Image-Based Localization Using Deep
Neural Networks

Xiaotian Li

School of Electrical Engineering

Thesis submitted for examination for the degree of Master of
Science in Technology.

Espoo 2.10.2017

Thesis supervisor:

Prof. Juho Kannala

Thesis advisor:

D.Sc. (Tech.) Juha Ylioinas

A? Aalto University
[ |



AALTO UNIVERSITY ABSTRACT OF THE
SCHOOL OF ELECTRICAL ENGINEERING MASTER’S THESIS

Author: Xiaotian Li
Title: Image-Based Localization Using Deep Neural Networks

Date: 2.10.2017 Language: English Number of pages: 6472

Degree programme: Automation and Electrical Engineering

Major: Control, Robotics and Autonomous Systems

Supervisor: Prof. Juho Kannala

Advisor: D.Sc. (Tech.) Juha Ylioinas

Image-based localization, or camera relocalization, is a fundamental problem
in computer vision and robotics, and it refers to estimating camera pose from
an image. It is a key component of many computer vision applications such as
navigating autonomous vehicles and mobile robotics, simultaneous localization
and mapping (SLAM), and augmented reality.

Currently, there are plenty of image-based localization methods proposed in
the literature. Most state-of-the-art approaches are based on hand-crafted local
features, such as SIFT, ORB, or SURF, and efficient 2D-to-3D matching using
a 3D model. However, the limitations of the hand-crafted feature detector and
descriptor become the bottleneck of these approaches. Recently, some promising
deep neural network based localization approaches have been proposed. These
approaches directly formulate 6 DoF pose estimation as a regression problem or
use neural networks for generating 2D-3D correspondences, and thus no feature
extraction or feature matching processes are required.

In this thesis, we first review two state-of-the-art approaches for image-based
localization. The first approach is conventional hand-crafted local feature based
(Active Search) and the second one is novel deep neural network based (DSAC).
Building on the idea of DSAC, we then examine the use of conventional RANSAC
and introduce a novel full-frame Coordinate CNN. We evaluate these methods on
the 7-Scenes dataset of Microsoft Research, and extensive comparisons are made.
The results show that our modifications to the original DSAC pipeline lead to
better performance than the two state-of-the-art approaches.

Keywords: computer vision, machine learning, deep neural networks, image-based
localization




iii
Preface

This thesis was carried out under the supervision of Prof. Juho Kannala, and I would
like to thank him for his guidance and support. I am grateful to my advisor Dr.
Juha Ylioinas for all the help. Finally, I would like to thank my family for the love
and constant encouragement.

Otaniemi, 02.10.2017

Xiaotian Li



Contents

Abstract

Preface

Contents

Abbreviations and Acronyms

1

Introduction
1.1 Problem Statement . . . . . . . . . ...
1.2 Structure of the Thesis . . . . . . . . . . . . . ..

Background

2.1 Image-Based Localization . . . .. .. .. ... ... ... ......

2.2 Approaches to Localization . . . . . . ... ... ...
2.2.1 Keypoint Based Localization . . . . . . .. ... ... .. ...
222 PoseNet . . . . .. .
2.2.3 Scene Coordinate Regression Forests . . . . .. .. .. .. ..

2.3 Artificial Neural Networks . . . . . .. .. ... ... ... ... ...
2.3.1 Multilayer Perceptrons . . . . . .. . ... ... ... ...
2.3.2 Backpropagation . . . .. ... oL
2.3.3 Convolutional Neural Networks . . . . .. ... ... .....
2.3.4 Fully Convolutional Networks . . . . ... ... ... .. ...
2.3.5 Transfer Learning and Data Augmentation . . . . . . . .. ..
236 VGGNet . . . ...
2.3.7 DispNet . . . . .

Active Search Pipeline

3.1 Vocabulary-Based Prioritized Search (VPS) . . ... ... ... ...
3.2 Active Correspondence Search . . . . . . ... ... .. ........
3.3 Co-Visibility Information . . . . . . ... ... ... .00

DSAC Pipeline

4.1 Differentiable RANSAC . . . . . . . . ... ... ... ... ... ..
4.2 Coordinate CNN and Score CNN . . . . . ... ... ... ......
4.3 End-to-End Training . . . . .. .. ... oo

DSAC Variants

5.1 Non-Differentiable RANSAC . . . . . . .. .. . . ... ... . ....

5.2 Full-Frame Coordinate CNN . . . . . . . . . . . . ... ... .....
5.2.1 Network Architecture . . . . . . . . . . ... .. ... .. ...
5.2.2 Training Loss . . . . . . . ... oo
5.2.3 Data Augmentation . . . . . . .. ...

iv

ii

iii

iv

vi

23
24
24
26

28
28
31
32



6 Experiments and Results

6.1
6.2

6.3

6.4

6.5

6.6

Dataset 7-Scenes . . . . . . ..
Reproducing Active Search Results . . . . . .. ... ... ... ...
6.2.1 Implementation Details . . . . . . . ... .. ... ... ....
6.2.2 Results. . . . ... .
Reproducing DSAC results . . . . . . . ... ... ... ... .....
6.3.1 Implementation Details . . . . . . ... ... ... ... ....
6.3.2 Results. . . . ... .. ...
DSAC Variants . . . . . . . . . ..
6.4.1 Implementation Details . . . . . . . ... .. ... .. .....
6.42 Results. . . . ... ...
Effectiveness of Data Augmentation . . . . . . ... .. ... .. ...
6.5.1 Full-Frame Coordinate CNN without Data Augmentation . . .
6.5.2 Patch-Based Coordinate CNN with Data Augmentation . . . .
Performance on Training Images . . . . . . . . . .. ... ... ....

7 Discussion and Future Directions

7.1
7.2
7.3
7.4
7.5
7.6

Experiments on More Realistic Datasets . . . . . .. ... ... ...
Unsupervised Training . . . . . . . . . .. ... L
Better Network Architecture . . . . . . . .. .. ... ... ... ...
Better Data Augmentation . . . . . . .. .. .. ...

Transfer Learning . . . . . . . . . . ... ...
Better RANSAC Optimizer . . . . ... ... ... ... .......

8 Conclusion

References

40
40
40
41
42
43
43
44
45
45
46
49
49
49
20

62
63
63
64
64
64
65

66

67



Abbreviations and Acronyms

ANN Artificial Neural Network

CNN Convolutional Neural Network

DLT Direct Linear Transformation

DNN Deep Neural Network

DoF Degrees of Freedom

DSAC Differentiable Sample Consensus
ELU Exponential Linear Unit

FCN Fully Convolutional Network
FLANN  Fast Library for Approximate Nearest Neighbors
GPS Global Positioning System

IBL Image-Based Localization

LSTM Long-Short Term Memory

MLP Multilayer Perceptron

ORB Oriented FAST and Rotated BRIEF
PnP Perspective-n-Point

RANSAC Random Sample Consensus
ReLU Rectified Linear Unit

RGB Red-Green-Blue

RGB-D Red-Green-Blue-Depth

SCoRF Scene Coordinate Regression Forests
StM Structure from Motion

SIF'T Scale Invariant Feature Transform

SLAM Simultaneous Localization and Mapping
SURF Speeded Up Robust Features
VPS Vocabulary-based Prioritized Search

vi



1 Introduction

Image-based localization (IBL) is an important problem in computer vision and
robotics. It addresses the problem of estimating the 6 DoF camera pose in an
environment from an image. Recently, with the widespread use of smartphones
equipped with modern cameras, IBL has received increasing attention since it is an
important component of many interesting applications such as robot localization
[10], simultaneous localization and mapping (SLAM) [13], place recognition [40], and
augmented reality [6, 43].

There are also other forms of localization available to smartphones such as GPS
and WiFi based localization. Unfortunately, GPS is only suitable for outdoor, rather
than indoor environments, and is often inaccurate in urban environments with
tall buildings. Although WiFi based localization is a good alternative for indoor
environments, it, however, suffers several drawbacks. For example, its accuracy
critically depends on the number of available access points, thus requiring the setup
and maintenance of a significant number of devices, especially for large buildings.
Besides, WiFi based localization system cannot provide the orientation of a user,
thus being unsuitable for augmented reality applications.

Unlike GPS or WiFi based localization approaches, image-based localization
does not have these limitations. It can be operated in both indoor and outdoor
environments using the low-cost camera without the setup and maintenance of
infrastructure. In addition, with the rapid development of computer vision, image-
based localization is becoming more and more robust and accurate.

1.1 Problem Statement

Currently, there are plenty of image-based localization methods proposed in the
literature. Most state-of-the-art approaches [56, 57, 58] are based on local features,
such as SIFT, ORB, or SURF [42, 54, 2], and efficient 2D-to-3D matching. Given
a 3D scene model, where each 3D point is associated with the image features from
which it was triangulated, localizing a new query image against the model is solved
by first finding a large set of matches between 2D image features and 3D points in
the model via descriptor matching, and then using RANSAC [15] to reject outlier
matches and estimate the camera pose on inliers. Although these local feature based
methods have been proven to be very accurate and robust in many situations (mainly
in outdoor environments), due to the limitations of the hand-crafted feature detector
and descriptor, extremely large viewpoint changes, occlusions, repetitive structures
and textureless scenes often produce a large number of false matchings which will
lead to localization failure. Therefore, indoor image-based localization is still a very
challenging problem since indoor scenes often have repetitive structures, less texture
and insufficient local features for matching.

Recently, some promising neural network based localization approaches have been
proposed. Approaches such as PoseNet [33] formulate 6 DoF pose estimation as a
regression problem, and thus no traditional feature extraction, feature description,
or feature matching processes are required. It has been shown that these approaches



overcome the limitations of the local feature based approaches, i.e., they are able to
recover the camera pose in very challenging indoor environments where the traditional
methods fail. However, their localization performance is still far below traditional
approaches in other situations where local features perform well. Unlike PoseNet,
approaches such as DSAC [3] obtain the 6 DoF pose by a two-stage pipeline: first,
regressing a 3D point position for each pixel in an image and, then, determining the
camera pose using RANSAC based on these correspondences as in the conventional
localization pipeline. Although these methods require depth maps associated with
input images at training time, their localization performance even surpasses the
state-of-the-art local feature based approaches on indoor scenes.

In this thesis, the main task is to determine how well a state-of-the-art neural
network based method can perform compared to a state-of-the-art conventional local
feature based method and how can we improve upon the state-of-the-art neural
network based method. We first review two state-of-the-art approaches for image-
based localization. The first approach is Active Search [57, 58] which is conventional
hand-crafted local feature based. The second approach is DSAC [3] based on patch-
based Coordinate CNN and novel differentiable RANSAC. We then further explore
the DSAC method and examine the use of conventional RANSAC in the DSAC
pipeline. Finally, a novel full-frame Coordinate CNN is introduced. Experiments on
a widely used dataset are conducted to evaluate the performance of these approaches.

1.2 Structure of the Thesis

The rest of the thesis is structured as follows. In Chapter 2, the background literature
related to image-based localization and deep neural networks is presented. Here
we give a brief introduction to several IBL methods and the building blocks of the
neural network based methods. The detailed descriptions of the two state-of-the-art
methods, Active Search and DSAC, are presented in Chapter 3 and 4 respectively.
Chapter 5 discusses the modifications to the DSAC method. Chapter 6 describes
the details of experiments and presents results of the experiments to determine the
performance of the discussed methods and provide extensive comparisons between
them. In Chapter 7, we discuss the results, and some directions of future study are
given. Finally, Chapter 8 summarizes and concludes this thesis.



2 Background

Before diving deeper, we first review the theoretical background necessary for un-
derstanding the approaches discussed in the rest of the thesis. This includes a brief
introduction to the history of image-based localization and some approaches to
solving the localization task. Additionally, we present the theoretical background on
deep neural networks required for the better understanding of the neural network
based approaches.

2.1 Image-Based Localization

Solving the image-based localization problem consists of estimating the 6 DoF camera
pose (3 DoF position and 3 DoF orientation) of a query image in an arbitrary scene.
This is also known as camera relocalization. More specifically, the localization system
takes only one image as input, and then outputs camera pose according to a given
representation of the scene. The representation of the scene depends on the approach
used. It can be a database of images, a reconstructed 3D model, or a trained deep
neural network. Here we only consider one image as input, although the image-based
localization task can be extended by using a sequence of images as input. The
input images are usually RGB-only without depth information, since current low-cost
devices are not commonly equipped with depth sensors.

In the earliest stages, image-based localization was solved by treating it as a
location recognition problem [75]. In these approaches, image retrieval techniques
are often applied to determine the location of the query image by matching it to a
database of images and finding the most similar images to it. The locations of the
database images are known. Thus, the location of the query image can be estimated
according to the known locations. Initially, these methods worked on databases
consisting of tens of thousands of images and then they were improved to deal with
more than a million images. However, the localization performance provided by these
approaches is limited by the accuracy of the known locations of the database images
[56] and the density of the key-frames.

To obtain a better localization performance, more recent techniques [29] are based
on more detailed and structured information, i.e., they use a reconstructed 3D point
cloud model, usually obtained from Structure-from-Motion, to represent the scene.
This is enabled by some powerful SfM approaches such as Bundler [63]. It is even
possible to construct huge models with millions of points [65]. Thus, image-based
localization systems are enabled to work on a city-scale level.

Instead of matching the query image to the database images, these keypoint
based methods solve the localization task by finding correspondences between the
query image and the 3D model. This is achieved by the use of the conventional
hand-crafted features, e.g., SIFT [42]. The features of the 3D points are computed
during the 3D reconstruction, and the features of the query image are detected and
extracted at test time. Therefore, the correspondence search is formulated as a
descriptor matching problem. After establishing the 2D-3D correspondences, the
camera pose is determined by a Perspective-n-Point [35] solver inside a RANSAC



[15] loop.

It is obvious that the pose estimation step can only succeed if the quality of
the established correspondences is good enough. When the 3D model is too big in
size or too complex, an efficient and effective descriptor matching step is essential.
There are several techniques in the literature to handle this problem, such as 2D-
to-2D-to-3D matching [29], 3D-to-2D-matching [40], prioritized matching [56] and
co-visibility filtering [57]. However, even if the matching process is enough effective
and efficient, limitations of the hand-crated features will still cause these keypoint
based localization systems to fail.

Recently, it has been shown that machine learning methods have great potential
to tackle the problem of image-based localization. PoseNet [33] demonstrates the
feasibility of formulating 6 DoF pose estimation as a regression problem. The pose of
a query image is directly regressed by a deep CNN with GoogLeNet [66] architecture
pre-trained on large-scale image classification data. However, its performance is still
below the state-of-the-art keypoint based methods and far from ideal for practical
camera relocalization. In order to improve the accuracy of PoseNet, several variants
have been proposed in recent papers. For example, LSTM-Pose [69] makes use of
LSTM units [26] on the CNN output to exploit the structured feature correlation.
The LSTM units play the role of a structured dimensionality reduction on the
feature vector and lead to drastic improvements in localization performance. Another
variant, Hourglass-Pose [48], is based on hourglass architecture which consists of a
chain of convolution and upconvolution layers followed by a regression part. The
upconvolution layers are introduced to preserve the fine-grained information of the
input image and this mechanism has been proven to be able to further improve the
accuracy of image-based localization using CNN based architectures. Besides, it has
been shown that the use of a novel loss function based on scene reprojection error
can also significantly improve PoseNet’s performance [32].

Unlike PoseNet, the scene coordinate regression forests (SCoRF) approach [61]
adopts a regression forest [9] to generate 2D-3D matches from an RGB-D input
image instead of directly regressing the camera pose. The final camera pose is
then determined via a RANSAC based solver. This whole pipeline is similar to the
keypoint based localization approaches, but no traditional feature extraction, feature
description, or feature matching processes are required. The original SCoRF pipeline
is further improved by exploiting uncertainty in the model [68]. Training the random
forest to predict multimodal distributions of scene coordinates results in increased
pose accuracy. Although these methods are extremely accurate, they require depth
information during test time.

In order to localize RGB-only images as well, the original SCoRF is extended
by utilizing the increased predictive power of an auto-context random forest [4].
In the most recent DSAC paper [3], a neural network based SCoRF pipeline for
RGB-only images is proposed. In contrast to previous SCoRF pipelines, two CNNs
are adopted for predicting scene coordinates and for scoring hypotheses. Moreover,
the conventional RANSAC is replaced by a new differentiable RANSAC, which
enables the whole pipeline to be trained end-to-end.



2.2 Approaches to Localization

In this section, we present three approaches to solve the localization problem related
to this thesis.

2.2.1 Keypoint Based Localization

In order to determine the full camera pose, i.e., both position and orientation,
we need to know the detailed 3D structure of the scene. Fortunately, such a 3D
model of discriminative feature points can be obtained efficiently from a set of
images using modern Structure-from-Motion techniques. During the reconstruction
process, as each 3D point is obtained by triangulation made on corresponding image
features, every 3D point in sparse point cloud model is already associated with feature
descriptors. Thus, registering a 2D image to the 3D model can be solved by matching
2D image points and 3D model points. Then, the pose of the query image can be
solved by feeding theses 2D-3D correspondences into a PnP [35] algorithm. Since
the correspondences are usually not perfect but rather noisy, the PnP algorithm is
used in combination with random sample consensus (RANSAC) [15] to be robust to
outliers.

