as the DM in a unified model. The SM is gauged by a new U(1)Lµ�L⌧

symmetry, where the new symmetry is built under the basis of di↵erence of lepton number between

the muon and tauon lepton number. The model contains 3 neutral fermions in addition to the

DM which are all a singlets under SU(2)L. The DM has non trivial charge under the new gauge

symmetry and is stabilized by a Z2 symmetry. Two singlet scalars under SU(2)L but having charge

in 1 and 2 units, under the imposed gauge symmetry are also added in order to explain neutrino

mass as well as DM phenomenology. The magnetic moment of muon receives additional contribution

from the new gauge field in addition to the SM, hence can explain the anomaly. In the absence of

the double charge scalar under new gauge symmetry, the direct detection of DM is possible through

Z � Z 0 mixing. However in its presence, a Majorana mass term is possible for the DM. As a result

the DM field splits into two Majorana fields with a small mass splitting between them. Since due

to the inelastic nature the direct detection through Z � Z 0 mixing is forbidden. But the elastic

scattering is still be possible through the mixing in the scalar sector. The indirect detection of DM

is also explored by considering the data of AMS-02.

In this work, new beyond standard model frameworks have been explored. The various features of

the model in order to explain the cold DM is also carefully studied. The analysis is also further carried

out, not only to the neutrino sector, but also to explain the muon anomalous magnetic moment

and various astrophysical observations. The astrophysical observations include 3.5 keV X-ray line

observed in the Newton XMM observatory, the positron excess observed by PAMELA, Fermi-LAT

and AMS-02. Extensive study of these models also adds one step towards better understanding of

our universe, especially the testability of DM in near future.
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Appendix A

Radiative Neutrino Mass

Now let us calculate the radiative neutrino mass. The mass matrix can be read from the fig. 2.3 as

(m⌫)↵� = i(Y⌃)↵2PR(IR � II) PR i(Y⌃)�2 (A.1)

where

IR =

Z
d4k

(2⇡)4
i

(p � k)2 � M2
⌃R

i(�k + M2)

k2 � M2
2

(A.2)

with II being same as IR if we replace M⌃I in place of M⌃R. The relative sign between the two

terms is due to the fact that the imaginary component of ⌃ field gets a minus sign when squared.

And again the term containing �k will also goes to zero considering the symmetric and antisymmetric

argument of the integral in terms of k. We will calculate this integral in the limit p ! 0. So the

expression for IR becomes

IR = �
Z

d4k

(2⇡)4
1

k2 � M2
⌃R

M2

k2 � M2
2

(A.3)

We use the Feynman parameter x and later we will insert the M2 in denominator of IR, and arrive

at the expression

1

k2 � M2
⌃R

1

k2 � M2
2

=

Z 1

0

dx
1

[x(k2 � M2
2 ) + (1 � x)(k2 � M2

⌃R)]2
(A.4)

=

Z 1

0

dx
1

[k2 � �]2

where � = x(M2
2 � M2

⌃R) + M2
⌃R. Now IR becomes

IR = �
Z 1

0

dx

Z
d4k

(2⇡)4
1

[k2 � �]2
. (A.5)

To do the k integration we perform a Wick rotation by changing k0 = ik0
E and

�!
k =

�!
kE . So the
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integral becomes

IR = �
Z 1

0

dx
i

(2⇡)4

Z
d⌦

Z 1

0

dkE k3
E

1

[k2
E + �]2

(A.6)

= � i

(2⇡)4

Z 1

0

dx(2⇡2)

Z 1

0

dkE k3
E

1

[k2
E + �]2

= � i

(16⇡2)

Z 1

0

dx

Z 1

0

dk2
E k2

E

1

[k2
E + �]2

The integral has ultraviolet divergence. But this divergence will be cancelled out by the contri-

bution from II term. The expression for II will be exactly the same as IR with M⌃R is replaced by

M⌃I . So our expression now becomes

IR � II = � i

(16⇡2)

Z 1

0

dx

Z 1

0

dk2
E k2

E

✓
1

[k2
E + �R]2

� 1

[k2
E + �I ]2

◆
(A.7)

= � i

(16⇡2)

