
Distributed Computing Framework
Based on Software Containers for
Heterogeneous Embedded Devices

Daniel José Bruzual Balzan

School of Science

Thesis submitted for examination for the degree of Master of
Science in Technology.
Espoo 9.10.2017

Supervisors

Mario Di Francesco, PhD.

Yannis Velegrakis, PhD.

Advisor

Mario Di Francesco, PhD.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aaltodoc Publication Archive

https://core.ac.uk/display/132598634?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Aalto University, P.O. BOX 11000, 00076 AALTO
www.aalto.fi

Abstract of the master’s thesis

Author Daniel José Bruzual Balzan

Title Distributed Computing Framework Based on Software Containers for
Heterogeneous Embedded Devices

Degree programme ICT Innovation

Major Service Design and Engineering Code of major SCI3022

Supervisors Mario Di Francesco, PhD., Yannis Velegrakis, PhD.

Advisor Mario Di Francesco, PhD.

Date 9.10.2017 Number of pages 58 Language English

Abstract
The Internet of Things (IoT) is represented by millions of everyday objects en-
hanced with sensing and actuation capabilities that are connected to the Internet.
Traditional approaches for IoT applications involve sending data to cloud servers
for processing and storage, and then relaying commands back to devices. However,
this approach is no longer feasible due to the rapid growth of IoT in the network:
the vast amount of devices causes congestion; latency and security requirements
demand that data is processed close to the devices that produce and consume it;
and the processing and storage resources of devices remain underutilized. Fog Com-
puting has emerged as a new paradigm where multiple end-devices form a shared
pool of resources where distributed applications are deployed, taking advantage of
local capabilities. These devices are highly heterogeneous, with varying hardware
and software platforms. They are also resource-constrained, with limited avail-
ability of processing and storage resources. Realizing the Fog requires a software
framework that simplifies the deployment of distributed applications, while at the
same time overcoming these constraints. In Cloud-based deployments, software
containers provide a lightweight solution to simplify the deployment of distributed
applications. However, Cloud hardware is mostly homogeneous and abundant in
resources. This work establishes the feasibility of using Docker Swarm – an existing
container-based software framework – for the deployment of distributed applications
on IoT devices. This is realized with the use of custom tools to enable minimal-size
applications compatible with heterogeneous devices; automatic configuration and
formation of device Fog; remote management and provisioning of devices. The
proposed framework has significant advantages over the state of the art, namely, it
supports Fog-based distributed applications, it overcomes device heterogeneity and
it simplifies device initialization.

Keywords Internet of Things, Software Containers, Fog Computing, Lightweight
Virtualization, Embedded Devices, Docker Swarm

3

Contents
Abstract 2

Contents 3

Abbreviations and Acronyms 5

1 Introduction 6
1.1 Scope and Goals . 7
1.2 Contribution . 8
1.3 Structure . 8

2 System Virtualization 9
2.1 Hypervisor-based Virtualization . 9
2.2 Container-based Virtualization . 10

2.2.1 Control Groups . 11
2.2.2 Namespaces . 12

2.3 Docker . 13
2.3.1 Docker Image . 14
2.3.2 Docker Container . 15
2.3.3 Dockerfile . 16
2.3.4 Multi-Stage Dockerfile . 17
2.3.5 Registry . 18
2.3.6 Image Manifest . 18

2.4 Container Orchestration Frameworks 20
2.5 Docker Swarm . 22

2.5.1 Nodes . 22
2.5.2 Swarm Management . 23
2.5.3 Services . 24
2.5.4 Networking . 26
2.5.5 Service Discovery . 28
2.5.6 Load Balancing . 29

3 From the Internet of Things to Fog Computing 30
3.1 Device Heterogeneity . 31
3.2 Computational Models . 32
3.3 Software Containers in Fog Computing 33
3.4 Resin.io . 34

4 Design and Implementation 37
4.1 System Architecture . 37
4.2 Remote Management . 38
4.3 Swarm Initialization . 39
4.4 Device Heterogeneity . 41

4.4.1 Multi-Architecture Images . 42

4

4.4.2 Node Labels . 44
4.5 Distributed Applications . 45

5 Results 47
5.1 Comparative Analysis . 47
5.2 Image Size . 50

6 Conclusion 53

References 55

5

Abbreviations and Acronyms
API Application Programming Interface
DNS Domain Name System
IoT Internet of Things
IP Internet Protocol
IPVS IP Virtual Server
JSON JavaScript Object Notation
LAN Local Area Network
MAC Media Access Control
NAT Network Access Translation
REST Representational State Transfer
SSH Secure Shell
TCP Transmission Control Protocol
UI User Interface
YAML YAML Aint́ Markup Language
VETH Virtual Ethernet Device
VM Virtual Machine
VPN Virtual Private Network
VTEP VXLAN Tunnel Endpoint
VXLAN Virtual Extensible LAN

6

1 Introduction
The Internet has radically transformed many aspects of human society, such as
culture, economy, governance and more. The presence of systems connected online is
apparent in our daily life: to connect with friends and relatives, to buy goods online,
to reach business arrangements through emails or to handle paperwork, the Internet
has become an indispensable tool for a large part of the human population.

Whereas in the year 2000 only 6.5 percent of the world population had access to
the Internet, this number grew to 48 percent in 2017 [46] and is expected to keep
growing. However, a new paradigm is emerging where machines become the main
generators and consumers of data and communicate through the Internet directly
with each other, with little or no human intervention. This paradigm is referred to
as the Internet of Things.

In the Internet of Things everyday objects are equipped with sensors, actuators and
communication capabilities. These devices are present in homes, city infrastructure,
buildings, mines and factories and in nearly any other place conceivable, and therefore
are highly heterogeneous. They monitor and act on their environment. They
bridge the gap between the physical and digital worlds. They communicate among
themselves and are able to reach decisions and modify their behavior dynamically.
They are connected with external systems where data can be analyzed and be used
to continuously improve their performance [29].

Not only has Internet become more widespread, but hardware has also become
smaller, more efficient and cheaper [16]. In fact, many embedded IoT devices posses
more powerful configurations than most computers did a decade ago. For this reason,
it makes sense to take advantage of local processing resources on these devices.
Traditional approaches in software development for online systems involved offloading
data to powerful remote servers in the cloud, which performed computations and
decision-making and then relayed back the results to end-devices [41, 25]. How-
ever, in the IoT this option is not always valid, as devices interact in performance
critical scenarios or with intermittent or expensive connectivity. For these reasons,
new approaches have emerged, that take advantage of local resources to perform
computations, resulting in lower latency and less bandwidth utilization.

One of such paradigms is Fog Computing [48]. Multiple connected end-devices
pool their resources and process computations and storage in their locality, instead
of entirely relying on the cloud. This presents the challenge of developing a software
framework for deploying and managing applications on clustered devices: a framework
that is generic enough to handle the multiple and varied application scenarios of the
IoT, and that is compatible with the high heterogeneity and variety of connected
devices.

In cloud-based systems virtualization technologies have been vastly employed for
similar purposes: large groups of computer servers are grouped into clusters that can
managed as a pool of resources. Virtual machines are portable virtual environments
that encompass applications as well as all of their requirements and can be allocated
across the cluster, abstracting the underlying hardware. Several frameworks have
been developed to manage and deploy these portable environments, enabling multiple

7

applications to interact and quickly adapting to changes in requirements and failures,
such as hardware and software crashes.

Recently, lightweight virtualization based on software containers has gained
tremendous popularity for cloud-based deployments [39]. Containers are portable
packages that include an application and all the libraries required to run it. Containers
are similar to virtual machines; however, virtual machine images include entire
operating systems, whereas containers re-use the host operating system. For this
reason they are much smaller in size and require less runtime resources, thus making
them suitable for resource-constrained environments [45].

One of the most popular container-based solutions is Docker, which includes a
whole set of tools for generating, deploying and managing containers [4]. It has
become popular due to its support for multiple hardware and operating system
platforms and as it greatly simplifies the whole container lifecycle. Docker also
provides a feature called Docker Swarm, which allows creating a cluster of devices
where distributed container-based applications are deployed.

Docker is compatible with Linux-based operating systems, like those that are
found in many embedded devices and runs as an additional software layer, without
requiring the installation of custom operating systems. Containers provide portable
virtual environments capable of abstracting the underlying heterogeneity. Moreover,
containers are lightweight, and therefore compatible with the resource-constrained na-
ture of these devices. Docker Swarm provides tools for management and provisioning
of clustered devices.

1.1 Scope and Goals
This research targets developing a distributed computing framework for heterogeneous
IoT devices, i.e., Fog Computing. Any framework suitable for IoT deployments must:
be easy to set up; support heterogeneous and resource-constrained devices; allow
deploying applications which interact directly in the fog; and provide a management
interface which allows remote provisioning of devices [44]. This research establishes
the feasibility of Docker Swarm as a suitable framework, by developing custom tools
to satisfy the above-mentioned requirements.

The research topic is broken down into the four research goals detailed below.

• Support for running distributed applications on the managed devices. The devel-
oped framework must support a multi-tenant model where multiple applications
can make use of available resources without affecting each other. However,
running applications should also be able to communicate among themselves
when required.

• Support for heterogeneous and resource-constrained devices. Devices are het-
erogeneous in their hardware resources and also in the availability of sensors
and actuators. The framework should allow modeling such a heterogeneity
and using it when required; moreover, it should also be capable of abstracting
heterogeneity and deploying applications regardless of the underlying platform-

8

specific details. Applications should also be compact so that they can be quickly
deployed onto devices so as to save bandwidth resources and storage space.

• Simplify the set up and the initial configuration of connected devices. The
developed framework should be scalable to support the large number of devices
that make up IoT deployments. Manual configuration of devices should be
avoided and replaced with automated methods.

• Support remote provisioning and management of IoT devices. Applications
should be easily deployed and updated without requiring physical access to
devices. Stakeholders should also be able to monitor the operating status of
managed devices through some graphical user interface.

1.2 Contribution
The contributions of this work are the following:

• Establishing the feasibility of Docker Swarm as a framework for distributed
computing on IoT devices; in particular, how to use existing features to model
device heterogeneity, to deploy multiple applications per device, to deploy
applications across heterogeneous devices, and to enable deployed applications
to interact.

• Developing a technique to build compact container images that support hetero-
geneous devices and incur in little overhead.

• Designing a configuration server which automates the initial formation of a
cluster of devices, thus eliminating the need of manual intervention.

• Enabling the remote management and provisioning of devices connected through
Docker Swarm, by means of a cloud-based management user-interface.

1.3 Structure
The rest of this work is organized as follows. Chapter 2 introduces the main con-
cepts about system virtualization, starting with traditional hypervisor-based virtual
machines and continuing with container-based virtualization, with focus on Docker
and Docker Swarm. Chapter 3 introduces the Internet of Things and a background
on different computational models that have been applied. Chapter 4 describes the
design and implementation of a container-based framework for distributed computing
on IoT devices. Chapter 5 provides an evaluation of this framework. Finally, Chapter
6 concludes this work and presents some future research directions.

9

2 System Virtualization
In cloud computing environments, system virtualization has become the standard
model that service providers employ to manage customer applications. It allows
providers to serve multiple customers by adopting a multi-tenant model, with different
physical and virtual resources dynamically assigned and reassigned according to
consumer demand [18]. Virtual environments can be deployed or re-deployed in
different physical machines in a way completely transparent to the customer.

System virtualization involves an encapsulating software layer that surrounds
an operating system, which provides the same inputs, outputs and behavior that
would be expected from the physical hardware [40]. This technology allows splitting
a physical computer into several isolated virtual environments, each with its own
configuration and applications.

The prevalent virtualization technologies for Linux are hypervisor-based virtual-
ization and container-based virtualization.

2.1 Hypervisor-based Virtualization
A hypervisor or Virtual Machine Monitor (VMM) is a piece of software executed
on a physical computer with privileged control of hardware and software resources.
It enables splitting and allocating locally-available host resources (e.g., memory,
CPU) into a collection of guest virtual machines (VM), which provide an identical
execution environment to that of the real machine [42]. There are two prevailing
hypervisor-based architectures (Figure 1). Type 1 hypervisors run directly on top
of the hardware and use special built-in instructions of the CPU to execute virtual
machines; Type 2 hypervisors run as an additional software layer on top of the host
operating system.

Host Hardware

Hypervisor

VM VM VM VM

Host Hardware

Operating System

Hypervisor

VM VM VM VM

Virtual Machine

Binaries/Libraries

App App

Guest OS

Type 1

Type 2

Figure 1: Hypervisor-based virtualization architectures

Several competing hypervisor-based solutions have been developed, such as KVM,
Microsoft Hyper-V Server, and Oracle VMServer. Although they each exhibit
optimizations for certain hardware or deployment scenarios, they share the following
features:

• Transparency: Guest operating systems and software can be run within the
virtual machine environment without any modification. In fact, the operating

10

system and the VM are unaware that they are in a virtual environment. Hence,
any program that is run inside a virtual machine produces the same output as
if it were run directly on the real machine.

• Isolation: Distinct virtual machines can be run on the same physical host
system, isolated from each other. Each virtual machine has its own version of
software running inside it, including operating system. Software failure inside a
virtual machine affects no other virtual machines or the host operating system.
Similarly, the performance of a virtual machine is not degraded by another
resource-intensive VM.

• Encapsulation: The files that make up a virtual machine are contained in a
virtual hard disk. This disk can be moved from one host system to another,
backed-up or copied. This way, a virtual machine can be easily replicated or
migrated to another server.

• Manageability: The hypervisor allows controlling the execution of VMs and
their available resources through a management interface.

