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Applications of novel materials have a significant positive impact on our lives. To
search for such novel materials, material scientists traverse massive datasets of
prospective materials identifying ones with favourable properties. Prospective ma-
terials are screened by studying a suitable spectra of these materials. Contemporary
methods like high-throughput screening are very time consuming for moderately
sized datasets.

Recently, deep learning algorithms have proven to be successful in modelling very
complex functions like the mapping from image to text, use for image captioning
and the mapping from text in one language to another, used for machine transla-
tion.

In this thesis, we propose deep learning methods which are able to predict molec-
ular orbital energies and spectra, from only the charges and coordinates of con-
stituent atoms of test molecules. Our proposed machine learning (ML) model sur-
passed the state-of-the-art in prediction accuracy of the molecular orbital energies
and based on our literature review it is the first ML model to predict molecular
spectra.
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Chapter 1

Introduction

The applications of novel materials pervade our lives. Prominent examples
being the lithium polymer battery in smart phones which have transformed
the way people communicate and consume digital content, Teflon™ coating
on non-stick frying pans being used in kitchens worldwide. Humans have
achieved space-worthiness, thanks to the high temperature withstanding coat-
ings which prevent the space shuttle from burning out when re-entering earth’s
atmosphere. However, each one of these materials had to be engineered for
the particular purpose by multiple teams of scientists often searching through
many possible materials with desirable properties, altering them to synthesize
new ones and re-iterating.

Apart from providing conveniences, the discovery of a novel material can
also have an enormous societal impact. Global warming and climate change
are major threats to life on earth. One of the main contributors global warm-
ing is the use of fossil fuel. Although the ill effects of the use of fossil fuels
for meeting the energy demands of an ever growing human population are
evident, they are one of the dominant sources of energy and the switch to
renewable sources cannot be made yet.

Among the renewable energy sources, the wind and hydroelectric power re-
quire massive infrastructures to harness sufficient energy to meet the demands
of a modern household. Solar power doesn’t have this limitation. However, in
2009 only 1% of the worlds energy needs were met by solar power, and this is
likely to increase to only 2-3% if there are no new material breakthroughs in
solar cell materials research, according to a study done by Chu and Majumdar
(2012). However, a recently discovered class of novel photovoltaic materials
called the hybrid perovskites could be that breakthrough. Within only a few
years of their discovery, the hybrid perovskites are approachinﬂ the efficiency

!As per NREL (2017)
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of conventional inorganic-based photovoltaic materials. This might be a step,
towards making solar power a viable option for global energy needs.

Broadly, materials science comprises of materials synthesis and materials
characterization. In this thesis, we will focus on the latter, and specifically
spectroscopy. In spectroscopy, the material of interest is perturbed, and the re-
sponse of the system is recorded. The response is almost always a spectrum. By
analyzing these spectra, scientists can better understand the properties of the
materials and consequently design better ones. Photoemission spectroscopy,
in which a material is excited by light, and the spectra of emitted electrons
are recorded, is one such example. The photoemission spectra have a close
relationship with the energies corresponding to the electronic states of these
substances.

Complementary to the experimental photoemission spectroscopy is theo-
retical spectroscopy, in which the electronic energy levels are calculated from
quantum mechanical first principles. Search for novel materials by contempo-
rary material scientists can be accelerated by high-throughput screening en-
abled by theoretical spectroscopy algorithms which take as input a molecular
representation and run simulationﬂ on them to calculate the energies corre-
sponding to their molecular orbitals or the desired spectra. With access to a
cluster of fast computers, many such simulations can be run in parallel. How-
ever, even for a moderately sized dataset of molecules, these simulations can
take months’]

Rupp (2015) noted that these quantum mechanical simulations have some
redundancy, i.e. similar molecules go through similar computations during
the simulations, resulting in correlated outputs. This is the motivation to use
machine learning (ML) techniques in the field of material science, i.e. in a
supervised learning setting, we could model the problem as using ML models
to learn properties of (training) molecules and predict the properties of corre-
sponding similar (test) molecules.

ML techniques have already been applied to quite a few problems in ma-
terial science. Rupp et al. (2012) have compared the prediction accuracy of
kernel methods and feed-forward neural networks when predicting the atom-
ization energy of the molecules. Montavon et al. (2013) predict atomization
energy and thirteen other molecular properties simultaneously using a multi-
task neural network. More recently, Faber et al.| (2017) have published a com-
parative study of using different regressors and input representations for pre-
dicting thirteen electronic properties of organic molecules. Schiitt et al. (2017

2These simulations are typically based on density functional theory (DFT).
3The computation of spectra and energies of the 132K molecules, used in our experiments,
took two months (wall clock time) to compute on a cluster.
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have proposed the deep tensor neural network (DTNN) to predict molecular
free energies starting from a very generic molecular representation, which con-
tains only the atom types and their spatial location in three dimensional space.

Although a lot of research has been done on predicting a few real valued
target properties at a time, based on our literature survey, no one has yet in-
vestigated predicting a target function like a spectrum. Therefore in this the-
sis, we study the use of ML techniques to predict the photoemission spectra, and
energies corresponding to the orbitals of molecules from datasets commonly em-
ployed by the material science community. Specifically, we try to adapt three
neural network models, a feed-forward multilayer perceptron (MLP), a convo-
lutional neural network (CNN) and the deep tensor neural network (DTNN).
The models are trained on molecular representations to predict two real-valued
target vectors, a sixteen-dimensional vector corresponding to energies of six-
teen molecular orbitals and a 300-dimensional vector obtained by discretizing
computed photoemission spectra.

Structure of the thesis

In Chapter [2|we introduce the different representations of molecules which are
eventually used as input to the ML models. We also describe how the target
vectors were generated and the molecular datasets used in our experiments.
Thereafter, in Chapter 3| we describe the different ML models used in our ex-
periments. This is followed by a discussion of hyperparameter choices of the
ML models and the experimental results in Chapter |4, Finally, the discussion
in Chapter [5| concludes the thesis.



Chapter 2

Datasets and data representation

In this chapter, we describe the data sets which we use for the experiments in
Chapter[d] The different representations of the molecule, which form the input
data, are described in Section Thereafter, in Section we discuss the
two target vectors which are the output of the machine learning (ML) models
discussed in Chapter

2.1 Input representations

In this thesis, we propose ML models to predict molecular properties. Think-
ing abstractly, we want the models to accept a molecule as an input and return
a desired molecular property. But a molecule is a physical entity. Before it
can be input to a model, we must represent it in a suitable format. Many
such representations have already been proposed in the literature. For exam-
ple, Weininger (1988)) have proposed the SMILES (Simplified Molecular Input
Line Entry System) representation, which is a string based representation. The
XYZ representation encodes the molecule as a list of its constituent atom types
and their corresponding three-dimensional coordinates with respect to an arbi-
trary basis. The Coulomb matrix (CM) representation proposed by Rupp et al.
(2012) described in Section is derived from the XYZ data. The many-
body tensor representation (MBTR) proposed by [Hu et al.| (2017) which is
derived from the Coulomb matrix and includes information about angles be-
tween atoms in three-dimensional space. Figure illustrates three different
representations of an ethene molecule.