Z 1

0

dx[(�ln�R) � (�ln�I)]

where �R,I = x(M2
2 �M2

⌃R,I)+M2
⌃R,I . The phase appearing in the expression can be absorbed

by redefining the SM neutrino field. So we can drop this phase. Now the dx integration is straight

forward. After few algebraic manipulation we will arrive at the expression for neutrino mass matrix

as

(mloop
⌫ )↵� =

(Y⌃)↵2(Y⌃)�2 M2

16⇡2


M2

⌃R�
M2

⌃R
� M2

2

� ln

✓
M2

⌃R

M2
2

◆

� M2
⌃I�

M2
⌃I

� M2
2

� ln

✓
M2

⌃I

M2
2

◆�
(A.8)

100



Appendix B

Magnetic Moment of Dipolar DM

Let us assign the four-vector momenta of N2, N1 and photon by p1, p2 and k, respectively. The

Feynman amplitude for the magnetic DM decay shown in Fig. 2.2(c.) can be written as

M(c.) =

Z
d4k

(2⇡)4
u(p2) (i Y ⇤

H PR) S`(k � q) (�i e �µ✏
µ(q)) S`(k)(i Y⌃ PR) uc(p1)

⇥�H(p1 � k) (µs vew) �⌃(p1 � k)

= u(p2)
⇣
i �(c.)

µ

⌘
✏µ(q)uc(p1) , (B.1)

where i �(c.)
µ is factored out to be

i �(c.)
µ = (�e Y ⇤

H Y⌃ µs vew) ⇥
Z

d4k

(2⇡)4
PR(k/ � q/ + m`) �µ(k/ + m`) PR

[{(k � q)2 � m2
`}{k2 � m2

`}{(p1 � k)2 � M2
H)}{(p1 � k)2 � M2

⌃)}]

= (�e Y ⇤
H Y⌃ µs vew)

Z
d4k

(2⇡)4
D�1 · Nµ (B.2)

We denote D�1 and Nµ as follows

D�1 =
1

[{(k � q)2 � m2
`}{k2 � m2

`}{(p1 � k)2 � M2
H)}{(p1 � k)2 � M2

⌃)}]
(B.3)

Nµ = PR(k/ � q/ + m`) �µ(k/ + m`) PR . (B.4)

After doing some simpler algebra, we get

�(c.)
µ =

(�e Y ⇤
H Y⌃ µs vew)

M2
⌃ � M2

H

⇥
Z

d4k

(2⇡)4


Nµ

{(k � q)2 � m2
`}{k2 � m2

`}{(p1 � k)2 � M2
⌃}

� Nµ

{(k � q)2 � m2
`}{k2 � m2

`}{(p1 � k)2 � M2
H}
�

=
(�e Y ⇤

H Y⌃ µs vew)

M2
⌃ � M2

H

[I1 � I2] (B.5)

The integral now becomes
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⌃ ⌦1, ⌦1 = [ZN

�
y � y2 � xy

� � (1 � y)Z` � y]�1. Since the term proportional to

p2 µ � p1 µ gives vanishing contribution and writing p1 µ = 1
2 [p2 µ + p1 µ + qµ], the integral becomes
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Z 1

0

dx

Z 1�x

0

dy ⌦1 [y � 1]PR (B.6)

Similarly, one can express the second integral I2 by replacing M⌃ by MH .

Now we can write the loop factor as

i �(c.)
µ =

(�e Y ⇤
H Y⌃ µs vew)
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⌃ � M2

H


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16⇡2
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I (p1 + p2)µ PR

= A(c.)
12 (p1 + p2)µ (B.7)

where the integral I is

I =

Z 1

0

dx

Z 1�x

0

dy (y � 1)[⌦1 � ⌦2]

and

A(c.)
12 =

�e

16⇡2

(Y ⇤
H Y⌃ µs vew)

M2
⌃ � M2

H

m`

M2
⌃

I

From Gordon Identity, we can write

A(c)
12 u(p2) (p1 + p2)µu(p1) = A(c)

12 u(p2) [ 2MN �µ � i�µ ⌫(p2 � p1)
⌫ ] u(p1) (B.8)

The analytical expression for transitional magnetic moment between two nearly degenerate heavy

RH neutrinos, as derived from the e↵ective operator A(c)
12 N1�

µ⌫N2Fµ⌫ following Feynman diagram

Fig. 2.2(c.), as

A(c)
12 =

�e

16⇡2

(Y ⇤
H Y⌃ µs vew)

M2
⌃ � M2

H

m`

M2
⌃

I (B.9)

