
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Author(s): Zakharov, Alexey & Zattoni, Elena & Yu, Miao & Jämsä-Jounela,
Sirkka-Liisa

Title: A performance optimization algorithm for controller reconfiguration in
fault tolerant distributed model predictive control

Year: 2015

Version: Post print

Please cite the original version:
Zakharov, Alexey & Zattoni, Elena & Yu, Miao & Jämsä-Jounela, Sirkka-Liisa. 2015. A
performance optimization algorithm for controller reconfiguration in fault tolerant
distributed model predictive control. Journal of Process Control. Volume 34. 56-69. ISSN
0959-1524 (printed). DOI: 10.1016/j.jprocont.2015.07.006.

Rights: © 2015 Elsevier BV. This is the post print version of the following article: Zakharov, Alexey & Zattoni, Elena
& Yu, Miao & Jämsä-Jounela, Sirkka-Liisa. 2015. A performance optimization algorithm for controller
reconfiguration in fault tolerant distributed model predictive control. Journal of Process Control. Volume 34.
56-69. ISSN 0959-1524 (printed). DOI: 10.1016/j.jprocont.2015.07.006, which has been published in final
form at http://www.sciencedirect.com/science/article/pii/S0959152415001560.

All material supplied via Aaltodoc is protected by copyright and other intellectual property rights, and
duplication or sale of all or part of any of the repository collections is not permitted, except that material may
be duplicated by you for your research use or educational purposes in electronic or print form. You must
obtain permission for any other use. Electronic or print copies may not be offered, whether for sale or
otherwise to anyone who is not an authorised user.

Powered by TCPDF (www.tcpdf.org)

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Aaltodoc Publication Archive

https://core.ac.uk/display/132598726?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.aalto.fi/en/
http://aaltodoc.aalto.fi
http://www.tcpdf.org

A performance optimization algorithm for

controller reconfiguration in fault tolerant

distributed model predictive control ⋆,⋆⋆

Alexey Zakharov a, Elena Zattoni b, Miao Yu a,
Sirkka-Liisa Jämsä-Jounela a

aAalto University School of Chemical Technology, Department of Biotechnology

and Chemical Technology, P.O. Box 16100, 00076 Aalto, Finland

bDepartment of Electrical, Electronic and Information Engineering “G. Marconi”,

Alma Mater Studiorum · University of Bologna, 40136 Bologna, Italy

Abstract

This paper presents a performance optimization algorithm for controller reconfigu-
ration in fault tolerant distributed model predictive control for large-scale systems.
After the fault has been detected and diagnosed, several controller reconfigurations
are proposed as candidate corrective actions for fault compensation. The solution
of a set of constrained optimization problems with different actuator and setpoint
reconfigurations is derived by means of an original approach, exploiting the infor-
mation on the active constraints in the non-faulty subsystems. Thus, the global
optimization problem is split into two optimization subproblems, which enables
the on-line computational burden to be greatly reduced. Subsequently, the per-
formances of different candidate controller reconfigurations are compared, and the
better performing one is selected and then implemented to compensate the fault
effects. Efficacy of the proposed approach has been shown by applying it to the
benzene alkylation process, which is a benchmark process in distributed model pre-
dictive control.

Key words: Distributed model predictive control; fault tolerant control; controller
reconfiguration; constrained optimization; alkylation of benzene.

⋆ Corresponding author A. Zakharov
⋆⋆This work is supported by Academy of Finland Project under Grant No. 13138194.
Email addresses: alexey.zakharov@aalto.fi (Alexey Zakharov),

elena.zattoni@unibo.it (Elena Zattoni), miao.yu@aalto.fi (Miao Yu),
sirkka-liisa.jamsa-jounela@aalto.fi (Sirkka-Liisa Jämsä-Jounela).

Preprint submitted to Journal of Process Control 13 May 2015

1 Introduction

Increased global competition, higher product quality requirements and envi-
ronmental regulations have forced the process industry to continuously opti-
mize efficiency and profitability. Advanced control strategies, such as model
predictive control (MPC), have made it possible to run processes close to the
quality and safety limits thereby increasing profitability, whilst ensuring better
end product quality and enhancing safety in plants (Qin and Badgwell, 2003).
In the engineering practice, one centralized MPC usually cannot handle the
whole large-scale process; instead, several MPCs may work together in a dis-
tributed manner to exchange the information of each system to achieve the
control objectives. To this end, highly efficient distributed control methods
have been developed over the past decades. For instance, Scheu and Mar-
quardt (2011) have developed a distributed model predictive control (DMPC)
methodology based on a distributed optimization algorithm, which relies on
a coordination mechanism using the first-order sensitivities of the objective
functions of neighboring systems. This proposed DMPC can effectively reduce
the computational burden and overcome possible communication limitations of
the centralized MPC. Several other DMPC schemes have been designed based
on cooperative game theory (Maestre et al., 2011), bargaining game theory
(Alvarado et al., 2011), and serial decomposition of the centralized problem
(Negenborn et al., 2008). DMPCs are more and more widely applied to various
control systems, such as reactor-separator processes (Liu et al., 2009), alky-
lation of benzene (Liu et al., 2010), hot-rolled strip laminar cooling processes
(Zheng et al., 2009), accelerated cooling process test rig (Zheng et al., 2011),
transportation networks (Negenborn et al., 2008), and formation of unicycle
robots (Farina et al., 2014). Thus, it has become a common practice to utilize
DMPC strategies in large-scale processes (see also Camponogara et al., 2002;
Scattolini, 2009; Negenborn and Maestre, 2014).

Conventional control schemes are developed under the assumption that sen-
sors and actuators are free from faults. However, the occurrence of faults
causes degradation in the closed-loop performance and also has an impact
on safety, productivity and plant economy. As a result, the research focus is
shifting towards advanced management of abnormal situations, such as pro-
cess disturbances and faults, which still provides great possibilities for further
improvement of the process efficiency. To this end, fault tolerant control (FTC)
has attracted much attention in the area of engineering practice in recent years
(see, e.g., Blanke et al., 1997; Mahmoud et al., 2003; Zhang and Jiang, 2008).
In this context, fault tolerant model predictive control (FTMPC), which incor-
porates fault tolerance properties into MPC, has been extensively studied ever
since the earlier contribution by Maciejowski (1999). The corrective actions of
FTC can be categorized into two types: fault accommodation and controller
reconfiguration, whose difference lies in whether the controller settings will

2

change for the compensation of fault effects or not. In particular, Pranatyasto
and Qin (2001) studied the data-based FTC with a simulated fluid catalytic
cracking unit, where the sensor faults were detected by principal component
analysis and accommodated in the MPC. In Prakash et al. (2002), a fault-
accommodation based FTC system was developed on the basis of diagnostic
information provided by the generalized likelihood ratio method. In Kettunen
et al. (2008), Sourander et al. (2009) and Kettunen and Jämsä-Jounela (2011),
various solutions, including data-based FTMPC with fault accommodation,
were proposed and tested in a complex dearomatization process.

Despite being an attractive approach, fault accommodation is infeasible in
many cases, especially when the ability to control the system degrades be-
cause of an actuator fault. As a result, an actuator reconfiguration approach
was proposed, aiming to replace the “dropped out” actuator by means of
redundant ones. For example, Gani et al. (2007) developed two alternative
single-input single-output controls for a polyethylene reactor, manipulating
different control variables: the temperature of a feed flow and a catalyst flow
rate. In the case of an actuator failure, the control relying on the healthy
actuator is applied. Similarly, Chilin et al. (2012a) considered two actuator
faults and developed two back-up controls which are applied when the respec-
tive fault is discovered. However, in large-scale systems, it is difficult, or even
impossible, to develop back-up control strategies for all possible faults, that
is why it is an important issue to ensure plant stability under an on-line re-
configured control, while selecting among the candidate reconfigurations. In
particular, Gani et al. (2007) determined the stability regions of the alterna-
tive controls when an actuator fault occurs, and Chilin et al. (2012a) utilized
a modification of MPC to ensure stability. Even though both approaches were
able to safeguard stability, a suitable Lyapunov function must be developed in
both methods, which makes them difficult to use in case of large-scale systems.

Besides using redundant actuators, another approach to controller reconfigu-
ration consists in defining a new setpoint for the faulty system. Indeed, the
nominal process operating conditions can sometimes become infeasible be-
cause of the fault and, in such a case, a new operating point must be defined.
Thus, Chilin et al. (2012a) proposed to use the feasible steady state closest
to the nominal steady state of the system as the new target operating point.
Formerly, Gandhi and Mhaskar (2008) had suggested a “safe-parking” ap-
proach which selects new operating points from amongst the feasible steady
states of the system achievable by the reconfigured control without destabiliz-
ing the system. Gandhi and Mhaskar (2009) had also proposed the selection
of new operating points of the faulty unit in a way that the downstream units
could continue operating at the nominal process conditions and this was im-
plemented as additional constraints imposed on the new operating points of
the faulty systems. As a result, the operating point at the moment of fault
diagnosis, which is typically close to the nominal steady state, must belong to

3

the stability region of the reconfigured control that is developed to operate at
new process conditions. The drawback is that this makes stability even more
difficult to obtain. Therefore, when we have several controller reconfigurations
available to compensate for the fault effects, there is a clear demand for more
practical solutions to evaluate the possible controller reconfigurations and to
select the better performing one in a timely and optimal manner.