The models used in this thesis take as input the XYZ file and the Coulomb
matrix. These representations have been discussed in Sections[2.1.1]and [2.1.2]
respectively.
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Figure 2.1: Illustration of three different representations of ethane (C,H,) (a)
The ball-and-stick model which shows the relative position of atoms, represented
as spheres, in three-dimensions and the bonds between them. (b) The Coulomb
matrix representing the pairwise interaction of atoms. It encodes the charges
of atoms and their interatomic distances in its respective cells. (c) The structural
formula presents a graphical representation of the molecule’s structure, indicating
different bonds between the atoms as one or more lines joining them.

2.1.1 XYZ representation

The XYZ format is a plain text representation of molecules. Each molecule with
d atoms corresponds to d + 2 lines in the file. The first line contains a positive
integer indicating the number of atoms in the molecule. The second line is a
comment field and can contain any free form text. Following that, are d lines
one for each atom in the molecule. Each line contains four fields; the first field
contains the chemical symbol of the atom and fields two through four the Carte-
sian coordinates of the atom. The coordinates of the atoms are with respect to
an arbitrary basis and are in Angstrom (A) units, which corresponds to 10~1°
meters. Figure|2.2|presents the XYZ representation of a methane molecule.

5

free=-1545.46

C 5.18160188 -0.90711087 -2.80992509
H 0.64223971 0.28323184 1.01144250
H 0.59174445 -1.01258058 -0.19836824
H 0.60046186 0.68235075 -0.71605884
H 0.90046186 0.48235075 -0.21605884

Figure 2.2: Illustration of the XYZ representation of methane (CH,). The first
line indicates the number of atoms in the molecule. The second line is a comment
field which can contain any free-form text. Following that, are entries containing

chemical symbol of each atom in the molecule with their corresponding Cartesian
coordinates.
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While using the XYZ representation, as an input to an ML algorithm, we
should consider the following:

The order of atoms: The XYZ representation of a molecule is invariant to
the ordering of its constituent atoms. Different permutations of the rows, cor-
responding to the coordinates of atoms, don’t have any physical significance.
Therefore the order of atoms is fixed, arbitrarily, when creating datasets of XYZ
representations of molecules.

The Cartesian coordinate of atoms: The coordinate of the atoms in the XYZ
representation is with respect to an arbitrary basis. The representation is also
invariant to translation and rotation of the molecule. This poses a problem
for ML models which, if presented with the XYZ representation without any
preprocessing, would learn a function mapping from the coordinates of atoms
to target properties. Since, physically, the properties are not dependent on the
exact location of the atoms but their relative position from each other, naively
using the XYZ representation for machine learning is a problem.

The ML models presented in Chapter [3| mitigate this problem by accepting
representations which include interatomic distances rather than the coordi-
nates of the atoms. DTNN accepts the interatomic distances where as MLP and
CNN accept the Coulomb matrix (CM), which is computed from the inverse of
these distances. Both of which are easily computed from the XYZ representa-
tion. In the following section, we describe the CM representation.

2.1.2 Coulomb matrix

H |03 05 29 15 02 02

7 C= C |29 29 369 143 15 15

C 5 15 (1430369 29 29

24 i
C.— D2 Z Ni=] H |02 02 15 20 05 03
ij ZiZ; s ,
mx, "7
H o2 02 15 29 03 05

Figure 2.3: Coulomb matrix of the ethene molecule ( C,H, ). Figure edited from
Hansen et al.| (2013)
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The Coulomb matrix (CM) representation was proposed by Rupp et al.
(2012). For a molecule with d atoms its corresponding CM, denoted as C,
is a d x d symmetric matrix. For two arbitrary atoms with atomic numbers
Z;,Z; and coordinates R;, R; the entries of C given by,

1 ]
1~24 .
5Z; ) l_]
Cij = {2 ZliZj .. (2.1
R—RT,> ! 7.

The off-diagonal entries of the CM are, inversely proportional to the inter-
atomic distances, this ensures that the representation is invariant to translation
and rotation of the molecule in 3D space.

Random Coulomb matrices

R R S S )
[
[
(
[ ]

.........

() (b)

Figure 2.4: Generating random instances of a Coulomb matrix C. The size of
the circles represent the magnitude of the corresponding entry in the CM. (a) Row
norm of C, represented by A, is computed and then sorted in non-increasing order.
(b) Rows and columns of C are ordered by the sorted row norm. (c) Gaussian noise
is added to the sorted row norm. To obtain a random instance of C its rows and
columns are permuted with the same permutation that sorts the sorted-row-norm
with noise. Figure from |Hansen et al.| (2013)

The Coulomb matrix (CM) of a molecule is permutation invariant to the
order of its atoms. In this section we describe a CM randomization scheme
proposed by Montavon et al.| (2013). Training machine learning models using
this randomization scheme ensures that the ML models learn function map-
pings which are invariant to the atom ordering in the CM. Figure [2.4] shows a
visualization of the randomization scheme described in Algorithm

Binarizing Coulomb matrices

Montavon et al. (2013) propose a scheme for binarizing the entries of a CM
and state that the it allows real valued entries of the CM to be represented



CHAPTER 2. DATASETS AND DATA REPRESENTATION 8

Algorithm 1: Coulomb matrix randomization algorithm, as proposed by
Montavon et al. (2013)).

Data: Coulomb matrix (C) of a molecule. Sorted by row norm.
Result: Randomized instance (C,) of the Coulomb matrix.

117« ||Cll,; // row-wise or column-wise
21— r+ 4(0,1)

3 1 « argsort(r)

4 C. < C[i][i]; // reorder the rows and columns of C

over many dimensions of lower information content, this aided in optimizing
the MLP used in their experiments. Yaeger et al.| (1998) also show empiri-
cal evidence of easier optimization of neural networks when presented with
smoothly varying and distributed inputs. This scheme is used to pre-process
the CMs in experiments which predict sixteen HOMO energies using an MLB
in Chapter 4

Equation describes the CM binarization technique proposed by Mon-
tavon et al. (2013). In the equation ¢ (x) denotes the binarization of x, 6 is
the step size, and sigm (x) represents the sigmoidE] function. Montavon| (2013))
show that the binarization gets more fine-grained as 6 approaches 0 and is
more coarse as 6 assumes larger positive, or negative values.

: -0\ . . +6
P(x) = [...,mgm(%),mgm(%),mgm(x 5 ),] (2.2)

Binarization of a d x d CM transforms it into a d x d x oo tensor. In the
next two sections, we show the binarization of an arbitrary real number and
discuss the process to transform an infinite dimensional, binarized CM, tensor
to a finite one.

Binarizing a real number

When binarizing x = 3 using the previously proposed scheme, with 6 = 1, we
get the following vector:

¢(3)= [...,sigm(?),sigm(%),sigm(%),sigm(%),sigm(?),...] (2.3)

which evaluates to the following infinite vector:

exp(x)
1+expx

lsigm (x) =
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(..., 0.000, 0.000, 0.000, 0.001, 0.002, 0.007, 0.018, 0.047,
0.119, 0.269, 0.500, 0.731, 0.881, 0.953, 0.982, 0.993, 0.998,
0.999, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000,
.