The main advantages of hypervisor-based approaches stem from near-complete
isolation between guest operating systems. This guarantees that the damage induced
by a bug, crash, or security breach remains contained to the VM where they originate.
Moreover, each VM has its own operating system and varied operating system types
(e.g., Linux, Unix, Windows) can coexist in the same physical hardware. This enables
service providers to cater a wide scope of consumer’s needs with limited hardware.

However, hypervisor-based solutions have drawbacks, mainly related to resource
utilization. Firstly, in case several instances rely on the same operating system
(e.g., Windows Server 2016), it is replicated multiple times in the server, causing
unnecessary bloating. The same applies for common runtime libraries and programs.
Secondly, starting a Virtual Machine requires booting up an operating system, which
results in additional startup time. Finally, the hypervisor adds runtime overhead as
it replaces privileged instructions executed inside the guest VMs.

2.2 Container-based Virtualization
Container-based virtualization provides a lightweight alternative to hypervisor-based
virtualization. Virtualization is achieved at the level of the host operating system,
without a hypervisor, thus reducing runtime overhead (Figure 2). Virtual environ-
ments (containers) all share the same operating system as the host, reducing storage
overhead.

A container image is a stand-alone package from which containers can be instan-
tiated and executed. It encapsulates everything it requires to run: code, libraries,
binaries, and runtimes, as well as application- and system-specific configuration [14].
This bundle can be distributed, backed-up, or copied. Multiple instances can be
executed in the same physical server or different servers, to provide fault-tolerance.

Processes belonging to different containers are all executed side-by-side on the
host operating system. However, through features of the operating system kernel,

11

Host Hardware

Operating System

Container Engine

C
o

n
ta

in
e
r

C
o

n
ta

in
e
r

C
o

n
ta

in
e
r

C
o

n
ta

in
e
r

Container

Binaries/Libraries

App App

Figure 2: Hypervisor-based virtualization architectures

they have different views of the system: network interfaces, process IDs, interprocess
communication, and directory trees. In this way, containers remain isolated from
each other, as if running on different physical machines.

Although container-based virtualization can be implemented in any operating
system, most popular solutions (e.g., Docker, rkt) rely on features of the Linux
kernel. They provide a management interface on top of these features, enabling the
execution, administration and monitoring of containers. Resource management is
achieved through Control Groups (cgroups), which restrict resource usage per process
groups. Cgroups make it possible to limit or prioritize CPU, memory and I/O for
different containers. Isolation is achieved through the use of namespaces, which allow
different processes to have different views of the system.

In the context of cloud computing, the resources saved by reusing the same
base operating system enable a higher number of parallel deployments per physical
machine. Moreover, as container processes execute directly on the host machine
they execute transparently and with minimal overhead. Additionally, starting or
restarting a container is a fast operation, given that starting a process is much faster
than booting up an operating system.

In the following subsections the enabling technologies of container-based virtual-
ization are further explained.

2.2.1 Control Groups

Control Groups, or cgroups, allow the allocation of resources — such as CPU time,
system memory, network bandwidth, or combinations of these resources — among
user-defined groups of processes running on a system [2]. They allow fine-grained
control over allocating, prioritizing, denying, managing, and monitoring system
resources. Dynamic reconfiguration of resources on a running system is also possible.

Cgroups are organized hierarchically, and child cgroups inherit some of the
attributes of their parents. Many different hierarchies of cgroups can exist simul-
taneously on a system. Each hierarchy is attached to one or more subsystems. A
subsystem represents a single resource, such as CPU time, memory, IO operations,
physical device access, network traffic, among others.

12

2.2.2 Namespaces

A namespace abstracts a global system resource in such a way that it appears as
an isolated instance to the processes within that namespace [10]. Changes to the
resource that take place inside a namespace do not affect the global resource, and
viceversa. In this way, groups of processes can have different views of the same
physical system, as if they were in fact running on different physical systems.

Seven types of namespaces currently implemented in the Linux kernel:

• Mount namespaces provide isolation of the list of mount points in each names-
pace instance. The processes in each of the mount namespace instances sees
distinct single-directory hierarchies, possibly with different access permissions.

• Network namespaces provide isolation of the system resources associated with
networking: network devices, IPv4 and IPv6 protocol stacks, IP routing tables,
firewalls, port numbers (sockets), and so on. A physical network device can
belong to exactly one network namespace, since otherwise isolation between
namespaces could not be achieved. However, virtual network devices are
employed to give each namespace its own network interfaces, while enabling
communications with other namespaces and with external hosts. A virtual
network device (VETH) pair provides a connection between a namespace and
the root namespace. Internet access can be provided to the namespace by
setting up routing rules and IP addresses for the host VETH interface and
enabling a NAT. Communication between namespaces can be achieved by
connecting host-side VETH interfaces to a bridge interface, which is equivalent
to physical machines connected to an Ethernet switch.

• User namespaces isolate security-related identifiers and attributes, in particular,
user IDs and group IDs, the root directory, keyring, and capabilities. Processes
running inside a user namespace are visible from the root namespace. However,
user namespaces enable these processes to have different user IDs and group
IDs inside and outside the user namespace. For instance, a process can have a
normal unprivileged user ID when seen from the host system while at the same
time have a root ID inside the user namespace. In other words, the process
has full privileges for operations inside the user namespace, but is unprivileged
for operations outside the namespace.

• PID namespaces isolate the process ID number space. Process IDs inside a
namespace are unique, but processes in different PID namespaces can have the
same PID. PID namespaces allow containers to provide functionality such as
suspending/resuming the set of processes in the container and migrating the
container to a new host while the processes inside the container maintain the
same PIDs, and no conflict arises.

• IPC namespaces isolate certain Inter-Process Communication resources, namely,
System V IPC [11] objects and POSIX message queues.

13

• UTS namespaces provide isolation of two system identifiers: the hostname and
the NIS (Network Information Service) domain name.

• Cgroup namespaces virtualize the view of cgroups related to a set of processes.
Each cgroup namespace has its own set of cgroup root directories.

2.3 Docker
Docker Engine is an open-source platform for developing, shipping, and running
container-based applications. It builds on top of Linux cgroups and namespaces,
to streamline the whole process of running containers. It provides a mechanism
for packaging applications, their runtimes, and their required configurations into
images; as well as the tooling for handling image versions, deploying containers, and
monitoring/managing running containers. In addition to the benefits from leveraging
container-based virtualization, Docker also simplifies the software release lifecycle by
ensuring that the development, testing and deployments environments are the same,
which is particularly useful for continuous integration and continuous development
(CI/CD) workflows [4].

A container is typically stateless and ephemeral, in the sense that it can be
stopped/destroyed and a new one built and put in place with minimal set-up and
configuration. According to best practices [1], each container should handle a single
concern. That is, it should provide the functionality of a single part of a bigger system.
By decoupling large applications into multiple containers (e.g., data-store, frontend,
backend), their individual components are more easily debugged and updated, and it
is easier to scale horizontally only those components that need so. The portability and
lightweight nature of containers also make it easy to dynamically manage workloads,
scaling up or tearing down applications and services as business needs dictate, in
near real time.

Host machine

Hardware

Host OS

Container

Bin/Lib

App
A

App
B

Container

Bin/Lib

App
A

App
B

Docker
Daemon

Docker
Client

Registry

Figure 3: Docker Engine architecture

Docker Engine is built according to a client-server model (Fig. 3). The Docker
daemon (dockerd) runs on the host system and manages containers and images. It

14

takes care of monitoring the status of the system, enforcing system policies (e.g.,
restarting failed containers), receiving and executing client commands, and creating
the namespace environments where containers are run.

The client tool (docker) connects to a docker daemon, which can be running
locally or remotely. It is a command-line tool that provides operations related to
managing images (e.g., build, push, pull, update), containers (e.g., run, pause, resume,
stop, remove), networks, services, swarms and Docker Engine configuration.

2.3.1 Docker Image

A Docker image is a collection of tar packages, called layers, that when extracted
and combined in the correct order make up the filesystem that is reproduced inside
a container. This filesystem includes all system binaries, libraries, configuration files
and the user application code or program needed to create the container. There
is one additional layer, that does not belong to the filesystem, but rather holds
container configuration such as environment variables, and ports that should be
exposed external to the container.

The layers that make up the image are read-only and can be seen as a stack
(Fig. 4). When new files are added to the image or existing files are modified, the
changes are written in a new layer that is placed on top of the existing layers. The
resulting stack can be saved as a new image. In this way it is possible to generate
new images by extending existing ones. In the figure, 4 layers are added on top of the
ubuntu:15.04 image, which in turn is constituted by its own layers (not depicted).
If multiple images have common base layers, a single copy on disk of the common
layers can be kept on disk and be shared by them, reducing storage space required.
Layers are identified by a digest of their contents, making it easy to verify if they are
already present in the host system by comparing this value against the stored ones.

ubuntu:15.04

91e54dfb1179 540 B

d74508fb6632 600 KB

c22013c84729 194.5 KB

d3a1f33e8a5a 188.1 MB

Thin R/W Layer Container layer

Image layers (Read-only)

Figure 4: Representation of a Docker image as a stack of read-only layers

Images are based around specific system architectures. Many of the programs
that make up the image, such as the shell, command binaries, and libraries are

15

compiled for a given architecture. Since lightweight virtualization employs the kernel
of the host, it is required that the image architecture matches the host architecture.
There is a workaround for developing images that support multiple architectures,
which is described in Section 2.3.6.

Images are instantiated to create containers, they are described and generated
through Dockerfiles and stored and distributed in Registries. Next, these concepts
are explained.

2.3.2 Docker Container

In Docker, a container is an instance of an image along with allocated system
resources. Whenever a container is started, a writable layer is created on top of the
image. Any changes that occur to the filesystem are placed in this layer, while the
image remains immutable. Through this mechanism, several containers can share
the same image (Fig. 5). The enabling technology behind this approach is called
Copy-on-Write and is provided by the storage drivers that Docker Engine employs
(e.g., aufs, zfs, btrfs). Files belonging to the image layers are read-only, and since
reads are non-conflicting, many instances can read from the same file. As soon as a
container modifies (i.e., writes) one of these files, a new copy is made and placed in
the writable layer instead of modifying the original file. Any further reads or writes
of this file take place on the new version.

ubuntu:15.04

91e54dfb1179 540 B

d74508fb6632 600 KB

c22013c84729 194.5 KB

d3a1f33e8a5a 188.1 MB

Container

Thin R/W Layer

Container

Thin R/W Layer

Container

Thin R/W Layer

.

Figure 5: Multiple containers can use the same image

Docker Engine provides an API and command-line tools for starting, stopping,
resuming and removing containers. When a container is started, it is possible to
specify additional configuration that determine how the container interacts with the
host system. For instance, ports can be published by providing a port mapping
between an external and an internal port number. Other hosts on the same physical

16

network are able to communicate with the container through the external port, and
the connection is mapped to the internal port inside the container. Volumes can
also be mounted, which allow the container to read and write directories of the host
filesystem. Changes to these files are persistent, even in the event that the container
is stopped.

One of the advantages of containers is their isolation. They are executed as
closed environments that have no side effects on the host system. However, for
some applications access to parts of the host is required. For instance, in some IoT
applications, containers require reading sensor values or activating actuators. For
this purpose containers can be initialized with additional system capabilities that
range from managing system resources, to accessing the system hardware.

2.3.3 Dockerfile

The Dockerfile is a text file that provides the Docker Engine all the information on
how to build an image, configure the container and execute the contained applications.
It is defined as a series of instructions that are parsed and executed line-by-line.
Some of these instructions result in changes to the files inside the image, in which
case they are placed on a new layer according to the layered-approach described
previously. Some instructions describe system configurations, such as environment
variables and network ports where the container listens for connections at runtime,
and are written to a JSON configuration file, which is stored in a separate layer.

A sample Dockerfile for a web application is shown in Listing 1. A Dockerfile
always starts with the FROM directive, which specifies the base image to build upon.
If this image is not locally available, Docker Engine looks for it among its known
repositories and downloads it. The SCRATCH base image may also be employed, which
instructs Docker Engine to use an empty filesystem as the base.

1 FROM ubuntu :15.04
2 COPY . /app
3 RUN apt -get update && apt -get install nodejs npm
4 RUN make /app
5 EXPOSE 8080
6 ENV PORT 8080
7 CMD node /app/app.js

Listing 1: Sample Dockerfile for a Node.js web application

The next lines in the Dockerfile prepare the image by including files, executing
shell commands, or setting configuration options. Files are copied from the host
filesystem into the image with the COPY instruction. Similarly, remote files are fetched
with ADD. The working directory is set with WORKDIR. Shell commands are run by
placing the command after a RUN instruction. Any call to programs available inside
the container is valid (e.g., using the package manager, compiling the application).
Environment variables are set with the ENV instruction and network ports are opened
for listening with EXPOSE.

Optionally, a single CMD instruction is specified. This calls scripts or programs,
and is executed at runtime, whenever a container of the image is instantiated. In the

17

sample listing, it is used to start the application that listens for client requests on
port 8080.

There are other instructions, such as for setting the user name and group (USER)
and performing periodic container health checks (HEALTHCHECK). However, the ones
that have been described here are the main ones.

2.3.4 Multi-Stage Dockerfile

Dockerfiles sometimes result in bulky images as many of the tools needed for building
an application, such as compilers, binaries and package managers, which are not
required for its deployment, remain included as a part of the final image. For instance,
the image produced by the Dockerfile in Listing 2 includes the Go compiler, although
it is not needed at runtime. In the context of resource-constrained devices and
expensive or limited-bandwidth connections, this overhead is by no means negligible.

FROM armhf / golang

COPY server .go .

