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Abbreviations and Acronyms

We are trying to use abbreviations and acronyms sparingly in this thesis. In
some cases, however, it is impractical to do so. Therefore, we provide a list of
all the abbreviation used in this work, extended with common abbreviations
and acronyms used in text mining literature.

API Application Programming Interface
AUC Area Under Curve
BOW Bag of Words
CART Classification and Regression Tree
CBOW Continuous Bag of Words
CDS Clinical Decision Support
DM Data Mining
EHR Electronic Health (also Hospital) Record
FPR False positive rate, also known as fall-out
HIT Health Information Technology
HUS The Hospital District of Helsinki and Uusimaa
ICD International Statistical Classification of Diseases and

Related Health Problems
IDF Inverse Document Frequency
IE Information Extraction
IR Information Retrieval
JVM Java Virtual Machine
kNN K Nearest Neighbours
LDA Latent Dirichlet Allocation
LSA Latent Semantic Analysis
MeSH Medical Subject Headings
ML Machine Learning
MLP Medical Language Processing
NEN Named Entity Normalization
NER Named Entity Recognition
NLP Natural Language Processing
PLSA Probabilistic Latent Semantic Analysis
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POS Part-of-Speech
POST Part-of-Speech Tagging
RDR Ripple Down Rule
RF Random Forest
ROC Receiver Operating Characteristics
SOV Subject-Object-Verb
SVO Subject-Verb-Object
TF Term Frequency
TF-IDF Term Frequency - Inverse Document Frequency
TM Text Mining
TPR True positive rate, also known as sensitivity
VSO Verb-Subject-Object
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Chapter 1

Introduction

Clinical texts are the most abundant type of health care data. They come
in different shapes and forms, such as admission notes, treatment plans and
patient summaries. Patient case books date back to at least the early 18th
century. [11] Some medical professionals wrote these case books strictly for
their own use, while some wrote them for teaching purposes. Modern, elec-
tronic clinical records are used for both patient care and research.

Finnish hospitals have kept a detailed record of patients’ care, and they
have been stored electronically since 2007. Each and every visit is recorded at
some level. There are large quantities of information about and for patients’
care, such as patient record texts. Additionally, data has been collected for
billing purposes, without restricting it’s use for medical research. A good
example are ICD-10-codes, that are used to label different conditions that a
patient might have.

Clinical texts are a flexible and fast way to save information about the
patients. All it requires from the underlying patient record management
system, is an ability to save free text. Free text is often unstructured, giving
doctors the possibility to describe patients’ conditions with as much or little
detail as is needed. However, there may also be structural information within
the free text as well.

It has been shown that using information extracted from clinical texts,
one can achieve better data-analysis results than by using structured data
only. For example, LePendu et al. [21] showed that extraction of adverse drug
effects from clinical notes showed increased risk of myocardial infraction with
specific medication, when analyzing the structured ICD-data did not.
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CHAPTER 1. INTRODUCTION 10

1.1 Problem statement

Today we are used to analyzing large quantities of data with computers.
Growth of computational power has enabled us to do very extensive analysis
of practically anything, as long as our data is somewhat well structured.
This, unfortunately, is not the case with text data, not in general and not in
the field of clinical texts.

There exists a lot of structured clinical data, but it doesn’t contain all
the information that a doctor has collected about a patient. A large portion
of this information is only stored as free text. When a researcher needs some
information about a patient or a patient group, they will first check if it is
available in structural form. When it isn’t, often the only possible way to get
the information is to read all those patient record texts. A single patient can
have hundreds of texts, meaning that studying larger patient groups quickly
becomes infeasible, if not entirely impossible.

The information encoded in medical texts is mainly unstructured. Sen-
tences are generally short, do not exactly follow grammar, have a high
number of abbreviations and contain relatively high amount of spelling mis-
takes. [13] Combining this with the fact that practically every language has a
wide variety of ways to encode the same information in text format, raises
many challenges in automated information extraction.

In this work, we will develop tools for information extraction and patient
classification purposes, to ease the workload of doctors and researchers. The
aim is to create an algorithm that could be used as a baseline for multiple
different text mining scenarios, instead of creating a single purpose algorithm
that performs well in a specific task and is unusable in others. An example of
the latter would be rule-based systems, that are strictly tailored for a single
purpose, that do not work well in other tasks.

1.2 Structure of the thesis

First, we will cover background of text mining approaches, with main focus
in algorithms and techniques that are suitable for Finnish medical texts. The
literature review will go through some state-of-the art methods, as well as
the most used methods in this field. Main findings of this literature review
are discussed in chapter 2.

In chapter 3 we will briefly discuss the environment in our project. This
includes general knowledge of Hospital District of Helsinki and Uusimaa, our
datasets, and software used.

After conducting the literature review, we selected some methods to be
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used in our text mining algorithm. These methods are explained in chap-
ter 4. The implementation and reasoning behind some design choices are
also discussed in this chapter.

You will find evaluation and validation of the developed algorithm in
chapter 5 and finally discussion and conclusions in chapters 6 and 7.



Chapter 2

Background

2.1 Text mining in general

Text mining is a broad subject, as it can mean extracting information, com-
paring texts, classifying texts, using efficient search algorithms for large text
masses, summarizing texts and more. Text mining is closely related to natu-
ral language processing, but the latter may also mean producing new texts,
translating texts, and also analysis of spoken language. In this thesis, we will
focus on information extraction from clinical data that exists in electronic
text formats, mainly patient and care reports.

Text can be analyzed and mined in many ways, and more often than
not, any analysis requires many different text mining tools and techniques,
instead of using one single tool to do everything. In the following sections
we will go through some techniques that are often used in the field of text
mining and natural language processing. Some of these tasks are general
preprocessing tasks that have many alternative approaches such as sentence
splitting. Other tasks are more specific ones, that usually are performed on
already preprocessed data.

Text mining and natural language processing algorithms can be domain-
specific or domain-independent. Generally, it is easier to create domain spe-
cific methods, as the vocabulary and variety of different expressions to handle
remain smaller. The same applies, in an even larger scale, for different lan-
guages.

2.2 Terminology

In this chapter we will go through some terminology that is commonly used
in linguistics and therefore also in text mining. It is important to under-
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CHAPTER 2. BACKGROUND 13

stand different terms, as they are often used to describe what a text mining
algorithm does or tries to do.

Corpus (plural: corpora) is a collection of texts, usually somehow related
to each other. For example a collection of patient records form a
corpus, that could be used for text mining purposes, as well as other
research. There are different kinds of corpora, but in text mining
especially annotated corpora are useful. A person has read these
texts and any interesting properties defined prior to the annotation
are marked down.

Lexicon (plural: lexica) is the vocabulary of a particular language, field,
social class, person, etc. There can be different types of lexica, not
only describing the meaning of the word, but also other possible
features, like frequency in a specific corpus, word’s possible part-of-
speech tags, etc.

Named entities are entities that have been given a specific name. These in-
clude names of people, places, companies, etc. In Finnish language
named entities are written with a capital letter, but they can also
be referenced to in more ambiguous ways.

Noun phrases are phrases that have a noun as their head word. Most common
examples include a noun that is described with some adjectives.
Noun phrases are often parsed from the text so that they can be
handled as a single element instead of multiple words.

Ontology is a study of what something is. It aims at describing the features
and composition of things. Ontological classification is more com-
plex than taxonomic (see below), and it is usually more of a network
than hierarchical structure.

Semantics is the study of meaning of the words. The purpose is to extract
meanings of the text. It is not rare that a literal phrase has many
meanings, but through semantic context analysis it should become
clear which interpretation was meant.

Syntax defines the rules of language, and is closely related to grammar. It
depicts how we can correctly use different words within a sentence
or a document. Syntactic analysis tries to find these syntactic rules
that can be further used to analyze texts.
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Taxonomy depicts the relations of different words. For example, words ‘dog’
and ‘cat’ could be taxonomically classified below ‘domestic animals’,
and related to each other through that taxonomical tree. Tax-
onomies are not generally trees, but networks with directed edges.