Dealing with the infinite dimensional binary vector

In the infinite vector above we observe that the sequence saturates, at zero or
one, as the steps go farther away from x = 3. In practice, the stationary part of
the vector can be pruned away resulting in a finite length vector. The number
of steps after which to prune depends on the data set. For example, in a data
set of Coulomb matrices (CMs), we can pick the largest entry among all CMs
and then check the number of steps after which the binarized vector becomes
stationary, the same number of steps (let us say s) is used for all the entries in
the data set. Pruning in this way transforms the d x d x oo tensor to a finite
d x d x s tensor.

2.2 Target values

Machine learning models detailed in Chapter [3|take the molecular representa-
tions from Section and predict target vectors. In this section, we describe
the computation of the target vectors by building on intuition from physics.

Intution from an atom

In an atom, illustrated in Figure the negatively charged electrons revolve
around the positively charged nucleus in atomic orbitals. The energy corre-
sponding to an orbital is the amount of energy that must be supplied to free
an electron occupying that orbital. Hence, the orbital energies are negative.
The energies are expressed in electron volts (eV) which is equal to 1.6 x 107
Joule, a unit of energy. An electron volt corresponds to the amount of energy
gained, or lost, by an electron moving across an electric potential difference of
one volt.

Molecular orbitals

When atoms bond together to form molecules, their atomic orbitals split in
energy and cluster into bands of molecular orbitals (MO), which can be ei-
ther occupied or unoccupied. The highest occupied molecular orbital is called
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gy oo eess s annes High energy (-5 eV)

___________________________ Low energy (-1000* eV)
: Electron

‘ @ Nucleus

Atomic orbital

*Values for illustration only

Figure 2.5: Illustration of the Rutherford-Bohr model of an arbitrary atom. The
positively charged nucleus, depicted as the red circle, is surrounded by electrons,
represented as yellow circles. The electrons travel around the nucleus in circular
orbits. The electron in the orbital closest to the nucleus has the lowest energy.

HOMO, and the lowest unoccupied molecular orbital as LUMO. Figure [2.6a
shows an illustration of molecular orbitals along with the HOMO and LUMO.
Orbital with the second highest energy to HOMO is the HOMO-1, the one after
that is HOMO-2, etc.

In the next two sections, we describe the output vectors of the machine
learning models used in this thesis.

2.2.1 Sixteen HOMO energies

One of the output vectors is a vector of energies corresponding to HOMO,
HOMO-1, HOMO-2, ..., HOMO-15 of the input molecules. The energies cor-
responding to the molecular orbitals are computedﬂ from the XYZ represen-
tation of the molecules. Since the number of orbitals keeps varying between
molecules, we select those with at least sixteen HOMO energies and pick their
top sixteen HOMO energies for prediction. Figure shows the distribution
of the HOMO energies of a dataset consisting of 132 thousand molecules used
in the experiments presented in Chapter

2Using simulations based on density functional theory (DFT).
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Figure 2.6: Illustration of steps taken to compute the sixteen HOMO energies
and the spectra used for the experiments in this thesis. (a) Canonical diagram of
molecular orbitals. (b) Delta functions, computed from the XYZ representation
of a molecule, correspond to the energies of HOMO, HOMO-1, HOMO-2, ...,
HOMO-15. (c) Imposing Gaussians to broaden the delta functions, accounts for
the finite spread in the energies corresponding to molecular orbitals because of the
vibration of molecules about their equilibrium position. (d) The magnitude of the
Gaussians is summed to generate the spectrum.
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2.2.2 Discretized photoemission spectra

The machine learning models also predict photoemission spectra of the input
molecules, which is computed from the sixteen HOMO energies by imposing
Gaussians to broaden the delta functions correspond to the HOMO energies.
The Gaussian broadening accounts for the finite spread in the energies cor-
responding to molecular orbitals because of the vibration of molecules about
their equilibrium position. The 300-dimensional vector representing the spec-
trum is computed by evaluating the Gaussians at 300 equidistant points be-
tween minus thirty electron volts (eV) and zero eV and summing the magni-
tudes. Figure illustrates the steps to compute the photoemission spectra
from the HOMO energies. A representative example of the, thus computed,
spectra is shown in Figure [2.8b.

Sl HeS T T T Ee T l
8 . i l l.:
= F 5
o ! ‘lij -
o 8% BT
g LT T = 8
3 AR RRENC T ] AR
%’ - © 0000600 O ° g - :EEI ; l ! ! l o
@ g 1 T H o ! !
g | T I l !
g
o
2 o o 8 A | ’
T T T T T T T T T T T T T ' T T T T T T T T T T T T T
HOMO-15 HOMO-1Z2 HOMO-9 HOMO-6 HOMO-3  HOMO HOMO-15 HOMO-12 HOMO-8 HOMO-6 HOMO-3  HOMO
(a) (b)

Figure 2.7: Distribution of the sixteen HOMO energies of molecules from the
132K data set. (a) Box plot of the sixteen HOMO energies for all the molecules
in the data set (b) Plot of the energies with outliers, molecule with one or more
HOMO energies less than -250 eV, removed.

2.3 Molecular generated databases

Standardized datasets, like the MNIST and CIFAR-10 image datasets by LeCun
et al. (1998) and Krizhevsky and Hinton| (2009) respectively, have ensured the
results of the experiments conducted by researchers in the machine learning
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Figure 2.8: The photoemission spectra. (a) The computed spectrum of a molecule
from the 132K dataset. (b) The distribution of spectra of all molecules in the 132K
dataset. The red line represents the median computed at each of the 300 points
which constitute the spectra. Instead of the standard deviation, we draw violin
plots. The plots, depicted in gray, describe the distribution of 30 equally spaced
points among the 300 points between -30 and O eV. From the median, we infer
that, in the 132K dataset, the peaks of the spectra occur mainly between -20 and
0eV.

community remain comparable. Likewise, standard datasets of molecules have
been compiled by the material science community. In this section, we describe
the two commonly used molecular datasets in material science research fol-
lowed by their subsets used to conduct the experiments in Chapter

GDB13 molecule dataset is a collection of 977 million molecules composed of
carbon (C), hydrogen (H), oxygen (O), nitrogen (N), sulphur (S) and chlorine
(CD. Each molecule in the dataset contains up to thirteen non-hydrogen atoms.

GDB17 dataset contains 166 billion molecules made of C, H, O, N and F (flu-
orine). With each molecule having up to seventeen non-hydrogen atoms.

