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The Hadoop platform is the most common solution to handle the explosion of

big-data that both companies and research institutions are facing. In order to

store such data, the Hadoop platform provides HDFS, a scalable distributed

filesystem which runs on commodity hardware and enables linear scalability by

adding new storage nodes. While storage capacity of the system can be increased by

adding new storage nodes, the component that handles metadata for the filesystem,

the namenode, is a single point of failure and cannot easily replaced or linearly

scaled. The Hops projects provides an alternative implementation of the namenode,

which increases performance and scalability by storing metadata on an external

distributed NewSQL database called MySQL Cluster. With the new architecture,

the system is much more scalable and can transparently manage the failover of

namenodes which are now stateless components. HopsFS is, however, still limited to

running within a single datacenter which can cause severe outages in case the entire

datacenter becomes unavailable. Cloud native storage systems, such as Amazon’s

Simple Storage Service (S3), solve this problem by replicating data across different,

geographically distant datacenters, so that the failure of any given zone does not

cause data unavailability. The objective of this thesis is to enable HopsFS to work

across geographical regions while, as far as possible, maintaining the semantics

of a POSIX-style hierarchical filesystem. We leverage asynchronous replication

functionality provided by MySQL Cluster to obtain replication of metadata across

geographical regions and we present a detailed analysis on how to maintain the

consistency properties of HDFS in such an environment. Furthermore, we analyze

the issue of split brain scenarios and propose a way for namenodes to detect this

condition and continue operating correctly. Finally, we discuss the changes to the

codebase which are required to implement the proposed plan.
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1 Introduction

The Apache Hadoop project is by far the most well-known open source toolkit for

the storage and processing of big data. Since its inception, the Hadoop project

moved from a map-reduce framework to a generic set of loosely coupled services that

can be used for many different kinds of computation. One of the most important

components of this ecosystem and the focus of this thesis is HDFS.

Apache HDFS [22] is a distributed filesystem designed to store very large files

and allow for programs and frameworks written in different languages to operate on

the data. It is successfully deployed by many companies and it is capable of running

on very large clusters. Its design uses a single node, the namenode, to centrally

manage metadata for the whole cluster and this creates a limitation for both the

scalability and robustness as the system as a whole. To improve robustness it is

possible to run a second namenode which will act as a hot-standby, ready to replace

the primary in case of problems, and then either trigger a manual failover or configure

the cluster for automatic failover. While both methods improve the reliability of

the system, neither does so without significant complications. First, both methods

require the cluster operator to run additional services, the JournalNodes, just to

keep the standby namenode in sync with the primary. In case of manual failover,

the cluster operator must then manually verify and trigger the operation in case of

problems, which is a slow and error prone procedure. In case of automatic failover,

however, the cluster operator is required to configure and manage a Zookeeper

cluster and a ZKFailoverController process on every namenode which significantly

increases the complexity of the deployment as a whole. Furthermore neither solution

improves the scalability of the system because all RPCs are still directed to the

active namenode. The way Apache HDFS increases scalability is to allow the same

set of datanodes to store data for multiple namenodes, a configuration known as

Federation. In federation, however, all namenodes sharing the storage cluster are

completely separate and cannot share files which limits its utility to situations where

the namenode is overloaded by different applications that require access to different

datasets.

The limitations described also present challenges for operators that want to run

their HDFS clusters in public cloud environments such as Amazon Web Services

(AWS), Google Cloud Platform (GCP) or Microsoft Azure. Public clouds offer virtual

machines that are executed on hypervisors that are shared with other customers, and

performance and reliability tend to be unpredictable as a result. Cloud providers

also tend to provide reliability at a more abstract level than on-premise deployments.

Whereas in a typical data-center the failure domains are machine, rack, and whole

data-center, cloud providers have machines, availability zones and regions. Single

instances in most cloud providers are considered unreliable and expendable, therefore

proper cloud software should be resilient to the failure of any one instance by

distributing or replicating processes onto multiple instances. The HDFS expectation

that the machine hosting the namenode is stable and with a consistent performance
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is therefore difficult to achieve in cloud environments, even when considering an high

availability setup. To solve this problem, most providers offer managed Hadoop that

can automatically create and manage clusters and lets the customer focus on writing

the data processing pipeline. This does not, however, solve the problem of efficiently

managing HDFS clusters in the cloud.

To store a large amount of data on the cloud, the most popular approach is to use

provider-managed cloud storage solutions such as Amazon’s Simple Storage Service

(S3), Google Cloud Storage or Azure Blob storage. These systems allow customers

to use a simple API to upload, list, and retrieve millions of blobs which can be

several terabytes in size each. Furthermore these services seamlessly scale without

any user intervention and are priced according to the amount of data consumed

and the bandwidth used to operate on them. While it may sound tempting to

adapt applications to use cloud storage systems and forego HDFS, and hierarchical

filesystems entirely, these system do not offer the primitives associated with traditional

(distributed) filesystems. First, these systems are actually key-value stores that

associate a key, the path name, to a value, the blob. While this helps with scalability,

different keys can be mapped to different storage machines, which makes common

operations such as listing the content of directories much slower and with a linear

time increase with the number of entries in the store. Furthermore, to maintain

their favourable scalability characteristics and fault-tolerance, they sacrifice data

consistency for system availability in the face of network partitions [5], resulting

in an eventually consistent system [26]. Eventually consistent systems propagate

changes in the system asynchronously which may result in client retrieving stale

data, such as a listing of a directory missing some newly created files or a payload

fetch which still retrieves a recently deleted object. To allow these systems to offer

consistency semantics equal to those of HDFS, some cloud providers, such as Amazon

for their managed Hadoop offer (EMR), build additional software that expose a

HDFS-compliant API while managing metadata in such a way that the overall system

appears to have consistent metadata. The trade-offs are that this approach introduces

further components that need to be managed and scaled, it worsens performance of

the overall system because of the wait times required for the changes to propagate

through the system, and it introduces the possibility of the metadata store becoming

inconsistent with the underlying data store.

To solve the mismatch of HDFS with cloud environments, the Hops project

provides a scalable, cloud-ready, protocol-compatible distribution of HDFS called

HopsFS [18]. HopsFS solves the biggest architectural problem that limits both

HDFS’s scalability and its fault-tolerance, the storage of filesystem metadata in the

namenode process main memory. Unlike HDFS, HopsFS stores the metadata in a

distributed, consistent NewSQL database called MySQL Cluster, which can scale to

hundreds of machines and store hundreds of terabytes of metadata. By moving the

metadata in an external component, the namenode effectively becomes a (mostly)

stateless process which can be easily replicated on multiple machines, all connecting

to the same metadata storage cluster. Aside from a clear improvement in availability,
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all of the HopsFS datanodes can answer RPC requests traditionally directed towards

the HDFS namenode, enabling horizontal scalability at the namenode layer. As

demonstrated in [18] on a workload trace provided by Spotify, the improvements

brought by the increased scalability allow HopsFS to perform 16 times the number

of metadata operations in the same amount of time. Furthermore, the filesystem

metadata is now accessible to other applications in a transactional SQL database,

allowing other programs to consume and extend the model for their own purposes.

While HopsFS successfully improves on many of HDFS’s architectural pitfalls, The

goal of this work is to enable a single HopsFS filesystem to be geographically replicated

in up to two regions for fault-tolerance, while allowing clients in each data-center to

perform all operations. MySQL cluster fully supports geographical replication, but

the resulting system propagates changes between regions asynchronously. The main

objectives for this projects are therefore threefold:

• investigate the properties of asynchronous replication in the metadata storage

layer (MySQL Cluster),

• define the changes in behavior to the filesystem as a result of this work, if any,

and

• implementation of the required changes in HopsFS.

The expected results is for the two regions to appear to clients as a single filesystem,

while allowing clients in one data-center to keep working if the other data-center is

unavailable for any reason.

1.1 Outline

In order to gain an understanding of the topics described in this thesis, Section 2

introduces 1) the Hadoop Filesystem (HDFS), as the system upon which HopsFS is

built, 2) the main alterations to HDFS to increase scalability and reliability of the

system (HopsFS), and 3) MySQL Cluster as the metadata storage layer for HopsFS.

Section 3 describes other distributed file systems and their approach to metadata

handling.

Section 4 discusses the various challenges involved in geo-replicating the metadata

storage layer and the proposed solutions with particular regard to the trade-offs in

terms of filesystem behavior. It also describes the work done on the HopsFS codebase

to allow the practical implementation of such a solution.

Finally, Section 5 draws conclusions and describes areas worthy of further explo-

ration.
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2 Background

2.1 The Hadoop Filesystem

The Apache Hadoop Filesystem [22], or HDFS for short, is a scalable, distributed

filesystem written in Java and originally developed for the Hadoop MapReduce

computing framework. Its design is heavily inspired by that of the Google File

System (GFS) [11].

The system is designed to handle very large files, typically several gigabytes to

terabytes in size, by partitioning them in blocks and storing the blocks on different

machines. To increase reliability, blocks are replicated multiple times, three by

default, on different failure domains. In a typical deployment, a block saved on a

given machine will have another copy in the same rack and a final copy off-rack. Due

to the high storage cost of this replication scheme, HDFS 3.0 (set to be released at

the end of 2017) optionally supports the use of erasure coding to lower the overhead

while maintaining desirable retention characteristics. Using either of the replication

schemes effectively eliminates the need for RAID schemes on individual machines, as

data retention is assured by the distributed filesystem itself.

Files in HDFS are expected to be accessed in a sequential fashion both during

creation and during read operations and are considered mostly static. The only

modification allowed on a file is appending to the end and this operation can only

be performed by one client at a time. During read operations, the system supports

the seek operation to read arbitrary portions of the file but it is a very inefficient

operation that severely impacts throughput.

Clients interact with HDFS using a set of language-independent remote procedure

call (RPC) endpoints. The RPC system achieves language independence by using

Protocol Buffers, a mechanism that allows the description of protocol messages and

interactions (functions) in a high level language. A protocol buffer specification, in

the form of one or more .proto files, is compiled to target language code and then

compiled (or interpreted) along with application files. In HDFS, RPC is used both

for communication between clients and the system and for communication within

the system itself.