RUN CGO_ENABLED =0 GOOS= linux GOARCH =arm go build -a -ldflags ’-s’ server .go

EXPOSE 3333

CMD ["./ server "]

Listing 2: Simple Dockerfile that includes compiler into final image

Multi-stage Dockerfiles allow producing images without the components needed
for the build-up process. The Dockerfile is composed of different sections, called
stages. Each stage, except the last one, constitutes an intermediate image that can
be used for building the application, or for producing artifacts (e.g., dependencies)
required to run it. Files resulting from one stage can be copied to successive stages,
yet only files and configurations present in the final stage are part of the produced
image [13].

FROM golang as compiler
COPY server .go .
RUN CGO_ENABLED =0 GOOS= linux GOARCH =arm go build -a -ldflags ’-s’ server .go

FROM scratch
COPY --from= compiler /go/ server .
EXPOSE 3333
CMD ["./ server "]

Listing 3: Multi-stage Dockerfile that cross-compiles for ARM and produces minimal
image

This approach allows building compact images. In the case of compiled programs,
the intermediate stages include tools such as libraries and compilers, and execute the
commands that compile the application. In contrast, the final image contains only
the resulting executable binary. In the case of interpreted languages, the intermediate

18

stages are used to compile the interpreter and fetch dependencies, which are included
in the resulting image along with the application code.

2.3.5 Registry

A Docker Registry is a server-side application for storing and distributing Docker
images. Images stored in a registry are identified by their name. Several versions of
an image can be stored under the same name, by including a tag which indicates
version number or name (e.g., ubuntu:15.04, debian:wheezy). The registry provides
an API that can be used for querying, pushing (storing) and pulling (retrieving)
images [6]. Docker Engine interacts with any registry via the API, so devices are
able to pull images as they need them.

There are public, free-to-use registries, such as Docker Hub [3], where a myriad
of open-source images can be found. However, for most enterprise applications it
makes sense to have a private registry, which enforces security policies and which
can be placed closer to the end-devices. The Docker Registry project is open-source,
so anyone can host their own. Several cloud providers such as Google and Microsoft
Azure provide private container registries as well.

2.3.6 Image Manifest

Registries respond to queries for specific images with a JSON response that follows
an Image Manifest Schema. The latest version is the Image Manifest Schema Version
2, Schema 2. Listing 4 shows an image described as an array of layers (lines 9-24)
and a configuration layer (lines 4-7). Additional API calls containing the content
digests are made to download each layer file.

19

1 {
2 " schemaVersion ": 2,
3 " mediaType ": " application /vnd. docker . distribution . manifest .v2+json",
4 " config ": {
5 " mediaType ": " application /vnd. docker . container . image .v1+json",
6 "size ": 7023 ,
7 " digest ": " sha256 :

b5b2b2c507a0944348e0303114d8d93aaaa081732b86451d9bce1f432a537bc7 "
8 },
9 " layers ": [

10 {
11 " mediaType ": " application /vnd. docker . image . rootfs .diff.tar.gzip",
12 "size ": 32654 ,
13 " digest ": " sha256 :

e692418e4cbaf90ca69d05a66403747baa33ee08806650b51fab815ad7fc331f "
14 },
15 {
16 " mediaType ": " application /vnd. docker . image . rootfs .diff.tar.gzip",
17 "size ": 16724 ,
18 " digest ": " sha256 :3

c3a4604a545cdc127456d94e421cd355bca5b528f4a9c1905b15da2eb4a4c6b "
19 },
20 {
21 " mediaType ": " application /vnd. docker . image . rootfs .diff.tar.gzip",
22 "size ": 73109 ,
23 " digest ": " sha256 :

ec4b8955958665577945c89419d1af06b5f7636b4ac3da7f12184802ad867736 "
24 }
25]
26 }

Listing 4: Sample image manifest in JSON format

A feature of this Schema is that it supports multi-architecture images, by employ-
ing fat manifests. Fat manifests allow a registry to hold multiple images for different
architectures under the same name and version tag. When a device performs a query
for a given image name and version, the registry returns a manifest listing of all
available architectures and the corresponding image digests. This can be seen in
Listing 5, which supports two architectures. The device then downloads the image
matching its architecture. In the absence of a match, one is randomly selected,
leading to an initialization error.

20

{
" schemaVersion ": 2,
" mediaType ": " application /vnd. docker . distribution . manifest .list.v2+json",
" manifests ": [

{
" mediaType ": " application /vnd. docker . image . manifest .v2+json",
"size ": 7143 ,
" digest ": " sha256 :

e692418e4cbaf90ca69d05a66403747baa33ee08806650b51fab815ad7fc331f ",
" platform ": {

" architecture ": " ppc64le ",
"os ": " linux ",

}
},
{

" mediaType ": " application /vnd. docker . image . manifest .v2+json",
"size ": 7682 ,
" digest ": " sha256 :5

b0bcabd1ed22e9fb1310cf6c2dec7cdef19f0ad69efa1f392e94a4333501270 ",
" platform ": {

" architecture ": " amd64 ",
"os ": " linux "

}
}

]
}

Listing 5: Multi-architecture (fat) manifest which supports two architectures (i.e.,
ppc64le, amd64)

2.4 Container Orchestration Frameworks
A server cluster is a set of connected servers that work together as a single pool of
computing and storage resources, providing high availability, load-balancing, and
parallel processing [26]. Managing a cluster implies keeping track of host health,
deploying and monitoring applications, and providing mechanisms for distributing
processing across several physical hosts. For this purpose, a software layer is employed
which abstracts the complexity of several hosts and effectively presents the cluster as
a single pool of resources.

Container orchestration frameworks provide such an abstraction and allow man-
aging a cluster and deploying containers on it. These frameworks simplify all aspects
of container management from initial placement, scheduling and deployment to
steady-state activities such as update, health monitoring functions, and scaling. By
abstracting the physical host hardware, containers moved from one host to another
or scaled without affecting availability.

Container orchestration frameworks allow creating virtual networks between
containers, so that they can interact regardless of the actual physical configuration.
Even if two containers are running in the same machine, they interact with each
other as two separate physical machines. Some frameworks also provide built-in
mechanisms for service discovery and load-balancing. In this way the cluster can be
seen as a truly unified pool of resources.

Recently, several container orchestration frameworks have emerged. Amongst the

21

most popular are Apache Mesos1, and Kubernetes2 which is promoted by Google.
These are very flexible frameworks that allow combining several clouds, with varying
underlying technologies, into a single cluster. Due to their flexibility they typically
require extensive configuration. An emerging alternative is Docker Swarm, which is
built-in Docker Engine, greatly reducing configuration and simplifying initialization
and management of containers on a cluster. Nonetheless, all container orchestration
frameworks share some common features:

• Service declaration: Applications that are deployed on the cluster are de-
clared as services. This declaration, in the form of a file or a command, specifies
all configuration and deployment requirements of the application, for instance,
the container images to use, number of instances that should be created, place-
ment policies, network configurations, health parameters such as redundancy
and so on. In other words, the service declaration defines a target state for the
application, which the orchestration framework translates into operations on
the cluster.

• Placement: Placement refers to requirements on how containers should be
distributed across the cluster. Placement policies are rules enforced by the
orchestrator that specify parameters such as the target number of container
instances to be created, the maximum number of instances per hosts, and the
characteristics of hosts where they can be deployed (e.g., processor and memory
requirements).

• Provisioning: Provisioning refers to initializing and executing containers
on a host. The orchestration framework translates service declarations into
operations on the cluster and provisions containers on the required hosts. As
the cluster state changes, the framework allocates or de-allocates containers to
maintain the specified state. The framework runs a software layer on each host
that allows it to monitor the status of the whole cluster and instruct any host
to execute a container.

• Discovery: Discovery refers to the mechanisms that allow applications deployed
on a cluster to reach each other without knowledge of the underlying cluster
configuration. This is important as containers can be allocated on varying hosts,
and assigned different IP addresses every time. The orchestrator framework
abstracts the actual host configuration and provides a mechanism for containers
to be discovered. For instance, Docker Swarm allows interacting with services by
service name, which it translates into the IP address of a container corresponding
to that service.

• Monitoring: Orchestration frameworks track the health of the system’s hosts
and containers. They employ this information allocate or re-allocate containers
to meet service requirements. The frameworks also allow visualizing the cluster
status and managing hosts from a centralized point, typically the master host.

1http://mesos.apache.org/
2https://kubernetes.io/

http://mesos.apache.org/
https://kubernetes.io/

22

2.5 Docker Swarm
Docker Swarm is a cluster management and orchestration framework for hosts running
Docker Engine [12]. It is built into Docker Engine as of version 1.12, and requires
minimal configuration in order to set up. As long as hosts are reachable via the
network, a swarm can be set-up with few commands. Docker Swarm abstracts many
of the network configurations necessary for enabling container communication on the
cluster, also referred to as swarm. The instructions for deploying and configuring
containers on a swarm are similar to those for deploying and configuring containers
on a single host. The tools for doing so are the same, namely the Docker Engine
command line interface and the Docker Engine API. For these reasons Docker Swarm
is simpler to deploy, to grasp and to use than other available orchestration frameworks.
Moreover, the close relation between Docker Engine and Docker Swarm guarantees
good interoperability, which is not always the case with tools developed by different
companies.

In a swarm hosts are referred to as a nodes, which can take management or worker
roles. Instead of deploying single containers, services are deployed on a swarm. These
services result in containers being run on multiple hosts. Networks allow connecting
these containers in a way that they can communicate regardless of the physical host
where they run. Mechanisms built into Docker Swarm enable service discovery by
name and load-balancing. Next, these concepts are expanded.

2.5.1 Nodes

Hosts participating in a swarm are referred to as nodes and take manager or worker
roles. Managers monitor the swarm state and orchestrate containers, whereas workers
received commands from the managers and run containers. By default, managers
are also workers and are capable or executing containers. Multiple managers can
participate in a swarm, in which case they maintain a consolidate view of the cluster
by exchanging control information (Fig. 6). In case the main manager fails, another
one can replace it. The choice of node role is performed by the operator of the cluster.

Worker Worker

Manager

Worker Worker

Manager

Worker

Manager

Internal Distributed State Store

Docker Client

Figure 6: Architecture of a Swarm

A swarm is initiated by running a specific command on a node. Thereafter, that

23

node becomes the main manager (i.e., leader) of that swarm. It generates two tokens,
one for workers and one for managers, that other nodes attempting to join the swarm
must provide. A joining node issues a command with the token and the IP address of
the manager. After the node is part of the swarm, the containers can be orchestrated
on it. The orchestration is realized through a scheduler that runs on the leader,
which determines in which nodes to run containers and issues commands to worker
nodes.

Nodes have an availability status that indicates whether they are capable of
deploying new containers. The three values that the status takes are Active, Pause,
and Drain. Nodes in Active status are available for being scheduled to run containers.
Nodes in Pause status cannot be scheduled for new containers, but already running
containers continue to run. Nodes in Drain status cannot be scheduled, and any
containers running on them will be terminated and scheduled on another node.

Nodes can have user-defined labels, which are key-value String pairs. These
labels can the be used to target specific devices or groups of devices when defining
placement policies for containers on the swarm. For instance, a node might have
the following labels: devicetype = Smoke Alarm, devicefamily = RaspberryPI.
Labels are set by issuing an instruction to any of the swarm managers, which contains
the hostname of the affected node and the label key and value.

2.5.2 Swarm Management

Swarm management is realized by manager nodes. They employ a consensus algorithm
for maintaining a unified system view, to agree on proposed updates to the swarm,
such as node additions or removals, and for electing a new leader if necessary.
Management decisions are initiated by the leader, but they are agreed by other
managers before being executed. Consensus algorithms enable hosts in distributed
systems to agree on a value, when each host can propose a different value [32]. In
the case of Docker Swarm, the Raft Consensus Algorithm is employed.

The Raft Consensus Algorithm allows decisions to be reached even when some
managers are unavailable [38]. A majority of managers, also called the quorum, is
required to reach consensus. If the swarm loses the quorum of managers, it cannot
perform management tasks. In that eventuality, swarm tasks on existing worker
nodes continue to run. However, swarm nodes cannot be added, updated, or removed,
and new or existing tasks cannot be started, stopped, moved, or updated.

Setting the number of managers in a swarm is a trade-off between performance and
fault-tolerance. Neither Raft nor Docker Swarm imposes a limit. Setting additional
manager nodes reduces performance since more nodes must acknowledge proposals
to update the swarm state. Setting too few managers can lead to a swarm where
consensus cannot be reached or no managers are available. It is advisable to maintain
an odd number of manager in the swarm, as this increases the chance that quorum
can still be reached in case the network becomes partitioned. According the official
Docker Swarm documentation, the recommended maximum number of managers in
a swarm is seven [7].

Manager nodes are meant to be a stable component of the infrastructure, and

24

should use a fixed IP address so they can be reached even after a system reboot.
If the whole swarm restarts and every manager node subsequently gets a new IP
address, there is no way for any node to contact an existing manager. Therefore the
swarm is stuck while nodes try to contact one another at their old IP addresses.