Keypoint based localization problem is essentially a descriptor matching problem.
However, if the 3D point cloud model is too large or dense, the descriptor matching
is typically inaccurate and computationally expensive. Therefore, several matching
techniques have been proposed to make the descriptor matching efficient and effective.
The matching techniques can be divided into two main classes: indirect and direct
matching. Indirect matching approaches usually use an intermediate construct
to represent the 3D point descriptors. For example, since 3D point descriptors
are generated from database images, we can establish 2D-3D correspondences by
first finding database images similar to the query image and then matching the
query image against these database images (2D-to-2D-to-3D matching). Another
example is to do 3D-to-2D matching, i.e., matching the model against the query
image with co-visibility information. Contrary to indirect matching, direct matching
techniques directly match the 2D image features against 3D points, i.e., they try
to find the nearest neighbors of a 2D image feature in the space containing the 3D
point descriptors.

It has been shown that classical direct matching techniques such as approximative
tree-based search [49] achieve a better performance than indirect matching techniques,
but they are much more computationally expensive, especially when the 3D point
cloud model is very large and dense. In contrast, indirect matching methods are
memory efficient and extremely faster than direct matching. However, they are not
effective as they are more prone to fail to register an image.

In order to perform the matching both efficiently and effectively, Active Search
[57, 58], which combines direct matching and indirect matching via a visual vocabulary
based prioritization scheme, has been proposed. More details of Active Search are
presented in Chapter 3.



2.2.2 PoseNet

PoseNet [33] first demonstrates the feasibility of casting pose estimation of a single
RGB image as a regression problem and solves it using a deep neural network.
Contrary to formulating localization as a classification problem which can estimate
only the position of the image, this method recovers the full camera pose p = [x, q],
where x is the 3D camera position and q is a quaternion representing the orientation.

The PoseNet system is simple. Only a convolutional neural network is used to
estimate the camera pose. Therefore, it only takes bms to run, meeting the real-time
requirement of many applications [33]. However, its localization performance is far
below the state-of-the-art methods.

To regress pose, the convolutional neural network is trained in an end-to-end
manner with the following objective loss function:

) . g
loss(I) =[x — x[l2 + Allq - mlb (1)

where [x,q] and [X, q] are ground truth pose and estimated pose respectively. Here
[ is a coefficient used to balance the position and orientation errors, and thus it is in
general bigger for outdoor scenes due to larger positional error [33]. It has been found
that learning position and orientation jointly can achieve better results than learning
to regress them separately. Since the orientation here is represented by quaternions
and the network cannot be regularized to generate only valid unit quaternions, the
estimated quaternion should be normalized.

PoseNet adopts GoogLeNet model [66] as a basis to do pose regression. The final
PoseNet architecture is illustrated in Figure 1. Some modifications are made to the
original GoogLeNet architecture:

— All three softmax classifiers are replaced by affine regressors.

— A fully connected layer of width 2048 is added before the final regressors.

In addition, it has been shown that leveraging the idea of transfer learning to
start the pose training from a network pre-trained on giant ImageNet [12] and Places
[76] datasets can result in better localization performance and allow training on only
a few examples.

A number of variants of PoseNet have been proposed to improve the localization
performance, such as LSTM-Pose [69] and Hourglass-Pose [48]. Their architectures
are illustrated in Figure 2 and Figure 3 respectively.

2.2.3 Scene Coordinate Regression Forests

Scene coordinate regression forests (SCoRF) [61] system is similar to the traditional
keypoint based approaches: first generates point correspondences and then determines
the final pose inside a RANSAC loop. However, unlike the traditional methods
which formulate the 2D-3D correspondence search as a descriptor matching problem,
SCoRF uses a regression forest [9] to directly regress the 3D scene coordinates in



Translation

Conv1
Conv2
lcp1
Icp2
lcp3
Icp4
Icp5
Icp6
lcp7

Orientation

Figure 1: Architecture of PoseNet. Conv and fc are the convolutional layer and fully
connected layer respectively (described in Section 2.3.3). Icp is the Inception module
of GoogLeNet [66]. Figure adapted from [71].

Conv1
Conv2
Icp1
lcp2
Icp3
lepd
lep7
Icp8
lcp9

R e i

Figure 2: Architecture of LSTM-Pose. Figure adapted from [69].

Spatial

LSTMs
Reshape Feature matrix

Feature vector
Feature vector

the world space from the pixels of an RGB-D query image. Since at test time, the
3D coordinates of image pixels in camera space can be computed from the depth
information and known camera intrinsics, 2D-3D correspondences become 3D-3D
correspondences and the final pose is solved by the Kabsch algorithm [31] instead of
the PnP algorithm. The whole SCoRF pipeline is illustrated in Figure 4.

In the SCoRF pipeline, the dense 2D pixel to 3D scene coordinate correspondences
are learned using a dataset of RGB-D images. The ground truth camera poses of
these images are obtained using KinectFusion [30, 51]. Using the known camera
intrinsics, the depth information and the ground truth camera poses, 3D world
coordinates of image pixels can be determined. This gives the ground truth 2D-3D
correspondences. Then, a regression forest is trained using these correspondences.
Both RGB and depth features at a pixel location are used by this regression forest
to predict the corresponding 3D position of the pixel in the world space. Because
the forest is trained using the densely sampled 2D-3D correspondences, it can be
evaluated at any pixel location of a test image. Therefore, at test time, the forest can
be efficiently applied to only a sparsely sampled set of image pixels to generate 2D-3D



Translation

Image U—'D [

Y, \_ Qrientation

Encoder Decoder

Figure 3: Architecture of Hourglass-Pose. Figure adapted from [48].

correspondences. In this way, the regression forest can be seen as an implicit 3D
map of the scene. Finally, with this sparse set of correspondences and the computed
3D coordinates in camera space, an adapted version of preemptive RANSAC is used
to obtain an accurate final camera pose.

The SCoRF localization pipeline has been extended in several works. In the
recent DSAC paper [3], an RGB-only CNN-based SCoRF pipeline is introduced. The
DSAC method is explained in detail in Chapter 4.

2.3 Artificial Neural Networks

Deep learning is currently one of the most popular and important research topics in
machine learning, computer vision and artificial intelligence.

Traditional artificial neural networks (ANNs) are usually composed of one input
layer, one output layer, and a few hidden layers in between. Deep neural networks
(DNNs) are distinguished from the traditional ones by their depth. That is, they are
ANNs with multiple hidden layers.

In this section, we first discuss the basics of artificial neural networks and then
give an introduction to the convolutional neural network (CNN) which is a class of
successful deep learning models applied to solve visual tasks.

2.3.1 Multilayer Perceptrons

Artificial neural networks are inspired by our understanding of the biological neural
networks which constitute animal brains. They are designed to mimic both the
structure and the functionality of the biological neural networks. However, biological
neural networks and their activity are far more complex than artificial neural networks
and the mysteries of the brain are still unsolved. Therefore, it is misleading to
overemphasize the connection between them.

An artificial neuron is the fundamental building block of a neural network. The
standard model of a single artificial neuron is shown in Figure 5. It consists of four
basic elements: a set of weights w;;, a linear combiner which sums the weighted inputs,
a bias term b added to the weighted sum, and an activation function ¢(-) applied to
the linear response of a neuron, which introduces the nonlinearity. Mathematically,



Depth

\

SCoRe /O\ /O\'

O
Forest § E

O O
2D-3D

mach

RANSAC optimization

Hypothesis Pose
sampling refinement

o0

O

O
O
O

Figure 4: SCoRF pipeline. Figure adapted from [61].

given the weight vector w; (the weights w;;), the bias b, and the non-linear activation
function ¢(-), the output of a single artificial neuron with n input values can be
written as:

O; = gb(zn: wi;x; +b) = QS(WJTX +b) (2)

i=1

Several artificial neurons can further be interconnected to compose a neural
network. Multilayer perceptron (MLP) is one of the most basic types of neural
networks. A set of neurons with a common activation function is typically grouped
into a layer. Multiple consecutive layers are then arranged into a neural network
in a fully connected and feedforward manner. That is, all the neurons between
subsequent layers are connected and output of a previous layer is fed as input to the
next layer. A multilayer perceptron consists of three types of layers: input layer,



10

Figure 5: Basic model of an artificial neuron.

hidden layer, and output layer. Typically, there is only one input layer and one
output layer, but the number of hidden layers can be larger than one. Figure 6
shows an illustration of a fully connected multilayer perceptron with one hidden
layer. Formally, a one-hidden-layer MLP is a function f(-):

f(x) = ¢2(Wap1 (Wix +by) + ba) (3)

where by and by are bias vectors, Wg and Wy, are weight matrices, ¢1(-) and ¢o(-) are
activation functions. This can be easily extended to represent multilayer perceptron
with more hidden layers.

The width of each layer is determined by the number of artificial neurons in
each layer and the depth of the network is determined by the number of layers. A
multilayer perceptron with at least one hidden layer has universal approximation
property [27]. That is, it can approximate smooth nonlinear mappings with any
desired degree of accuracy provided that the hidden layers are sufficiently wide. In
fact, a deep but narrow neural network is usually more efficient to approximate the
same function.

2.3.2 Backpropagation

Artificial neural networks are typically highly non-linear and thus have no closed-form
analytical solutions. Therefore, they are trained numerically in a supervised manner
using backpropagation algorithm. The standard backpropagation algorithm [55] is
essentially an instantaneous stochastic gradient algorithm.

A neural network can be seen as a function f(z | 8) of input x parameterized by
its weight parameters 6. The goal to train a neural network is to find the 6 such that



11

(s
(S
( )

Input layer Hidden layer Qutput layer

Figure 6: A fully connected multilayer perceptron.

the neural network can approximate a target function f*(z). That is, we want to find
the # that minimize the error between the desired output of the target function and
the corresponding output of the neural network. Typically, the entire target function
is unknown and only a set of training data is given, which can represent the function
to some extent. Therefore, the error minimized during training is computed using
the training data. In principle, the backpropagation algorithm tries to minimize the
error and solve the weighs iteratively.

The mathematical description and derivation of the backpropagation algorithm
are presented in many books (e.g. [22]) and thus we skip it. Here we briefly explain
the steps of the standard backpropagation algorithm.

The first step of training is to initialize the weights of the network, for example
to small random values. Then, a mini-batch of training data is sampled and the
set of corresponding outputs of the network is calculated. The generated output
predictions are compared with the corresponding ground truth training labels, and
the training error is computed based on this comparison. Subsequently, the output
error is propagated back through the network, and the gradient of each weighting
parameter is calculated. Finally, the weights are updated using these gradients
according to some specific rule. These steps except the initialization are repeated
until the weight parameters converge.

The standard backpropagation algorithm converges slowly due to the use of the
vanilla stochastic gradient descent, and bad choices for the learning rate can cause
problems. Therefore, more efficient versions of backpropagation algorithm have



12

been proposed. One variant of it, Levenberg-Marquardt backpropagation (LMBP)
algorithm [23, 45], uses a simplified version of Newton’s method for training to speed
up the convergence. Some other variants, such as RMSProp [67] and Adam [34], use
adaptive learning rate when updating the weights.

2.3.3 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) [38] are variants of MLPs which are well-
suited to process data with grid-like structure such as images. CNNs allow processing
of large digital images, which is impossible using conventional fully connected MLP
networks. They are extremely successful in practical applications, such as [19, 25, 36,
44, 52, 62]. Therefore, the development of convolutional networks has tremendously
increased the popularity of deep learning.

Convolutional neural networks are specially structured neural networks using
convolution operation in at least one layer, but typically using a stack of convolutional
layers. Due to the use of convolution operation and weight-sharing, CNNs have
translation invariance characteristics.

Convolutional neural networks were inspired by biological visual processes [28].
Animal visual cortex has many simple neurons acting as local feature detectors. Each
neuron is responsible for a particular region of the visual field (i.e. its receptive field)
and is sensitive to a certain type of stimulus. For example, some neurons respond to
edges with a specific orientation. The receptive fields of neurons are restricted in
size, but they overlap each other and cover the whole visual field. On top of these
simple neurons, there are more complex neurons which pool the responses of the
simple ones, and thus there is a feature hierarchy.

In convolutional neural networks, the function of the neurons in the visual cortex
is mimicked by applying convolution operation between the image and filters. That is,
the filter is slid over the image spatially to compute dot products. Filters are trained
to represent different features. A sequence of convolutional layers approximates the
feature hierarchy in the visual cortex. It has been shown that the lower layers closer
to the input learn to recognize simple features of the image, such as edges and bright
spots, and the higher layers closer to the output learn to represent complex features
of the image, such as shapes and patterns.

Similar to an MLP, a CNN also has one input and one output layer, and several
hidden layers in between. Typically, three types of layers are used in convolutional
neural networks: convolutional, pooling and fully connected.

Typically, a convolutional layer consists of N filters of size F, x F}, x d and
operates on an input volume of size I, x I, x d. As mentioned before, each filter is
slid over the input volume spatially to compute dot products at each 2D position to
yield an output volume of size O, x O, x 1. The output volume is called activation
map or feature map. This operation is also known as the convolution of two functions
and thus we call the layer convolutional. Figure 7 is an example of convolution
operation.

The size of the output feature map is determined by the strides of the convolution
operation and the padding scheme. Strides determine the number of pixels with



13

Input image or activation maps Convolve over all Activation map
spatial locations

Figure 7: Convolution operation.

which we slide the filter at a time, horizontally or vertically. In other words, in
case the strides are both one, we move our filter one pixel at each step, and the
convolution output for every pixel is computed. Convolution operation typically does
not preserve the spatial size of the input volume. Thus, it is usually useful to add
zero padding to the border of the input volume. Without padding, the size of the
output volume is always smaller than the input if the size of the filter is larger than
1 x1.

Finally, the N separate activation maps generated by the N filters are stacked
along the 3rd dimension. This yields the final output of a convolutional layer of size
O, x Oy x N. A convolutional layer with ten filters is illustrated in Figure 8.

Pooling layers are used to make the feature representations smaller in size and
thus more manageable, while preserving the most important information in them. As
illustrated in Figure 9, a pooling layer operates over each activation map independently
to reduce the size of an input volume. This is done by sliding a small window across
an input activation map and taking the maximum value or average value of the
window at each step. These two different pooling schemes are known as max pooling
and average pooling. As an example, max pooling is illustrated in Figure 10.

Since pooling reduces the size of the activation maps, it is a useful way to manage
the computational complexity of the network. In addition, applying pooling makes
the feature representations more invariant to small translations in the input. That
is, the output remains almost the same when the input volume is slightly shifted.

However, it has been argued that applying pooling can result in losing valuable



14

Convolutional
layer

Input image or activation maps Activation maps

Figure 8: A convolutional layer.

spatial information. Therefore, in many convolutional neural networks, pooling layers
are simply replaced by convolutional layers with increased stride and this results in
no loss in accuracy [64]. In this thesis, all the neural networks we use do not contain
pooling layers.

Typically, fully connected layers are used at the end of a convolutional neural
network, i.e., they are the final hidden layers. In principle, they are the same as layers
in the aforementioned traditional MLPs, which connect every neuron in the previous
layer to every neuron in the next layer. There are also convolutional networks without
fully connected layers which are called fully convolutional networks (FCNs) [41].
Unlike traditional convolutional neural networks, they are able to manage different
input sizes.

Activation functions are used between layers of a CNN to introduce nonlinearity.
The rectified linear unit (ReLLU) [50], which was first proposed for restricted Boltzmann
machines, is currently the most commonly used activation function for convolutional
neural networks. The main advantage of ReLLU is that it can alleviate the vanishing
gradient problem. Formally, ReLLU is defined as:

f(z) = max(0, z) (4)

In this thesis, another activation function exponential linear unit (ELU) [8] is also
used. It speeds up the learning in deep neural networks and has improved learning



15

Downsampling

‘ i Pooling layer

Figure 9: A pooling layer.

Max pooling

Figure 10: Max pooling with 2 x 2 filter and stride 2.
characteristics compared to other activation functions. ELU is defined as:

T x>0
flz) = { alexp(z) —1) <0 (5)

where a > 0. ReLLU and ELU are illustrated in Figure 11.
An example of a traditional convolutional neural network is illustrated in Figure



16

1.5+

/

= /
=
0 ,.f(
.;.
,
-05 | A
Fd
1k —— =
15 ) ) . . .
-10 -8 -6 -4 -2 0 2

Figure 11: The rectified linear unit (ReLU) and the exponential linear unit (ELU,
a=1.0).

12. It is composed of a sequence of convolutional layers combined with pooling layers
and one fully connected layer at the end.

Figure 12: An example of a convolutional neural network.

Input

2.3.4 Fully Convolutional Networks

A fully convolutional network (FCN) [41] is a variant of the traditional convolutional
neural network where all the learnable layers are convolutional, and thus it does not
include any fully connected layers. By building the CNN fully convolutional with



17

upsampling layers inside the network, FCN could be applied to input of arbitrary
size and output pixel-wise predictions efficiently. Note that the upsampling layers
are not always needed, e.g., due to the use of dilated convolutions [72].

