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Various fields of science employ systems of ordinary differential equations (ODEs)
to model the behaviour of dynamical systems, such as gene regulatory networks.
However, the system model often contains uncertainty in both its structure and the
model parameters. When experimental data are available, the model parameters
can be calibrated using well-established statistical techniques and also different
model structures can be compared in the light of their statistical evidence. If the set
of alternative model structures is small enough, it is possible to evaluate the validity
of each individual model separately. However, for biochemical networks, the number
of viable model configurations is often enormous, which renders it computationally
impossible to draw inferences about the network structure using such an exhaustive
strategy. This thesis introduces a novel computationally efficient approach to
obtain probabilistic structure inferences for general ODE models. The proposed
approach relies on exploring the discrete set of alternative models using Markov
chain Monte Carlo methods. Inference problems involving simulated data are used
to demonstrate that the method is suitable for efficiently extracting information
about the characteristics of the likely models. Furthermore, the method is applied
to infer the structure of the transiently evolving core regulatory network that steers
the T helper 17 (Th17) cell differentiation. The obtained results are in agreement
with earlier studies that suggest that the Th17 differentiation program involves
three sequential phases.
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Differentiaaliyhtälösysteemejä käytetään monilla tieteenaloilla mallintamaan dy-
naamisia systeemejä, kuten geenisäätelyverkkoja. Systeemiä kuvaavassa mallissa
on kuitenkin usein epävarmuutta sekä sen rakenteen että mallin parametrien
osalta. Kun kokeellista dataa on saatavilla, mallien parametrit voidaan sovittaa
käyttäen vakiintuneita tilastollisia menetelmiä, ja myös erilaisia malleja voidaan
vertailla niiden tilastollisen todennäköisyyden avulla. Jos vaihtoehtoisia malleja on
vain vähän, voidaan jokainen yksittäinen malli validoida erikseen. Biokemiallisten
verkkojen tapauksessa mahdollisia mallikonfiguraatioita on usein lukemattomia,
minkä takia yllä kuvattu tapa verkkojen rakenteen päättelyyn on laskennallisesti
mahdotonta. Tässä työssä esitellään uusi laskennallisesti tehokas lähestymistapa
tehdä probabilistisia päätelmiä differentiaaliyhtälömallien rakenteesta. Ehdotettu
lähestymistapa perustuu diskreetin mallijoukon tutkimiseen Markov Chain Monte
Carlo -menetelmillä. Työssä muotoillaan simuloituun dataan liittyviä ongelmia,
joilla näytetään, että menetelmällä voi tehokkaasti saada tietoa todennäköisimmistä
mallirakenteista. Menetelmää sovelletaan myös erään auttaja-T-solujen alityypin
(Th17) erilaistumista ajavan aikariippuvan ydinverkon rakenteen päättelyyn. Saa-
dut tulokset ovat linjassa aiempien tutkimusten kanssa, joiden mukaan Th17-solujen
erilaistuminen tapahtuu kolmessa peräkkäisessä vaiheessa.

Avainsanat: Differentiaaliyhtälömallit, Bayesiläinen tilastotiede, Markov chain
Monte Carlo -menetelmät, geenisäätelyverkot, auttaja-T-solut
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1 Introduction
Nonlinear ordinary differential equations (ODEs) are commonly used in systems
biology to model biochemical networks, such as signaling pathways or gene regulatory
networks. This is because ODE modeling provides a highly expressive mathematical
framework that can be used to describe the transient behaviour of the system. These
models are often mechanistic, meaning that the system components and mechanisms
have meaningful real-life interpretations. Therefore, ODE modeling facilitates deep
understanding of the system mechanisms in a way that cannot necessarily be achieved
by just describing statistical dependencies in the data. However, when ODE models
of biochemical reaction networks are constructed, there is often uncertainty in both
the model parameters and the model structure [25]. This uncertainty typically brings
about a large number of alternative well-motivated, hypothetical models that depict
the underlying biochemical network. This goal of this thesis is to develop a framework
that facilitates inferring the network structure in such situations. The proposed
approach can be applied to ODE model structure inference problems emerging in
other fields of science, too.

In general, parameters of an ODE model can be calibrated using statistical
techniques if a sufficient amount of data is available (see e.g. [25], [50], [51]). Whereas
the parameter estimation problem is rather well studied, the problem of inferring the
model structure, given a large set of viable model configurations, remains unsolved
in practice. The number of the alternative models can span from two to hundreds of
thousands, and therefore the need for reliable, automatized, and computationally
efficient strategies to infer the most likely model structures is urgent.

ODE models can be ranked, for instance, by using different kinds of information
criteria that estimate the models’ predictive accuracy, such as the Akaike information
criterion (AIC) [1]. Alternatively, this can be done using cross-validation, where
only a subset of the data are used to fit the ODE model and the the remaining data
are used to evaluate the model’s predictive performance [20]. Because the kinetic
rate parameters of biochemical models are strictly positive by definition, continuous
model expansion approaches have to be ruled out.

A completely different approach is to assess the statistical evidence for alternative
models within the Bayesian framework [61]. This approach has been successfully
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used in several studies (see e.g. [11], [33], [34], [64]). In this thesis, the parameter
estimation and model ranking problems are formulated within the Bayesian frame-
work, which allows us to make use of the discrete posterior probability distribution
over all alternative model structures. This framework allows us to obtain probability
statements that describe the uncertainty related to different model mechanisms,
instead of searching for a point estimate in the model space. In general, the full
discrete posterior distribution over different models can be obtained by marginalizing
out the model parameters. The drawback of the Bayesian approach is that these
computations can be very expensive. To overcome this issue, we approximate the
marginalized likelihoods via the Bayesian information criterion (BIC) [57]. Even
though this allows computationally a relatively light marginal likelihood approxima-
tion, we often have an enormous amount of viable models, meaning that computing
the BIC for each of them is not feasible.

The abundance of possible model configurations gives rise to a need for a method
that finds the good models by exploring the model space cleverly. For this purpose,
we propose using discrete space Markov Chain Monte Carlo (MCMC) methods and
provide an implementation of a Metropolis-type algorithm with a simple yet efficient
proposal distribution. The performance of the new strategy is demonstrated using
toy problems that involve realistically simulated noisy data and a rather restricted set
of possible models. Using these test cases, we show that our MCMC-based approach
can be used to accurately infer the true data-generating network mechanisms even
when only a small fraction of all possible models are evaluated.

The proposed strategy is also applied to infer the transiently evolving core
molecular network that steers the T helper 17 (Th17) cell differentiation. To capture
the rewiring effects during the differentiation process, we utilize the recently developed
latent effect mechanistic (LEM) modeling approach [34]. In this study, we also extend
the LEM modeling approach to allow rigorous statistical testing about the type
of the latent process. In our Th17 cell differentiation application, this extension
enables us to test hypotheses about how many sequential phases are involved in the
differentiation processes. In addition, the novel approach also enables us to obtain
probabilistic predictions on the molecular interactions that are active in different
phases of Th17 cell differentiation. For some of the models that are found to best
describe the Th17 network, we perform further analyses using the profile likelihood
approach [40], which allows us to assess the uncertainty of the parameter estimates
and identifiability of the parameters.

This thesis is structured as follows. Section 2 introduces ODE modeling of
biochemical systems, with particular emphasis on modeling of gene regulatory net-
works. Theoretical background behind numerically solving ODE systems, especially
stiff ones, is presented in Section 3, whereas Section 4 focuses on the data-driven
statistical machinery that is essential for performing model structure inferences. The
novel model space exploration algorithm is formulated and presented along with its
computational implementation in Section 5. Section 6 displays the results of both the
simulated data experiments and the Th17 application. Finally, Section 7 summarizes
the thesis with discussion about the obtained results.
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2 Mathematical modeling of biochemical
systems

Mathematical modeling offers rigorous means to quantify interactions in molecular
cell biology and has become an important tool as both data collection methods
and computational capacities have evolved [31]. In many applications of systems
biology, mathematical modeling is necessary, since it facilitates testing hypotheses
about biological systems substantially more cheaply and quickly than experimental
validation. However, in order to employ mathematical tools, one must be able to
transform any initial hypotheses about the system in a well-defined, quantitative
form [2]. In this section we describe how to construct ordinary differential equation
(ODE) models for complex biochemical systems, such as gene regulatory networks.
The 2013 book by Ingalls [31] is used as the primary source. Furthermore, a recently
developed formalism for dynamically evolving ODE systems, called the LEM [34]
model, is introduced.

2.1 Mechanistic ODE modeling
Models that endeavour to mimic the actual molecular mechanisms so that model
variables have counterparts in real life are called mechanistic. However, even such
models are always abstractions of reality, and thus it is important to understand the
assumptions that one is making when a model is built. An especially expressive and
commonly used mathematical framework to mechanistically model dynamic systems
is provided by ordinary differential equations (ODEs) [25].

The construction of an ODE model is usually started from the elementary level
of chemical reactions between different molecular species. A well-known principle
to model a chemical reaction is the law of mass action. It states that the rate at
which a reaction occurs is proportional to the product of the reactant concentrations.
On the molecular level, this relies on the assumption that more collisions between
the reactants happen as the abundance of the reactants grows. In order to use the
law of mass action, one should therefore assume that the reactants are well-stirred.
Furthermore, there should be a large amount of each molecular species present, so
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that modeling concentrations as continuous variables is reasonable.
Formulating the law of mass action mathematically leads us to ODEs. For

instance, we can consider the reaction

R1 + R2 −→ P, (1)

where R1, R2 are reactants and P is the product of the reaction. The law of mass
action states that the rate at which the concentration of P grows can be expressed
mathematically as the time derivative

d[P]
dt = k[R1][R2], (2)

where k is a rate constant. Here [A] is used to denote the concentration of a molecular
species A, but generally it can be any physical quantity that is proportional to
abundance of A.

The law of mass action is the basis for other common reaction rate laws, such as
Michaelis–Menten kinetics, Hill kinetics and the generalized mass action rate law. All
the above approaches rely on defining the time derivative of different concentrations,
and consequently, we end up with a mathematical formulation consisting of ODEs.
An ODE formulation can in principle be derived for any set of reactions, if the system
is assumed to be well-stirred. A more accurate way to model a system of molecular
species would be to simulate the positions and velocities of all individual molecules,
and change the molecular populations appropriately if their collision results in a
reaction [24]. A detailed motivation for such modeling and discussion about the
assumptions that are needed to turn this model into a set of reaction rate equations,
i.e. ODEs, can be found in [23] and [24].

2.2 Gene regulatory networks
In this thesis, the main focus is on modeling gene regulatory networks, and we begin
by introducing the basic concepts related to gene expression. These concepts are
presented as they are given in [2]. The hereditary information of cells is stored by
a large macromolecule called deoxyribonucleic acid (DNA). A specific part of this
sequence is called a gene and information of DNA is read in a process called gene
expression. This fundamental process produces proteins, which are large molecules
that are responsible for most of the cellular functions. Gene expression consists of two
states, transcription and translation, both of which are complex processes involving
a variety of biochemical reactions. These production mechanisms are illustrated
in Figure 1. In transcription, a segment of DNA is copied into a macromolecule
called ribonucleic acid (RNA) and in translation, RNA molecules are then used as
templates to synthesize a protein. This flow of genetic information from DNA to
RNA and from RNA to protein occurs in all living cells. Some proteins control the
transcription of other genes by binding into the DNA sequence at a regulatory site of
the target gene. Such regulators are called transcription factors (TF), and a system
where gene products regulate the rate of each others’ production is called a gene
regulatory network.
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Figure 1: Illustration of the phases involved in gene expression. In transcription, a
gene, i.e. a segment of a DNA strand, is read to produce messenger RNA (mRNA).
Its information is used in translation to produce a protein. Both RNA and protein
molecules also degrade during the process. The drawing has been inspired by Figure
7.1 in [31].

In Section 2.1 we presented how the law of mass action can be used when modeling
chemical reactions. Similar approach can be applied to model gene expression
mathematically, which we demonstrated here, returning to the presentation of
[31]. Since transcription and translation are complex processes, modeling gene
expression using the law of mass action involves many simplifications. Furthermore,
gene expression in a single cell can involve only very few molecules, and thus
representing abundances as continuous concentrations is problematic. However, in a
large population of cells, we can model gene expression using a mass action formalism
where we interpret the differential equations as descriptions of the average behavior
in the population.

Let us consider a network of n genes and denote their time-varying abundances
by y1, . . . , yn. These abundances are averages over a population of cells. In this
study, the value yi refers to the mRNA level of the corresponding gene i, since the
experimental data used in this thesis are mRNA reads. Possible mechanisms in the
network are for example regulated and unregulated expression of the genes, as well
as degradation. Unregulated basal expression of gene i can be modeled simply as

dyi
dt = kb

i , (3)

if it is assumed to have a constant rate kb
i , that captures all the reactions involved

in transcription and translation. Unregulated expression is considered happening
independent of the gene itself, as opposed to degradation which of course can only
happen if the gene is expressed in the cell. Degradation can be modeled as exponential
decay, where the rate is dependent of the abundance of the gene i itself, and is given
by

dyi
dt = −kd

i yi, (4)

where kd
i is the degradation rate of gene i. If another gene j enhances the expression
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of gene i, expression of gene i can be modeled by the rate equation

dyi
dt = kact

ij yj, (5)

where the activation rate constant kact
ij captures the strength of this mechanism.

Another type of regulation is repressible expression, where a gene j expresses a
product that inhibits the expression of gene j. Rate of change in concentration of
gene i is then given by the equation

dyi
dt = −kinh

ij yiyj, (6)

where kinh
ij is the corresponding inhibition rate. Two gene products j and k can also

act cooperatively to upregulate another gene i. Concentration of gene i then changes
at rate

dyi
dt = ksact

ijk yjyk, (7)

where ksact
ijk is the rate constant of this synergistic activation. Gene regulatory

networks can also involve other mechanisms, but this study only involves ODE
models comprised of basal activation, degradation, induced activation, inhibition
and synergistic activation. Note that it is also possible for a gene to activate or
inhibit itself. Autoactivation or autoinhibition can be modeled by setting i = j in
Equation 5 or 6, respectively.