Lately, the well-known ability of MPC to achieve offset-free tracking in the
presence of plant-model mismatch has been utilized for fault tolerant con-
trol development. In Zhang et al. (2013), an improved linear quadratic fault-
tolerant control approach has been designed and applied to a batch process
with partial actuator faults. A discrete-time augmented model has been con-
sidered, with the state including the output tracking error and the change
of the state of the actual process model. This approach has been extended
to linear systems with an input-output delay in Zhang et al. (2014a,b) and
to MPC utilizing the input-output state-space model in Tao et al. (2014).
Alternatively, fault tolerance can be achieved through robust control design,
which frequently relies on LMIs (Wang et al., 2013a). Moreover, Wang et al.
(2013b) has proposed a fault tolerant control approach for batch processes
with actuator faults, based on iterative learning control and 2D model rep-
resentation. The same approach has been formerly applied by Wang et al.
(2012) to a batch process with a state delay. Vahid Naghavi et al. (2014) has
proposed a decentralized FTMPC, meaning that there is no information ex-
change between the local controllers relating to subsystems. Both passive and
active fault tolerant control designs have been considered. Using Lyapunov
function approach, it has been shown that the proposed method guarantees
input-to-state stability. In order to facilitate the development of a reconfig-
ured control in case of an actuator fault, Luppi et al. (2015) has focused on
the optimization of the control structure, which includes the selection of con-
trolled and manipulated variables as well as their pairings. The fulfillment of
a sufficient condition for decentralized integral controllability is searched to
guarantee stability. Through the Tennessee Eastman case study, it has been
shown that the proposed methodology produces suitable decentralized control
structures for reconfigurable FTC systems.

As most of the FTC systems in the literature are based on a centralized MPC
for the whole process, there have been only a few attempts to establish a
FTC strategy based on DMPC for complex industrial systems (Gandhi and
Mhaskar, 2009; Chilin et al., 2010, 2012b). However, in all these works, the
distributed control settings are only used in stability analysis, not in the choice
of controller reconfigurations. In order to bridge the gap between FTC and
DMPC, a framework for the design of a fault tolerant distributed model pre-
dictive control (FTDMPC) strategy is presented herein. After the fault has
been detected and diagnosed, the key element of the FTDMPC developed
in this work is the performance optimization algorithm, which provides the

4

solution of a set of constrained optimization problems with different, pos-
sible actuator and setpoint reconfigurations. The performance optimization
algorithm utilizes the information on the active constraints in the non-faulty
subsystems and tackles the global MPC optimization problem by splitting it
into two nested subproblems. In this way, the on-line computational burden
is greatly reduced. Subsequently, the performances of the different candidate
controller reconfigurations are compared, the best performing controller is se-
lected and then implemented, so as to compensate the effects of the fault.
The effectiveness of the proposed method has been verified by applying it to a
benchmark benzene alkylation process (Liu et al., 2010; Scheu and Marquardt,
2011; Chilin et al., 2012a).

On a last introductory note, we underline that our work is focused on actu-
ator faults and we provide the motivations for this. As it can be seen from
the literature review presented above, sensor faults are frequently compen-
sated by means of the fault accommodation approach, which relies on a soft
sensor or a state estimation with excluding the faulty measurement. Thus, an
accommodation-based FTC can be implemented utilizing the well-developed
disciplines of data-based soft-sensing and process state estimation. In contrast,
fault accommodation is usually unsuitable to handle actuator faults, frequently
leading to major control performance degradation. Instead, a partial failure
of actuator efficiency can be treated using the passive FTC approach, as is
shown, for instance, in Zhang et al. (2013, 2014a). In this case, various ro-
bust MPC methods can be employed for FTC development and the Lyapunov
function approach is commonly used to ensure stability in the presence of a
fault. However, the stuck actuator faults are among the most difficult failures
to handle, as only a control reconfiguration is able to compensate fault effects
in this case. At the moment, FTCs dealing with actuator faults mostly switch
to a pre-developed back-up control after fault detection, and there is little
methodology available to support reconfigured control development. Thus, we
consider the actuator faults, requiring online control reconfiguration, as a chal-
lenging and interesting problem, especially in the case of large-scale processes.

The remainder of this paper is organized as follows. In Section 2, a general idea
of FTDMPC is introduced, which focuses on the function of the performance
optimization algorithm for the controller reconfiguration. Section 3 is devoted
to the DMPC for faultless interconnected systems. Section 4 shows how the
formulation of the original DMPC is modified in the presence of a fault,
in order to encompass actuator and setpoint reconfiguration, and how the
computational burden implied by its solution is reduced with the introduction
of suitable, motivated assumptions. In Section 5, simulation results from a
benzene alkylation process are provided to demonstrate the effectiveness of
the devised approach. Finally, Section 6 outlines the overall conclusions.

Notation: The symbols R, Z+
0 and Z

+ stand for the sets of real numbers, non-

5

negative integer numbers and positive integer numbers, respectively. Matrices
and linear maps are denoted by capital letters, like A or Ψ. The transpose of
A is denoted by A⊤. The Moore-Penrose inverse of A is denoted by A†. The
symbol v=vect {v1, v2, . . . , vr} denotes a vector v obtained by concatenating
the vectors v1, v2, . . ., vr, in order. The symbol M =diag {M1,M2, . . . ,Ms}
denotes a block-diagonal matrix M , whose blocks on the main diagonal are
the matrices M1, M2, . . ., Ms, in order. The symbols In and Om×n stand
for an n-dimensional identity matrix and an m×n zero matrix, respectively
(subscripts are omitted when the dimension can be inferred from the context).

2 Outline of the fault tolerant distributed model predictive control

The fault tolerant distributed model predictive control scheme for large-scale
systems devised in this work mainly includes the following elements: dis-
tributed model predictive control, fault detection and diagnosis (FDD), con-
troller reconfiguration based on the performance optimization algorithm. The
overall structure of FTDMPC is shown in Figure 1. A large-scale system can be
divided into different unit processes according to the process topology, which
provides a foundation for both FDD methods and DMPC. Based on the break-
down of the overall control objectives into individual objectives within each
subsystem, DMPC is designed considering the information exchange between
the individual unit processes. At the same time, hierarchical FDD methods
are selected based on the intended use of the methods, the systems and their
dynamics, and especially the faults and their characteristics, as proposed in
our previous work (Jämsä-Jounela et al., 2013).

When the fault is detected and diagnosed, some possible reconfigured con-
trollers can be designed to achieve the control aims in the presence of the
faults. For instance, in case of an actuator fault (such as actuator blocking),
the faulty actuator is usually replaced by alternative actuators or some ac-
tuator constraints are modified, e.g., according to degradation of the faulty
actuator capacity. Hence, several reconfigured control settings can be gener-
ated for further evaluation.

In case that the current operating condition is infeasible for the faulty plant, a
new operating condition needs to be defined according to the control objectives
with the fault information provided by the FDD element. The new operating
conditions can be selected from the set of steady states of the system under
faulty dynamics. As an additional constraint, the target operating conditions
in the downstream units must be disturbed as little as possible (Gandhi and
Mhaskar, 2009). In particular, one of the requirements is to maintain the set
of current active constraints relating to the non-faulty systems as they were
at the nominal operating conditions. A group of candidate setpoints can be

6

Fig. 1. Outline of fault tolerant distributed model predictive control

found by applying different selection criteria, such as minimizing the distance
from the current process state, minimizing the effect on the downstream units,
maximizing the economic efficiency of the faulty process unit, minimizing the
production rate degradation, etc.

With each possible actuator and setpoint reconfiguration, the MPC turns
out to be a different constrained optimization problem. The performance
optimization algorithm aims at selecting one of the ensuing corrective actions
by evaluating performance of each reconfigured controller action. With the
condition that the active constraints in the non-faulty subsystems remain
the same as they were in the nominal conditions, the global optimization
of MPC can be split into two nested subproblems. As a result, the on-line
computational burden is reduced and the consequent selection of the better
performing controller can be achieved before the system state is driven far
away from the nominal operating conditions. In particular, the criterion for

7

selecting the controller to be implemented among the various candidates can
be based on the definition of some indexes, such as the integral of the error
between the predicted trajectories of process variables and their setpoints.

