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The amount of devices connected through mobile networks has been growing
rapidly. This growth will create a demand for network capacity that cannot be
met with traditional methods. This problem could be solved by implementing
a cloud radio access network (RAN), a new concept, to adapt cloud computing
technologies, such as software containers, from the software industry to RANs.
This adaptation will also create a need to modify working practices in order to
better comply with these new cloud computing technologies.

While cloud RAN has recently received much research attention, the actual
software implementations have not been widely discussed in the literature.
Therefore, this thesis evaluates the feasibility of using software containers in the
user-plane applications of cloud RAN in terms of networking and inter-container
communications (ICC). This is accomplished by identifying potential approaches
for ICC and for container networking as well as measuring the performance of
these approaches.

Two approaches are proposed for ICC and container networking. The approaches
were evaluated in terms of throughput and latency. These approaches were found
to be suitable for use in cloud RAN user-plane applications. However, since the
measurements were performed in a simplified environment, implementing the
approaches into a cloud RAN component will require further work.

Keywords: Cloud RAN, Container, DPDK, Microservice, Mobile networks, Vir-
tualization
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Mobiiliverkkoihin liitettävien laitteiden määrä kasvaa nopeasti. Tämä kasvu
tulee luomaan verkon kapasiteetille kysynnän, johon ei kyetä vastaamaan pe-
rinteisin menetelmin. Tämä ongelma voitaineen ratkaista implementoimalla
pilviradioliityntäverkko (Cloud RAN ), uusi konsepti, joka sovittaa ohjelmistoalalla
vakiintuneita pilvilaskentateknologioita käytettäväksi radioliityntäverkoissa (radio
access network, RAN ). Tämä sovitusprosessi luo tarpeen mukauttaa myös
työskentelytavat yhteensopiviksi uusien pilvilaskentateknologioiden kanssa.

Vaikka pilviradioliityntäverkkoa on tutkittu aktiivisesti viime aikoina, käytännön
ohjelmistototeutukset eivät juuri ole olleet esillä kirjallisuudessa. Tämä diplomityö
arvioi ohjelmistokonttien (software containers) soveltuvuutta käytettäväksi
pilviradioliityntäverkon käyttäjätason (user-plane) applikaatioissa verkottamisen
(networking) ja ohjelmistokonttien välisen kommunikoinnin (inter-container com-
munications, ICC ) suhteen. Tämä arviointi suoritetaan identifioimalla mahdollisia
toteutuksia ohjelmistokonttien väliselle kommunikaatiolle ja ohjelmistokonttien
verkottamiselle sekä mittaamalla näiden toteutuksien suorituskyky.

Tässä diplomityössä ehdotetaan tutkittavaksi kaksi toteutusta ohjelmistokonttien
väliselle kommunikaatiolle ja ohjelmistokonttien verkottamiselle. Nämä toteutuk-
set arvioitiin välityskyvyn (throughput) ja latenssin suhteen. Näiden toteutuksien
todettiin olevan soveliaita käytettäväksi pilviradioliityntäverkon käyttäjätason
applikaatioissa. Kuitenkin, koska mittaukset toteutettiin yksinkertaistetussa ympä-
ristössä, vaatii toteutuksien implementointi pilviradioliityntäverkon komponenttiin
lisätyötä.

Avainsanat: DPDK, Mikropalvelu, Mobiiliverkot, Ohjelmistokontit, Pilviradiolii-
tyntäverkko, Virtualisointi
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1 Introduction
The amount of mobile devices connected to the Internet has been increasing rapidly.
This is expected to cause huge growth in data transmitted over mobile networks (MN)
[1]. Traditional methods for increasing network capacity, such as adding more radio
access points or implementing multi-user Multiple Input Multiple Output (MIMO)
techniques, have proved to be problematic due to their high costs and inter-cell
interference in the network [2]. In order to overcome these problems, Cloud Radio
Access Network (RAN), a new concept, adapts cloud computing technologies already
widely used in the software industry. This adaptation also requires a change in
the software development practices in order to efficiently deliver cloud compatible
software.