If all mechanisms involved in a regulatory network are known, one can count
the total rate equations for each gene by adding the components from different
mechanisms that affect its expression. For example, let us consider the regulatory
network of five genes A, B, C, D and E (Figure 2). The abundance of gene A now
has a time derivative that is obtained by combining all the mechanisms that affect
its expression. Since A is activated by E and inhibited by B and D, we get the total
rate

d[A]
dt = kact

AE[E]− kinh
AB[A][B]− kinh

AD[A][D], (8)

where kact
AE, kinh

AB and kinh
AD are the rate constants of the regulatory mechanisms and

[·] denotes abundance (mRNA reads). Because abundances of the activating and
inhibiting genes themselves are time-dependent, analyzing the behaviour of systems
such as the one in Figure 7 is impossible without quantitative mathematical modeling,
especially if the network contains feedback loops.

More generally, a mathematical description of an entire regulatory network results
in a system of ODEs

dyi
dt = fi (t,y(t), θ) , (9)

where θ is a vector of all rate constants and other possible parameters and y(t) =
[y1, . . . , yn]T. Now, assuming that the rate constants and an initial concentration of
each gene are known, we can solve the system outputs yi(t) on some time interval
of interest. Consequently, this modeling approach provides us with a rigorous and
useful means to predict the network dynamics by computer simulation.
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A

B C

D

E

Figure 2: An example network of regulatory interactions between five genes A, B,
C, D and E. Activation and inhibition mechanisms are represent using arrows (→)
and turnstiles (a), respectively.

2.3 Latent effect mechanistic models
It is not always realistic to assume that a certain mechanism of a regulatory network
is active at the same strength during the whole time course under investigation.
Thus we might want to include time-variation in the corresponding mathematical
model. Such approach is the latent effect mechanistic (LEM) model [34]. The LEM
formalism is briefly presented here referring to the original article [34], where a more
detailed description can be found.

The LEM model couples a standard ODE system with a latent process, that
describes the time evolution of the network components. Such modeling might be
needed for example when a certain part of DNA is initially covered with epigenetic
marks that prevent a transcription factor A from binding a region called the promoter
and the gene B is not expressed. As time passes, enzymatic signals can remove these
marks and eventually the promoter region becomes clear, allowing the transcription
factor to bind the promoter, and expression of the gene to begin. This is illustrated
in Figure 3.

In example case shown in Figure 3, the transcription factor A could be a product
of gene A that is in a regulatory network with gene B. Now, assume that we wish to
include this transient behaviour of the activation mechanism where A activates B into
an ODE model for the rate d[B]

dt , which is defined using the principles presented in
the previous section. This can be done by multiplying the corresponding component
kact

AB[A] of the rate equation by a weight function that has an initial value zero and
eventually reaches one. This change can be a rapid switch-like step or a curve
that rises smoothly. To make computations easier, one effectively wants to use
a continuous and differentiable function. Smoothness is justified by the fact that
the removal of the epigenetic marks probably happens at slightly different times in
different cells, and thus the function represents the proportion of cells where the
marks have been removed.

We now present a general LEM model with n different state variables y1, . . . , yn
that can for example correspond to abundances of different genes in a regulatory
network driving a cell differentiation program, and M distinct latent states that can
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promoter gene promoter genepromoter gene

enzymatic

signalsA A

A
gene

expression

B

A B

∅

∅∅

A B

∅

∅∅

no interaction interaction

activated

Relationship between

A and B changes

due to unobserved

molecular mechanisms

1. Initial state 2. Stimulus added 3. Active state

Figure 3: Illustration of a transient silencing mechanism that causes a state transition
in expression of a gene. In the initial state the gene B is not expressed due to epigenetic
marks that bind the promoter region. As these marks are removed, transcription
factor A can bind the promoter and thus activate expression of gene product B. The
figure is from [34].

correspond to distinct phases in the course of the cellular differentiation. The state
of the system at time t is given by y(t, θ) : [0, T ]×Rd → Rn, where θ is a parameter
vector and d is the number of parameters. An essential part of the LEM model is a
latent process x(t, θ) : [0, T ]× Rd → RM that describes the time-evolution of the M
different latent states as a function of time. The model parameters θ can therefore
comprise for example reaction rates and parameters that adjust the latent process.

Assume that there exists a set of N different mechanisms that can be present
in the network, and we have constructed functions fj(y, θ), j = 1, . . . , N to capture
them mathematically. An N ×M matrix Z is used for storing the information about
the network configuration of a specific model Z. The element {Z}jk determines
if the mechanism corresponding to function fj is active in the kth latent state or
not (values 1 and 0, respectively). Different configurations of this matrix therefore
correspond to alternative structures of the network.

After we have defined the viable network mechanisms and the latent process, a
mathematical definition of the LEM model is then comprised by the ODE system

dyi
dt =

∑
j∈Ii

fj(y, θ)wj(t, x, Z, θ), t ∈ [0, T ] (10)

where Ii ⊂ {1, . . . , N} is the index set for which the function fj(y, θ) is affecting
the rate of change in yi if and only if j ∈ Ii. The state-dependent behavior of the
functions fj is conveyed from the jth row of the matrix Z to the final ODE system
by the weight function

wj(t, x, Z, θ) =
∑M
k=1{Z}jkxk(t, θ)∑M

k=1 xk(t, θ)
, (11)
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which takes values between 0 and 1. Figure 4 illustrates how a set of mechanisms
and the configuration matrix Z define an example 3-phase network of three genes.
Also an example design of a possible 3-phase latent process has been included in the
figure.

To conclude, quantitative dynamic mathematical modeling is essential in order to
reveal dynamic behaviour of complex systems of multiple molecular species and their
regulatory mechanisms. ODE modeling offers a rigorous framework for this task
and it is employed in this thesis. The ODE systems that model gene expression are
constructed by condensing the reactions involved in transcription and translation into
a single rate constant. This study focuses only on modeling gene regulatory networks
where the gene abundances are averages over a population of cells. A special case
of an ODE model is the LEM model, which captures dynamically evolving ODE
structures.
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blue and green backgrounds. The solid arrows represent activation links and the
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3 Numerical solution of ODE systems
Ordinary differential equations appear in various fields of science. In Section 2
we showed how to motivate ODE modeling of gene regulatory networks. However,
mathematically expressing the rate at which abundances of molecular species change
is usually beneficial only if it is possible to solve the output of the system, i.e.
the abundances as a function of time. Even though differential equations like
Equation 3 and 4 possess straightforward analytic solutions, they are often parts of
an ODE system, where feedback of more complex mechanisms can cause analytically
intractable dynamics. In fact, it turns out that practically all ODE systems in scientific
applications are nonlinear, and thus numerical methods are needed to integrate them.
This section focuses on how to efficiently compute a reliable approximate numerical
solution for an ODE system, given some initial condition, i.e. the state of the system
at the beginning of the time window of interest. The main focus is ultimately on
stiff ODE systems. To provide some theoretical discussion, we present sufficient
conditions for existence and uniqueness of a solution. Furthermore, some results
regarding stability and order of different numerical methods are introduced to provide
theoretical justifications for the methods used in this thesis.

3.1 Initial value problems
In general, a first-order initial value problem (IVP) consists of the ODE system

dy(t)
dt = f (t,y(t)) (12)

and an initial condition y(t0) = y0. Here y : [t0, tmax]→ Rn is the state of the system
and f : [t0, tmax]× Rn → Rn is the function that describes how the rate of change in
the state depends on the system state and time t. We use dy(t)

dt to denote the vector
that contains componentwise time derivatives y(t). Higher order problems involving
a formula for the pth time derivative of y(t), where p > 1 can also be written as
first-order ODE systems by defining additional equations (see [26], pages 12–13).
Furthermore, this thesis only deals with first order IVPs, which is why we only focus
on solving y(t) in Equation 12.
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The question we begin the theoretical discussion with is whether a given IVP
even possesses a unique solution. In order to present sufficient conditions for this,
we begin from assumptions about the right-hand side of Equation 12. We say that
the function f : [t0, tmax]× Rn → Rn satisfies the Lipschitz condition in the variable
y, if for all t ∈ [t0, tmax] and y,y∗ ∈ Rn, we have

‖f (t,y)− f (t,y∗)‖ ≤ L ‖y− y∗‖ (13)
for some constant L > 0 [8]. Here ‖·‖ denotes the Euclidean norm. Intuitively, this
means that changes in the function are restricted by a large enough constant L, and
all IVPs considered in Section 2 satisfy this property. Now, if we assume that f is
continuous in the variable t and satisfies the Lipschitz condition in y, then the IVP
in Equation 12 has a unique solution y : [t0, tmax]→ Rn [8]. For proof, see [8] page
23.

3.2 Numerical methods
Numerical methods that approximate the solution of an initial value problem in
the interval t ∈ [t0, tmax] involve computing the output y(t) at a grid of points
t0, t0 + h, t0 + 2h, . . . , tmax sequentially starting from t0 which is known [58]. Here
h is called the step size, which is assumed to be a small constant. We now present
the basics of different types of numerical methods for solving IVPs. For notational
convenience, we present the methods for the case where the problem consists of only
one equation

dy(t)
dt = f (t, y(t)) (14)

and an initial condition y(t0) = y0. We note that all the numerical methods discussed
in the following can also be applied to systems of ODEs, taking into account that
one is then dealing with vectors [58]. In this section, we use yi to denote a numerical
approximation for y(ti) and exploit the shortened notation fi = f (ti, yi). This
notation should not be confused with different state variables yi and the functions fj
in Section 2.

When analyzing different methods, we utilize the concept of global error at ti,
which is given by ei = y(ti)− yi [26]. We say that a numerical method converges to
the solution y(t) of the IVP in Equation 14 at the point t = t∗ if the global error at
ti = t∗ satisfies

|ei| → 0, (15)
when h→ 0 [26]. We are only interested in methods that satisfy this property, i.e.
do not include systematic bias but instead are arbitrarily accurate when arbitrary
computation power is available. In addition to convergence itself, we are interested
in the rate of convergence of different methods. We say that the order of a method
is p, if p is the largest integer for which there exists constants C and h0, such that

|ei| ≤ Chp (16)

for all 0 < h < h0 [26].
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A simple method for sequentially obtaining the values y1, y2, . . ., called Euler’s
method, proceeds by the iterative formula

yi+1 = yi + h · fi, (17)

i.e. moving to the direction of the derivative at the current point, until tmax is reached
[8]. It can be proven that Euler’s method is convergent (see [8], page 68). However,
the method has bad stability properties and generally requires an impractically small
step size in order to reach desired accuracy, as its order is one [8]. Thus we need to
study more sophisticated methods for practical use.

Well-known families of numerical methods that can achieve a higher order than
Euler’s method include Taylor series methods, Runge–Kutta methods and linear
multistep methods [26]. Taylor series methods demand computing higher order
derivatives of the right-hand side of Equation 12, which in applications is often
computationally too difficult [26]. Runge–Kutta methods improve accuracy by ways
that require a rather expensive amount of evaluations of f(t,y(t)) in Equation 12
[58]. This study focuses on and utilizes the family of linear multistep methods. A
particularly important class of such methods work by backward differentiation.

3.3 Linear multistep methods
Euler’s method uses the previously computed values of the solution and its derivative
only from one previous iterate, which is why it is called a one-step method [26].
We now introduce the class of linear multistep methods (LMM), that can utilize
this history more extensively. The general formula for obtaining the approximative
solution sequentially with a k-step method is

yi+k + αk−1yi+k−1 + . . .+ α0yn = h · (βkfi+k + βk−1fi+k−1 + . . .+ β0fi) , (18)

where βk = 0 means that the method is explicit [26]. Otherwise the method is called
implicit, because both sides of the equation depend on yi+k. Note that in order to
use a k-step method, we need to have additional starting values yk−1, yk−2, . . . , y1,
which have to be computed first using some other method such as Euler’s [26].

A simple example of an explicit multistep method is the early two-step method
by Adams and Bashforth, here denoted AB(2), where α1 = −1, α0 = 0, β2 = 0,
β1 = 3 and β0 = −1 [26]. The iterative formula thus becomes

yi+2 = yi+1 + h

2 · (3fi+1 − fi) . (19)

In order to demonstrate this LMM and compare it to Euler’s method, let us consider
an example IVP

dy(t)
dt = 1 + e−0.5t − y(t) , y(0) = 0 (20)

that has the analytic solution y(t) = 1− 3e−t + 2e−0.5t. Here y(t) could represent the
abundance of a gene A, and the part 1 + e−0.5t could be the output of another gene
B that activates A. The part −y(t) then corresponds to degradation of gene A. We
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Figure 5: Demonstration of Euler’s method and a two-step Adams-Bashforth
method. Marked lines represent numerical approximations for the solution of the
IVP in Equation 20 with step sizes h = 0.8 and h = 0.4. Analytic solution has been
plotted for reference. Global error is proportional to h for Euler’s method, whereas
for the two-step Adams-Bashforth method it is proportional to h2.

study how the two methods perform in solving this IVP on the interval t ∈ [0, 10].
Figure 5 shows the analytic solution and numerical approximations obtained with the
methods using two different step sizes. In AB(2), the first step is taken with Euler’s
method, which clearly exaggerates the overshoot in the beginning. For h = 0.8,
AB(2) experiences large oscillations around the real solution whereas Euler’s method
gives a smoother solution, which however is also clearly off. Since AB(2) is a second
order method [26], it is not surprising that it gives a clearly better approximation
when h is halved.

