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In mammalian brains, there are two areas that process information important for 

image formation and goal directed visual behavior: primary visual cortex (V1), and the 

superior colliculus (SC). However, it is unclear how these regions support visually 

driven orienting and approach behaviors towards naturally rewarding stimuli. In this 

study, we seek to identify how the SC directs visual behavior using a mouse model of 

prey-capture behavior. Here, we investigate whether natural prey-capture behavior in 

mice is affected when regions of SC are silenced through injections of the GABAA-R 

agonist, muscimol, and through the use of pharmacogenetics known as DREADDs. We 

found that inhibition of the SC decreases the accuracy of approaches to prey and 

increases time to capture. Our studies so far indicate that inhibition of SC impairs 

ethological prey-capture behavior in mice. An understanding of the specific circuitry 

underlying visually guided behaviors directed towards rewarding stimuli will give 

insight into neurological disorders such as PTSD and addiction, where processes of 

orienting and approach are affected. 
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Introduction  

While recognizing a puddle of water on a rainy day and avoiding it seems to 

come naturally to us, scientists still have much to learn about how our visual systems 

recognize such objects and automatically formulate the appropriate behavioral response. 

Our visual systems first receive information from the outside world in the form of 

photons of light that hit the retina. Our brains then encode and transform that 

information through a series of hierarchically organized neural circuits in order to guide 

behavior (Niell 2011). The first figure provides a general idea of the pathway visual 

information can take starting at the eye, through the lateral geniculate nucleus (LGN), 

and eventually to the primary visual cortex, also called the striate visual cortex (V1) 

(Rowe 2008). A second pathway is shown as well where retinal information is sent 

directly to superior colliculus (SC) for rapid motor responses (Morris, Ohman, and 

Dolan 1999). Since we do not fully understand how the brain processes visual 

information, we are currently unable to address disorders where people inappropriately 

respond to environmental stimuli with pathological behavior. For example, certain 

visual stimuli may trigger inappropriate generalized fear in people with PTSD (Steuwe 

et al. 2014) or may stimulate automatic and overpowering approach responses to cues 

that signal access to addictive drugs despite the understood negative consequences 

(Rapaka, Schnur, and Shurtleff 2008). In these cases, the brain sees a normal situation 

and tells you to do the wrong thing. These miscommunications between a stimulus and 

the brain could prove to be dangerous or debilitating. Therefore, understanding how the 

brain translates visual information and subsequently directs behavioral outputs would be 

a step forward in addressing neurological disorders.  
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Figure 1: Bottom view of the brain highlighting the anatomy of visual pathways  

The general flow of visual information through the brain is shown here. Photons of 

light first enter the retina. In higher order mammals such as primate, retinal 

information is sent mainly through the LGN to the V1. Information from V1 is next 

sent to higher order visual areas in cortex and elsewhere to ultimately yield 

appropriate behavioral/ motor responses. In addition, a subcortical pathway takes 

retinal information and sends it, in parallel, directly to the SC (Hannula, Simons, and 

Cohen 2005). This pathway drives rapid orienting to natural, highly salient visual 

information. Figure from Hannula, Simons, and Cohen (2005).   

In order to analyze how the brain processes visual inputs to direct behavioral 

outputs, we must study a robust, visually driven behavior. We must also understand 

which specific visual features are responsible for triggering the consistent and 

quantifiable behavior so that we may localize the brain regions that link the stimulus to 

an appropriate behavior response. In addition, we will learn the most if we study this 

process in an animal model where we can trace how a specific stimulus is encoded and 

transformed through the brain at the neural level. Towards this end, we have chosen to 
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study visually driven prey-capture behavior in the common house mouse, Mus 

musculus, as our behavior to quantify and cricket prey as the visual input. The mouse 

model will also allow us to determine which regions of the brain allow it to express this 

behavior. We can ultimately pinpoint the specific sets of neurons and their connectivity 

that lead to the expression of an important behavior.  

In general, prey-capture is an ethological behavior that serves as an effective 

model to study how the brain processes visual stimuli in order to drive appropriate 

behavioral responses towards naturally rewarding stimuli. When an animal 

demonstrates successful prey-capture behavior, its brain has to see the prey and be able 

to tell the body to pounce accurately and quickly. If this process is broken, the animal 

could react aversively to prey or miss an opportunity for a highly rewarding meal 

severely impacting its ability to survive and successfully reproduce. Thus, the basic 

ability to use visual systems to accurately detect, localize, identify, and physically react 

to prey items is highly conserved throughout the animal kingdom, which is why this 

behavior is studied in mice. In human terms, our most basic abilities to rapidly orient 

and respond to stimuli that naturally capture our attention may rely on the same neural 

mechanisms engaged during prey-capture in other animals such as mice. Therefore, a 

detailed understanding of this behavior in mice may reveal key insights into how our 

own brains are wired to produce important orienting behaviors. 

 Importantly, studying ethological, visually driven approach behavior such as 

prey-capture in the mouse is a novel area of study, because prior studies have focused 

almost exclusively on the neural circuitry of avoidance behaviors and fear responses in 

mice (Shang et al. 2015). Here, we study how mice hunt crickets (Acheta domestica), 
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because mice produce robust prey-capture behavior towards these insects within 12 

hours of first exposure. In addition, the Niell lab has already shown that rapid detection 

and accurate localization of these prey are visually driven (Hoy et al. 2016). This 

finding provides a basis for more visually driven studies on prey-capture behavior. 