Using the same formalism of Feynman calculations as discussed in Fig. 2.2(c.), one can derive the

relevant contributions of transition magnetic moment depicted in Fig. 2.2(a.) where the photon is

emitted from H-vertex and Fig. 2.2(b.) with the emitted photon from ⌃-vertex. At the end, the

analytical expression for transitional magnetic moment including relevant Feynman diagrams can
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be put in the following expression

µ12 = A(a)
12 + A(b)

12 + A(c)
12

' �e

16⇡2

(Y ⇤
H Y⌃ µs vew)

M2
⌃ � M2

H

m`

M2
⌃

Itot . (B.10)

where Itot is the loop factor accounting all these contributions.
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Appendix C

3-Body Decay of N�

Kinematics

The three body decay width is given by

d� =
1

2MN

3Y

i=1


d3pi

(2⇡)32Ei

�
⇥ (2⇡)4�4

"
P �

3X

i=1

pi

#
|M|2 , (C.1)

where P is the four momentum of the decaying particle and pi are the four momenta of final state

particles. We choose p2, p3 to be the momenta of SM leptons. M is the amplitude matrix element

for the decay. We introduce an invariant mass s = (p2 + p3)2 of the SM leptons via the relation

1 =

Z
ds �(s � p2) d4p �4(p � p2 � p3) (C.2)

=

Z
ds

d3p

2Ep
�4(p � p2 � p3)

we get

� =

Z
1

2MN

ds

2⇡


d3p

(2⇡)32Ep

d3p1

(2⇡)32E1
(2⇡)4�4(P � p1 � p)

�
(C.3)

⇥


d3p2

(2⇡)32E2

d3p3

(2⇡)32E3
(2⇡)4�4(p � p2 � p3)

�
|M|2

=

Z
1

2MN

1

(2⇡)5
ds [d2(P ! p1, p) ⇥ d2(p ! p2, p3)] |M|2 ,

where d2 represents the two body phase space factor and is given by

d2(A ! B, C) =
⇡

2M2
A

�1/2(M2
A, M2

B , M2
C)

d⌦

4⇡
, (C.4)
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Figure C.1: Momentum configuration of N� decay in `, ⌫` COM frame.

with �(a, b, c) = a2 + b2 + c2 � 2ab � 2bc � 2ca. Now using the above expression in eq. C.3, we get

� =

Z
1

2MN

ds

(2⇡)5
⇡

2M2
N

�1/2(M2
N , m2

1, s)
d⌦

4⇡
(C.5)

⇥ ⇡

2s
�1/2(s, m2

2, m
2
3)

d⌦

4⇡
|M|2

=

Z
1

28M3
N⇡

3s
�1/2(M2

N , m2
1, s) ⇥ �1/2(s, m2

2, m
2
3)

1

4⇡
⇥ 2⇡ d cos ✓|M|2

or,
d�

ds d cos ✓
=

1

29M3
N⇡

3s
�1/2(M2

N , m2
1, s) ⇥ �1/2(s, m2

2, m
2
3)|M|2. (C.6)

This is the basic equation for decay width. Now we will calculate the |M|2 for the process

N�(P ) ! N0(p1)l
�(p2)⌫l(p3) (C.7)

The amplitude for this process is given by

iM =
ig sin ✓p

2
[v̄(p1)�

µu(P )]

✓ �igµ⌫

q2 � M2
W + i✏

◆
ig

2
p

2
[ū(p3)�

⌫PLv(p2)] (C.8)

= i
g2 sin ✓

4(q2 � M2
W + i✏)

[v̄(p1)�
µu(P )][ū(p3)�

⌫PLv(p2)].

Considering the two spin states of N�, doing a spin sum of the spiners and squaring the amplitude,

we get

|M|2 =
g4 sin2 ✓

32(q2 � M2
W + i✏)2

Tr[(⇢⇢p1 � M1)�
µ(�P + MN )�⌫ ] Tr[(⇢⇢p3 + m3)�µPL(⇢⇢p2 � m2)�⌫PL] (C.9)

After doing a little algebra with the trace we end up with the expression

|M|2 =
g4 sin2 ✓

(q2 � M2
W + i✏)2

⇥ 2[(p1.p3)(p2.P ) + (p1.p2)(p3.P ) + M1MN (p3.p2)] (C.10)

To calculate various products of momenta, we choose the center of mass frame of l� and ⌫l (see

fig. C.1).