In order to solve IVPs reliably, we are interested in types of LMMs that converge
to the real solution of the system (Equation 15). We adopt the style of [26] to present
theoretical considerations for a k-step LMM defined by Equation 18. For convergence
results, we start by assuming that the additional starting values yk−1, yk−2, . . . , y1
are computed using a convergent method.

The coefficients in Equation 18 can be used to define the characteristic polynomials

ρ(r) = αkr
k + αk−1r

k−1 + . . .+ α0 (21)
σ(r) = βkr

k + βk−1r
k−1 + . . .+ β0, (22)

which we normalize so that αk = 1. We say that a method is consistent, if ρ(1) = 0
and ρ′(1) = σ(1), i.e.

k∑
j=0

αj = 0 and
k∑
j=0

jαj =
k∑
j=0

βj. (23)

Furthermore, a k-step LMM is called zero-stable if all roots of the polynomial ρ(r)
satisfy |r| ≤ 1 and those roots for which |r| = 1 are simple. A theorem by Dahlquist
[14] states that an LMM is convergent if and only if it is both consistent and zero-
stable. Using this fact, it is simple to check that for example the presented AB(2)
method is convergent.
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When choosing an appropriate LMM to use in an application, one must take
into account not only convergence, but also other properties such as the order of the
method. Thus, one should consider a result called the first Dahlquist barrier [14, 15],
which states that if an LMM is zero-stable, its order p satisfies

1. p ≤ k + 2 if k is even

2. p ≤ k + 1 if k is odd

3. p ≤ k if βk ≤ 0 (this is true in particular for all explicit methods).

3.4 Stiff ODEs and BDF methods
The concept of stiffness [13] can be defined in various ways, and the definitions are
often rather fuzzy. A simple definition is that a problem is stiff is explicit methods
perform badly in solving it [27]. Biochemical reaction systems that involve reaction
rates that differ by orders of magnitude are often stiff [55]. This motivates focusing
on methods that are designed for stiff problems.

A stability property that is suitable for studying behaviour of numerical methods
that solve stiff systems is called A-stability [27]. In order to introduce A-stability for
LMMs [16], we return to following the presentation in [26] and consider the standard
test problem

y′(t) = λy(t), y(0) = y0, (24)
where λ ∈ C and Re(λ) < 0. The analytic solution y(t) = y0e

λt has the property
y(t) → 0 as t → ∞. This is a property that is desirable for a solution given by a
numerical method to have, too. We say that the region of absolute stability of an
LMM is D, if for all fixed ĥ = hλ ∈ D and any given starting values, solutions to
the test problem in Equation 24 tend to zero when t→∞. Moreover, an LMM is
said to be A-stable, if its region of absolute stability contains the entire left complex
half-plane.

Unfortunately, A-stability is a very demanding property. This is quantified by
the second Dahlquist barrier [16], which states that

1. an explicit LMM cannot be A-stable

2. the maximum order of an A-stable LMM is two.

In practice, one wants to use methods that have an order higher than two.
Therefore, methods for which the region of absolute stability includes not all, but
a large part of the negative half-plane, and in particular the negative real axis,
have been designed. Efficient methods of this kind are the backward differentiation
formulae (BDF) [58]. BDF methods [13] are implicit linear multistep methods, and
the iterative formula for a k-step BDF method is

yi+k + αk−1yi+k−1 + . . .+ α0yn = h · βfi+k, (25)

where β 6= 0 [58]. The coefficients for a k-step BDF method can be set so that they
maximize the order accuracy (confer [58], page 349). This yields unique coefficients
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for k = 1, 2, 3, 4, 5, 6 (see for example [8], page 333). For k ≥ 7, BDF methods are
not zero-stable and thus not very useful [26].

In summary, numerical methods for ordinary differential equations are a well-studied
field. Important theoretical aspect to check is that the methods one applies are
convergent. When designing practical linear multistep methods, one should keep
in mind that there exists theoretical results for them that restrict the relationship
between stability and order of a convergence. An important class of explicit LMMs
are the BDF methods, which we will utilize in this study.

Above we discussed methods for which the step size h is kept constant during
the whole process of integrating an numerical solution. In practice, many numerical
software adapt the step size by taking shorter steps at regions where the solution
experiences rapid variations and longer steps when the solution is in a more steady
state [26]. This can improve efficiency, because same accuracy can be reached with
fewer steps or better accuracy with the same number of steps [26]. Ideally, the process
of adapting the step sizes suitably is automatic and inexpensive compared to the
computational cost avoided using it [26]. For an introduction to such strategies, see
[26], chapter 11.
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4 Statistical inference
Quantitative mathematical models of biochemical systems, such as signal transduction
pathways or gene regulatory networks, often have to be calibrated using experimental
data. This can be due to uncertainty in the model parameters or the model structure
itself [25]. The unknown parameters can be for instance reaction rates or initial
concentrations. Calibrating the parameters of a dynamical mathematical model so
that it agrees with experimental data, is in fact a central task in systems biology.
The data usually consists of time course measurements of the system components,
such as concentrations of different molecular species. Usually the measurement times
have the role of an independent variable, and are assumed to be known exactly, as
opposed to the observations of the system state variables, which are modeled as
noisy versions of the actual values. This noise then motivates probabilistic model
calibration, which is a process of tuning a model such that its output is as likely
as possible. Statistical inference techniques can also be applied to choose the most
likely model, when there are numerous alternative hypotheses about the mechanisms
of a biochemical system. A generally recommended approach for model evaluation
and comparison is to study a model’s expected predictive accuracy [20]. However,
estimating the predictive accuracy for example by performing cross-validation is not
a suitable technique for the models considered here, since fitting an ODE model
using only a subset of the data can give very biased predictions. Furthermore, if the
cross-validation is done using multiple folds, the computations related to fitting a
high-dimensional ODE model several times are too expensive. Therefore we employ
Bayesian analysis [7, 20, 37, 53] to calibrate the model parameters and to perform
model comparison.

4.1 Bayesian inference
In Bayesian data analysis, probability models are harnessed to produce inferences
from observed data and hence obtain information about unobserved quantities of
interest. To be more exact, Bayesian inference gives us a probability distribution on
the model parameters or some other unobserved quantities, like predictions for new
observations. Here, we present the basics of Bayesian inference, using the book by
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Gelman et al. [20] as the main source.
In the following we assume that we have collected a data set D and designed a

model whose parameters are contained in the vector θ ∈ Θ, where Θ is the space of
possible parameter vector values. Bayesian analysis is initialized by defining the joint
probability distribution of all observable and unobservable quantities involved. Here,
the observable quantities are the data whereas the parameters are unobservable,
so our joint distribution is p(D, θ). Setting this distribution can be difficult and
demands knowledge about the underlying application and the data collection process.
A reasonably specified joint probability distribution is often expressed as the product
p(D, θ) = p(D | θ)p(θ), where p(D | θ) is called likelihood and p(θ) is our prior
distribution. Likelihood expresses the probability at which the model generates the
observed data when the parameters have values θ. For example, let us consider an
ODE model with n components and a data set containing K time course observations
of each state variable. The data set is then D = {Dik | i = 1 . . . , n; k = 1, . . . , K},
where Dik = {ti, y†ik} contains the measured value y†ij of the state variable j at time
point ti. Evaluating the likelihood of the data, given parameters θ, then involves
computing the model output yij = yi(ti, θ) at the data points, which inevitably
involves solving the ODE system. If the measurements are assumed to be independent
and identically distributed, the likelihood function is given by

p(D | θ) =
n∏
i=1

K∏
k=1

g(y†ik | yik, θ), (26)

where g(y†ik | yik, θ) expresses the likelihood of a single data point Dij . Note that the
term likelihood function means that p(D | θ) is a function of θ. Defining a likelihood
model generally involves assumptions about the distribution of the measurements,
and the parameter vector θ may also contain parameters of that distribution. For
example, if the data was assumed to be normally distributed with mean yik and
variance σ2, then g(y†ik | yik, θ) would be the probability density function value of
the corresponding normal distribution at y†ik. The prior on the other hand contains
all beliefs of the parameter distribution before any data are seen. Thus, both the
likelihood and the prior involve assumptions that require knowledge of the scientific
application in question.

After observing data, we can condition on it using an equation called Bayes’
formula to obtain the posterior distribution

p(θ | D) = p(D, θ)
p(D) = p(D | θ)p(θ)

p(D) , (27)

where the normalizing constant

p(D) =
∫
θ∈Θ

p(D | θ)p(θ)dθ (28)

is called marginal likelihood. Now the posterior distribution, which can be seen as a
compromise between the prior and the observed data, includes all information that
we have about the parameters. Bayesian analysis has the salutary property that it
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lets the data speak, meaning that the effect of the prior on the posterior – and thus
the subjectivity contained in it – diminishes as more data are observed. Furthermore,
the sensibility of other subjectively set schemes involved in the Bayesian analysis,
such as the assumptions that are made when the likelihood model is determined, can
often be tested statistically if the available data set is abundant.

Bayesian treatment offers us a posterior distribution p(θ | D) that is a probabilistic
description of all available information about the unobservable parameters θ. However,
often the parameter values themselves are not of interest, and instead one can wish
to harness the information to provide predictions about other potentially observable
quantities. For instance, if the data consists of time course measurements of a
dependent variable y at some time points, one can evaluate a prediction y∗ for
y at any time point t∗. In order to obtain a prediction that captures the whole
posterior and thus all information that we have, one can use the posterior predictive
distribution

p (y∗ | t∗,D) =
∫
θ∈Θ

p(y∗ | t∗, θ)p(θ | D)dθ. (29)

Note that this approach is not limited to a single independent variable t and can
be extended to any set of covariates. The benefit of this fully Bayesian approach is
that in addition to a single prediction, such as the expectation E [p (y∗ | t∗,D)], the
posterior predictive distribution offers confidence bounds for y∗. Predictions given by
a model can then be used to assess the quality of the model in question by measuring
how well they agree with the data points.

4.2 Bayesian model ranking
Besides parameter posterior analysis of systems biology models, another central
challenge in the field is to find the most suitable models when different model
hypotheses are viable [61]. Different model structures can for example correspond to
alternative network configurations of a gene regulatory network. In Section 4.1 we
presented the Bayesian parameter estimation methodology assuming that the system
model structure is known. In this section, we consider a case where we have defined a
setM = {M1,M2, . . . ,MK} of alternative well-defined mathematical models. When
experimental data are available, statistical methods can then be applied to rank these
models by evaluating a quantity that is proportional to the posterior probability
of the model. This section presents the Bayesian model ranking scheme, mainly
referring to [25].

To capture the uncertainty over K different candidate models, we aim to obtain
a model posterior distribution p(Mk | D) over k = 1, . . . , K. Before observing data,
we set a model prior distribution p(Mk) that describes which models are likely a
priori. After seeing data D, the Bayes’ formula gives the posterior as

p(Mk | D) = p(D |Mk)p(Mk)∑K
i=1 p(D |Mi)p(Mi)

, (30)

where p(D |Mk), called the model marginal likelihood or evidence, is given by

p(D |Mk) =
∫
θ∈ΘMk

p(D |Mk, θ)p(θ |Mk)dθ. (31)
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Table 1: Interpretation of the Bayes’ factor in favour of model 1 as opposed to model
2, according to Jeffreys [37].

log10(B12) B12 Interpretation
0 to 1/2 1 to 3.2 Only worth a bare mention
1/2 to 1 3.2 to 10 Substantial
1 to 2 10 to 100 Strong
> 2 > 100 Decisive

Here p(θ |Mk) now describes the prior belief about the parameters θ, given that the
model is assumed to be Mk. The term p (D | θ,Mk) expresses how likely it is to see
the data when the model is Mk and parameters take the value θ. Now, competing
hypotheses can be compared by the corresponding model posterior probabilities [61].
Note that model comparison can be done using only the unnormalized posterior
probabilities p(D |Mk)p(Mk).

The evidence contained in the data in favour of one model as opposed to another
can be expressed in the form of a Bayes’ factor [61]. The Bayes’ factor between
models M1 and M2 is given by

B12 = p(D |M1)
p(D |M2) , (32)

i.e. the ratio of their marginal likelihoods. One way to interpret these factors is given
by Jeffreys [37] who suggested intervals on the log10 scale, with the corresponding
interpretations shown in Table 1. Using Bayes factors is mainly sensible when the
candidate model set is truly discrete and when it is reasonable to assume that either
one or the other model is a good description of the data [20]. Alternative model
ranking techniques, such as cross-validation, are based on estimating the expected
predictive error of the models [20].

4.3 Parameter identifiability analysis
Sometimes the goal is to solely calibrate a model by determining a single point
estimate for the parameters such that the model agrees with experimental data in an
optimal way. This is done by optimizing an objective function, such as the likelihood
p(D | θ) that was introduced in Section 4.1 [48]. For some models it might be the
case that given the observed data, the optimization problem is underdetermined
and there does not exist a unique point in the parameter space that maximizes the
posterior probability [38]. This obstacle is called non-identifiability and it can be
either structural or practical [38].

Structural non-identifiability [5] of a parameter originates from the formulation
of the model itself and is independent of any data [48, 49]. For example if the
parameters θ1 and θ2 appear in a model only as the product θ1θ2, there are infinitely
many combinations of the two parameters that yield the same model output, and
consequently θ1 and θ2 are both structurally non-identifiable. In this case, the
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Figure 6: Demonstration of a case where structurally non-identifiable parameters
become identifiable in the Bayesian sense. a) Noisy data generated from the model
in Equation (34) with parameter values θ1 = θ2 = 1. b) The likelihood surface does
not have a single isolated maximum. c) An informative prior distribution. d) The
parameter posterior distribution is proportional to the product of the likelihood and
the prior distribution. This surface has a unique maximum.

problem can be eliminated by replacing the product with a single parameter which
possibly is then identifiable [38]. For simple models, a similar check can be carried
out easily, but generally structural non-identifiability can be difficult to detect for
complicated models that appear in applications [48].