Many past studies provide insightful evidence that suggest where in the brain to 

look for neural mechanisms that underlie successful prey-capture. The superior 

colliculus (SC), a subcortical region in the mammalian brain, mediates rapid visual 

orientation responses relevant to prey-capture behavior as well as defensive behaviors 

in many mammalian species (Westby et al. 1990). By understanding how this structure 

helps generate these behaviors and facilitates prey-capture, we can understand 

important fundamental aspects of visual processing during the behavior. In our studies, I 

worked with others in Cris Niell’s lab to help create a more detailed understanding of 

how specific neural circuits in the brain produce the correct response according to 

distinct features of visual stimuli. Specifically, I studied how impairing regions of the 

SC changes prey-capture behavior in mice as they hunt crickets. Moreover, I have 

begun experiments to determine which specific cells types and circuits embedded 

within the superior colliculus are specially required for the approach behaviors we see 

during prey-capture. Together, our findings will contribute to a more detailed 

understanding of the brain mechanisms required to produce this important, visually 

guided approach behavior. Ultimately, this is the first step towards revealing novel 

neural-circuit level mechanisms underlying orienting and approach behavior that can 

only as of yet be uncovered in the mouse. 
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Background 

Model of Research 

The important question of how the brain produces the correct response to a 

visual stimulus remains unanswered because neuroscientists have not had the proper 

tools to label and manipulate the specific neural circuits in the brains of mammals. 

Historically, vision studies have been carried out on humans, non-human primates, and 

cats. While non-human primates such as macaques have similar visual ability and 

processing to humans, their visual systems are very complex and the techniques 

available to dissect their neural circuit functions are limited (Huberman and Niell 2011). 

Understanding the function of basic visual system and behavior in mice is a more 

tractable problem. Mice have simpler visual systems, which allow scientists to isolate 

and modulate specific cell types and neural circuits in a way that is not currently 

possible in other mammalian subjects because of advanced genetic techniques 

(Huberman and Niell 2011). Having access to specific cell types consequently allows 

scientists access to manipulate neural circuitry in the brain and modulate activity of the 

cells and circuits. Thus, despite having poorer visual resolution relative to primates, the 

mouse is an exemplary model of study because of the tools applicable to it and the 

simplified neural system. 

The advanced tools available for mouse studies, the simplicity of the mouse’s 

brain, and the lack of many complex, visually guided behaviors might imply that 

findings in the mouse would be hard to relate to the complexity of a human brain. One 

big difference between the visual capabilities of mice and monkeys is that monkeys 

have evolved retinas that enable them to encode the visual scene at a higher resolution. 
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In contrast, mice may only resolve objects on a larger scale leading them to observe a 

blurrier version of a visual scene relative to a primate (Huberman and Niell 2011). 

Regardless of this difference, Huberman and Niell argue that even though visual acuity 

differs vastly between a mouse and a monkey and they express many different visual 

behaviors, the basic aspects of visual processing related to image formation are highly 

conserved between the two species (Huberman and Niell 2011). Therefore, it is 

advantageous to study the simple neural system of mice in order to understand the more 

basic aspects of human vision that is conserved across species.  

Prior work has shown that basic visual behavior such as avoiding naturally 

threatening stimuli and approaching rewarding stimuli is a conserved behavior across 

species. The anuran, an amphibian, innately and visually recognizes predator and prey 

through its pretectal structures (Sewards and Sewards 2002). Innate visual recognition 

of predator and prey is shown in avian species as well as rodents, which indicate 

homology of behavior and potential neural structure across species (Sewards and 

Sewards 2002). Also, in the 2016 paper published by Current Biology, Hoy et al. 

successfully demonstrate that mice use their eyesight to capture prey (Hoy et al. 2016). 

Through a series of experiments, we show that mice are more successful at capturing 

prey when they can see. In no-light conditions, the time to capture crickets is 

significantly longer (Hoy et al. 2016). Despite mice’s poor visual acuity, the 

conclusions from Hoy et al. show that mice do use vision during prey-capture. 

Therefore, prey-capture behavior is accessible as a natural behavior, is consistent across 

species, and utilizes vision. These findings support our ongoing study of prey-capture 

behavior in mice and neural circuitry of visual processing of approach behavior. My 
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studies will directly work towards this goal of studying prey-capture behavior and the 

neural circuits involved. 

Superior colliculus (SC) 

While it remains unclear how different visual areas successfully integrate 

information to drive the appropriate behavior, we are beginning to understand the basics 

of how innate visual responses are processed in the SC by studying rodents including 

mice. The superficial layer of SC is necessary for processing multimodal sensory input 

and regulating spatially targeted motor output (Wang and Burkhalter 2013). 

Specifically, the superficial layer of SC is interesting to our study because of its ability 

to rapidly detect visual stimuli, direct reorientation, and direct approach and avoidance 

behaviors (Sewards and Sewards 2002). In particular, different regions of SC are found 

to differentially mediate pursuit behaviors versus avoidance behavior in rats (Westby et 

al. 1990). The approach and avoidance behavior are seen in rats to be directed by lateral 

and medial regions of the SC. Westby et al. reveal that projections from medial 

colliculus, which represent information from the upper visual field, mediate defensive 

and “explosive, escape-like behavior” (Westby et al. 1990).  