2.3.1 Molecular datasets for machine learning

In this section, we detail three subsets of GDB13 and GDB17; namely, the QM?7,
QM7b and the QM9 datasets which have been used quite frequently in the lit-
erature of machine learning for material science. The experiments presented
in Chapter[4|take as input subsets of QM7 and QM9. The QM7b dataset is used
to compare our results with those from Montavon et al. (2013) In Chapter
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QM7 by Blum and Reymond| (2009); Rupp et al. (2012) is a subset of the
GDB13 dataset, with 7 or fewer C, N, O and S atoms, resulting in a dataset
of 7165 molecules. The dataset contains the coulomb matrix (CM) represen-
tation of molecules and a corresponding molecular property, the atomization
energy. The atomization energy of a molecule is, intuitively, the amount of en-
ergy required to disintegrate the molecule into its constituent atoms such that
they can no longer interact with each other.

QM?7b, courtesy Blum and Reymond, (2009)); Montavon et al.[ (2013), extends
the QM7 dataset by including molecules with chlorine atoms, resulting in a set
of 7211 molecules. The dataset consists of the CM representation of molecules
accompanied by their HOMO, LUMO, atomization energy and eleven other
physical properties.

QM9 by Ramakrishnan et al.| (2014); Ruddigkeit et al. (2012), is a subset of
the GDB17 dataset containing 133885 molecules consisting of nine or fewer
C, N, O and F atoms. It contains the XYZ representation of the molecules and
corresponding 18 properties.

2.3.2 Molecular datasets used in this work

The two datasets used for the experiments presented in Chapter[4]are subsets of
QM7 and QM9. The datasets were preprocessed by optimizingﬂthe geometry of
the molecules to obtain their lowest energy state. The resulting structure was
then used to compute the new XYZ representation, Coulomb matrices (CM),
sixteen HOMO energies and the spectra.

The first dataset was computed by optimizing the geometries of 7165 QM7
molecules. Out of the 7165 simulations, 247 did not converge and the corre-
sponding molecules were discarded. Of the remaining, those with less than
sixteen HOMO energies were dropped resulting in 5883 molecules which are
hence forth called the 6K dataset.

Similarly, the next dataset was computed by optimizing the geometries of 133885
QM9 molecules. The 132531 molecules in the 132K dataset were obtained af-
ter leaving out the 71 molecules for which the geometry optimization did not
converge and omitting the 1283 molecules with less than sixteen HOMO ener-
gies.

3The optimization was performed by our collaborator Annika Stuke



Chapter 3

Deep learning models

This chapter describes the neural network models that are evaluated in this
thesis. We describe the feed-forward multi-layer perceptron (MLP) in Section
followed by the convolutional neural network (CNN) and deep tensor neu-
ral network (DTNN) in Sections [3.2]and respectively.

3.1 Feed-Forward MLP

o b0
. . /’L\h.l_lj/ NP2 h?y .
/e -\. ~ y \\\\‘»{/ / \“\
[ X - Y4 - . —
<L @@ D
>< ?/\‘\‘ x/, \\ //,r\\ 2/, //v\\ 1/
— S - KX - - —
lﬁ/ \'Ié/ ™, xjf//‘,‘-ﬂ\‘ \\ ///’
\12/ \'/fhi_\‘ VA /'[]—\F/"
¥ \ ¥
Input Hidden Layer Hidden Layer Output
(x) (h) (h2) (0)

Figure 3.1: An Illustration of a Feed-Forward MLP with a two-dimensional input
x and a scalar output o. Each of the circles indicate a scalar quantity. This
instance of the MLP has two hidden layers h1 and h2 each being a vector in &>

The canonical representation of the Feed-Forward MLP is represented in

15
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Figure The MLP maps an input vector X to an output vector o. Typically
the output is produced after one or more non-linear affine transformations
of the Input. In Figure the transformation of the input to the output is
achieved as follows:

hl1=0(W, ;; xx+b1l)
h2=c¢ (Whl—hz x hl+ b2) (31)
0=0 (Wps_o X h2+Db3)

In Equation the o represents some non-linear function like the sigmoid,
hyperbolic tangent (tanh), or rectified linear unit (ReLU)E]

The dimensions of the weight matrices and bias vectors in Equation are
as follows:

Wx—hl € ‘%BXZ
Wiyt € 27
Wy, , € 2! (3.3)
b1,b2 € 223!
bleZ

The weight matrices and biases mentioned in Equation are randomly
initialized and are optimized using some gradient based method like stochastic
gradient descent (SGD). For more background information on this model we
refer the reader to Chapter 6 of Goodfellow et al. (2016).

3.2 Convolutional neural network

The Convolutional neural network (CNN) proposed by Lecun et al.| (1998) is
a model most appropriate for data which exhibits spacial locality, for example
images.

The convolution operator is as follows:

0L, j,k) = D > > Kot 1, W —i,m—j,n—k)  (3.4)
l m n

'RelU is a piece-wise approximation of the sigmoid using two linear functions. It is com-
puted as follows:
0, x<0

ReLU(x) = {x >0 (3.2)
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Figure 3.2: An Illustration of the convolutional neural network (CNN) taking in
a Coulomb matrix as input and predicting the molecular property (spectra or 20
eigen values). The CNN mainly consists of the convolution and pooling operations.
The prediction is obtained by flattening the output of the last convolutional layer
and projecting it to the desired output dimension using a fully connected layer.
Figure courtesy of Annika Stuke.

In Equation O(i, j, k) denotes a scalar entry of the output tensor. X,
denotes the sub-tensor of X which has the same dimensions as the convolution
filter W. These tensors are illustrated in Figure (3.3

2 units (depth)
oo 2 units (depth)
3 units 2 units /////// . 1 unit depth
S A /,7// s 1 unit o
x‘ / ‘ | {,// y A "
H 1

-«

part | : )y

4 units

Input Tensor (X) Convolutional Filter (W) Output Tensor (0)  igure not to cate

Figure 3.3: An illustration of the dimensions of tensors when performing the
convolution operation. Assuming an input tensor X (€ Z%*%) and a convolution
filter W (Tensor € #%***?). While performing the convolution operation the filter
W is convolved with a sub-tensor of X, denoted as X, with the same dimensions
(as W) resulting in a scalar output. Consequently, the convolution doesn’t change
the dimensions of the input. Note that the depth of the convolution filter is always
same as the depth of the input on which it is applied.

While implementing a CNN, it is common to group together multiple convolu-
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tion filters into a convolution layer which may be followed by another convo-
lution layer or a pooling layer. A pooling layer implements a pooling function
which is a differentiable function which maps a tensor to a scalar.

Commonly used pooling functions are max pooling and average pooling.
Assuming X, = {X1, X5, ..., X, } to be a part of the input matrix X and denoting
the pooling operation applied on X, as f (X,,,) the max pooling operation can
be written as

f Kpare) = max({x,, xg, ..., x,}) (3.5)

and average pooling operation as

1 n
f ) = 7 2% (3.6)

In a CNN the convolution filters are updated using gradient based optimization
techniques, just like the MLP in Section[3.1] A detailed discussion on CNNs can
be found in Chapter 9 of Goodfellow et al. (2016).

3.3 Deep tensor neural network

The Deep tensor neural network (DTNN) model proposed by Schitt et al.
(2017) takes inspiration from the quantum many-body Hamiltonian conceptﬂ
and predicts the total energy of molecules as a sum of atomic energy contribu-
tions. Total energy of a molecule is the summation of its atomization energy
and and the energies of each of its constituent atoms in isolation.