Recently, DevOps and microservices have become trending topics in the software
developer community due to increased process efficiency and support for cloud
native scalability [3],[4]. DevOps is a term referring to both the mindset of bringing
developers and operations personnel closer together in software projects as well as
the toolset applied in this process. Some of the goals in the DevOps process include
delivering as well as deploying software more often and in smaller pieces than was
possible using the old-fashioned waterfall model [5]. One of the enablers to achieve
this is the usage of microservices. A microservice is an independent piece of software
that focuses on completing a single task and is deployable and testable by itself [6].
This independency from other services is the key here to allow DevOps teams to test,
deliver, deploy, and monitor their code more often.

One solution to provide greater independence for microservices is to use software
containers, such as Docker [7],[8]. Software containers provide an environment that
is isolated from both the host system and other containers [9]. Containers are light-
weight, since they use the kernel of the host system and are packed to contain only
the dependencies of the delivered software: software delivered in a container is ready
to be deployed or run without any installations.

Virtual machines (VM) can be used to virtualize hardware if heavier virtualization
is needed due to, for example, the need for different guest operating system (OS).
Compared to containers, VM needs more resources, because of the included OS, but
also provides better isolation from the host and other VMs [9]. The main difference
between VMs and software containers is the level of virtualization: VMs virtualize
the hardware whereas software containers virtualize the OS.

A modern way of obtaining the computing resources to run a software container
or a VM is to rent the needed resources from a public or a private cloud provider [10].
This allows to avoid buying, setting up, hosting, and maintaining in-house physical
servers. This management of in-house computing resources has generated a huge cost
in traditional software business. Employing cloud computing technologies enables
scaling the computing resources up and down with the demand, thus avoiding the
need to buy computer resources to match peak demand and have them idling most
of the time. However, this comes at a cost of not being able to physically access the
servers, which could introduce problems in some applications.

Virtualization and cloud computing are currently also trending topics in telecom-
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munications research [11]–[13]. Traditionally, there has been strong dependency
between software and dedicated hardware in telecommunications systems causing
additional challenges in keeping up with the rest of the software industry [2],[14].
Although previously meeting the high performance requirements of the telecommuni-
cations industry has not been possible without dedicated hardware and embedded
software, recent developments in computing and virtualization technologies have en-
abled emergence of the cloud computing in the telecommunications industry [14],[15].
Especially cloud RAN has recently received much research attention [2].

However, the telecommunications industry is experiencing challenges in developing
telecommunications cloud software [14],[16]. These challenges include performance
issues with throughput and latency, as well as compatibility issues between cloud
infrastructure and legacy software designed for dedicated hardware. Due to recent
research interest, there is already available both open source and commercial solutions
to overcome some of the challenges in telecommunications clouds, such as Data Plane
Development Kit (DPDK), a library for fast packet processing [17]. Despite these
solutions, there is a decrease in performance when moving from dedicated hardware
to virtual hardware or software containers [18].

The aim of this thesis is to evaluate the current and future feasibility of adopting
a combination of virtualization and containerization methods in a cloud RAN envi-
ronment in terms of network performance and inter-container communications (ICC).
In order to accomplish this, the thesis will combine open-source software (OSS)
components and test their performance in terms of two main user-plane application
performance indicators: latency and throughput. The thesis forms part of a larger
project by the client to demonstrate the possibilities of DevOps, microservices, and
containerization.

The rest of this thesis is divided into four chapters. Chapter 2 introduces the
most common virtualization, containerization, and cloud computing techniques, as
well as discusses their challenges and benefits. Chapter 3 describes the performance
requirements of user-plane applications and the challenges these requirements intro-
duce to virtualization, containerization, and cloud computing. Chapter 4 discusses
two different approaches for ICC, describes the measurement setup for analyzing the
differences in performance, and presents the measurement results. Finally, Chapter 5
concludes by summarizing the main outcomes of the thesis and suggesting directions
for future work.
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2 Virtualization and cloud computing
Virtualization and cloud computing are key enablers for modern DevOps practices
and microservices architecture [6],[19]. They are expected to lower costs in computing
businesses [10], thereby increasing the popularity of these technologies, especially
software containers, such as Docker [7],[9]. In the telecommunications industry, cloud
radio access networks (Cloud RAN) have recently received much research attention
[2].