2.3 Finnish language

Finnish is a language mainly spoken in Finland. There are around 4.9 million
people who speak Finnish as their first language, and over 0.5 million people
who speak Finnish as a second language in Finland. [49] Additionally, there
are hundreds of thousands of Finnish speakers outside of Finland. [16]

Finnish is a highly inflected and agglutinative language, meaning that
Finnish language uses case endings to express plurality, grammatical cases,
verb tenses and other aspects of the language. In addition to the case endings,
agglutination means that the meaning of the words can be altered through
morphological affixes.

In Finnish language there is no fixed word order, but the syntax often
follows subject-verb-object (SVO) structure. There are 15 grammatical cases
for substantives. Finnish is written with extended Latin alphabet that con-
sists of 29 letters, some of which are only used in loanwords, and share the
same phonemes with other letters.

The distribution of Finnish words follows the power law (also known as
Zipf’s law in this context). In other words, the nth most frequent word has a
frequency

f(n) ∝ 1

nα
, (2.1)

where it has been found out that constant α ≈ 1. Zipf’s law applies to
all known human languages. [34] This behaviour in languages was first found
by Estoup in 1916 and it was studied in depth and confirmed by Zipf in
1949 [54]. Word frequencies of Finnish words in PAROLE corpus have been
plotted in figure 2.1. PAROLE project’s aim was to create large general
written language resources for all EU languages. [8]

Word distributions rarely follow Zipf’s law exactly, and a more accurate
relation was depicted by Mandelbrot who later got famous from his fractal
studies. The more accurate distribution was achieved by shifting the word
rank in the power law so that

f(n) =
1

(n+ β)α
. (2.2)

It has been argued, that both these power laws are too general, and that
they do not accurately depict the underlying mechanisms of a language. [39]
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Figure 2.1: This log-log plot shows how the distribution of Finnish words
follow Zipf’s law. This distribution has been calculated from Finnish PA-
ROLE corpus. The word densities have been truncated to four decimals
before taking the logarithm, causing the ‘stepping’ in the image.
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When considering text mining tasks, this does not really matter. It can be
useful to know the approximate word distribution when considering word
frequency normalization, for example.

2.4 Common preprosessing tasks

2.4.1 Sentence segmenting

Sentence segmenting or sentence splitting, as the names suggest, splits a text
into sentences. The beginning and the end of the sentences usually have well
defined characteristics that can be used for segmenting. There are, however,
exceptions for this. In more informal texts the grammar may not be followed
and capital letters and punctuation may not be present. It is also not rare
for texts to have list structures, or some other type of formatting that omits
usual sentence boundary rules.

In practice, there are two ways to do sentence segmenting. First one is
by creating a set of rules to determine sentence boundaries. A very simple
rule set searches for a sentence ending character such as a period, exclama-
tion mark or question mark, which need to be followed by a space and a
capital letter. A simple tokenizer like this will get approximately 95% of
the sentences correct [35]. Aberdeen et al. [1] describe an advanced rule-based
sentence splitter, the Alembic information extraction system in their work.
Alembic’s sentence boundary recognition module achieved an error rate of
0.9%. The alternative method for rule-based sentence splitting is using some
machine learning algorithm with an annotated corpus to learn the sentence
boundaries. Riley reported to have achieved an impressive accuracy of 99.8%
with his tree-based model in 1989. [41]

From the accuracies of the selected algorithms, we can conclude that
sentence segmenting is a text mining sub-task that can be done with very
high accuracy. There are many programming libraries that provide sentence
segmenting, and we will be using one in this work as well.

2.4.2 Tokenization

Tokenization, or lexical analysis is a process where a text is split into smaller
sequences. In theory, they can be phrases, words, single letters, or any mean-
ingful entity depending on the algorithms used. In practice, tokenization is
often used to split the text into single words, numbers or values. Even though
there are many ways to do tokenization, there isn’t much scientific literature
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available on the subject. In this section we will briefly discuss some methods
and other considerations.

There are practically unlimited number of different tokenization tech-
niques, because any text can be split into arbitrarily many smaller pieces.
While most human readers would consider splitting a sentence into single
words as the most natural way of tokenization, it does not mean that tok-
enization should always be done to the word level. For example, Kamps et
al. compared some n-gram (see n-gram definition in section 2.6.3) based tok-
enization techniques in the context of multilingual information retrieval. [17],
They showed that the choice of tokenization can have a large impact on re-
sults. For example, including the last 3 characters of the words in addition to
the 4 character n-gram gave better results than having 4 character n-grams
and the complete words as tokens.

The simplest approach for tokenization is to use white space as a delim-
iter. This works reasonably well for many texts, but it has its limitations. [28]

Such tokenizer is not very good for handling compound words or named
entities (”New York”, ”General Electric” etc.), for example. Whitespace
tokenizers do not handle hyphenation too well either.

The choice of tokenization should depend greatly on the use case. In many
tasks, one needs to output words, instead of seemingly random character
combinations. If that is the case, a simple whitespace tokenizer might be all
that is needed. There are many other considerations as well, such as how to
handle punctuation marks. They can be considered as their own tokens, for
example, or omitted entirely.

2.4.3 Stemming

Stemming is a process where different inflicted versions of a single word are
reduced to a shorter form by cutting them from a selected location. This
shorter form does not need to be the base or dictionary form of the word,
but it can be. Stemming is done so that algorithms would be able to handle
all the inflicted forms of a word as a single word, as they often have similar
or exactly the same meaning. There are exceptions for this, however. For
example, Finnish words ”tauti” (disease) and ”tauditta” (without disease)
are derived from the same base word, but have the opposite meanings.

In 1968, Lovins described a development of stemming algorithm, point-
ing out various pitfalls of stemming in general and discussing different use
cases. [26] One of these considerations is whether to use a strong stemming
algorithm or a weaker one. A strong algorithm removes more suffixes than a
weaker one. This causes more words to fall in the same category (the same
stem), but it can be harmful in some cases, such as information extraction.
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This is because etymologically related words that have very different mean-
ings, can still share the same stem. [36] Stronger algorithms can still be very
useful as search assistant, for example. [26].

2.4.4 Lemmatization

Lemmatization is very closely related to stemming, as both of them aim at
reducing the word space that the algorithms need to handle. Lemmatization
could be understood as a more sophisticated form of stemming or context-
aware form of stemming. [28] It usually produces the base forms of words,
and ambiguities such as homographs (see an example in section 2.5) can be
resolved, meaning that it is possible to distinct what was meant with a word
that can have two different meanings.

Lemmatization can be done with rule-based and machine learning sys-
tems. An example of rule-based lemmatization is an RDR-lemmatizer (rip-
ple down rule) by Plisson et al. [40], which is practically a huge if-else-tree for
detecting different inflicted forms of Slovenian words. Accuracy of rule-based
systems depend on how complete set of rules have been created and also on
the language in question. Some languages have irregularities in the inflicted
forms, that may cause the rule-based systems to lemmatize words wrong.
In Finnish language, there is particularly consonant gradation, which affects
the root of the word with different inflections. There is a myriad of different
consonant gradation cases, and instead of going through them all, we will
only give a few examples below:

1. ‘lammas’ (sheep) → ‘lampaat’ (plural of sheep), the root of the word
gaining an extra ‘p’.

2. ‘puku’ (suit) → ‘puvun’ (suit’s), ‘k’ in the word root is transformed
into a ‘v’ in the genitive case

Korenius et al. [19] compared stemming and lemmatization techniques for
Finnish language, and concluded that lemmatization performs better than
stemming for Finnish language.

2.5 Statistical approach for text mining

Statistical approach for text mining means that numerical analysis of text
and it’s components is used to extract information from the text. Statisti-
cal approach usually needs large data sets and corpora. Simplest versions
often reduce a sentence to their mere components, sets of words or their
stems, discarding all the information about word order and relations between
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words. These kind of algorithms are called ‘bag-of-words’ methods. [28] Often
used statistical methods include word counting, sentence length counting,
co-occurrence checking and word distribution analysis.