3 The distributed model predictive control problem for the fault-

less large-scale system

The aim of this section is to introduce the distributed model predictive control
problem for the large-scale faultless system. The finite-horizon optimal control
problem stated for the discrete-time dynamical system subject to input and
output constraints within the prediction horizon is reduced to a constrained
algebraic optimization problem, according to techniques extensively used in
the literature (see, e.g., Marro et al., 2003; Zattoni, 2008).

The large-scale system consists of the interconnection of a set {Σi, i∈I}, with
I = {1, 2, . . . , N}, of discrete-time linear time-invariant dynamical systems
described by

Σi ≡

xi(k + 1) =
N
∑

j=1

Aij xj(k) + Bi ui(k),

yi(k) = Ci xi(k),

i ∈ I, (1)

where k ∈Z
+
0 is the time variable, xi ∈R

ni is the state, ui ∈R
pi is the control

input, and yi ∈R
qi is the to-be-controlled output, respectively, with pi, qi ≤ni

for all i∈I. The matrices Ai, Bi, and Ci are assumed to have constant real
entries.

In order to provide an effective formulation of the distributed model pre-
dictive control problem for the large-scale system, the following notation is
introduced. The symbol kc ∈Z

+ denotes the control horizon and kp ∈Z
+ de-

notes the prediction horizon. The initial state xi(0) of Σi is denoted by ξi, with
i∈I, and the symbol ξ ∈R

n, with n=
∑N

i=1 ni, is used to denote the vector of
all the initial states: i.e., ξ=vect {ξ1, ξ2, . . . , ξN}. For any Σi, with i∈I, the
symbols ui and yi respectively denote the vectors collecting the sequences of
the control inputs over the control horizon and the outputs over the prediction
horizon, for the given initial states ξi, with i∈I: i.e.,

ui =vect {ui(0), ui(1), . . . , ui(kc − 1)}, i∈I, (2)

yi =vect {yi(1), yi(2), . . . , yi(kp)}, i∈I. (3)

Note that, the sequences of the control inputs stop at the time k= kp − 1
(for k= kc, · · · , kp − 1, the control inputs remain the same value). And the
sequences of the to-be-controlled outputs start at the time k=1. In fact, the

8

outputs at the initial time yi(0), with i∈I, are completely determined by the
set of the initial states ξi, with i∈I. Thus, if the prediction horizon is limited
to kp, the dynamic equations (1), with the initial conditions xi(0)= ξi, with
i∈I, are equivalent to the algebraic equations

yi =
N
∑

j=1

Ti,j uj + Vi ξ, i ∈ I, (4)

where Ti,j ∈R
kp qi×kc pi and Vi ∈R

kp qi×n are respectively defined by

Ti,j =

C̃i B̃j O . . . O

C̃i Ã B̃j C̃i B̃j . . . O
...

...
. . .

...

C̃i Ã
kc−1 B̃j C̃i Ã

kc−2 B̃j . . . C̃i B̃j

C̃i Ã
kc B̃j C̃i Ã

kc−1 B̃j . . .
∑1

l=0 C̃i Ã
lB̃j

...
...

...
...

C̃i Ã
kp−1 B̃j C̃i Ã

kp−2 B̃j . . .
∑kp−kc

l=0 C̃i Ã
lB̃j

, Vi =

C̃i Ã

C̃i Ã
2

...

C̃i Ã
kp

, i, j ∈ I,

(5)
with

Ã=

A1,1 . . . A1,i−1 A1,i A1,i+1 . . . A1,N

...
. . .

...
...

...
. . .

...

Ai−1,1 . . . Ai−1,i−1 Ai−1,i Ai−1,i+1 . . . Ai−1,N

Ai,1 . . . Ai,i−1 Ai,i Ai,i+1 . . . Ai,N

Ai+1,1 . . . Ai+1,i−1 Ai+1,i Ai+1,i+1 . . . Ai+1,N

...
. . .

...
...

...
. . .

...

AN,1 . . . AN,i−1 AN,i AN,i+1 . . . AN,N

, B̃i =

On1×pi

...

Oni−1×pi

Bi

Oni+1×pi

...

OnN×pi

,

C̃i =
[

Oqi×n1
. . . Oqi×ni−1

Ci Oqi×ni+1
. . . Oqi×nN

]

, i ∈ I.

Furthermore, (4) can be written in matrix form as

yi = T ∗
i u

∗ + Vi ξ, i ∈ I, (6)

where T ∗
i ∈R

kp qi×kc p and u
∗ ∈R

kc p, with p=
∑N

i=1 pi, are respectively defined
by

9

T ∗
i =

[

Ti,1 Ti,2 . . . Ti,N

]

, i ∈ I, (7)

u
∗ =vect {u1,u2, . . . ,uN}, (8)

with Ti,j as in (5) and uj as in (2), for j ∈I.

The cost functional is defined by

J =
N
∑

i=1

kp−1
∑

k=0

(yi(k + 1)− ηi)
⊤Qi (yi(k + 1)− ηi) +

kc−1
∑

k=0

ui(k)
⊤ Ri ui(k)

,

(9)
where ηi ∈R

qi is the set point for the output yi, while Qi ∈R
qi×qi and

Ri ∈R
pi×pi are positive-definite symmetric matrices, with i∈I. The objective

of the optimization, introduced in (9), is indeed the objective of the centralized
MPC equivalent to the DMPC. The centralized objective can be split among
the local controllers in different ways, but the “natural” splitting should be the
most beneficial in practice, as it minimizes the number of necessary DMPC
iterations. Since the mathematics behind the splitting method is nontrivial —
as can be seen, e.g., from Scheu and Marquardt (2011) — in order to avoid
bluring the main idea presented in the next section with too many technical
details, we will proceed herein with reference to the objective of the centralize
MPC. With the notation introduced in (2) and (3), (9) can be written as

J =
N
∑

i=1

{

(yi − ηi)
⊤Q∗

i (yi − ηi) + ui
⊤R∗

i ui

}

, (10)

where ηi ∈R
kp qi , Q∗

i ∈R
kp qi×kp qi , and R∗

i ∈R
kc pi×kc pi , with i∈I, are re-

spectively given by ηi =vect {ηi, ηi, . . . , ηi}, Q∗
i =diag {Qi, Qi, . . . , Qi}, and

R∗
i =diag {Ri, Ri, . . . , Ri}. Furthermore, taking (6)–(8) into account, (10) can

be written as

J =
N
∑

i=1

{

(T ∗
i u

∗ + Vi ξ − ηi)
⊤ Q∗

i (T
∗
i u

∗ + Vi ξ − ηi) + u
∗⊤ S∗

i u
∗
}

, (11)

where S∗
i ∈R

kc p×kc p is given by

S∗
i =

diag {Okc p1×kc p1 . . . Okc pi−1×kc pi−1
R∗

i Okc pi+1×kc pi+1
. . . Okc pN×kc pN

}, i ∈ I.

In view of the next developments, it is worth elaborating further on the cost
functional, so as to restate it as the sum of a quadratic term in the unknown
u

∗, a linear term in u
∗, and a constant, as specified below. First, note that,

10

by means of simple algebraic manipulations, (11) can be written as

J =
N
∑

i=1

(

u
∗⊤Ψi u

∗ + ϕ⊤
i u

∗ + ρi
)

, (12)

where Ψi ∈R
kc p× kc p, ϕi ∈R

kc p, and ρi ∈R, with i∈I, are respectively defined
as follows

Ψi =T ∗
i
⊤Q∗

i T
∗
i + S∗

i , i ∈ I, (13)

ϕi =2T ∗
i
⊤Q∗

i (Vi ξ − ηi), i ∈ I, (14)

ρi = ξ⊤ V ⊤
i Q∗

i Vi ξ − 2 ξ⊤ V ⊤
i Q∗

i ηi + η⊤i Q∗
i ηi, i ∈ I. (15)

Then, by collecting u
∗ from each term in (12), one gets

J = u
∗⊤ Ψu

∗ + ϕ⊤
u

∗ + ρ, (16)

where Ψ∈R
kc p× kc p, ϕ∈R

kc p, and ρ∈R are respectively defined by
Ψ=

∑N
i=1 Ψi, ϕ=

∑N
i=1 ϕi, and ρ=

∑N
i=1 ρi.