Contrasting this, the lateral SC in rats processes information from lower visual 

fields and directs approach responses since rewarding prey usually comes from the 

ground (Westby et al. 1990). However, the studies are unclear at indicating the role of 

different cell-types in SC. Within these sub-regions of SC, there are different cell-types, 

which are differentially required for behavior (Gale and Murphy 2014). Thus, the SC 

represents a good and large candidate to study, because it is known to process visual 

information, redirect head orientation, and direct approach and avoidance behaviors. 
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Furthermore, the regions and cell-types in these regions of SC potentially contain the 

neural-circuitry that directs approach behavior. These findings provide a basic idea of 

where in the brain of mice to study prey-capture behavior.  
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Preliminary Experiments and Results  

The first set of experiments we performed tested whether a laboratory species of 

mice would produce prey-capture behavior towards crickets. I worked with Dr. Hoy and 

Dr. Niell to systematically demonstrate the sensory conditions under which the mouse 

would naturally pursue and consume crickets. By first placing a cricket in the home 

cage of a strain of mice known as C57BL/6J overnight and finding that cricket eaten 

within 24 hours, we demonstrated that common laboratory strains of mice perform 

prey-capture. Overall, 96.5% of the mice we tested ate crickets through prey-capture 

(Hoy et al. 2016). This finding allowed us to continue research into which sensory input 

is used by the mouse to perform prey-capture, which we started by habituating mice to 

arena and cricket hunting (fig. 1). 
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Figure 2: Experimental set up and habituation timeline 

Left top, the arena where mice perform prey-capture. Left bottom, the protocol we 

use to condition the mice to hunt under circumstances where recordings of behavior 

are more systematic. Right, the charts indicate that the time to capture crickets in the 

arena decreases quickly over the subsequent days until capture time is reliably less 

than 30 seconds. This shows that mice needed a few days to habituate to testing 

conditions before consistently performing prey-capture. Figure from Hoy et al. 

(2016).  

 

We predicted that prey-capture would use vision and/or hearing to mediate 

quick prey detection and rapid re-orientating towards the target. Therefore, we 

investigated whether vision and hearing were necessary for successful prey-capture 

performance in mice. We compare the prey-capture behavior under three conditions: a 

well-lit condition with no sensory manipulation, total darkness (eliminating visual 

cues), a well-lit but ears-plugged condition (eliminating auditory cues), and a total 

darkness with ears-plugged (Fig. 3). Overall, when visual cues are eliminated, the 

mouse has more difficulty detecting the cricket and wanders more (Fig. 3A). The 

quantified results in figure 3B reveal that mice are three-fold faster in time to capture a 

cricket in the well-lit condition compared to the dark condition (Light: 11 ± 2 s, Dark: 

36 ± 9 s). This strongly implicates vision as a key sense in mediating successful prey-

capture. In the ear-plugged and light condition, the time to capture is similar to the light 

condition (ear-plugged: 15 ± 3 s), suggesting that hearing offers minimal improvement 

to behavior when the mice can see. However, mice perform significantly worse when 

their ears are also plugged while hunting in the dark (ear-plugged, dark: 230 ± 56 s). 

This suggests that hearing might aid in prey-capture behavior when vision is eliminated. 

Importantly, when we analyze how mice oriented their heads relative to the target over 
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the prey-capture sessions, we find that mice maintain a bearing of 0˚ only under well-lit 

conditions (fig. 4). This tendency for mice to directly focus and orient towards prey 

when they could see would explain the rapid reduction in capture time relative to other 

sensory conditions. Overall, these data show that vision is required for accurate, precise, 

and fast orientating behavior during an approach, but mice might rely on other senses if 

vision is restricted (Hoy et al. 2016). 

 

Figure 3.  The relative performance of mice participating in prey-capture under 

different sensory conditions  

Mice are tested under four conditions: light, dark, ear-plugged light, and ear-plugged 

dark. (A) Shows the paths mouse took towards cricket. The path the mouse takes to 

find the cricket is short and efficient in the light and ear-plugged light conditions. In 

the dark and ear-plugged dark conditions, the mouse searches over more area before 

successfully finding the cricket. (B) The time to capture the cricket in each condition 

shows that mice took three times longer to capture crickets in dark conditions. The 

capture time is significantly increased in ear-plugged dark conditions. Figure from 

Hoy et al. (2016). 
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Figure 4. The probability distributions of azimuth    

The probability distribution of the angular position of the cricket relative to the 
bearing of the mouse’s head, termed “azimuth,” across each sensory condition. 
When the mouse’s head is facing directly towards the cricket, the azimuth is zero. 
In light and ear-plugged light conditions, it is more probable that the mouse is 
directly facing the cricket. In dark and ear-plugged dark conditions, the peak 
disappears. It shows that head angles towards crickets are randomized under 
conditions where the mice cannot see. Figure from Hoy et al. (2016). 

Next, we find that vision is sufficient for mice to detect and orient towards prey. 

In this set of experiments we limit the cricket movement to a 1-dimensional path 

(behind a Plexiglas wall) and analyze the approach behavior of mice towards the target 

in light and dark conditions (Fig. 5). This simplification restricts sensory cues to vision. 

We see, in light conditions, that the mouse approaches the cricket directly to investigate 

93 ± 5% of all contacts. In dark conditions, the mouse moves randomly and successful 

contact is made 14 ± 6% of all contacts with the Plexiglas barrier. However, it is unclear 

if the contacts are direct approaches towards the cricket or if the mouse randomly 

touches the wall with the cricket when placed in dark conditions. These results indicate 

that visual cues predominantly drove accurate approaches towards targets (Hoy et al. 

2016).  
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Figure 5: Vision is sufficient for prey detection shown with 1-D restrained cricket  

(A) Mouse approach paths towards a cricket are isolated in light and dark conditions. 