2.5.1 Bag-of-words

In bag-of-words approach, the context and relations between words are ig-
nored. Instead, the words are considered as they are. This often causes
problems, as a large portion of information is lost. For example, one type of
problem arises with homographs, words that are typed exactly the same but
have a different meaning. Example below.

1. Peter saw a deer in the forest.
2. Julia bought a saw from the hardware store.

Here we have two sentences where a word ‘saw’ is present. For a human
reader, it is obvious that these two instances of ‘saw’ have nothing to do with
each other, as the first one is the past tense of the verb ‘see’, and the latter
refers to a tool. However, a simple statistical algorithm will consider them as
the same word, as it will not be able to resolve the homography. By context
analysis it would be possible to distinguish these two words. [53]

Another type of problem with this approach is the information loss for
not considering the word order. Sentences ‘Mary is quicker than John’ and
‘John is quicker than Mary’ seem the same for a bag-of-words algorithm. [28]

With more advanced natural language processing algorithms it is possible to
determine word dependencies from the word order and part-of-speech infor-
mation.

It is possible to construct sentences that have ambiguities that can not
be resolved. Helsingin Sanomat, Finland’s largest news paper, publishes a
daily comic strip Fingerpori, in which the ambiguities of Finnish language are
often used to make different sorts of puns. Luckily, these sorts of ambiguities
do not appear naturally so often, especially in clinical narratives. It is still
important to note that ambiguities exist, and that they may have some effect
on text mining results.

Bag-of-words approach is well suited for language detection or text clas-
sification, and it has been used to detect offensive language from social me-
dia, for example. [6] For more accurate information extraction purposes this
method alone is not very good, as the relations between words carry a lot of
information that is lost when processing texts just as a bag of words.
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2.5.2 Co-occurrence

In co-occurrence search, one tries to find two or more concepts or words from
a predetermined text block. This text block can be a sentence or a page, for
example. This is done to see if these two elements often are present at the
same time. If that is the case, we can then generalize that these two terms
are linked somehow. For example, Morinaga et al. used co-occurrence search
to mine product reputations from the internet with decent results. [33]

2.6 Natural Language Processing

Natural language processing is a variety of techniques that are used to ana-
lyze text and/or speech in a way that the relations of words and the correct
context are preserved. This is crucial in many text mining tasks, as most lan-
guages have many ambiguities like homography, synonymy, uncertain word
order, and such.

It is common, that the use of NLP-algorithm needs user input in form
of parameter tuning, preprocessing tasks and/or additional pre-created re-
sources. [38]. There are, however, some fully automatic algorithms and meth-
ods as well.

2.6.1 Rule-based systems

Rule-based systems utilize knowledge of the structure and vocabulary of the
text. Based on this knowledge, a set of rules is created to determine the
wanted output. Rule-based systems can give excellent results, but creating
a comprehensive set of rules is time consuming work, and needs to be done
for each text mining task separately.

There have been, however, some approaches where a small set of rules
have been found to provide decent, if not good results. Kilicoglu et al. [18]

provided an approach with only 27 grammar rules, derived from syntactic
dependency trees, that achieved good precision in event extraction tasks.
Their algorithm had F-scores1 of over 0.4, which can already be used for
preliminary filtering of documents, even though recall2 was not very good.

1See the definition from chapter 4.8.1
2See the definition from chapter 4.8.1
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2.6.2 Word vectorization

The idea of representing words as vectors was presented already in 1971 by
Salton. [43] Since then there have been multiple approaches to vectorize words.
The basic idea behind it is to depict a word using multidimensional vectors.
The goal is that each word has their own unique vector, and semantically
similar words have similar vectors, allowing the comparison of the meaning
of those words.

One of the latest word vectorization techniques, word2vec was introduced
by T. Mikolov et al. in 2013. [31] They demonstrated how a relatively simple
back propagating neural network can learn state-of-the-art level vectoriza-
tion for words if the learning data set is large enough, hundreds of millions
words or more. They demonstrated that the vectors created have interest-
ing arithmetic properties, so that, for example for the vectors following is
true: ‘King’ - ‘Man’ + ‘Woman’ = ‘Queen’. The algorithm was able to learn
such properties from the large corpora, without specifically providing these
relations that seem intuitive for a human reader.

2.6.3 N-gram

In computational linguistics n-gram means the contiguous segment of n items
from a given sequence of items. These items can be letters, words, syllables
or any meaningful component of the text. For example, in a sentence ‘John
ate a pizza.’, all the word 1-grams are ‘John’, ‘ate’, ‘a’, ‘pizza’, and all the
2-grams are ‘John ate’, ‘ate a’, ‘a pizza’. Similarily, first 5 character 1-grams
would be ‘John ’, ‘ohn a’, ‘hn at’, ‘n ate’ and ‘ ate ’. In natural language
processing the items are most commonly words, and the item sequences can
be sentences or entire documents.

N-grams can be used to derive relations between different words, that can
be further used for text analysis purposes. They can also be used as features
for many machine learning algorithms. N-grams also approximately follow
Zipf’s law that we discussed earlier. [3]

Considering character n-grams, it has been suggested that the mean
length of words in a language is a good indicator of morphological com-
plexity. [30] This also means that morphologically more complex languages,
such as Finnish, would require using longer character n-grams to extract
information.
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2.6.4 Kernel methods

There are some kernel methods for text mining purposes as well. The main
idea in kernel methods is to create a kernel that can map a low-dimendional
feature into a higher-dimensional feature space with low computational cost.
This new feature space can give a better separation between features, es-
pecially with linear classifiers. Lodhi et al. [24] proposed a novel method for
combining N-grams with kernel method to be used with support vector ma-
chines for text classification. The developed method made it possible to han-
dle much larger data sets by increasing the computational efficiency through
approximations. However, the string-kernel developed did not achieve very
good performance when compared to word and n-gram level kernels.

2.7 Keyword extraction

Keywords are words that try to describe a document or a set of documents
briefly. For example, many academic journals ask the writers to provide a
list of keywords for their article. [51] Keyword extraction can be seen as a type
of text summarization, a task that has been computerized as early as 1958
by Luhn [27].

There are various techniques for keyword extraction. It has been done
using word co-occurrences [29], with linguistic features like POS-tags [15], by
comparing term frequencies to a larger corpus [23], with rule-based genetic
algorithm [51] and many other methods. Frank et al. [10] tested multiple differ-
ent metrics with their Naive Bayes classifier that tried to classify words into
keywords and non-keywords. It turned out that the term frequency based
attributes and the position within the document were the only relevant at-
tributes for the task in their domain.

2.8 Classification

Classification is a task that aims to assign a label (also known as categories)
to some instance for which we do not already know the correct label. This
is achieved by using a training set of instances, for which the correct labels
are known. Based on the features (also known as observations, variables or
predictors) of the training data, a classifier can learn to classify new instances
with correct labels. Many text mining tasks can be reduced to binary or
multinomial classification. In this section we will briefly introduce relevant
classification techniques for our work.
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2.8.1 Decision trees

Decision trees are classifiers that predict the label of an instance based on
multiple features. They can also be used to predict ordered variables (nu-
merical variables, for example). [32] Decision trees work by splitting the given
dataset in multiple parts by simple rules. Each location where such split is
made is called a node and the resulting groups are called leaves. For classi-
fication and regression tasks, the rules for each split need to be learned in a
way that minimizes the final classification or regression error.

There are various different algorithms with many different metrics for
creating decision trees, and going through them all is not feasible. For those
interested, Wei-Yin Loh has written a good article on the history of regression
and classification trees. [25]

2.8.2 Ensemble learning

Ensemble learning methods rely in combining multiple learning methods to
provide better predictions than any of it constituents. If each individual
classifier performs better than a random guess, it follows that these classifiers
can be combined to work as a single stronger classifier. This was proven by
Robert Schapire in 1990. [45]

2.8.3 Random forests

Random forests are classifiers first proposed by Ho [14] and further developed
by Breiman [2] and Cutler. Random forest is an ensemble learning method
where the constituent learning methods are all randomly generated decision
trees. These trees branch based on the features that were selected during
the training of the random forest model. Each decision tree gives their own
prediction based on it’s own branching rules. These trees then vote for the
final result.