Practical non-identifiability on the other hand can arise even if the model is
structurally identifiable [49]. This happens when the data set is not informative
enough to determine the parameters [38]. For example for linear regression models,
this is clearly the case if there are less data points than parameters.

If the non-identifiability problem cannot be solved by reparametrization, one can
modify the target function of the parameter calibration by applying a regularization
that makes the parameters indentifiable. In Bayesian inference, parameters that are
non-identifiable with respect to likelihood, become identifiable, when an informative
prior distribution is used. For example, let us consider the ODE

dy(t)
dt = 1− (θ1 + θ2)y(t), (33)
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which with the initial condition y(0) = 0 has the analytical solution

y(t) =

t , if θ1 + θ2 = 0
(θ1 + θ2)−1

(
1− e−(θ1+θ2)t

)
otherwise

. (34)

The parameters θ1, θ2 are structurally non-identifiable, since increasing one can
always be compensated by decreasing the other. Figure 6a displays a noisy data set
generated from this model with θ1 = 1 and θ2 = 1 and Figure 6b shows the likelihood
surface, when normal noise is assumed. Because all parameter combinations that
satisfy θ1 + θ2 = C yield the same output, the likelihood surface attains its maximal
value on a line in the parameter space. Here, C is not exactly 2 due to noise in
the data. If one has reason to believe that the real parameter values are small and
wishes to include this regularization in the analysis, a standard bivariate normal
prior (Figure 6c) could be used. The posterior, which is proportional to the product
of the prior and likelihood, then also has a unique maximum (Figure 6d). When
posterior inferences are made, data still speaks through the likelihood, making the
parameter combinations that add up to around two clearly stand out, but the prior
information makes the values around (1, 1) the most probable combinations.

4.4 Comparison of hypotheses about model structure
Section 4.2 demonstrated how Bayesian methodology can be applied to compare
individual models. This analysis can be generalized further to allow comparison of
groups of models, that can have an arbitrary number of members. Consequently, we
can perform ranking of different hypotheses about the model structure, by grouping
together models that share some property of interest.

We assume that there are K different models in total and h alternative model
structure hypotheses H1, . . . , Hh. Each hypothesis Hk corresponds to an index set
Ik ⊂ {1, . . . , K} such that all Ik are disjoint and ⋃h

k=1 Ik = {1, . . . , K}. Now,
conditioning on a hypothesis H and model M , fully Bayesian treatment involves
expressing the parameter posterior in the form

p(θ | D,M,H) ∝ p(D |M,H, θ)p(θ |M,H), (35)

where p(θ | M,H) is now the parameter prior, given H and M . The marginal
likelihood p(D | M,H) is obtained by integrating out the rate parameters like in
Equation 31. Furthermore, the posterior distribution over all the models, conditioned
with H, becomes

p(M | D, H) = p(D |M,H)p(M | H)∑K
i=k p(D |Mk, H)p(Mk | H)

, (36)

where p(M | H) is the prior over models, given H. To rank the different hypotheses,
we again compare their posterior probabilities

p(Hk | D) = p(D | Hk)p(Hk)∑h
i=1 p(D | Hi)p(Hi)

, (37)
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Figure 7: Three alternative configurations of a regulatory network. Activated and
repressible expression are represent using arrows (→) and turnstiles (a), respectively.
The first two are stationary models with a single network wiring, where as the third
one has two sequential phases.

where the values p(Hk), k = 1, . . . , h comprise the prior distribution over alternative
hypotheses. This involves computing the likelihood of data given a hypothesis, i.e.

p(D | Hk) =
∑
i∈Ik

p(D |Mi, Hk)p(Mi | Hk). (38)

Equation 37 provides a well-defined probabilistic measure that can be used to
assess distinct hypotheses about the model structure. This is beneficial, since for
instance LEM modeling, which was introduced in Section 2.3, has applications that
involve several alternative hypotheses about the latent process. In particular, in the
Th17 cell differentiation application considered in this study, the number of latent
states in the driving gene regulatory networks is unknown. Models with different
numbers of latent states can then be grouped together as a hypothesis about the
model structure, and the different hypotheses can be ranked in a well-defined manner.

To clarify the hypothesis testing for LEM models, let us consider three alternative
models M1, M2 and M3. Models M1 and M2 corresponds to a stationary network
structure in Figures 7a and 7b, respectively. The modelM3 in Figure 7c is a two-phase
model where the subnetworks of M1 and M2 are the two sequential states. We wish
to compare the hypotheses Hm: “There are m latent states.” for m = 1, 2, assuming
that the computed marginal likelihoods for the models are p(D | M1, H1) = 10,
p(D |M2, H1) = 20 and p(D |M3, H2) = 35. If we use a uniform prior over models
given either of the hypotheses, we get p(D | H1) = 10+20

2 = 15 and p(D | H2) = 35.
If the prior over hypotheses is also uniform, this yields the posterior probabilities

p(H1 | D) = 15
15 + 35 = 0.3 and p(H2 | D) = 35

15 + 35 = 0.7. (39)

4.5 Probabilistic inference of model mechanisms
In model structure inference, the goal can be to obtain probability statements
that capture the uncertainty related to different model mechanisms, instead of just
looking for a single best model. If the posterior distribution over alternative model
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Figure 8: Example of probabilistic predictions obtained by analysis of networks in
Figures 7a and 7b.

configurations is completely available, we can determine how probable the individual
model mechanisms are, by averaging over all the model configurations. This yields
so-called posterior weights for each mechanism.

To perform this inference task, we formulate two alternative hypotheses H1:
“mechanism j is present” and H0: “mechanism j is not present. We denote the subset
of models that contain the mechanism j by Ij. Let us assume that we have a model
posterior distribution p : M → [0, 1]. Now, a posterior weight that captures the
probability of hypothesis H1 is given by

ωjp =
∑
M∈Ij

p(M)∑
M∈M p(M) , (40)

In particular, if the model spaceM consists of LEM models, each of which can be
defined with a binary matrix Z (see Section 2.3), then the matrix

Wp =
∑
Z∈M p(Z)Z∑
Z∈M p(Z) (41)

contains the posterior-weighted averages for each element in the model configuration
matrix over all possible models. We note that computing this matrix for LEM models
is sensible only when the number of latent states M is fixed, but can be carried out
separately for different M . The element (j, k) of this matrix can be interpreted as
the probability of the corresponding mechanism j being present in the kth latent
state.

As an example, we can study the networks in Figure 7, by assuming the same
marginal likelihoods and priors as given in previous section. If we fix the hypothesis
H1, the posterior probabilities given by Equation 36 are p(M1 | D, H1) = 1

3 and
p(M2 | D, H1) = 2

3 . Figure 8 shows the resulting probabilistic predictions for the
mechanisms given by Equation 40. Of course, it is clear that the mechanisms that
are present in all possible models get a probability of 1 whereas mechanisms not
present in any model have probability 0. Thus, defining a model space that is large
enough to capture the structure uncertainty is important.

In the applications of this thesis, however, the posterior weights have to be
computed by using an approximation q for p, since it often is not feasible to compute
the posterior probability for all viable models. This then results in an approximated
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posterior weight matrix Wq. The following chapter focuses on how to obtain a good
approximation q efficiently. This approximative distribution can then also be used
to perform the hypothesis testing presented in the previous section.

This chapter introduced the basics of Bayesian inference, which is the cornerstone of
the data-driven ODE model structure inference in this thesis. We have rigorously
presented a probabilistic framework for comparing different model structures. The
focus of this thesis will now move to computational techniques that make the marginal
likelihood computations and the model structure inference possible even for large
sets of high-dimensional models.
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5 A novel model structure inference
strategy based on efficient exploration
of the model space

The previous chapter presented the theoretical basis for the statistical model structure
inference considered in this study. In this section, we introduce a novel strategy for
performing structure inference for ODE models. Fully Bayesian treatment of such
nonlinear ODE models is not feasible, since the integrals that appear in marginal
likelihood formulas (Equation 31) are not analytically tractable [25]. Thus, also
parameter posterior (Equation 27) and our desired model posterior (Equation 30) are
not available in closed form. Parameter dimension of the models is often large and
thus numerical integration has to be ruled as well. Various approximative methods
for computing the model marginal likelihood have been developed [18], but even so
the reliable evaluation of the full model posterior distribution is restricted to very
small model spaces due to computational cost. Throughout the rest of this thesis,
the term model posterior can also refer to the model posterior conditional on some
hypothesis (Equation 36).

In applications that are encountered in fields such as systems biology, the set of
alternative models can often be very large due to uncertainty in the model structure.
On the other hand, if the data are informative enough, it can turn out that a small
fraction of the alternative model configurations stand out as remarkably more likely
than most models. This is why we propose using Markov chain Monte Carlo (MCMC)
methods to explore the discrete model space cleverly and consequently, to obtain
a good approximation for the model posterior distribution at a rather bearable
computational cost. Computing this approximation is then an efficient strategy
for obtaining meaningful inferences about the model structure. In particular, we
explicitly formulate a Metropolis algorithm that can be used to perform structure
inference for LEM models (Section 2.3).
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5.1 Markov chain Monte Carlo methods
Markov chain Monte Carlo (MCMC) is a very popular and widely used strategy to
solve integration and optimization problems faced for example in machine learning,
physics and statistics [3]. It is often used to sample, i.e. draw realizations of x
from a distribution p(x) that is not available in a closed form. Such distributions
are for example many posterior distributions encountered in Bayesian analysis [54].
MCMC relies on the fact that samples from a target distribution p : X → [0, 1]
can be generated by exploring the state space X using a Markov chain which has
p as its invariant distribution [3]. This facilitates analysis of distributions that are
not available in closed form but can only be evaluated at different points. Here we
present the basic MCMC theory, following [54].

A Markov chain on state space X is a stochastic process defined by a sequence of
random variables Xt ∈ X , such that for all t = 1, 2, . . ., the conditional probability
of Xt+1 given all previous variables in the sequence depends only on Xt. The
joint distribution of all Xt is determined by the distribution of the initial state
X1 and a transition kernel K, which is a conditional probability density such that
Xt+1 ∼ K(Xt+1 | Xt). For any A ⊂ X , the transition probability from Xt to A
satisfies

P (Xt+1 ∈ A | Xt) =
∫
A
K(x | Xt)dx. (42)

The MCMC methods used in this study are based on random walks in the state space
X . This means that Xt+1 is generated by adding a (small) change to Xt, in the sense
of the metric that is associated with X . In this study, we only consider homogenous
Markov chains, i.e. ones where K(Xt+1 | Xt) is independent of t. Furthermore, we
will only utilize Markov chains on a countably finite state space X = {x1, . . . , xs}.
In this case, a probability mass distribution on X can be expressed as a vector
π = [π1, . . . , πs] and the transition kernel can be expressed as a matrix T , where the
element {T}ij = K(Xt+1 = xj | Xt = xi).

A distribution π is called the invariant or stationary distribution of a Markov
chain, if it follows from X1 ∼ π that Xt ∼ π for all t [22]. In order to use a Markov
chain for MCMC, it must have a unique invariant distribution π, independent of the
initial state [54]. To guarantee this, the matrix T must have two properties called
irreducibility and aperiodicity [3]. Irreducibility means that the chain can reach all
other states no matter where it is started, whereas aperiodicity prohibits getting
trapped in cycles [3]. A sufficient condition to ensure that a particular distribution
π is an invariant distribution of a Markov chain is the detailed balance condition

πi{T}ji = πj{T}ij, (43)

for all i, j ∈ {1, . . . , s} [3]. These concepts can also be extended to allow X to be
continuous. However, such theory is not presented here, since only discrete-space
MCMC algorithms are used in this thesis.

Designing practical MCMC methods can be done by defining transition rules that
ensure aperiodicity and irreducibility and satisfy the detailed balance condition [3].
Then, a realization or realizations of the chain can be simulated to obtain samples
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from the target distribution [20]. Different state-of-the-art MCMC implementations
can differ for example by their number of chains, adaptivity properties or use of
gradient information [4]. The most popular basic types of MCMC methods are Gibbs
sampling [21] and the Metropolis-Hastings algorithm [29, 45], which is a random
walk Monte Carlo algorithm that we will utilize in this study. If the current state is
x, a Metropolis-Hastings algorithm proceeds by drawing a candidate value x∗ from
a proposal distribution q(x∗|x) [3]. This candidate is then accepted to become the
next state of the Markov chain with probability min{1, r}, where

r = p(x∗)q(x | x∗)
p(x)q(x∗ | x) , (44)

and otherwise the chain remains in the state x [3]. It is straightforward to show
that methods of this kind have p(x) as their invariant distribution (see [20], pages
279–280).

5.2 Exploring the posterior distribution over model struc-
tures using MCMC

In our model structure inference problem, the idea is to exploit the fact that a
Markov chain related to any MCMC method that has the model posterior distribution
p(M | D) as its target distribution gets attracted towards the high probability models
that we are interested in. Because our model space is discrete, visiting a model
for which the (unnormalized) posterior probability has already been evaluated does
not provide us with any more information. If aperiodicity, irreducibility and the
detailed balance are satisfied, we already know that the proportion of times the
model is sampled will approach the posterior probability of that model, since the
model posterior distribution is the invariant distribution of the chain. This is why
we our focus is not directly in sampling from the posterior distribution, but rather
just searching for its high probability regions. The main realization is that when
the posterior probability has been evaluated for high probability models, the entire
posterior can be approximated in a manner that is sufficient for reliable model
structure inferences. Consequently, we need not worry about common issues of
continuous space MCMC sampling like burn-in or correlation of consecutive states.