The light blue and gray parts of the each path are further isolated to calculate 

approach accuracy. (B) The approach paths (light blue and gray) are tracked in each 

mouse and plotted on a graph showing horizontal range from the cricket (0 cm is on 

cricket) and lateral error (vertical distance between mouse’s head and cricket). (C) 

This graph shows the probability of the lateral error being a certain value. (D) The 

absolute lateral error of light (blue) and dark (black) conditions. The shading 

indicates standard error. In the dark condition, mice had to be closer to target to see 

and head directly towards it (Hoy et al. 2016).  
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As one can imagine, it would be difficult to systematically and precisely control 

for cricket size, movement, color, and even activeness in experiments with actual live 

crickets. Yet, this is what we need to achieve in order to properly assess whether vision 

is sufficient to drive approach behavior in mice and to determine which specific features 

naturally evoke approach behavior towards prey. Thus, we require a better control for 

the presentation of cricket stimuli. Therefore, we replace the actual cricket with 

computer generated, virtual stimuli with simple features that are cricket-like. In our 

simplified virtual stimulus, we use solid, black ellipses that are sized proportionally to 

the length and height of a real cricket, which limits sensory information to vision only. 

Initial experiments with virtual stimuli assess the likelihood that mice would approach 

virtual stimuli of different sizes (Fig. 6). We hypothesized that when stimuli were 

significantly larger than their prey, they would avoid the stimuli more than approach. 

Moreover, we include smaller sized stimuli in order to determine the furthest distance 

the mice could detect the stimulus with their vision. This information was previously 

unknown. Results show that mice trained to hunt crickets approach the virtual stimuli 

with a preference towards sizes equivalent to real cricket proportions. Any size smaller 

yields fewer approaches and stimuli four times the size of crickets has fewer direct 

approaches as well. The size preference is a good indicator that mice will approach the 

virtual stimulus as if it is a cricket. From these experiments, we observe that mice can 

approach virtual stimuli (making future experiments more straightforward), and they 

also have a general preference for cricket-sized stimuli. Our studies from here on will 

utilize the virtual stimulus to measure controlled approaches by mice. 
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Figure 6: Probability of approaches towards virtual stimuli of varying sizes  

The graph shows the probability of the mouse approaching a stimulus of a particular 

size. All sizes are proportional to the average sized cricket (2 cm). At 1, the stimulus 

is the size of a normal cricket (2 cm) and at 2, it is twice the size of a cricket (4 cm).  

 

Overall, I am able to contribute to work in the Niell lab where we demonstrate 

that lab mice not only participate in prey-capture behavior, they do so with vision as 

their main sensory input (Hoy et al. 2016). Furthermore, we discover that mice also 

approach virtual stimuli with a preference towards cricket-sized stimuli. These basic 

findings allows for more in-depth studies on neural circuitry in the brain that mediates 

visual processing of approach behavior. I expand on these findings to determine the role 

of the SC in mediating prey-capture behavior, because it is still unclear which neurons 

and neural circuits mediate approach behavior in mammals. 
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Research Question and hypothesis 

For this project, I work to understand the neural circuitry underling approach 

behaviors in mice. It will take the form of two main questions. With the common 

laboratory mouse as our model, we first set out to determine if the SC is required for 

approach behavior during prey-capture. Then, if the SC is found to be relevant to the 

behavior, then the next step is finding which cells within the structure are required for 

the behavior.  

Specifically, we will focus on the lateral part of the SC as it encodes the ventral 

and nasal portions of the visual field in the mouse. Since the prey is likely to appear in 

the lower visual space, lateral SC is predicted to be the most relevant region in SC to 

prey-capture behavior in mice, because mice would aim their head and possibly their 

eyes towards prey. In order to determine its relevance, we will directly turn off this 

region of the mouse’s brain. Inhibition of lateral SC is predicted to decrease prey-

capture performance noticeably. 

If SC is found to be important for prey-capture behavior, the next study will 

determine which specific cell types within the structure are required for the behavior. A 

previous study reveals the existence of a specific transgenic mouse, which we can use to 

isolate and manipulate a subset of cells in SC (Gale and Murphy 2014). Thus, this 

mouse line, Ntsr1-cre transgenic mouse, expresses cre protein in cells that are poised to 

mediate important visual processing of prey-capture. We hypothesize that inhibiting the 

Ntsr1-cre positive cells, using cre-dependent modulators of neural activity, would 

perturb orienting and approach behaviors of mice during prey-capture.  
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Methods 

Habituation and training  

All studies were carried out under approved protocols of University of Oregon 

Institutional Animal Care and Use Committees, in accord with National Institutes of 

Health Guidelines for the care and use of experimental animals.  

Before beginning experimental measurements, mice are handled and habituated 

to the arena. The handling process follows figure 2. Mice are handled for three days and 

introduced to crickets in the home cage after each day. Next, mice are placed in the 

arena with a cricket in order to habituate to a novel environment. This is continued daily 

until mice can capture crickets consistently under 30 seconds, although they typically 

capture crickets in less than 20 seconds. Then, mice are considered proficient hunters.  