Random forests have been proven to be successful in many different tasks,
making them a good general purpose machine learning algorithm. Random
forests are also well parallelizable in both training and classification, and
classification is very quick after the model has been trained. For these rea-
sons, and for the ease of ”out-of-box”-implementation we selected random
forests as our machine learning algorithm.

A single decision tree is trained by taking a sample from all the training
data, then taking a sample from all training features and training the tree
minimizing the classification (or regression) error. Sampling of training data
is done to create differences in trees, to avoid local minima caused by always
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selecting the same strong features. Sampling of training features is done to
prevent strong features being used in all the trees, because it would make
these trees correlated, reducing the accuracy of the ensemble. [2]

2.9 Text mining of Finnish texts

Text mining from Finnish texts has been quite limited. Many natural lan-
guage processing tools and text mining resources that have been available for
English do not exist for Finnish. The same is true for many larger languages,
such as German [48]. Basic approaches like n-grams have been studied to some
extent with other languages than English, but at the time of writing, English
text mining research is well ahead of other languages.

The situation regarding Finnish natural language processing tools was im-
proved greatly in 2014 as Katri Haverinen created useful resources and tools
for Finnish text mining as a part of her PhD-thesis. [13] These tools include
syntactically annotated corpora, dependency annotated corpora and two
Finnish treebanks, one for general Finnish and another for clinical Finnish.
Also an online dependency parser was made available. These tools can be
used to relate the context, grammar and relation of words to each other,
allowing more advanced natural language processing methods.

2.10 Text mining of medical and clinical texts

Clinical, medical and biomedical text mining have been around for some time.
Even though these fields are closely related, there are major differences be-
tween them when regarding text mining. The texts in medical and biomedical
journals differ greatly from those that are found in clinical records. [44] Major
differences are found in length, vocabulary, usage of acronyms and amount of
spelling mistakes. Furthermore, journal entries usually have more structured
format with subtitles, pictures, diagrams and tables.

Information extraction from medical reports is a challenging task. A good
algorithm should be able to recognize prespecified conditions within the text.
These conditions may be family sicknesses, smoking status, previous diseases,
or any other thing that affects the patient’s health in some way.

There are some widely used algorithms that have showed good results in
extracting information from English clinical texts.

Laippala et al. [20] have tested how the training data set for clinical Finnish
text parsers affect the parsing outcome. They found that a large training set
of general Finnish performs worse than a smaller training set of clinical texts.
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This was true even when the clinical texts were not from the exactly same
medical domain.

Uzuner et al. [52] have held a competition to identify the smoking status
of patients from free texts. Many of the submitted algorithms scored a mi-
croaveraged F-score above 0.8, when classifying the patients’ smoking status
into five categories: past-smoker, current-smoker, smoker, non-smoker and
unknown, whereas the human annotators agreed on over 80% of the time.

Cogley et al. [7] tested several machine learning approaches for extracting
if and when a patient experienced a medical condition. This was done by
first extracting 16 binary variables, using trigger words, contextual features
and linguistic features, and then using Naive Bayes, kNN and Random Forest
algorithms. The latter two outperformed the ConText algorithm discussed in
the next section. They also found random forests to perform slightly better
than kNN.

2.10.1 Negation Extraction

Information extraction from clinical texts is one thing. In addition for that,
it needs to be known if the condition is negated, because clinical texts have
a very large number of negated conditions. In their research data Chapman
et al. [4] report that most frequent clinical observations were negated more
than half of the time. For example, ”patient smokes” and ”patient does not
smoke” should be distinguished from each other.

In addition to direct negations, it is also good to know if the condition
appeared in the past or if it was someone else who was reported to have that
condition instead of the patient themselves. These all can mean that the pa-
tient is not currently (in the time of writing the medical report) experiencing
the given condition.

NexEx-algorithm was published by Chapman et al. [5] in 2001. NexEx is a
relatively simple algorithm that tries to match a list of negation phrases that
co-occur with known ICD codes and their names. NegEx has also been ported
for Swedish [47], French [9] and German languages, showing good results.

Key figures of NegEx for English, Swedish, French and German can be
found from table 2.10.1. The figures reported are for detecting the negation
correctly from the sentences. German version of NegEx is slightly more
complex, as the negation phrases were allowed to be in two parts.
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en (%) sv (%) fr (%) de (%)
Recall 82.4 81.9 84.6 97

Specificity 82.5 74.7 NaN 95
Precision 84.5 75.2 88.8 95

Negative predictive value 80.2 81.4 NaN NaN
Negative predictive value

(no positives)
97.0 96.5 NaN NaN

NegEx-algorithm has been developed further to extract more informa-
tion than simple negations. Harkema et al. [12] developed Context-algorithm
which is based on NegEx, extracting not only the negation but temporal and
experiencer information as well.

2.11 Resources and tools for Finnish clinical

text mining

We have listed some Finnish language and text mining resources in this
section and some resources that may be used on a variety of languages. Most
of the resources are available for free use under open source licenses, but some
are restricted. We have also listed the licences at the time of the writing.

FinMeSH

Medical Subject Headings (MeSH) is a structured thesaurus maintained by
the US National Library of Medicine. A translated version of MeSH, Fin-
MeSH has been made available3 and maintained by Finnish Medical Society
Duodecim.

Turku Dependency Treebank

Turku Dependency Treebank (TDT) was created by Turku BioNLP Group.
It was first released as a stand-alone version, but it has been integrated into
Universal Dependencies4 project in 2015. Turku Dependency Treebank is
shared with CC BY-SA 4.0 license.

3https://finto.fi/mesh/fi/
4http://universaldependencies.org/

https://finto.fi/mesh/fi/
http://universaldependencies.org/
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Turku Clinical TreeBank and PropBank

Turku Clinical TreeBank and PropBank5 are text corpuses parsed and an-
notated by Turku BioNLP group. They are freely available for download,
and have been released with Creative Commons Attribution Share-alike li-
cence. The underlying text corpus consists of manually anonymized nursing
narratives of 8 patients, total of about 2800 sentences.

FinnPos

FinnPos6 is an open-source morphological tagging and lemmatization toolkit
for Finnish. Silferberg et al. [46] evaluated FinnPos against other available
morphological taggers and lemmatizers, showing that FinnPos performance is
at the state-of-the-art level in tagging and lemmatization accuracy, while still
maintaining a very good speed. FinnPos is released under Apache Software
License v2.0.

Word list of modern Finnish

The institute for the languages of Finland, Kotus, has created a word list
of modern Finnish words in 2007. The list7 contains 94110 Finnish words
in their basic forms along with the inflection types encoded in UTF-8 and
stored in XML-form. The list is released under GNU LGPL (Lesser General
Public License), EUPL v.1.1 and CC BY 3.0 ND. Kotus has also published
a wide variety of other Finnish resources8, that may be helpful when doing
text mining in other research areas.

Finnish stopwords

There are several collections of Finnish stopwords available on the internet.
One extensive list is provided by University of Neuchâtel on their website9.
Stopword lists are usually used for removing regularly used words. This
makes searching for keywords computationally less expensive, as words with
less importance are omitted. It is questionable if stopwords should be re-
moved in text mining, as those frequent words can have crucial information
about negations, time or doers. The algorithm developed during this thesis
work does not remove stopwords.

5http://bionlp.utu.fi/clinicalcorpus.html
6https://github.com/mpsilfve/FinnPos
7http://kaino.kotus.fi/sanat/nykysuomi/
8http://www.kotus.fi/aineistot/tietoa_aineistoista/sahkoiset_

aineistot_kootusti (In Finnish only)
9http://members.unine.ch/jacques.savoy/clef/

http://bionlp.utu.fi/clinicalcorpus.html
https://github.com/mpsilfve/FinnPos
http://kaino.kotus.fi/sanat/nykysuomi/
http://www.kotus.fi/aineistot/tietoa_aineistoista/sahkoiset_aineistot_kootusti
http://www.kotus.fi/aineistot/tietoa_aineistoista/sahkoiset_aineistot_kootusti
http://members.unine.ch/jacques.savoy/clef/


CHAPTER 2. BACKGROUND 28

FinTWOL

FinTWOL is a morphological parser for Finnish. It is a product developed
by Lingsoft10. They provide a limited use FinTWOL online demo on their
web-page.