FCN was initially proposed for semantic segmentation task. Semantic segmenta-
tion is the task of labeling each pixel in the image with one of the predetermined
category labels. Its goal is to understand the image in pixel level. Before the existence
of FCN, solving semantic segmentation with CNN was performed in a patch-based
manner [7, 14]. As illustrated in Figure 13, in order to classify an image pixel, the
traditional patch-based approaches use an image patch around a pixel together with
the label of that pixel as a sample to train a CNN. This is known as patch-wise
training. During test time, again an image patch is extracted around a pixel and fed
into the CNN to produce a category label for that pixel. This is done for every pixel
in the image to produce a dense final prediction. However, these approaches have
several deficiencies. First, it requires much memory at test time. For example, if the
size of the extracted image patch for each pixel is 40 x 40, the required amount of
memory is 1600 times larger that of the original image. Besides, it is time-consuming
and inefficient. Although the neighboring image patches are always overlapping,
these approaches fail to reuse the shared features between patches, and this results
in unnecessarily repeated computations. In addition, the size of the image patch
limits the size of the receptive field. Typically, the size of the image patch is much
smaller than the size of the entire image, and thus only local information without
global context can be extracted, which affects the performance of the algorithm.

] -5 |8

An extracted patch

Label of the
AGMEX canter pixel

Conv
Pooling
Conv
Pooling

Input image

Figure 13: Patch-based sematic segmentation using CNN.

Unlike the patch-based approaches, FCN can be trained end-to-end simply using
whole images and ground truth labels of the same size to make dense predictions
for semantic segmentation efficiently at test time [41]. FCN and its variants have
demonstrated a significant improvement in segmentation accuracy over traditional
methods on standard datasets. Therefore, FCN has driven great breakthrough on
semantic segmentation task and the idea of FCN has been successfully applied to
other computer vision tasks.



18

¥

Conv
Pooling

Conv
Pooling

E I .

Input image Labels
HxWx3 Hx W

Figure 14: Fully convolutional network.

An example of the FCN structure is shown in Figure 14. Typically, a FCN-based
model used for producing dense predictions is composed by successive convolutional
layers with downsampling and upsampling inside the network. As discussed before,
downsampling can be done by pooling layers or convolutional layers with larger
stride value. In order to upsample the activation maps, upconvolution (sometimes
called deconvolution) [52] and unpooling [73, 74] are introduced. Unpooling is the
reverse operation of pooling which can enlarge the size of activation maps without
learnable parameters. Similar to unpooling, upconvolution is the reverse operation
of convolution. Here the reverse operation means the reverse of the forward and
backward passes of convolution operation rather than the reverse of the convolutional
effect (the mathematical deconvolution). In contrast to unpooling, the parameters of
upconvolution can be learned. upconvolution and unpooling operations are illustrated
in Figure 15.

2.3.5 Transfer Learning and Data Augmentation

Transfer learning is a machine learning technique for applying the knowledge gained
during solving one problem to a related problem. Transfer learning with deep neural
networks is usually performed by initializing the network with weights of a pre-
trained network instead of random initialized ones and then finetuning the network
[1, 53]. In practice, training an entire deep neural network from scratch with random
initialization is usually not feasible, because of the insufficient size of a dataset.
Even when the dataset is large enough, transfer learning can often help to boost
generalization performance. Besides, training from scratch usually takes much more
time. Therefore, transfer learning has become a common trend for training deep
neural networks.

Typically, the weights are initialized from a classification network which is pre-
trained on a very large dataset such as ImageNet [12]. Since the lower layers closer to
the input learn to represent more generic features that are useful for almost all tasks,



19

Input
4
Max unpooling 4 |0
Max location .
0 0
X
Input
4
Upconvolution 4 | 12
Filter >
0 8
1 3
0 2

Figure 15: Upconvolution (deconvolution) and unpooling operations.

we usually freeze the weights of the lower layers and only finetune or retrain the higher
layers of the network. It has been shown that transferring the learned representations
of classification networks to solve other tasks such as semantic segmentation is often
useful.

Data augmentation is a common machine learning technique that can improve
the generalization capabilities of machine learning models by increasing the amount
of training data, and thus avoid them from overfitting and increase their accuracy
at test time [70]. It has been proven to be useful for training deep neural networks,
especially on smaller datasets. Typically, data augmentation generates new samples
from the existing data by applying transformations. For example, we can translate,
rotate, warp, flip, scale, and crop the images. Even more realistic and representative
samples can be generated synthetically.



20

2.3.6 VGGNet

VGGNet [62] is a deep convolutional neural network architecture proposed by the
Visual Geometry Group (VGG) from the University of Oxford. It explores the rela-
tionship between the depth of the convolutional neural network and its performance.
By increasing the depth to 16-19 layers, VGGNet shows significant improvement
in accuracy. To reduce the number of parameters, only 3 x 3 filters are used in all
convolutional layers. Compared to networks with fewer layers but larger filters, it
has more non-linearities and fewer parameters. Two VGG based models VGG16 and
VGG19 are shown in Figure 16. In the DSAC localization pipeline, the two CNNs
are based on the VGGNet architecture.

2.3.7 DispNet

DispNet has been proposed in [47]. It is a fully convolutional neural network model
with multi-scale predictions, which can be trained end-to-end to predict the dense
disparity map from a pair of images. It adopts an encoder-decoder architecture where
the encoder is used to compute abstract features and encode the global context,
and the decoder recovers the original resolution by an expanding upconvolutional
architecture [47]. Shortcut connections are added between the encoder and decoder
to better preserve finer details of the input image. An example of the DispNet
architecture is shown in Figure 17. In this thesis, our full-frame Coordinate CNN is
based on the DispNet architecture.



FC
| Softmax_| o
FC
FC
= Pooling
FC 3x3 conv
3x3 conv
Pooling 3x3 conv
3x3 conv 3x3 conv
3x3 conv Pooling
3x3 conv 333 Conv
Pooling 3x3 conv
3x3 conv 3x3 conv
3x3 conv 3x3 conv
3x3 conv Pooling
Pooling 3x3 conv
3x3 conv 3x3 conv
3x3 conv 3x3 conv
3x3 conv 3x3 conv
Pooling Pooling
3x3 conv 3x3 conv
3x3 conv 3x3 conv
Pooling Pooling
3%3 conv 3x3 conv
3x3 conv 3x3 conv
Input ‘ ‘ Input
VGG16 VGG19

Figure 16: VGG16 and VGG19 architectures.



Image

Concatenate

. Upsample and concatenate
[ ] Convolution

[] Upconvolution

)

Multi-scale
predictions

Figure 17: DispNet architecture.

22



23

3 Active Search Pipeline

In this chapter, we explain the state-of-the-art Active Search method [57, 58]. As
described in Section 2.2.1, it is a traditional keypoint based localization approach
which solves the localization task by correspondence search. In this thesis, we
primarily focus on improving neural network based methods. However, as we compare
the neural network based methods to Active Search, we describe its pipeline in detail.
Active Search consists of a powerful prioritized keypoint search pipeline which is
able to efficiently and effectively generates 2D-3D matches for pose estimation. It
is called Active Search because the key component of it is an algorithm which can
actively search for additional matches to improve the registration performance.

Pose
estimation
using
RANSAC

Active search

RANSAC
pre-filter
] PN
Extract
features and Update 2D-to-3D
assign them to prioritization match fou
visual words VPS \/

Queyimage | [ >
[ matches
found?

Figure 18: Active Search pipeline. Figure adapted from [58].

Active Search uses a visual vocabulary based prioritization scheme to accelerate the
2D-t0-3D descriptor matching, where the SIFT [42] descriptors of the 3D models are
clustered for faster indexing and estimating matching cost. Due to the quantization
of the descriptor space, potential correct matches could be lost. Thus, a 3D-to-2D
search scheme is used to reestablish these matches. Co-visibility of 3D points in the
3D model is further considered to speed up the matching. An overview of the Active
Search pipeline is illustrated in Figure 18.



24

3.1 Vocabulary-Based Prioritized Search (VPS)

As discussed in Section 2.2.1, there are two types of matching schemes: indirect and
direct matching. Many previous methods adopt indirect matching to obtain efficiency.
Although an indirect way of feature matching is faster than direct 2D-to-3D matching,
the quality of the established correspondences in this way is much lower. Contrary
to previous methods, the Active Search pipeline demonstrates the power of direct
2D-to-3D matching. The FLANN library [49] can be used to perform the 2D-3D
matching between the query image descriptors and 3D points in the scene model
represented by a kd-tree. If the ratio test of two nearest neighbors with the threshold
set to 0.7 is passed, a potential 2D-to-3D match is accepted [56]. It has been shown
that the quality of the matches established by the direct 2D-to-3D matching is higher
[56].

However, the direct search based on kd-tree is time-consuming. In order to
perform fast localization while preserving the quality of the matches, a better search
scheme is needed. In fact, tree-based search spends most of the time on features which
do not result in correspondences [56]. Therefore, we could first consider the most
promising features which could lead to a match during the search by prioritizing the
search using a meaningful strategy. And once enough matches have been established,
the search can be terminated. To address this issue, the vocabulary-based prioritized
search (VPS) scheme is proposed. VPS uses a visual vocabulary to estimate the
matching cost of features. First, the 3D points associated with SIFT descriptors are
clustered and assigned to a visual vocabulary consisting of a predefined number of
visual words. This step is done offline. During test time, the extracted image features
are also assigned to this set of visual words. Then, for each image feature, only the
3D points with which the same visual word is associated are the candidates for the
nearest neighbor search. In this way, the number of feature descriptors assigned to
the visual word of an image feature is proportional to the cost of finding the nearest
neighbors of this image feature. Thus, the number of descriptors can be a good
estimate of the matching cost to prioritize the search. VPS first processes the image
features with lower matching costs. That is, features assigned to words with fewer
points are evaluated first. The search stops when enough correspondences have been
found. An illustration of VPS is shown in Figure 19.

3.2 Active Correspondence Search

Although the use of prioritization scheme results in far more efficient direct 2D-to-3D
matching, VPS is not as robust as the search based on kd-tree. This is because of
the quantization effects introduced by the use of a visual vocabulary. That is, if
corresponding features have different visual words, the correspondence could not be
established during the search. Therefore, the number of high-quality correspondences
is limited. Using soft assignments could be a solution to recover the matches, but
at the cost of computational efficiency. In contrast, active correspondence search is
able to achieve this efficiently.

Figure 20 illustrated the active correspondence search. The lost matches can



25

3D model
Assign 3D points Linear search for
to visual words 2D-3D

Ema correspondences
Feature 1
1111711
A Feature 1
Feature 2 Prioritize
LI === Featwe3 [TTTT
[TTTTTTTTTTT]
Feature2 [TTTTT]
Feature 3 [TTTT]
Assign 2D features o

to visual words

Figure 19: Vocabulary-based prioritized search(VPS). Figure adapted from [56].

-to-3D / Vocabulary tree \
gtch found
@
. o 10O

kNN search ‘2 4 ol¢
3D-to-2D in 3D
matching
ol ¢
L 2
ooo‘ooo ¢ © : \ J
Insert into L
prioritization
scheme

Figure 20: Active correspondence search. Figure adapted from [57].

be recovered by active correspondence search through 3D-to-2D matching. When a
2D-t0-3D match has been found by VPS, we know that the nearby region of the 3D
point could also be seen in the query image. Thus, we can consider finding matches
for the neighboring 3D points via 3D-to-2D search. Similar to VPS, searching for the
nearest neighbors of a 3D point can be again accelerated by using a visual vocabulary.
Unlike the one used for 2D-to-3D matching, the vocabulary for 3D-to-2D matching is
supposed to be coarser to guarantee that each word is associated with enough image
features, since the number of features in the query image is tremendously fewer than



26

that of a 3D model. This coarse visual vocabulary can be obtained efficiently by
extending the fine one used for 2D-to-3D matching to a hierarchical vocabulary tree
and extracting the high-level words. Using such a coarser vocabulary also leads to
fewer quantization effects such that some of the lost matches during the 2D-to-3D
search can be recovered.

The 3D-to-2D matching is actively triggered, and it shares the same prioritization
scheme with the 2D-to-3D matching. Once a 2D-to-3D match has been found, K
nearest neighbors of the 3D point in 3D space are inserted to the prioritization
scheme as candidates for 3D-to-2D matching. These 3D points are also prioritized
by their matching costs, i.e., the numbers of features assigned to their visual words,
together with other 2D features and 3D points that are already in the scheme. Once
a 3D point is processed by the prioritization scheme, 3D-to-2D matching is performed
rather than 2D-to-3D matching. Here, the same ratio test is used, and again the
matching only considers the image features with the same visual word. Note that the
search of K nearest neighbors of a 3D point in the 3D space is only performed when
an 2D-to-3D match is accepted. There are also two other strategies to prioritize the
search. One is to process all candidates for 3D-to-2D matching intermediately after
a 2D-to-3D match is found. However, this can result in a large number of matches
concentrated in a few parts of the image which should be avoided for pose estimation.
The other one is to process all the 3D points only after all the 2D candidates are
evaluated. In this way, active correspondence search could be useless, since enough
correspondences can already be found before performing the 3D-to-2D matching.

3.3 Co-Visibility Information

Active correspondence search utilizes the assumption that the nearest neighbors of a
found 3D point in the model can also be seen in the query image. However, this is
not necessarily true. Therefore, the co-visibility information could be used to filter
out unreliable neighboring points, and thus speed up the localization.

The co-visibility information can be approximated using the information obtained
from the SfM pipeline. Since 3D points are generated from database images, two 3D
points are unlikely to be seen at the same time in the query image if they are never
seen together in a database image. Therefore, once the K nearest neighbors of a 3D
point are found, only those have been co-visible in at least one database image are
inserted into the prioritization scheme as candidates for 3D-to-2D matching. Other
points are simply discarded. In this way, the correspondence search is accelerated.

The co-visibility information can also be used as a RANSAC pre-filter that can
remove false matches before applying RANSAC. Once we have a set of 2D-3D
matches ready to be fed into the RANSAC loop, we can connect two 3D points
if they are co-visible in at least one database image. This results in a graph with
multiple connected components, if we consider these 3D points as vertices of a graph.
Points in different components should not be observed together in the query image.
Therefore, only matches contained in the largest component should be used for pose
estimation. By removing the false matches, the RANSAC-based pose estimation can
be accelerated.



27

However, using only the database images results in merely an approximation
to the true co-visibility information. Thus, the two filtering steps can also remove
correct points and matches. In order to achieve better performance, cameras can be
merged to obtain better and more continuous approximation of the true co-visibility
relationship. For each image in the database, k£ images with the closest camera
centers are found. Then the set of similar images are defined by the subset of these k
images with relative orientation difference within 60°. This results in a set of image
clusters. When determining the co-visibility of two points, the images clusters are
used instead. That is, if two points can be found together in at least one image
cluster, they are considered co-visible. As a result, however, the filtering steps become
far more computationally expensive. In order to reduce the running time, we can
select only a minimal set of image clusters that covers all the database images using
a greedy set cover algorithm.



28

4 DSAC Pipeline

In this chapter, we discuss the neural network based DSAC localization pipeline [3]
which is based on the SCoRF pipeline [61] explained in Section 2.2.3. The DSAC
pipeline is the main focus of this thesis, as we present two modifications to the DSAC
pipeline in the next chapter.

As mentioned in Section 2.2.3, the original SCoRF pipeline requires the depth
information during test time, which makes it limited. Instead of using a random forest
to predict the 3D coordinates from a combination of RGB and depth features, the
DSAC pipeline adopts a powerful deep neural network which can be discriminative
enough without using the depth information. This enables the camera localization
from RGB-only images.

Figure 21 gives an overview of the DSAC pipeline. It consists of two stages, each
of them containing a CNN. In the first stage, a Coordinate CNN is adopted to
generate 2D-3D correspondences from a given RGB image. In the second stage, a
differentiable RANSAC (DSAC) scheme is performed to determine the final pose
estimate. Here several pose hypotheses are generated, and they are evaluated by a
Score CNN. Due to the use of two CNNs and the differentiable RANSAC, the entire
pipeline can be trained in an end-to-end manner.

Although the 6 DoF camera pose can also be directly regressed by a single CNN
as demonstrated by PoseNet, the localization performance obtained in this way is
inferior. Therefore, the intermediate step of generating 2D-to-3D correspondences
contained in both the Active Search pipeline and the DSAC pipeline is critical for
high-quality camera localization.

4.1 Differentiable RANSAC

Random sample consensus (RANSAC) algorithm [15] is one of the most famous tools
in computer vision. It is a simple but powerful framework for model fitting when
outliers are present. It is applicable to numerous problems in computer vision, such
as pose estimation, camera calibration and 3D reconstruction, and often works well
in practice.