Muscimol inactivation of SC 

Muscimol is a psychoactive compound from the mushroom, Amanita muscaria 

(Chandra et al. 2010). Muscimol affects neurons by acting as an agonist for γ-

Aminobutyric acid type A receptors (GABAA-R).  The receptor is generally known to 

promote a cascade of reactions to inhibit regional neural activity. GABAA-R is 

activated by the ligand, GABA, which causes hyperpolarization of the neuron (Chandra 

et al. 2010). We inject mice with muscimol directly into the superficial and intermediate 

layers of SC, bilaterally. They are given a 30-40 minute recovery period. Once actively 

moving, the mouse will be placed in the arena and will go through four trials, each trial 

with a live cricket or the optimal, cricket-sized virtual-stimulus. The behavioral trials 

are recorded with a camera. Trials are converted into videos with ImageJ and 
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subsequently tracked with MATLAB. After a full set of behavior is recorded and 

tracked, we further analyze the data with custom written program scripts in MATLAB  

After we recorded the behavior, the animals are perfused with para-

formaldehyde to preserve the brains. Then, the brains are extracted, sectioned at 50μM, 

mounted with DAPI, and imaged for localization of our injection or other manipulation 

sites. 

DREADDs Inactivation of SC 

Expressing DREADD 

The Designer Receptor Exclusively Activated by Designer Drugs (DREADDs) 

system is a genetic system where we may express the mutant form of a G-protein 

coupled receptor, hM4Di (the Designer Receptor) that inhibits neuronal activity 

exclusively in the presence of clozapine N-oxide (CNO). CNO is the designer drug that 

is normally inert in mice, but in mice with cre-dependent hM4Di receptors, CNO 

inhibits neuronal activity through hyperpolarization (Roth 2016). In our case, the 

genetic material coding for the hM4Di receptor and a fluorescent tag is virally inserted 

into the tissue of our interest, the SC, and it is under the control of cre expression. The 

virus that we injected into the SC contains DNA for the hM4Di receptor, and the same 

DNA ensures that the receptor is expressed only in cells making cre-protein. Because 

the receptor is cre-dependent, it is important that we inject the virus into a transgenic 

mouse that only expresses cre in specific cells of the SC. That is the Ntsr1-GN209 cre 

positive mouse. This line of transgenic mice is injected with the cre-dependent virus and 

allowed approximately two weeks for expression. 
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 The cre-lox system is a powerful tool available to mice in order to control gene 

expression to specific cell-types. We use it here to direct hM4Di to our cells of interest 

here in SC. It has been found previously that wide-field (WF) neurons express cre in the 

Ntsr1-GN209 mice (fig. 7) (Gale and Murphy 2014). There are other transgenic mice 

that show distinct positive cre expression patterns like GRP-cre, which narrow-field 

neurons expresses cre (Gale and Murphy 2014). For this study, we use the Ntsr1-cre 

mice to inhibit wide-field cells with DREADDs.  

 
Figure 7: Cre expression patterns in the Ntsr1-GN209 cre mouse 

Left, the red-brown colors represent cre expression. The image shows the cre 

expression pattern of the Ntsr1-cre mice with dense cre expression in the superior 

colliculus and the lateral posterior section. Right, morphological image of a wide-field 

neuron. 

Assessment of Behavior after SC inactivation  

During the time for expression, the mice are handled and trained to hunt 

crickets. After approximately one week, the mice can successfully hunt in less than 30 

seconds. The mice are food deprived the night before the behavioral experiment. The 

next day, the mice are given an intraperitoneal injection (IP), of CNO, the drug that 

stimulates the inhibitory receptor expressed in specific cells in SC, causing inhibition of 

activity in those cells. We recorded the prey-capture behavior to both live and virtual 

stimuli between 2-60 minutes after injection. For the final comparison of behavior 
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across conditions, we use trials recorded 60 minutes after CNO injection to ensure CNO 

properly took full effect. The time to capture is noted from mice hunting live insects and 

the measures of lateral error are taken as mice approach virtual targets.  

After the recordings, the brain is extracted from the mice and fixed. The next 

day, the brain is sliced at 50 μM sections, mounted on a slide with DAPI, and imaged 

for fluorescence to localize and quantify the cells that are expressing the inhibitory 

DREADD. In this case, the fluorescence for the inhibitory DREADD is red as the 

fluorescent protein is mCherry. The recordings are tracked with MATLAB and 

subsequently analyzed with custom scripts written in MATLAB.  

 

---
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Results 

Muscimol inactivation of SC 

The bilateral inactivation of SC with muscimol successfully targets the lateral 

and superficial regions of SC in mice (Fig. 8, left). Our histology shows that the spread 

of muscimol are mostly localized to the injection site. Muscimol did not diffuse beyond 

900 μM. Overall, most injections successfully target both hemispheres of the brain, but 

there are some variability in the anterior and posterior parts of SC. We confirm that all 

of the injections are restricted to lateral regions of the SC and the extreme ends of 

anterior and posterior SC are avoided.  

 
Figure 8: Example of muscimol injection into one hemisphere of SC 

Most injections are performed bilaterally. Left, the picture shows a coronal section of 

one hemisphere of the SC from a mouse injected bilaterally with the muscimol. The red 

fluorescence is the site of muscimol injection. Right, is an image obtained from an atlas 

of the mouse brain, highlighting the region depicted on the left with a black box. 

Based on observations of live-cricket hunting, the mice injected with muscimol 

or fluorescent dye along (control) both show some unsteady movement after the 

injection surgery. This indicates some small motor changes after the injection due to the 

treatment procedure. Therefore, we compare results of post muscimol-injected mice to 

post fluorescent dye-injected controls in order to accurately determine the effects 
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specific to muscimol. The muscimol-injected mice exhibit difficulty hunting as they 

overall have trouble re-orientating towards crickets after a cricket escapes as compared 

to the control mice. In addition, the muscimol-injected mice would also approach the 

cricket and freeze, before attempting to catch it compared to the control. Finally, the 

average time of successful capture increases four-fold with the muscimol injection as 

compared with the control (Fig. 9).   