2.1.1 Architecture

The HDFS system contains three main components, as shown in Figure 1:

1. one namenode, with an optional hot standby copy,

2. a set of datanodes, and

3. clients interacting with the system.

The namenode is the central entity responsible for storing and applying mod-

ification to the system’s metadata. Metadata stored in the namenode includes
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2.1.2 Read pipeline

When performing a read operation on a file, the client begins by contacting the

namenode to get the addresses of the datanodes containing the first block of the

file. The list of datanodes holding a copy of the requested blocks is returned by

the namenode sorted by proximity to the client requesting it according to the block

placement policy. The concept of proximity and how blocks are distributed onto

datanodes is explained in Section 2.1.4. The client then contacts the first datanodes

to start reading the block. If the connection to the datanode fails at any point during

the operation, the client connects to the next datanode in the list and remembers the

failed datanode so that it does not try to attempt a connection to it during following

block reads. If the checksum of the block read by the client is different from the

expected one, the client communicates the checksum mismatch to the namenode

before connecting to the next datanode in the list. Once the client fully reads a

block, it contacts the namenode to get the location of the next block and starts the

process again. In the actual implementation the client fetches several block locations

with every call, further reducing the load on the namenode for client read operations.

It is worth mentioning that, on recent versions of Hadoop, the client can sometimes

bypass the datanode completely and read the data directly from the local filesystem.

This operation is called a short-circuit local read. The operation is only possible

when the client is co-located on the same machine as the data-node housing the

particular block requested, but this is often the case with data-aware frameworks

such as MapReduce.

2.1.3 Write pipeline

Writes on HDFS are performed by one client at a time. To maintain single-writer

semantics, the client acquires a lease (essentially a lock) on every file it intends to

write to. The lease is periodically renewed by the client for as long as it is writing to

the file. If the lease is not renewed for a set amount of time, for instance because

the client holding the lease crashed, it will expire. There are two types of expiration

times: soft, set at one minute and hard, set at 60 minutes. When a lease expires after

a soft timeout, it becomes available for other clients to claim through a procedure

called lease recovery. On the other hand, when the hard limit for a lease expires,

the namenode forcibly performs lease recovery by closing the file, thereby making it

available for new clients. To decrease the network traffic generated by periodic lease

renewal procedures on the namenode, a single lease renewal RPC call renews all the

leases associated with the client performing the request.

Once the client acquires a lease, it contacts the namenode to get a new block id

and a list of datanode to write data to. The client will only write data and control

messages such as close, to the first datanode which will then replicate the message

to the second datanode in the list and so forth until there are no datanodes left.

Acknowledgments follow the same path in reverse, and are delivered in a single call

to the client by the first datanode. Finally, when the client closes the file, the lease



7

is removed from the datanode and the block is closed by sending a close message

through the pipeline. The system is able to recover from failures during writing by

performing pipeline recovery. Depending on the phase where the failure happens,

the client can require a new set of datanodes from the namenode or exclude some of

the datanodes from the pipeline.

2.1.4 Block placement

Apache HDFS stores a configurable number, three by default, of copies of each data

block. There are two primary reasons for this: i) to be able to withstand failure

of a single data node holding the block and ii) to increase throughput by allowing

different readers to read different copies of the same block . To fulfill both purposes it

is important to consider the placement of blocks in the context of the overall network

topology where HDFS is deployed. In a typical deployment, HDFS data nodes will

be installed in server blades which will be installed in a rack. Machines in a rack will

be connected to the network via a TOR (top of the rack) switch, which will provide

both connectivity between machines in the rack and connectivity to the other racks

via a higher level switch as shown in Figure 2. This type of deployment assumes that

inter-rack connections are lower latency and have more bandwidth, while intra-rack

connections are more expensive both in terms of bandwidth and latency. In this

scenario, each rack represents a separate failure domain, as failure of the TOR switch,

loss of connectivity to the higher level switch, or power failure effectively isolates

all the machines in the rack from the network. To avoid the scenario where the loss

of a single rack compromises the availability of all the replicas of a block, HDFS

distributes the replica of a block across racks, provided that the cluster operator

provides the namenode with information on placement of datanodes.

As part of the setup for a write pipeline, the namenode provides the client with a

ordered list of datanodes to write data to. If datanode rack placements are configured

in the namenode, datanodes are selected as follows:

• If the client is in the cluster, like a MapReduce job, and there is a datanode on

the machine, the first block is placed on the same machine as the client.

• If, on the other hand, the client is not part of the cluster, the first block is

placed on a random node as there is no way to compute a distance metric

between the client and the datanodes.

• The second block is placed on a machine in a different rack than the first block.

• The third block is placed on another machine on the same rack as the second

machine.

• The fourth block, if present, is placed on a different machine on the same rack

as the first machine.

• If any more blocks are present, they are randomly distributed.
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fulfill the block placement policy.

• In case the block is under-replicated, for example as a result of datanode

failure, the replication monitor schedules the creation of new replicas according

to the block placement policy.

The operations scheduled by the replication monitors are executed by datanodes

and are transmitted to the relevant datanodes via the heartbeat mechanism.

2.1.6 Heartbeat

The mechanism used by the datanodes to communicate their status to the namenode

is to send periodic heartbeat RPC messages to the namenode. The interval of time

between heartbeats can be specified in the configuration file of HDFS but by default

it is three seconds. Responses to heartbeat messages from namenode to datanodes

also optionally contain commands for datanodes to execute, such as the deletion of

blocks, the re-replication of a block to another datanode, and so forth. The main

advantage of delivering commands as responses to heartbeats instead of sending

commands from the namenode to the datanodes is that it allows a single namenode

to manage a far greater number of datanodes, removing a bottleneck to scalability.

2.2 Scalability limitations of HDFS

A study conducted regarding the scalability limitations of HDFS [23] concluded that

HDFS can manage an estimate 1 petabyte of data per gigabyte of metadata. While

Apache HDFS can be scaled to manage multi-petabyte clusters, its single-active

namenode design effectively limits both the amount of metadata and the number

of queries per second (QPS) a node can process, to the largest machine it can be

installed on. The amount of metadata is limited because they are stored as Java

objects in the Java Virtual Machine (JVM) heap space, which is itself limited by

the amount of main memory available in the machine. Furthermore, Java objects

have a 8 to 12 byte header which is used by the virtual machine, increasing the

memory requirements even further. The amount of QPS that the system can process

is limited by both the number and speed of processors in the machine, the connection

between clients (including datanodes) and the namenode itself, and the number of

alterations that the system can apply to the metadata. Metadata objects are, in

principal, only altered in two ways: from periodic processing by the namenode and as

a consequence of RPCs invoked by clients and datanodes. Given that any number of

these alterations can happen in parallel, the namenode protects the metadata with a

global lock, the FSNamesystemLock, which can be acquired by an arbitrary number

of threads in read mode, but requires exclusivity when acquired in write mode. All

operations that require modification of the metadata are therefore executed serially,

further lowering the amount of queries per second that the namenode can process.
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Storing metadata in the JVM heap is also problematic due to increasingly long

garbage collection pauses that freeze the entire process as the heap grows in size.
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2.3 HopsFS

HopsFS [19] is a fork of Apache HDFS created with the explicit goal of solving the

biggest scalability and availability limits that are inherent to the single-namenode

nature of the system: i) the amount of metadata limited by the main memory of the

machine running the namenode process, ii) the number and speed of processors in

the machine, iii) the amount and latency of bandwidth between the namenode and

its clients, iv) the coarse grained locking that requires a global lock to alter any piece

of metadata, and v) the long garbage collection pauses can block the entire process

for long periods of time as heap grows. To do so, HopsFS decouples the responsibility

of managing metadata from the namenode and places it in a separate distributed

system called MySQL Cluster. MySQL Cluster is a distributed, consistent (CP),

in-memory relational database management system (RDMS) that can be operated

and scaled independently from the hadoop cluster(s) it stores metadata for. Data

stored in MySQL Cluster’s distributed storage engine (NDB), is divided between

nodes participating in the cluster, allowing capacity to be increased by adding more

machines to the cluster. Unlike more traditional RDBMS, where data is stored on

disk and only loaded in memory at query time, data in MySQL Cluster is stored

in-memory and persisted to disk as a recovery mechanism, allowing very fast query

execution. By moving metadata to such a system, all of the issues regarding the

memory limitations of a single system are automatically solved. The gains are even

more significant with regards to the amount of queries per seconds that the system

can manage. Decoupling metadata management from the namenode makes it a

stateless component, which can be horizontally scaled and enables downtime-free

failover, which is described in the following section. Furthermore, compared with

the approach of having a global lock for all metadata, a relational system such as

MySQL Cluster can have much more fine grained locks allowing, for instance, parallel

modification of the information of any number of different files. This is possible

because relational databases structure data as tuples in a table and each tuple (or set

of tuples as defined by a query) can be separately locked. Unlike memory-managed

applications, MySQL Cluster also does not suffer from garbage collection pauses,

avoiding the pitfall in performance as the amount of managed metadata grows larger.

2.3.1 Multi-namenode architecture

The namenode, which is now a client of the metadata storage system, performs

metadata queries, both in terms of reading and modifying, using an interface called

the (meta)Data Access Layer or DAL, which internally connects to the distributed

storage system in an efficient fashion. This allows multiple HopsFS namenodes to

run in parallel, each serving a subset of the client requests to the overall system. The

architecture of the resulting system is shown in Figure 3.

While most client operations can be directed to any one namenode, the block

reports from datanodes and the daemon threads must be handled carefully. In a

Apache HDFS namenode, background daemon threads are responsible for a variety
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using MySQL Cluster distributed engine (NDB). The failure detector implemented

therefore complies with the requirements for the weakest failure detector for solving

consensus [7].