Choosing an efficient proposal distribution is vital for MCMC methods to have
desirable properties, such as rapid convergence to the invariant distribution, high
proportion of accepted moves, or good mixing of the chains [56]. In order to establish
an efficient proposal distribution in the model space, we wish to define a sensible
distance relation between the different models. In this section, we assume that the
model spaceM is a set of all N ×M binary matrices, each corresponding to a LEM
model (see Section 2.3). For model configurations Z, Y ∈M, we define their distance
relation d :M×M→ 0 ∪ N as

d(Z, Y ) = ‖Y − Z‖2
F (45)

where ‖A‖F is the Frobenius norm of matrix A. Note that when Y and Z are binary
matrices, d(Z, Y ) is the number of their differing elements. It is easy to check that
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d(·, ·) is symmetric, non-negative and subadditive, and therefore (M, d) is a metric
space. Now, we define the k-neighborhood of a model Z as

Nk(Z) = {Y ∈M : 1 ≤ d(Z, Y ) ≤ k}. (46)

If Y ∈ Nk(Z) with k � N ×M , then the models Z and Y have a high degree of
similarity and many common components. Consequently, they are likely to have rather
comparable posterior probabilities. Thus, a random walk Monte Carlo algorithm
with a proposal distribution that has most weight on models in k-neighborhoods of
the current state with small k presumably allows reasonably smooth moving with a
practical proportion of accepted proposals.

5.2.1 A Metropolis-type algorithm for model posterior sampling

We now explicitly formulate a discrete space Metropolis algorithm to be used in our
structure inference. The Metropolis algorithm [45] is a special case of Metropolis-
Hastings, where the proposal distribution q(Z∗ | Z) is symmetric, i.e. q(Z∗ | Z) =
q(Z | Z∗) for all Z,Z∗ ∈ M. We assume that for any Z ∈ M, we can evaluate an
unnormalized version πH(Z) ∝ p(D | Z,H)p(Z | H) > 0 of its posterior probability,
possibly given a hypothesis H. We use a proposal distribution that is uniform over
the 1-neighbors of the current model, i.e.

q(Z∗ | Z) =


1

NM
, if Z∗ ∈ N1(Z)

0, otherwise
(47)

which clearly is symmetrical, because Z∗ ∈ N1(Z) if and only if Z ∈ N1(Z∗). If the
current state is Z, one Metropolis step consists of the following parts:

1. Draw a proposal model Z∗ from the discrete proposal distribution q(Z∗ | Z).

2. Accept transition to Z∗ with probability

A(Z∗ | Z) = min
{

1, πH(Z∗)
πH(Z)

}
(48)

and reject it with the probability 1− A(Z∗ | Z).

Now the transition probability from state Z to Z∗ is the product K(Z∗ | Z) = q(Z∗ |
Z)A(Z∗ | Z). For any models Z and Z∗ such that Z∗ ∈ N1(Z), we have

πH(Z)K(Z∗ | Z) = min
{
πH(Z)
NM

,
πH(Z∗)
NM

}
= πH(Z∗)K(Z | Z∗). (49)

Furthermore, if Z∗ /∈ N1(Z), also Z /∈ N1(Z∗) and both sides of Equation 49 equal
to zero, meaning that the detailed balance condition is satisfied. Since πH(Z) > 0
for all Z ∈M, there is always a positive probability of changing any element of the
matrix Z, so all states are always accessible. Furthermore, possibility of rejection
disallows periodicity. It follows that the unique invariant distribution of the resulting
Markov chain is πH(Z), independent of which model the chain is started from.
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5.2.2 Model posterior distribution approximation

We start from a setting where we have first defined a model space consisting of well-
motivated ODE models that are plausible under hypotheses and prior information
concerning the model components and parameters. After measuring time course
data of the ODE model components, our goal is to obtain information about the
actual underlying model structure. Typically the full model posterior p(Z | D,H)
is computationally out of reach, and therefore we begin the task by approximating
this discrete probability distribution with a distribution that has a relatively small
support. Of course, for this approximation to be good, the support must contain a
remarkable proportion of the high posterior probability models. In our approach,
we use the Metropolis-type algorithm to efficiently find a subset of models that is
sufficient for the approximation task and reliable structure inference.

Assume that we have run any search algorithm that has provided us with the
(possibly approximated) marginal likelihood values p(D | Z,H) for each Z ∈ Z ⊆M.
The model posterior approximation is then the distribution pa :M→ [0, 1], where

pa(Z) = p(D | Z,H)p(Z | H)∑
Y ∈Z p(D | Y,H)p(Y | H) (50)

for all Z ∈ Z and pa(Z) = 0 for all Z ∈M\Z.
Assessing the converge of the Markov chains is an essential part of classical MCMC

sampling [22]. Diagnostics that measure convergence are often based on the use of
multiple independent MCMC chains, that can be started from different initial points
[20]. In this study, too, we rely on using several independent chains in order to assess
the reliability of the obtained results and to decide when to terminate the search.
The model posterior approximations given by different MCMC chains are different if
the chains have not reached the same high probability regions. Because our target
distribution is discrete and we are not actually sampling in a traditional MCMC
sense, we will not use the standard convergence diagnostics. Instead, we focus on
measuring the similarity of distributions obtained from different independent chains
using Equation 50 in order to assess the convergence of the approximations.

Common metrics that compare the similarity of two distributions p and q include
for example the Bhattacharyya distance [6] and Kullback-Leibler divergence [41]. The
latter one is commonly used in machine learning, but is not defined for distributions
that do not have their whole domain as their support. We choose to use the
overlapping (OVL) coefficient [32, 63], which measures the similarity by computing
the area that the two distributions share. Because the integral of any probability
distribution is 1, the OVL is bounded between 0 and 1, so that OVL(p, q) = 1 if
and only if p = q. A formula for computing the OVL for discrete probability mass
distributions p, q :M→ [0, 1] is

OVL(p, q) =
∑
Z∈M

min {p(Z), q(Z)} . (51)
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5.2.3 Efficient marginal likelihood estimation

Our MCMC-based model space exploration is only possible, if the marginal likelihood

p(D | Z,H) =
∫
θ
p(D | Z,H, θ)p(θ | Z,H)dθ (52)

can be evaluated up to a normalizing constant. For nonlinear ODE models, this
integral is not analytically tractable, which forces the use of approximative methods
[25]. When the parameter dimension is high, estimation of the marginal likelihood
is challenging, but there exist various approaches that differ in both accuracy and
computational cost [10, 18]. In this study, we use the an approximation based on
the Bayesian information criterion (BIC) [57]. It can be seen as a special case of
a more general method called Laplace’s method. A carrying assumption behind
Laplace’s method is that the d-dimensional surface to be integrated, denoted by
l(θ) = p(D | Z,H, θ)p(θ | Z,H), can be approximated with a d-variate normal
distribution Nd(θ | θ̃,Σ) [18]. The approximating distribution has its mean at
θ̃ = maxθ l(θ) and its covariance matrix is Σ = (−Hl)−1, where Hl denotes the
Hessian of l(θ) [18]. The resulting integral can be now evaluated analytically, giving
the marginal likelihood approximation∫

θ
l(θ)dθ = (2π)d/2|Σ|1/2p(D | Z,H, θ̃)p(θ̃ | Z,H), (53)

where | · | denotes the matrix determinant [18]. If the parameter prior p(θ | Z,H) is
uniform over all θ, the logarithm of the approximation reduces to

log p(D | Z,H) ≈ log p(D | Z,H, θ̃)− 1
2 log(|Hl|) + C, (54)

where C is a constant and θ̃ now is the same as the maximum likelihood estimate
θML = maxθ p(D | Z,H, θ) [52]. If the data D contains D data points and the model
parameters are identifiable, i.e. θML is unambiguous, the term −1

2 log(|Hl|) can be
considered roughly proportional to −d

2 log(D) [57]. This leads us to the unnormalized
logarithmic marginal likelihood approximation

log p(D | Z,H) ≈ log p(D | Z,H, θ̃)− d

2 log(D), (55)

which is the BIC [52]. The first term expresses the likelihood of the data in the case
where model parameters take their most likely values, and the second term penalizes
the model complexity. BIC extends the normality assumption behind Laplace’s
method to the extreme by condensing the approximating normal distribution into a
single point that carries all information about the surface that is integrated. One
should acknowledge that this is a very strong assumption and usually not valid for
nonlinear ODE models that can exhibit multimodal parameter posterior surfaces [10].
However, since Equation 55 can be evaluated simply by determining the maximum
likelihood parameters θML, BIC can provide us with adequate information for model
comparison in a reasonable computation time. Moreover, BIC has can be considered
practical, and it has been used in works involving real life applications [34, 44].
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5.3 Computational implementation

5.3.1 Implementation details

The model structure inference and identifiability computations are implemented in
Matlab (The MathWorks Inc., Natick, MA, USA). Using BIC for the estimation
of marginal likelihood reduces the computational problem to that of finding the
maximum likelihood parameters θML. This nonlinear optimization problem is rather
difficult due to its high dimension, multimodality of the likelihood surface, and
possible ill-posedness resulting from non-identifiability [46]. We tackle the problem
by following recommendations by [50], where various deterministic and stochastic
optimization algorithms were compared for parameter estimation in systems biology.
Their results indicate that deterministic derivative-based optimization with a multi-
start strategy outperforms various stochastic and other algorithms by orders of
magnitude in both reliability and efficiency. Here, we present the implementation
details that are mostly adopted from the calculations and guidelines presented in
[50] and [51].

We denote the data by D = {Dik | i = 1, . . . , n; k = 1, . . . , Ki}, where Dik =
{tk, y†ik} contains the measured value y†it of component yi at time tk and Ki is the
number of measurements of component i. It is possible that tk = tk′ for some k 6= k′,
which means that we have multiple replicates at that time point. All computations
of this study assume that the measurement noise for y†it is normally distributed with
mean yik and standard deviation σik = α + βyik. This means that there exists a
basal noise level α and a component βyik which depends on the signal strength. The
likelihood function (Equation 26) for a model Z thus takes the form

L(θ) = p(D | θ, Z, α, β) =
n∏
i=1

Ki∏
k=1

N(y†it | yik, (α + βyik)2), (56)

where parameters α and β can either be contained in the vector θ or predetermined
constants. Above, N(· | µ, σ2) denotes the probability distribution function of the
one-dimensional normal distribution with mean µ and standard deviation σ, i.e.

N(x | µ, σ2) = 1√
2πσ2

exp
(

(x− µ)2

2σ2

)
. (57)

The maximum likelihood parameters are then given by

θML = arg max
θ
L(θ) = arg min

θ
L(θ), (58)

where

L(θ) = −2 logL(θ) =
n∑
i=1

Ki∑
k=1

2 log(
√

2π) + 2 log(α + βyik) +
(
y†ik − yik
α + βyik

)2 .
In an optimization perspective, the function L(θ) has the interesting property

that after small modifications, it can be expressed as a sum of squared components.
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This is possible, if we add a constant c, which ensures that 2 log(α+βyik) + c ≥ 0 for
all i, k and thus avoid square roots of a negative value. Because the term 2 log(

√
2π)

does not depend on θ, the final optimization problem for obtaining the maximum
likelihood parameters is then to minimize the target function

Lc(θ) =
n∑
i=1

Ki∑
k=1

(√2 log(α + βyik) + c
)2

+
(
y†ik − yik
α + βyik

)2 , (59)

which is a sum of S = 2n∑n
i=1Ki squared components. This problem has the exact

same solution as the one in Equation 58, since c is a constant. We use the value
c = 50, and also set a safety correction for the standard deviations σik = α+βyik such
that σik = exp(− c

2 + 10−6) if it still occurs that 2 log(σik) + c < 0. This correction
should actually affect the target function Lc(θ), but we ignore its effect by assuming
that 2 log(σik) + c < 0 only occurs very rarely and taking it into account would not
make any difference in practice.

Solving the least squares optimization problem in Equation 59 is done using
the trust-region-reflective algorithm of the LSQNONLIN optimization routine
in MATLAB. The employed routine requires restricting the parameter space by
defining bounds for the parameters θ. In general, trust region algorithms work
by approximating the target function at the point θ with a simpler function that
adequately imitates the the behavior of the target function in a neighborhood of θ
[60]. For nonlinear least-squares problems, the MATLAB implementation exploits
their special structure to achieve more efficient performance [60].

When the target function surface entails multiple local optima, local search
algorithms, such as the trust-region-reflective algorithm used in this study, can
terminate at different local optima depending on the starting point of the search
[25]. In order to avoid this suboptimal performance, we employ a multistart strategy
where the algorithm is started with several initial points that are sampled using
a latin hypercube scheme. This approach prohibits any two starting points from
being accidentally close to each other, and therefore provides a better coverage
of the space (see [50] for a more detailed explanation). In this study, we set the
amount of optimization starts to ten times the dimension of the parameter space.
For accelerated performance, these starts are computed in parallel.

Optimization involves a large number of target function evaluations, and on each
evaluation, an ODE system needs to be solved. In order to speed up the optimization,
the we supply the Jacobian matrix of the target function to the LSQNONLIN
routine. The Jacobian consists of derivatives of each component of the target function
with respect to each parameter. In order to present these derivatives here, we denote
components of target function in Equation 59 such that

Lc(θ) =
n∑
i=1

Ki∑
k=1

[
rik(θ)2 + r̃ik(θ)2

]
, (60)

where
rik(θ) =

√
2 log(α + βyik) + c and r̃ik(θ) = y†ik − yik

α + βyik
. (61)
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Derivatives of the components with respect to parameter θj are then

drik
dθj

= β(α + βyik)−1√
2 log(α + βyik) + c

· dyik
dθj

and dr̃ik
dθj

= − α + βy†ik
(α + βyik)2 ·

dyik
dθj

, (62)

where dyik/dθj , i.e. the derivatives of the ODE output with respect to the parameters,
are called sensitivities. In order to compute the sensitivities reliably and efficiently,
we employ a strategy where the sensitivities comprise additional ODE systems, that
are solved simultaneously with the original system [42] (see Supplementary material
of [51] for details). Because different reaction rate and other parameters can have
different orders of magnitude, parameter optimization is done on logarithmic scale.
The derivatives on the logarithmic parameter scale are given by the transformation

d
dθlog

j

= θj
d
dθj

. (63)

If during the optimization, for some parameter values the ODE system cannot be
solved and thus the likelihood cannot be evaluated, a very small likelihood value is
assigned for that parameter combination.