2.5.3 Services

Services are created to deploy applications on a swarm. A service definition includes
the name of the image to use and parameters that determine how containers are
configured and distributed across the swarm. These parameters allow specifying
options such as the number of replicas of the image to run on the swarm, placement
policies for running containers on specific nodes, ports where the swarm makes
the service available to outside world, virtual networks where containers should be
attached, rolling update policies and so on. The service definition constitutes the
desired application state. As nodes or containers fail, the leader of the swarm takes
actions to maintain this state.

docker service create

API

orchestrator

allocater

dispatcher

scheduler

accepts command and creates
service object

reconciliation loop that creates
tasks for service objects

allocates IP addresses to tasks

assigns tasks to nodes

instructs a worker to run a task

R
A

F
T

worker

executor

connects to dispatcher to
check for assigned tasks

executes assigned tasks

container

Swarm Manager

Swarm Worker

Docker Engine Client

Figure 7: Lifecycle of service creation

Service definitions are sent to one of the managers by the user who operates the
swarm. For this purpose, the Docker Engine command line interface or the Docker
Engine API is called. The definition is forwarded to the leader of the swarm, which
is the manager in charge of scheduling containers on nodes. Figure 7 shows the steps
that are taken. Firstly, the orchestrator creates as many tasks as are necessary to

25

reach the desired state. A task is simply an object representing the container that
must be created with some additional configuration. Then this task is assigned a
virtual IP address, which is the IP address of the container. The tasks are assigned
to nodes, according to the specified placement policies. Finally, worker nodes are
instructed by the scheduler to run certain tasks. The worker receives the task and
creates the container with the required configuration. Service definitions can also be
updated, triggering the same cycle except that the scheduler might instruct some
workers to stop running certain tasks.

There are two types of service deployment modes, global and replicated. Global
services result in one task being scheduled on every available node of the cluster.
That is, one container is allocated per node. Replicated services require specifying
a number of desired tasks to schedule. The swarm leader distributes these tasks
across the swarm, attempting to spread them over the available nodes. In this case,
it is possible that some nodes may have more than one running container for the
same service, while others have none. Figure 8 illustrates both types of services; the
colored boxes denote containers corresponding to the service.

Worker Worker Worker

Manager

global service

replicated service (4 replicas)

Containers:

Figure 8: Global and replicated service deployment modes

Placement constraints are rules that instruct the swarm leader which nodes to
consider during orchestration. These constraints are part of the service definition and
are expressed as equality and inequality expressions that refer to a node label and a
value. The node must satisfy these conditions to be considered by the orchestrator.
Placement constraints can also be combined with deployment modes. For instance,
a service can be deployed as global or replicated on the set of nodes that match
the given constraints. Figure 9 illustrates several scenarios that combine placement
constraints and deployment modes.

Placement preferences instruct the orchestrator to spread tasks evenly over nodes
according to certain criterion. By specifying a node label name, tasks are spread out
over nodes having different values of that label. More than one placement preference
can be specified, in which case they are applied hierarchically. Placement preferences
only make sense in the context of replicated services, and they can also be combined

26

with placement constraints.

Worker Worker

Manager

Worker

device_type = ‘Thermometer’ device_type = ‘Thermometer’ device_type = ‘AC vent’

global service w/ constraint:

device_type == ‘Thermometer’

replicated service (4 replicas) w/ constraint:

location == ‘Room B’

global service w/ constraints:

location != ‘Room B’ and device_type == ‘Thermometer’

location = ‘Room A’ location = ‘Room B’ location = ‘Room B’

location = ‘Room B’

Worker

device_type = ‘AC vent’

location = ‘Room A’

Containers:

Figure 9: Placement constraints refer to node labels to deploy services on nodes that
fulfill certain conditions

2.5.4 Networking

Containers running on swarm nodes interact with each other through networks.
Egressing traffic from a container to the physical network is allowed by default,
but incoming traffic is blocked. Enabling access, either from other services or from
external hosts, requires setting up virtual networks and publishing ports.

Docker Swarm allows the creation of virtual networks where containers can
communicate as if they were separate hosts on a physical network. All containers on
the same Docker network have connectivity with each other on all ports. By default,
all containers corresponding to the same service are connected to a virtual network
and, hence, are reachable amongst themselves. However, enabling communication
between containers from different services requires connecting them to the same
network (Fig. 10). Network connections are defined upon service creation. A service
can be a part of several networks.

Networks must be created before services can attach to them. Docker Swarm
employs the overlay network driver for connecting containers in a swarm. Overlay
networks are isolated multi-host virtual networks that abstract from the underlying
physical network [5]. Containers receive a network interface and an IP address for
every overlay network where they are connected. Docker Swarm manages container-
to-container routing on that network.

Overlay networks are enabled by a feature of the Linux Kernel called VXLAN
tunnels, which encapsulate and route container traffic in a frame of the underlying
physical network. Docker Swarm creates several network interfaces to enable container-

27

Worker Worker Worker

Manager

 Overlay Network

 Overlay Network

Figure 10: Services can be attached to multiple overlay networks

to-container communication. This is shown in Figure 11. For each container, a
VETH pair is created, which allows traffic to flow between the container and host
namespace. A bridge interface is also created and acts as a network switch. All
containers on the host, which are connected to the overlay network are attached to
this bridge. Finally, a VXLAN Tunnel Endpoint (VTEP) is created, which performs
the encapsulation/de-capsulation and transmits packets through the underlying
network. As an optimization, these interfaces are only created on hosts which are
running one of the containers attached to that network.

Swarm Node

eth2 eth1
veth2 veth3

bridge2

VTEP

Overlay Network 1

eth1
veth1

bridge1

VTEP

Swarm Node

eth1
veth1

VTEP

Overlay Network 2

bridge1

eth1
veth2

VTEP

bridge2

Service A

Service B

Service C

Containers:

Figure 11: Implementation of overlay networks

To open a container for external access it is required to publish the ports for
the service. When the service is created port mappings can be specified. Each
mapping indicates an external and an internal port number. Traffic received on
the external port of any host is redirected to the internal port of some container
that corresponds to that service. All containers are connected to an ingress overlay
network through which requests are delivered to the correct container (Fig. 12).

28

Docker Swarm implements something called routing mesh, which opens the external
port for listening on all swarm hosts. When a request is received on that port in any
host, Docker Swarm forwards the request to one of the hosts running the service.

Worker Worker Worker

Manager

Ingress Network

Open ports

Figure 12: External access to services is achieved through exposed ports

2.5.5 Service Discovery

Service discovery refers to how requests for a given service are routed to a container
of that service. Containers are dynamically allocated and IP addresses can change,
making routing and discovery hard to manage manually. Docker Swarm implements
mechanisms for delivering requests that originate internally to the swarm, and also
those that come from external hosts, to the required container.

Applications running inside containers can call other services by service name.
Service discovery is network-scoped, only containers that are on the same network
can resolve each other’s addresses. For two services to communicate, it is required
that they are connected to the same overlay network. Each container forwards service
name DNS queries to the Docker Engine, which acts as a DNS server. The Docker
Engine checks if the name corresponds to a service in every network where the
container is connected to. If the containers are on the same network, the DNS query
is resolved. Queries that cannot be resolved are forwarded to the default DNS server.

Docker Swarm provides two implementations to resolve the query. The first one,
called DNS Round Robin mode, returns the IP addresses of all containers running
the service. In this case the request can be sent to any of the addresses. For the
second implementation, called VIP mode, services are assigned a Virtual IP address
(VIP) in every network where they are connected. The DNS query returns the VIP
of the queried service. Once the VIP of the service is obtained, requests can be made
directly to that address.

Requests originating externally to the swarm are handled similarly to internal
requests. The main difference is that they are not called by name, but by IP address
and Port number. When a service exposes a port, all hosts on the swarm listen for
connections on that port. This holds even in hosts where containers of that service

29

are not running. This mechanism is called routing mesh and ensures that the request
is forwarded to an appropriate container.

All services with published ports are connected to the ingress overlay network.
When an external request arrives to any host on a published port, Docker Engine
delivers it to a system container, ingress-sbox, which is deployed on every host and is
also connected to the ingress overlay network. The ingress-sbox container performs
a lookup via a port-mapping table to determine the service the request is destined
to. At that point, the request is handled exactly like requests originating internally.

2.5.6 Load Balancing

Docker Swarm provides mechanisms to load-balance requests that generate internally,
from a running container, and externally, from an external host. The mechanism
varies if the service is using DNS Round Robin or VIP mode.

A DNS query for a service using DNS Round Robin results in a list of IP addresses
of all containers corresponding to the service. The application calling the service
must chose one of these addresses to make the request. This is called client-side
load-balancing. This approach has two problems. Firstly, if the client DNS library
implements a cache, it can become inaccurate as containers fail and new ones, with
different IPs, are created. Secondly, it does not guarantee that requests are uniformly
load-balanced. Actually, many DNS client libraries implement longest-prefix match,
instead of random selection [23].

The preferred approach uses VIP mode. All swarm hosts employ IPVS (IP Virtual
Server), a load-balancer built into the kernel [8], which directs requests to one of the
hosts running a container of that service. The routing table is kept up to date, as
hosts exchange control information through a Gossip network. The VIP of the service
remains always the same, even as containers are orchestrated. This implementation
abstracts the client from knowing the actual IPs of the containers and guarantees a
more balanced distribution of requests among them.

30

3 From the Internet of Things to Fog Computing
The Internet of Things represents a vision in which the Internet extends to the physical
world [34]. Everyday objects and machines are able to communicate, compute and
coordinate between themselves [36]. Unlike traditional networked entities (e.g.,
routers, switches) these things are able to sense the physical environment (e.g.,
temperature, electromagnetic radiation level, movement) or to trigger actions which
have an effect on the physical world, such as altering heating and ventilation in a
room, controlling pressure valves in production lines, or changing traffic light timing
to reduce congestion.

The steady advances in embedded systems are making this vision a reality.
Processors, wireless communication modules and other electronic components are
being increasingly integrated into everyday objects due to their diminishing size,
constantly falling price and declining energy consumption [30]. This results in the
generation of enormous amounts of data which have to be stored and processed in
a seamless and efficient manner [29]. Moreover, the processing capabilities of IoT
devices has reached levels where they are now capable of running computationally
intensive jobs. One example is the Raspberry Pi, a popular IoT prototyping board
with over 10 million units sold, which features a GPU capable of 24 GFLOPs, and
1GB of RAM3.

It is estimated that a new era of ubiquity of IoT devices is coming, where humans
may become the minority as generators and receivers of traffic [20]. In such a perspec-
tive, the conventional concept of the Internet as a network infrastructure connecting
end-user’s terminals will fade, leaving space to a notion of interconnected “smart”
objects forming pervasive computing environments [36]. However, the Internet will
not disappear, but rather turn into a global backbone for worldwide information shar-
ing and diffusion, interconnecting physical objects with computing-communication
capabilities across a wide range of services and technologies.

In fact, the stack of protocols that make up the Internet already connect a huge
amount of communicating devices and run on battery operated embedded devices [15].
With some adaptations and simplifications it is suitable for making IoT a reality.
Moreover, existing routing infrastructure could be used. But IP is not the only one of
Internet technologies on which IoT will be based. Some authors have proposed using
HTTP and REST [28] as the basis for a Web of Things architecture, integrating
smart things not only to the Internet (i.e., to the network), but also to the Web
(i.e., to the application layer). This API-oriented approach enables heterogeneous
devices to “speak” the same language, and would allow building new applications by
recombining existing ones [30].

Still, the heterogeneity of the IoT presents additional challenges beyond using
a common interaction language. In fact, IoT devices are heterogeneous in many
aspects. They have different hardware characteristics (e.g., processor, memory,
sensors, actuators), are deployed under different conditions (e.g., mobile, static) and
use different networking technologies (e.g., WiFi, LTE, LoRa), they are built by
different manufacturers and serve different purposes. Moreover, some are always on,

3https://www.raspberrypi.org/help/faqs/#performanceSpeed

https://www.raspberrypi.org/help/faqs/# performanceSpeed

31

while others are intermittently active to preserve battery. The applications running
on them are also diverse and dynamic, with different application-specific requirements
in terms of latency, bandwidth and security. All of this has led to the development
of new computing models, which harness the computing power of these devices while
overcoming the limitations of traditional centralized computing models.

3.1 Device Heterogeneity
The IoT is made up of highly heterogeneous and resource-constrained embedded
devices. Due to incompatible architectures, different operating systems, missing li-
braries, among others, programs have to be developed or fine-tuned for each supported
device type. Deployment and orchestration of applications is also a hard task, as
each of these types has its own way of being updated and configured. To successfully
develop and deploy IoT applications, these devices should share a general software
infrastructure that abstracts the heterogeneity, while adding minimal overhead, and
allowing for efficient management and operation [22].

Several software abstractions have been developed to provide a unified development
environment for distributed applications involving embedded devices. One approach
is to develop operating systems that decouple the software programs running on them
from the actual hardware through and abstraction layer and platform independent
APIs [33]. However, these systems require using their own programming model,
which excludes the possibility of using already existing programs without rewriting
them.

Another approach is to use stripped-down versions of Linux, specifically designed
for certain platforms [24]. However, this is more often than not targeted at devices
with very low-computational power. By stripping down features to port Linux
to these devices, the result are Linux-based yet POSIX non-compliant operating
systems. This makes integration of new software a process that has to be done
case-by-case for each particular operating system. These standards are in place to
provide compatibility, and modifying them can lead to unexpected behavior and
bugs.

Virtual machines (VMs) could be used to solve these problems, by compiling
applications into a machine-independent form (referred to as bytecode) that is then
run by an interpreter. The same application could then be run in any hardware
platform with a suitable interpreter. The Android operating system is one such
example. Its core is based on the Linux kernel, while applications are written in Java.
Originally, Android was conceived as an Operating System for mobile phones, which
would tackle device heterogeneity and enable developers to have their applications
run on any device by providing a set of APIs which abstract hardware differences.
More recently, Android Things has been announced, which is aiming at doing the
same thing for embedded systems. Although a Java-compliant VM is expressive
to encompass different application scenarios, it still incurs in overhead that is non-
negligible. In the case of Android, these platforms are closely tied to Google services
for provisioning or updating apps, which in some scenarios might be undesirable.