2.3.3 The (meta)Data Access Layer

The Data Access Layer, DAL for short, is the Hops component that allows the

delegation of metadata handling to the MySQL Cluster database. To achive this,

the component provides two distinct pieces of functionality: i) management of the

life-cycle of database connection, including various optimizations to reduce network

round trips and, ii) abstractions that allow engineers working on Hops to convert all

memory metadata accesses in database operations in a convenient way. Formally,

the data access layer provides only the interfaces that Hops itself uses to describe

accesses to metadata, delegating the implementation of database access to a further

library that provides concrete implementations. Given that in Hops only one such

implementation exists (hops-metadata-dal-impl-ndb), this chapter will consider both

DAL and DAL-implmenetation as a whole without making the distinction explicit.

Connection management The DAL provides management of the life-cycle of

database connections to a MySQL Cluster cluster. Specifically, upon configuration,

the DAL creates two persistent connectors to the same MySQL Cluster cluster: one

that connects to NDB using the native protocol and the ClusterJ Java library and

one that connects to SQL nodes using the standard JDBC MySQL driver. The

reason to use both a SQL driver and the native NDB protocol is that, while the

NDB protocol is very fast at performing primary-key based operations, more complex

operations such as joins and deletes are not supported and can only be executed

through the SQL nodes. Given that the performance of Hops is determined mostly

by how fast it accesses metadata, the DAL must be as performant as possible. To

achieve better performance, this part of the DAL library implements optimizations

aimed at reducing connection overhead, thus allowing a greater number of operations

per second. The main technique for this is connection pooling, which associates each

open connection to a thread that will use it for all operations. By allowing a thread to

re-use the same connection for all operations, the overhead of opening the connection

is effectively eliminated. Connections are only closed in case of shutdown of Hops or

errors on the connection itself, in which case the connection is re-opened at the next

use. The connector itself is provided to clients as a global object, accessible to any

component that requires it and it is initialized and configured in Namenode.java.

Database access Aside from managing database connections, the DAL provides

abstractions that are used to convert all memory metadata accesses into accesses to

the metadata storage layer. The main abstraction provided is the request handler,

a structure that provides information on the type of operation being performed

(the OPCODE) and the procedure to execute on the metadata, whether read-only or
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a modification. When the handler is executed it performs the procedure in the

context of a database transactions where errors will be handled by rolling-back the

transaction itself, guaranteeing atomicity of metadata modifications.

The DAL provides two types of request handlers, the lightweight request handlers

which execute the operations as described above and the transactional request handlers

that apply most metadata modifications in memory before committing them to the

database with the goal of reducing database round-trips.

In a lightweight request handler, shown in Listing 6, every modification to the

metadata is concretely executed as a database query, causing a large number of

network operations. In case of transaction handlers with very large number of

modifications, the network round-trips rapidly become the performance bottleneck.

To increase performance in modification heavy handlers, transactional request

handlers, shown in Listing 5, operate in a different way with the goal of reducing

network operations to a minimum. Transactional request handlers introduce a lock

acquisition phase which is executed before the code for the transaction itself. In this

phase, the DAL acquires locks on all the specified rows and materializes them as

objects in the DAL memory. Upon execution, the handler operates on the in-memory

representation of the objects either by modifying or deleting existing ones or by

creating new ones through the EntityManager class. At the end of the perform phase,

the objects are divided into four categories: 1) unmodified, 2) created, 3) deleted,

4) modified, and the required operations are executed in batch on the database. The

perform phase is, therefore, still executed in the context of a database transaction,

with the possibility of rollback in case of errors, but all operations on the database

are executed at the end. Given that all of the materialized rows are locked for the

duration of the database, there can be no conflicts upon commit at the end of the

handler. Note that the handler can request read locks as well as write locks and, in

that case, the rows locked in read mode cannot be modified.

Replacing all memory accesses with transaction handlers which acquire the

minimum amount of locks required to perform the operation, HopsFS achieves a

much more granular level of concurrency compared to the in-memory global lock,

which allows it to execute a much greater number of concurrent operations.

2.4 MySQL Cluster

HopsFS delegates the storage and querying of metadata to an external database

called MySQL Cluster. MySQL Cluster is a in-memory, distributed, consistent,

relational database management system (RDBMS) currently developed by Oracle.

The sources for the system are released under the terms of the GNU General Public

License (GPL), but development is driven by Oracle without external contributors.

MySQL Cluster is the combination of the MySQL relational database management

system and a distributed table storage system called Network DataBase (NDB)

[21, 1]. As such, any program that is able to use MySQL as the database can be

migrated on a MySQL Cluster system with minimal modifications. In this system,
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data storage and query processing are handled by NDB while MySQL nodes act as

front-ends by parsing and interpreting SQL queries.

2.4.1 Network DataBase

NDB is a in-memory share-nothing database which runs as a distributed application

on a set of nodes. NDB can either be used on its own or as part of the MySQL

Cluster system, in which case a set of MySQL nodes act as clients, accepting client

connections in the MySQL wire protocol, parsing the SQL and executing them using

the native NDB protocol. Its share-nothing architecture relies on message passing

between nodes participating in the cluster instead of disk or memory sharing like

other distributed databases. Furthermore, unlike traditional databases, NDB holds

all data for tables in main memory. Each NDB cluster contains two sets of nodes:

i) data nodes, ndbd and ndbmtd, which contain the data for tables and participate

in queries and commit protocols ii) management nodes, ndbmgmt, which provide

parameters to data nodes in order to form and maintain clusters and, typically, act as

arbitrators during split brain protocol. In NDB tables are divided into partitions and

partitions are assigned to node groups. In order to compute the partition any row

belongs to, the default strategy is to take the hash of the primary key modulo the

number of node groups, tough this behaviour can be modified at table creation time.

The system can be configured, by tuning parameters in the management node(s), to

replicate each data partition multiple times. Aside from creating redundancy in case

of data node failure, multiple data nodes will be able to serve reads for the partitions

stored in the node group, linearly increasing the number of read queries per second

that the system can serve. If replication is set to one, only one copy of the data is

available in the system and, if the data node storing the partition fails, the data

is permanently lost. If replication is set to a value higher than one the cluster is

divided in logical units called node groups. The number of node groups Ng formed is

controlled by Ng = Nt

R
where Nt is the total number of data nodes in the system and

R is the replica factor. This also implies that, by setting the replica factor R, the

number of datanodes in the cluster must necessarily be a multiple of R itself. Every

write for a data partition will be replicated on every node in the assigned replica

group so that, in case of failure of any node, the system will still be able to serve

all the requests, albeit at a slower rate. Figure 4 shows an example scenario for a

cluster with Nt = 12 and R = 3.
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To detect failures, data nodes arrange themselves in a virtual ring and send

heartbeat messages to the next node in the circle. If one node fails to acknowledge a

heartbeat three consecutive times, it is considered failed and the cluster enters a split

brain protocol, during which it is not able to accomplish any work. The purpose of a

split brain protocol is to identify and designate a subset of nodes in the cluster that

still have a complete copy of all partitions and can therefore continue to function,

albeit in a degraded fashion. To identify the sub-cluster that continues to function,

each sub-cluster executes a series of checks:

• if the sub-cluster includes all nodes from any node group, this is the only

possible functional sub-cluster and can continue to operate,

• if the sub-cluster does not contain at least one node in each node group, this

sub-cluster is not functional and can shut-down,

• if the above conditions are both false, there is more than one functional sub-

cluster, defer the decision to an arbitrator.

In order to avoid a split brain scenario, where two or more subsets of the cluster

continue to apply diverging modifications to the data in parallel, the arbitrator

allows only one of the functioning clusters to continue. The arbitrator select only

one cluster by only replying positively to the first subset contacting it, instructing

all following sub-clusters to shutdown. If a sub-cluster cannot contact the arbitrator

within a predefined amount of time, it shuts itself down, guaranteeing that at most

one sub-cluster will be live during split brain protocol. The role of arbitrator can

be fulfilled by both management nodes and SQL nodes, which are explained below,

but management nodes have higher priority compared to SQL nodes. Given that,

without an arbitrator the whole cluster fails upon failure of a single node, more

than one node can fulfill the role of arbitrator, albeit not at the same time. If an

arbitrator fails during normal cluster operations, the datanodes agree on another,

selected from a list of arbitrators and associated priorities. This list is specified

at cluster configuration time and can only be updated by a management node by

applying a configuration change. All the nodes that shut down as part of the split

brain protocol must re-join the cluster through a management node upon restarting.

It is worthy to note that, while the cluster is effectively able to access all data in the

aftermath of a split brain protocol, the reduced capacity of one or more node groups

can cause load spikes for the nodes that are left.

NDB data nodes store all partition data in main memory. In case of data node

shutdown, either planned or unplanned, all the partitions on the node are lost. While

a restore procedure can, in principal, fetch copies of the partitions from other data

nodes in the same node group this will either 1) take a very long time if the goal is to

minimize the impact on the other working nodes in the node group 2) consume most

of the bandwidth on the working nodes left in the node group, further worsening the

strain caused by a reduced number of nodes in the group . To limit the amount of

bandwidth required by a node restore procedure, data nodes periodically checkpoint
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state to durable storage. Checkpoints to durable storage are achieved by periodically

flushing to disk a log, called the REDO log, which contains all the transactions

committed between the last flush and now. To obtain a consistent snapshot of the

system, one where no committed transactions have a dependency on uncommitted

transactions, all the data nodes coordinate using a global checkpoint protocol (GCP).

GCP enables data nodes to flush REDO logs in such a way that the resulting snapshot

is globally consistent. Due to the way the REDO log stores changes, without any

other mechanisms to limit its growth, the on-disk snapshot would effectively grow

without bounds. To prevent this, data nodes also run a local checkpoint (LCP),

which persists a snapshot of the state of the partitions in the system to durable

storage. With a complete snapshot available, the node can discard the portion of

REDO log coming before the local snapshot, as in case of restore the local state is

used to reconstruct the in-memory state of partitions. In case of restore a data node

i) loads the most recent local checkpoint ii) applies all the transactions from the

REDO logs iii) requests the newest transactions from other nodes in the group . By

using a combination of LCP and REDO log, the node therefore reduces the amount

of data to transfer from a complete snapshot to only some transactions. The above

techniques only help if the node starts the restore relatively promptly as the local

snapshots will be quickly invalidated when other nodes erase theis REDO logs to

create a newer LCP.