The control inputs and the to-be-controlled outputs are subject to constraints
described by the set of inequalities

Mi ui(k)≤ fi, k = 0, 1, . . . , kc − 1, i ∈ I, (17)

Ni yi(k)≤ gi, k = 1, 2, . . . , kp, i ∈ I, (18)

where Mi ∈R
vi×pi , Ni ∈R

wi×qi , fi ∈R
vi , and gi ∈R

wi are given. Taking (2), (3)
into account, one can write (17), (18) in a more compact form as

M∗
i ui ≤ f ∗

i , i ∈ I, (19)

N∗
i yi ≤ g∗i , i ∈ I, (20)

where M∗
i ∈R

kc vi×kc pi and N∗
i ∈R

kp wi×kp qi are respectively defined by
M∗

i =diag {Mi, Mi, . . . ,Mi} and N∗
i =diag {Ni, Ni, . . . , Ni}, while f

∗
i ∈R

kc vi

and g∗i ∈R
kp wi are respectively defined by f ∗

i =vect {fi, fi, . . . , fi} and
g∗i =vect {gi, gi, . . . , gi}. Moreover, in light of (6)–(8), (19), (20) can be written
as

K∗
i u

∗ ≤ f ∗
i , i ∈ I, (21)

N∗
i T

∗
i u

∗ +N∗
i Vi ξ ≤ g∗i , i ∈ I, (22)

where K∗
i ∈R

kc vi×kc p is given by

K∗
i =

[

Okc vi×kc p1 . . . Okc vi×kc pi−1
M∗

i Okc vi×kc pi+1
. . . Okc vi×kc pN

]

, i ∈ I.

(23)

11

Furthermore, (21), (22) can be grouped into the set of inequalities

Gi u
∗ + Li ξ + ℓi ≤ 0, i ∈ I, (24)

where Gi ∈R
(kcvi+kpwi)× kc p, Li ∈R

(kcvi+kpwi)×n, and ℓi ∈R
(kcvi+kpwi) are given

by

Gi =

K∗
i

N∗
i T

∗
i

 , Li =

Okc vi×n

N∗
i Vi

 , ℓi =

f ∗
i

g∗i

 , i ∈ I. (25)

Finally, the set of inequalities (24) can be recast as

Gu
∗ + L ξ + ℓ ≤ 0, (26)

where G∈R
z× kc p, L∈R

z×n, and ℓ∈R
z, with z=

∑N
i=1(kcvi+kpwi), are given

by

G =

G1

G2

...

GN

, L =

L1

L2

...

LN

, ℓ =

ℓ1

ℓ2
...

ℓN

. (27)

Hence, to summarize, the optimization problem over the prediction time con-
sists in finding u

∗ so as to minimize the cost functional J , defined by (16),
under the constraint (26). The solution to this problem can be sought by ex-
ploiting classic results such as Karush-Kuhn-Tucker conditions and by apply-
ing the related computational algorithms (see, e.g., Boyd and Vandenberghe,
2004). However, since in model predictive control the optimization is per-
formed within a receding horizon, which implies that the stated problem is to
be solved at each time step with the new initial conditions and, in addition,
since the systems addressed herein are large-scale systems, which may imply
the manipulation of matrices of huge dimensions, ad-hoc algorithms have been
developed for distributed model predictive control, like, e.g., that presented in
the already mentioned (Scheu and Marquardt, 2011). In particular, Scheu and
Marquardt’s algorithm is the one that will be employed in Section 5, in com-
bination with the implementation of the idea presented in the next section,
thus achieving a dramatic reduction of the computational burden.

4 The distributed model predictive control problem for the faulty

large-scale system, with actuator and setpoint reconfiguration

The aim of this section is to show how the approach to the model predictive
control problem presented in Section 3 is modified when an actuator fault is

12

detected in one of the interconnected systems described by (1). In fact, the
detection of the fault triggers the so-called reconfiguration process: namely,
faulty actuators are replaced by back-up actuators in the faulty system, the
setpoints of the to-be-controlled outputs are redetermined, and a new model
predictive controller is derived by solving a different optimization problem.
Moreover, since the solution of the complete optimization problem, as it turns
out by performing the appropriate modifications in the original problem pre-
sented in Section 3, may imply a huge computational burden, not sustainable
within an on-line reconfiguration process in the presence of a fault, some mo-
tivated assumptions are introduced, in order to obtain a simplified version
of the optimization problem, suitable to be solved by a real-time operating
system.

In particular, as was pointed out by Skogestad (2004), in industrial processes,
the optimization is generally subject to constraints and, at the optimum, many
of these are usually “active”. In this circumstance, if the fault is detected early
after the occurrence, the perturbation caused by the fault to the constraints
in non-faulty systems is not significant. In other words, the active constraints
in these systems remain the same as they were in the nominal operating
conditions. In light of these considerations, we will henceforth consider the
unknown inputs u∗ introduced in Section 3 as displacements with respect to
their optimal values in the nominal conditions (this can be made by suitably
redefining the origin of the input space) and we will split the original problem
into two subproblems.

In brief, the first subproblem consists in the minimization of the cost functional
with respect to the sole inputs of the faultless systems, assuming that the
active constraints in the faultless systems are known as well as the input to
the faulty system. The second subproblem consists in the minimization with
respect to the input of the faulty system, taking into account the constraints
on the faulty system. Each of these subproblems will be clearly stated in the
following developments, as soon as the elements for its formal definitions are
made available.

Let us assume that the detected fault has occurred in the system Σi, for a
known i∈I. The fault tolerant approach developed in this work provides the
reconfiguration of the control inputs and the redefinition of the output set-
points in the faulty system. As to the reconfiguration of the control inputs, it
is assumed that the control input ui consists of a set of control inputs which
are manipulable when the system is faultless and a set of back-up control in-
puts which are redundant (hence, not used) in the absence of faults. However,
when an actuator fault occurs, some of the manipulable inputs are not avail-
able anymore and, therefore, they are replaced by some of the back-up control
inputs. In the description of the healthy interconnected systems presented in
Section 3, the presence of back-up inputs can be modeled by a suitable defini-

13

tion of the constraint equation, where, in particular, the matrix G is defined
in such a way that the back-up inputs are forced to be equal to zero as long
as the interconnected systems are faultless. Viceversa, the reconfiguration of
the control inputs can be modelled by redefining the constraint equation in
such a way that the faulty inputs are forced to have a constant value (namely,
zero, with no loss of generality), while the previous constraint on the back-up
inputs is removed. In order to avoid notation clutter, it is assumed henceforth
that the constraint equation (26) has been redefined according to the con-
siderations above. As to the redetermination of the output setpoints, this is
required whenever the original setpoints cannot be reached anymore, due to
the occurrence of the fault, not even with the available redundant actuators.
The redetermination of the output setpoints affects the weighting parameters
ϕ and ρ of the cost functional (16). Likewise, it is assumed henceforth that the
cost functional (16) has been redefined according to these arguments. Hence,
the remainder of this section formalizes the approach to the solution of the
optimization problem in a fashion which is suitable for on-line processing.

First, the control inputs collected in the vector u∗, defined by (8), are reordered
in such a way that the inputs of Σi, the faulty system, are placed in the last
kc pi positions, which allows a convenient partition to be introduced in the
cost functional and the constraint equations, as is shown in the following. Let
the similarity transformation W ∈R

kc p×kc p be defined by

W =

Ir1 O O

O O Ir2

O Ir3 O

, (28)

with r1 = kc
∑i−1

j=1 pj, r2 = kc
∑N

j=i+1 pj, and r3 = kc pi. It is worth noting that
W =W−1 =W⊤. Let u

∗′ denote the input vector with respect to the new
coordinates, so that

u
∗ =W u

∗′. (29)

Then, in light of (29), the cost functional (16) can be written as

J = u
∗′⊤ Ψ′

u
∗′ + ϕ′⊤

u
∗′ + ρ, (30)

where Ψ′ =W ΨW and ϕ′ =W ϕ. Thus, if Ψ and ϕ, partitioned according to
(28), are given by

Ψ =

Ψ11 Ψ12 Ψ13

Ψ⊤
12 Ψ22 Ψ23

Ψ⊤
13 Ψ⊤

23 Ψ33

, ϕ =

ϕ1

ϕ2

ϕ3

, (31)

14

with respect to new coordinates, Ψ′ and ϕ′ are given by

Ψ′ =

Ψ11 Ψ13 Ψ12

Ψ⊤
13 Ψ33 Ψ⊤

23

Ψ⊤
12 Ψ23 Ψ22

, ϕ′ =

ϕ1

ϕ3

ϕ2

. (32)

With respect to the new coordinates, the last kc pi components of the input
u

∗′ concern the faulty system Σi, while the former components concern the
faultless systems Σj , with j ∈I, j 6= i. According to this, let

u
∗′ =

u
∗
h

u
∗
f

. (33)

Accordingly, Ψ′ and ϕ′ in (32) can be written in more compact form as

Ψ′ =

Ψhh Ψhf

Ψ⊤
hf Ψff

 , ϕ′ =

ϕh

ϕf

 . (34)

With the notation introduced in (33) and (34), the cost functional (30) can
be written as

J = u
∗
h
⊤ Ψhh u

∗
h + 2u∗

f
⊤ Ψ⊤

hf u
∗
h + u

∗
f
⊤Ψff u

∗
f + ϕ⊤

h u
∗
h + ϕ⊤

f u
∗
f + ρ. (35)

A similar reasoning can be applied to the constraint (26). In fact, taking (29)
into account, one can write (26) as

G′
u

∗ + L ξ + ℓ ≤ 0, (36)

where G′ =GW and, according to the partition (33), (36) can be written as

Gh u
∗
h +Gf u

∗
f + L ξ + ℓ ≤ 0. (37)

Then, at first, the assumption of taking into account only active constraints
in non-faulty systems is introduced, which means that (37) is replaced by

Fh u
∗
h + Ff u

∗
f + E ξ + d = 0, (38)

where Fh, Ff , E, and d have been respectively extracted from Gh, Gf , L, and
ℓ by only considering equality constraints in the faultless systems. Moreover,
the cost functional (35) is minimized with respect to the control inputs u∗

h of
the sole faultless systems.