In the cloud computing context, lightweight virtualization based on software

32

containers has recently gained momentum [45], as it allows to easily create, deploy
and scale distributed applications over multiple data centers. By using features
built-in recent versions of the Linux kernel, these solutions allow the creation of
virtual environments, without the overhead of virtual machines and hypervisors.
Applications are packaged along with all their dependencies into images that can
be instantiated in any Linux environment that supports. Several software platforms
have emerged that orchestrate the deployment of these images across a pool of
connected computers. In the field of IoT, these solutions have only recently began to
be explored, but with promising results, as they overcome platform heterogeneity,
while inducing low overhead. In the following chapter, this topic is explored in depth.

3.2 Computational Models
Cloud Computing is a model that enables ubiquitous, on-demand access to shared
computing resources (e.g., networks, servers, storage, applications, and services)
that can be rapidly provisioned and released with minimal management effort or
service provider interaction [35]. This comes at an affordable price, mainly due to the
economies of scale: higher predictability through massive aggregation; carefully se-
lected locations with inexpensive power; and lower operational costs achieved through
the deployment of homogeneous compute, storage, and networking components [19].
For these reasons, Cloud Computing has emerged as the main computing model
powering most of today’s web and mobile applications. End-devices (e.g., laptops,
tablets, phones) offload most computations and storage to centralized servers. This
is specially convenient for users, allowing access to the same service from any device,
with little distinction if using a fast computer or a somewhat less-powerful phone.

However, in the coming years, the demands for compute and storage resources will
come mainly from IoT devices. Billions of fixed and mobile endpoints will span vast
geographical areas and will be arranged in various different forms, covering a myriad
of different use cases [48]. Many of these settings will have stringent requirements,
such as very low latency, and fast decision making based on real-time analytics. Some
deployments might be made in places where the communications with the cloud are
either too expensive or unreliable (e.g., due to poor connectivity). In many of these
scenarios, cloud computing is simply not an option. In others, it makes sense to
take advantage of under-used locally available resources. In fact, the capabilities of
end-user and edge devices have become suitable for running computationally intensive
jobs and storing large data.

Fog networking is an extension of the cloud-based networking model that addresses
these challenges [21]. The name Fog comes from the analogy of bringing Clouds closer
to the ground (i.e., edge and end-devices). In particular, multiple edge and end-user
devices form their own cloud, and collaboratively carry out a substantial amount
of computation, storage, communication and management, rather than deferring it
to a centralized cloud. In this way, the aforementioned benefits can be achieved,
namely: real-time processing for applications with strict delay requirements that
cannot afford communication with the cloud; meeting client-centric benefits (e.g.,
geographical, performance, privacy) by using near-by devices; using a pool of often

33

under-utilized local resources.
It is worth noting that Fog is envisioned as an ally, and not a replacement, of

Cloud Computing for a broad spectrum of IoT scenarios. In many cases both models
will be combined to reach client objectives [48]. Some computations, communications
and storage can be carried out in the IoT devices, while the cloud retains it’s role
in coordinating different fogs, and in aggregating data from different locations for
management purposes (e.g., business intelligence).

3.3 Software Containers in Fog Computing
The performance overhead of software containers and Docker in particular has
been evaluated in various works. In cloud environments it has already been shown
that containers provide significantly less overhead that traditional virtual machines.
However, they do incur in additional overhead with respect to applications running
directly on the host system particularly in network and I/O operations [27]. In
IoT environments Docker has also been evaluated. The authors in [43] benchmark
CPU, memory, disk I/O and Network I/O performance on an resource-constrained
Cutieboard2 comparing native, Docker-based and KVM virtualization execution.
The results obtained indicate that containers offer better performance than virtual
machines, and near native performance in some cases. The authors in [37] run
performance tests on two models of Raspberry Pis and show that there is little
overhead when running containerized applications over host applications in terms of
execution time, memory and disk access speeds, and power consumption.

There have already been some container-based approaches for managing and
operating Internet of Things devices. In [31], the author proposes using Docker
containers on a set of Raspberry Pis managed through Kubernetes. A camera-based
security/surveillance application is built where the devices pre-process the captured
frames, then selectively decide to forward camera frames to the cloud based on
detecting movements or not. The solution handles disconnection of nodes from
the Internet without data loss by using neighboring devices to provide replication.
However, one of the setbacks of the implementation is that it requires manual setup
of the cluster, i.e., specifying the IP of each node and each master and executing join
commands in each of them. While this is possible for a small collection of devices,
it is impractical in the IoT where millions of devices are connected. Furthermore,
while the heterogeneity of devices is considered at an application level, with different
devices running different applications, the heterogeneity at a hardware level is not
considered.

Authors in [17] employ Docker Swarm to manage multiple IoT gateways. They
extend an existing open-source framework for building IoT gateways (Kura) to support
running Docker Engine. The gateways are provisioned with some basic configuration,
and each service or task to be executed is specified as a different container. This allows
installing, replacing, or extending available middleware services without affecting
other running services. By forming a cluster of gateways they are able to provide a
fallback for failing gateways, load-balancing, and to have specialized gateways (e.g.,
logging, analytics, processing, inputs, outputs). The management of this cluster

34

happens at the cloud layer, allowing for a global overview and management of the
system status. The authors select Docker Swarm over other Mesos and Kubernetes
due to it being more lightweight than existing alternatives and for the active developer
community and growing industry support.

The authors of LEONORE propose a scalable framework for provisioning large-
scale IoT deployments composed of resource-constrained devices [47]. They also
consider that applications change overtime, which makes update mechanisms neces-
sary, and should be performed fast and efficiently. For this, they design an architecture
through which minimal application packages containing applications and their de-
pendencies can be deployed on devices. These applications are then run inside a
runtime container which provides isolation from the host system. One important
aspect of their design is that simplifies large-scale deployments by bootstrapping
device registration. Upon startup, each managed device registers with the framework
by providing its unique identifier, which is derived from a combination of parameters,
including MAC address. Once the registration is finished, the device can be remotely
provisioned by the framework. Although their framework is flexible and scalable,
it requires using custom LEONORE tools and application packages, which are not
as widespread and supported as other solutions (i.e., Docker). Furthermore, the
solution does not contemplate composition of the applications running, for instance,
by means of virtual networks.

3.4 Resin.io
Resin.io is a platform which simplifies the deployment, update and maintenance
of code running on remote IoT devices4. IoT devices are typically hard to update
and many times require physical access. Resin.io enables using development and
deployment workflows and tools for provisioning IoT devices that are similar to those
used for cloud-based web applications. In this way, frequent incremental updates
can be easily achieved with minimal downtime.

The platform provides features such as device monitoring, log collection and shell
access to devices. However, the key distinctive characteristic is that applications
are deployed as Docker containers instead of running directly on the host operating
system. This approach has several benefits. First, applications are packaged in images,
containing all necessary software dependencies and can be executed without modifying
the host operating system. Second, Docker Engine already provides mechanisms for
fetching and running remote images. This frees developers from having to implement
their own mechanisms to replace and re-launch running applications. Finally, Docker
images are read-only, greatly reducing the risk of an attack modifying the running
code.

Devices connected to the Resin.io platform are required to run ResinOS, a Linux-
based operating system, which includes Docker Engine and software tools which
enable remote management. Operating system images are provided for several
popular embedded systems for the IoT, such as Raspberry Pi and Intel Edison. There

4https://docs.resin.io/introduction/

https://docs.resin.io/introduction/

35

are also instructions on how to add support for other systems. The image includes
a management container which is always running and interfaces with the Resin.io
service (i.e., logging, monitoring, receiving commands). All operating system files
are mounted read-only, which guarantees that even if an application container is
compromised, the whole system remains safe.

The operating system provided by Resin.io can be updated remotely as well. A
seamless update system is employed that relies on two partitions on the system
storage, one stores the running operating system and the other is used for downloading
an updated version. Once the download is complete, the device is rebooted by the
management container and the device is booted from the partition that was previously
inactive. This reduces update time and eliminates the risk of a partial update, as
there is always at least one working boot partition.

To connect a device to the platform, the developer downloads the ResinOS image
and flashes each board manually. For each device, a configuration file must be
generated through the Resin.io web platform and placed on the image before flashing.
When a device first boots up, it registers itself with platform and can be managed
through an online dashboard thereafter.

Devices of the same type (e.g., Raspberry Pi) can be grouped into what Resin.io
calls applications. The devices conforming an application all execute the same code
and provisioned with a single instruction. This is achieved through a version control
repository hosted by Resin.io. Whenever code updates are pushed to the repository
(component 1 in Figure 13), a process is triggered which builds and updates the
container images running on the devices.

Figure 13: Resin.io architecture

Most of the work is done on the server side. Resin.io5 builds the Docker image for
5https://docs.resin.io/understanding/understanding-code-deployment/

https://docs.resin.io/understanding/understanding-code-deployment/

36

the architecture of the target devices and stores it in a private registry (component 2 in
Figure 13). Then the server instructs devices to fetch the new image by communicating
with the management container which runs on each device (component 3 in Figure
13). Since Docker images are based on layers, only the modified layers need to be
downloaded at each device. Therefore, small changes do not lead to a whole image
being sent. Once the image is available on the device, the management container
executes a container based on it. Only when the new container is running, the
previous one is stopped. This approach minimizes the risk of replacing a working
code version with a faulty one. The web platform collects device and application
data and provides remote device management and monitoring (components 4 and 5
in Figure 13).

Resin.io greatly simplifies provisioning of IoT devices by clever employment of
Docker containers. However, several other advantages of Docker are disregarded. For
instance, the platform limits the execution to one container per device. In that sense,
the parallel nature of Docker is not used. Also, applications cannot be deployed
across heterogeneous device types (e.g., all must be Raspberry Pi). In that regard,
the solution does not leverage on the portability of Docker containers. Finally, the
solution is focused on stand-alone devices on on devices that only interact with the
cloud. Resin.io provides no mechanisms for enabling inter-device communication,
composing applications, using locally-neighboring devices as fallbacks to prevent
data loss or for performing distributed computing tasks.

37

4 Design and Implementation
IoT systems consist of resource-constrained heterogeneous devices that are deployed
in diverse environments. Deployments encompass hundreds of devices that are
placed in hard-to-reach remote locations. In the context of fog computing, these
devices run distributed applications that interact among themselves and with external
applications. This chapter describes the design and implementation of a distributed
computing framework for IoT devices based on software containers.

First the system architecture is presented and described. This is followed by
an explanation of how the four target properties of the system were met, namely:
remote management and provisioning of devices; simple automated set-up; sup-
port for resource-constrained heterogeneous devices; and deployment of distributed
applications.

4.1 System Architecture
An architecture that combines cloud and fog computing was designed. Edge and
end-devices conform multiple fogs by means of Docker Swarm. Docker Swarm is
chosen due to the ease of deployment, given that it is a part of Docker Engine (version
1.12 or higher), devices running Docker Engine can participate in a swarm without
additional software and with minimal configuration. Moreover, many of the existing
tools for managing a stand-alone Docker Engine can be used for managing a swarm
and the syntax for deploying a container on a single device is very similar to that for
deploying a service.

Portainer

WorkerWorker

Swarm 1 Swarm N
Not yet in

swarm

Manager Manager

Worker

Config.
server

…
Device

Device

Cloud
apps

manage swarms

swarm
commands device and swarm

configuration
service

calls

Figure 14: System architecture

Distributed applications are deployed and orchestrated on these swarms. A cloud-
based management UI enables remote management of the swarms and deploying
applications on them. There is a configuration service in the cloud that holds device

38

and swarm configuration, which is used to automate the initialization of the cluster.
Figure 14 illustrates the architecture.

In each swarm there are nodes with manager and worker roles. The architecture
places no restriction on the size and span of a swarm, nor on the choice of swarm
managers. However, a swarm should be constructed so that communications between
the nodes is reliable and latency is low. Unreliable communication between managers
can lead to the swarm partitioning into more sets, where services cannot be deployed
across multiple sets. Managers maintain swarm state information through the Raft
consensus algorithm, which requires the exchange control messages between them.
If consensus cannot be reached (i.e., because there is no quorum), then the swarm
will fail to accept management tasks. It is possible to create a swarm with a single
manager, however, if it fails, the swarm becomes unrecoverable. Hence, other nodes
should be setup as managers as well.

Selection of the leader, managers and workers is left to the user. Gateways are
commonly used in IoT deployments as devices with enhanced hardware capabilities
and reliable connection to the Internet and to end-devices. In such cases, the gateway
provides a good choice for leader of the swarm. All the devices that communicate
through that gateway belong to the same swarm. If it makes sense to orchestrate
services on devices served by different gateways, then a larger swarm can be formed,
where one gateway acts as leader and the others act as managers. However, due
to restrictions of the Docker Swarm implementation, individual nodes can only
participate in a single swarm.

4.2 Remote Management
Management of the swarm is achieved through Portainer, an open-source web applica-
tion that enables the management of Docker Engines through a visual interface. The
main advantages of Portainer are the ease of installation with minimal configuration
and that it provides broad control over Docker Engine functionality, including swarm
management through a simple UI. Among its strengths are allowing management
of multiple swarms and providing an access rights system for multiple users. For
instance, it is possible to grant a user management access to a subset of managed
swarms, or services running on those swarms.

Through Portainer services can be remotely deployed and managed. When a
service is deployed through Portainer, all parameters can be specified, such as image,
scheduling and placement policy, port mappings and networks, update policy, and
access to host volumes. Through this configuration it is possible to specify which
devices should run containers for a given service as well as how multiple services can
communicate between them or with external programs.