5.3.2 CVODES for solving ODE systems

The numerical solution of ODE systems is performed using the CVODES solver
included in the SUNDIALS package [30], which is high-quality implementation that
originates from extensive history of research and development in ODE methods and
software. The CVODES solver is meant for both stiff and non-stiff initial value
problems given explicitly in the form dy(t)

dt = f (t,y(t), θ) and is capable of computing
sensitivities dy

dθ simultaneously with the original ODE system [30].
In Section 2.1 we introduced the Backward Differentiation Formulae (BDF), that

are linear multistep methods (LMM) suitable for the solution of stiff ODE systems.
Sophisticated linear multistep implementations like CVODES utilize techniques
where the step size h as well as the coefficients α and β of Equation 18 are altered
adaptively, which affects the order of the method. It is very hard to derive stability
results for such methods, but numerical experiments have indicated that variable
coefficient methods are clearly more stable than fixed coefficient formulas when the
step size is altered frequently [35]. CVODES utilizes BDF methods in the so-called
fixed-leading coefficient form, where the leading coefficient α0 in Equation 25 is fixed,
but other coefficients are changed according to recent history of the step sizes [30].
The q order of the implemented method varies between 1 and 5 [30]. The iterative
BDF formula in Equation 25 for this method has the form

q∑
j=0

αi,jyi−j + hiβn,0fi−1 = 0, (64)

where αi,0 = −1 [30]. Because the method is implicit, an nonlinear system needs to
be numerically solved on each iteration [30]. For this task, the solver offers several
methods based on Newton iteration. For a more detailed description of the methods
and some stability discussion, see the original article and [9, 35].
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6 Results
In this section we demonstrate the functionality of the novel structure inference
strategy that was introduced in the previous section. The performance is tested
with experiments involving both simulated and real data. We first formulate ODE
model structure inference problems that involve realistically simulated data. These
problems are constructed so that the set of all viable models is small enough to
permit exhaustive computation of the posterior probability for each model. When
the full model posterior distribution is available, running the Metropolis algorithm
does not increase the computational burden anymore, which allows us to study how
the approximated posterior distribution over the alternative model structures evolves
as we run the algorithm. In particular, we wish to test how efficiently the algorithm
can find an approximation that has essentially the same information as the full
posterior. This is monitored by observing how the overlapping coefficient (OVL) in
Equation 51 between the approximation and the full posterior behaves as a function
of the approximation support size. Throughout the rest of this thesis, we often refer
to the size of the approximation support simply as the number of (evaluated) models.
This number is the amount of models that have been proposed and possibly accepted
by the Metropolis sampler, and it reflects the computational burden that effectively
increases only when a previously unseen model is proposed. In addition, we check
how reliable the inferred posterior weights in Equation 41 are, if an approximation
of the model posterior is used to make the inferences. To motivate an additional
parallelization strategy, we also present how combining information from parallel
chains can be beneficial.

We present three different simulated data experiments, one considering only
stationary ODE models and the other two involving LEM models with one to three
phases. In the LEM experiments, we also demonstrate testing hypotheses about the
number of latent states.

To test the novel approach in a real world application, we utilize a data set by
[12] and apply the method to infer the structure of a core regulatory network driving
Th17 cell differentiation. In this application, the set of possible models cannot be
restricted enough to allow brute force inference by evaluating all the viable models,
which motivates the use of our efficient strategy. We also apply the concept of profile
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likelihood to test identifiability of a well fit LEM model to this data.

6.1 Experiments with simulated data
All the experiments here involve noisy data that is simulated from an ODE model
that is one of the viable models under investigation in the inference. The simulated
measurement points y†ik are generated so that y†ik = yik + ε(yik, α, β), where yik is the
output of the data generating ODE system for component i at time tk. The added
measurement noise has a normal distribution with heteroscedastic variance that has
a basal component and a component proportional to the output, i.e.

ε(yik, α, β) ∼ N(0, (α + βyik)2). (65)

In each experiment, we use fixed noise parameters α = 10−4 and β = 0.035. We
assume that this distribution of the measurements is known as well as the values
of α and β. We generate the same number of data points for each gene and three
replicates at each time point. All experiments involve three genes, and thus for the
likelihood in Equation 26 we use the model

p(D | θ, Z) =
3∏
i=1

3×K∏
k=1

N(y†ik | yik, (α + βyik)2), (66)

where K is the number of distinct measurement time points.
All models in these experiments are constructed using the LEM formalism with

one to three latent states. For a given model, the ODE system (Equation 10) is
constructed by coupling a standard ODE system built from the model mechanisms
according to the equations given in Section 2.2 with a latent process x(t, θ). LEM
models with only one latent state are stationary ODE models, and thus for such
models we have x(t, θ) = 1. For models with two or three latent states, we use a
design based on sigmoidal curves, that have their own parameters. To be explicit,
we utilize a latent design processx1(t, λ1, τ1) = 1− S(t, λ1, τ1)

x2(t, λ1, τ1) = S(t, λ1, τ1)
, (67)

for two-phase models, and
x1(t, λ1, τ1, λ2, τ2) = 1− S(t, λ1, τ1)
x2(t, λ1, τ1, λ2, τ2) = S(t, λ2, τ1 + τ2)− S(t, λ1, τ1)
x3(t, λ1, τ1, λ2, τ2) = S(t, λ2, τ1 + τ2)

, (68)

for models with three phases, where

S(t, λ, τ) = 1
1 + exp(−λ(t− τ)) . (69)

The function in Equation 69 is a sigmoidal curve rising from 0 to 1 such that λ
defines how rapidly the rise occurs and τ the time of this rise. For a given model
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with m latent states, the parameter vector θ contains not only the rate parameters
of the model mechanisms, but also the extra 2(m − 1) latent process parameters.
When performing model calibration, these extra parameters are also optimized along
with the rate parameters.

In each experiment, we use a uniform prior distribution over models, meaning
that p(Z | D, H) ∝ p(D | Z,H). Furthermore, we use fixed initial values yi(0) = 0.01
for each i = 1, 2, 3. These initial values are small compared to the magnitude of the
measurements, which is motivated by the fact that the experimental data used in this
study has the same property. The initial values are assumed to be known exactly.
All experiments involve some mechanisms that are fixed, i.e. appear in all feasible
models. We note that the parameters of these fixed mechanisms are nevertheless
estimated from the data.

6.1.1 Experiment 1

In the first experiment, we consider standard ODE models with three genes. We
denote the genes by A, B and C and for each gene, we simulate three replicates of
measurements at time points 0.25, 0.5, 1, 2, 3, 4, 5, 6 and 7. We consider only models
where each gene is affected by basal activation and degradation. These mechanisms
are thus included in the ODE system of each model. Further, we allow the genes
to interact through all possible activating and inhibiting mechanisms, excluding
autoactivation and autoinhibition. The model space can then be expressed as the
union of all 12× 1 binary matrices, where each row corresponds to one activation
or inhibition link. There are thus 212 = 4096 different models. The activation and
inhibition links of the data generating model as well as the generated data are shown
in Figure 9. Because all the models are stationary ODE models, the only model
parameters are the rates of basal activation and degradation for each gene, along
with the rates of model-specific activation and inhibition mechanisms between the
genes. The kinetic rate parameter values used in the data simulation are in Table 2.
In the maximum likelihood optimization, we set the allowed range of the parameters
to [0.001, 30] for all rates.

The Metropolis algorithm is started from the empty model, i.e. from a 12 × 1
matrix of zeros. The algorithm was set to terminate when the overlap between
the obtained approximative distribution and the full model posterior distribution
passes 99%. This happened after 3550 iterations, after which 339 models were in
the support of the approximative distribution, i.e. had been proposed and possibly
accepted. Figure 10 displays the overlapping coefficient (OVL) between the posterior
approximation and the real posterior as a function of the number of evaluated models
during the course of the Metropolis algorithm. We see that the overlap approaches
one and is very close to it after 300 models. This means that the algorithm finds the
models with high posterior probability and only a fraction of models is needed to
obtain a good posterior approximation. Figure 10 also presents the posterior weights
of each link computed with approximations obtained after 80 and 100 evaluated
models along with the weights computed using the full posterior distribution. We see
that already after 80 models, when the overlapping coefficient is only 0.35, we have
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Figure 9: Illustration of the stationary data generating model and the simulated data
used in Experiment 1. The black arrows and red turnstiles represent activating and
inhibiting links, respectively. In addition, each gene experiences a basal activation
and degradation. The dotted line represents the underlying model response y(t) for
each gene A, B, and C. The noisy measurements, which are relative abundances of
the genes at time points t = 0.25, 0.5, 1, 2, 3, 4, 5, 6, 7, are plotted using gray circles.

inferred most of the posterior weights rather accurately. However, there is a notable
error in the predictions for the mechanisms for which the full posterior distribution
does not give a prediction close to 0 or 1 (B → A and C → A). After evaluating
100 models, the overlapping coefficient has reached 0.80, and all predictions are very
close to the ones computed using the full posterior information.

The results of this experiment demonstrate that for a standard ODE model
structure inference problem, the algorithm indeed can provide a good model posterior
approximation with a computational effort that is only a fraction from the effort
required to compute the full model posterior distribution. It is clear that if this
approximation is good, then also the structure inference is reliable. However, the
results show that it is possible to obtain somewhat accurate predictions about the
model structure even when the obtained approximation only partly overlaps with
the full model posterior.

The inference results in Figure 10 show that the inference gives a posterior
weight close to one for those mechanisms that actually were in the data generating
model. This highlights the practicality of the BIC as a marginal likelihood estimation
technique. Additional experiments where the data set was generated with different
random seeds revealed that this is not a lucky coincidence, assuming that the data
are informative enough, i.e. the noise parameter values are small enough. In this
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Table 2: Kinetic rate parameter values of the data generating models in each simulated
data experiment.

Mechanism Experiment 1 Experiment 2 Experiment 3
basal activation of A 1 1.5 1
basal activation of B 1 - -
basal activation of C 1 - -
activation A→ B 5 3 3
activation A→ C - - 0.5
activation B → C 2.5 2 -
activation C → B - 1.5 1.5
inhibition C a A 0.15 - -
inhibition C a B 1 - -
degradation of A 0.5 0.5 0.3
degradation of B 0.5 2 1
degradation of C 0.8 3 1.5

Table 3: Latent process parameter values of the data generating models in the
experiments involving multiphase LEM models.

Interpretation Parameter Experiment 2 Experiment 3
rate of first state transition λ1 1.5 2.5
time of first state transition τ1 6 3
rate of second state transition λ2 - 1
time between state transitions τ2 - 5

experiment, the real data generating model actually received the highest BIC value
of all 4096 models. Also test with different noise levels were run (data not shown),
which showed that the less noise in the data, the more likely BIC ranks the real
model among the best ones.

6.1.2 Experiments 2 and 3

In the second and third experiment, we consider LEM models that have from one
to three latent states. We generate three replicates of measurements at time points
1, 2, 3, 5, 8, 12, 18, 24 and compare hypotheses HM : “There are M latent states.” for
each M = 1, 2, 3. The experiments involve three genes A, B, and C, and we assume
that basal activation of A and degradation of each gene are fixed mechanisms. We
construct the models from the four activations links shown in Figure 11a. Under the
hypothesis HM , the full model space contains all possible 4×M binary matrices Z,
where the element {Z}jk determines if the mechanism j ∈ {1, 2, 3, 4} is active in the
latent state k ∈ {1, . . . ,M} (see Section 2.3). Therefore, there are 24×M different
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Figure 10: Visualization of the model structure inference in Experiment 1. The
top panel shows the value of the overlapping coefficient between the actual full
model posterior and the approximation obtained at different amounts of evaluated
models. In the bottom panel, the bars correspond to link weights W80 and W100
after evaluating 80 and 100 models, respectively, along with the actual weights Wfull
computed using the full model posterior. After 80 models we have OVL ≈ 0.35 and
after 100 models OVL ≈ 0.80. The total number of possible models is 4096.

viable models under the hypothesis HM .
In Experiment 2, the data are generated from a two-phase model and, in Ex-

periment 3, from a three-phase model. This allows us to study if the comparison
of hypotheses works as expected. Illustrations of these data generating models are
in Figure 11b and Figure 11c. The kinetic rate parameter values used in the data
generation are in Table 2 and the used latent process parameters in Table 3. The
resulting noisy data sets and the used latent processes are shown in Figure 12.

For kinetic rate parameters, the allowed range is [0.001, 50] in Experiment 2
and [0.001, 30] in Experiment 3. In both experiments, the range for the softness
parameters λ1 and λ2 is [0.75, 3]. This allows both quite rapid and slow changes
between the latent states. If the model has three phases, then the allowed range is
[1, 12] for the first state transition time τ1 and [3, 12] for τ2, which describes the length
of the time interval between the two state transitions. These bounds ensure that all
the three states are clearly present with any parameter combination. Otherwise, if
the data should favour models with only one or two phases, optimization of the latent
parameters could shrink a three-phase model into something that is effectively a



41

B C

A

(a)

B C

A

phase 1 phase 2

B C

A

(b)

B C

A

phase 1 phase 2 phase 3

B C

A

B C

A

(c)

Figure 11: Illustration of the possible activation mechanisms in the simulated data
experiments that involve LEM models. (a) All possible activation links. In addition
to these interactions, it is assumed that gene A has basal activation and all genes
are allowed to degrade at some unknown rate. (b) Activation mechanisms of the
two-phase data generating model used in Experiment 2. (c) Activation mechanisms
of the three-phase data generating model used in Experiment 3.

model with less states. This is because any component of Equation 68 can be forced
to have only negligibly small values on the studied time interval if the parameter
range is arbitrary. For two-phase models, only τ1 is needed, and we use the range
[1, 24] for it. Similarly, this range forces both components of Equation 67 attain
a meaningful strength on the time scale of the data set. We also note that if the
softness parameters τ were allowed to have arbitrarily large values, serious overfitting
could occur at least for models with many parameters that are non-indentifiable
with respect to the data. In general, the allowed parameter ranges in this study are
a compromise between flexibility of the latent dynamics and a reasonable physical
interpretation. The used latent process formulation with extreme parameter values
allows negative values for the second component in Equation 68, but within our
bounds these negative values are negligibly small.