Namely, the first optimization problem which is tackled is stated as follows.

15

Problem 1 Find u
∗
h such that J , given by (35), is minimized, under the

constraint (38).

The Lagrangian function for the problem stated above is defined by

L(u∗
h, λ) = λ⊤ (Fh u

∗
h + Ff u

∗
f + E ξ + d)+

u
∗
h
⊤ Ψhh u

∗
h + 2u∗

f
⊤ Ψ⊤

hf u
∗
h + u

∗
f
⊤Ψff u

∗
f + ϕ⊤

h u
∗
h + ϕ⊤

f u
∗
f + ρ,

where λ denotes the vector of the Lagrange multipliers. Then, according to
the Lagrangian multiplier approach, the solution of the following system of
equations is sought:

2u∗
h
⊤ Ψhh + 2u∗

f
⊤Ψ⊤

hf + ϕ⊤
h + λ⊤ Fh = 0,

Fh u
∗
h + Ff u

∗
f + E ξ + d = 0.

(39)

Since Ψhh is symmetric positive-definite, the unknown u
∗
h can be made explicit

from the first of (39) and replaced in the second. Thus, (39) provide

u
∗
h = −Ψ−1

hh Ψhf u
∗
f −

1

2
Ψ−1

hh ϕh −
1

2
Ψ−1

hh F
⊤
h λ,

λ = 2Θ (Ff − Fh Ψ
−1
hh)Ψhf)u

∗
f −ΘFhΨ

−1
hh ϕh + 2ΘE ξ + 2Θ d,

(40)

where Θ= (Fh Ψhh F
⊤
h)†. Then, by replacing the second of (40) in the first,

one gets the optimal value for u∗
h as

u
∗
h = Γu

∗
f + γ, (41)

where

Γ=−Ψ−1
hh

(

Ψhf + F⊤
h Θ(Ff − Fh Ψ

−1
hh Ψhf)

)

, (42)

γ=−Ψ−1
hh

(

−
1

2
(I + F⊤

h ΘFh Ψ
−1
hh)ϕh − F⊤

h Θ(E ξ + d)
)

. (43)

Furthermore, by replacing (41) in (35), one gets

J = u
∗
f
⊤ Φu

∗
f + 2σ⊤

u
∗
f + κ, (44)

where

Φ=Γ⊤Ψhh Γ + Ψ⊤
hf Γ + Ψff , (45)

σ=Γ⊤Ψhh γ +Ψ⊤
hf γ + Γ⊤ϕh, (46)

κ= γ⊤ Ψhh γ + ϕ⊤
h γ + ρ. (47)

16

Moreover, by replacing (41) in (37), one gets

Λu
∗
f + L ξ + µ ≤ 0, (48)

where

Λ=Gh Γ +Gf , (49)

µ=Gh γ + ℓ. (50)

Hence, the second optimization problem is stated as follows.

Problem 2 Find u
∗
f , such that J , given by (44), is minimized, under the

constraint (48).

Although the solution of this optimization problem can be obtained by apply-
ing Karush-Kuhn-Tucker conditions and the related algorithms, as the original
problem presented in Section 3, here the unknown variable u

∗
f consists of a

subvector of the unknown u
∗ of the original problem. So, a substantial re-

duction of the computational complexity has been obtained by means of the
devised approach.

In order to better highlight the impact of the reduction of the computational
burden achieved by the proposed approach, it is worthwhile stressing that
the optimization problem considered above has to be solved for different
choices of the actuator and setpoint reconfiguration, so that a set of candidate
reconfigured controllers are obtained. Moreover, as is required in MPC, this
algorithm has to be iterated at each step of the prediction horizon.

As to the selection of the better performing reconfigured controller, this can
be straightforwardly done by comparing the optimal values of the performance
indexes, like the Integral Absolute Error (IAE), obtained for each of the
candidate reconfigured controllers.

5 Simulation results

This section illustrates the main results obtained by testing the FTDMPC
scheme devised in this work on the benzene alkylation process. First, the
benchmark process is described briefly, then, the DMPC and FDD methods
are introduced separately. Finally, the emphasis is given to FTC, especially
with regard to the implementation of the performance optimization algorithm.

17

5.1 Process description

The process of alkylation of benzene with ethylene to produce ethylbenzene is
widely used in the petrochemical industry (see, e.g., Liu et al., 2010). Dehy-
dration of the product produces styrene, which is the precursor to polystyrene
and many copolymers. We consider the simulated chemical process for the
alkylation of benzene from Scheu and Marquardt (2011) — also depicted in
Fig. 2 — to illustrate the performance of the proposed FTDMPC scheme. The
plant consists of five units: i.e., four continuous stirred-tank reactors (CSTRs)
and one flash separator. The CSTR 1, CSTR 2, and CSTR 3 are in series
and involve the alkylation of benzene with ethylene. Pure benzene is fed from
stream F1 and pure ethylene is fed from streams F2, F4, and F6. Two catalytic
reactions take place in CSTR 1, CSTR 2, and CSTR 3. Benzene (A) reacts with
ethylene (B) and produces the required product ethylbenzene (C) (reaction 1);
ethylbenzene can further react with ethylene to form 1,3-diethylbenzene (D)
(reaction 2) which is the byproduct. The effluent of CSTR 3, including the
products and leftover reactants, is fed to a flash tank separator, in which most
of benzene is separated overhead by vaporization and condensation techniques
and recycled back to the plant and the bottom product stream is removed. A
portion of the recycle stream Fr2 is fed back to CSTR 1 and another portion
of the recycle stream Fr1 is fed to CSTR 4 together with an additional feed
stream F10 which contains 1,3-diethylbenzene from further distillation process
that we do not consider in this example. In CSTR 4, reaction 2 and catalyzed
transalkylation reaction in which 1,3-diethylbenzene reacts with benzene to
produce ethylbenzene (reaction 3) takes place. All chemicals left from CSTR 4
eventually pass into the separator. All the materials in the reactions are in liq-
uid phase due to high pressure.

The mathematical model consists of material balances for each component
and an energy balance for each unit of the plant, which results in a system
model that includes a total of 25 states. The states of the process consist of the
concentrations of A, B, C and D in each of the five units and the temperatures
of the units. In addition, the model includes nonlinear reaction kinetics as
well as a nonlinear description of the phase equilibrium in the flash separator,
leading to a total of approximately 100 equations. The state is assumed to
be available continuously to the controllers. Ideal liquid and gas phases are
assumed to be in equilibrium. All CSTRs are assumed to be well mixed. The
pressure in the reactors is assumed to be constant. Each of the units has an
external heat/coolant input. In the normal condition, the manipulated inputs
to the process are the heat injected to or removed from the five units, Q1, Q2,
Q3, Q4 and Q5 (u1, u2, u3, u4 and u5, respectively). The feed stream flow rates
to CSTR 2 and CSTR 3, F4 and F6, are the back-up manipulated variables (u6

and u7) which are activated for the controller reconfiguration when a fault is
detected. The steady-state inputs, uis, i = 1, · · · , 7, as well as the steady-state

18

Fig. 2. Process flow diagram for alkylation of benzene (Scheu and Marquardt, 2011)

Table 1
Steady-State Inputs and Temperatures

u1s = −2.0× 106 J/s u7s = 8.697× 10−4m3/s

u2s = −2.0× 106 J/s T1s = 472.32K

u3s = −2.0× 106 J/s T2s = 472.35K

u4s = 4.1× 106 J/s T3s = 472.39K

u5s = −0.01× 106 J/s T4s = 472.00K

u6s = 8.697× 10−4m3/s T5s = 472.49K

temperatures in the five units are shown in Table 1.

The nonlinear model is linearized (by a finite-difference approach) at this
operating point, so that the following linear time-invariant model is obtained:

∆ ẋ = A∆ x+ B∆ u, ∆ x(0) = x0 − xs, (51)

where ∆ x= x− xs and ∆ u= u− us indicate the deviations of the state and
input variables from the steady values (xs, us), and x0 indicates the initial
condition of the plant. The linearized model is used as the internal model of
the controller, while the nonlinear model is used to simulate the plant.