The DTNN, unlike the MLP and the CNN models (described in Sections|3.1
and respectively) uses the XYZ input representation of the molecules. A
molecule is input into the DTNN in two parts. One of the inputs is the vector z,
containing the atomic numbers of atoms in the molecule. The other part of the
input is the D matrix consisting of inter-atomic, Euclidean, distances of atoms
(where the atoms are arranged in the same order as in the z vector). Since a
dataset might have molecules with different number of atoms. The z vector
and the D matrix of molecules are zero-padded to ensure their dimensions
match those of the largest molecule in the dataset.

2Intuitively, according to the quantum many-body Hamiltonian concept, molecular proper-
ties can be represented as a sum of atomic contributions.
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feedback loop
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@ element-wise product

@/ element-wise sum

tanh (We((W<'c; + bf)
o (W d; + bfz)))

Figure 3.4: An illustration of the deep tensor neural network (DTNN). Figure
edited from Schiitt et al.| (2017).

Important components of the DTNN

The atomic embeddings (c vector)

In DTNN each atom type i, for instance carbon or hydrogen, is represented
by a vector ¢; in #°. This is inspiredﬂ by the word-embeddings (word2vec)
proposed by Mikolov et al.|(2013]) where each word in the corpus of documents

3As mentioned in the supplementary materials presented in Schiitt et al.| (2017).
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is represented by a vector. In DTNN the embeddings ¢; are randomly initialized
by sampling from 4(0,Z/+/B). In the original DTNN model, |Schiitt et al.
(2017) fixed B to 30, however for the experiments in our work we treat B as
a hyper-parameter and optimize it over a range of possible values to get the
lowest prediction error.

Gaussian expansion of the distances

The elements d;; of the inter-atomic distance matrix D are expanded using
equally spaced Gaussians. Consequently, the real vector d;; is expanded to a

vector cAll-j which we assume to be of length G i.e &i j € Z°. The expansion is

as follows: d ( KAL)
~ ij — \Mmin + kA
d; = [exp (— i a ):| 3.7)
0<ks< Hpax

202

Schiitt et al.| (2017) used the following initialization scheme for the constants
k, Umax> Umin» © and Au. We have used the same initialization scheme in the
experiments presented in this work.

® U, is initialized to -1.

® U is initialized depending on the range of d;; values in a given dataset.
In our experiments we have chosen u,,,, = 6.8 (more about this in our
discussion about Ay and o).

e Au and o were both initialized to 0.2 as was chosen by |Schiitt et al.
(2017). This ensured that we had the range [—1, 6.8] spanned by 40 (k
in Equation Gaussians. Both these values (and consequently u,.,)
were limited by the memory (4GB) of the graphics processing unit (GPU)
used for our experiments.

Gaussian expansion an example

In this section, we illustrate Gaussian feature expansion by applying it on a
real number. Let us assume the following values for the variables in Equation
dij = 2.1, Upin = 1, Upay = 3, Au = 0 = 1. Using these values, we get
0<k< “ALZX which simplifies to, 0 < k < 3 where k is an integer.

So, we have four Gaussians with unit standard deviation and means at 1,
2, 3 and 4 as illustrated in Figure by broad black lines. Calculating the
likelihoo of d;; = 2.1 occurring in each of the Gaussians, we get 0.55, 0.99,

“The likelihood of the Gaussian needs to be scaled by v27o so the we evaluate the expres-
sion as in Equation 3.7
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G- [ 055 099 067 016 ]

Figure 3.5: An illustration of the Gaussian feature expansion of a real number.

0.67 and 0.16 respectively. Thus, the scalar 2.1 has been expanded into the
vector [0.55,0.99,0.67,0.16]".

The interaction passes

As described in Section the deep tensor neural network (DTNN) assumes
that any molecular property can be expressed as a sum of atomic contributions
(taking inspiration from the many-body Hamiltonian concept). The DTNN rep-
resents these atomic contributions as a non-linear projection of the refined vec-
tor ¢*=". The randomly initialized c\"=* is refined over T iterations (the inter-
action passes) also depicted by the feedback loop in Figure The refinement
of the atomic embedding vector, in the iteration pass t + 1 is given by Equation

3.8

(t+1) _ (1)
¢ =¢ +ZVU’ (3.8)
J#
where c; is the value of the embedding vector in the previous iteration and v;;
is defined in Equation

v =tanh(c\"vd,; + we” + Wd, +b) (3.9)

Understanding the interaction passes

Before moving forward, let us try to develop an intuition about what Equations
and [3.9]achieve. We notice from [3.8|that, given a molecule, the refinement
of the c vector of a constituent atom i in an interaction pass is performed by
adding contributions from v vectors of other’|atoms.

>Notice the j # i in the sum.
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In Equation we see that the v vector is an output from the hyperbolic
tangent (tanh) function with a range of (—1,1). Consequently, the contribu-
tions from v;; towards ¢; (in Equation can be additive or subtractive. Look-
ing further at Equation we notice that the contribution of an atom j to-
wards the refinement of the embedding vector of an atom i is obt§ained from
the combination of affine transformations of ¢; (embedding of atom j), d;; and
an interaction termﬂ between ¢; and d;;. We observe the following in the first
few interaction passes:

(t=0)
i

In Interaction pass t =0, ¢ are randomly initialized for all i.

(t=1)

In Interaction pass t = 1, all embedding vectors ¢; "~ are updated with con-

tributions from other atoms cﬁ.tzo) from the previous pass.

In Interaction pass t = 2, embedding vectors cgtzz)
(=1 Byt =Y

j j
of other atoms. So, intuitively, cgtzz) contains pair-wise contributions from all
the other atoms which encodes angular information between atoms, as stated
in Schiitt et al.| (2017). This allows DTNN to use the XYZ input representa-
tion, which scales linearly with the number of atoms in a molecule, yet express
pair-wise and higher order interactions between atoms. In contrast, the MBTR
input representation by Hu et al.| (2017), encodes the pair-wise and higher or-

der interactions explicitly, scales exponentially with the number of atoms.

are updated with contri-

butions from other atoms ¢ themselves contain contributions

Dimensions of the weights and biases

From Equation we infe that v;; € #%. Therefore, the following are the
dimensions of W¢, W< b and V.

we € #8*B since it projects from ¢ € %2 to ve #5.
W e %25%C since ve #° and d € Z€ (as per the assumption in Section 3.3).
b € %% since it needs to have the same dimension as v.

V € %#28*B*G which is a tensor and is the reason why this model has been named
deep tensor neural network.

5The interaction term is cgt)VcAli ; in Equation
“since ¢! € 2"
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In the next few lines we check the dimensionality of V. Following Equation
we will check whether the dimensionality of c§Vd is the same as that of

v. We know that, ¢} € Z® so ¢V ie RVB x BB BxC € gg1*BxG  Fyrthermore,

¢!V multiplied by d;; would be ZV5*¢ x 2¢*1 € #V**1 or %®, which is the
dimensionality of v.