Nodes connected to Portainer are referred to as endpoints. Each of the endpoints
can be managed through Portainer. However, if the node is the manager of a swarm,
it is also possible to deploy and manage services on the whole swarm . To enable
this connection between Portainer and a manager, it is necessary to provide remote
network-access to the Docker Engine running on the manager (Fig. 15). For this
purpose a thin software layer was developed that modifies the way in which the

39

Portainer

Worker

Manager

Worker

Swarm 1

Swarm 2 Swarm 3

Docker API

Figure 15: Portainer enables remote swarm management through a connection to
the swarm manager

Docker Engine is initialized. Normally, the Docker Engine daemon creates a UNIX
socket where it receives API commands from the client. By passing modifying the
initialization parameters of the daemon, it is possible to use a TCP socket as well,
which is published on a specified port. After this, external hosts, including Portainer,
can manage the local Docker Engine. Docker enforces security to this socket through
TLS certificates, which provide proof of identity and encryption6.

4.3 Swarm Initialization
Docker Swarm requires manual intervention from the user for the initial setup phase.
The user executes a command on the leader to create a swarm, and then commands on
workers for joining. This involves connecting remotely to each device, executing a set
of commands with parameters such as the IP of other devices, and transferring security
tokens from device to device. This approach is impractical and time-consuming
for the IoT, which is characterized by a vast scale of devices. To overcome such
limitation, a configuration server is designed, which holds all the relevant information
for cluster initialization. Devices retrieve their configuration upon startup and are
able to form the cluster without any manual intervention.

Upon their first initialization, devices lack information about the swarm they
belong to and their node labels. At startup, a container is run that fetches a
configuration file from the cloud server (Fig. 16). This container is run with access
to the local Docker Engine socket, so that it can call Docker commands. The device
passes its unique identifier (i.e., MAC address) to the configuration server, which
uses it to find and return the corresponding configuration file. This file contains

6https://docs.docker.com/engine/security/https/

https://docs.docker.com/engine/security/https/

40

information about node role (e.g., worker, manager), how to reach the swarm leader
(e.g., at which IP and port), security tokens required to join the swarm, as well as
node labels which describe the device (e.g., sensors, actuators, location), as can be
seen in listings 6 and 7.

Config

Node 1 Node 2

init init

Docker Engine Docker Engine

role: worker,
manager: 10.0.0.1,
token: a34bc…,
labels: []

role: manager,
labels: [] tokens: []

init swarm join swarm

Figure 16: Devices obtain initial swarm configuration from a configuration server in
the cloud

After the configuration file is retrieved, the initialization container issues com-
mands to the local Docker Engine. In the case of the leader of the swarm, the
container creates the swarm and provides the generated security tokens back to the
configuration server. In the case of other manager or worker nodes, they join the
swarm by passing the address of the leader and the security token. It is possible
tokens are not available at the time that devices consult the configuration server. In
this case, the operation is retried periodically until successful.

Devices join the swarm with a drain status. This means that they are part of the
cluster, yet no services can be scheduled on them. Before they can be scheduled, they
must inform the leader of their node labels, present in the configuration file. Labels
are updated by calling the swarm leader’s Docker API from each node. After this
happens, nodes become schedulable by updating their availability to active through
another API call.

The swarm managers must also register themselves as endpoints in Portainer,
so that they can be managed remotely. Once the leader has created the swarm or
the other managers have joined, they each call the Portainer API. Once they are
registered, distributed applications can be remotely deployed and managed on the
whole swarm.

Through the use of a configuration server and initialization containers the set-up
of a swarm is automated. Devices can be provisioned with the same generic OS
image without any device-specific configuration. This greatly facilitates and reduces

41

time needed for the deployment large quantities of devices. Moreover, since device-
and swarm-specific configuration is stored in the cloud it is possible to update after
initial device deployment, without having to connect to each device one by one.

{
"role" : " worker ",
" swarm " : {

" leader " : "10.0.0.1:2377" ,
" managers ": ["10.0.0.2:2377" ,"10.0.0.3:2377"] ,
" token ": "SWMTKN -1 -5 hnmaudycoetnkik8c4dj0yyidvsdrvaxa44krpa7fdwibk0tu -705

ygjowshn66ji5wqsctr9yo "
},
" labels ": [

{
"key ": " humidity_sensor ",
" value ": "1"

},
{

"key ": " humidity_sensor_type ",
" value ": " AM2302 "

},
{

"key ": " location ",
" value ": "Room A134"

},
]

}

Listing 6: Sample configuration file for a worker node

{
"role" : " leader ",
" labels ": [

{
"key ": " humidity_sensor ",
" value ": "1"

},
{

"key ": " humidity_sensor_type ",
" value ": " AM2302 "

},
{

"key ": " location ",
" value ": "Room A134"

},
]

}

Listing 7: Example configuration file for the swarm leader

4.4 Device Heterogeneity
The heterogeneity of IoT devices presents itself in the form of varying microprocessor
architecture (e.g., amd64, ARM, i386), system resources (e.g., CPU, memory, storage)
and availability of sensors and actuators. In many cases, it is required to abstract
the heterogeneity and build applications that can run on any device, for instance,

42

running a routine that monitors uptime and processor load on every device. In other
cases, it is required to exploit the heterogeneity and deploy applications only on
devices that fulfill certain criteria, for instance, deploying a software update only
on devices of a specific type, make and model. Some scenarios require abstracting
certain characteristics while exposing others, for instance, running a temperature
collection application on all devices with a thermometer, regardless of the underlying
hardware characteristics.

Abstraction is achieved by building images compatible with multiple processor
architectures. Discrimination is achieved through device metadata, called labels,
that describe their capabilities. These techniques are detailed next.

4.4.1 Multi-Architecture Images

Docker images include files, libraries, and binaries compiled for a given hardware
architecture; consequently, they can only run on that specific architecture. To deploy
applications on heterogeneous devices, developers need know beforehand which
architectures they will target, build the images accordingly and make them available
to the devices, typically by uploading them to some registry. When deploying services
on a swarm of heterogeneous devices, there is no way to instruct Docker to use a
different image for each architecture. If a mismatching image is scheduled on a node,
Docker issues no warning about it, but executing the container fails and Docker
enters a loop of continuous restart attempts.

The solution employed in this research is a feature of the Docker Registry Image
Manifest, particularly Version 2 Schema 2, which adds support to multi-architecture
images, or fat manifests7. Fat manifests allow a registry to hold multiple images for
different architectures under the same name and version tag (Fig. 17). When a device
performs a query for a given image name and version, the registry returns a manifest
listing of all available architectures and the corresponding image file (i.e., via an
identifying digest). The device then downloads the image matching its architecture.
Listing 5 shows a sample manifest which supports two architectures. In the absence
of a match, one is randomly selected, leading to an initialization error as previously
described. However, as long as the developer includes all the necessary images in
the registry, this approach works seamlessly with swarm services, thus enabling the
deployment of multi-architecture services.

Although fat manifests are part of the Docker Registry specification, there is no
official tool to generate multi-arch images. For this reason, an external open-source
manifest-tool [9] was employed to consolidate existing images into a multi-architecture
image.

The process to build multi-architecture images is depicted in Figure 18. A
Dockerfile must be provided by the developer for each supported architecture (step 1).
Then the corresponding images must be built and pushed to a registry (steps 2 and 3).
At this point, different image names or version tags are used (e.g., temp-reader:arm,
temp-reader:amd64). When all images are uploaded, the manifest-tool is called,
which consolidates the multiple images into a single multi-arch image (step 4).

7https://docs.docker.com/registry/spec/manifest-v2-2/

https://docs.docker.com/registry/spec/manifest-v2-2/

43

e231044b7a32 5.4 MB

fa2d13c84c29 123.5 MB

ubuntu:arm-15.04

fa2d13c84c29 123.5 MB ab3504ac7b32 5.4 MB

ea2e13c84c29 121.5 MB

ubuntu:amd64-15.04

armhf amd64

temp_analyzer

Worker (amd64)Worker (armhf)

Registry

Figure 17: Multiple architecture images are listed in a single manifest. Each device
retrieves the one matching its architecture

Producing multi-architecture images is required for deploying applications on het-
erogeneous devices, but is not sufficient. These devices are also resource-constrained,
hence the produced images must be as small as possible. In some cases devices have
limited storage, while in others bandwidth is costly or restricted. By reducing image
size, deployment of new applications is also realized faster.

RegistryRegistry

Dockerfile 1

Dockerfile N

Image 1

Image N

Image 1
Manifest

Image N
Manifest

Fat
Manifest

… … …

…

Step 1 Step 2 Step 3 Step 4

Figure 18: Multi-arch images are built with a series of steps: single architecture
images must be built first and pushed to a registry before consolidation

Multi-stage builds are employed to achieve image size reduction. The first stages
of a Dockerfile download dependencies and prepare the application. Only those
programs and libraries required at runtime are copied into the last stage, which
conforms the final image. In this way, all of the overhead of compilers, package
managers and other tools which are present in typical container images is avoided.
This technique is also applied to build images for architectures different from that of
the computer where they are built. The first build layers are based on architecture

44

of the developer’s host (e.g., x86) and cross-compile the application for the desired
architecture. The last layer is based on an image capable of running on the target
architecture, and the artifacts produced by the previous layers are copied onto it.

4.4.2 Node Labels

Devices realizing IoT deployments have diverse capabilities and are deployed under
varying conditions. The capabilities vary according to presence of certain types of
sensors and actuators, processing power, system memory and storage, and so on.
The conditions vary according to power source type (e.g., direct power, batteries,
solar panels), connection type (e.g., WiFi, GSM, LoRa), location, among others.
This heterogeneity is modeled to allow scheduling applications on specific groups of
devices that match possess certain characteristics.

For this purpose, Docker Swarm node labels are employed. Device characteristics
are expressed as key-value pairs, which denote a property and the value of that prop-
erty. Table 1 shows some examples of how labels can represent device characteristics.
For instance, they can be used are to indicate the presence of a certain characteristic,
such as a type of sensor, with a boolean value of 1, or also more specific information,
such as a model number. These labels are then used to deploy applications on devices
with specific characteristics.

Category Example labels
Sensors and actuators node.labels.humidity_sensor = 1

node.labels.humidity_sensor_type = AM2302
node.labels.air_vent_actuator = 1
node.labels.air_vent_actuator_type = FS90R

System characteristics node.labels.device_make = raspberry pi
node.labels.device_model = 3B
node.labels.arch = armv8
node.labels.cpu_cores = 4
node.labels.ram_memory = 1 GB

Location node.labels.location = Washington Road
node.labels.outdoors = 1

Connection node.labels.connection_type = wifi
node.labels.connection_reliability = high

Power source node.labels.power_source = power line
node.labels.power_reliability = high

Security node.labels.performance_critical = 1

Table 1: Sample node labels in different contexts

Placement constraints are specified when deploying or updating services on the
swarm. They reference node labels as conditions that target devices where the
service can be executed. Containers are orchestrated only on those devices that
match the specified constraints. In this way, it is possible to target devices by a

45

given characteristic. For instance, it is possible to deploy a temperature collection
service across all devices that possess a thermometer, regardless of their device type,
architecture, function or other features. It is also possible to combine placement
constraint with other features of services placement, such as global and replicated
modes.

4.5 Distributed Applications
The previous sections describe the steps needed to conform and manage clusters
of heterogeneous devices. These efforts lead to the goal of running distributed
applications on the devices. Deployed applications must be able to interact with each
other with minimal latency; they must also be able to interact with external systems
such as those hosted in the cloud; they must be able to adapt to changes in the
cluster, such as those caused by disconnecting devices; and they must be updateable
in a way that guarantees uptime. Docker Swarm was the chosen framework for
these purposes, since it already includes many of these features. In this section, the
features of Docker Swarm that allow reaching these goals are described.

Docker Swarm allows managing a collection of heterogeneous devices as a comput-
ing cluster and deploying applications as services on it[12]. There are many features
that make it a convenient choice, such as the possibility of deploying services on
subsets of devices, the ease of composing deployed services, built-in load-balancing,
and desired state reconciliation. Devices on a swarm can run distributed computa-
tions. The swarm status is actively monitored by the managers, which orchestrate
containers to maintain desired service status. If a node or a container fails, another
node can pick up the work load. Moreover, services running on the swarm can call
one another without a cloud middleware, leading to low-latency communications.
Although communication with the cloud is also possible in both directions, originating
from devices, or originating from the cloud.

Service Placement

When services are created, scheduling modes and placement constraints give control
over which devices run the deployed application. Docker Swarm supports global
and replicated scheduling modes, which determine if a container is deployed on each
device in the swarm, or if a specific number of replicas is scheduled across the swarm.
These modes can be combined with placement constraints to limit the set of devices
where containers are scheduled.

When used in combination with user-defined node labels, such as those in Table
1, placement constraints enable fine-grained control over the placement of containers
on the swarm. It is possible, for instance, to specify that a service should be deployed
on all nodes that possess a given sensor, or that are located in a certain space.

Service Composition

Containers running on the swarm can communicate with each other through overlay
networks. When services are deployed it is possible to specify multiple networks where

46

containers of that service are attached. Communication between those containers
happens just as hosts communicate on a local network. Calls are made by service
name, which Docker Swarm resolves into the IP address of individual containers. If
nodes become unavailable or unreachable, services continue to be accessible without
changing any configuration. Whereas services connected to the same network can be
composed, services which are not connected to a common network remain completely
isolated, thus, providing additional security.

External Access

In many scenarios, communication with external services or hosts is required. For
instance, sensor data can be processed in the fog and be sent off to remote servers for
business intelligence or permanent storage. Communication with external services
can originate from the swarm or from external hosts.

Outgoing connections from the swarm to external hosts are enabled by default.
Containers deployed on the swarm can call any cloud-based services, as long as the
network configurations (e.g., firewall rules) allow. A scenario where this type of
connection is employed is when devices push their data to external hosts for back-up.

Incoming connections to running services are also possible, but must be explicitly
allowed. When a service is deployed on the swarm, ports are exposed. The indicated
port is open for listening on every node of the swarm. When an incoming request
arrives, the swarm delivers it to one of the running containers of that service. Requests
are load-balances across the different containers. This type of connection is useful
for scenarios where remote servers poll devices periodically for data.