19

Table 2
Constraints on Manipulated Inputs and Temperatures

|u1| ≤ 0.75MJ/s |u7| ≤ 2× 10−3m3/s

|u2| ≤ 0.5MJ/s 471K ≤ T1 ≤ 474K

|u3| ≤ 0.5MJ/s 471K ≤ T2 ≤ 474K

|u4| ≤ 0.6MJ/s 471K ≤ T3 ≤ 474K

|u5| ≤ 0.6MJ/s 471K ≤ T4 ≤ 474K

|u6| ≤ 2× 10−3m3/s 471K ≤ T5 ≤ 474K

5.2 Distributed MPC strategy

In this work, the sensitivity-driven DMPC in (Scheu and Marquardt, 2011) is
used as the base controller for the alkylation of benzene process. The whole
system is divided into two groups, one includes CSTR 1, CSTR 2 and CSTR 3,
the other contains CSTR 4 and the flash separator. Thus, the process is
under the control of two distributed controllers, and information is exchanged
between them. In the non-faulty situation, only inputs u1, u2, u3, u4 and u5 are
actuated, which means the first distributed controller (DMPC 1) controls the
values of Q1, Q2 and Q3, while the second distributed controller (DMPC 2)
controls the values ofQ4 andQ5. When the inputs u6 and u7 are actuated in the
faulty situation, they are used to replace the corresponding faulty actuators.

For each unit i of the plant, the following conventional objective function is
considered:

Φi =
1

2

∫ tf

t0

(

∆ y⊤i Qi ∆ yi +∆ u⊤
i Ri ∆ ui

)

dt, (52)

where Qi and Ri are positive-definite weighting matrices. The inputs ∆ ui(t)
are discretized as piecewise-constant functions with sampling time t=10 s. The
control horizon is assumed to consist of 5 steps, which is enough to achieve
good DMPC performance. Furthermore, a prediction horizon of 20 steps,
sufficient to ensure the DMPC stability, is used in this work.

The constraints on the manipulated inputs and the temperatures are shown
in Table 2. It is worth mentioning that, in addition to the input constraints,
the temperatures in the five units were also bounded, in order to keep the
process conditions close to the nominal point. The sensitivity-driven DMPC
has been tested with setpoint changes. The original setpoint for temperatures
was set as in Table 1, then at t=100 s (sample 10), the setpoint was changed
to T4s =471K and T5s =474K, which are close to the boundary, while T1s, T2s

20

0 100 200 300 400 500 600 700 800

T
1
(K)

470

471

472

473

0 100 200 300 400 500 600 700 800

T
2
(K)

470

471

472

473

0 100 200 300 400 500 600 700 800

T
3
(K)

470

471

472

473

0 100 200 300 400 500 600 700 800

T
4
(K)

470

471

472

473

Time(s)
0 100 200 300 400 500 600 700 800

T
5
(K)

472

473

474

475

Fig. 3. Test of DMPC with setpoint changing (green dash-dot line: setpoint; blue
solid line: temperature variations)

and T3s remain the same as in Table 1. At t=300 s (sample 30), a new setpoint
was defined as T1s =T2s =T3s =471K, while T4s and T5s remain the same as
in Table 1. Finally, at t=500 s (sample 50), the setpoint was changed back
to the original one, as in Table 1. The test result is shown in Figure 3 and it
clearly demonstrates that the transition to the new setpoint takes about 100 s
for every setpoint change, after which accurate tracking is achieved.

5.3 Fault detection and diagnosis approach

In this work, we utilize the approach of Chilin et al. (2012a) for fault detection
and diagnosis in the actuators. A filter is designed for each state and for the
k-th, k=1, . . . , 25, state in the system state x, the filter is designed as follows:

˙̂xk = Āk X̂k + B̄k ūk(X̂k), (53)

where x̂k is the filter output for the k-th state, Āk is the k-
th row of Ã, B̄k is the k-th row of B=diag {B1, B2}. The input

ūk(X̂k)= vect
{

u1(X̂k), u2(X̂k)
}

∈ℜp are the distributed controllers based on
the sensitivity-driven distributed optimization in the previous subsection,
while the actual system states x is replaced with filter states X̂k ∈ ℜn. The

21

state X̂k is obtained from both the actual state measurements x and the filter
output x̂k, as follows:

X̂k(t) = [x1(t), . . . , xk−1(t), x̂k(t), xk+1(t), . . . , x25(t)]
⊤ . (54)

The states of the fault detection filters are initialized at t=0 to the actual
state values, x̂k(0)= xk(0). The information generated by the filters provides
a fault-free estimate of the real state at any time t and allows detection of the
faults. For each state associated with a filter, the fault detection residual can
be defined as

rk(t) = |x̂k(t)− xk(t)| , (55)

where k=1, . . . , 25. The residual rk is easy to obtain because x̂k is known for
all t and the state measurement xk is also available for all t. If no faults occur,
the filter states track the system states, so that rk(t)= 0 for all times. When
there is a fault in the system, filter residuals directly affected by the fault will
deviate from zero soon after the occurrence of the fault.

In order to avoid false alarms due to the process and sensor measurement
noise, thresholds are necessary in the filters. In order to select the detection
threshold, the residual distribution has been estimated by simulating the
process with noise at the nominal steady state for 1000 steps. The threshold
value was determined to ensure that the probability of false detection is nearly
zero.

Concerning the synthesis of the residual generators, it is worth noting that, as
this work considers only actuator faults, five residuals are enough for fault
detection and isolation. In particular, the effect of actuator faults on the
temperature in the reactors is very clear, and that is why the corresponding
states were used to create the filters. On the other hand, the similar filters
for the rest of the states are not required for fault isolation. Since the inputs
u1, u2, u3, u4 and u5 correspond to the temperatures T1, T2, T3, T4 and T5

directly, the following thresholds in the five state filters are set:

ri(t) =
∣

∣

∣ T̂i(t)− Ti(t)
∣

∣

∣ < 1K, i = 1, · · · , 5. (56)

When the difference between the state estimate and the measured state ex-
ceeds 1K, the actuator corresponding to the unusual temperature value can be
easily identified as faulty. After that, the fault parameter estimation approach
outlined in (Chilin et al., 2012a) can be applied to estimate the magnitude of
the fault.

22

5.4 Testing of the performance optimization-based FTDMPC

In this part, two case studies are provided: the first one is to evaluate the
candidate reconfigured actuators, while the second one is to check the newly
defined operating point.

Finally, some considerations on the benefits of using the devised algorithm
in terms of reduction of the computational complexity — hence, in terms of
decrease of the CPU time — have been presented.

5.4.1 Case study 1: Evaluating candidate actuator reconfigurations

Firstly, the current operating point is checked to determine if it is feasible
under the original control strategy when a fault is diagnosed. Subsequent to
this, the performance of the candidate actuator reconfigurations is evaluated.

We consider an actuator fault occurring at t=300 s (sample 30): u2 is blocked
at 95% of its steady-state value, that is, u2 =− 1.9× 106 J/s. Obviously, the
temperature in CSTR 2 will be increasing from that time if no FTC is imple-
mented. Figure 4 shows the residual value of the fault detection filter for T2.
At time t=310 s (sample 31), the residual for T2 exceeds the threshold 1K,
therefore it can be concluded that there is an actuator fault in u2. At first,
we want to check whether the current operating point is feasible under the
existing control configuration. That means, DMPC 1 controls the actuators
u1 and u3, DMPC 2 controls the actuators u4 and u5, while u2 is blocked at
− 1.9× 106 J/s, u6 and u7 stay the same as steady-state values.

Figure 5 shows the test result with existing actuators and current operating
point. At time t=310 s (sample 31), the performance optimization algorithm is
implemented to give the predictions of temperature trajectory for the future
20 steps. It shows directly that the current operating point is not feasible
without changing the controller configuration, which is verified by the result
under DMPC.

Since the current operating point is not feasible with the existing actuators,
one possible solution is to activate another actuator in order to compensate
for the efficiency loss in u2. To demonstrate the function of the performance
optimization algorithm for controller reconfiguration, two back-up actuator
reconfigurations are investigated. The first is to activate the feed stream flow
rates to CSTR 2, u6, and the second is to activate the feed stream flow
rates to CSTR 3, u7. In the first case, DMPC 1 controls the actuators u1,
u3 and u6, DMPC 2 controls the actuators u4 and u5, while u2 is blocked at
− 1.9× 106 J/s, u7 stays the same as steady-state values. In the second case,
DMPC 1 controls the actuators u1, u3 and u7, DMPC 2 controls the actuators

23

Time (s)
200 220 240 260 280 300 320 340 360 380 400

r
2
(k)

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Fig. 4. Fault detection filter residuals for T2

u4 and u5, while u2 is blocked at − 1.9× 106 J/s, u6 stays the same as steady-
state values.