For each hypothesis HM , M = 1, 2, 3, the Metropolis chain in the corresponding
model space is started from the 4×M matrix of zeros. Figure 13 shows the overlap
of the full model posterior distribution and the approximation obtained after different
amounts of evaluated models for each M = 1, 2, 3. Again, the algorithm was halted
when the OVL reached 0.99. In the case M = 1, there are only 16 models, and
at some point the OVL jumps effectively from 0 to 1, because one model is clearly
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Figure 12: Simulated data sets used in Experiments 2 and 3. The top row exhibits
the two-phase latent process used in Experiment 2 along with the output of the model
in Figure 11b and the simulated noisy measurements of the relative abundances of
genes A, B and C. The bottom row displays the three-phase latent process, output
of model in Figure 11c and simulated data used in Experiment 3. The dotted lines
are the model outputs and the filled gray dots represent the simulated measurements
at time points t = 1, 2, 3, 5, 8, 12, 18, 24.
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Figure 13: Overlap between the obtained approximative distribution and the full
model posterior distribution in the LEM model experiments. The lines indicate the
value of the overlapping coefficient as a function of evaluated models for the cases
M = 1, 2, 3 in Experiments 2 and 3.

dominating the whole posterior mass. In the cases M = 2 and M = 3, there are 256
and 4096 models, respectively, and we notice that an overlap close to one is reached
by having to evaluate only a relatively small proportion of the models. Exact run
lengths and numbers of evaluated models under each hypothesis in both experiments
are in Table 4. In Experiment 2, the algorithm for M = 3 does not terminate after
104 iterations because the sampler gets stuck in a local optimum where it can only
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Table 4: Statistics about the runs of the Metropolis algorithm in the LEM model
experiments involving simulated data. The algorithm was set to halt when the overlap
between the approximative distribution and the full model posterior reaches 99%.
The numbers indicate how many iterations this took and how many models had to be
evaluated during the course of the Metropolis algorithm. The latter number reflects
the computational burden. Total number of models was 24M under a hypothesis HM .

Experiment 2 Experiment 3
Hypothesis H1 H2 H3 H1 H2 H3

Iterations 16 34 104 10 100 648
Models evaluated 9 20 48 6 40 210

Table 5: Posterior probabilities for different hypotheses Hm about the number of
latent states M in the LEM model experiments involving simulated data.

p(H1 | D) p(H2 | D) p(H3 | D)
Experiment 2 0 0.9955 0.0045
Experiment 3 0 9.8 · 10−223 1.0000

escape with a very low probability (or even zero due to numerical limitations). This
issue could be avoided by starting multiple chains from different initial models (see
Section 6.1.3 below) or by using a proposal distribution that can propose moves also
to k-neighbors with k > 1 (see Equation 46).

To perform the hypothesis comparison task, we assume a uniform prior distribution
over the hypotheses and compute the posterior probabilities p(HM | D) for each
M = 1, 2, 3 using Equation 38 and Equation 37. In both experiments, these values are
computed from the full posterior distributions and are shown in Table 5. The values
indicate that the hypothesis testing works as expected, since in both experiments,
the correct hypothesis gets virtually all of the posterior probability mass. One could
draw the conclusion that the BIC is able to perform the inference correctly, since
in Experiment 2, it rules out one-phase models that do not fit the data well, yet
penalizing the overly complex three-phase models suitably. In Experiment 3, the
BIC and the resulting posterior inference over hypotheses indicate that models with
three phases fit the data much better than other models. Here, the values p(D | HM )
were computed using the full model posterior, but since the approximations given
by the novel search strategy are good, it is clear that the same result is obtained
without having to compute the full posterior exhaustively.

6.1.3 Combining information from multiple independent chains

The previous experiments demonstrated that a single Metropolis-type sampler can
indeed find the high-probability models and thus give a reliable approximation for
the model posterior distribution. However, as stated in the previous section, it is
possible that a metropolis chain gets stuck in a local optimum and does not escape
it in a finite number of iterations. The inference results can then be different for
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Figure 14: Illustration of the benefit obtained by using multiple parallel chains.
The coloured traces represent the overlapping coefficient between the posterior
approximation given by that chain and the full model posterior as a function of
Ω(i) which is approximately proportional to the computation time after iteration
i . The black trace represents the OVL between the full model posterior and the
approximation created by combining the information of the independent chains. The
approximation computed using information from all the three parallel chains reaches
overlap of one in a shorter time.

chains that are started from different initial models. In order to obtain more reliable
results, one can start several independent chains in parallel, possibly from different
initial models, and create the posterior approximation using all evaluated models
from each chain.

Comparing different simulated chains is a common strategy for assessing the
convergence of MCMC runs in continuous spaces [20]. For example, when sampling
a multimodal distribution, results have a higher chance of being reliable, if all chains
yield similar samples. On the other hand, if one chain has only sampled one mode
and another chain has only sampled another mode for the same number of iterations,
one cannot combine the samples. This is because the combined set of samples
cannot generally be seen as a sample from the target distribution, since we have
equally many samples from both modes, even though one of the modes might have a
considerably larger total probability mass. However, in the case of a discrete model
space, our information consists of the posterior probabilities for each model that has
been sampled at least once by at least one chain. All this information can now be
used to create the posterior approximation. This can be especially benefical, if the
independent chains can be run in parallel.

We demonstrate this strategy by returning to the model structure inference
problem and the data set considered in Experiment 1 (see Figure 9). We start three
independent chains from randomly chosen initial models, and test how much faster
we would reach a good OVL if the chains were run in parallel and their information
was combined after each iteration. In order to do this, we define a quantity Ω(i),
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which for any MCMC method in the discrete model space is given by

Ω(i) = Total number of evaluated models after iteration i
Number of parallel chains used by the method (70)

and therefore approximately proportional to the computation time. For the method of
using only a single chain, this is obviously just the number of evaluated models, which
was used to represent computational burden in the earlier experiments. Figure 14
shows the OVL between the full model posterior and the approximations obtained by
each chain on their own and the method of combining their information as a function
of Ω(i). Clearly, the latter method provides better results in a shorter time.

6.2 Applying the method to Th17 cell differentiation data
The experiments presented in the previous section all involved a simulated data set
and a model space small enough to be exhaustively evaluated for reference. We
now move on to an application in which the model space cannot be restricted to
such a limited set of simple networks. This application utilizes a data set consisting
of mRNA measurements of genes that are involved in the Th17 cell differentiation
program [12]. Th17 cell differentiation has been shown to occur in three sequential
phases [65], and the LEM model has been applied to model the core regulatory
network that drives the differentiation [34]. In the earlier study [34], model selection
between the alternative model configurations was performed using a greedy forward-
backward stepwise search. This approach resulted in an inference consisting of a
single model and its calibrated parameters. This thesis extends the obtained results
by exploring the alternative models and condensing information about a large set
of high-probability models into probabilistic predictions about the mechanisms. To
provide some background information to be considered in the application, this section
starts from the basic concepts involved in T cell differentiation, referring to [2].

6.2.1 Vertebrate immune system

Developed living organisms have an immune system that protects them from infections
that otherwise would be deadly. This system is capabable of recognizing and reacting
to various foreign macromolecules, collectively called pathogens. Vertebrates depend
on both innate immune system, which includes general defense reactions, and a more
sophisticated adaptive immune system. The cells that are responsible for adaptive
immune response are called lymphocytes, and they belong to a class of white blood
cells. Two main classes of lymphocytes are B cells, which mature in the bone marrow,
and T cells that mature in the thymus.

Lymphocytes can exist in the form of naïve cells, effector cells, or memory cells.
In an adaptive immune response, a foreign substance, an antigen, causes some of
the naïve B and T cells to multiply and differentiate into effector cells. These have
different but equally important functions, as effector B cells secrete antibodies and
effector T cells express a variety of mediators called interleukins (IL), or cytokines.
Part of the naïve cells proliferate and mature into memory cells, which in the future



46

are more effective against the same antigen. Immunological memory depends on
both lymphocyte proliferation and differentiation.

T cells can be further divided into different classes, which include cytotoxic T
cells, helper T cells and regulatory T cells. Effector cytotoxic T cells kill infected
cells and effector regulatory T cells can repress the activity of other immune cells.
Effector helper T cells participate in stimulating the responses of other immune
cells, such as B cells and cytotoxic T cells. Helper T cells are also known as CD4+

T cells, according to the protein CD4 found on their surface. These cells have a
major role in the regulation of the human immunity system [62]. Different well
characterized subsets of effector CD4+ T cells, which can be separated by different
cytokine expression profiles and immune regulatory function, are Th1, Th2 and Th17,
and induced regulatory T cells [39, 66].

6.2.2 Th17 cell differentiation

Differentiation of a naïve CD4+ T cell towards one of the effector T helper (Th) cell
lineages begins, when it encounters an antigen in the presence of cytokine signals [66].
The type of the present cytokine signals determines the lineage towards which cells
will develop [66]. For example, cells in precence of IL12 develop into Th1 whereas
presence of IL4 directs the development of Th2 cells [2]. In this study, we focus on
the Th17 subset, which requires two cytokines for its differentiation. These are the
transforming growth factor β (TGFβ) and interleukin 6 (IL6) [2, 39]. Th17 cells
express IL17 and are important in the control of some infections and in wound healing
[2]. Their discovery [28, 47] has shaped our understanding of the pathogenetic basis
related to various immune-mediated diseases, such as psoriasis, rheumatoid arthritis,
multiple sclerosis, inflammatory bowel disease, and asthma [59, 62].

Differentiation programs of all Th cell subtypes involve a network of transcription
factors consisting of positive and negative regulation mechanisms [66]. The main
transcription factors involved in the network that drives Th17 differentiation are
the signal transducer and activator of transcription 3 (STAT3) and the retinoic
acid receptor-related orphan receptor gamma t (RORγt) [66]. The latter is usually
considered the master regulator of the Th17 lineage and it is induced in naive CD4+

T cells within 8 hours after stimulation in the presence of TGFβ and IL6 [66]. Also
various other transcription factors such as the interferon regulatory factor 4 (IRF4)
and the basic leucine zipper ATF-like transcription factor (BATF), are needed for
the full differentiation program [12].

Differentiation of naïve helper T cells to effector Th17 cells is a very complex
process involving many interacting molecular species, and the roles of different
transcription factors involved in it remain unknown. However, many experimental
data sets show that the key transcription factors exhibit interesting dynamics during
the course of differentiation [12, 33]. Thus, dynamic mathematical modeling can
reveal simplified, yet interesting dynamics that drive the differentiation. Data-driven
mathematical modeling is capable of capturing these dependencies and dynamics
that originate from the molecular kinetics, and it has been applied recently [33, 34].
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Figure 15: Illustration of the used experimental data set and best found model.
Relative values of the FPKM measurements at time-points 0, 1, 3, 6, 9, 12, 16,
24, and 48 hours are plotted with using red dots. Measurements at t = 6 h are
averages of three replicates, and measurements at t = 0 h are not shown. The gray
curves represent the output of the best found model with its maximum likelihood
parameters. The red, blue and green curves of the top-left panel represent the latent
process for the best model.

6.2.3 Experimental data

The core gene regulatory network studied in this thesis consists of five transcription
factors RORγt, STAT3, IRF4, BATF and transcription factor Maf (MAF). The
network was experimentally derived in [12], and the corresponding genes that encode
these proteins have the same names, except for RORC that encodes RORγt. The
data set, also provided by [12], consists of measured RNA fragments per kilobase per
million (FPMK) values at time-points 0, 1, 3, 6, 9, 12, 16, 24, and 48 hours. The
measurements were done by purifying cells from lymph nodes and spleen of wild-type
mice, culturing the cells in Th17 conditions and harvesting a proportion of cells at
the mentioned time points to perform RNA sequencing [12]. At time t = 6 h, there
are three replicates but we treat those as a single measurement that is the mean of
three replicates in order to get results that can be compared with the findings of the
earlier study [34]. The FPKM values are divided by 1000 before the inference. The
resulting relative measurements of each gene are shown in Figure 15. The initial
values for the ODE models are not estimated from data, but instead fixed according
to the measurements at time t = 0 h. Consequently, these measurements at t = 0 h
are not considered as part of the data in likelihood computations.
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6.3 Results for the Th17 application
In this application, the set of alternative models is extremely large, and we face
very heavy computations. We present results of the structure inference for the core
regulatory network that steers Th17 cell differentiation, under different hypotheses
about the number of phases in the differentiation. Furthermore, for one specific
model, we analyze the uncertainty of the model parameters by testing parameter
identifiability using the profile likelihood approach [40].

6.3.1 Network structure inference

All 15 possible activation, inhibition and synergistic activation mechanisms motivated
by [12] are shown in Figure 16a. We construct the alternative LEM models by first
setting the fixed part of the network such that each gene degrades at a constant
rate and experiences a basal activation. An exception to this is RORC for which
we do not allow basal activation. If the model has M latent states, it can then be
determined by a 15×M binary matrix Z, where each row corresponds to one of the
mechanisms shown in Figure 16a (see Section 2.3).