2.4.2 SQL Nodes

SQL nodes are MySQL server instances that can create and interact with tables

using the NDBCLUSTER engine. Tables created with such an engine are stored on a

NDB cluster. SQL nodes participate in the cluster as clients and can also be elected

arbitrators, tough usually with lower priority compared to management nodes. Any

number of SQL nodes can be connected to the same NDB cluster to better distribute

the load and increase the availability of the service for MySQL clients. While MySQL

server itself is modified to connect and participate in an NDB cluster, clients can

connect using standard MySQL client libraries, which allows unmodified applications

to take advantage of the scalability and performance benefits of MySQL Cluster.

2.4.3 Isolation levels and locking

NDB only supports transaction isolation level READ_COMMITTED, which guarantees

that uncommitted values will never be read. While reading an uncommitted value is

impossible, NDB implements READ COMMITTED on a row-by-row basis, which

makes it entirely possible for a transaction to commit some updated values while

another transaction is reading them, resulting in the second transaction observing a

subset of values before the transaction and the rest after. In concrete terms, whenever

a data node receives a read request, it will always return the most recently committed

value.
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In order to obtain stricter forms of serialization, NDB allows transactions to

set row-level locks, both shared and exclusive, which are released upon transaction

commit or roll-back. Row level locking is the fundamental mechanic that allows

HopsFS to provide consistent filesystem operations to clients as well as enable the

use of NDB as shared memory for the leader election processes.

2.4.4 Geographic clusters

While a single NDB cluster offers strong consistency and good performance in the

context of a data-center network, MySQL cluster also offers a variety of options to

extend a cluster to more than one data-center.

The obvious solution to the problem of geographic clusters would be to set up

data nodes in all locations and join them in a single cluster the same way it would

be done in a single data-center. This is not, however, a viable solution in most

scenarios due to both assumptions in NDB and in the way data-center networks

are designed. NDB assumes all data nodes are running in a interconnected network

where the latency and bandwidth to contact any other node in the cluster is generally

constant, and it leverages this assumption to provide on-line transaction processing

typical of a online transaction processing system (OLTP). Timeouts for transactions

are very short (5 seconds by default) and the failure detection mechanic is also

sensitive to increased latency as it may confuse a latency spike with node failure. A

multi-data center network, on the other hand, would have very low latency and high

bandwidth between nodes in the same data-center but comparatively higher latency

and lower bandwidth between nodes in different locations. Furthermore, connections

between nodes in different locations would all share very few channels, while internal

data-center networks tend to be very well connected.

The better alternative for geographical replication in MySQL Cluster is to use

asynchronous replication features built into MySQL. Asynchronous replication

techniques are used in standard SQL databases such as MySQL and PostgreSQL to

achieve a variety of functions such as performing analytics without compromising

the database running online processing or creating standby replicas, ready to be

promoted should the master fail. In asynchronous replication a node referred to as

master publishes a log-like stream of operations it executed, in the order they were

executed. A set of other nodes, referred to as slaves or followers, consume the log of

operations and apply the same operation to the local representation of the data. The

state of followers is therefore consistent with the state of the master at some point

in the past, even in case of master failure. This technique is asynchronous because

the master does not wait for followers before reporting success to the client, thus

maintaining the low latency operational characteristic of a online database. High

latency only affects this process in that the state of followers on high-latency links will

lag further behind the master’s state. In the MySQL Cluster system, asynchronous

replication and the conflict detection and resolution functions associated, which are

illustrated later, are delegated to SQL nodes which propagate events to other SQL
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copies of each chunk (three by default), referred to as replicas, are managed by

different chunckservers operating in different failure domains. Chunks are stored as

regular files in the chunkserver’s local filesystem. Replication is employed to maintain

data availability in the face of chunckserver failure, as well as to provide a limited

form of load balancing by allowing different clients to read different replicas of the

same block. The location of replicas is stored, alongside all other file metadata, in

the master main memory.

As in HDFS, the single master node is the main scalability and reliability bottle-

neck for the system and, as such, many techniques employed in GFS have to goal of

reducing interactions with this node to a minimum and increase its reliability.

Reads The chunk size is purposefully very large compared to local file-systems, as

any read request must first contact the master to learn the location of block replicas.

When responding to such a query, the master sends location data about several

following blocks in the file and this information is cached by clients for a short period

of time, to avoid excessive master involvement in sequential read scenarios. After

learning the location of blocks, the client can complete the read operation with no

further involvement from the master node, by contacting the relevant chunkservers

directly.

Writes In order to minimize the master’s involvement in write operation, the

systems grants block leases to chunckservers. When a client requests to mutate a

block, either by writing or appending to it, the master selects three (assuming a

default replication factor) chunkservers to receive the mutation: a primary and two

replicas. The primary is granted a new lease to alter a block with data received by

the client for as long as the lease is valid, unless it was already holding a lease for the

specified block. The chunckserver can periodically renew the lease by contacting the

master node if it is still receiving data from clients. At this point, the client pushes

the data to all the chunkservers and waits for a confirmation that all of the replicas

received the data. When a confirmation is received the client contacts the primary

and requires a write operation. The primary serializes all writes (there may have

been concurrent writes) and then applies them to the file stored on the local disk.

After it applied the state to the local file it contacts the replicas and asks them to

write the changes in the same order. Once it receives confirmation from all replicas,

the write is finally acknowledged to the client.

Reliability In order to increase the master reliability, all metadata mutations are

persisted on a disk-based log which is both kept on the local machine and replicated

to a number of others. Client operations that involve metadata modifications are not

acknowledged before this flush is completed. Given that such a mutation log would

grow without bounds, it is periodically compacted into a snapshot. The snapshot

is created by serializing the current master metadata on disk in a format that can

be directly used to restore a master without any parsing. When a master needs to
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recover from a crash, first it loads the most recent snapshot, then it applies all the

modifications in the log before accepting any client queries. This mutation log is

also used to keep several “shadow masters” up-to-date with the state of the master.

Shadow masters cannot perform any metadata mutation but they can serve read

requests, even in the event of master failure. This mechanism is used both to scale

the system further by delegating reads to a shadow master and to grant a read-only

service during recovery of the master.

3.1.2 Chunk management

While client-initiated operations are optimized to involve the master infrequently,

some periodic operations are necessary to keep the cluster in a healthy state. As

previously mentioned, GFS uses replication to maintain data availability in the face of

chunkserver failure. However, if chunks with fewer than three replicas are not replaced,

eventually all replicas will be unavailable. To prevent this, the master periodically

queries all chunkservers for the list of all chunks they are holding and instructs

the chunkservers to re-replicate the ones with fewer than the specified number of

replicas (three by default). Finally, chunk deletion is also handled asynchronously,

if the master detects any chunks that are not tracked in its memory metadata, the

corresponding chunkserver is instructed to delete the chunk from disk.

3.2 Windows Azure Storage

Windows Azure Storage [6], WAS for short, is a system developed by Microsoft

for the Azure cloud platform and it is in production since 2008. Unlike a classic

distributed file-system where the only primitive offered is the file, WAS offers three

different primitives to clients:

• a blob storage to process unstructured data,

• a table storage to process structured data in tuples, and

• a queue system to build message-passing based systems.

Typically data flowing into and out of the system is saved in blob storage, sent to

workers as queue items and processed using the table store.

WAS was designed around a global namespace which allows clients to access data

in any deployment in the world using the same addressing scheme. Data in the system

can be accessed with a url built from three components: account name, partition name

and object name, which can uniquely identify all objects available in the system

worldwide. While account name is used to identify the client, identification of the

data objects varies according to the type of object: blobs are uniquely identified by

partition name, tuples in table storage are identified by a composite primary key

(partition name, object name) and for queues, the partition name identifies the queue

and the object name the specific message within that queue.





29

distributed file-systems,

• the Partition Layer implements the higher level data abstractions discussed,

provides transactions and strong consistency for objects, caches data and uses

the Stream Layer to store the data for the objects, and finally,

• the Front End Layer, a stateless component that performs routing of requests

to the appropriate Partition Layer process and streams large objects directly

from the Stream Layer as an optimization for large files.

The Stream Layer The Stream Layer implements the basic storage primitives

for the system and it is accessed by the Partition Layer (the client). Its design is

that of a append-only filesystem, and the interface provided to clients offers the

usual operations: i) open, ii) close, iii) delete, iv) rename, v) read, vi) append, and

vii) concatenate. Operations in the stream layer work on streams, large files built as

a list of pointers to extents. Extents are physical file stored on the NTFS filesystem

that contain the data, as a list of blocks.

Blocks are small data units (up to 4MB) with a check-sum and they are the

minimum unit the system operates on. Reads and writes operate on whole blocks

and when written, the blocks are atomically appended to an extent. Writes also

support appending multiple blocks as an atomic operation, a “multi-block” write.

Reading less than one block is also not supported, as read operations verify the

chechsums for block themselves (and the checksum cannot be verified by reading

only a part of the block). If less than a block is requested by clients an entire block

is loaded into memory and the extra data is simply discarded.

Extents are just a list of appended blocks that can grow up to 1GB in size.

Extents, much like blocks in HDFS, are the unit of replication in the stream layer

and, unless there are errors, there are three copies of each available in the system.

Unless an extent is last in a particular stream, it is sealed. A sealed extent can

no longer be appended to and is completely immutable. Sealed blocks can also be

erasure coded, depending on policy. Erasure coding in WAS is described in detail in

a separate paper [14]. To avoid excessive fragmentation of small objects, the stream

layer appends multiple objects to the same block or the same extent, depending on

the size.

Streams are the file-like primitive provided to clients by the stream layer. Every

stream has a name in the name-space of the stamp (which is maintained at the

stream layer), and it is a list of pointers to extents. Representing streams as list of

pointers enables a very efficient concatenation operation, where two or more streams

can be merged by just concatenating the list of pointers but without modifying the

existing extents. All of the extents in a stream but the last are sealed.