Figure 6 and Figure 7 depict the test result with the activation of u6 and u7

under the current operating point, respectively. From the trajectories under
performance optimization algorithm shown in Figure 6, it is easy to see that
the temperatures can be driven to setpoint after 12 steps under the effect of
u6. While the trajectories under performance optimization algorithm shown
in Figure 7 demonstrate irrefutably that activating u7 does not make much
difference compared with Figure 5. After the comparison, it can be decided
to implement the first control reconfiguration at t=310 s (sample 31), which
will result in the temperatures converging to the setpoint with reconfigured
controller at t=430 s (sample 43).

5.4.2 Case study 2: Checking newly defined operating point

In this part, a case study where the current operating point is not feasible
with either original control strategy or any reconfigured actuators is outlined.
Hence, another operating point must be designed, based on the characteristics
of the fault. We consider an actuator fault occurring at t=300 s (sample 30):
u1 is blocked at 97.5% of its steady-state value, that is, u1 =−1.95× 106 J/s
and obviously, the temperature in CSTR 1 will be increasing from that time.

24

200 300 400 500 600 700 800

T
1
(K)

472

472.2

472.4

472.6

200 300 400 500 600 700 800

T
2
(K)

472

474

476

200 300 400 500 600 700 800

T
3
(K)

472

472.5

473

200 300 400 500 600 700 800

T
4
(K)

470.5

471

471.5

Time(s)
200 300 400 500 600 700 800

T
5
(K)

473.5

474

474.5

Fig. 5. Test results with existing actuators and current operating point (green
dash-dot line: setpoint; blue solid line: temperature variations under DMPC; red
circle line: trajectories under performance optimization algorithm)

Figure 8 shows the residual value of fault detection filter for T1. At time
t=320 s (sample 32), the residual exceeds the threshold 1K, thus, it can
concluded that there is an actuator fault in u1. It is clear that the fault in u1

in CSTR 1 cannot be compensated by current control strategy or activating
u6 and u7 in CSTR 2 and 3. The trajectories under performance optimization
algorithm for the future 20 steps at time t=320 s (sample 32) has verified our
supposition as in Figure 9. Three different control configurations were utilized
to carry out the test:

• the first controller uses the current control configuration, that is, DMPC 1
controls the actuators u2 and u3, DMPC 2 controls the actuators u4 and
u5, while u1 is blocked at − 1.95× 106 J/s, u6 and u7 stay the same as the
steady-state values;

• the second controller activates the feed stream flow rates to CSTR 2, u6,
that is, DMPC 1 controls the actuators u2, u3 and u6, DMPC 2 controls
the actuators u4 and u5, while u1 is blocked at − 1.95× 106 J/s, u7 stays the
same as the steady-state values;

• the third controller activates the feed stream flow rates to CSTR 3, u7, that
is, DMPC 1 controls the actuators u2, u3 and u7, DMPC 2 controls the
actuators u4 and u5, while u1 is blocked at − 1.95× 106 J/s, u6 stays the
same as the steady-state values.

25

200 300 400 500 600 700 800

T
1
(K)

471.5

472

472.5

200 300 400 500 600 700 800

T
2
(K)

472

472.5

473

473.5

200 300 400 500 600 700 800

T
3
(K)

472

472.5

473

200 300 400 500 600 700 800

T
4
(K)

470.5

471

471.5

Time(s)
200 300 400 500 600 700 800

T
5
(K)

473.5

474

474.5

Fig. 6. Test results obtained by activating u6 under the current operating point
(green dash-dot line: setpoint; blue solid line: temperature variations under DMPC;
red circle line: trajectories under performance optimization algorithm)

As can be seen from Figure 9, all the three control configurations cannot
drive the temperature in CSTR 1, T1, to the current setpoint as it inevitably
increases with the loss of efficiency in u1. Thus, one possible solution is to
increase the setpoint for T1 within the constraints detailed in Table 2. Another
choice is to decrease the setpoint for the temperature in the flash separator,
T4. Since the recycled vapor stream goes from flash separator to CSTR 1, the
cooling of this stream can also lead to the decreasing of T1. The new operating
point is designed as follows: T1s =473.36K, T2s =472.35K, T3s =472.39K,
T4s =471.00K, T5s =473.00K.

Figure 10 shows the trajectories under performance optimization algorithm
for the future 20 steps with the newly designed setpoint, at time t=320 s
(sample 32). It can be easily seen that both the second and the third controllers
can obtain very good performance. After checking the difference between the
predicted trajectory and the setpoint, it was found that the third controller
performs slightly better than the second one and, as a result, u7 is activated
at time t=320 s (sample 32). The test result with the activation of u7 and
the newly designed operating point is shown in Figure 11. The temperature
trajectory tracks the newly designed setpoint very well and the trajectory
under performance optimization algorithm is close to the actual temperature.

26

200 300 400 500 600 700 800

T
1
(K)

470

471

472

473

200 300 400 500 600 700 800

T
2
(K)

472

473

474

200 300 400 500 600 700 800

T
3
(K)

472

472.5

473

200 300 400 500 600 700 800

T
4
(K)

470.5

471

471.5

Time(s)
200 300 400 500 600 700 800

T
5
(K)

473.5

474

474.5

Fig. 7. Test results obtained by activating u7 under the current operating point
(green dash-dot line: setpoint; blue solid line: temperature variations under DMPC;
red circle line: trajectories under performance optimization algorithm)

Time(s)
200 220 240 260 280 300 320 340 360 380 400

r
1
(K)

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Fig. 8. Fault detection filter residuals for T1

27

2 4 6 8 10 12 14 16 18 20

T
1
(K)

472

473

474

475

LMPC1: u
2
, u

3
LMPC1: u

6
, u

2
, u

3

LMPC1: u
7
, u

2
, u

3

Setpoint

2 4 6 8 10 12 14 16 18 20

T
2
(K)

472

472.5

473

2 4 6 8 10 12 14 16 18 20

T
3
(K)

472

472.5

473

2 4 6 8 10 12 14 16 18 20

T
4
(K)

472

472.5

473

473.5

Step
2 4 6 8 10 12 14 16 18 20

T
5
(K)

472.5

473

473.5

Fig. 9. The trajectories under performance optimization algorithm for the future 20
steps with current setpoint at time t = 320s (sample 32)

2 4 6 8 10 12 14 16 18 20

T
1
(K)

473.1

473.2

473.3

473.4

LMPC1: u
2
, u

3
LMPC1: u

6
, u

2
, u

3

LMPC1: u
7
, u

2
, u

3

Setpoint

2 4 6 8 10 12 14 16 18 20

T
2
(K)

472.3

472.4

472.5

472.6

2 4 6 8 10 12 14 16 18 20

T
3
(K)

472.2

472.3

472.4

472.5

2 4 6 8 10 12 14 16 18 20

T
4
(K)

470

471

472

473

Step
2 4 6 8 10 12 14 16 18 20

T
5
(K)

472.9

472.95

473

473.05

Fig. 10. The trajectories under performance optimization algorithm for the future
20 steps with newly designed setpoint at time t = 320s (sample 32)

28

200 300 400 500 600 700 800

T
1
(K)

472

473

474

200 300 400 500 600 700 800

T
2
(K)

472.2

472.3

472.4

472.5

200 300 400 500 600 700 800

T
3
(K)

472.2

472.3

472.4

472.5

200 300 400 500 600 700 800

T
4
(K)

470

472

474

Time(s)
200 300 400 500 600 700 800

T
5
(K)

472.8

473

473.2

Fig. 11. Test results obtained by activating u7 under the newly designed operating
point (green dash-dot line: setpoint; blue solid line: temperature variations under
DMPC; red circle line: trajectories under performance optimization algorithm)

Table 3
Computational time with the performance optimization algorithm and the DMPC

POA DMPC

Case study 1 2.89 s 37.8 s

Case study 2 (with current setpoint) 2.75 s 35.8 s

Case study 2 (with newly designed setpoint) 2.99 s 46.5 s

5.4.3 A note on the computational burden

The computation time for the performance optimization algorithm (POA) and
for the DMPC, recorded by using the appropriate MATLAB tool, is reported
in Table 3. Through the comparison, it can be easily noticed that the proposed
method greatly reduces the computation time, which makes it suitable for on-
line use.

29

6 Conclusions

This paper presents a performance optimization algorithm for controller recon-
figuration in FTDMPC of large-scale systems. The performance optimization
algorithm aims to check the ability and performance of the candidate reconfig-
ured controllers in driving the process variables to the newly defined operating
conditions. Under the assumption that the active constraints in non-faulty sys-
tems remain the same as they are at the nominal operating conditions, the
global DMPC is split into two subproblems, which achieves the objective of
rendering the computational burden compatible with on-line processing. The
efficacy of the proposed performance optimization algorithm for controller re-
configuration has been demonstrated with two case studies on the alkylation of
benzene process. Indeed, among the candidate reconfigurations, a non-square
MPC design can be considered, which is achieved by adding more than one
actuator in the place of a single, excluded faulty one. Even though the square
MPC design is a little bit more common in practice, the use of additional
actuators in the reconfiguration can be justified by the fact of introducing
additional control capacities for fault compensation.