Practical considerations while implementing the tensor

If we use V as a tensor, there would be B x B x G parameters. To get a sense
of the number of parameters, if we assume B = 30 and G = 40 (values used in
some of our experiments) we have 36000 parameters from just this tensor. If
we assume 2 interaction passes (as was used in our experiments) this results
in 72000 parameters from the two V (s) alone. Given that our largest dataset
of 132K molecules is in the same order of magnitudeﬂ as the number of pa-
rameters, this model is quite likely to overfit to the training data. To avoid
the overfitting problem, Schiitt et al. (2017) use a low-rank factorization of
the tensor originally proposed by Taylor and Hinton (2009). Employing such
a low-rank tensor factorization Equation can be re-written as

v;; = tanh [(ch(chcg.t) + b{) o (Wfchlij + b’;))] (3.10)

where o’ denotes element-wise multiplication and the dimensionality of
c§t) and cAll- j is the same as that in Equation b{ and bJ; are column vectors
in 2F. W , w/¢ and W/? are in #2*F, #"*5 and #F*C respectively. Here, F
denotes the number of factors used in low-rank factorization of V, choosing an
appropriate value for which, controls the number of parameters and also helps
prevent overfitting.

DTNN training algorithm

To summarize, given a molecule (its corresponding atomic vector z and the
inter-atomic distance matrix D) , the number of interaction passes T and the
targetﬂ total energy e, ..., Algorithm [2| can be used to learn the parameters
which can then be used to predict total energy of simila new molecules.
The DTNN algorithm is trained in a supervised manner. For each molecule,
there is a corresponding target free energy e, The error, which is the differ-
ence between predicted free energy e and the target value e, is computed

8As a rule of thumb it is advised that the number of training examples must be an order of
magnitude greater than the number of parameters in the model.
“Molecular total energy was the target value for the ML algorithm in |Schiitt et al.| (2017)
10gimilar to the molecules in the training set.
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and a gradient based technique is used to update the parameters of the net-
work.

3.3.1 Our modifications to the DTNN

In this section we describe the two main changes, to the original DTNN model,
proposed in this thesis. The changes are as follows:

Addition of two fully-connected layers : Before the final fully-connected
layer, predicting the total energy as in [Schiitt et al. (2017) or 16-energies and
the spectrum in our work, we have added ton fully-connected layers. There-
fore, in our implementation line seventeen of Algorithm [2| changes to

e;; < tanh(Wc; + b)
e;, < tanh(W,e;; + b;) (3.11)
e; < tanh(W,e;, + b,)

This was done to facilitate the model to learn a more complex non-linear func-
tion, for mapping the atomic embedding (cft:n) to the output. The need to
learn a more complex function mapping is reasonable because the target values
being predicted in this work have a higher dimensionality (16 or 300 dimen-
sional vector) as compared to that of |Schiitt et al.| (2017).

Adding noise to the distance metric D : During training, we add Gaussian
noise (zero mean, 0.1 standard deviation) to the distance matrix. So the dis-
tances d;; on line 10 in algorithm change to

d;; « d;; + #(0,0.1) (3.12)

Adding noise during the training of neural networks helps the model escape
local minima and also leads to better generalization, as suggested by Du and
Swamy| (2014). In our experiments, we also observed that adding noise to the
distance matrix led the model to achieve the same prediction accuracy in fewer
epochs, as compared to the model which was trained without additive noise. A
qualitative comparsion of the predictions with and without noise is presented
in Figure 4.5

In addition to the changes described above, we have also optimized the hy-
perparameters of the model for the datasets under investigation in this thesis,
which is discussed in the following chapter.

The number of fully-connected layers was arbitrarily chosen
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Algorithm 2: The DTNN training algorithm. |Schiitt et al. (2017) used
mini-batch gradient descent with Adam updates proposed by Kingma and
Ba (2014). Here we use stochastic gradient descent instead of Adam.

Data: z the vector of atom types in a molecule.
Data: D the matrix of inter-atomic distances in the molecule, with
entries d;;.
Data: T the maximum number of interaction passes.
Data: e, the target free energy of the molecule.
Result: e the predicted free energy of the molecule.
foreach atom i do
if z; has corresponding ¢, then
‘ cgt:O) < czi
else
¢, ~A(0,1/VB)

(t=0)
¢

g A W N =

—c,
end

end
foreach element d;; € D do

o N O

A d:..— ) k 2 .
10 d; =|exp — Uy k2400 (Hmmj 20) ; // Values as in |3.3
! 20 0<k<

HMmax
Ap

11 end
// T Interaction passes
12 for t < 1to T do

v < tanh [(ch(chcg.t) + b{) o (Wfdaij + b);))]
¢4y

1

13

14
15 end

16 foreach atom i do

17 | e < tanh(Wc¢; +b)

18 end

19 e D¢

20 error < |e — etarget|

21 foreach parameter € {ch, wrfe, wid w, b, b{,b’;, } do

d(parameter)

22 ‘ parameter « parameter — a X — g5

23 end




Chapter 4

Experiments and Results

The neural network models were implemented in Theand!|to enable the use of
graphics processing units (GPUs) to speed up computations. The models were
trained on two almost identical machines with eight Intel(R) Xeon(R) E3-1230
v5 cores. One of the machines had an Nvidia GeForce GTX 1050Ti GPU and the
other had an Nvidia Quadro K2200 both with 4GB of on-board memory. Addi-
tionally, we made use of GPyOptE| for hyperparameter optimization, which was
run for ten iterations using the expected improvement (EI) acquisition function.

In the following sections, we first discuss the specifics of the hyperparam-
eter optimization for each of the models in Section and then assess the
models’ performance quantitatively and qualitatively in Sections and
respectively.

4.1 Choice of hyperparameters

Feed-forward MLP

In this case, we use randomized and binarized Coulomb matrices, which are
then flattened to yield a vector that is fed into the MLP. We use a two layer MLPE]
and optimized the number of units in each layer, to predict the single HOMO
energy of the molecules in 6k and 132k dataset. During the optimization the
number of units per layer were varied between 50 and 600 in steps of 50.
The hyperparameters of the MLP optimized to predict the HOMO energy;,
were also used to predict HOMO-1, HOMO-2, ..., HOMO-15. Separate hyper-

1Open-source package provided by the Theano Development Team| (2016)

2Made available as an open-source package by The GPyOpt authors| (2016))

3MLP implementation : http://quantum-machine.org/code/nn-qm7.tar.gz
Accessed : 6.8.2017

26
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parameter optimizations for the sixteen HOMO energies were not performed
in the interest of time.

Convolutional neural network (CNN)

The CNN model accepts as input randomized Coulomb matrices. The size of
the Coulomb matrices are dependent on the size of the largest molecule in
the dataset. Consequently, the 6K dataset has 23 x 23 dimensional Coulomb
matrices where as the 132K dataset has 29 x 29 dimensional Coulomb ma-
trices. In a CNN it is common to have alternating convolutional and pooling
layers as described in Section The size of the pooling filters could also
be a hyperparameter. However varying the size of the pooling layers also con-
trols how many convolutional layers can followﬂ To make the hyperparameter
optimization easier, we utilize 2 x 2 max pooling layers, following the convo-
lutional layers, for both datasets. We have three convolutional layers in the
network and the number of filters in each layer is optimized.