The LEM model for a known configuration Z is again built by first constructing the
ODE according to rate laws explained in Section 2.2. If the model has multiple phases,
this ODE system is then coupled with a latent process as explained in Section 2.3.
The latent process for multiphase models is again built using Equations 67 and
68, similarly as in the simulated data experiments. We use the parameter bounds
[0.001, 100] for kinetic rate parameters and [0.5, 3] for λ1 and λ2. Furthermore, for
models with three latent states, we use the bounds [1, 20] for τ1 and [4.5, 20] for
τ2 and for models with two latent states, our bounds for τ1 are [1, 40]. Possible
realizations of three-phase latent processes allowed with our formulation and the
above parameter ranges are demonstrated in Figure 16b.

In likelihood computations, an underlying assumption that we make is that the
measurements are normally distributed with heteroscedastic variance. The error is
modeled by Equation 65, and we fix the parameter values α = 10−4 and β = 0.035.
Also an approach where these parameters are estimated simultaneously with the
model parameters was applied, but it was discarded since models tended to fit strongly
towards the first few data points and give very small values for α. Since the data
contains 8 measurements of all the 5 genes, the likelihood in Equation 26 takes the
form

p(D | θ, Z) =
5∏
i=1

8∏
k=1

N(y†ik | yik, (α + βyik)2), (71)

where yik is the output of model Z for gene i at time tk, when the parameters take
values θ. The corresponding measurement is denoted by y†ik.

The inference is performed separately for the three different hypotheses about M ,
the number of phases in the cellular differentiation. The number of alternative models
in each case is 215×M (≈ 3.3× 104 for M = 1, 1.1× 109 for M = 2 and 3.5× 1013 for
M = 3), which means that exhaustive computation of the full model posterior is not
computationally feasible. Since we do not have the full model posterior for reference,
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Figure 16: Illustration of the allowed network mechanisms and possible latent process
realizations in the Th17 cell application. (a) Full network of all the allowed activation,
inhibition and synergistic activation mechanisms between the five genes. Activation
mechanisms are represented by single arrows, inhibition mechanisms by turnstiles,
and synergistic activation mechanisms by arrows with combined heads. Figure
from [34]. (b) Examples of three-phase latent processes possible within the allowed
parameter ranges. The top panel is the extreme case where both τ1 and τ2 have their
minimum values. In each panel, the curve families are drawn using a fixed value for
τ1 and τ2, and altering the values of λ1 and λ2 within the range [0.5, 3].

we tackle the model structure inference problem by starting multiple independent
Metropolis samplers, and check if the model posterior approximations (Equation 50)
provided by the independent chains converge close to each other. The idea behind
this approach is that if two independent chains give similar posterior distribution
approximations, they likely have explored the same high probability regions of the
model space. The more chains have found the same high probability region, the less
likely it is that there exist high probability models that have not yet been found.
This has an analogy to traditional MCMC convergence diagnostics, which also rely
on monitoring several independent sequences [20]. Each chain is started from the
empty model with different random seeds. This starting point can be motivated by
a guess that the high probability models to have more zeros than ones. This guess
however does not have enough basis to be included this in the prior distribution
over the model configurations, and instead we again use a uniform prior. We start
four independent chains in the case M = 3, and two independent chains in the cases
M = 1 and M = 2.

Statistics about the MCMC runs are shown in Table 6. In the space of one-phase
models, we are able to run the chains until a million iterations, since the chains
mostly move inside a relatively small set of high probability models. For two and
three-phase models, the chains reached 4000-8000 iterations, during a five-day run
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Table 6: Statistics about the MCMC runs in the Th17 cell application under
alternative hypotheses about the number of phases in the differentiation. The
numbers indicate how long each chain was run and how many models the chains
found. Furthermore, the proportion of accepted MCMC moves is given for each
chain.

Hypothesis H1 H2 H3

Chain ch. 1 ch. 2 ch. 1 ch. 2 ch. 1 ch. 2 ch. 3 ch. 4
# Iterations 106 106 7315 7987 4174 4420 4271 4421
# Models 4561 4478 3205 3410 3722 3860 3771 3908
Acceptance rate 0.164 0.148 0.147 0.136 0.243 0.228 0.237 0.229
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Figure 17: Illustration of the converge of different chains in the Th17 core network
structure inference under different hypotheses about the number of phases in cellular
differentiation. Lines represent the overlapping coefficients (OVL) between approxi-
mative model posterior distributions obtained from different independent chains as a
function of evaluated models.

on a high performance computing cluster with 12 cores. Each independent chain
covered 3000-4000 evaluated models. The overlapping coefficients (OVL) between
the two independent chains for M = 1 and M = 2, and between chains 1 and 2 as
well as chains 3 and 4 for M = 3, are shown in Figure 17. We notice that in the first
two cases the OVL approaches one and we get model posterior approximations that
agree well with each other. Thus, it is likely that the algorithm has explored the high
probability regions accurately in both cases. In the first case, there is a temporary
drop in the OVL trace when one chain moves to a new high posterior probability
region and the other chain finds it only later. For M = 3, the model space is very
large and our approximations obtained by independent chains only partially overlap
after approximately 3700 evaluated models.

The posterior weight approximations for each mechanism in each phase from
the different chains are presented in Figure 18. For one- and two-phase models, the
weights are naturally similar since our posterior approximations overlap remarkably.
In addition, for the four chains that explore three-phase models, the obtained posterior
weights are rather close to each other even though the OVL between the corresponding
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model posterior approximations does not reach one. The simulated data experiments,
where good approximations to the weights were obtained even when the model
posterior approximation did not fully overlap with the real model posterior, support
the belief that the algorithm has provided us with meaningful information about the
model structure given the mechanisms included in the network.

Hypotheses about the number of phases M are compared by computing the
corresponding posterior probabilities p(HM | D), where HM suggest that there are
M different phases. The hypothesis H3 gets practically all the posterior probability
mass (P (H3 | D) ≈ 1), since models with three phases fit the data much better than
ones with only one or two phases. Output of the best ranking model is shown against
the data in Figure 15. The high-probability models under hypothesis H3 have many
common properties, such as the positive feedback loop of BATF and STAT3 in the
initial phase. The best models also have very similar parameter values for the fitted
latent process: the second phase is activated at time 4 h and third at around 13 h.

To summarize, the results of this analysis support the earlier findings that Th17
lineage specification occurs in three sequential phases [65]. In addition, the posterior
weights for the different mechanisms (Figure 18) obtained here with the novel and
efficient search strategy coincide with the point estimate that was obtained in the
earlier LEM model analysis [34] through a greedy search.

6.3.2 Identifiability results

To assess the uncertainty in the model parameter estimation and identifiability of
the model parameters (Section 4.3), we apply the profile likelihood [40, 49] approach
to some of the best found models. Given a fixed model configuration, the profile
likelihood for the parameter θj is defined by

PLj(p) = max
θ∈{θ|θj=p}

log p(D | θ), (72)

where p(D | θ) is the likelihood function (Equation 26) [40]. This means that the
parameter profile is a one-dimensional function, where the value PLj(p) is the log
likelihood computed with parameters θ, where θj is fixed to p and θi, i 6= j are
reoptimized. Profile likelihood can be employed to assess the uncertainty of the
parameter estimated by computing confidence intervals for the parameters. For
confidence level α, the confidence interval is the set

CIj(α) = {p | −2 PLj(p) ≤ min
θ
−2 log p(D | θ) + ∆(α)}, (73)

where ∆(α) is the corresponding threshold [40]. When the amount of data approaches
infinity, the threshold is given by

∆(α) = icdf(χ2
1, α), (74)

where icdf(χ2
1, ·) is the inverse cumulative distribution function of the χ2-distribution

with one degree of freedom [40].
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Figure 18: Th17 core network inference results under different hypotheses about the
number of distinct phases in the cellular differentiation. The bar length represents
the posterior weight of the corresponding mechanism in the corresponding phase.
Two independent chains were run for one- and two-phase models, and four chains for
three-phase models.

Idea of the profile likelihood is that if the parameter profile is flat for θj, the
parameter is structurally non-identifiable, since any change in it can be compensated
by changing other parameters θi, i 6= j [40]. If the profile likelihood entails a unique
minimum, it is either identifiable or practically non-identifiable. The latter case is
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Table 7: The extended parameter bounds used in parameter optimization of profile
likelihood computations.

Kinetic rate params. λ1 λ2 τ1 τ2

Allowed range [10−5, 5 · 104] [0.05,6] [0.05, 6] [1, 40] [0.45,40]

indicated by a profile likelihood curve that does not exceed the threshold in at least
one direction [40].

Profile likelihood computations are very expensive compared to normal model
parameter calibration, since if the parameter dimension is d, and we wish to compute
all the parameter profiles PLj(p) at a grid of points p ∈ {p1j, . . . , pkj}, we have to
solve a d − 1-dimensional optimization problem dk times. In addition, finding a
suitable grid from the neighborhood of the maximum likelihood parameter is not
straightforward.

The profile likelihood is computed for the five best ranking three-phase models
obtained from the four chains. Because our optimization involves defining bounds
for the parameters, it is possible that a change in the profiled parameter cannot
be compensated enough. This can result in a profile likelihood that indicates
identifiability in cases where the threshold is only exceeded because the parameters
are limited by their optimization bounds. In order to avoid this, we extend the
normal parameter bounds remarkably. The used bounds are in Table 7.

Figure 19 shows profile likelihood plots for the best found model along with the
95% confidence threshold. It can be seen that most of the parameters are identifiable,
but four of the reaction rate parameters are practically non-identifiable since their
profile flattens to the right. The dynamics behind the non-identifiable parameters
are clearly related, since they all are mechanisms that affect STAT3. The second
and fifth best models have very similar parameter profiles, since they differ from
the best model only by having one mechanism active in one additional phase. The
third and fourth best model have some alternative mechanisms, for instance the
synergistic activation of STAT3 by BATF and IRF4. In both models, the rate of
this mechanism is non-identifiable like all the other mechanisms affecting STAT3,
whereas the remaining parameters are identifiable.

To summarize, most of the parameters included in the best models are identifiable,
but the STAT3 production and decay rates are non-identifiable. Since the basal
activation and degradation of STAT3 are fixed mechanisms, this problem is likely to
be present in all the possible models. This will hinder the optimization performance
and reduce the strength of the BIC as a marginal likelihood approximation method.
In order to correct this problem, one could try a reparametrization that relates the
degradation of STAT3 to its activation rate parameters. One should note that even
though the latent process parameters are all identifiable, for example in the best
found model the softness parameter λ2 has its best profile likelihood value outside
the range that was allowed for the parameters during the exploration of the model
space.
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Figure 19: Profile likelihood plots for the parameters of the best found model. The
panel titles show the 18 model mechanisms and black lines are the profile likelihood
curves for the corresponding reaction rates. Also the four latent process parameters
have been included in the analysis. The 95 % confidence interval for a given parameter
is the interval where the profile likelihood curve is below the threshold. The parameter
profiles indicate that rates of the mechanisms that affect STAT3 are non-identifiable.
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7 Discussion and conclusion
This thesis introduces a general framework which can be used to make inferences
about the structure of mechanistic ODE models. The approach is especially suitable
for inference problems in which the model space is rather large and exhaustive
evaluation of all models is out of reach. The strategy that we propose relies on
well-established MCMC techniques and provides an efficient means to obtain an
approximation of the posterior distribution over alternative model structures. This
approximation can then be used to obtain probabilistic predictions about the ODE
model structure. The results indicate that algorithm is useful and can be applied to
realistically sized problems.

The good performance of our MCMC algorithm is due to the suitable proposal
distribution, which allows moving between models that have a similar structure. A
sensible proposal distribution enables efficient exploration of the model space as well
as fast convergence to the high probability region of the distribution. Since it is
possible that the algorithm gets stuck in a local mode, it is of great importance to
run several MCMC chains and check if the chains cover the same high probability
region(s) or not. Depending on how informative the data are, and how the inference
problem is formulated, it can be possible that chains that only partly cover the same
high probability regions can also give similar inferences for the ODE model structure.
Furthermore, one should note that in discrete space, an MCMC chain needs to visit a
single point only once to obtain a rigorous posterior probability for it. Consequently,
it is obvious that search strategy provides us always with much richer information
when compared with a point estimate that is obtained through a deterministic greedy
search. Furthermore, information from several chains is always richer than from
a single chain, and using multiple independent chains allows parallel exploration
of different parts of the model space. In the approach proposed by this thesis, it
is possible to combine the information of independent chains, which generates an
opportunity to gain speedup through massive parallelization.

In this thesis, the employed MCMC method was a Metropolis sampler, which has
a symmetric proposal distribution and allows rejection of some moves. In different
applications, other types of MCMC methods can be constructed based on the desired
properties and used proposal distribution. For instance, population-based MCMC
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sampling [36] can be used to improve the mixing performance of the sampler or
multiple-try Metropolis algorithm [43] can be used to make the sampler explore the
space more efficiently. The experiments presented in this thesis assume normally
distributed measurement noise, but the noise model can also be altered depending on
the application. Furthermore, the prior distribution over the alternative models can
be specified by a more informative manner, if such knowledge is available. Also the
inference framework can be flexibly implemented in various forms. For example, the
BIC approximation for the marginal likelihood can be replaced with a more accurate
approximation such as the power posterior estimator [17]. Thus, our framework
provides an ODE modeller with a flexible and practical tool which makes it easier to
carry out general data-driven mechanistic modeling studies.

The application in which the method is applied in this study is to infer the
structure of the gene regulatory network that drives differentation of Th17 cells. The
results show that models with three phases in the cellular differentiation are most
likely. Alternative models that capture the dynamics of the network are formulated
as LEM models [34], which allows us to model a dynamically evolving regulatory
network. The latent effect of these models is modeled using sigmoidal functions that
are continuous and differentiable during the time course under investigation. The
used parameter bounds for the latent process parameters are flexible, could in some
applications cause restrictive problems. This could be avoided using an latent process
defined using splines, if the phase changes of the differentiation are assumed to be
trigged by a discrete event. However, one must take into account the peculiarities of
gradient-based parameter optimization for models with such discontinuity [19].
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