OMorFi

OMorFi is an open-source morphological analyzer for Finnish language. It is
freely available for download11 and is released under GNU GPL v3 licence.

FinnWordNet

FinnWordNet12 is a lexical database for Finnish. It is a semantic network,
linked through relations such as synonymy and antonymy. The first version
was a direct translation of Princeton’s English WordNet. Current FinnWord-
Net version 2.0 was released in 2012 under CC-BY 3.0 licence and is also a
subject to original Princeton WordNet licence.

OpenNLP

OpenNLP13 is an open-source toolkit for natural language processing. It
provides tools for many generally used natural language processing tasks,
such as tokenization, lemmatization and part-of-speech tagging. OpenNLP
is a Java library, and it can be run on Java Virtual Machine. At the time
of writing, the latest OpenNLP version is 1.7.2 (released on 4th of February,
2017), and is licensed under Apache Licence 2.0.

10www.lingsoft.fi
11https://github.com/flammie/omorfi
12http://www.ling.helsinki.fi/en/lt/research/finnwordnet/index.

shtml
13http://opennlp.apache.org/

www.lingsoft.fi
https://github.com/flammie/omorfi
http://www.ling.helsinki.fi/en/lt/research/finnwordnet/index.shtml
http://www.ling.helsinki.fi/en/lt/research/finnwordnet/index.shtml
http://opennlp.apache.org/
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Environment

Hospital District of Helsinki and Uusimaa

Hospital District of Helsinki and Uusimaa is the largest hospital district
in Finland, providing specialized medical care services for over 1.6 million
residents in 24 municipalities. HUS treats around 500 000 patients each
year, creating vast quantities of specialized health care data. It should be
emphasized that all this data is specialized health care data, and does not
contain any primary health care data. Because of this, one should not try
draw any conclusions of general population based on numbers presented in
this thesis.

Data lake

The electronic health records of the Hospital District of Helsinki and Uusimaa
(HUS) are located in multiple different databases. To provide researchers an
access to some of these records, HUS has created a data lake (‘tietoallas’ in
Finnish), the pre-production version of which was first opened in the first
quarter of 2017 after development period and data migration from source
databases.

The data lake is built in HDInsight. It runs many services, but in the
scope of this work we mainly use its Spark cluster with Hive integration. Our
main method for running Spark jobs on the cluster is through Livy, which
provides a REST API for running batch jobs on Spark.

At the time of writing, HUS data lake Spark cluster consists of 2 host
nodes and 3 worker nodes. These worker nodes have 4 cores and 13.69 GB
RAM each. At this early stage the cluster is not very large, but can relatively
easily be scaled up when needed.

29
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Apache Spark

During the development of our algorithm, we used Apache Spark 2.0.2, which
was later updated to version 2.1. Apache Spark is a general-purpose clus-
ter computing platform. It provides application programming interfaces for
Scala, Java, Python and R. These APIs provide a wide range of functionality
from simple statistical tools to machine learning algorithms.

3.1 Programming languages

Scala

To develop text mining algorithms we used Scala 2.11.11. We selected Scala,
because Apache Spark is Scala native, and this quite possibly eliminates
multiple bottlenecks and other compatibility issues that might be present
when using Spark through some other language APIs.

Scala is also a relatively efficient language in terms of computational time,
and it runs on Java Virtual Machine (JVM) so that it can easily be run on
multiple platforms.

Java

Apache OpenNLP library has been written using Java, and all it’s documen-
tation was also in Java only. To use this library for lemmatization, we used
mixed Java/Scala code. This was possible, as Java libraries can easily be
imported in Scala, and because both languages can be run on Java Virtual
Machine.

Python

At first we did some development on Python, but we quickly realized that
Spark’s Scala API would be a better choice for our work. It would have been
possible to do all the work with Python, but Spark’s Scala API provided
better usability and integrating Apache OpenNLP was easier with Scala.

Other programming languages

We tested some tools created by third parties, that have been written in other
languages than described above, namely C and C++. These tools could be
useful, but making them work together with our Spark cluster would have
been too much work, especially when similar tools were available in JVM
supporting languages.
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3.2 Data sets

We are using two datasets to develop and test our algorithm. The first one is
a dataset consisting of all HUS’s patients who have a heart attack diagnosis
in their records (ICD10 codes I21 and I22) and a similar number of random
patients who do not have this diagnosis. In this data set, there are 2678349
patient record texts from 36571 patients, of which 18654 have been diagnosed
with myocardial infarction.

For keyword extraction purposes, we require a baseline for word frequen-
cies in patient record texts. For this purpose, we used a random sample from
all HUS’s patient record texts. This random sample consisted of 1048576
patient record texts.

To evaluate the generalizability of our pipeline, we additionally tested
it on a customer feedback dataset. This dataset consisted of 1165 feedback
texts, labelled with positive/neutral/negative sentiment tags.
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Methods and Implementation

4.1 Text mining pipeline

In this chapter, we will go through the methods and implementation of our
text mining pipeline. We will also explain the reasoning behind our design
choices, where applicable. Parts of the process are explained in the same
order that the data goes through in our algorithm, so that each step should
be easy to follow.

When we began building our text mining pipeline, we had a few require-
ment for the final system. The requirements were:

• built on HUS’s new Spark cluster

• general purpose

• modular

• interpretable results (no black box models)

• fast (in our case equals well parallelizable)

A text mining process naturally consists of multiple smaller subroutines.
It was quite easy to link these tools together while maintaining modularity
of the system. These processes and subroutines make up the text mining
pipeline. The final pipeline used in this work is shown in figure 4.1.

4.2 XML Parser

Most patient records in HUS are stored in XML format. However, there are
also patient records that are in plain text. Our first part of the XML-parser

32
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Training Classification

Training data
(Patient records

with labels)

Data
(Patient records
without labels)

XML parser

XML-free patient
records + labels

XML-free patient
records

Lemmatizer

Lemmatized
sentences + labels

Lemmatized
sentences

NegEx

Feature vectors +
labels

Feature vectors

Random forest
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Random forest
model

Random forest
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(labels)
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TF-IDF
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Keywords for
patient group

List of
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Figure 4.1: Text mining pipeline created during the thesis work. Each green
box represents an individual component that can be replaced or developed
further. White boxes represent the state of our data between each processing
component. Blue boxes represent resources that have been created prior to
running this algorithm.
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is a short regex-code that looks for valid XML-tags, and feeds the input to
the actual XML-parser when those tags are found.

The XML structure of patient records has many different predefined sec-
tions and subtitles that are automatically or semi-automatically created when
a doctor writes the patient record. All these sections and chapters were in-
dividually stored as single XML-nodes, that were nested within each other.
The count of these nodes varied, and it was not possible to know or predict
how many there will be in a single document.

We used the standard Scala XML Library to parse patient record text
from the XML. We used recursive parsing of the XML, because of the nested
structure and unknown number of nodes. Each node’s text was appended
into a single string, collecting the patient record text in it’s entirety.

4.3 Spell-check

Medical records are usually not spell-checked, in order to prevent the com-
puter from guessing a wrong word to replace a misspelled one. For text
mining algorithms, alternating spellings of the same word can be a problem,
as they would not be considered the same word. As the texts are usually
very quickly written, it is a good idea to have some form of spelling check or
typo handling in place.

In this thesis work we decided not to implement a separate spell checker.
This task was left for the lemmatizer, which will be explained in the next
section. Implementing a good spell checker could improve results, but we
expect this effect to be very small.

4.4 Lemmatization

Lemmatization is a relatively difficult task in it’s own and creating a lemma-
tizer from a scratch was clearly out of scope of this thesis work. Therefore,
we used open-source tools for lemmatization.