To summarize, we optimized the number of filters in each convolutional
layer. It was varied from 2 to 60 in steps of 5. The range was chosen to start
from a very small 2 layer network to the largest we could accommodate in the
GPU memory of our machine.

Deep tensor neural network (DTNN)

For the DTNN we optimized the learning rate, dimensionality of the embed-
ding vector c, the mini-batch size and the number of neurons in the final and
penultimate hidden layers (see Section [3.3.1). Each of the hyperparameters
was optimized over an equally spaced range of values. The upper limits for the
range over which the hyperparameters were optimized, all except the learning
rate, were dependent on the available GPU memory. We used the largest val-
ues of the hyperparameters for which the Theano model did not raise an out-
of-memory exception during runtime. The corresponding lower limits were
arbitrarily determined.

During the optimization, dimensionality of the atomic embedding vector ¢
was varied between 20 and 41 in unit steps and the number of hidden units in
the two fully connected layers were varied between 100 to 600 in steps of 50.

*Assuming a 23 x 23 Coulomb matrix and a 2 x 2 pooling layer which halves the height and
width ( the depth remains unchanged ) of input every time its applied. Therefore we can have
four sets of convolution and pooling layers i.e. 23 x23 5 11x11 »5x5—-2x2—>1x1
However if we have a 4 x 4 pooling layer we can only have two sets of convolution and pooling
layersi.e. 23x23 55x5—>1x1
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In addition to the network specific hyperparameters, the mini-batch size
used during training was optimized for all the network types. It was varied be-
tween 20 and 200, in steps of 5. The learning rate used for parameter updates
was optimized in the CNN and DTNN models. The optimum learning rate was
searched between 1072 and 107° in multiples of 10.

4.2 Quantitative comparison of results

To achieve the lowest prediction error, hyperparameters of each model were
optimized for each combination of dataset and prediction task. Thereafter the
model training and evaluation cycle was repeated five times with the opti-
mized hyperparameters. The corresponding results are summarized in Table
We observe that, DTNN achieves the lowest error while predicting the six-
teen HOMO energies and the spectra (henceforth, referred to as target prop-
erties) regardless of the dataset size. CNN has marginally lower error while
predicting the sixteen HOMO energies with the 6K dataset, when compared to
the corresponding MLP.

Table 4.1: Comparison of the error in predicting sixteen HOMO energies and
spectra (target properties). Lower values are better. Each neural network model
was trained, on the 6K and the 132K datasets, to predict the target properties. The
root mean square error (RMSE) between the true data and ML model prediction
is shown in the figure. The results were summarized from 5 runs, except for the
spectra predictions of 132K dataset which were summarized from 3 runs. For the
spectra the values presented are pointwise RMSE between the predicted and true
functions, and don’t have any units.

Datasets — 6K 132K
. . Spectrum

Model (Input) | | 16 HOMO energies (eV) Spectrum 16 HOMO energies (eV) (3 run summary)

MLP
(Coulomb matrix) 0.317 £0.000 NA NA NA

CNN

. 0.304 £ 0.006 0.282 £+ 0.002 0.231 £0.002 0.199 £ 0.000

(Coulomb matrix)

DTNN 0.251+0.024 0.210 £ 0.000 0.186 +0.002 0.145 +£0.000

(XYZ file) . . . . . . . .

In the next section, we perform a qualitative comparison of the results.
Before we proceeed, we would like the reader to note that,

e In our experiments we found that the highest HOMO energy was the
most difficult to predict. Therefore the hyperparameters of MLP were op-
timized to predict the HOMO energy of 132K molecules. Thereafter sep-
arate MLPs were trained to predict the sixteen HOMO energies with the



CHAPTER 4. EXPERIMENTS AND RESULTS 29

optimized hyperparameters. The training for eight of these models did
not converge. Hence, the corresponding field in Table is marked not
appliable (NA). However, the MLP to predict the highest energy HOMO
state trained successfully and the corresponding result is presented in
Figure 4.2

e Spectra of the 132K dataset were predicted by the CNN and DTNN us-
ing arbitrarily chosen hyperparameters. The corresponding results pre-
sented in Table[4.1|were summarized from three training runs, instead of
five. Both, in the interest of time. DTNN was trained using a mini-batch
size of 50, a learning rate of 10~° and the last two fully connected layers
with 100, 200 units, respectively. For the CNN, we used a learning rate of
10™*, mini-batches of 90 training samples and convolutional layers with
22, 47 and 42 filters, respectively.

4.3 Qualitative comparison of results

Having compared the prediction of the models quantitatively, we now perform
a visual comparison of the prediction in the following two sections. For the
predictions of the sixteen HOMO energies, it will be interesting to observe that,
some energies are easier to predict than the others. This was not apparent
in the root mean sqaured error (RMSE) summary presented in the previous
section, for all the sixteen HOMO energies combined.

In the next section we study the sixteen HOMO energies and the section
following that, we consider the spectra.

4.3.1 Sixteen HOMO energies

Recall that, HOMO corresponds to the molecular orbital with the highest en-
ergy, followed by HOMO-1, HOMO-2, ..., and HOMO-15 corresponds to the
lowest energy orbital among the sixteen we consider. In Figure the pre-
dictions of MLB CNN and DTNN are plotted when predicting the HOMO en-
ergies separately, for molecules from the 6K dataset. In Figure [4.4 we present
the prediction accuracy of CNN and DTNN , for the same sixteen energies but
for molecules from the 132K dataset. In both the figures, plots with higher
correlation between predicted and true values indicates better performance.
We observe a clear pattern, predictions for lower energy orbitals is better than
the higher energy orbitals. This is also observed in Figure where we see
that most models make good predictions (high squared-correlation values) for
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HOMO-15 and other lower energy states, but the performance is much more
varied for the HOMO state.

0.9
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Figure 4.1: Trends of Squared correlation (R?) between predicted and true values
of the sixteen HOMO energies with different combinations of datasets and machine
learning models. We notice that most models achieve R* values close to 0.9 for
lower energy HOMO energies (closer to HOMO-15). Higher energy states closer
to HOMO are more difficult to predict, for these HOMO states we see that DTNN
performs the best, with 6K and 132K datasets followed by the CNN with the larger
132K dataset. We notice that for the smaller 6K dataset, MLP performs better than
the CNN.

It is also interesting to note that (refer Table , although DTNN achieves
almost the same RMSE values with 6K and 132K dataset, the prediction for
the HOM energies of the 6K dataset observed separately in Figure is worse
compared to that of 132K with the same model. This highlights the need to look
at predictions of individual HOMO states separately, instead of an averaged
RMSE values over all the sixteen states.