References

Alvarado, I., Limon, D., Muñoz de la Peña, D., Maestre, J., Ridao, M., Scheu,
H., Marquardt, W., Negenborn, R., De Schutter, B., Valencia, F., Espinosa,
J., 2011. A comparative analysis of distributed MPC techniques applied
to the HD-MPC four-tank benchmark. Journal of Process Control 21 (5),
800–815.

Blanke, M., Izadi-Zamanabadi, R., Bøgh, S., Lunau, C., 1997. Fault-tolerant
control systems — A holistic view. Control Engineering Practice 5 (5), 693–
702.

Boyd, S., Vandenberghe, L., 2004. Convex Optimization. Cambridge Univer-
sity Press, Cambridge, UK.

Camponogara, E., Jia, D., Krogh, B., Talukdar, S., 2002. Distributed model
predictive control. IEEE Control Systems Magazine 22 (1), 44–52.

Chilin, D., Liu, J., Chen, X., Christofides, P., 2012a. Fault detection and
isolation and fault tolerant control of a catalytic alkylation of benzene
process. Chemical Engineering Science 78, 155–166.

Chilin, D., Liu, J., Davis, J., Christofides, P., 2012b. Data-based monitor-
ing and reconfiguration of a distributed model predictive control system.
International Journal of Robust and Nonlinear Control 22 (1), 68–88.

Chilin, D., Liu, J., de la Peña, D., Christofides, P., Davis, J., 2010. Detection,
isolation and handling of actuator faults in distributed model predictive
control systems. Journal of Process Control 20 (9), 1059–1075.

Farina, M., Betti, G., Giulioni, L., Scattolini, R., 2014. An approach to

30

distributed predictive control for tracking-theory and applications. IEEE
Transactions on Control Systems Technology 22 (4), 1558–1566.

Gandhi, R., Mhaskar, P., 2008. Safe-parking of nonlinear process systems.
Computers and Chemical Engineering 32 (9), 2113–2122.

Gandhi, R., Mhaskar, P., 2009. A safe-parking framework for plant-wide fault-
tolerant control. Chemical Engineering Science 64 (13), 3060–3071.

Gani, A., Mhaskar, P., Christofides, P., 2007. Fault-tolerant control of a
polyethylene reactor. Journal of Process Control 17 (5), 439–451.

Jämsä-Jounela, S.-L., Tikkala, V.-M., Zakharov, A., Pozo Garcia, O., Laavi,
H., Myller, T., Kulomaa, T., Hmlinen, V., 2013. Outline of a fault diagnosis
system for a large-scale board machine. International Journal of Advanced
Manufacturing Technology 65 (9-12), 1741–1755.

Kettunen, M., Jämsä-Jounela, S.-L., 2011. Data-based, fault-tolerant model
predictive control of a complex industrial dearomatization process. Indus-
trial and Engineering Chemistry Research 50 (11), 6755–6768.

Kettunen, M., Zhang, P., Jämsä-Jounela, S.-L., 2008. An embedded fault de-
tection, isolation and accommodation system in a model predictive con-
troller for an industrial benchmark process. Computers and Chemical En-
gineering 32 (12), 2966–2985.

Liu, J., Chen, X., De la Peña, D., Christofides, P., 2010. Sequential and
iterative architectures for distributed model predictive control of nonlinear
process systems. AIChE Journal 56 (8), 2137–2149.

Liu, J., De la Peña, D., Christofides, P., 2009. Distributed model predictive
control of nonlinear process systems. AIChE Journal 55 (5), 1171–1184.

Luppi, P., Outbib, R., Basualdo, M., 2015. Nominal controller design based
on decentralized integral controllability in the framework of reconfigurable
fault-tolerant structures. Industrial and Engineering Chemistry Research
54 (4), 1301–1312.

Maciejowski, J., 1999. Modelling and predictive control: Enabling technologies
for reconfiguration. Annual Reviews in Control 23, 13–23.

Maestre, J., Muoz De La Pea, D., Camacho, E., 2011. Distributed model pre-
dictive control based on a cooperative game. Optimal Control Applications
and Methods 32 (2), 153–176.

Mahmoud, M., Jiang, J., Zhang, Y., 2003. Active fault tolerant control sys-
tems: Stochastic analysis and synthesis. Vol. 287. Springer.

Marro, G., Prattichizzo, D., Zattoni, E., 2003. A nested computational ap-
proach to the discrete-time finite-horizon LQ control problem. SIAM Jour-
nal on Control and Optimization 42 (3), 1002–1012.

Negenborn, R., De Schutter, B., Hellendoorn, J., 2008. Multi-agent model pre-
dictive control for transportation networks: Serial versus parallel schemes.
Engineering Applications of Artificial Intelligence 21 (3), 353–366.

Negenborn, R., Maestre, J., 2014. Distributed model predictive control: An
overview and roadmap of future research opportunities. IEEE Control Sys-
tems 34 (4), 87–97.

Prakash, J., Patwardhan, S., Narasimhan, S., 2002. A supervisory approach

31

to fault-tolerant control of linear multivariable systems. Industrial and En-
gineering Chemistry Research 41 (9), 2270–2281.

Pranatyasto, T., Qin, S., 2001. Sensor validation and process fault diagnosis
for FCC units under MPC feedback. Control Engineering Practice 9 (8),
877–888.

Qin, S., Badgwell, T., 2003. A survey of industrial model predictive control
technology. Control Engineering Practice 11 (7), 733–764.

Scattolini, R., 2009. Architectures for distributed and hierarchical model pre-
dictive control – A review. Journal of Process Control 19 (5), 723–731.

Scheu, H., Marquardt, W., 2011. Sensitivity-based coordination in distributed
model predictive control. Journal of Process Control 21 (5), 715–728.

Skogestad, S., 2004. Control structure design for complete chemical plants.
Computers & Chemical Engineering 28 (1), 219–234.

Sourander, M., Vermasvuori, M., Sauter, D., Liikala, T., Jämsä-Jounela, S.-
L., 2009. Fault tolerant control for a dearomatisation process. Journal of
Process Control 19 (7), 1091–1102.

Tao, J., Zhu, Y., Fan, Q., 2014. Improved state space model predictive con-
trol design for linear systems with partial actuator failure. Industrial and
Engineering Chemistry Research 53 (9), 3578–3586.

Vahid Naghavi, S., Safavi, A. A., Kazerooni, M., 2014. Decentralized fault
tolerant model predictive control of discrete-time interconnected nonlinear
systems. Journal of the Franklin Institute 351 (3), 1644–1656.

Wang, L., Chen, X., Gao, F., 2013a. An LMI method to robust iterative
learning fault-tolerant guaranteed cost control for batch processes. Chinese
Journal of Chemical Engineering 21 (4), 401–411.

Wang, L., Mo, S., Zhou, D., Gao, F., Chen, X., 2012. Robust delay dependent
iterative learning fault-tolerant control for batch processes with state delay
and actuator failures. Journal of Process Control 22 (7), 1273–1286.

Wang, L., Mo, S., Zhou, D., Gao, F., Chen, X., 2013b. Delay-range-dependent
method for iterative learning fault-tolerant guaranteed cost control for batch
processes. Industrial and Engineering Chemistry Research 52 (7), 2661–
2671.

Zattoni, E., 2008. Structural invariant subspaces of singular Hamiltonian sys-
tems and nonrecursive solutions of finite-horizon optimal control problems.
IEEE Transactions on Automatic Control 53 (5), 1279–1284.

Zhang, R., Gan, L., Lu, J., Gao, F., 2013. New design of state space linear
quadratic fault-tolerant tracking control for batch processes with partial
actuator failure. Industrial and Engineering Chemistry Research 52 (46),
16294–16300.

Zhang, R., Lu, J., Qu, H., Gao, F., 2014a. State space model predictive fault-
tolerant control for batch processes with partial actuator failure. Journal of
Process Control 24 (5), 613–620.

Zhang, R., Lu, R., Xue, A., Gao, F., 2014b. Predictive functional control
for linear systems under partial actuator faults and application on an injec-
tion molding batch process. Industrial and Engineering Chemistry Research

32

53 (2), 723–731.
Zhang, Y., Jiang, J., 2008. Bibliographical review on reconfigurable fault-
tolerant control systems. Annual Reviews in Control 32 (2), 229–252.

Zheng, Y., Li, S., Li, N., 2011. Distributed model predictive control over
network information exchange for large-scale systems. Control Engineering
Practice 19 (7), 757–769.

Zheng, Y., Li, S., Wang, X., 2009. Distributed model predictive control for
plant-wide hot-rolled strip laminar cooling process. Journal of Process Con-
trol 19 (9), 1427–1437.

33