Rolling Updates

One common limitation of IoT deployments is provisioning devices with new versions
of their running applications. Devices are typically configured in the factory and
never updated again. Docker swarm allows updating running services by specifying
a new image for the service. The update is performed in a rolling manner, where
containers are replaced sequentially, providing updates without any downtime. It is
possible to specify the update parallelism, which is the maximum number of tasks
that can be updated simultaneously, and time between each container instantiation.

47

5 Results
The proposed solution was evaluated through qualitative and quantitative methods.
This chapter presents the results of the evaluation and is divided in two parts. The
first part provides a thorough comparison with an existing service for IoT provisioning
through software containers is made. The second part compares container images
produced by using standard techniques as well as those described in the previous
chapter to evaluate the reduction in image size under different scenarios.

5.1 Comparative Analysis
The previous chapter presented a framework for distributed IoT applications based
on software containers. To evaluate the proposed solution, six target properties
stemming from the characteristics and requirements of IoT deployments are defined.
IoT deployments are composed of vast amounts of heterogeneous devices installed
in varying locations. Moreover, applications running on these devices interact on
the edge of the network and are frequently updated as user requirements change.
Considering this, the target properties are the following:

• Simple set up. The initial installation of operating system and required tools
for the framework should be simple and fast. Manual configuration should be
minimized.

• Remote management. IoT devices should be remotely manageable. Appli-
cations should be deployed from a single control interface that transmits the
instructions to each device. Operations should not require connecting to each
device and manually executing commands.

• Device heterogeneity. Devices with different hardware characteristics – such
as processor architecture, system resources, and available sensors and actuators
– should be supported.

• Application heterogeneity. The same application can be executed on
different types of devices, abstracting the underlying hardware heterogeneity.

• Multiple applications per device. Multiple applications should be executed
in parallel on each device. Different tasks, such as data collection, data
processing, storage, and so forth run inside isolated containers. If one task fails,
it does not compromise the entire system.

• Application composition. Applications running on end-devices should be
able to interact through APIs exposed to other applications. The actual devices
where an application runs should be transparently accessed.

A comparison with Resin.io (Section 3.4) is made on these six points. Resin.io is
chosen as it is the main commercial provider of an IoT provisioning solution based on
software containers. It is a solution which cleverly employs Docker tools to simplify

48

software updates on remote devices. However, it takes little consideration of other
aspects of IoT applications, such as interactions between applications and device
heterogeneity. The results of the comparison are summarized in Table 2 and detailed
next.

Feature Resin.io This Work
Simple set up No Yes

Remote management Yes Yes
Device heterogeneity Yes Yes

Application heterogeneity No Yes
Multitasking No Yes

Applications composition No Yes

Table 2: Comparative analysis between Resin.io and this work

Simple Set Up

This characteristic considers how simple it is to install and configure the required
tools on IoT devices, so that devices can be managed and applications executed. In
the case of Resin.io, this involves installing a custom operating system image and
registering the devices on an online platform. In contrast, the proposed solution
requires installing an operating system with Docker Engine, registering the devices
on Portainer, and setting up a swarm. Although the latter comprises one extra step,
the set up process is simplified when compared to Resin.io.

Resin.io requires that a custom OS is installed on each device. In fact, such an
image contains programs that connect to the online platform and allow devices to be
managed remotely. However, the same image can not be used for every device. As a
preliminary step, each device needs to be manually registered to the online platform.
This produces a configuration file which must then be embedded into the image
before flashing the device. Clearly, this process is cumbersome when dealing with a
large number of devices. Moreover, it can easily lead to configuration mistakes such
as flashing devices with the wrong image.

Instead, the proposed solution employs a configuration server which holds the
configuration of all devices. Devices are provisioned with a generic OS image, which
can be easily automated and is less prone to error. The configuration server is
deployed at a known location and devices fetch the configuration file at startup.
After the configuration is fetched, devices automatically form a swarm and also
register themselves to the management portal. This automates the two steps of
configuring devices and registering them online. It is still the case that a specific
configuration for each device has to be generated and stored in the configuration
server, however, this step does not require interaction with the physical devices and
can be easily automated too.

49

Remote Management

Resin.io includes several features that facilitate remote management of devices:
it allows deployment and updates of running applications; it provides access to
application logs through the online panel; and it allows connecting via SSH directly
into containers, which can be useful for debugging purposes. Each device connected
to the platform can be monitored and even rebooted remotely. However, there is
little control over the Docker Engine itself, as well as over the settings with which
containers are run on devices.

The proposed solution allows deployment and updates of running applications,
but provides none of the other features such as logs, SSH access or remote reboots.
However, it does allow executing any docker command via the user interface of
Portainer and its API. This solution achieves a more fine-grained control over the
application configuration. Many of the features of Resin.io such as logging and
monitoring, could be implemented in the application level on top of the proposed
solution as well, by running containers on each device that perform such tasks.

Device Heterogeneity

Both solutions support heterogeneous devices. In the case of Resin.io, the base
OS image is provided for over twenty of the most popular embedded boards and
it is possible to add support for other boards. However, requiring a custom OS
restricts the compatibility with certain boards which might already have a Linux-
based operating system and in some cases manufacturers might not be willing to
replace the OS which they are already using.

In contrast, the proposed solution works with any device which is running a
suitable Docker Engine, regardless of the underlying OS. As a consequence, manu-
facturers or OS providers can add support for their boards by simply compiling and
installing Docker Engine.

Resin.io considers heterogeneity only as the varying types of system boards (e.g.,
Raspberry Pi, Intel Edison). In contrast, the proposed solution allows modeling the
different types of heterogeneity through labels, for instance, the availability of certain
sensors or actuators, the deployment location, and the connectivity type.

Application Heterogeneity

Resin.io supports various devices of different hardware configurations. However,
applications can only be deployed on devices of the same type (e.g., Raspberry
Pis). Indeed, Resin.io does not allow deploying applications on mixed groups of
heterogeneous devices. For instance, to deploy the same application on several
devices of different types, it must be done once for each type of device. This increases
the management complexity, as each application has to be separately configured,
provisioned and monitored. Although it is sensible to target specific device types
for certain applications, for others there is barely any relevance of the underlying
hardware, such as in the case of system logging and monitoring.

50

The proposed solution, instead, allows deploying services across heterogeneous
devices. A service can be deployed on devices of varying architectures and can be
managed (e.g., provisioned, scaled, updated) jointly, instead of doing it separately
for each device type. The framework ensures that the correct image for the device
architecture is used by means of multi-architecture images. Moreover, sets of devices
can be targeted by means of placement constraints, which enable refining the target
group not only by device type but also by other characteristics such as the availability
of sensors and actuators.

Multiple Applications

Resin.io allows only a single user application to run on each device. Containers are
employed to simplify provisioning devices with preconfigured environments and to
perform updates. However, the isolation provided by containers is not leveraged.
Moreover, any device connected to their platform is required to run a specific
application, there are no idle or stand-by devices that could be dynamically allocated.

In contrast, the proposed solution allows deploying several services (i.e., containers)
per device. The containers can be isolated from each other or they can interact by
means of networks and shared files. The swarm managers allocate and de-allocate
containers on each device as services are scaled up and down. The swarm can
be seen as a pool of resources that can be dynamically accessed, providing greater
computational flexibility. Replication modes and placement constraints further enable
deployment of a certain number of container replicas, in some cases even on the same
device.

Application Composition

Resin.io provides no support for composing applications which are deployed on devices.
Each device is handled as a standalone entity. Networks, service discovery and load-
balancing must be explicitly handled by the developer if two running applications have
to be connected together. This design favors cloud-based architectures, with cloud
endpoints deployed at known locations. Devices do local processing and communicate
with cloud servers, but communication among end-devices is not straightforward.

The proposed solution enables application composition by means of virtual overlay
networks. Services can be attached to multiple isolated networks, and the containers
that make up the services can interact just as physical hosts a local network. Docker
Swarm handles name resolution and load-balancing. Running applications can
call other applications without any knowledge of container or node IP addresses.
Moreover, as the swarm configuration changes, i.e., containers are started or stopped,
services continue to be available transparently.

5.2 Image Size
In the previous chapter, a method was presented for generating compact container
images through multi-stage builds. In this section, the images produced with this
technique are compared with images generated through standard builds to measure

51

the corresponding reduction in size. For this purpose, a sample application (i.e., a
static HTTP endpoint) was developed in four languages, namely Node.js, Go, and
C. Python and Node.js were chosen as they have become very popular languages
for cloud-based applications and could foster the development community in fog
computing. Go was chosen as it is the language in which Docker is written, and
parts of the Docker code can be directly imported. C was chosen as it is a language
commonly used for developing embedded systems applications.

For each programming language, two images were generated by using standard
builds and one by using multi-stage builds. In the case of the standard builds two
different base images were tested: the official images (i.e., python, node, golang, gcc),
which contain many programs and tools useful for debugging, but are large in size;
and a smaller-sized official image based on alpine Linux (i.e., python:2.7-alpine,
node:alpine, golang:alpine), a lightweight distribution. There is no official alpine
image for gcc, so one was built by deriving from the alpine image and adding the
compiler as well as standard libraries.

Multi-stage builds employed two stages to generate compact images. In the case
of Python and Node.js, the first stage fetches the application dependencies and
the second stage copies the application, its dependencies, the Node.js interpreter
and runtime libraries into the final image. In the case of Go and C, the first stage
compiles the application with statically-linked libraries and the second stage includes
only the executable binary.

Results are presented in Table 3. Standard builds using standard base images
incur in a large overhead, as they include large Linux distributions with many software
packages. They are useful in early stages of development and prototyping, as they
have many tools useful for debugging, but they should not be used for provisioning
end-devices. Alpine-based images achieved a significant reduction in size, yet they
are still considerably large for over-the-air provisioning when bandwidth is limited or
costly. Images built through multi-stage builds offer a tremendous size reduction.

Method Python Node.js Go C
Standard build
(regular image) 677 Mb 667 Mb 702 Mb 1.64 Gb

Standard build
(alpine image) 182 Mb 68.3 Mb 274 Mb 102 Mb

Multi-stage build 162 Mb 35 Mb 3.9 Mb 950 Kb

Table 3: Size of resulting images when generated through standard and multi-stage
builds

The results indicate that compiled languages produce more compact images
than interpreted languages. Whereas the compiled programs include only the code
and linked libraries that are needed to run, the interpreted programs require the
interpreter to be a part of the produced image. These interpreters include unused
features, such as interactive environments and libraries which are not required for the

52

specific application being executed. Smaller versions of interpreters for embedded
systems are available, but in many cases compatibility is not completely guaranteed.

It is important to consider how Docker images are built when analyzing these
results. Images are made up from a stack of read-only layers that can be reused.
When an image is updated, only the new or modified layers need to be retrieved.
Although the first provisioning of an application on a device requires the device
to download the entire image, successive updates are much lighter. In this case,
the performance overhead incurred by using, for instance, a Python image, is not
always as significant as Table 3 indicates. If developers ensure that the required base
images are available in the devices before-hand – e.g., by incorporating them into the
base operating system – then run-time overhead is substantially reduced. Likewise,
if all deployed applications are developed using the same language and libraries,
based layers are shared among them. However, in the case of performance-critical
applications, compiled languages like C are preferable as overhead is minimal even
when an image is deployed for the first time.

53

6 Conclusion
This work presented a distributed computing framework for heterogeneous embedded
devices based on software containers. Devices with different characteristics – such as
sensors, actuators and system resources – form a cluster where distributed applications
are deployed. By running applications directly on end-devices, latency of performance-
critical applications is reduced and the resource utilization of IoT devices is maximized.
By using containers, applications are easily deployed and scaled on end-devices.

Existing tools were employed and extended with own tools to enable the creation
and management of clusters of devices. A model architecture was proposed, which
simplifies cluster initialization and management. This architecture supports the
interaction between cloud- and fog-based resources.

Docker Swarm was employed to set up clusters of devices (swarms) and to
orchestrate containers on them. This container orchestration framework includes
many features which facilitate distributed computing such as built-in service discovery,
load-balancing, and application composition. By modeling device heterogeneity
through node metadata, it is possible to target and deploy applications on specific
groups of devices.

Remote management of swarms was achieved through Portainer, a web-based
graphical user interface for managing hosts running Docker. Through this interface
it is possible to deploy and configure services on multiple swarms. A thin software
layer was developed, which enables a cloud-based Portainer installation to connect
to swarm managers in the fog.

A configuration server was designed which automates cluster initialization. When
each device boots up, a container is run on it which fetches a device-specific con-
figuration file from the configuration server in the cloud. Through the guidelines
contained in this file devices are capable of forming a swarm automatically. This
eliminates manual configuration steps and simplifies deployment of vast amounts of
devices.

A method for building compact multi-architecture container images was described
as well. These images are compatible with heterogeneous and resource-constrained
devices. The proposed technique achieved a significant reduction in the image size,
thus, enabling faster provisioning of devices and less bandwidth usage.

This work was evaluated by comparing against an existing service for container-
based IoT device provisioning. The comparison indicated that the proposed framework
is easier to set up, has more extensive support for device and application heterogeneity,
allows for a more fine-grained control over how applications are deployed, and supports
parallel processing and application composition, whereas the existing service does
not.

The concepts presented in this work can be expanded and further research can
be conducted. In this sense, some interesting directions for future work are the
following:

• Measuring the ideal size of swarms of devices, and the effect of swarm size on
performance.

54

• Implementing the configuration server designed in this work, by taking into
account security considerations as well.

• Evaluating other strategies for automatic swarm discovery and formation. For
instance, devices on the same local network could share information via a
service discovery protocol and form a swarm without contacting a cloud-server.