The stream layer is organized as two different components:

• the Stream Manager (SM), a component similar to HDFS’s namenode and
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• the Extent Nodes (EN), components that perform a function similar to that of

HDFS datanodes.

The Stream Manager is a group of nodes, coordinating using Paxos, that performs

functions equivalent to those of a HDFS namenode. Such functions include assigning

extents, both primary and replicas, to extent nodes, performing periodic polling and

re-replication of under-replicated blocks and the storage of metadata on streams.

Streams are managed solely by the Stream Manager as a set of pointers to extents

stored by Extent Nodes.

Extent Nodes, on the other hand, manage the physical storage of extents on disk.

Each node completely manages a set of disks where extents are saved as NTFS files.

For each extent the nodes also store an index that identifies block boundaries within

the stream. Extent nodes also perform synchronous replication of extents to other

nodes both during client writes and during re-replication as scheduled by the Stream

Manager.

The Partition Layer The Partition Layer builds upon the storage primitives of

the Stream Layer to provide higher level APIs to application developers. Clients

that access Windows Azure Storage can only use operations provided by the Par-

tition Layer and cannot access the Stream Layer directly. The APIs provided to

external clients allow users to store data and manipulate it in three different types of

objects: i) blobs, ii) tables and iii) queues. Additionally, the Partition Layer provides

transactional behaviour for all supported data models, load-balancing and object

namespacing within the stamp and finally, inter-stamp replication for disaster recov-

ery and balancing purposes. The inter-stamp replication works by asynchronously

replicating all data for an account from a primary stamp, where all the queries

are routed by the LS, to a secondary stamp in a different geographic region. The

secondary stamp can be promoted to primary both if the primary fails (disaster

recovery) or if its load raises above a set threshold (load balancing).

All internal state for the Partition Layer is stored and processed in Object Tables

(OT), an internal abstraction providing SQL-like tables that can grow to several

petabytes. All user-facing abstractions, as well as internal functions are stored in such

tables, which are in turn persisted by the Stream Layer. The Partition Layer manages

OTs by dividing them in ranges and assigning ranges to nodes. The Partition Layer

is itself organized as a set of three different components:

• a Partition Manager (PM) that splits the object table and assigns it to Partition

Servers. It manages failures of Partition Servers and does load balancing by

re-assigning partitions to other servers,

• Partition Servers (PS) which serve requests for the partition of OTs they are

managing, and

• a Lock Service (LS) which provides a Paxos [16] lock service used to elect a
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• a block store which stores physical data on disk in blocks and provides primitives

to read and write such blocks.

Metadata store The metadata store is CalvinDB, extended with a number of

filesystem-specific operations. CalvinDB is itself divided into three components: i) a

log which maintains an ordered list of transactions with parameters, ii) a storage

layer which stores database data and provides local transaction semantics, and

iii) a scheduling layer which performs local execution of transactions. Each of these

components is exposed to others through a standard interface and can therefore be

replaced independently.

In CalvinDB, the log maintains a complete and ordered list of transactions and

transaction parameters, such that, by replaying all transactions from this log the

database can be reconstructed. The log is completely distributed and is divided in

two logical components: front-end servers and the metalog. Front-end servers accept

transaction requests from clients and batch them before writing such batches in the

distributed storage. Once the batch is safely stored (and replicated) in the storage, the

system generates a unique ID in the batch and writes it in the metalog. The metalog

is a ordered sequence of unique batch IDs maintained by a set of servers running

a Paxos consensus protocol for consistency. In order to “replay” transactions, the

system traverses the metalog extracting the unique IDs and executes the transaction

batches in that order.

The storage layer organizes the storage of database data. As all the other

components, the storage layer is an interface and any implementation fulfills the

following criterias: i) provides read and write primitives that execute on the node,

ii) provides a placement manager that, for every request, provides a storage node where

the operation can be executed and iii) allows the definition of custom transactions

that include both read/write primitives and other deterministic application-specific

logic. The ability to define custom transactions is particularly powerful in the context

of a distributed file-system as it provides the opportunity to define more high-level

operations such as CreateFile(path) that will be serialized in the log along with all

their arguments (path in this case). The implementation used in CalvinFS provides

a in-memory key-value store which supports versioning of keys and uses consistent

hashing of keys to determine placement of values.

The scheduler drives local query execution and one process is therefore executed

alongside every storage layer node. Unlike most other database systems which employ

a pessimistic locking scheme and wait for locks when they are acquired by another

transaction, the scheduler in CalvinDB uses a protocol called deterministic locking

that analyzes the entire transaction, determines the read/write set and executes it

only when it is safe to do so without additional checks. The actual execution is

performed by the storage node when the scheduler forwards the transaction to it.

The absence of a distributed commit protocol, usually required by other database

systems in this scenario, greatly increases scalability and reduces latency. It, however,

limits the type of transactions that can be executed to those for which the read/write
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set can be determined statically (without executing the query itself). Given that

some operations, such as recursive change of permissions, require transactions for

which the read/write set cannot be statically determined, a system called OLLP

(Optimistic Lock Location Prediction) is used to estimate the read write set. The

implementation of OLLP for CalvinFS executes the query without performing writes

(a dry-run) and then annotates the transaction with the read/write set obtained.

If the read/write set provided by the dry-run is different from the one obtained

during actual execution due to changes in the data, the new set is appended to the

transaction and the transaction is restarted.

File-system metadata organization CalvinFS stores file metadata as an asso-

ciation between a key, the full path of the object, and a value containing various

fields:

• Type: either file or directory,

• Permissions: unix-like permissions for the object and all ancestors,

• Content (directory): a list of all files contained in the directory including

subdirectories and

• Content (file): A mapping between byte-ranges in the file and block IDs.

Given the flat organization of files and the fact that all files store permissions for

all the ancestors, changing permissions of a directory is potentially a very expensive

operation as it involves changing all the descendants. Recursive queries are also very

expensive for the same reason.

Block store Block storage in CalvinFS differs from the file-systems previously

discussed in two significant ways: block allocation and block assignment. Blocks in

CalvinFS are completely immutable and can range from 1 byte to 10 megabytes.

Every write operation generates an entire new immutable block and appends it to

the file metadata. A background process periodically rewrites and compacts blocks

in order to reduce fragmentation but blocks are otherwise completely immutable.

Each block is assigned a global ID which is stored in the metadata and, in order

to be assigned to a set of machines, the block ID is hashed and the hash is used to

identify a bucket. Each bucket is assigned to a set of machine and those machine are

responsible for all the files whose ID hash is in the bucket. The mapping of machine

to buckets is maintained in a Paxos replicated store and is additionally cached on all

machines.

Geographical replication All of the components discussed above can be executed

in geographically distant data-centers and the system assigns replicas in a way that

minimizes disruption during failures and network partitions. Most operations only
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need a quorum of machines to acknowledge before returning to the client, therefore

the latency of the overall system in the case of three geographic areas (the typical

case) depends on the two areas with the lowest latency to the client (the third will

eventually ack).

3.4 Summary

In this section we analyze three different distributed file-systems with a focus on how

they handle metadata management.

The Google File System (GFS) paper [11] directly influenced the design and

implementation of HDFS and the similarities between the two are therefore extensive.

Like HDFS, GFS only uses a single master node and maintains the entire file-system

metadata in main memory. For fault-tolerance all metadata operations are recorded

in a log, which is propagated to other machines that build a in-memory state from it.

Such machines can either be used as backups in case of master failure and as read-only

replicas that can serve any read operation from clients. Both master backups and

read-only replicas aim to increase fault-tolerance of the system but do not handle

the scaling use case. In order to scale GFS, Google eventually adopted a solution

virtually identical to HDFS federation by allowing multiple masters to control a

shared pool of chunkservers. The limitations of GFS eventually prompted the design

of other systems with better scalability and performance such as BigTable and later

Colossus [17]. BigTable [8] is an extremely scalable distributed storage systems for

structured data and it is built on top of GFS. Colossus [17], on the other hand, is the

successor to GFS and it employes a distributed master design with metadata stored

on BigTable and allows for more granular file operations by adopting a 1 megabyte

size for its chunks. While this significantly increases the amount of metadata for the

master to handle it is better suited for real-time applications for which GFS was not

originally designed for.

Windows Azure Storage [6] introduces a high-performance append-only filesystem

that is capable of supporting the three core abstractions that are offered to users by

the system. The file-system, called Stream Layer (SL) in Windows Azure Storage, is

very similar in design to both GFS and HDFS and it provides reliable storage to the

abstractions built by the upper layer. It operates in a single zone and a single cluster

called a Stamp. Replication in the Stream Layer is performed in a similar fashion to

both GFS and HDFS, extents (chunks in GFS, blocks in HDFS) are synchronously

replicated to a set number of replicas before any operation is acknowledged to the

client. Metadata is stored in a Paxos replicated group where each machine stores

and mutates the state synchronously. Reliability across Stamps (and therefore

availability zones) is only provided by the upper layers which replicate entire objects

asynchronously to another Stamp in a different zone for disaster recovery or load

balancing purposes. In order to increase scalability past the limits of a single Stamp,

the application must use and coordinate multiple independent Stamps without any

support by the system.
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CalvinFS is the only file-system analyzed here that natively supports deployment

in multiple availability zones both to increase reliability and to increase scalability.

It does however optimize for a very different use case than typical distributed file-

systems and that is an extremely large number of small files. Furthermore, due to

the way it handles the hierarchical nature of a file-system tree, operations that need

to modify large sub-trees are required to modify each child and are therefore slow

and expensive. Finally, this is the only solution that is completely experimental and

has not been validated with real-world usage.

While all the papers analyzed in this section introduce some interesting concepts,

very few are directly applicable to our problem due to the peculiarity of how replication

works in MySQL Cluster. However, concepts not directly relating to metadata

replication, such as erasure coding in WAS, provide interesting insights in how to

handle such tasks.
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4 Contribution

The goal of this work is to plan for an extension to HopsFS that leverages the

geographical replication capabilities built into MySQL Cluster and illustrated in

Section 2.4 to build a geographically distributed file system that transparently appears

to clients as a single name-space and maintains most of the consistency properties

that clients expect. Furthermore, clients running in or near the closest geographical

location, the local cluster, are expected to continue to function, possibly at reduced

capacity, in case other, remote, geographical locations fail or become unavailable

for any reason. This also implies that operations from clients in or near the local

clusters should be processed in the local data center as much as possible to avoid

saturation of the egress links that connect the different locations together.