RANSAC runs in a hypothesize-and-verify manner. Firstly, multiple hypotheses
are generated by fitting models to randomly selected minimal subsets of data points.
Then, these hypotheses are scored by how much they are consistent with the entire
dataset. This is usually done by counting the inliers of each model, which fit the
model within some error threshold. Finally, the hypothesis with the highest score is
selected as the final output. Typically, an optional step can be performed to obtain
a better estimation by refining the final output using all its inliers.

In the context of image-based localization, the RANSAC algorithm is usually used
in combination with a PnP algorithm which can generate a camera pose estimation
from a set of 2D-3D correspondences. A minimal subset of four correspondences is
used to generate the pose in the case of known intrinsic parameters, and at least
six correspondences are needed if intrinsic parameters are unknown. In this thesis,
we consider the situation where the intrinsic parameters are known. Once a pose



29

Extract
image

W

Coordinate CNN

2D-3D
matches

/ Hypothesis sampling \

h1 || h2 || h3 || h4 hn

Reprojection
images

Score CNN

Probabilistic
hypothesis

selection +
DSAC efinemen
K Final pose j

Figure 21: DSAC pipeline. Figure adapted from [3].

Conv
Conv
Conv
Conv
Conv
Conv

hypothesis is generated, a 3D point can be projected onto the image plane using the
hypothesized camera pose and the known intrinsic parameters. The reprojection error
is then defined by the distance between its corresponding 2D pixel and the reprojected
one. A 2D-3D correspondence is considered as an inlier of a pose hypothesis if the
reprojection error is less than some threshold. The selected hypothesis is the one
with the highest number of inliers and it can be further refined.



30

However, the traditional RANSAC algorithm is not differentiable, thus cannot
be integrated into an end-to-end deep learning pipeline. If we want to propose an
image-based localization pipeline which contains the intermediate step of predicting
2D-to-3D correspondences and at the same time can be trained end-to-end by directly
minimizing the localization error (e.g. training PoseNet), a differentiable RANSAC
is needed.

In order to make the traditional RANSAC differentiable, a differentiable score
function, e.g., a Score CNN (explained in the next section), can be used instead of
counting inliers. More importantly, the non-differentiable argmax operator which
select the best hypothesis with the highest score should be replaced by a differentiable
one. There are two different ways to achieve this. The first way (SoftAM) is to use
soft argmax instead of argmax which turns the hard selection into a weighted average
of all hypotheses. However, this results in learning a good average of hypotheses
instead of learning to select the best one. Inspired by the policy gradient approaches
in reinforcement learning, the second way is to preserve the hard selection but make
it probabilistic. It is called DSAC (Differentiable SAmple Consensus). It has been
shown experimentally that DSAC is less sensitive to overfitting than the first option
for image-based localization. An overview of the traditional RANSAC and the two
differentiable variants are shown in Figure 22.

art Random Hypothesis Scoring Hypothesis
Traditional sampling generation {non-differentiable) selectiol

RANSAC

Refinement

hyy = argmax, s

. Random Hypothesis Scoring Hypothesis
Soft argmanx Selection sampling generation (differentiable}) selectiol BT

(SoftAM) Selected
hypothesis
’ _ exp(s)h, hSonAM

SoftAM |

| |
Zexp(s) i

Figure 22: A graphical representation of the traditional RANSAC and two differen-
tiable variants of it. Figure adapted from [3].

Using this proposed differentiable RANSAC together with a Coordinate CNN
and a Score CNN (discussed in the next section), an end-to-end trainable image-
based localization pipeline is enabled, although componentwise training for good
initialization is needed.



31

4.2 Coordinate CNN and Score CNN

As already mentioned, the DSAC pipeline contains two separate CNNs, a Coordinate
CNN and a Score CNN. The Coordinate CNN is used to predict 2D-3D correspon-
dences, and the Score CNN is for scoring hypothesis. Both CNNs are based on the
VGGNet architecture [62].

The Coordinate CNN generates the 2D-3D correspondences as follows. For a
2D pixel in the image, a 42 x 42 image patch centered at the pixel is cropped and
fed into the Coordinate CNN, and a 3D scene coordinate estimate is generated by
this CNN. The location of the 2D pixel in the image and the predicted 3D position
in the world space form a 2D-3D correspondence. During test time, only 40 x 40
pixels per image are randomly sampled and processed to reduce the running time.
The sampling is done by first dividing the image into 40 x 40 cells and choosing a
random pixel location for each cell.

The Score CNN predicts a score for a hypothesis from a reprojection error image.
Once a pose hypothesis is generated from a minimal subset of the 40 x 40 2D-3D
correspondences using a PnP algorithm, we can calculate the reprojection error for
each of the 40 x 40 correspondences using this hypothesis. This results in a 40 x 40
reprojection error image for the hypothesis. To assess the quality of the hypothesis,
the reprojection error image is directly fed into the Score CNN.

The detailed configurations of the Coordinate CNN and the Score CNN are
described in Table 1. All layers expect the output layers in both the Coordinate
CNN and the Score CNN are followed by a ReLU non-linearity. Unless indicated,
all the convolutional layers are zero-padded with 1-pixel border. Unlike the original
VGGNet architecture, there are no pooling layers in the networks. Convolutional
layers with stride equal to 2 are used instead for downsampling.

Training the two CNNs jointly in an end-to-end fashion from scratch quickly
reaches a local minimum, thus making the procedure useless. Hence, training the
two components separately to provide a good initialization for end-to-end training is
necessary.

The Coordinate CNN can be trained directly by minimizing the following loss:

lOSScoord(y7 Y) = ||}A’ - YH (6)

where y is the ground truth scene coordinate label of an image pixel and y is the
prediction of the Coordinate CNN. Here the Euclidean distance is used instead of
the squared distance since it is more robust to outliers. The ground truth scene
coordinates of a 2D pixel can be obtained using the 2D pixel coordinates, the depth
value of the pixel and the camera intrinsic parameters. Hence, only image patches
with valid depth information are sampled for training.

The Score CNN is trained using synthetically generated data. Given a training
image, synthesized pose hypotheses can be generated by adding noise to the ground
truth pose of this image. Then for each synthesized pose hypothesis, its reprojection
error image can be computed using the predictions of the trained Coordinate CNN.
Using the synthesized pose hypotheses and reprojection error images generated from
training images and their ground truth poses, the Score CNN can be trained by



32

minimizing the following loss:
[08Score(8,8) = |8 — 5] (7)

where § is the score predicted by the Score CNN and s is the ground truth score. To
define the ground truth score, we need the loss between the ground truth pose and
the pose hypothesis. It is given by:

1085pose (h, ) = max(£(8,0), ||t —t|)) (8)

where h = [t,0] and h = [£, 9] are ground truth pose and pose hypothesis respectively.
The camera rotations 8 and  are in axis-angle form and the angular distance between
them are measured in degree. The camera translations t and t are measured in cm.
Then the ground truth score is defined as:

5 = —ﬁlosspose(fl, h) (9)

where (8 is a hyperparameter that controls the broadness of the distribution after
applying softmax to the scores of hypotheses. As illustrated in Figure 22, this
distribution is used for weights in SoftAM or as the sampling distribution in DSAC.
It is set to 10 in the original DSAC paper. Training in this way, the Score CNN
learns to predict small scores for hypotheses with large errors and large scores for
hypotheses with small errors.

Coordinate CNN Score CNN

42 x 42 x 3 RGB image patch 40 x 40 x 1 reprojection error image

3x3conv, 1/32, s=1

3 x 3 conv, 32/32, s =2
3 x 3 conv, 32/64, s =1
3 x 3 conv, 64/64, s =2
3 x 3 conv, 64/128, s =1

3 x 3 conv, 3/64, s = 1, no padding
3 x 3 conv, 64/64, s = 2
3 x 3 conv, 64/128, s =1
3 x 3 conv, 128/128, s = 2
3 x 3 conv, 128/256, s = 1

3 x 3 conv, 256/256, s = 1
3 x 3 conv, 256/256, s = 2
3 x 3 conv, 256/512, s =1
3 x 3 conv, 512/512, s =1
3 x 3 conv, 512/512, s = 2, no padding
FC 2048 /4096
FC 4096 /4096
FC 4096/3

3 x 3 conv, 128/128, s = 2
3 x 3 conv, 128/256, s =1
3 x 3 conv, 256/256, s = 2, no padding

3 x 3 conv, 256/512, s =1
3 x 3 conv, 512/512, s =2

FC 512/1024

FC 1024/1024

FC 1024/1

Table 1: Configurations of Coordinate CNN and Score CNN.

4.3 End-to-End Training

After initializing the Coordinate CNN and the Score CNN with componentwise
training as described in the previous section, the entire DSAC pipeline can be trained




33

end-to-end. The differentiable loss of the entire pipeline is the loss between the
ground truth camera pose and the estimated pose which can be computed according
to Equation 8. However, some parts of the pipeline are still not directly differentiable.
They are the pose hypothesis generation step using the PnP algorithm [35] and the
final iterative pose refinement step.

For the pose estimation using the PnP algorithm, the derivatives can be calculated
using central differences [17, 39]. The final refinement step is performed by iterating
inlier sampling and pose estimation multiple times. Since it contains hard inlier
selection operation, it is non-differentiable. However, because of the large number of
inliers that are chosen, the refined poses typically change smoothly with regard to
the scene coordinate prediction. Therefore, the derivatives can be again calculated
using central differences by considering the refinement step as a whole. In order to
make the derivatives more stable, refinement step is stopped if the number of inliers
found is less than 50. In addition, to calculate the central differences efficiently, only
1% of the scene coordinates are sampled and the gradient is corrected by multiplying
it by 100.



34

5 DSAC Variants

In this chapter, we present two modifications to the DSAC pipeline which is described
in the previous chapter. First, we propose to discard the use of the Score CNN and
the differentiable RANSAC, meaning that instead of first training the two CNNs
separately and fine-tuning the entire pipeline end-to-end, we only train the Coordinate
CNN to predict the 2D-3D correspondences and use the traditional RANSAC which
is non-differentiable and contains no learnable parameters to generate the final poses.
The second modification is that instead of performing scene coordinate regression
in a patch-based manner, we propose to use a fully convolutional Coordinate CNN
which takes the whole image as input and efficiently produce correspondingly-sized
dense scene coordinate predictions.

5.1 Non-Differentiable RANSAC

As explained in Section 4.2, in the original DSAC pipeline, the Score CNN is used to
regress the scores of hypotheses from their reprojection error images instead of directly
scoring them by counting inliers. This makes the scoring function differentiable,
and thus it enables the end-to-end training of the entire pipeline together with the
differentiable hypothesis selection operation and the Coordinate CNN. However,
while compared to the scoring scheme that uses only the number of inliers, the CNN-
based score function has more discriminative power such that it can utilize more
information from a reprojection error image to assess the quality of the hypothesis, it
can easily overfit the training data. Furthermore, the componentwise training of the
Score CNN is performed by using synthetically generated data. The pose hypotheses
are generated by adding noise to the ground truth poses of training images, and the
reprojection error images of these poses are generated using the scene coordinate
predictions of the trained Coordinate CNN. Hence, the quality of the Score CNN is
highly correlated with the quality of the Coordinate CNN and the density of training
poses in the whole pose space. This can result in even more severe overfitting. For
example, it is possible that during training the synthesized hypotheses with smaller
errors have worse reprojection error images due to the quality of the Coordinate
CNN;, and thus the Score CNN learns to predict higher scores from worse reprojection
error images. At test time, if the test image is similar to the training images, it will
still work. However, if the test image is far from the training images, the generated
hypotheses with better reprojection images which are actually the ones with smaller
errors will not be recognized by the Score CNN and small scores will be given to them.
Therefore, we argue that the use of the Score CNN can lead to worse performance
for scenes with few training images or that are difficult for the Coordinate CNN (e.g.
scenes contain repeated structures).

On the other hand, the conventional RANSAC has been already proven to be
robust for many computer vision applications. Although the scoring using inlier count
is simple and not as discriminative as a CNN-based score function, it can generalize
well to different scenarios and is not sensitive to the size of training data and the
quality of the Coordinate CNN. Therefore, we propose to use the conventional



35

RANSAC instead of the DSAC with the Scoring CNN, which means that we restore
the use of inlier count and the argmax hypothesis selection. As a result, the entire
localization pipeline is no longer end-to-end trainable. However, we argue that as
long as the Coordinate CNN is accurate enough, training the entire pipeline in an
end-to-end fashion is not necessary.

The detailed steps of the RANSAC algorithm used in this thesis are described in
Algorithm 1. This is also applicable to the DSAC used in the original pipeline. For
the conventional RANSAC, score(H;) is the number of inliers, i.e., the number of
correspondences with reprojection errors less than a threshold 7, and the final pose
Hy is the one with highest inlier count. For the DSAC, score(H;) is the prediction of
the Score CNN, and the final pose H is selected randomly according to the softmax
distribution of scores. In this thesis, 40 x 40 correspondences are generated using
the Coordinate CNN (/N = 1600) as mentioned before, 256 hypotheses are sampled
per image (K = 256), the inlier threshold 7 is set to 10 pixels, 8 refinement steps are
performed (R = 8), in each refinement step at most 100 inliers are chosen (P = 100),
and the refinement is stopped in case less than 50 inliers have been found (@ = 50).

Algorithm 1 Pseudocode for RANSAC optimization

01: evaluate the Coordinate CNN to obtain N correspondences
02: 20

03: while i < K do

04: sample 4 2D-3D correspondences

05: generate a pose hypothesis h using PnP

06: if all the 4 correspondences are inliers of h then
07: H;, < h

08: S; < score(H;)

09: 11+ 1

10: select the final pose H; according to the scores
11: 70

12: while j < R do

13: sample at most P inliers

14: if less than @ inliers are found then

15: break

16: recalculate the pose H; from the inliers

17: return pose Hy

5.2 Full-Frame Coordinate CNN

In the original DSAC pipeline, besides the differentiable RANSAC and the Score
CNN, the Coordinate CNN is one of the most important components that enable
the entire pipeline to achieve great localization performance. As described in the
previous section, we propose to discard the use of differentiable RANSAC and the
only learnable part left is the Coordinate CNN. Therefore, the performance of the
pipeline critically depends on the quality of the Coordinate CNN.



36

The Coordinate CNN used in the original DSAC pipeline is trained and evaluated
in a patch-based manner. Similar to the patch-based approaches for semantic
segmentation, patches need to be sampled during both training and test time. The
patch-based Coordinate CNN is trained using image patches of fixed size (42 x 42)
centered around pixels and the corresponding world coordinates of these pixels. At
test time, patches of the same size are used as inputs of the Coordinate CNN to
generate 2D-3D correspondences. However, obtaining a set of 2D-3D correspondences
in such a way is very inefficient. In the DSAC pipeline, 1600 correspondences are
needed for pose estimation. Thus 1600 patches should be extracted and fed into
the deep neural network. This is obviously time-consuming and also requires much
memory. Moreover, the fixed patch size limits the size of the receptive field, and
thus limits the information that can be processed by the network. This makes it
difficult for the Coordinate CNN to predict accurate 2D-3D correspondences when
the scene exhibits ambiguities (e.g. repeated structures), since the global context
cannot be used by the network. Besides, the size of the patch can be considered
as a hyperparameter of the network and it is not trivial to select the best value
for it. It is difficult to distinguish between different patches if the size is set too
small. On the other hand, although large patches contain more information and are
more representative, they capture too many spatial dependencies such that patches
centered at the same 3D point observed from only slightly different viewpoints can
look extremely different. Thus, using large patch size is prone to overfitting. In
addition, the use of fixed patch size at both training and test is problematic. For
example, if the training images are taken near an object but the test images are
taken from afar, the difference in scale can cause the Coordinate CNN to fail. And
it is not trivial to design an adaptive patch size selecting scheme.

To overcome such limitations, we propose to use a CNN which accepts a whole
image as input and produces scene coordinate predictions for all pixels in the image.
This is inspired by recently presented architectures for solving per-pixel tasks, such
as semantic segmentation, depth estimation, and disparity estimation. Performing
coordinate regression in this way, patches are not required to be sampled and the 2D-
3D correspondences can be generated efficiently at test time. Since the whole image
is used as input, more context is added to the regression process and more overall
information is considered. Meanwhile, the patch size selection is no longer a problem.
However, such a network structure is more sensitive to the spatial correlation of
image pixels and thus is prone to overfitting. We propose to use data augmentation
to mitigate the problem. We call our network full-frame Coordinate CNN.

5.2.1 Network Architecture

Our full-frame Coordinate CNN is based on the architecture of DispNet which is
described in Section 2.3.7. It is fully convolutional such that dense per-pixel scene
coordinate predictions can be generated from arbitrary-sized input images. We call
the outputs scene coordinate images. The network consists of a contractive part and
an expanding part. The input image is first spatially compressed via the contractive
part and then refined via the expanding part. Moreover, shortcut connections are



37

added in between to overcome the data bottleneck. Unlike DispNet, there is only one
final output layer at the end of the network and no multi-scale side predictions are
used. Instead of ReLLU, we use ELU for the nonlinearity between layers. The details
of our network architecture are described in Table 2. Layers start with upconv are
upconvolutional layers and all other layers are convolutional. Also for each layer, the
size of the kernel (filter), the stride, the number of input channels, the number of
output channels, and the input (+ is a concatenation) are given.