P = (E, 0, 0, �!p )
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p1 = (E1, 0, 0, �!p )

p2 = (E2, 0, 0,
�!
p0 )

p3 = (E3, 0, 0, ��!
p0 )

and

s = (p2 + p3)2 = (P � p1)2 , hence

smin = (m3 + m2)2, smax = (MN � M1)2.

Now the products of momenta are given as

P.p2 = EE2 � |�!p ||�!p0 | cos ✓ (C.11)

p1.p3 = E1E3 + |�!p ||�!p0 | cos ✓

p1.p2 = E1E2 � |�!p ||�!p0 | cos ✓

P.p3 = EE3 + |�!p ||�!p0 | cos ✓

p2.p3 =
s � m2

2 � m2
3

2
.

The energy and momenta can be expressed in terms of masses and s like

E =
M2

N � M2
1 + s

2
p

s
(C.12)

E1 =
M2

N � M2
1 � s

2
p

s

E2 =
s + m2

2 � m2
3

2
p

s

E3 =
s + m2

3 � m2
2

2
p

s

|�!p | =
1

2
p

s
�1/2(M2

N , M2
1 , s)

|�!p0 | =
1

2
p

s
�1/2(s, m2

2, m
2
3)

We use these relations in |M|2,

|M|2 =
g4 sin2 ✓

(s � M2
W + i✏)2

⇥ 2
h⇣

(E1E3 + |�!p ||�!p0 | cos ✓)(EE2 � |�!p ||�!p0 | cos ✓)
⌘

+(E1E2 � |�!p ||�!p0 | cos ✓)(EE3 + |�!p ||�!p0 | cos ✓) + M1MN

✓
s � m2

2 � m2
3

2

◆�

Doing a d cos ✓ integration eq C.6 becomes

d�

ds
=

1

29M3
N⇡

3s
�1/2(M2

N , m2
1, s) ⇥ �1/2(s, m2

2, m
2
3) ⇥ g4 sin2 ✓

(s � M2
W + i✏)2


4EE1E2E3 � 4

3
|�!p |2|�!p0 |2 + MNM1(s � m2

2 � m3
3)

� (C.13)

Now we will put the neutrino mass to be zero i.e m2 = 0, and m3 = m`. Again in the limit of small

momentum transfer, the denominator of the propagator ! M4
W and hence we can approximate

it to Fermi constant with the usual relation GFp
2

= g2

8M2
W

. The ds integration is performed using
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Mathematica and after a little lengthy algebra, we get the final result

� =
G2

F sin2✓

24⇡3
M5

NI (C.14)

where GF is the Fermi coupling constant and I is given as:

I =
1

4
�1/2(1, a2, b2)F1(a, b) + 6F2(a, b) ln

✓
2a

1 + a2 � b2 � �1/2(1, a2, b2)

◆
. (C.15)

In the above Equation F1(a, b) and F2(a, b) are two polynomials of a = M1/MN and b = m`/MN ,

where m` is the charged lepton mass. Upto O(b2), these two polynomials are given by

F1(a, b) =
�
a6 � 2a5 � 7a4(1 + b2) + 10a3(b2 � 2) + a2(12b2 � 7) + (3b2 � 1)

�

F2(a, b) =
�
a5 + a4 + a3(1 � 2b2)

�
. (C.16)
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Appendix D

Calculation of Z � Z 0 mixing

The loop factor is given as

i⇧µ⌫ = �1

Z
d4k

(2⇡)4
Tr

"
(igµ⌧ )�

µ i(�k + mf )

k2 � m2
f + i✏

(i
g

2 cos ✓W
)�⌫(CV � CA�

5)
i(�k + �q + mf )

(k + q)2 � m2
f + i✏

#

= � gµ⌧g

2 cos ✓W

Z
d4k

(2⇡)4
1

k2 � m2
f + i✏

1

(k + q)2 � m2
f + i✏

Tr
⇥
�µ(�k + mf )�⌫(CV � CA�

5)(�k + �q + mf )
⇤

= � gµ⌧g

2 cos ✓W

Z
d4k

(2⇡)4
1

D
Nµ⌫ , (D.1)

Where 1
D = 1

k2�m2
f+i✏

1
(k+q)2�m2

f+i✏
and Nµ⌫ we will evaluate now

Nµ⌫ = Tr
⇥
�µ(�k + mf )�⌫(CV � CA�

5)(�k + �q + mf )
⇤

= Tr
⇥
�µ�k�⌫(CV � CA�

5)(�k + �q)
⇤
+ Tr

⇥
�µmf�

⌫(CV � CA�
5)mf

⇤

= CV Tr[�µ�k�⌫�k + �µ�k�⌫�q)] � CATr[�µ�k�⌫�5�k + �µ�k�⌫�5
�q] + CV m2

fTr[�µ�⌫ ]