Two data-centers are considered separate geographical locations if they are differ-

ent, distant buildings that are serviced by different utilities such as power companies

and internet service providers, and are therefore unlikely to be all affected by local

catastrophic events such as loss of power or a localized earthquakes. This requirement

also influences network topology in that two machines in different geographical

locations may only be able to connect to each other through a virtual network which

connects to other data-centers through the external connection. Due to the use of

the external connection, packets travelling on the virtual network are subject to both

additional overhead caused by the virtual networking protocols and routing on the

open internet. Such a topology implies that connection between machines running

in different data-centers are subject to higher latency, often orders of magnitude

higher, and lower, more expensive bandwidth compared to a connection between

two machines in the same geographical zone. A partial exception to this rule are

cloud provider’s Availability Zones (or just Zones depending on the provider specific

terminology), which fulfill the requirements of different geographical locations but are

connected by low-latency dedicated fibers and allow machines in two different zones

to communicate with latency and bandwidth parameters similar to those of machines

in the same zone. They achieve this result by placing different data-center buildings

just hundreds of kilometers from each other, connecting them to different power

providers and ISPs and providing dedicated connection between the data centers

themselves. Cloud provider zones are, however, insignificant to our goal as a system

designed to run in the former scenario will only perform better when deployed in the

latter.

As shown in Section 2.1 and 2.3, the HopsFS architecture involves three main

components:

1. a set of namenodes which process client and datanode RPC requests as well as

performing background periodic maintenance tasks such as re-replication of

blocks which keep the cluster in the correct state,

2. a set of datanodes which store block data and checksums and report their

status to the namenodes using heartbeats, and
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3. a metadata storage cluster which stores and handles modification of the cluster

metadata by the namenodes.

In order to allow clients to perform operations on the local cluster, which is one of

the key objectives of the project, each of the clusters needs i) a complete copy of

all metadata, ii) a complete copy of all filesystem data, and iii) running instances

of all the components required for the system to function on its own. If this were

not true, operations on the local cluster would require very expensive connections to

a remote cluster, operations that would fail and render the local cluster inoperable

in the event of remote cluster failure. Replicating the infrastructural components

is by far the simplest task, as it only involves the deployment of a complete cluster

in the other geographical location plus some configuration to connect the clusters.

Management of filesystem metadata and blocks are, however, very complex problems

and the focus of this thesis.

4.1 Metadata management

In HopsFS, file system metadata are stored and processed by a MySQL Cluster cluster.

As discussed in Section 2.4, MySQL Cluster supports a variety of asynchronous

schemes that can be used to replicate transactions between different geographically

separate clusters, without impacting the liveness and latency of the running NDB

cluster. The hybrid active active replication scheme allows different metadata

clusters and namenodes to operate on separate copies of the metadata, which is

asynchronously distributed to all clusters in the replication ring. Per limitation of

the conflict function selected (NDB$EPOCH_TRANS), only two clusters can be set up

in this configuration, limiting the replication to two geographical areas. In order to

further simplify the basic design, one cluster is designated as the active partition for

all data, while another is designated as the passive. Following this, we will refer to

the clusters as primary for the cluster active for all partitions and secondary for the

cluster passive for all partitions. All transactions committed on the primary cluster

are durable, while transactions committed on the secondary cluster may be re-aligned

if they are in conflict. Re-aligning involves undoing the conflicting transaction, as

well as any transactions depending on it and the applying the changes originated on

the primary. As previously mentioned, conflict tables, which are only present on the

primary cluster, will contain the conflicting values for the rolled-back rows, allowing

applications that access the database to react to conflicts in specific ways.

While asynchronous propagation of transactions fulfills the requirement of main-

taining a complete working copy of all data in both clusters, it undermines a number

of processes in the namenode that rely on the consistency properties of the NDB

database. Due to the lack of row-level locking, for example, it would be entirely

possible for HopsFS to grant a lease on a file in both the primary and secondary

database concurrently, breaking the single-writer semantic of HDFS (and HopsFS).

To avoid this issue and maintain the appropriate level of consistency for the filesystem,

namenodes in the secondary zone are allowed to perform direct connections to the
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primary metadata cluster to execute operations which require strong consistency

properties and locking. Operations require such strong consistency properties to

maintain the single writer semantics of HDFS, which means that all operations that

modify file and block metadata will be routed to the primary cluster. While routing

write operations to the secondary cluster may appear to be problematic in terms

of traffic flowing between zones, the analysis of the workload provided by Spotify

and described in the HopsFS paper [18] as well as similar traces provided by Yahoo

[3] and LinkedIn [20], show that such operations only make up for less than 5% of

the total volume, allowing this approach to be considered. The only situation where

not all operations are going to be committed on the primary, and therefore in a

consistent and durable fashion, is when the two clusters are unable to communicate

with each other; a condition known as split brain that can be caused by one of two

events:

• one of the two clusters fails or

• both clusters are online, but cannot communicate to each other, a situation

known as a network partition.

A network partition can manifest in different ways but in the context of this paper

we define it as a complete inability of nodes in the first cluster to connect to any

node in the second cluster and vice-versa. While the definition is very specific, and

network partitions can typically manifest in a variety of more subtle ways, in this

case the specificity is also supported by our model of geo-replicating databases which

implies that all traffic between zones is carried by a virtual network running on the

external connection. In case of failure on this particular (virtual) link, all connectivity

between data centers would effectively be cut, and, a shown in Microsoft’s study on

network failures [12], links between data-centers take the longest to repair. Because

we can assume that split brain scenarios are going to last a non-negligible amount of

time to repair, regardless of cause, determining when such an event is happening is

necessary to allow clusters to adapt their behaviour.

4.1.1 Overview

As previously mentioned, there are three possible states the system can be in at any

given time. This section provides a high level overview of the three states and the

expected behaviour and trade-offs in each while a detailed account of the mechanics

that allow the system to detect its state and react accordingly is provided in the

following sections.

In nominal operating conditions, where the connection between the different

geographical areas is functioning properly, all namenodes apply metadata modifi-

cations directly to the primary cluster and execute read operations on the local

cluster as shown in Figure 13. This type of system, which is conceptually similar to

a master-slave topology, is extremely effective in read-intensive workloads because

it delegates all read operations to the local cluster. Due to the way operations are
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4.1.2 Split brain detection

In order to detect wheter the system is operating normally or it is suffering from

a split brain we propose two different procedures, one for the primary and one for

the secondary cluster, that allow namenodes to detect split brain scenarios with a

minimum of internal coordination. Coordination is provided by the leader election

procedure described by Niazi et al. [19], and discussed previously which is already

present within HopsFS.

Detection on primary cluster To detect a split brain scenario on the primary

cluster, we need to ascertain whether or not we are able to communicate with any

node in the secondary cluster. While we could implement a distributed failure

detector to check for liveness of nodes in the secondary zone, HopsFS already exposes

the failure detector built into the leader election procedure. In the context of multiple

data-centers, the leader election procedure is extended to include both namenodes

from the primary and secondary cluster and a field in every row of the election table,

to indicate the cluster the node belongs to. Nodes from the secondary cluster connect

directly to the primary cluster to perform leader election which means that, both in

case of network partition and secondary cluster failure, the nodes would eventually

be marked as not live by the failure detector. With all of the prerequisites in place,

the algorithm to detect network partitions on the primary cluster is illustrated in

Algorithm 1.

Algorithm 1 Split brain detection: primary cluster

1: fd ← leaderElection.getFD() . get the failure detector from the leader election

2: liveNodes ← fd.getLiveNNSet()

3: for node in liveNodes do

4: if node.getCluster() == SECONDARY then

5: return ok

6: end if

7: end for

8: return detected

Detection on secondary cluster The secondary cluster cannot rely on the same

procedure as the primary cluster because, by definition, if a network partition

happened or the primary cluster crashed, the connections of the namenodes to

the primary clusters would be lost (and the leader election procedure would not

run). We can, however, treat the loss of connection as a signal that a network

partition or cluster crash is occurring, but only if all nodes in the secondary cluster

are not able to reach the primary. One possible solution would be to have a table

on the local database where namenodes write the status of their connection to the

primary metadata cluster. Given that namenodes can fail at any time, however, old
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entries from crashed nodes could actually result in false positives, impeding the other

namenodes from detecting the partition. In order to only query live namenodes we

can use the same leader election component that we leverage in other parts of the

system, running the algorithm on the local instance of NDB and only allowing local

nodes to participate. Instead of creating one extra table, we attach the status of the

connection to the primary as a new column in the local leader election instance. With

such a failure detector in place, detecting a split brain only requires checking the

status of the connection to the primary on all other nodes, as shown in Algorithm 2.

Algorithm 2 Split brain detection: secondary cluster

1: if currentNode.isConnectedToPrimary() then

2: return ok . if the current node has a connection to the primary metadata

cluster, there is no partition

3: end if . get failure detector from leader election

4: fd ← secondaryLeaderElection.getFD()

5: liveNodes ← fd.getLiveNNSet() \{currentNode}

6: for node in liveNodes do

7: if node.isConnectedToPrimary() then

8: return ok

9: end if

10: end for

11: return detected

While namenodes are now capable of detecting a split brain independently, they

do not have the capability of distinguishing between a network partition or a cluster

crash. This capability can be provided by providing a system hosted in a third

zone, independent from the first two, which will act as a tie-breaker and allow the

systems to consistently know whether both zones are still live (network partition)

or if the remaining cluster is the only one currently running. Such a system could

be implemented in a variety of ways, for example by configuring a Zookeeper [15]

cluster with three nodes: one in the primary zone, one in the secondary zone and

the tie-breaker in the third zone. In case of split brain, both clusters would query

the tie-breaking system which would yield one of the following outcomes:

1. the cluster is unable to get a quorum of nodes; it is isolated both from the

secondary and tie-breaker. In this case the cluster goes into read-only mode as

it is the only safe course of action

2. the cluster is able to get a quorum with the tie-breaker; the other cluster failed

3. both clusters are able to contact the tie-breaker; the cluster is experiencing a

network partition

In case of cluster failure the remaining cluster can continue serving all requests

from the clients. The reason for this is because, following the tie-breaking, we are
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sure that the other cluster is either not live or in read mode, therefore there will be

no conflicts upon restoring the asynchronous replication of metadata. If the failed

cluster is the primary, the secondary cluster namenodes need to switch over to the

local cluster for write, as well as read operations, until such time where connectivity

between the two clusters is restored and all necessary procedures to safely resume

metadata replication have been executed.