Name Kernel | Str. | ChI/O Input
convla TXT | 2 3/32 image
convlb TXT | 1 32/32 convla
conv2a bx5 | 2 32/64 convlb
conv2b 5x5 1 64/64 conv2a
conv3a 3x3 | 2 64,/128 conv2b
conv3b 3x3 1 | 128/128 conv3a
convda 3x3 | 2 | 128/256 conv3b
conv4b 3x3 | 1 | 256/256 conv4a
convbha 3x3 | 2 | 256/512 conv4b
convhb 3x3 1 | 512/512 convbha
convba 3x3 2 | 512/512 convbb
conv6b 3x3 | 1 | 512/512 convba
conv7a 3x3 2 | 512/512 conv6b
conv7b 3x3 | 1 | 512/512 conv7a
upconv6 3x3 2 | 512/512 conv7b
iconv6 3x3 1 | 1024/512 | upconv6+conv6b
upconvh 3x3 | 2 | 512/512 iconv6
iconvh 3x3 1 | 1024/512 | upconvh+convbb
upconv4 3x3 | 2 | 512/256 iconvb
iconv4 3x3 | 1 | 512/256 | upconv4+conv4db
upconv3 3x3 | 2 | 256/128 iconv4
iconv3 3x3 1 | 256/128 | upconv3+conv3b
upconv2 3x3 | 2 128/64 iconv3
iconv2 3x3 | 1 128/64 | upconv2+conv2b
upconvl 3x3 | 2 64/32 iconv2
iconvl 3x3 | 1 64/32 | upconvl+convlb
upconv( 3x3 | 2 32/16 iconvl
iconv( 3x3 | 1 16/16 upconv(
coord pred | 3 x 3 1 16/3 iconv0

Table 2: Our network architecture.

5.2.2 Training Loss

Similar to the patch-based Coordinate CNN used in the original DSAC pipeline, we
train our full-frame Coordinate CNN by minimizing the Euclidean distance between



38

the scene coordinate ground truth and the prediction as given in Equation 6. However,
unlike training in a patch-based manner where patches and single predictions are used
and only patches centered at pixels with valid depth values are sampled for training,
our network uses a pair of color image and scene coordinate image (dense scene
coordinate values) as a training sample where the ground truth scene coordinates
can be missing for some pixels. Here we simply ignore the pixels without the ground
truth scene coordinates and mask out their contributions to the final loss. More
formally, loss for a training sample can be written as:

1 N
loss = ———— 3 M||Yi; — Yy 10
058 Zi,j Mij 7 J H J J H ( )

where Y and Y are ground truth scene coordinate image and scene coordinate image
prediction respectively, M is a mask and (i, j) is a 2D pixel coordinate. The mask
M has the same resolution as the color image and the scene coordinate image. A
pixel of M is set to 1 if the corresponding scene coordinate ground truth exists and
0 otherwise. Invalid pixels of the scene coordinate image Y are all set to 0.

5.2.3 Data Augmentation

While our network has larger receptive field and can encode more global context
information for better understanding of the scene, it is more sensitive to the spatial
relation between the neighbor pixels in the color images compared to a network
trained and tested in patch-based manner where only the information from small
patches is processed and the predictions of different patches are not necessarily
correlated. Therefore, we need more training images taken from a lot of different
viewpoints to regularize the network. Unfortunately, a common problem for image-
based localization is that the training poses in the whole pose space is not dense
enough to regularize such a powerful network. Also, image-based localization is
typically performed scene-wise, which means that only the images belonging to
a particular scene can be used during training. It does not make sense to use
data belonging to other scenes, and unlike for other computer vision tasks such as
semantic segmentation, it is not straightforward to apply transfer learning technique
for image-based localization. Hence, overfitting can be a serious problem in training
our full-frame Coordinate CNN for solving image-based localization.

To alleviate the overfitting problem, we propose to use data augmentation to
generate more data for training. A simple and common way of doing data aug-
mentation in the context of solving per-pixel tasks is to apply 2D affine geometric
transformations to the training images. The transformations we perform include
translation, rotation, and scaling.

However, these 2D affine transformations do not always preserve the real geometric
relations between pixels in an image. Since the camera is in the 3D space and the
3D points are projected onto the image plane according to a camera model, if the
camera pose is changed, the transformation between the old and new 2D coordinates
of 3D points is much more complex than the combination of 2D transformations
in the image plane. Therefore, we propose a second way to augment data. For a



39

training sample, we add a random transformation to its pose to synthesize a new
camera pose, and then using this new camera pose and scene coordinates of the

pixels, we project the pixels to the new camera plane to generate a set of new color
and coordinate images.



40

6 Experiments and Results

In this chapter, we describe the experiments conducted to assess the performance
of the methods explained in the previous chapters and present the results of these
experiments. We first introduce the 7-Scenes dataset [20] used for experiments. Next,
we reproduce the results of the Active Search method and the DSAC method. After
that, we evaluate the proposed modifications to the original DASC pipeline and
report the quantitative comparisons.

6.1 Dataset 7-Scenes

For the experiments, we use the 7-Scenes dataset [20] provided by Microsoft Research.
The 7-Scenes dataset is a widely used RGB-D dataset which consists of seven different
indoor environments. The RGB-D images are captured using a handheld Kinect
camera at 640 x 480 resolution and associated with 6 DoF ground truth camera poses
obtained via the KinectFusion system. A dense 3D model is also available for each
scene. Each scene contains multiple sequences of tracked RGB-D camera frames and
these sequences are split into training and testing data. The dataset exhibits several
challenges, namely motion blur, illumination changes, textureless surfaces, repeating
structures (e.g. in the Stairs dataset), reflections (e.g. in the Redkitchen dataset),
and sensor noise. Table 3 shows an overview of the dataset and Figure 23 illustrates
the scenes. Figure 24 gives a number of example RGB images.

Scene Training images | Test images | Spatial extent
Chess 4000 2000 3x2x1m
Fire 2000 2000 25 x1x1m
Heads 1000 1000 2x0.5x 1Im
Office 6000 4000 2.5 x 2 x 1.bm
Pumpkin 4000 2000 2.5 X2 x 1m
Redkitchen 7000 5000 4 x 3 x1.5m
Stairs 2000 1000 2.5 x 2 x 1.5m

Table 3: The 7-Scenes dataset.

6.2 Reproducing Active Search Results

To benchmark the performance of the novel neural network based DSAC pipeline,
we need to know the performance of the state-of-the-art traditional keypoint based
approaches. In this section, we present the experiments to reproduce the results of
Active Search on the 7-Scenes dataset reported in [69].



41

6.2.1 Implementation Details

Our Active Search implementation is based on an existing open-source but relatively
old implementation® [57]. We use the default recommended parameter settings for
our experiments except the number of the visual vocabulary words. An overview of
the settings is given in Table 4.

Number of visual words 1000
Type of 3D point representation Integer mean per visual word (cf. [56])
Number of nearest neighbors in 3D 200
used as candidates for 3D-to-2D search

Use the point filter? Yes

Use the RANSAC pre-filter? Yes
Group cameras? Yes

Number of camera per cluster 10

Terminate the correspondence search N—100
after finding N matches

Table 4: Overview of the parameter settings.

To use Active search, a 3D point cloud model reconstructed from images, where
each point is associated with SIFT descriptors is needed. However, the 7-Scenes
dataset does not contain the required 3D models. Thus, we use Colmap [59] to
reconstruct the models from the training images. Note that only the color images
are used for reconstruction, the depth images and the ground truth poses are not
needed during reconstruction. The sparse reconstruction pipeline of Colmap consists
of three steps, namely the feature extraction step, the feature matching step, and
the reconstruction step. For feature extraction, we use the vocabulary tree matching
mode with the pre-trained vocabulary tree 256K. All the parameters used are set to
default. After the reconstruction finished, we register the models against the ground
truth poses of the training images using the geo-registration function of Colmap.

The visual vocabulary containing 1000 words used by Active Search is trained
using the descriptors extracted from the training images of the 7-Scenes dataset.
We train the vocabulary by running the mini batch K-means algorithm [60] on all
descriptors extracted from a subset of all the training images (all 7 scenes), i.e., one
out of every ten images in a sequence is used.

Following [57], for RANSAC pose estimation, we use the 6-point DLT algorithm
[24]. The inlier threshold is set to 1/10 pixels. Following common practice [40], if
the final pose found by RANSAC has less than 12 inliers, the localization of a query
image is considered to be failed.

1Source code available at  https://www.graphics.rwth-aachen.de/software/
image-localization.


https://www.graphics.rwth-aachen.de/software/image-localization
https://www.graphics.rwth-aachen.de/software/image-localization

42

6.2.2 Results

The reconstructed 3D models and the camera tracks of the training sequences are
shown in Figure 25. However, we observe large registration errors when registering
the reconstructed models against the ground truth poses of the training images. The
mean and median registration errors are given in Table 5.

Following [69], we report the median localization errors and the number of images
that are not successfully localized. Our results together with the results from [69] are
reported in Table 6. We notice that our reproduced results are worse than the original
results. This is because the performance of Active Search highly depends on the
quality of the reconstructed model. In [69], the median registration errors reported
are at most 5cm, which means that their reconstructed models are more accurate. We
are unable to reproduce the same models since the details for model reconstruction
are not explained in [69]. In addition, a more advanced implementation of Active
Search [58] is used in [69] which is not publicly available.

To provide quantitative comparisons between Active Search and DSAC, we also
report the percentage of query images for which the camera pose error is below 5° and
5cm which is used as the test metric in [3]. Besides, for more detailed comparisons,
we also provide the 0.75 and 0.95 quantiles of localization error, the percentage
of query images for which the camera pose error is below 5° and 10cm, and the
percentage of query images for which the camera pose error is below 5° and 20cm.
The more detailed localization performance is described in Table 7. Figure 28 shows
cumulative histograms (normalized) of localization errors.

Scene Mean | Median
Chess 0.040m | 0.036m
Fire 0.024m | 0.022m
Heads 0.019m | 0.018m
Office 0.095m | 0.084m
Pumpkin | 0.091m | 0.080m
Redkitchen | 0.068m | 0.060m
Stairs 0.078m | 0.066m

Table 5: Mean and median registration errors.

Scene Ours [69]

Chess 0.07m, 2.50° (0) | 0.04m, 1.96° (0)

Fire 0.06m, 2.26° (1) | 0.03m, 1.53° (1)

Heads | 0.05m, 3.72° (2) | 0.02m, 1.45° (1)

Office | 0.14m, 3.26° (24) | 0.09m, 3.61° (34)
Pumpkin | 0.16m, 3.41° (9) | 0.08m, 3.10° (71)
Redkitchen | 0.13m, 3.98° (0) | 0.07m, 3.37° (0)

Stairs | 0.17m, 4.12° (0) | 0.03m, 2.22° (3)

Table 6: The reproduced results and the results from [69].




Scene 0.75 quantile | 0.95 quantile | 5°, 5em | 5°, 10cm | 5°, 20cm
Chess 0.12m, 4.25° | 0.26m, 9.11° | 30.5% 63.9% 79.2%
Fire 0.10m, 3.62° | 0.25m, 7.44° | 39.5% 71.1% 83.3%
Heads 0.13m, 6.14° | 0.66m, 17.76° | 42.4% 57.3% 63.6%
Office 0.21m, 5.49° | 0.62m, 12.57° | 6.5% 27.2% 56.4%
Pumpkin | 0.26m, 5.52° | 0.59m, 12.88° | 4.9% 23.4% 51.5%
Redkitchen | 0.21m, 6.33° | 0.49m, 12.99° | 8.7% 30.3% 52.7%
Stairs 0.30m, 7.09° | 0.63m, 17.43° | 6.1% 20.7% 41.1%

43

Table 7: Localization performance of Active Search.

6.3 Reproducing DSAC results

In this section, we describe the experiments to reproduce the results of DSAC on
the 7-Scenes dataset reported in [3].

6.3.1 Implementation Details

Our implementation is based on the original DSAC implementation?. The network
architectures are already presented in Section 4.2.

Following [3], for the componentwise training of the Coordinate CNN, we randomly
sample 100 training images to form a training round and 512 patches are extracted
from each image. These patches are used to train the Coordinate CNN with a batch
size of 64. Once all the sampled patches are processed, we begin a new round. We
use the Adam optimizer [34] with 8; = 0.9, 3, = 0.999, and € = 1078 for updating
the weights. The initial learning rate is set to 0.0001 and is halved every 50k updates
until the end. The CNN is trained from scratch for a total of 300k updates.

For the componentwise training of the Score CNN, we again randomly sample
100 training images to form a training round. For each image, 16 synthesized
pose hypotheses are sampled by adding noise to the ground truth pose and their
reprojection images are used for training. The noise is added by applying a random
transformation to the ground truth pose and the transformation is either large or
small. For large transformation, the translational components in mm are sampled
from a Gaussian with mean 0 and standard deviation 20, the rotational axis is
uniformly sampled, and the rotational angle in radian is sampled from a Gaussian
with mean 0 and standard deviation 20. For small transformation, the standard
deviation is set to 1. The Score CNN is trained with a batch size of 64 and the same
Adam optimizer is used. The learning rate is fixed to 0.0001 and the CNN is trained
from scratch for 80 training rounds in total, i.e., 2k updates.

For end-to-end training, fixed learning rates of 10~° and 10~7 are used for the
Coordinate CNN and for the Score CNN respectively. Instead of the Adam optimizer,
the stochastic gradient descent with momentum [55] of 0.9 is used, and all gradients
are clipped to the range of -0.1 to 0.1. One randomly sampled image is processed in
each training round and the CNNs are trained for 5k training rounds (5k updates).

2Source code available at https://github.com/cvlab-dresden/DSAC.


https://github.com/cvlab-dresden/DSAC

44

The details of the pose estimation (RANSAC optimization) is explained in Section
5.1 and Algorithm 1. For the PnP algorithm in the RANSAC optimization, we use
the implementations available in OpenCV [5] (P3P for hypothesis sampling and
ITERATIVE for pose refinement). A pinhole camera model with f, = 525, f, = 525,
¢ = 320, ¢, = 240 without distortion coefficients is used.

Note that the RGB and depth images in the 7-Scene dataset are not registered.
Therefore, we need to manually calibrate the RGB and depth camera and register
the images. The intrinsic parameters of depth camera we use for the registration are
fz =585, f, = 585, ¢; = 320, ¢, = 240. The registered depth images together with
the ground truth poses are then used to compute the ground truth scene coordinate
images for the componentwise training of the Coordinate CNN. An example of the
coordinate image is shown in Figure 26, where the scene coordinates are mapped to
the RGB values. During test time, only color images are used.

6.3.2 Results

The reproduced results are reported in Table 8 and compared with the original results,
where the numbers indicate the percentages of test images for which the error is
below 5° and 5cm. We successfully achieve almost the same results as reported in [3]
for all the 7 scenes.

Scene Ours 3]
Chess 94.5% | 94.6%
Fire 75.7% | 74.3%
Heads 72.8% | 71.7%
Office 71.5% | 71.2%
Pumpkin | 54.0% | 53.6%
Redkitchen | 50.5% | 51.2%
Stairs 4.1% | 4.5%

Table 8: The reproduced results and the original results for DSAC.

Again, for extensive quantitative comparisons, we report the numbers for other
metrics. They are summarized in Table 9. We can then compare the localization
performance of DSAC with Active Search.

Scene Median 0.75 quantile | 0.95 quantile | 5°, 10cm | 5°, 20cm
Chess 0.021m, 0.72° | 0.031m, 1.06° | 0.051m, 1.72° 99.0% 99.2%
Fire 0.028m, 1.00° | 0.049m, 1.91° | 0.229m, 10.04° | 88.5% 91.5%
Heads 0.020m, 1.31° | 0.061m, 4.00° | 0.704m, 46.63° | 76.5% 76.9%
Office 0.034m, 1.02° | 0.053m, 1.56° | 0.113m, 3.22° 93.3% 97.0%
Pumpkin | 0.047m, 1.33° | 0.080m, 2.38° | 0.516m, 10.26° | 81.0% 89.9%
Redkitchen | 0.050m, 1.45° | 0.074m, 2.13° | 0.185m, 5.77° 86.8% 93.8%
Stairs 1.91m, 49.40° | 2.86m, 99.21° | 6.11m, 142.2° 8.7% 10.2%

Table 9: Localization performance of DSAC.




45

Scene Hourglass-pose
Chess 0.15m, 6.17°
Fire 0.27m, 10.48°

Heads 0.19m, 11.63°
Office 0.21m, 8.48°
Pumpkin 0.25m, 7.01°
Redkitchen | 0.27m, 10.15°
Stairs 0.29m, 12.46°

Table 10: The median localization errors for Hourglass-Pose [48].

By comparing the reported numbers, we can see that DSAC outperforms Active
Search on almost all the 7 scenes expect Stairs. However, for Heads, DSAC has much
worse 0.95 quantile of the rotational error, meaning that Active Search can better
localize the most difficult testing frames. Since Heads contains the least amount of
training images, it suggests that the DSAC pipeline is prone to overfit when training
images are not enough while the non-learnable Active Search pipeline can generalize
well. For Stairs, we see that DSAC fails to demonstrate a reasonable localization
performance. Note that Stairs is difficult since it contains a large number of repeating
structures (the stairs).