The prediction accuracy of two DTNN models trained on the same dataset
and with the same hyperparameters, with and without added noise appears to
be comparable, as seen in Figure However, training the model with added
noise was much faster, around 36 hours compared to 42 hours for the one
without noise. The results presented in Figure|4.5|are with the same optimized
hyperparameters as used in models whose results are presented in Figure

Finally, comparison of HOMO prediction accuracy of MLEB CNN and DTNN
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across the 6K and 132K datasets is illustrated in Figure [4.2

4.3.2 Discretized photoemission spectra

Spectra predictions have been considered only with the CNN and DTNN models
in this thesis. The models were trained to minimize the mean squared error be-
tween the predicted and true specta. Illustrations comparing the predictions
of test spectra by the two models, accompanied by histograms of prediction
errors, are presented in Figures and for the 6K and 132K datasets,
respectively. The figures display representative examples of predictions with
lowest error, average error and the highest error. The spectra predictions are
deemed good when they closely overlap the corresponding true spectra. We
observe that, for the 132K dataset the best prediction with both models is very
good. For the example corresponding to the average error, DTNN and CNN
predict the true spectrum reasonably well, predicting peaks mostly where the
true peaks appear, but smooth out some of the features. The worst predictions
also predict the peaks of the true spectra with reasonable accuracy but un-
derestimate their magnitude. Predictions of the spectra for the 6K molecules
follow a similar trend.

This concludes the discussion of the experiments and results. In the next
chapter, we draw conclusions from the observations presented in this chapter
and place the results in a broader perspective.
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Figure 4.2: Scatter plots showing correlation between predicted and true HOMO
values. Higher correlation is better. The plots presented here are same as the
corresponding ones in Figure and except for the MLP predictions on the
132K dataset, which is presented only here. The hyperparameters of each model
has been optimized for both datasets. We observe that DTNN gives the best HOMO
predictions regardless of the size of the training set. When comparing MLP and

CNN, we find that CNN performs better for the larget 132K dataset. However, for
the smaller 6K dataset MLP performs better than CNN.
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Figure 4.3: Scatter plots showing correlation between predicted and true values
of six, out of the sixteen, HOMO energies. Higher correlation is better. In columns,
from left to right, we see predictions by the MLE CNN and DTNN, respectively. Dots
represent datapoints from the test set containing approximately 290 molecules
from the 6K dataset. The predicted energy is plotted on the x-axis and the true

energy on the y-axis.
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Figure 4.4: Scatter plots showing correlation between predicted and true values
of six, out of the sixteen, HOMO energies. Higher correlation is better. The left
column of figures are predictions by CNN and the ones on the right are by DTNN.
Dots represent the datapoints from the test set of approximately 13000 molecules
from the 132K dataset. The predicted energy is plotted on the x-axis and the true

energy on the y-axis.
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Figure 4.5: Scatter plots showing correlation between predicted and true values
of six, out of the sixteen, HOMO energies. Higher correlation is better. Predictions
without added noise are in the left column and, the ones with added noise are
to the right, hyperparameters of the two models kept the same. We observe that
adding noise to the input does not significant improve the results. However, the
model with noise took 36 hours to train whereas the one without noise took 42
hours. So, it is much faster to train the model with noise.
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Figure 4.6: Figure comparing the spectra predictions by CNN and DTNN. The his-
tograms, on the first row, present the distribution of mean squared error (MSE)
between predicted and true spectra of approximately 290 test molecules from the
6K dataset. The plots following the histograms depict the predicted and true spec-
tra of a test molecule and their MSE. The bins, of the histogram, from which the
molecules were sampled are depicted by coloured circles.
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.7: Figure comparing the spectra predictions by CNN and DTNN. The
histograms, on the first row, present the distribution of mean squared error (MSE)
between predicted and true spectra of approximately 13000 test molecules from
the 132K dataset. The plots following the histograms depict the predicted and
true spectra of a test molecule and their MSE. The bins, of the histogram, from
which the molecules were sampled are depicted by coloured circles.



Chapter 5

Discussions and Conclusion

This thesis has presented deep learning models which have predicted ener-
gies corresponding to molecular orbitals and photoemission spectra, from the
charges and inter-atomic distance of atoms constituting the molecules of in-
terest. The thesis has also compared, in detail, the accuracy of three distinct
neural network architectures for the prediction tasks.

From the experiments presented in Chapter (4| it is evident that, although
it helps to have a large training dataset, a purpose designed machine learn-
ing (ML) model like the deep tensor neural network (DTNN) can out-perform
generic models like the multi-layer perceptron (MLP) or models like the con-
volutional neural network (CNN). In addition, knowledge of tricks of the trade,
like binarization of the input and adding noise to the model, can also have a sig-
nificant impact on the performance and speed of training the neural networks.
Given that, for the 132K dataset, HOMO predictions from CNN were quite
close to those from DTNN. It would be interesting to investigate whether the
predictive performance of CNN improves by adding noise to Coulomb matrices,
which are input to the model. Since the off-diagonal entries of a Coulomb ma-
trix are proportional to inverse inter-atomic distances, addition of noise can
be achieved by scaling them by inverse of samples drawn from a standard
Gaussian. This would be similar to adding noise to the inter-atomic distances.
However, this is left for future work.

With the modifications to the DTNN proposed in this thesis, we were able
to achieve a root mean square error (RMSE) of 0.186 for HOMO, HOMO-1, ...,
HOMO-15 combined, surpassing the previously known state of the art RMSE
of 0.21 by Montavon| (2013) for HOMO prediction.

However, it is important to address the question of how good, is good enough
?. When addressing predictions made by ML models, there is no definitive an-
swer, but the degree of accuracy depends on the application. Although not
discussed in this thesis, it is important to study the applications which would

38
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benefit from fast predictionsﬂ of HOMO energies and spectra. If a prediction
error of approximately 0.18 eV for the top sixteen HOMO levels is adequate,
then the methods proposed in this thesis are sufficient. If not, then there is
a need for more accurate models. In the context of spectra prediction, nei-
ther model presented in this thesis predict the spectra well. If we recall how
the spectra was computed (refer Figure we notice that the peaks in the
spectra represent the energies corresponding to the molecular orbitals. It is
important to get the location and magnitude of the peaks in the spectra cor-
rectly to be able to identify the molecular orbital energies from the spectra. In
that respect, it is interesting to note that the worst prediction by the DTNN in
Figure is better than the average prediction, since the location of the peaks
were better predicted in the "worst" prediction compared to the average predic-
tion where two neighboring peaks (as seen in the corresponding true spectra)
were smoothed. This indicates that mean squared error (MSE) might not be
the best cost function to optimize while learning spectra, paving the way for
future work.

Furthermore, If we observe the illustration of DTNN (see Figure [3.4), we
notice that the model is not invariant to the size of molecules. For molecular
datasets with a large variation in size of molecules the input to DTNN would re-
cieve a lot of zero-padded inputs. Thus, scope for future work lies in designing
ML models invariant to the size of molecules.

In this thesis we were able to achieve our original objective and presented
ML models capable of predicting molecular properties like HOMO energies and
photoemission spectra. However, much work needs to be done before machine
learning models can be deployed to realize the eventual goal of discovering
novel materials.

!Predictions from the DTNN take only a few milliseconds.
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