• Developing logging and monitoring functionality such as that provided by
Resin.io. This could be realized at the application level, on top of the proposed
framework.

• Evaluating the different ways in which physical resources (i.e., sensors, actuators)
can be accessed from containers. Containers on a host are isolated environments,
but physical resources are shared which can lead to containers with conflicting
over the same resource.

• Studying mechanisms for installing Docker Engine on IoT devices, which have
varying Linux-based host operating systems. Templates could be provided to
incorporate Docker binaries into embedded Linux distributions8.

• Reliability vs intermittent/noisy network conditions and device failures/mal-
functions.

8https://www.yoctoproject.org/

https://www.yoctoproject.org/

55

References
[1] Best practices for writing Dockerfiles. https://docs.docker.com/engine/

userguide/eng-image/dockerfile_best-practices/, 2017. Accessed: 2017-
09-07.

[2] Chapter 1. introduction to control groups (cgroups). https:
//access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/
6/html/Resource_Management_Guide/ch01.html, 2017. Accessed: 2017-07-
13.

[3] Docker hub. https://hub.docker.com/, 2017. Accessed: 2017-07-16.

[4] Docker overview. https://docs.docker.com/engine/docker-overview/,
2017. Accessed: 2017-09-07.

[5] Docker reference architecture: Designing scalable, portable Docker container net-
works. https://success.docker.com/Architecture/Docker_Reference_
Architecture%3A_Designing_Scalable%2C_Portable_Docker_Container_
Networks, 2017. Accessed: 2017-09-10.

[6] Docker registry HTTP API V2. https://docs.docker.com/registry/spec/
api/, 2017. Accessed: 2017-08-15.

[7] How nodes work. https://docs.docker.com/engine/swarm/
how-swarm-mode-works/nodes/, 2017. Accessed: 2017-09-09.

[8] IPVS software - advanced layer-4 switching. http://www.linuxvirtualserver.
org/software/ipvs.html, 2017. Accessed: 2017-09-10.

[9] manifest-tool. https://github.com/estesp/manifest-tool, 2017. Accessed:
2017-08-18.

[10] Namespaces - overview of linux namespaces. http://man7.org/linux/
man-pages/man7/namespaces.7.html, 2017. Accessed: 2017-07-13.

[11] svipc - system v interprocess communication mechanisms. http://man7.org/
linux/man-pages/man7/svipc.7.html, 2017. Accessed: 2017-07-16.

[12] Swarm mode key concepts. https://docs.docker.com/engine/swarm/
key-concepts/, 2017. Accessed: 2017-07-17.

[13] Use multi-stage builds. https://docs.docker.com/engine/userguide/
eng-image/multistage-build/, 2017. Accessed: 2017-09-03.

[14] What is a container. https://www.docker.com/what-container, 2017. Ac-
cessed: 2017-08-15.

[15] J.P. Vasseur A. Dunkels. IP for smart objetcs, internet protocol for smart
objects (IPSO) allience, white paper #1. September 2008.

https://docs.docker.com/engine/userguide/eng-image/dockerfile_best-practices/
https://docs.docker.com/engine/userguide/eng-image/dockerfile_best-practices/
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Resource_Management_Guide/ch01.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Resource_Management_Guide/ch01.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Resource_Management_Guide/ch01.html
https://hub.docker.com/
https://docs.docker.com/engine/docker-overview/
https://success.docker.com/Architecture/Docker_Reference_Architecture%3A_Designing_Scalable%2C_Portable_Docker_Container_Networks
https://success.docker.com/Architecture/Docker_Reference_Architecture%3A_Designing_Scalable%2C_Portable_Docker_Container_Networks
https://success.docker.com/Architecture/Docker_Reference_Architecture%3A_Designing_Scalable%2C_Portable_Docker_Container_Networks
https://docs.docker.com/registry/spec/api/
https://docs.docker.com/registry/spec/api/
https://docs.docker.com/engine/swarm/how-swarm-mode-works/nodes/
https://docs.docker.com/engine/swarm/how-swarm-mode-works/nodes/
http://www.linuxvirtualserver.org/software/ipvs.html
http://www.linuxvirtualserver.org/software/ipvs.html
https://github.com/estesp/manifest-tool
http://man7.org/linux/man-pages/man7/namespaces.7.html
http://man7.org/linux/man-pages/man7/namespaces.7.html
http://man7.org/linux/man-pages/man7/svipc.7.html
http://man7.org/linux/man-pages/man7/svipc.7.html
https://docs.docker.com/engine/swarm/key-concepts/
https://docs.docker.com/engine/swarm/key-concepts/
https://docs.docker.com/engine/userguide/eng-image/multistage-build/
https://docs.docker.com/engine/userguide/eng-image/multistage-build/
https://www.docker.com/what-container

56

[16] Ian F Akyildiz, Weilian Su, Yogesh Sankarasubramaniam, and Erdal Cayirci.
Wireless sensor networks: a survey. Computer networks, 38(4):393–422, 2002.

[17] Paolo Bellavista and Alessandro Zanni. Feasibility of fog computing deployment
based on Docker containerization over RaspberryPi. In Proceedings of the 18th
International Conference on Distributed Computing and Networking, page 16.
ACM, 2017.

[18] David Bernstein. Containers and cloud: From LXC to Ðocker to kubernetes.
IEEE Cloud Computing, 1(3):81–84, 2014.

[19] Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh Addepalli. Fog comput-
ing and its role in the internet of things. pages 13–16, 2012.

[20] Maarten Botterman. Internet of things: an early reality of the future internet.
In Workshop Report, European Commission Information Society and Media,
2009.

[21] Mung Chiang and Tao Zhang. Fog and IoT: An overview of research opportu-
nities. IEEE Internet of Things Journal, 3(6):854–864, 2016.

[22] Mario Di Francesco, Na Li, Long Cheng, Mayank Raj, and Sajal K Das. A
framework for multimodal sensing in heterogeneous and multimedia wireless
sensor networks. In World of Wireless, Mobile and Multimedia Networks
(WoWMoM), 2011 IEEE International Symposium on a, pages 1–3. IEEE,
2011.

[23] R. Draves. Default address selection for internet protocol version 6 (IPv6).
RFC 3484, RFC Editor, February 2003.

[24] Adam Dunkels, Bjorn Gronvall, and Thiemo Voigt. Contiki - a lightweight and
flexible operating system for tiny networked sensors. In Proceedings of the 29th
Annual IEEE International Conference on Local Computer Networks, LCN ’04,
pages 455–462, Washington, DC, USA, 2004. IEEE Computer Society.

[25] Rasool Fakoor, Mayank Raj, Azade Nazi, Mario Di Francesco, and Sajal K Das.
An integrated cloud-based framework for mobile phone sensing. In Proceedings
of the first edition of the MCC workshop on Mobile cloud computing, pages
47–52. ACM, 2012.

[26] Viktor Farcic. The DevOps 2.1 Toolkit. Docker Swarm. LearnPub, 1 2017.

[27] Wes Felter, Alexandre Ferreira, Ram Rajamony, and Juan Rubio. An updated
performance comparison of virtual machines and linux containers. In Perfor-
mance Analysis of Systems and Software (ISPASS), 2015 IEEE International
Symposium On, pages 171–172. IEEE, 2015.

[28] Roy Thomas Fielding. Architectural Styles and the Design of Network-based
Software Architectures. PhD thesis, 2000. AAI9980887.

57

[29] Jayavardhana Gubbi, Rajkumar Buyya, Slaven Marusic, and Marimuthu
Palaniswami. Internet of things (IoT): A vision, architectural elements, and
future directions. Future Generation Computer Systems, 29(7):1645 – 1660,
2013. Including Special sections: Cyber-enabled Distributed Computing for
Ubiquitous Cloud and Network Services & Cloud Computing and Scientific
Applications — Big Data, Scalable Analytics, and Beyond.

[30] Dominique Guinard, Vlad Trifa, Thomas Pham, and Olivier Liechti. Towards
physical mashups in the web of things. In Proceedings of the 6th International
Conference on Networked Sensing Systems, INSS’09, pages 196–199, Piscataway,
NJ, USA, 2009. IEEE Press.

[31] Asad Javed. Container-based IoT sensor node on raspberry Pi and the Kuber-
netes cluster framework. Master’s thesis, Aalto University, 2016.

[32] Leslie Lamport et al. Paxos made simple. ACM Sigact News, 32(4):18–25, 2001.

[33] P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse, A. Woo, D. Gay,
J. Hill, M. Welsh, E. Brewer, and D. Culler. TinyOS: An Operating System for
Sensor Networks, pages 115–148. Springer Berlin Heidelberg, Berlin, Heidelberg,
2005.

[34] Friedemann Mattern and Christian Floerkemeier. From the Internet of Com-
puters to the Internet of Things, pages 242–259. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2010.

[35] Peter Mell, Tim Grance, et al. The NIST definition of cloud computing. 2011.

[36] Daniele Miorandi, Sabrina Sicari, Francesco De Pellegrini, and Imrich Chlamtac.
Internet of things: Vision, applications and research challenges. Ad Hoc Networks,
10(7):1497 – 1516, 2012.

[37] Roberto Morabito, Riccardo Petrolo, Valeria Loscrí, and Nathalie Mitton. En-
abling a lightweight edge gateway-as-a-service for the internet of things. In
Network of the Future (NOF), 2016 7th International Conference on the, pages
1–5. IEEE, 2016.

[38] Diego Ongaro and John Ousterhout. In search of an understandable consensus
algorithm. In Proceedings of the 2014 USENIX Conference on USENIX Annual
Technical Conference, USENIX ATC’14, pages 305–320, Berkeley, CA, USA,
2014. USENIX Association.

[39] Claus Pahl. Containerization and the paas cloud. IEEE Cloud Computing,
2(3):24–31, 2015.

[40] Michael Pearce, Sherali Zeadally, and Ray Hunt. Virtualization: Issues, security
threats, and solutions. ACM Computing Surveys (CSUR), 45(2):17, 2013.

58

[41] Thi Anh Mai Phan, Jukka K Nurminen, and Mario Di Francesco. Cloud
databases for internet-of-things data. In Internet of Things (iThings), 2014
IEEE International Conference on, and Green Computing and Communications
(GreenCom), IEEE and Cyber, Physical and Social Computing (CPSCom),
IEEE, pages 117–124. IEEE, 2014.

[42] Gerald J Popek and Robert P Goldberg. Formal requirements for virtualizable
third generation architectures. Communications of the ACM, 17(7):412–421,
1974.

[43] Flávio Ramalho and Augusto Neto. Virtualization at the network edge: A
performance comparison. In World of Wireless, Mobile and Multimedia Networks
(WoWMoM), 2016 IEEE 17th International Symposium on A, pages 1–6. IEEE,
2016.

[44] Mohit Sethi, Pranvera Kortoci, Mario Di Francesco, and Tuomas Aura. Secure
and low-power authentication for resource-constrained devices. In Internet of
Things (IOT), 2015 5th International Conference on the, pages 30–36. IEEE,
2015.

[45] Stephen Soltesz, Herbert Pötzl, Marc E. Fiuczynski, Andy Bavier, and Larry
Peterson. Container-based operating system virtualization: A scalable, high-
performance alternative to hypervisors. SIGOPS Oper. Syst. Rev., 41(3):275–
287, March 2007.

[46] International Telecommunication Union. Ict facts and figures
2017. http://www.itu.int/en/ITU-D/Statistics/Documents/facts/
ICTFactsFigures2017.pdf, July 2017.

[47] Michael Vögler, Johannes M Schleicher, Christian Inzinger, and Schahram
Dustdar. A scalable framework for provisioning large-scale IoT deployments.
ACM Transactions on Internet Technology (TOIT), 16(2):11, 2016.

[48] Marcelo Yannuzzi, R Milito, René Serral-Gracià, D Montero, and Mario Ne-
mirovsky. Key ingredients in an IoT recipe: Fog computing, cloud computing,
and more fog computing. In Computer Aided Modeling and Design of Communi-
cation Links and Networks (CAMAD), 2014 IEEE 19th International Workshop
on, pages 325–329. IEEE, 2014.

http://www.itu.int/en/ITU-D/Statistics/Documents/facts/ICTFactsFigures2017.pdf
http://www.itu.int/en/ITU-D/Statistics/Documents/facts/ICTFactsFigures2017.pdf

	Abstract
	Contents
	Abbreviations and Acronyms
	1 Introduction
	1.1 Scope and Goals
	1.2 Contribution
	1.3 Structure

	2 System Virtualization
	2.1 Hypervisor-based Virtualization
	2.2 Container-based Virtualization
	2.2.1 Control Groups
	2.2.2 Namespaces

	2.3 Docker
	2.3.1 Docker Image
	2.3.2 Docker Container
	2.3.3 Dockerfile
	2.3.4 Multi-Stage Dockerfile
	2.3.5 Registry
	2.3.6 Image Manifest

	2.4 Container Orchestration Frameworks
	2.5 Docker Swarm
	2.5.1 Nodes
	2.5.2 Swarm Management
	2.5.3 Services
	2.5.4 Networking
	2.5.5 Service Discovery
	2.5.6 Load Balancing

	3 From the Internet of Things to Fog Computing
	3.1 Device Heterogeneity
	3.2 Computational Models
	3.3 Software Containers in Fog Computing
	3.4 Resin.io

	4 Design and Implementation
	4.1 System Architecture
	4.2 Remote Management
	4.3 Swarm Initialization
	4.4 Device Heterogeneity
	4.4.1 Multi-Architecture Images
	4.4.2 Node Labels

	4.5 Distributed Applications

	5 Results
	5.1 Comparative Analysis
	5.2 Image Size

	6 Conclusion
	References