For comparison with another type of neural network based methods, namely
PoseNet and its variants which directly regress the camera pose from a whole image,
we present the results for Hourglass-Pose in Table 10. Hourglass-Pose is one of the
PoseNet Variants that achieve the best results. We see that its overall performance
is far below DSAC and Active Search. However, it provides reasonable localization
performance for Stairs.

6.4 DSAC Variants

In this section, we examine our proposed modifications to the original DSAC pipeline
via experiments on the 7-Scenes dataset. As explained in Chapter 5, the first variant is
made by substituting the DSAC pose optimization part which contains the Score CNN
with the traditional RANSAC which scores the hypotheses by inlier counting. Based
on the first variant, the second one is made by using our full-frame Coordinate CNN
instead of the patch-based one. We report the results and quantitative comparisons
are made between the two variants and the original pipeline.

6.4.1 Implementation Details

The first variant is implemented simply by changing the Score CNN to an inlier counter
and making the final pose selection operation deterministic, i.e., using argmax instead
of probabilistic selection (see Section 5.1 and Algorithm 1 for detailed information).
The same parameter settings for the componentwise training of the Coordinate CNN
are adopted. Since the pipeline is no longer end-to-end trainable due to the use of
non-differentiable traditional RANSAC, we do not perform end-to-end training.



46

The second variant contains the novel full-frame Coordinate CNN (see Section
5.2.1 and Table 2 for detailed network architecture). We train our network from
scratch for 800 epochs with a batch size of 16 (i.e., 200k updates for Chess and so
on) using the Adam optimizer where 3; = 0.9, 3, = 0.999, and € = 1078, The loss is
computed as described in Section 5.2.2. The initial learning rate is set to 0.0001 and
is halved every 200 epochs until the end.

As mentioned in Section 5.2.3, we perform data augmentation online during
network training. We perform the 2D affine transformation with a 40% chance,
perform the 3D’ transformation with a 50% chance, and use the original image with
a 10% chance. Note that images in the same batch can be augmented in different
ways. For the 2D transformation, we uniformly sample translation from the range
[—20%, 20%)] of the image width and height for = and y respectively, sample rotation
from [—45°, 45°] and sample scaling from [0.7, 1.5]. For the "3D’ transformation, we
uniformly sample the rotational axis and the rotational angle is uniformly sampled
from [0°, 60°]. The direction of the translation vector is again uniformly sampled,
and its magnitude in mm is sampled from [0, 200]. Figure 27 shows an example of
the data augmentation.

At test time, although our full-frame Coordinate CNN can directly generate
640 x 480 scene coordinate predictions, we only use 40 x 40 of the predictions for
pose estimate to make it consistent with the patch-based Coordinate CNN.

6.4.2 Results

We refer to the two DSAC variants as DSAC-V1 and DSAC-V2 respectively. The
detailed localization performance of DSAC-V1 is summarized in Table 11, Table
12, and Figure 28. According to the results, the overall performance of DSAC-V1
is better than the original DSAC. As we can see, while achieving almost the same
results on the easy frames, DSAC-V1 has superior performance on the harder ones,
i.e., DSAC-V1 provides better 0.95 quantiles. For example, for Heads, DSAC-V1
reduces the 0.95 quantile of the translational error by 36.4% and reduces the 0.95
quantile of the rotational error by 32.3%. Besides, for scenes that have fewer training
images (Fire, Heads), DSAC-V1 provides better 0.75 quantiles, and more test frames
are localized with the error less than 5° and 5cm. More importantly, DSAC-V1 is
able to produce reasonable median localization error for Stairs, though the accuracy
on the hardest frames of Stairs is still terrible. The results of DSAC-V1 verify that
the use of traditional RANSAC makes the entire localization pipeline more robust
and suggest that the Score CNN can easily overfit the training data.

We present the results for DSAC-V2 in Table 13, Table 14, and Figure 28. As
we can see, its overall localization performance is extremely robust. Specifically, the
use of our novel full-frame Coordinate CNN significantly improves the performance
on the hardest frames (overall smaller 0.95 quantiles). In addition, while DSAC
and DSAC-V1 often have extreme localization errors, i.e., rotational errors close to
180° and rotational errors larger than 2-5m, the maximum errors of DSAC-V2 are
always reasonable (see Figure 28). However, we also observe a slightly degraded
performance on the easiest frames (e.g. Chess, Fire and Heads) but the reason is not



Scene Median 0.75 quantile 0.95 quantile
Chess 0.021m, 0.69° | 0.029m, 1.01° | 0.050m, 1.68°
Fire 0.026m, 0.95° | 0.043m, 1.76° | 0.111m, 4.70°
Heads 0.017m, 1.15° | 0.034m, 2.42° | 0.448m, 31.58°
Office 0.036m, 1.01° | 0.055m, 1.54° | 0.110m, 2.89°
Pumpkin | 0.050m, 1.34° | 0.082m, 2.32° | 0.417m, 6.51°
Redkitchen | 0.052m, 1.53° | 0.076m, 2.20° | 0.152m, 5.04°
Stairs 0.112m, 2.87° | 0.422m, 10.01° | 1.29m, 30.80°

47

Table 11: Localization performance of DSAC-V1, part 1.

Scene 5%, 5cm | 5°, 10cm | 5°, 20cm
Chess 94.9% 99.0% 99.1%
Fire 79.5% 93.9% 95.5%
Heads 82.1% 86.7% 86.9%
Office 70.0% 93.9% 97.9%
Pumpkin | 49.9% 81.2% 91.1%
Redkitchen | 47.2% 86.2% 94.7%
Stairs 27.4% 47.3% 55.8%

Table 12: Localization performance of DSAC-V1, part 2.

clear. Remarkably, DSAC-V2 is able to provide the best localization performance
for Stairs compared with Active Search, DSAC, and DSAC-V1. Even the hardest
frames can be localized with the error less than 0.41m and 13°. It shows that the
full-frame Coordinate CNN with the enlarged respective field can better cope with
the repetitive structures while the patch-based Coordinate CNN and the local feature
(SIFT) based Active Search are limited due to their local nature.

To show that our full-frame Coordinate CNN is more efficient at test time, we
present the runtimes of the CNNs in Table 15. We see that our full-frame Coordinate
CNN is one order of magnitude faster than the patch-based one. And this comparison
is even not fair since our full-frame Coordinate CNN produces 640 x 480 predictions
while only 40 x 40 are generated by the patch-based one.

Scene Median 0.75 quantile | 0.95 quantile
Chess 0.024m, 0.82° | 0.037m, 1.26° | 0.064m, 2.27°
Fire 0.037m, 1.40° | 0.068m, 2.65° | 0.102m, 4.04°
Heads 0.024m, 1.73° | 0.049m, 3.76° | 0.123m, 8.53°
Office 0.035m, 1.01° | 0.052m, 1.53° | 0.099m, 2.72°
Pumpkin | 0.049m, 1.29° | 0.088m, 2.23° | 0.325m, 5.09°
Redkitchen | 0.042m, 1.21° | 0.061m, 1.74° | 0.099m, 2.85°
Stairs 0.079m, 2.13° | 0.142m, 3.12° | 0.371m, 5.00°

Table 13: Localization performance of DSAC-V2, part 1.

Following [46], in addition to the direct measure of localization performance, we



48

Scene 5°, 5em | 5°, 10cm | 5°, 20cm
Chess 88.5% 98.1% 99.7%
Fire 62.3% 94.2% 98.7%
Heads 75.1% 85.4% 86.2%
Office 73.1% 95.0% 99.2%
Pumpkin | 51.4% 77.7% 91.4%
Redkitchen | 60.4% 95.2% 98.2%
Stairs 29.5% 61.8% 83.1%

Table 14: Localization performance of DSAC-V2, part 2.

GPU Full-frame | Patch-based
NVIDIA GeForce GT 750M ~0.3s ~bs
NVIDIA GeForce GTX 1080 ~0.02s ~0.3s

Table 15: The runtimes of the full-frame and patch-based Coordinate CNNs.

present the accuracy of the intermediate scene coordinate prediction on the test
images. In table 16, we report the percentage of scene coordinate inliers and the
mean Euclidean distance between the inliers and their ground truth scene coordinate
labels. A prediction is considered as an inlier if its Euclidean distance to its ground
truth label is less than 10mm. The normalized histograms of scene coordinate errors
are illustrated in Figure 29.

As we can see, the end-to-end training does not have much effect on the overall
accuracy of the patch-based Coordinate CNN, as the curves for DASC and DSAC-V1
are almost identical. Interestingly, our full-frame Coordinate CNN is able to produce
significantly better scene coordinate predictions for all 7 scenes. This shows why it
is more robust than the patch-based one. However, this does not directly lead to
equally better localization accuracy. This is because the RANSAC-based optimizer
is highly robust and non-deterministic [46].

Scene DSAC DSAC-V1 DSAC-V2
Chess 76.5%, 32.85mm | 77.0%, 32.60mm | 94.5%, 21,77mm
Fire 61.2%, 34.77mm | 63.1%, 34.44mm | 91.8%, 26.20mm
Heads 57.6%, 27.38mm | 58.0%, 27.10mm | 87.8%, 22.59mm
Office 59.0%, 44.75mm | 61.5%, 44.07mm | 93.5%, 27.34mm
Pumpkin | 58.0%, 42.55mm | 59.1%, 41.75mm | 85.0%, 30.40mm
Redkitchen | 60.8%, 45.64mm | 61.3%, 44.68mm | 92.8%, 31.54mm
Stairs 20.5%, 46.96mm | 20.8%, 46.30mm | 65.9%, 35.13mm

Table 16: The percentage of the scene coordinate prediction inliers and the mean
errors of the inliers.



49

6.5 Effectiveness of Data Augmentation

In this section, we evaluate the effectiveness of data augmentation. We first report
the performance of DSAC-V2 without the proposed data augmentation. We then
add data augmentation to DSAC-V1 and see whether in this way the performance
can be improved.

6.5.1 Full-Frame Coordinate CNN without Data Augmentation

The performance of DSAC-V2 without data augmentation is reported in Table 17,
Table 18 and Figure 28. We refer to it as DSAC-V2-noaug. Note except the data
augmentation, the same settings for training are used.

According to the results, training the full-frame Coordinate CNN without data
augmentation dramatically degenerate the localization performance on all the scenes.
Without data augmentation, the full-frame Coordinate CNN is too flexible to gen-
eralize well. This proves the importance of data augmentation which is used for
regularizing our full-frame Coordinate CNN during training.

Scene Median 0.75 quantile 0.95 quantile
Chess 0.059m, 1.87° | 0.100m, 3.23° | 0.188m, 6.26°
Fire 0.132m, 4.49° | 0.211m, 7.18° | 0.622m, 36.87°
Heads 0.126m, 9.36° | 0.239m, 15.23° | 0.984m, 69.85°
Office 0.070m, 2.03° | 0.119m, 3.51° | 0.420m, 9.65°
Pumpkin | 0.105m, 2.73° | 0.193m, 4.69° | 1.035m, 16.25°
Redkitchen | 0.061m, 1.65° | 0.095m, 2.59° | 0.584m, 14.97°
Stairs 0.434m, 10.07° | 0.705m, 16.00° | 1.732m, 52.06°
Table 17: Localization performance of DSAC-V2 without data augmentation, part 1.
Scene 5%, 5cm | 5°, 10cm | 5°, 20cm

Chess 43.2% 75.0% 90.1%

Fire 10.7% 36.5% 53.9%

Heads 14.1% 19.9% 20.6%

Office 30.6% 67.8% 85.5%

Pumpkin | 18.5% 47.6% 73.8%

Redkitchen | 38.8% 76.7% 87.4%

Stairs 0.2% 1.8% 5.4%

Table 18: Localization performance of DSAC-V2 without data augmentation, part 2.

6.5.2 Patch-Based Coordinate CNN with Data Augmentation

Data augmentation can often lead to improved performance as already discussed.
Since the patch-based Coordinate CNN is not trained using data augmentation, it is
interesting to see how well it will perform if trained with data augmentation. We



50

adopt the same training settings and perform the 2D affine transformation to the
training images before sampling the patches. We uniformly sample rotation from
[—45°, 45°] and scaling from [0.7, 1.5].

We report the results in Table 19, Table 20 and Figure 28. We refer to it as
DSAC-V1-aug. As we can see, training the patch-based Coordinate CNN with data
augmentation does not lead to improved overall performance. Although for Fire
and Stairs better performance on hard frames is achieved, for other scenes we even
observe decreased accuracy. This suggests that the patch-based Coordinate CNN is
not capable or discriminative enough to fit the augmented training data well.

Scene Median 0.75 quantile | 0.95 quantile
Chess 0.025m, 0.85° | 0.035m, 1.28° | 0.058m, 2.06°
Fire 0.035m, 1.23° | 0.053m, 2.00° | 0.096m, 3.64°
Heads 0.018m, 1.31° | 0.048m, 3.00° | 0.663m, 34.70°
Office 0.046m, 1.24° | 0.069m, 1.86° | 0.160m, 4.17°
Pumpkin | 0.055m, 1.43° | 0.087m, 2.51° | 0.770m, 17.88°
Redkitchen | 0.061m, 1.68° | 0.090m, 2.53° | 0.160m, 5.14°
Stairs 0.111m, 2.87° | 0.317m, 6.81° | 0.852m, 17.17°
Table 19: Localization performance of DSAC-V1 with data augmentation, part 1.
Scene 5%, 5cm | 5°, 10cm | 5°, 20cm

Chess 92.3% 98.5% 99.1%

Fire 71.6% 95.5% 98.0%

Heads 75.4% 80.3% 80.8%

Office 55.8% 89.0% 95.6%

Pumpkin | 44.5% 78.3% 86.9%

Redkitchen | 36.0% 81.4% 94.3%

Stairs 25.3% 47.4% 63.0%

Table 20: Localization performance of DSAC-V1 with data augmentation, part 2.

6.6 Performance on Training Images

In practice, a good image-based localization system should localize well not only the
images taken from novel viewpoints but also those already seen during training. Thus,
it is also important to evaluate the localization performance on training images. In
this section, we report the localization performance of Active Search, DSAC, DSAC-
V1 and DSAC-V2 on the training images. The results are presented in Table 21, 22,
23, 24, 25, 26, 27, 28, and Figure 30. Note that Active Search is able to successfully
register all the training images. Since DSAC and its variants are extremely accurate
on training images, we also report the maximum translational and rotational errors
for them.



ol

Compared to its performance on the test images, Active Search does not show
significantly improved performance on the training images. This is because Active
Search is based on hand-crafted local feature detector and descriptor and formulates
the correspondence search as a descriptor matching problem. On the one hand,
the carefully designed feature detector and descriptor, and the matching scheme
bring Active Search excellent generalization property. On the other hand, these
non-trainable components prevent the Active Search to be optimized on a specific
set of data. Moreover, since both the SfM pipeline for model reconstruction and the
localization pipeline itself highly rely on the descriptor matching, limitations of both
the feature detector and the feature descriptor can largely affect the final localization
performance.

Scene Median 0.75 quantile | 0.95 quantile
Chess 0.069m, 2.25° | 0.122m, 3.86° | 0.410m, 10.17°
Fire 0.041m, 1.71° | 0.066m, 2.58° | 0.128m, 4.46°
Heads 0.046m, 2.88° | 0.077m, 4.51° | 0.182m, 8.87°
Office 0.116m, 2.92° | 0.177m, 4.91° | 0.365m, 9.93°
Pumpkin | 0.138m, 3.03° | 0.207m, 4.58° | 0.390m, 8.79°
Redkitchen | 0.100m, 3.49° | 0.161m, 5.65° | 0.438m, 12.39°
Stairs 0.102m, 2.82° | 0.150m, 4.55° | 0.277m, 9.42°

Table 21: Localization performance of Active Search on training images, part 1.

Scene 5°, 5em | 5°, 10cm | 5°, 20cm
Chess 31.0% 62.7% 77.5%
Fire 60.7% 87.7% 96.0%
Heads 51.8% 73.4% 79.7%
Office 10.3% 36.3% 66.1%
Pumpkin 6.3% 29.6% 63.8%
Redkitchen | 14.1% 43.0% 62.3%
Stairs 18.1% 44.1% 73.1%

Table 22: Localization performance of Active Search on training images, part 2.

Unlike Active Search, we see that the learning based DSAC pipeline and its
variants achieve dramatically improved accuracy on the training images. This is
due to the flexibility of deep neural networks that allows them to fit the data well,
although they are not trained to directly regress the camera pose. According to the
results, we see that DSAC and DSAC-V1 show almost identical performance on the
training images. Since the end-to-end training does not have much effect on the
overall accuracy of the Coordinate CNN as already discussed, this suggests that the
use of the powerful Score CNN does not result in a performance better than a simple
inlier counting strategy can provide. Thus, we believe that in the DSAC pipeline, an
accurate Coordinate CNN is more important.