We used Apache OpenNLP 1.7.21 for lemmatization. The OpenNLP
lemmatizer requires the input sentences to be tokenized and part-of-speech-
tagged. Therefore, we used OpenNLP tools for sentence splitting, tokeniza-
tion and part-of-speech-tagging as well. These four parts make up our lem-
matizer block.

1http://opennlp.apache.org/download.html

http://opennlp.apache.org/download.html
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To train the OpenNLP minimum entropy models, we used Universal De-
pendencies 1.4 Finnish treebank2.

OpenNLP was updated to version 1.8.0 on 18th of May 2017. Due to
time limitations we did not update this version to our algorithm. Making
the required changes would make our lemmatizer code a little more straight-
forward and add a direct CONLL-U support, which is needed in training the
lemmatizer.

Lemmatizing is fully parallelizable, but it is still very slow. It takes
roughly 16 hours to lemmatize one million patient record texts on our 12-
core cluster. This is roughly 1000 patient records per minute. Fortunately,
lemmatization only needs to be done once for each patient record.

4.5 Keyword extraction

NegEx algorithm needs keywords that are searched from the text. Manually
creating a complete list of all relevant keywords is nearly impossible, and
requires a lot of time and expertise. Creating these keyword lists must also
be done for each text mining task separately, which means that doing it
manually would require a lot of time from doctors. This wasn’t a good
option for us, so we decided to implement an automatic keyword extraction
method for our algorithm.

Our keyword extractor calculates word frequencies for every word that
occurs in HUS’s medical reports. It also calculates the fraction of all the
medical records that contain that same word. By comparing the frequencies
from the entire medical report database with those of our special interest
(specific diagnose, or any known condition), we hope to be able to recognize
the relevant keywords that are linked to a specific condition.

The method described above is known as TF-IDF. It stands for term
frequency - inverse document frequency. Variants of it are widely used in
the field of text mining, even though the information theoretical justification
for it’s use is unclear to some extent. [42] TF-IDF-ranking does, however seem
like an intuitive way to rank words as keywords for a specific document set.
The rationale behind TF-IDF is that infrequent words in the entire corpora
that are frequently present in a subset of the corpora, are very likely to be
good keywords for that subset. Thus, searching with those keywords would
return documents belonging to that specific subset, and not so much other
documents.

TF-IDF approach has been previously used with multiple parameters and

2https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-1827

https://lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-1827
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tweaks with good results. [23] Usually it is used to extract single keywords,
but a word bigram expansion has also been tested by Liu et al. achieving
improvement over the traditional version. [22]

There are many ways to scale and normalize TF-IDF measures. Wikipedia
has a great listing of different scalings: https://en.wikipedia.org/wiki/

Tf-idf

Term frequency is calculated for each lemma in the patient records of our
group of interest (e.g. patients that have had a heart attack). It is com-
monly assumed that term relevance does not linearly follow term frequency,
and therefore a damping should be used for TF. Most common damping
method is to use log(TF) measure instead. [37] We selected this same method
with a small constant correction to avoid negative TFs. Our TF function is
presented in equation 4.1.

In this work we used TF-IDF with logarithmic normalizations. TF nor-
malization was calculated using

tf(t, d) = 1 + log(ft,d), (4.1)

where ft,d is the frequency of a term t in the subset d of patient records.
Inverse document frequency is calculated on a document level. This

means that we calculate the frequency of documents that contain the lemma.
This frequency is the inverted and again logarithmically scaled. Inverse doc-
ument frequency is defined in equation 4.2. For IDF we used

idf(t,D) = log

(
1 +

N

nt

)
, (4.2)

where N is the number of all patient records D and nt is the number in which
the term t is present.

Finally, term frequency and inverse document frequencies for each lemma
are multiplied with each other to achieve TF-IDF ranking. Words with the
highest rank should be better keywords for our patient group than those with
lower rank. We can then use any number of highest ranking words as NegEx
keywords. Final TF-IDF ranking was then calculated with

TF-IDF(t, d,D) = tf(t, d) · idf(t,D) (4.3)

4.6 NegEx

We created a simple implementation of NegEx-algorithm. This algorithm
searches for given keywords, and any negation words within a specified dis-
tance range from keywords. For our work, we used following negation words:

https://en.wikipedia.org/wiki/Tf-idf
https://en.wikipedia.org/wiki/Tf-idf
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‘ei’ (=‘no’), ‘eikä’ (=‘and not’) and ‘ilman’ (=‘without’). Our NegEx-algorithm
outputs feature vectors that can be directly used in Spark MLlib.

Feature vectors are created by taking a vector of zeros with a length of the
given keyword list. When a keyword is found, the corresponding element in
the feature vector is updated. If there is a negation word present within the
scope, we deduct 1 from the element, otherwise we add 1. Feature vector is
calculated for each medical report separately, and they are summed element-
wise for each patient when patient level features are needed.

4.7 Random forest classifier

Once we have a feature vector for each patient record (or patient by summing
the individual feature vectors), we can train a random forest model. For this
we use Spark MLlib random forests. We left 30 % of the training data out for
validation purposes and used 70 % for training. This training and validation
dataset was entirely separate from our final validation dataset.

Instead of random forests, we could use some other machine learning
methods or classifiers. Comparison of different machine learning methods
was left out of scope of this work, but it is definitely something that should
be done in the future.

When we have patient records without labels and a pre-trained random
forest classifier model, we can classify these unknown patient records with
our random forest model.

4.8 Evaluation of the algorithm

In this section, we will go through classification metrics that are commonly
used.

4.8.1 Precision, recall and F-score

For binary classification, data can belong to four categories. These categories
are true positive (TP), false positive (FP), true negative (TN) and false
negative (FN). The category depends on the actual and predicted label of
the item, as shown in figure 4.2.

Standard way of evaluating clustering, named entity recognition and other
identification tasks is to use precision, recall and F-measure. Perfect algo-
rithm returns all the interesting documents and there are no uninteresting
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Figure 4.2: Confusion matrix of binary classification.

documents in the search results. Precision and recall are derived from true
positives, true negatives, false positives and false negatives as follows.

Let us assume a task of identifying interesting documents out of a large
set of documents. Precision of the algorithm tells us what proportion of those
documents that were retrieved, were actually interesting. Precision P can be
calculated as

P =
NTP

NTP +NFP

, (4.4)

where NTP is the number of true positives and NFP is the number of false
positives.

Recall (also known as sensitivity) gives us the proportion of the interesting
documents that were retrieved from all the interesting documents in that set.
Recall R is given by

R =
NTP

NTP +NFN

, (4.5)

where NFN is the number of false negatives.
It should be noted, that it is trivial to make an algorithm that has the

recall of 1, simply by returning every document as it guarantees that all the
desired documents will be returned. Precision can be ‘hacked’ in the similar
manner, simply returning a single document that has the desired feature and
nothing else. Considering this, it becomes clear that one can trade precision
for recall and vice versa. Therefore, both of these measures need to be taken
into account when determining the performance of an algorithm. For this
purpose, F-measure can be used. There are both weighted and unweighted
F-measures. Standard, unweighted F-measure F is the harmonic mean of
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Figure 4.3: A diagram to illustrate precision and recall. An algorithm (circle)
returns total of 12 documents. 9 of the returned documents have the desired
feature (label P, (3) and 3 do not (label N, 8). Precision is therefore 9/12.
There were 14 documents with the desired feature, but only 9 of them were
returned, so recall is 9/14.

precision and recall,

F = 2 · P ·R
P +R

. (4.6)

4.8.2 Receiver operating characteristics

Another common way to evaluate binary classifiers is receiver operating char-
acteristics (ROC) curve. Binary classifiers usually produce a continuous vari-
able that is used to determine the class together with a threshold. ROC curve
is true positive rate plotted against false positive rate at any given threshold.
This allows the user to tune the threshold to take different kinds of trade-
offs into account. For example, when selecting patients for screening, it is
likely that false positives should not be penalized very strongly, as screening
is not likely to have adverse effects. Situation would be completely opposite
when deciding whether a patient should be given some medicine with known
side-effects.