 
Figure 9: Time to capture live crickets  

The average time to capture live crickets by mice injected with muscimol (red) versus 

fluorescent dye (grey). The control mice had a capture time of 30.5 s and the muscimol 

mice had a capture time of 125 s.  

The effect of inhibiting all cells in lateral SC on visual processing and behavior 

is quantified by measuring the difference between a mouse’s head location along the y-

axis and the location of the virtual stimulus (lateral error). The lateral error is plotted as 

a function of the distance the mouse is to the target along the x-axis (Fig. 10). The 

measure of lateral error as a function of distance indicates how accurate the mice are 

when they make contact with the stimulus and the distance where the mice are able to 

detect the cricket. When detection happens, it is quantified as a change in behavior 

where the mouse modifies its approach to minimize lateral error. The control mice 
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exhibit direct and accurate approach paths towards the stimulus (Fig. 10, left). In 

contrast, the mice with their SC inactivated ultimately approach the Plexiglas and the 

stimulus, but the accuracy of the approach decreases, which is seen as an increase in 

lateral error (Fig. 10, right). From the preliminary analysis of the approach paths, the 

muscimol inactivation of SC seems to decrease the accuracy of the mouse’s approach 

behavior.  

 

 
Figure 10: Lateral Error of the muscimol injected mice and control during approach  

The left figure shows the approach paths of control mice with inert fluorescent dye 

injection (grey paths). The right figure shows the lateral error of mice with muscimol 

injections in superior colliculus as they approach the target. The paths are a measure of 

the lateral error (cm) between the mouse’s head and the virtual target location as a 

function of distance (cm) from the target. 

Next, the lateral error of all the approach paths, for each group, is averaged at as 

a function of distance from target (Fig. 11). The red plot represents the muscimol-

injected mice, which shows an inflection point around 10 cm. In comparison, the 

control mice had an inflection point around 20 cm. The inflection point indicates the 

average distance where the mouse detects the target, changes its behavior, and starts to 

systematically reduce its lateral error as they approach the behavior. On average, 
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muscimol inhibition of superficial and lateral SC decreases the distance where mice can 

detect cricket and reorient itself towards the cricket. Finally, observations of SC 

inhibited mice show that these mice uniquely paused in an alert manner in front of the 

stimulus before touching the Plexiglas barrier, relative to controls. This behavior will be 

interesting to study when we apply more precise manipulations of SC. 

 
Figure 11: Absolute average lateral error of muscimol and control mice’s approach 

paths 

The red plot represents the mice injected with muscimol in the superior colliculus 

averaged together, which has an inflection at 10 cm. The black plot is the averaged data 

from the control mice with an inflection around 20 cm. The colored shading indicates 

standard error. 

Overall, the muscimol inhibition of the SC shows obvious effects on prey-

capture behavior in mice. The mice with superficial and lateral regions SC inhibited by 

muscimol have a four-fold increase in time to capture cricket. The SC inhibited mice 

also exhibit a tendency to freeze before the target and a decrease in accuracy and ability 

to reorient its head towards the target.  
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DREADD inactivation of genetically identified cells in SC 

The inhibitory version of the DREADD system is utilized to selectively impair 

specific cell types in order to precisely identify specific neural circuits in the SC 

required for prey-capture. In this study, Ntsr1-GN209-cre transgenic mice encode the 

hM4Di inhibitory receptor in WF cells in the SC. (Fig. 12, left). The expression of 

hM4Di receptor is found mainly in the intermediate layer of SC with projections from 

the superficial layer. The data here are summarized from a preliminary study consisting 

of one mouse per condition: no DREADD, unilateral expression of DREADD, and 

bilateral expression of DREADD.  

  
 

Figure 12: Inhibitory DREADD expression (red cells) in the superior colliculus of 

Ntsr1-cre transgenic mouse.  

Left, a coronal section of brain tissue collected from the superior colliculus of an Ntsr1-

cre transgenic mouse that is successfully infected with a virus that delivered Cre-

dependent inhibitory DREADD. The right figure shows a coronal view of an 

anatomically annotated mouse’s brain at the location where we obtained our fluorescent 

tissue. The area that is shown in the left is indicated by the black box shown on top of 

the section from the mouse brain atlas on the right. 

Based on observations of the prey-capture behavior in the presence of live 

crickets, the unilateral mouse and the bilateral mouse exhibit trouble reorienting its head 
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towards the cricket when the cricket escapes from the mouse. If the cricket is at a close 

distance directly in front of the mouse, the mouse would approach as normal compared 

with the control. All mice in this study do not display unsteady movement as we 

observe after muscimol injection in mice. Furthermore, if the unilateral and bilateral 

mouse and cricket are on opposite sides of the arena, both mice do not make straight, 

non-stop approaches towards the cricket. Only at a closer distance does the mouse seem 

to pursue the cricket without stopping. Therefore, the unilateral and bilateral DREADD 

affected mice have WF cells inhibited, and they do not exhibit unsteady movement 

especially compared to the muscimol experiments, but they show a specific decrease in 

ability to reorient their head accurately towards the cricket from long distances.  