52

As we can see there are still a number training images that are failed to be localized
with the error below 5° and 5cm by the patch-based DSAC and DSAC-V1. Examples
of the most difficult training images are shown in Figure 31. We see the difficulty is
mainly caused by either motion blur or textureless surfaces. Although some images
do have textured surfaces without motion blur, a large number of missing ground
truth scene coordinate labels may also cause problems. This shows the limitations of
the patch-based Coordinate CNN. Interestingly, both DSAC and DSAC-V1 perform
well on the training frames of Stairs. However, the poor performance on the test
images shows that the patch-based Coordinate CNN cannot generalize well in the
existence of a large number of repetitive structures.

Again, our full-frame Coordinate CNN is able to localize well the most difficult
training frames. The results show that DSAC-V2 significantly outperforms all the
other three methods on the training images.

Scene Median 0.75 quantile | 0.95 quantile
Chess 0.012m, 0.42° | 0.019m, 0.60° | 0.033m, 0.99°
Fire 0.010m, 0.35° | 0.014m, 0.51° | 0.024m, 0.88°
Heads 0.006m, 0.37° | 0.008m, 0.53° | 0.012m, 0.81°
Office 0.021m, 0.68° | 0.030m, 0.92° | 0.052m, 1.49°
Pumpkin | 0.020m, 0.58° | 0.033m, 0.88° | 0.070m, 1.56°
Redkitchen | 0.022m, 0.72° | 0.032m, 1.03° | 0.056m, 1.69°
Stairs 0.013m, 0.39° | 0.018m, 0.54° | 0.029m, 0.80°

Table 23: Localization performance of DSAC on training images, part 1.

Scene Max 5°, bem | 5°, 10cm | 5°, 20cm
Chess 0.187m, 18.57° | 98.3% 99.2% 99.3%
Fire 0.049m, 1.85° | 100.0% | 100.0% | 100.0%
Heads 0.024m, 2.38° | 100.0% | 100.0% | 100.0%
Office 0.209m, 3.61° | 94.3% 99.4% 99.97%
Pumpkin | 0.474m, 8.15° | 88.8% 98.2% 99.3%
Redkitchen | 0.253m, 11.19° | 92.8% 99.2% 99.9%
Stairs 0.062m, 1.66° | 99.9% | 100.0% | 100.0%

Table 24: Localization performance of DSAC on training images, part 2.




Scene Median 0.75 quantile | 0.95 quantile
Chess 0.013m, 0.41° | 0.018m, 0.58° | 0.032m, 0.95°
Fire 0.009m, 0.33° | 0.014m, 0.46° | 0.021m, 0.78°
Heads 0.006m, 0.31° | 0.008m, 0.44° | 0.011m, 0.70°
Office 0.021m, 0.63° | 0.031m, 0.88° | 0.054m, 1.46°
Pumpkin | 0.021m, 0.57° | 0.035m, 0.88° | 0.072m, 1.51°
Redkitchen | 0.022m, 0.71° | 0.034m, 1.06° | 0.060m, 1.81°
Stairs 0.013m, 0.37° | 0.019m, 0.51° | 0.029m, 0.79°

Table 25: Localization performance of DSAC-V1 on training images, part 1.

Scene Max 5%, bem | 5°, 10cm | 5°, 20cm
Chess 0.204m, 18.60° | 98.6% 99.2% 99.3%
Fire 0.054m, 1.96° | 99.95% | 100.0% 100.0%
Heads 0.025m, 2.31° | 100.0% | 100.0% 100.0%
Office 0.227m, 3.85° 93.7% 99.2% 99.93%
Pumpkin | 0.384m, 7.49° | 87.4% 97.9% 99.2%
Redkitchen | 0.186m, 7.82° | 91.2% 99.1% 99.8%
Stairs 0.063m, 1.86° | 99.8% | 100.0% | 100.0%

Table 26: Localization performance of DSAC-V1 on training images, part 2.

Scene Median 0.75 quantile | 0.95 quantile
Chess 0.009m, 0.24° | 0.013m, 0.35° | 0.020m, 0.64°
Fire 0.007m, 0.22° | 0.009m, 0.30° | 0.014m, 0.47°
Heads 0.006m, 0.34° | 0.008m, 0.49° | 0.012m, 0.78°
Office 0.009m, 0.28° | 0.012m, 0.38° | 0.020m, 0.58°
Pumpkin | 0.009m, 0.20° | 0.013m, 0.31° | 0.023m, 0.51°
Redkitchen | 0.008m, 0.23° | 0.011m, 0.32° | 0.017m, 0.54°
Stairs 0.010m, 0.31° | 0.013m, 0.41° | 0.020m, 0.61°

Table 27: Localization performance of DSAC-V2 on training images, part 1.

Scene Max 5%, bem | 5°, 10cm | 5°, 20cm
Chess 0.044m, 4.25° | 100.0% | 100.0% | 100.0%
Fire 0.026m, 1.69° | 100.0% | 100.0% | 100.0%
Heads 0.022m, 1.90° | 100.0% | 100.0% | 100.0%
Office 0.063m, 1.84° | 99.97% | 100.0% | 100.0%
Pumpkin | 0.052m, 1.64° | 99.95% | 100.0% | 100.0%
Redkitchen | 0.054m, 2.80° | 99.97% | 100.0% | 100.0%
Stairs 0.032m, 1.38° | 100.0% | 100.0% | 100.0%

Table 28: Localization performance of DSAC-V2 on training images, part 2.

53



54

(a) Chess (b) Fire

(c) Heads (d) Office

(e) Pumpkin (f) Redkitchen

F

(g) Stairs

Figure 23: Dense reconstructions.



Figure 24: Example images from the 7-Scenes dataset.

55



56

(a) Chess (b) Fire

(c) Heads (d) Office

(e) Pumpkin (f) Redkitchen

(g) Stairs

Figure 25: Reconstructed 3D point cloud models and camera tracks of the training
sequences.



Figure 26: Example coordinate image.

57

Figure 27: Data augmentation.



Chess
1
Active Search
———DSsAC
DSAC-V1
0.5 DSAC-V2 1
= DSAC-V2-noaug
DSAC-V1-aug
[4]
0 0.1 0.2 0.3 0.4 0.5
Translational error (m)
1
Active Search
———DSsAC
DSAC-V1
051 DSAC-V2
= DSAC-V2-noaug
DSAC-V1-aug
0 . " "
0 5 10 15 20
Rotational error (degrees)
Heads
1

0.5

Active Search
DSAC
DSAC-V1
DSAC-V2
DSAC-V2-ncaug
DSAC-V1-aug

58

Fire
1
Active Search
———DSAC
DSAC-V1
0.5 DSAC-V2 ]
= DSAC-V2-noaug
DSAC-V1-aug
4]
4] 0.1 0.2 0.3 0.4 0.5
Translational error (m)
1
Active Search
———DSAC
DSAC-V1
0.5 DSAC-V2
= DSAC-V2-noaug
DSAC-V1-aug
0 " . .
4] 5 10 15 20
Rotational error (degrees)
Office
1

0.5

Active Search
DSAC
DSAC-V1

DSAC-V2
DSAC-V2-noaug
DSAC-V1-aug

0 . L L 0 L .
0 0.2 0.4 0.6 0.8 1 4] 0.1 0.2 0.3 0.4 0.5
Translational error (m) Translational error (m)
= 1
Active Search Active Search
———DSsAC ———DSAC
DSAC-V1 DSAC-V1
DSAC-V2 0.5 DSAC-V2
= DSAC-V2-noaug = DSAC-V2-noaug
DSAC-V1-aug DSAC-V1-aug
. " . 0 " . .
0 5 10 15 20 25 30 4] 5 10 15 20
Rotational error (degrees) Rotational error (degrees)
Pumpkin Redkitchen
1 1 —
Active Search Active Search
———DSsAC ———DSAC
DSAC-V1 DSAC-V1
0.5 DSAC-V2 1 0.5 DSAC-V2 ]
DSAC-V2-noaug DSAC-VZ-noaug
DSAC-V1-aug DSAC-V1-aug
0 L . L L 0 . L . .
0 0.2 0.4 0.6 0.8 1 4] 0.1 0.2 0.3 0.4 0.5
Translational error (m) Translational error (m)
1 1
Active Search Active Search
———DSsAC ———DSAC
DSAC-V1 DSAC-V1
051 DSAC-V2 0.5 DSAC-V2
= DSAC-V2-noaug = DSAC-V2-noaug
DSAC-V1-aug DSAC-V1-aug
0 . " " 0 " . .
0 5 10 15 20 4] 5 10 15 20
Rotational error (degrees) Rotational error (degrees)
Stairs
—
Active Search
———DSAC
DSAC-V1
DSAC-V2 [
—— DSAC-V2-noaug
DSAC-V1-aug
0 0.5 1 15
Translational error (m)
1
Active Search
———DSAC
DSAC-V1
0.5 DSAC-V2
—— DSAC-V2-noaug
DSAC-V1-aug
0 . . " .
0 10 20 30 40 50

Rotational error (degrees)

Figure 28: Localization performance presented by cumulative histograms (normalized)

of errors.



Chess Fire
0.05 T T T 0.05 T T T
0.045 q 0.045
0.04 4 0.04
0.035 1 0.035 1
0.03F 4 0.03 4
0.025 4 0.025 4
0.02 /W\ 1 0.02 1
]
oot [ Y 1 0.015 1
| \
0.01f [ \ 1 0.01 1
0.005 § 1 0.005 - 1
| —— / —
ol ' — ol . : —_—
0 50 100 150 200 0 50 100 150 200
Scene coordinate error (mm) Scene coordinate error {mm)
Heads Office
0.05 T T 0.05 T T
0.045 1 0.045
0.04 4 0.04
0.035 q 0.035 q
0.03 ¢+ 4 0.03 4
0.025 1|, g 0.025 g
0.02F ﬁ’\ 1 0.02 1
0.015 | \ - 0015 -
{
0.01 *‘l N q q
0.005 | AN — —
ol ‘ﬁ” - = ._77_7_ S —
0 50 200 100 150 200
Scene coordinate error (mm) Scene coordinate error (mm)
Pumpkin Redkitchen
0.05 0.05
0.045 q 0.045
0.04 4 0.04
0.035 1 0.035 1
0.03F 4 0.03 4
0.025 - 4 0.025 4
0.02r q 0.02 q
0.015 4 0.015 4
1 0.01 P 1
P4 =
) — 0.005 \\__ —
—_— T
S o —
100 150 200 0 50 100 150 200

Scene coordinate error (mm)

0.05 T

Scene coordinate error (mm)

0.045
0.04
0.035
0.03
0.025
0.02
0.015
0.01

0.005

100

150 200

Scene coordinate error (mm)

Figure 29: Histograms (normalized) of scene coordinate errors.



60

Chess Fire
f g Active Search Active Search
/ ———DSAC ———DSAC
DSAC-V1 DSAC-V1
0.5 DSAC-V2 1 DSAC-V2 1
[4]
0 0.05 0.1 0.15 0.2 0.25 0.3 4] 0.05 0.1 0.15 0.2 0.25 0.3
Translational error (m) Translational error (m)
Active Search Active Search
———DSAC ———DSAC
DSAC-V1 DSAC-V1
———DSAC-V2 1 ———DSAC-V2
0 . " " " . .
0 5 10 15 20 4] 5 10 15 20
Rotational error (degrees) Rotational error (degrees)
Heads Office
1 v T T —_—

—— Active Search ——— Active Search
DSAC DSAC
DSAC-V1 DSAC-V1
0.5 DSAC-V2 1 DSAC-V2 1
0 0.05 0.1 0.15 0.2 0.25 0.3 0.1 0.15 0.2 0.25 0.3
Translational error (m) Translational error (m)
1 v :
Active Search Active Search
———DSAC ———DSAC
DSAC-V1 DSAC-V1
———DSAC-V2 1 0.5 ———DSAC-V2
0 . " " 0 " . .
0 5 10 15 20 4] 5 10 15 20
Rotational error (degrees) Rotational error (degrees)
Pumpkin Redkitchen
1 _—— - r . — 1 T —_—
——Active Search —— Active Search
———DSAC ———DSAC
DSAC-V1 DSAC-V1
0.5 DSAC-V2 1 0.5 DSAC-V2
A J
0 T . L . L 0 L . L L
0 0.05 0.1 0.15 0.2 0.25 0.3 4] 0.05 0.1 0.15 0.2 0.25 0.3
Translational error (m) Translational error (m)
1 = T T
Active Search Active Search
———DSAC ———DSAC
DSAC-V1 DSAC-V1
0.5 ———DSAC-V2 ———DSAC-V2
0 . " " 0 " . .
0 5 10 15 20 4] 5 10 15 20
Rotational error (degrees) Rotational error (degrees)
Stairs
1 - v v v r
Active Search
———DSsAC
DSAC-V1
0.5 - DSAC-V2
0
0 0.05 0.1 0.15 0.2 0.25 0.3

Translational error (m)

Active Search

———DSsAC
DSAC-V1

———DSAC-V2

0 L N N
0 5 10 15 20

Rotational error (degrees)

Figure 30: Localization performance on training images presented by cumulative
histograms (normalized) of errors.



Figure 31: The most difficult training images.

61



62

7 Discussion and Future Directions

In the previous chapter, the presented results and extensive comparisons demonstrate
the accuracy and robustness of Active Search, DSAC and DSAC variants on the 7-
Scenes dataset. In this chapter, we give a more detailed discussion on the experimental
results and identify some interesting directions for future research.

As already demonstrated, classic SIFT feature based Active Search does a rea-
sonable job on the 7-Scenes dataset. However, obviously it can only succeed when
enough matches are found by the correspondence search, and the accuracy of the
final pose estimate highly depends on the quality of the matches. Since the matching
performance of traditional hand-crafted local features such as SIF'T is relatively poor
in challenging scenarios due to repetitive structures, textureless surfaces, motion
blur, and so on, the localization performance of Active Search and other keypoint
based localization methods is limited.

DSAC demonstrates a promising way to overcome the limitation of keypoint
based correspondence search. Instead of relying on the traditional hand-crafted local
feature detector and descriptor and the correspondence search, DSAC utilizes the
Coordinate CNN to generate 2D-3D matches. The Coordinate CNN can learn useful
hierarchical features for the localization task from training images and directly use
these features to map an image patch to a 3D position without matching. And at
test time, the Coordinate CNN can be evaluated at any pixel in the image such
that no feature detector is needed. The experiments show that DSAC can often
provide better results than Active Search, but it is more likely to overfit the data
and performs extremely bad when there are a large number of repetitive structures.

To improve the robustness of the DSAC localization pipeline, we propose to
abandon the Score CNN and use the simple but robust inlier counting scheme. The
results verify that this can lead to more robust localization performance. Therefore,
we argue that it not necessary to use a Score CNN to make the whole pipeline
end-to-end trainable. However, it still struggles when dealing with the repeating
structures. In our opinion, this is caused by the local nature of the patch-based
Coordinate CNN. Besides, its fixed patch size at both training and test time is
problematic.

To cope with these problems, we decide to add more global information to the
Coordinate CNN. We achieve this by using our full-frame Coordinate CNN which
takes the whole image as input and outputs dense predictions of the same size. This
also results in more efficient computation at test time. The results verify that by
using our full-frame Coordinate CNN, the robustness of the localization system can
be drastically improved even in the most challenging scenarios.

As mentioned before, there are also neural network based localization methods
which directly formulate the localization as pose regression. However, compared
to Active Search, DSAC and DSAC variants, their overall accuracy is lagged far
behind. We believe that this is mainly because that the commonly used neural
network architectures are not suitable for capturing the geometric structure of a
scene and thus without adequate data they are unable to generalize well. In contrast,
typically, the intermediate coordinate regression step in the DSAC pipeline can be



63

regularized well with enough data, and the follow-up RANSAC optimizer can further
provide robustness to the final pose estimation. Thus, the two-step pipeline of DSAC
leads to superior performance.

We believe that we should focus on the promising neural network based DSAC
pipeline in our future research. There are still many problems that need to be
addressed regarding the DSAC pipeline. For example, although it can do a great job
on the 7-Scenes dataset, this does not necessarily imply that it can always work well.
Besides, the use of depth information for obtaining the scene coordinate ground truth
labels might be a limitation of this method. Moreover, although the introduction
of full-frame Coordinate CNN leads to overall improved robustness and accuracy,
the results also show a degenerated accuracy on some easy frames and thus it is
interesting to explore the reason. More importantly, since the trainable Coordinate
CNN overcome the limitations of hand-crafted methods by learning from data, it is
crucial to improve its generalization property in case of less available data.

In the remaining part of this chapter, we enumerate some directions for future
research and for each of them, we give a brief discussion.

7.1 Experiments on More Realistic Datasets

In this thesis, all the experiments are conducted using the 7-Scene dataset. Although
it is a widely used dataset for benchmarking image-based localization methods, it is
unable to present all scenarios that can be encountered in real life. For example, the
scenes in the 7-Scenes dataset are registered to different coordinate systems without
being linked to each other in a global coordinate system and the Coordinate CNN is
both trained and tested scene-wise accordingly. However, in practice, we often have
a large environment which contains several sub-scenes. It is largely unknown how
the DSAC pipeline would perform if the Coordinate CNN is trained and evaluated
in such a large global coordinate system.