Receiver operating characteristics space has a range [0,1] on both x-axis
(false positive rate, FPR) and y-axis (true positive rate, TPR). False positive
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rate and true positive rate are defined in equations 4.7 and 4.8. Next we will
go through some points on that space. Point (0,0) represents a classifier
which always predicts negative class and (1,1) always predicts positive class.
A straight line from the origo to (1,1) is the so-called ‘random-guess line’,
which depicts a classifier that randomly guesses the class. A perfect classifier
would have a ROC curve that goes through (0,1), meaning 100% true positive
rate and 0% false positive rate.

Fall-out or false positive rate (FPR) is given by

FPR =
NFP

N
, (4.7)

where N is the number of all classified items. Sensitivity or true positive rate
(TPR) is given by

TPR =
NTP

NP

=
NTP

NTP +NFN

, (4.8)

where NP is the number of all positive cases in the classification data.
Any reasonable classifier has a ROC curve that is clearly over the random-

guess line. Being well under it is also acceptable, as it simply means that the
classifier’s results should be re-mapped so that all positives become negatives
and vice versa. A classifier is the better the higher area it covers. Therefore,
it is meaningful to use the area under the curve (AUC) as a summarizing
evaluation metric for binary classifiers. This is simply the integral over the
ROC-range. AUC is also known as c-statistic.

4.8.3 K-fold cross-validation

K-fold cross-validation is a technique, where the training set for a classifier
is divided into K parts. Then a single part out of these K parts is left out
from training, and used as validation dataset. This process is run separately
for each K folds, and the chosen evaluation metrics are averaged over all
of them. In this thesis work, we use K-fold cross validation (with K=5) in
random forest parameter tuning.
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Evaluation

Myocardial infarction dataset

We used myocardial infarction data for preliminary parameter tuning. This
dataset consists of 2678349 patient record texts from 36571 patients, of which
18654 who have been diagnosed with myocardial infarction (ICD10 codes I21
and I22). The task was to classify patients into two groups, patients that
have not had a heart attack, and patients that have had a heart attack. We
divided the dataset into two parts, 70% into parameter tuning and training
and 30% into testing. The 70% training data was further divided into 5 ap-
proximately same size subsets for k-fold cross-validation. These 5 folds were
kept constant for the entire validation, as calculating the word frequencies
etc. again for each randomization would have slowed down the evaluation
process significantly.

For the starting point of our parameter tuning, we selected following
parameters:

• Nkeywords = 1000

• depthmax = 30

• Ntrees = 250

For the simplicity, we used F-score to evaluate the goodness of the param-
eters. One-by-one, we tuned different parameters, starting from the maxi-
mum depth of trees. Results for the tree depth tuning can be seen in fig-
ure 5.1. F-score stays practically constant regardless of the maximum tree
depth. There is some strange behaviour with tree depths of 13 and 14, that
we can not explain. Training deeper trees takes only a little more time than
training shallower trees, and there was no sign of serious overfitting, so we
decided to use 30 as our maximum depth of trees, which is also the maximum
supported depth in Spark’s ML library.

41
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Figure 5.1: Classification metrics for parameter tuning, when tree count and
number of keywords were kept constant and number of keywords was varied.
The results are an average of 5-fold cross-validation. Lines were validated
on the partition of data that was left out of training, separate ticks were
validated on the training data consisting of 4 partitions.
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Figure 5.2: Classification metrics for parameter tuning, when tree count and
number of keywords were kept constant and number of keywords was varied.
The results are an average of 5-fold cross-validation. Lines were validated
on the partition of data that was left out of training, separate ticks were
validated on the training data consisting of 4 partitions.

After determining optimal maximum tree depth, we tuned the number
of trees in our random forest. In figure 5.2 we can see that the classification
metrics stay almost constant regardless of the tree count. There is, however,
a slight trend upwards with respect to the tree count. In theory, there should
be no harm in having higher tree count, other than longer training time, so
we conservatively selected tree count of 250 to be used later.

First, we ran 5-fold cross-validation for the number of keywords ranging
from 100 to 2000. We soon noticed that 2000 words was too low upper limit.
It was not possible to say whether F-score would keep rising above 2000
words, so we ran another parameter validation run in the range from 2000 to
14000 keywords with a stepping of 2000 keywords. Both results can be seen
in figure 5.3. From the figure we can see that the classification F-score does
not get significantly better after 10000 words. Additionally, with our current
cluster it was not possible to use more than 14000 words, due to memory
limitations.

For sanity check, we ran evaluation runs again, starting with the first
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Figure 5.3: Classification metrics for parameter tuning, when tree count and
depth were kept constant and number of keywords was varied. The results are
an average of 5-fold cross-validation. Lines were validated on the partition
of data that was left out of training, separate ticks were validated on the
training data consisting of 4 partitions.
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Figure 5.4: Receiver operating characteristics curve. Pure text mining task,
all patient record texts were included, both before and after the diagnosis of
myocardial infarction. Area under ROC = 0.825.

round’s optimal parameters. There were no noticeable changes. We con-
cluded that the following parameters are optimal, or close enough to optimal
in our use:

• Nkeywords = 10000

• depthmax = 30

• Ntrees = 250

We tested the generalization of our algorithm with these parameters with
our 30% test data. Area under receiver operating characteristics curve was
0.825 in this task. The ROC curve can be seen in figure 5.4.

After getting encouraging results in pure text mining task, we created
another data set from our myocardial infarction data. This new dataset
consists of the patient record texts that were recorded 28 days or more before
the first myocardial infarction diagnosis. Therefore, these texts should not
have any direct signs of a heart attack, but possibly features that could
predict one. We found that even with this time filtering the results are good.
Receiver operating characteristics curve of this prediction task can be seen
in figure 5.5.
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Figure 5.5: Receiver operating characteristics curve for predicting myocar-
dial infarction. Only patient record texts ≥28 days before patients’ first
myocardial infarction diagnosis were included. Area under ROC = 0.807.
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Customer feedback dataset

Our algorithm was additionally tested on customer feedback data. This
dataset consisted of 1165 feedback texts, that an expert had classified into
three categories: positive, negative and neutral. Because the dataset was
small, we did not rank the keyword candidates with TF-IDF, but used all
the distinct lemmas that were present in the texts. For this task we did not
do separate parameter tuning, but used the parameters that were found to
be best with the myocardial infarction dataset.

The dataset was randomly divided into 10 approximately same size sub-
sets. To classify all the feedbacks, we classified each of these subsets sepa-
rately. Each subset was classified using a model that was trained only with
the 9 other data subsets. By classifying texts with this method, we were able
to match the expert’s classification in 916 feedback texts out of the total
1165. This equals to 78.6% success rate. For comparison, another human
classifier agreed on the expert’s classification for 87.1% of the time.
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Discussion

In this work we created a multipurpose text mining tool that works for
Finnish texts in medical domain. Our targeted user group was HUS’s data
scientists, who can now use the created tool within HUS data lake environ-
ment. We showed that our algorithm works within medical domain, but as
there are no domain specific parts, it could also be used outside the medical
domain.

Our algorithm can classify patients into groups based on their patient
record texts. The groups can be arbitrary, as long as the user provides suffi-
cient training data for each group (or class). It is likely that our algorithm’s
accuracy depends greatly on the selected target grouping and the amount of
training data given. However, from the 3 different use cases tested, we can
assume good classification accuracy in very different tasks.

Medical text classification has been done before, but it is not easy to com-
pare different approaches, when the data and the language are different. The
closest comparison we found during our literature review was in Suominen’s
doctoral dissertation. They tested binary topic labeling with machine learn-
ing techniques for Finnish nursing notes, achieving classification accuracy
between 0.44 to 0.69, depending on the topic in question. [50]

To our knowledge, this type of classification task has not been reported
for Finnish medical texts. Therefore, our work could be considered as some
type of baseline for text classification in Finnish medical domain.