= 4[(kµk⌫ � k2gµ⌫ + k⌫kµ) + (kµq⌫ � k.qgµ⌫ + k⌫qµ)] (D.2)

�4CA"
⇢µ�⌫q⇢k� + 4m2

fCV gµ⌫

Now for the denominator part we have to use the Feynmann parameterization formulae :

1

AB
=

Z 1

0

dx
1

[xA + (1 � x)B]2
(D.3)
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Now

1

D
=

Z 1

0

dx
1

[(k2 � m2
f )(1 � x) + ((k + q)2 � m2

f )x]2

=

Z 1

0

dx
1

[(k2 � m2
f )(1 � x) + (k2 + q2 + 2k.q � m2

f )x]2

=

Z 1

0

dx
1

[k2 + 2xk.q + xq2 � m2
f ]2

=

Z 1

0

dx
1

[l2 � �]2
(D.4)

where l = k + xq and � = �x(1 � x)q2 + m2
f . Now we will change also the variable in numerator

Nµ⌫ to l.

Nµ⌫ = 4CV


(
2

d
� 1)l2gµ⌫ + 2x(x � 1)qµq⌫ � (x2q2 � xq2 � m2

f )gµ⌫

�
(D.5)

In the expression above we have used lµl⌫ ! 1
d l2gµ⌫ with dimension of space is d. We have neglected

the term containing antisymmetric tensor " in the eq. D.2 for symmetric arguements since it contains

terms linear in lµ. The Feynmann integrals involving four momenta integration are :

Z
ddl

(2⇡)d

l2

(l2 � �)2
=

�i

(4⇡)d/2

d

2

�(1 � d
2 )

�(2)

✓
1

�

◆1�d/2

(D.6)

Z
ddl

(2⇡)d

1

(l2 � �)2
=

i

(4⇡)d/2

d

2

�(2 � d
2 )

�(2)

✓
1

�

◆2�d/2

(D.7)

Using these integrals and after a bit algebric manupulations we will end up with the expression

i⇧µ⌫ = �i
gµ⌧g

2 cos ✓W
4CV

Z 1

0

dx
1

(4⇡)d/2

�(2 � d
2 )

�2�d/2
⇥⇥�gµ⌫(x2q2 � xq2 � m2

f ) + 2x(x � 1)qµq⌫ � �gµ⌫
⇤

(D.8)

Using the expression for �, the equation above can be rewritten as.

i⇧µ⌫ = �i
gµ⌧g

2 cos ✓W
4CV

Z 1

0

dx
1

(4⇡)d/2

�(2 � d
2 )

�2�d/2

⇥ ⇥�gµ⌫(x2q2 � xq2 � m2
f + x2q2 � xq2 + m2

f ) + 2x(x � 1)qµq⌫
⇤

= �i
gµ⌧g

2 cos ✓W
4CV

Z 1

0

dx
1

(4⇡)d/2

�(2 � d
2 )

�2�d/2

⇥
gµ⌫2x(x � 1)q2 � 2x(1 � x)qµq⌫

⇤

= (q2gµ⌫ � qµq⌫)⇡2(q
2) (D.9)

where

⇡2(q
2) = �i

gµ⌧g

2 cos ✓W
4CV 2

Z 1

0

dx x(1 � x)
1

(4⇡)d/2

�(2 � d
2 )

�2�d/2
(D.10)
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Using MS scheme, we can use

1

(4⇡)d/2

�(2 � d
2 )

�2�d/2
! 1

(4⇡)2


�Log

✓
�

⇤2

◆�
(D.11)

where ⇤ is the cuto↵ scale having mass dimension 1. Using the above formula in Eq. D.10

⇡2(q
2) = �i

gµ⌧g

2 cos ✓W
8CV

Z 1

0

dx x(1 � x)
1

(4⇡)2
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Z 1
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f
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◆
(D.12)

In the limit q ! 0, the above equation becomes

⇡2(q
2) = �i

gµ⌧g

2 cos ✓W
8CV

1

6
Log

 
m2

f

⇤2

!

= �i
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(D.13)
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