Also, it is unclear how well the DSAC pipeline would work if the depth information
used to obtain the scene coordinate ground truth labels is not as dense and as accurate
as the one generated by Kinect depth sensor. This is crucially important for outdoor
localization, since in these scenarios, typically, the depth images can only be obtained
using the 3D reconstructed models. Such depth images are usually noisy and sparse.

Therefore, more experiments on challenging datasets (e.g. the University dataset
[37]) need to be conducted to evaluate the performance of DSAC, to identify its
limitations, and to propose improvements.

7.2 Unsupervised Training

As already mentioned, if we do not have available depth images for generating the
scene coordinate ground truth labels, we can render the depth images from 3D models.
However, it is also interesting to see whether we can train the Coordinate CNN
without the scene coordinate ground truth labels, i.e., in an unsupervised manner.
Recently, several unsupervised learning frameworks [18, 21, 77] have been proposed to
train single view depth CNN without annotated ground truth depths. They achieve



64

the unsupervised training by exploiting geometry constraints between a pair of images
and using view synthesis as training loss. Although it cannot be straightforwardly
applied to train our Coordinate CNN, we believe it is a good starting point to design
a suitable unsupervised training framework for the Coordinate CNN.

7.3 Better Network Architecture

The network architecture is always an important factor for achieving excellent
results. For example, we have tried the original DispNet architecture for our full-
frame Coordinate CNN, but the use of multi-scale side predictions can lead to
substantially worse results. In our opinion, a better network architecture for our
full-frame Coordinate CNN should have the ability to model geometric information
well in a parameter efficient manner, i.e., it can generalize well with fewer data.
However, currently the most commonly used CNN architectures all fail to model such
information efficiently, i.e., they require a large amount of data to learn it. Recently,
the new deformable CNN modules [11] have shown greatly enhanced capability of
modeling geometric transformations. Thus, it is interesting to see how this kind of
structures can improve the performance of the Coordinate CNN.

7.4 Better Data Augmentation

We have already seen that data augmentation can significantly improve the per-
formance of our full-frame Coordinate CNN. It is an efficient and effective way to
regularize the full-frame Coordinate CNN. However, the quality of the augmented
data can also affect the performance of the network. We believe that if more realistic
samples can be generated during training, the performance of the Coordinate CNN
can be further improved. Our second way of data augmentation always results
in a large amount of missing RGB pixels and the corresponding scene coordinate
ground truth labels although it preserves the geometric relations. This makes the
augmented color images noisy and the coordinate images sparse. An alternative way
of generating better training samples could be using view synthesis methods (e.g.

[16]).

7.5 Transfer Learning

As described in Section 2.3.5, transfer learning is also a useful way to improve the
performance of a deep neural network especially when the size of the training data
is not large enough. In this thesis, transfer learning is not applied since we have
sufficient data for each scene and it is not straightforward to apply transfer learning
technique for image-based localization. However, it is still interesting to see if transfer
learning can further boost the performance of the Coordinate CNN. Moreover, in
real life when we have much less training data, transfer learning could be extremely
useful.



65

7.6 Better RANSAC Optimizer

Since the DSAC pipeline contains not only the Coordinate CNN but also the RANSAC
optimization step, the performance of the RANSAC optimizer can also have a great
influence on the accuracy of the final pose prediction. Although we have proved
that the Score CNN used in the original DSAC pipeline is not as robust as counting
inliers, we can design or train it in different ways to see how it would perform.



66

8 Conclusion

In this thesis, we review two state-of-the-art image-based localization methods,
namely conventional SIFT feature based Active Search and neural network based
DSAC. With a systematic evaluation on the 7-Scenes dataset, we show that the neural
network based DSAC has promising performance compared to the conventional Active
Search although it also has significant deficiencies. We propose two modifications to
the DSAC methods. The first modification is to replace the differentiable RANSAC
with traditional RANSAC. The results show that the simple inlier counting scheme
is more robust than the Score CNN. Furthermore, we propose to use the full-frame
Coordinate CNN which takes a whole image as input and produces scene coordinate
predictions for all pixels in the image and can be efficiently evaluated at test time.
The results show that our method outperforms the two state-of-the-art methods and
has drastically improved robustness in challenging scenarios.



67

References

[1]

2]

3]

[4]

[10]

[11]

[12]

[13]
[14]

[15]

A. Ahmed, K. Yu, W. Xu, Y. Gong, and E. Xing. Training hierarchical
feed-forward visual recognition models using transfer learning from pseudo-tasks.

In ECCYV, 2008.

H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool. Speededup robust features
(SURF). Comput. Vis. Image Underst., 110(3):346-359, 2008.

E. Brachmann, A. Krull, S. Nowozin, J. Shotton, F. Michel, S. Gumhold, and
C. Rother. Dsac - differentiable ransac for camera localization. In CVPR, 2017.

E. Brachmann, F. Michel, A. Krull, M. Y. Yang, S. Gumhold, and C. Rother.
Uncertainty-driven 6d pose estimation of objects and scenes from a single rgb
image. In CVPR, 2016.

G. Bradski. Opencv. Dr. Dobb’s Journal of Software Tools, 2000.

R. O. Castle, G. Klein, and D. W. Murray. Video-rate localization in multiple
maps for wearable augmented reality. In ISWC, 2008.

D. C. Ciresan, A. Giusti, L. M. Gambardella, and J. Schmidhuber. Deep
neural networks segment neuronal membranes in electron microscopy images.

In NIPS, 2012.

D.-A. Clevert, T. Unterthiner, and S. Hochreiter. Fast and accurate deep
network learning by exponential linear units (elus). In /CLR, 2015.

A. Criminisi and J. Shotton. Decision Forests for Computer Vision and Medical
Image Analysis. Springer, 2013.

M. Cummins and P. Newman. FAB-MAP: Probabilistic Localization and
Mapping in the Space of Appearance. IJRR, 27(6):647-665, 2008.

J. Dai, H. Qi, Y. Xiong, Y. Li, G. Zhang, H. Hu, and Y. Wei. Deformable
convolutional networks. arXiv:1703.06211, 2017.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. FeiFei. Imagenet: A
large-scale hierarchical image database. In C'VPR, 2009.

E. Eade and T. Drummond. Scalable monocular slam. In C'VPR, 2006.

C. Farabet, C. Couprie, L. Najman, and Y. LeCun. Learning hierarchical
features for scene labeling. In TPAMI, 2013.

M. Fischler and R. Bolles. Random sample consensus: a paradigm for model
fitting with applications to image analysis and automated cartography. CACM,
24(6):381-395, 1981.



[16]

[17]

[18]

[19]
[20]

[21]

[22]

[23]

[24]

[25]

[20]
[27]

68

J. Flynn, I. Neulander, J. Philbin, and N. Snavely. DeepStereo: Learning to
predict new views from the world’s imagery. In CVPR, 2016

X.-S. Gao, X.-R. Hou, J. Tang, and H.-F. Cheng. Complete solution
classification for the perspective-three-point problem. In TPAMI, 2003.

R. Garg, V. K. BG, G. Carneiro, and I. Reid. Unsupervised CNN for single
view depth estimation: Geometry to the rescue. In ECCV, 2016.

R. Girshick. Fast R-CNN. In ICCYV, 2015.

B. Glocker, S. Izadi, J. Shotton, and A. Criminisi. Real-time RGB-D camera
relocalization. In ISMAR, 2013.

C. Godard, O. Mac Aodha, and G. J. Brostow. Unsupervised monocular depth
estimation with left-right consistency. In C'VPR, 2017.

I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016.

M.T. Hagan and M. Menhaj. Training feed-forward networks with the Mar-
quardt algorithm. IEEFE Transactions on Neural Networks, Vol. 5, No. 6, 1999,
pp- 989-993, 1994.

R. I. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision.
Cambridge Univ. Press, 2nd edition, 2004.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image
recognition. In CVPR, 2016.

S. Hochreiter and J. Schmidhuber. Long short-term memory. In NECO, 1997.

K. Hornik. Approximation capabilities of multilayer feedforward networks.
Neural networks 4, 2 (1991), 251-257.

D. H. Hubel and T. N. Wiesel. Receptive fields and functional architecture of
monkey striate cortex. The Journal of physiology, vol. 195, no. 1, pp. 215-243,
1968.

A. Irschara, C. Zach, J.-M. Frahm, and H. Bischof. From structure-from-
motion point clouds to fast location recognition. In C'VPR, 2009.

S. Izadi, D. Kim, O. Hilliges, D. Molyneaux, R. Newcombe, P. Kohli, J.
Shotton, S. Hodges, D. Freeman, A. Davison, and A. Fitzgibbon. KinectFusion:
real-time 3D reconstruction and interaction using a moving depth camera. In

UIST, 2011.

W. Kabsch. A solution for the best rotation to relate two sets of vectors. Acta
Crystallographica, 1976.

A. Kendall and R. Cipolla. Geometric loss functions for camera pose regression
with deep learning. In C'VPR, 2017.



[33]

[34]

[35]

69

A. Kendall, M. Grimes, and R. Cipolla. Posenet: A convolutional network for
real-time 6-dof camera relocalization. In ICC'V, 2015.

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In
ICLR, 2015.

L. Kneip, D. Scaramuzza, and R. Siegwart. A novel parametrization of the
perspective-three-point problem for a direct computation of absolute camera
position and orientation. In CVPR, 2011.

A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet classification with
deep convolutional neural networks. In NIPS, 2012.

7. Laskar, I. Melekhov, S. Kalia, and J. Kannala. Camera relocaliza-
tion by computing pairwise relative poses using convolutional neural network.
arXiv:1707.09733, 2017.

Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard,
and L. D. Jackel. Backpropagation applied to handwritten zip code recognition.
Neural computation, 1(4):541-551, 1989.

V. Lepetit, F. Moreno-Noguer, and P. Fua. EPnP: An accurate O(n) solution
to the PnP problem. In IJCV, 2009.

Y. Li, N. Snavely, and D. P. Huttenlocher. Location recognition using
prioritized feature matching. In ECCV, 2010.

J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for
semantic segmentation. In CVPR, 2015.

D. G. Lowe. Distinctive image features from scale-invariant keypoints. Int. J.
Comput. Vision, 60(2):91-110, Nov. 2004.

S. Lynen, T. Sattler, M. Bosse, J. Hesch, M. Pollefeys, and R. Siegwart. Get
Out of My Lab: Large-scale, Real-Time Visual-Inertial Localization. In RSS,
2015.

K. Maninis, J. Pont-Tuset, P. Arbeldez, and L. V. Gool. Convolutional
oriented boundaries. In FCCV, 2016.

D. Marquardt. An algorithm for least-squares estimation of nonlinear parame-
ters. SIAM Journal on Applied Mathematics, Vol. 11, No. 2, June 1963, pp.
431-441.

D. Massiceti, A. Krull, E. Brachmann, C. Rother, and P. H. Torr. Random
forests versus neural networks? what’s best for camera localization? In ICRA,
2017.



[47]

[48]

[49]

[50]

[51]

[52]

[53]

70

N. Mayer, E. Ilg, P. Hausser, P. Fischer, D. Cremers, A. Dosovitskiy, and T.
Brox. A large dataset to train convolutional networks for disparity, optical flow,
and scene flow estimation. In C'VPR, 2016.

I. Melekhov, J. Ylioinas, J. Kannala, and E. Rahtu. Image-based localization
using hourglass networks. arXiv:1705.07971, 2017.

M. Muja and D. G. Lowe. Fast approximate nearest neighbors with automatic
algorithm configuration. In VISAPP, 20009.

V. Nair and G. E. Hinton. Rectified linear units improve restricted boltzmann
machines. In ICML, 2010.

R. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim, A. Davison, P.
Kohli, J. Shotton, S. Hodges, and A. Fitzgibbon. KinectFusion: Real-time
dense surface mapping and tracking. In ISMAR, 2011.

H. Noh, S. Hong, and B. Han. Learning deconvolution network for semantic
segmentation. In ICCV, 2015.

M. Oquab, L. Bottou, I. Laptev, and J. Sivic. Learning and transferring
mid-level image representations using convolutional neural networks. In CVPR,
2014.

E. Rublee, V. Rabaud, K. Konolige, and G. Bradski. Orb: An efficient
alternative to sift or surf. In ICCV, 2011.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations
by back-propagating errors. Cognitive modeling, 1988.

T. Sattler, B. Leibe, and L. Kobbelt. Fast image-based localization using direct
2d-to-3d matching. In ICCYV, 2011.

T. Sattler, B. Leibe, and L. Kobbelt. Improving image-based localization by
active correspondence search. In ECCV, 2012.

T. Sattler, B. Leibe, and L. Kobbelt. Efficient and effective prioritized matching
for large-scale image-based localization. In TPAMI, 2016.

J. L. Schonberger and J.-M. Frahm. Structure-from-motion revisited. In
CVPR, 2016.

D. Sculley. Web Scale K-Means clustering. In Proceedings of the 19th interna-
tional conference on World wide web, 2010.

J. Shotton, B. Glocker, C. Zach, S. Izadi, A. Criminisi, and A. Fitzgibbon.
Scene coordinate regression forests for camera relocalization in rgb-d images. In

Iccv, 2013.



[62]

[63]

[64]

[65]

[66]

71

K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale
image recognition. In ICLR, 2015.

N. Snavely, S. M. Seitz, and R. Szeliski. Modeling the world from internet
photo collections. IJCV, 2007.

J. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller. Striving for
simplicity: The all convolutional net. In ICLR, 2015.

C. Strecha, T. Pylvanainen, and P. Fua. Dynamic and scalable large scale
image reconstruction. In CVPR, 2010.

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions. In CVPR,
2015.

T. Tieleman and G. Hinton. Lecture 6.5 - RMSProp, COURSERA: Neural
Networks for Machine Learning. Technical report, 2012.

J. Valentin, M. Niefner, J. Shotton, A. Fitzgibbon, S. Izadi, and P. Torr.
Exploiting uncertainty in regression forests for accurate camera relocalization.

In CVPR, 2015.

F. Walch, C. Hazirbas, L. Leal-Taixé, T. Sattler, S. Hilsenbeck, and
D. Cremers. Image-based localization using LSTMs for structured feature
correlation. In ICCV, 2017.

S. C. Wong, A. Gatt, V. Stamatescu, and M. D. McDonnell. Understanding
data augmentation for classification: when to warp? In DICTA, 2016.

J. Wu, L. Ma, and X. Hu. Delving deeper into convolutional neural networks
for camera relocalization. In ICRA, 2017.

F. Yu and V. Koltun. Multi-scale context aggregation by dilated convolutions.
In ICLR, 2016.

M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional
networks. In FCCV, 2014.

M. D. Zeiler, G. W. Taylor, and R. Fergus. Adaptive deconvolutional networks
for mid and high level feature learning. In ICCV, 2011.

W. Zhang and J. Kosecka. Image based localization in urban environments.
In 3rd International Symposium on 3D Data Processing, Visualization and
Transmission, 2006.

B. Zhou, A. Lapedriza, J. Xiao, A. Torralba, and A. Oliva. Learning deep
features for scene recognition using places database. In Advances in Neural
Information Processing Systems, 2014.



72

[77) T. Zhou, M. Brown, N. Snavely, and D. Lowe. Unsupervised learning of depth
and ego-motion from video. In CVPR, 2017.



	Abstract 
	Preface
	Contents
	Abbreviations and Acronyms
	Introduction
	Problem Statement
	Structure of the Thesis

	Background
	Image-Based Localization
	Approaches to Localization
	Keypoint Based Localization
	PoseNet
	Scene Coordinate Regression Forests

	Artificial Neural Networks
	Multilayer Perceptrons
	Backpropagation
	Convolutional Neural Networks
	Fully Convolutional Networks
	Transfer Learning and Data Augmentation
	VGGNet
	DispNet


	Active Search Pipeline
	Vocabulary-Based Prioritized Search (VPS)
	Active Correspondence Search
	Co-Visibility Information

	DSAC Pipeline
	Differentiable RANSAC
	Coordinate CNN and Score CNN
	End-to-End Training

	DSAC Variants
	Non-Differentiable RANSAC
	Full-Frame Coordinate CNN
	Network Architecture
	Training Loss
	Data Augmentation


	Experiments and Results
	Dataset 7-Scenes
	Reproducing Active Search Results
	Implementation Details
	Results

	Reproducing DSAC results
	Implementation Details
	Results

	DSAC Variants
	Implementation Details
	Results

	Effectiveness of Data Augmentation
	Full-Frame Coordinate CNN without Data Augmentation
	Patch-Based Coordinate CNN with Data Augmentation

	Performance on Training Images

	Discussion and Future Directions
	Experiments on More Realistic Datasets
	Unsupervised Training
	Better Network Architecture
	Better Data Augmentation
	Transfer Learning
	Better RANSAC Optimizer

	Conclusion
	References