The capture times of when mice are presented with live prey are recorded. The 

average capture times are shown for the three mice in this study (Fig. 13). The control 

mouse does not exhibit any concrete DREADD expression when injected with CNO, 

however a few cells expressed DREADD. Therefore, the control mouse has minimal 

WF cells inhibited and performs prey-capture very well (capture in less than 9 s) despite 

having CNO in its system. This is a strong indicator that CNO has an inert effect on 

mice. The next mouse tested shows unilateral expression of DREADD upon CNO 

exposure. With half of the hemisphere of the brain’s WF cells inhibited, the unilateral 

mouse exhibits a slower prey-capture time compared to the control (16.4 s). Finally, the 

mouse expressing DREADD bilaterally has both hemispheres of the brain’s WF cells 

inhibited, and the bilateral mouse takes significantly longer to capture prey compared to 

the other two mice (capture time 27 s). Overall, there is an approximate two-fold 

increase in prey-capture time when a hemisphere of SC is inhibited. The data also show 
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a stepwise increase in capture time as more of the WF neurons in SC are inhibited due 

to DREADD. 

 
Figure 13: Time to capture live crickets  

The control mouse (gray) has no DREADD expression and has a capture time of 9 s. 

The unilateral mouse (blue) exhibits a capture time of 16.4 s. The bilateral mouse 

(green) exhibits a capture tie of 27 s. As more WF neurons are inhibited with more 

DREADD expression, there is a stepwise increase in time to capture prey.  

We also analyze approach behavior towards virtual stimuli to further assess the 

effect of DREADD mediated inhibition of WF neurons in SC. The mouse infected 

bilaterally with inhibitory DREADD shows less accurate approach behavior when 

injected with CNO (Fig. 14, right). Furthermore, more of its approaches begin from 

closer distances relative to the target. Almost half the approaches start from 20 cm away 

in the bilateral mouse, but all the approaches made by the control mouse start from 

distances greater than 20 cm.  
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Figure 14: Lateral error of the bilateral mouse and control mouse during approach 

The left figure represents the lateral error as a function of distance during approaches to 

virtual targets made by a control mouse with no DREADD expression in SC, 60 

minutes after CNO injection. The right figure shows the same kind of “paths” generated 

by a mouse with bilateral inhibitory DREADD expression in the WF cells of the SC, 60 

minutes after CNO injection.  

The average lateral error as a function of approach distance of the bilateral and 

the control mice are plotted in figure 15. There is a slight inflection point for the 

bilateral mouse at 9 cm from the target, which is similar to the muscimol-inhibited SC 

in mice. In the control mouse, there is an inflection point around 14 cm. This indicates 

that inhibition of WF cells in SC decreases the mouse’s ability to detect prey and 

reorient its approach towards prey. From the DREADD study, inhibition of a WF cells 

in SC changes orientation and efficiency of approaches in prey-capture behavior. 

Inhibition of WF cells increases time to capture live cricket and it creates difficulty for 

the mouse to reorient its head towards an escaped cricket. Interestingly, the mouse does 

not exhibit freezing behavior similar to the muscimol study.  
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Figure 15: Absolute average lateral error of the bilateral mouse and control mouse  

Lateral error (cm) is averaged as a function of the range of approach (cm) for the 

bilateral mouse (green) and DREADD negative mouse (gray) regardless of whether 

they approached from the left or right. All data were obtained 60 minutes after CNO 

injections into both mice. 

When we measure the head bearing of the mouse relative to the target during the 

approaches, we find that there is a reduction in the probability that the mouse’s head is 

directly aimed at the target (prey azimuth is 0˚) in both the muscimol inhibited SC of 

mice (Fig. 16, left) and the DREADD inhibited WF cells of the mouse (Fig. 16, right) 

relative to their controls (gray lines). Overall, my findings suggest that inhibition of a 

specific cell type located in the intermediate layer of SC is sufficient to impair both 

visually-mediated orienting behaviors towards virtual prey targets and capture of live 

prey.  
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Figure 16: Accuracy of approach behavior between the muscimol and the DREADD studies 

 Left, the probability of a certain degree of azimuth occurring is plotted for muscimol-

injected mice (red) and the fluorescent-dye injected mice (gray). Right, the same 

probability is plotted for mice positive for inhibitory DREADD (green) and the mice 

negative for inhibitory DREADD (gray).  
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Discussion  

Summary 

From our studies focused on the inhibition of SC, it is evident that the lateral 

portion of SC is necessary for accurate prey-capture behavior. The inhibition of whole 

lateral region of SC with muscimol and the inhibition of a specific cell type in the SC 

with DREADDs both effected accurate prey-capture. This is seen in increased time to 

capture prey and increased lateral error as mice approach virtual targets. The 

experimental mice from both studies also exhibit difficulty reorienting their heads in 

order to track crickets.  

The bilateral muscimol injection into the SC completely inhibited all the cells 

within the site of injection. Thus, the array of deficits observed under these conditions 

are likely to be associated with many of the specific neural circuits and behaviors 

known to be mediated by the SC. Overall, the muscimol study is important to establish 

whether the SC is required for prey-capture behavior at all in the mouse. It is designed 

to get a maximal effect on prey-capture and to give us clues of the different ways that 

SC might regulate prey-capture behavior. 

To provide a more refined understanding, the DREADD study is performed and 

it limits the focus to a specific cell type in SC, WF cells, in the intermediate layer of SC. 

The DREADD study controls for the potential effects of the invasive procedure from 

the muscimol study and it also controls for how muscimol might spread and affect other 

parts of the brain and behavior. Accordingly, the DREADD study shows a narrower 

range of prey-capture time and visually mediated orienting behavior compared to the 

muscimol study. Interestingly, the muscimol-injected mice exhibit freezing behavior 
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while facing the prey, which is not seen in the DREADD mouse. This could indicate a 

behavior associated with a specific cell type not affected by DREADD, which could 

prove to be an interesting future study as well. While the two studies act in different 

manners, they both work towards the answer of how SC participates in prey-capture 

behavior. The experiments starts with Muscimol, which elicits a broad range of effects, 

and narrows to the DREADD study to hone in on behavior outputs at the level of 

specific cell types. 