While a cluster failure is relatively straightforward, network partition must be

handled with extreme care to maintain the single-writer semantics of HDFS. Should

the two cluster be allowed to continue without any restrictions on the operations that

they are allowed to perform, they could cause conflicts in such a way that required

human intervention to merge.

4.1.3 Conflict handling for network partitions

Conflicts on file metadata can only happen in three classes of tables:

• the inode table,

• the block and replica tables, and

• the lease table.

While conflict on leases can be avoided by clearing the leases upon both detecting a

partition and resolving the partition, forcing clients to retake the lease and retry the

operation, conflicts on the inode and block tables must be handled.

Conflicts on block and replica tables are particularly problematic as, after the

partition is resolved, the system may be in a state where two disk blocks with different

content have the same ID. Upon replication, the metadata for the blocks created

on the primary cluster would “win” and on-disk replicas created on the secondary

cluster would therefore be considered corrupt on the first block report due to having a

different checksum. While it would be possible to devise a conflict resolution scheme

to maintain both block versions, conflicts on blocks and replicas can be avoided

altogether. Before introducing the solution it is necessary to understand how ID

assignment for blocks (and other database objects) is handled in HopsFS. Given

that addBlock is a frequent operation when writing files doing a round-trip to the

database to request each new block ID would be prohibitively slow and would create

a large amount of work on the metadata cluster, this operation is batched. At the

first write operation, namenodes require a sequence (batch) of new IDs that they will

use to fulfill subsequent addBlock operations. When all IDs in the batch have been

assigned, the namenode just requests another batch. By configuring the namenodes

on the primary cluster to only require batches of even block IDs and namenodes on

the secondary cluster to require batches of odd block IDs, two blocks created on two

different clusters will never have the same block ID and will therefore never cause a

conflict.
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Conflicts on inodes, on the other hand, are caused by both partitions creating

a file or directory with the same name in the same parent directory. As previously

discussed, inodes also have unique IDs, but conflict are detected on the primary

key which is composed of the name and parent ID. These conflicts are therefore

unavoidable but they can be resolved with ease. Upon detecting a conflict on the

inode table, the inode created on the secondary cluster will be placed in the exception

table due to the conflict resolution strategy. With the inode in the exception table,

the namenode responsible for handling conflicts (which is a leader elected between

nodes in the primary cluster), can create a new inode with a different name and

place it back in the same directory. A possible example of such a naming scheme may

be <original name> + <sequential number> such that if myFolder/myFile was

created on both clusters, the conflicting file would be renamed as myFolder/myFile1.

Allowing files to sometimes be renamed is a significant difference in behaviour

compared to both HDFS and HopsFS in single zone mode, which is why clients of

the system need to take this behaviour into account and react to it upon resolution

of a network partition.

By using the conflict avoidance and resolution techniques developed, clients in

both zones are allowed to continue all read and file creation operations with minor

divergences in overall system behaviour. The techniques presented, however, are

only sufficient to handle the file creation case, but not other operations that require

modification of metadata. Given that in case of network partition the system doesn’t

have access to a consistent lease table, there is no way of knowing which existing

files are being appended to, the only form of modification allowed on files in HDFS.

Allowing clients to append data to a file, could therefore result in two clusters having

two diverging versions of the same block, a conflict which cannot be resolved without

either creating two different copies of the file with new blocks or implementing a way

for the system to handle diverging copies of the same file. Due to the complexity

both in terms of implementation and resulting behaviour of the proposed solutions,

as well as the fact that in the Spotify synthetic workload shown in [18] append

operations account for 0.0% of the total, the current course of action is to disallow

them during network partition events. Subtree operations, due to their use of locking

and the large amount of transactions they generate, are also disallowed. Deletes

and moves are also not permitted due to the conflicts that they would generate.

This solution allows the two data-centers to operate independently during network

partitions, albeit with a subset of operations.

A possible alternative for workloads that require the full set of operations is to

implement an arbitration strategy similar to that used in NDB. In this case, only

one of the two sub-clusters would be allowed to continue performing write operations,

while the other cluster would be free to continue in a read-only capacity.
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4.1.4 Summary

In this section we describe a plan that allows the clusters to not only detect split

brain situations, but to identify whether the situation is due to a network partition or

a cluster crash and react accordingly. While many operations are disallowed during

network partitions, this should be a rare and transient event. Furthermore this is

only a plan for the initial implementation and restrictions may be lifted with further

work on conflict resolution.

4.2 Block management

Aside from managing metadata in a replicated environment, a geographically repli-

cated storage system also needs to manage file content in such a way that, during

a split brain, the separated clusters are capable of serving all client requests. As

previously mentioned, HDFS and HopsFS, store file content in blocks which are

managed by data nodes. A file can span arbitrarily many blocks which have a

configurable maximum size, by default 150 megabytes. Blocks are immutable once

they are marked as finished and only the last block in a file can be modified. Adding

content at the end of a block is the only modification allowed.

In order to maintain availability of blocks in the face of data node failure, HopsFS

supports two different replication schemes: block replication and erasure coding.

In block replication, the system maintains multiple copies of the same block on

different data nodes. The copies, called replicas, are distributed among data nodes

according to a configurable placement policy, which aims to minimize the number

of blocks which are unavailable as a result of component failure, be it machine or

switch. In case one of the replicas is permanently lost, the leader namenode instructs

data nodes to re-replicate the block, returning the amount of replicas to the specified

number, three by default.

Erasure coding is a radically different concept than whole block replication.

Instead of creating entire copies of the blocks, erasure coding computes new parity

blocks from the original blocks. Both the number of source and output blocks are

configurable, and the output blocks are called parity blocks. Assuming N source

blocks, 10 for example, and M parity blocks, 5 for example, the 10 original blocks

can be reconstructed using any combination of the N + M blocks now available.

The parity blocks form a new file, which is stored in a different directory than the

original file. Block placement for erasure coding blocks is handled by the erasure

coding manager which is described in [13]. In case one of the blocks for a erasure

coded file fails, the system needs to regenerate either the original block or the parity

block, which requires a full read of N of the blocks and it is accomplished through a

mapreduce job.
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In this work we only consider whole block replication but we plan to implement

erasure coding schemes in later iterations of the project.

4.2.1 Placement policy

Given that the goal for the project is to allow both geographical regions to operate

independently in case of split brain, each region requires a complete set of blocks from

all locations. In order to obtain this, the block placement policy needs to be aware

of the existence of multiple zones, which are considered separate failure domains.

The existing hierarchy for failure domains only considers machine and rack but the

modified version will also include a third level: geographical zone.

While this solves the issue of placing blocks in the correct datanodes, there

remains the issue of the number of replicas to create. The default value of three

creates imbalance, by assigning two replicas in the zone where the block was created

and only one in the other zone. By using a replica value of four two replicas are

assigned to every zone, ensuring that both zones have the same amount of blocks.

The final problem regarding the placement policy is the handling of split brain

scenarios. Without further adaptations, a split brain scenario would lead the cluster

to believe that half of all the replicas in the cluster are missing, forcing the leader

namenode to re-replicate all the blocks an additional two times. Aside from creating a

very large amount of network load between datanodes the result of such re-replication

would be discarded as soon as the temporary split brain scenario is resolved. In order

to avoid spurious re-replication, we modify the amount of replicas to two during split

brain scenarios. By setting the value to two, we avoid any re-replication of existing

blocks and we only create two replicas for new blocks. When the two clusters are

merged, the replica value is once again increased to four, and the normal background

re-replication tasks will create the necessary replicas in the other zone for blocks

created during the split brain.

4.3 Adaptations

As previously described in Section 2.3.3, the data access layer (DAL), which provides

the system with access to the metadata storage system, was structured around

access to a globally available connector, which in turn assumed a connection to

a single cluster. Due to these assumptions, the majority of the implementation

work accomplished in the context of this thesis was to improve the DAL to allow

multiple open connections to different databases. Multiple database connections

are necessary for the namenodes in the secondary cluster to route some queries

to the local metadata storage cluster and some others to the primary cluster. In

addition to this, to be able to recover from network partitions, the DAL must be

able to reconnect to the metadata storage cluster in case of failure and notify other

components of this. Notifications of disconnections and reconnections are necessary

to correctly manage state changes for the system, namely enter and exit partition
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mode, both on the primary and on the secondary cluster.

Connection to multiple database As previously discussed, metadata accesses

are not performed by directly accessing the connector but rather by using a request

handler. When operating on multiple databases there needs to be a mechanism

for a request handler to be executed either on the local or the primary metadata

cluster. Note that a request for the local database still connects to the primary if the

namenode requesting it is itself in the primary zone. While a first implementation

required every request handler to explicitly provide the database to connect to as

a parameter this required modification of all code locations where a transaction

handler is created. This method is also extremely error prone as it disseminates

the information on where to execute operations around the codebase. The better

solution is to associate to every operation type the database where the operation is

to be executed. This result is achieved by associating a constant to every member of

the OperationType enumeration as shown in Listing 1. By extracting the database

information from the opType the request handler can operate transparently without

changes in signature and all the modifications are concentrated in one place, the

operation type enumerator.