Further development of our algorithm requires component-wise evalua-
tion and separate human annotated training data for each task. If we allow
black box models in our pipeline, a wider range of machine learning methods
could be tested in this task. Especially neural networks (deep convolutional
or recurrent) could provide interesting results in this task, but require the
feature vectors or the entire pipeline to be revamped. For example, there are
neural network approaches that learn text features from the character level,
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instead of word (or lemma) level, like we did in this thesis work. Future work
could also include testing the algorithm’s predictive capabilities on primary
health care data, when it is available.

6.1 Limitations

The main limitation for the usage of our algorithm is, that any problem must
be reduced to a classification or regression task. For example, our tool does
not provide means to search for individual laboratory results. Additionally,
the algorithm benefits from very large training data, and the classification
accuracy may be hindered if given too small training data sets. The availabil-
ity of sufficiently large training data is often limited due to privacy concerns,
but it may be solved with anonymization and data shuffling techniques.

Many of the components used in our text mining pipeline are likely not
at the state-of-the-art level, and significant improvements may be available
by replacing single components in the pipeline. It would not have been
possible to test and evaluate each component separately during this thesis
work. Many of the state-of-the-art methods were not readily available for
Spark environment and implementing them from a scratch would have taken
too much time. For example, instead of using a maximum entropy machine
learning lemmatizer provided within OpenNLP, it would be interesting to see
how well lemmatization can be done with algorithms that use dependency
parsing. Likewise, our random forest classifier might be replaced with some
convolutional neural network approach.

When evaluating the results in this thesis, one needs to keep in mind,
that Hospital District of Helsinki and Uusimaa only offers special healthcare.
We do not have access to primary health care data or social care data, and
therefore we can not directly access some very important information about
patients’ health. In the future this may change, as the electronic health
record systems are unified within Helsinki region and new counties begin
their work. Our algorithm should be re-evaluated with this expanded data,
if this happens.
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Conclusions

Our goal in this work was to create a text mining pipeline, that is modular,
works on Apache Spark, is general purpose, does not have black box models
and is relatively fast. In this thesis we created a multipurpose text mining
tool for Finnish medical domain with the given properties. We found that the
textual features do not need to be very complex for an algorithm to perform
well.

We also tested the same algorithm on a prediction task. We showed
that our algorithm can be used for predicting diagnoses by restricting our
algorithms access to only pre-diagnosis texts. From this test it becomes also
clear that patient record texts created in special health care have features
that can be used for predicting future diagnoses.

Before and during the development of our algorithm we conducted a lit-
erature review, that can be used to get acquainted to text mining and tools
available for that purpose.

We created a text mining pipeline that works with the tasks we tested
it with. The pipeline has no domain specific information, allowing it to be
tested for many different text mining tasks and used as is, or only be used as a
baseline for other approaches. The created text mining algorithm is available
for HUS’s data scientists to use within HUS’s data lake environment.
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[9] Deléger, L., and Grouin, C. Detecting negation of medical prob-
lems in french clinical notes. In Proceedings of the 2nd ACM SIGHIT In-
ternational Health Informatics Symposium (New York, NY, USA, 2012),
IHI ’12, ACM, pp. 697–702.

[10] Frank, E., Paynter, G. W., Witten, I. H., Gutwin, C., and
Nevill-Manning, C. G. Domain-specific keyphrase extraction. In
Proceedings of the Sixteenth International Joint Conference on Artifi-
cial Intelligence (San Francisco, CA, USA, 1999), IJCAI ’99, Morgan
Kaufmann Publishers Inc., pp. 668–673.

[11] Gillum, R. F. From papyrus to the electronic tablet: A brief history of
the clinical medical record with lessons for the digital age. The American
Journal of Medicine 126, 10 (2013), 853–857.

[12] Harkema, H., Dowling, J. N., Thornblade, T., and Chapman,
W. W. Context: An algorithm for determining negation, experiencer,
and temporal status from clinical reports. J. of Biomedical Informatics
42, 5 (Oct. 2009), 839–851.

[13] Haverinen, K. Natural Language Processing Resources for Finnish.
PhD thesis, University of Turku, 8 2014.

[14] Ho, T. K. Random decision forests. In Proceedings of the Third Inter-
national Conference on Document Analysis and Recognition (Volume 1)
- Volume 1 (Washington, DC, USA, 1995), ICDAR ’95, IEEE Computer
Society, pp. 278–282.

[15] Hulth, A. Improved automatic keyword extraction given more lin-
guistic knowledge. In Proceedings of the 2003 Conference on Empirical
Methods in Natural Language Processing (Stroudsburg, PA, USA, 2003),
EMNLP ’03, Association for Computational Linguistics, pp. 216–223.

[16] Institute for the Languages of Finland. Institute for the lan-
guages of finland webpage. http://www.kotus.fi/kielitieto/kielet/

suomi. [referenced: 13.12.2016].

[17] Kamps, J., Adafre, S. F., and de Rijke, M. Effective Translation,
Tokenization and Combination for Cross-Lingual Retrieval. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2005, pp. 123–134.

http://cordis.europa.eu/project/rcn/34076_en.html
http://cordis.europa.eu/project/rcn/34076_en.html
http://www.kotus.fi/kielitieto/kielet/suomi
http://www.kotus.fi/kielitieto/kielet/suomi


BIBLIOGRAPHY 53

[18] Kilicoglu, H., and Bergler, S. Effective bio-event extraction using
trigger words and syntactic dependencies. Computational Intelligence
27, 4 (2011), 583–609.

[19] Korenius, T., Laurikkala, J., Järvelin, K., and Juhola, M.
Stemming and lemmatization in the clustering of finnish text documents.
In Proceedings of the Thirteenth ACM International Conference on In-
formation and Knowledge Management (New York, NY, USA, 2004),
CIKM ’04, ACM, pp. 625–633.

[20] Laippala, V., Viljanen, T., Airola, A., Kanerva, J.,
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[52] Uzuner, Ö., Goldstein, I., Luo, Y., and Kohane, I. Identifying
patient smoking status from medical discharge records. Journal of the
American Medical Informatics Association 15, 1 (2008), 14–24.

[53] Yarowsky, D. Homograph Disambiguation in Text-to-Speech Synthe-
sis. Springer New York, New York, NY, 1997, pp. 157–172.

[54] Zipf, G. Human behavior and the principle of least effort: an introduc-
tion to human ecology. Addison-Wesley Press, 1949.

http://www.stat.fi/til/vaerak/2015/vaerak_2015_2016-04-01_tau_002_en.html
http://www.stat.fi/til/vaerak/2015/vaerak_2015_2016-04-01_tau_002_en.html

	Cover page
	Abbreviations and Acronyms
	Contents
	1 Introduction
	1.1 Problem statement
	1.2 Structure of the thesis

	2 Background
	2.1 Text mining in general
	2.2 Terminology
	2.3 Finnish language
	2.4 Common preprosessing tasks
	2.4.1 Sentence segmenting
	2.4.2 Tokenization
	2.4.3 Stemming
	2.4.4 Lemmatization

	2.5 Statistical approach for text mining
	2.5.1 Bag-of-words
	2.5.2 Co-occurrence

	2.6 Natural Language Processing
	2.6.1 Rule-based systems
	2.6.2 Word vectorization
	2.6.3 N-gram
	2.6.4 Kernel methods

	2.7 Keyword extraction
	2.8 Classification
	2.8.1 Decision trees
	2.8.2 Ensemble learning
	2.8.3 Random forests

	2.9 Text mining of Finnish texts
	2.10 Text mining of medical and clinical texts
	2.10.1 Negation Extraction

	2.11 Resources and tools for Finnish clinical text mining

	3 Environment
	3.1 Programming languages
	3.2 Data sets

	4 Methods and Implementation
	4.1 Text mining pipeline
	4.2 XML Parser
	4.3 Spell-check
	4.4 Lemmatization
	4.5 Keyword extraction
	4.6 NegEx
	4.7 Random forest classifier
	4.8 Evaluation of the algorithm
	4.8.1 Precision, recall and F-score
	4.8.2 Receiver operating characteristics
	4.8.3 K-fold cross-validation


	5 Evaluation
	6 Discussion
	6.1 Limitations

	7 Conclusions