Potential problems and future directions 

The muscimol study shows a distinct difference in prey-capture behavior. 

However it is unclear whether visual processing is affected or motor outputs are 

affected. The answer will come in part by the histology to see where the injection site 

hit and other potential sources of damage for the invasive procedure. Otherwise, we will 

need more controls in the experiment to understand if vision or motor is affected by 

muscimol. One possible control to test for the muscimol affect on visual processing is 

placing the mouse in the dark setting, similar to preliminary studies. Once vision is 

taken away, if approach accuracy stays the same, then it is mainly a motor problem. If 

approach accuracy worsens, then the muscimol affected mainly vision. It’s a basic study 

that would need more refinement for controls. Overall, the data from the muscimol 

study provide a good start by supporting the importance of SC to prey-capture behavior. 

The DREADD data hold promise for studying changes in behavior. However, it 

is unclear whether the WF neurons in the SC are actually being inhibited by the 

DREADD activation. The fluorescence reveals the presence of the receptor, but it does 

not indicate the receptor’s activity. The small behavior changes are a good indicator that 
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neurons are inactivated. However, to firmly address this, we will perform cell 

recordings for activity level in future studies. Furthermore, our initial study of 

DREADD consisted of n = 1 mouse for each condition: one control, one unilateral 

expressing, and one bilateral expression of DREADD. For clear patterns of behavior to 

appear, we will need to increase batch size in the future. Therefore, our immediate goal 

is to increase batch size (n) of the DREADD study. 

More future studies will include a more detailed analysis of the data gathered so 

far. This includes an investigation of the mouse’s head angles as they hunt, which will 

provide a clearer insight on how SC outputs to head orientation and an analysis of the 

speed of approaches in mice during the muscimol and DREADDs behavioral study. 

This would provide more insight on the approach since it is generally patterned that a 

mouse would increase its speed as it actively pursues prey. These future analytical plans 

will provide clearer insight into what aspect of prey-capture is changed under each 

study.  

Future studies well beyond this thesis will work to identify characteristics of 

stimuli that would elicit strong behavioral response. This includes identifying how 

movement and elevation of stimulus affects approach behavior. We expect movement 

would mimic more prey-like signals and would induce more direct and fast approaches. 

Finally, a long-term project for the future will study how different cell types in SC, 

besides the WF cells in the Ntsr1-cre positive mice, may play a role in prey-capture 

behavior.  
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Connection to the human brain 

 Studying the SC and vision processing in the mouse model gives a lot of 

insights, especially in how it translates to avoidance behavior. The knowledge gained 

from animal studies can be applied to an array of concepts, including facial and object 

recognition in technology and health-related neurological disorders.  

 A study in 2014 correlates the innate alarm response in humans with PTSD to a 

subcortical pathway involving the SC and periaqueductal gray region of the brain 

(PAG) (Steuwe et al. 2014). The innate alarm system detects potential threats and the 

authors use eye contact with virtual, human characters as a stimulus for the innate alarm 

response. They found in patients diagnosed with a childhood PTSD an increase in 

activity in the SC and PAG region when eye-contact is made (fig. 18) (Steuwe et al. 

2014). It is a broad study, but this is a good indicator of the importance of SC in 

directing avoidance behavior in humans. 
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Figure 16: fMRIs after eye-contact recording is played  

Patients with PTSD exhibit higher activity in the SC/PAG region after a recording is 

played where a virtual person makes eye contact with the subject. The control group 

consist of subjects with no PTSD (Figure from Steuwe et al. 2014). 

 

Overall, this paper provides another example of the behavioral response the SC 

can provide. Our focus relates the SC to approach behavior. However, the SC is also 

commonly cited to elicit escape and other fear responses across many species. It will be 

interesting to see how the approach and avoidance behavior in SC are connected and 

how studies on SC translate to human behavior.  
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Basic Glossary  

Agonist: A compound that binds a receptor and activates the receptor 
Anterior: towards the nose or frontal part of the brain 
Azimuth: angle, in degrees, between the position of mouse’s head and prey-target 
Bilateral: both hemispheres of the brain 
Clozapine N-oxide (CNO): Designer drug that binds to the hM4Di receptor 
Coronal: a plane that divides the brain in the dorsal and ventral parts. So it looks at the 
brain if it is sliced from top down. 
DAPI: is a fluorescent stain that binds to A-T nucleotide rich regions of DNA.  
Fix: preserve tissue 
Hyperpolarization: Effectively making the neuron more negative in charge so no signal 
is fired from neuron to the next neuron.  
Intraperitoneal (IP): injection through the abdominal cavity of the animal  
Lateral: towards the sides of the brain  
Medial: towards the center of the brain  
Mounted: to cover and protect tissues with a fluorescent stain 
Muscimol: agonist for GABAA-R . Muscimol activates the GABA receptor to inhibit 
neurons. 
Perfusion: A technique that essentially preserves animal tissue. The heart is utilized to 
pump paraformaldehyde throughout the body and eventually to the brain. 
Posterior: towards the back of the head 
Prey-capture: describes hunting behavior of animals  
Transgenic: genetically modified  
γ-Aminobutyric acid (GABA): molecule released from the inhibitor neuron. It attaches 
to GABA receptors in the active neuron, which inhibits the neuron by hyperpolarization 
Aminobutyric acid type A receptors (GABAA-R): receptor that acts to inhibit neurons 
through hyperpolarization upon binding of GABA
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