Listing 1: The OperationType enum

public interface OperationType {

TransactionCluster getCluster ();

}

public enum HDFSOperationType implements OperationType {

INITIALIZE ( TransactionCluster . PRIMARY ),

ACTIVATE ( TransactionCluster . PRIMARY ),

META_SAVE ( TransactionCluster . PRIMARY ),

SET_PERMISSION ( TransactionCluster . PRIMARY ),

SET_OWNER ( TransactionCluster . PRIMARY ),

SET_OWNER_SUBTREE ( TransactionCluster . PRIMARY ),

GET_BLOCK_LOCATIONS ( TransactionCluster . PRIMARY ),

GET_STATS ( TransactionCluster . PRIMARY ),

CONCAT ( TransactionCluster . PRIMARY ),

// many more

private TransactionCluster cluster ;

HDFSOperationType ( TransactionCluster c) {

this. cluster = c;

}

private TransactionCluster getCluster () {

return this. cluster ;

}
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}

Request handlers obtain a connector to a specific database using a multizone

storage connector, shown in Listing 2 along with . This interface, which is implemented

both in the primary cluster and in the secondary cluster, allows clients to obtain a

concrete connector towards a single database. In future iterations of the project, the

multizone connector will also modify its behaviour during network partitions, for

instance by always returning the local connector on the secondary cluster during a

cluster crash.

Listing 2: The MultiZoneStorageConnector interface

/**

* This class allows its clients to retrieve a connector

* for the required cluster ( primary or local ).

*/

public interface MultiZoneStorageConnector {

/**

* This method returns a StorageConnector

* for the appropriate cluster .

* @param cluster whether to connect to

* the local or primary cluster

* @return the appropriate storage connector

* @throws StorageException if a connector

* cannot be returned

*/

StorageConnector connectorFor ( TransactionCluster cluster )

throws StorageException ;

}

The database connector was also modified to allow for re-connection capabilities

and notifications of changes in state by implementing the Reconnector interface

shown in Listing 4. The information on whether the connection is functioning or

not is used on the secondary cluster by a partition monitor to perform split brain

detection as shown in Algorithm 2 and Listing 3. When a split brain is detected by

a partition monitor, a configurable action is executed and this action will, in the

future, perform the state changes required by the system to handle the partition.

Listing 3: Implementation of the partition detection algorithm in the secondary

cluster

/**

* This methods performs partition detection

* for the secondary cluster .

* A partition is detected in the secondary cluster if all

* the live namenodes lost the connection

* to the primary cluster .

* Additionally , this class updates the state
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* of the node ’s connection in the leader election procedure .

*/

@Override

protected PartitionEvent tick () {

boolean connected = connector . isConnectedToPrimary ();

// update the state of the connection

// in the leader election procedure

leaderElection . setConnectedToPrimary ( connected );

// if connected to primary there is at least

// one node connected ( therefore no partition ).

if ( connected ) {

return PartitionEvent . RESOLVED ;

}

// if at least one of the other nodes is connected ,

// the partition is resolved .

SortedActiveNodeList namenodes =

leaderElection . getActiveNamenodes ();

// this can happen if run before the first leader

// election round . unknown is ignored

if ( namenodes == null) {

return PartitionEvent . UNKNOWN ;

}

for ( ActiveNode n: namenodes . getActiveNodes ()) {

if (n. isConnectedToPrimary ()) {

return PartitionEvent . RESOLVED ;

}

}

// if all the active namenodes aren ’t connected

// to the database , detect a partition .

return PartitionEvent . DETECTED ;

}

Listing 4: Reconnector interface

/**

* A reconnector can report whether the

* connection is up and attempt reconnections .

* Note that , if possible , checking

* for connectivity should be cheap while

* reconnection is expected to be more expensive .

*/

public interface Reconnector {

/**

* Checks whether the connector is connected to the remote .
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* @return whether the connection is up

*/

boolean isConnected ();

/**

* Attempts a reconnection .

* If this method returns successfully ,

* the connection attempt was a success .

* Should be called periodically

* in the background to re - acquire connectivity

*/

void reconnect () throws StorageException ;

}

While the work performed so far is necessary to allow further progress towards

the implementation of the theoritical framework described in this chapter, there is

still much to do. The distinction between network partition and cluster crash is

not implemented and will require an external system like ZooKeeper to perform

arbitration. The routing of operations to the local database and all of the changes to

the client to allow it to perform fully consistent reads are not implemented. Finally

the behaviour of the system will need to be tested to make sure that it conforms

with the expected behaviour described.
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5 Summary

In this work we present a solution that allows HopsFS to transparently present

multiple geographical areas as one cluster to clients. By leveraging the asynchronous

replication built into MySQL cluster we perform metadata replication across geo-

graphical areas while still maintaining the same consistency guarantees as Apache

HDFS and HopsFS when deployed in a single area. We also describe solutions

for both network partitions and cluster crashes which allows clients to continue

performing a safe subset of operations and allows the system to recover gracefully

from such events. Furthermore, we detail the implementation work done to allow the

inclusion of such changes into the HopsFS codebase. To the best of our knowlege,

once complete, this would be the first HDFS implementation with such characteristics

allowing it to reach the same levels of availability and data retention as cloud native

storage systems such as Amazon S3, while still maintaining the consistent behaviour

of a hierarchical file-system.

5.1 Future work

While the description of the basic solution presented in this thesis is complete, there

is still much to be done both to implement the basic solution in the code and to

further optimize it. Specifically, the implementation work done so far only covers

the adaptation of the metadata access layer (DAL) to allow it to connect to multiple

database clusters at the same time as well as being able to detect disconnections

and perform re-connections. Futhermore, while the conflict detection functions used

to merge the system after a network partition are provided by MySQL Cluster, no

testing was perfomed regarding their impact on the performance of the database.

There are also several areas where the proposed solution could be improved. First

of, it would be interesting to study a way to execute some operations on the local

cluster instead of routing them all to the primary cluster, while still maintaining the

same consistency guarantees. By doing that we would further reduce the strain on

the primary cluster and increase scalability of the overall system. Similarly, it would

be beneficial to allow a greater set of operations when the cluster is experiencing a

network partition to increase compatibility with applications that expect Apache

HDFS and are therefore unaware of multiple zones. Finally, there are several key

improvements to consider in the context of block storage and replication. Erasure

coding techniques [14, 13] can reduce the block replication overhead allowing better

utilization of space in the cluster, while improvements in block placement policies

(as shown in [9]) can dramatically increase data retention in the presence of failures.
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A Code listings

Listing 5: Transactional request handler for the rename operation

OperationType opType

if( isUsingSubTreeLocks ) {

opType = HDFSOperationType . SUBTREE_RENAME ;

} else {

opType = HDFSOperationType . RENAME ;

}

new HopsTransactionalRequestHandler (opType , src) {

@Override

public void acquireLock ( TransactionLocks locks )

throws IOException {

LockFactory lf = LockFactory . getInstance ();

locks .add(lf. getRenameINodeLock (

nameNode , INodeLockType . WRITE_ON_TARGET_AND_PARENT ,

INodeResolveType .PATH , true , src , dst ))

.add(lf. getBlockLock ())

.add(lf. getBlockRelated (

BLK.RE , BLK.CR , BLK.UC ,

BLK.UR , BLK.IV , BLK.PE , BLK.ER ));

if (dir. isQuotaEnabled ()) {

locks .add(lf. getQuotaUpdateLock (

true , src , dst ));

}

if (! isUsingSubTreeLocks ) {

locks .add(lf. getLeaseLock (

LockType . WRITE ))

.add(lf. getLeasePathLock (

LockType . READ_COMMITTED ));

} else {

locks .add(lf. getLeaseLock (

LockType . WRITE ))

.add(lf. getLeasePathLock (

LockType .WRITE , src ));

}

if ( erasureCodingEnabled ) {

locks .add(lf. getEncodingStatusLock (

LockType .WRITE , dst ));

}

}

@Override

public Object performTask ( StorageConnector connector )

throws IOException {
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if ( NameNode . stateChangeLog . isDebugEnabled ()) {

NameNode . stateChangeLog . debug (

"DIR* NameSystem . renameTo : with options - " + src + " to

}

if ( isInSafeMode ()) {

throw new SafeModeException (" Cannot rename " + src , safeMode )

}

if (! DFSUtil . isValidName (dst )) {

throw new InvalidPathException (" Invalid name: " + dst );

}

for ( MetadataLogEntry logEntry : logEntries ) {

EntityManager .add( logEntry );

}

for ( Options . Rename op: options ) {

if (op == Rename . KEEP_ENCODING_STATUS ) {

INode [] srcNodes = dir. getRootDir ()

. getExistingPathINodes (src , false );

INode [] dstNodes = dir. getRootDir ()

. getExistingPathINodes (dst , false );

INode srcNode =

srcNodes [ srcNodes . length - 1];

INode dstNode =

dstNodes [ dstNodes . length - 1];

EncodingStatus status = EntityManager .find(

EncodingStatus . Finder .ByInodeId , dstNode . getId ());

EncodingStatus newStatus = new EncodingStatus ( status );

newStatus . setInodeId ( srcNode . getId ());

EntityManager .add( newStatus );

EntityManager . remove ( status );

break ;

}

}

removeSubTreeLocksForRenameInternal (

src , isUsingSubTreeLocks , subTreeLockDst );

dir. renameTo (

connector , src , dst , srcNsCount ,

srcDsCount , dstNsCount , dstDsCount , options );

return null;

}

}. handle (this );
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Listing 6: Lightweight request handler

new LightWeightRequestHandler ( UsersOperationsType . GET_USER_GROUPS ) {

@Override

public Object performTask ( StorageConnector connector )

throws IOException {

boolean transactionActive = connector . isTransactionActive ();

if (! transactionActive ) {

connector . beginTransaction ();

}

Integer userId = cache . getUserId ( userName );

User user;

if( userId == null) {

user = userDataAccess . getUser ( userName );

} else {

user = userDataAccess . getUser ( userId );

}

if (user == null) {

return null;

}

List <Group > groups = userGroupDataAccess

. getGroupsForUser (user. getId ());

if (! transactionActive ) {

connector . commit ();

}

return new Pair <User , List <Group >>(user , groups );

}. handle (this );
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