In order to understand how software containers can be used as the building blocks
of cloud RAN, Section 2.1 describes the principles of virtualization technologies;
Section 2.2 discusses general containerization principles, the usage of Docker con-
tainers, and the orchestration of containers with Kubernetes; Section 2.3 describes
fundamentals of cloud computing and usage of cloud computing in modern software
development; and finally Section 2.4 discusses the design and benefits of cloud RAN.

2.1 Virtualization
Virtualization is one of the key enabling technologies behind modern cloud computing
[10]. Although virtualization as a technology dates back multiple decades, recent
developments in computing resources and virtualization technologies have enabled
more widespread usage of virtualization [20]. Virtualization technologies have been
commonly employed to improve the utilization, manageability, and reliability of
computing systems.

Example usages of VMs include user isolation, live migration, and live update
[20]. To provide users safe complete control of their environment, each user can be
isolated to their own VMs. Thus, changes made in one user’s environment will not
affect that of others. To migrate computing jobs from one hardware to another, a
snapshot can be taken of the VM, move or copy this snapshot to different hardware,
and continue from the exact state that the VM was in when the snapshot was taken.
Finally, when updating the software, there is no need to reserve any downtime for
the system, since a new VM can be booted in parallel to an existing one. When
everything is up and running, connections are directed to the new VM, thus allowing
the old one to be terminated.

While virtualization has been around for a long time, Intel’s x86 central processing
unit (CPU) architecture, which is the de facto industry standard at the moment,
was virtualized for the first time in 1998 by VMware [21]. This long period between
the first x86 processor and the first virtualization solution is a consequence of x86
architecture not originally being designed to be virtualized [22]. Since the x86
virtualization implementation of VMware, other companies and communities have
also developed virtualization solutions for x86 architecture.

In x86 virtualization, a virtualization layer is added between the hardware and
the OS [21]. The virtualization layer is usually called either hypervisor or Virtual
Machine Monitor (VMM) [20]. In this thesis, the term VMM is used when referring
to the virtualization layer. The role of the virtualization layer is to dynamically
partition and divide the available physical resources between VMs. The virtualization
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Figure 1: The two different virtualization types, bare-metal (a) and hosted (b),
illustrated.

layer and virtualization in general introduces virtualization overheads which have
a negative effect in the computing performance. This virtualization layer can be
installed either directly on the hardware or on top of the host OS. Based on the
installation location, virtualization is divided into bare-metal type and hosted type
virtualizations. The bare-metal type virtualization is more efficient than hosted, as
the virtualization layer has direct access to the hardware resources instead having to
go through the OS. The difference between the two virtualization types is illustrated
in Figure 1.

Virtualization can be implemented via three different methods: full virtualization,
hardware assisted virtualization, and paravirtualization [20]. In full virtualization,
all hardware resources are virtualized, and VM does not have access to any physical
resources [21]. Full virtualization provides the best isolation of the three virtual-
ization techniques. In hardware assisted virtualization, physical CPU grants VMM
more privileges to allow more efficient virtualization. In both Full and hardware
assisted virtualization, OS inside a VM, guest OS, is not aware that it is being
virtualized and no changes are needed to guest OS. Finally, in paravirtualization,
VMM communicates with guest OS to allow more efficient virtualization. Thus,
modifications to the guest OS are required to enable paravirtualization. Nevertheless,
in certain situations, paravirtualization provides better performance than full or
hardware assisted virtualization [22],[23]. To clarify terms related to virtualization,
an example of a system employing full virtualization is illustrated in Figure 2.

Regardless of the virtualization type or method, virtualization introduces multiple
performance overheads when compared to the native OS [21]. These overheads come
from virtualizing physical devices, such as the CPU, memory, network interfaces,
and disk. The decrease in performance caused by virtualization ranges from zero
to several dozen percent, depending on the computing task and the virtualization
technology employed [18],[23]. Thus, performance losses can be optimized through
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Figure 2: Example of a system employing hosted VMM and full virtualization.

proper choice of virtualization technology.
The state of a VM or physical computer can be saved to a disc image [24]. For

example, to provide a functional environment to developers, the state of a VM could
be saved after booting the VM and installing the OS as well as the dependency
libraries. The image produced from the saved state of that VM could then be used
to boot other VM or a physical machine, thus allowing the user to continue from the
saved state. There are, however, limitations in the compatibility of the images when
they are created and deployed in different systems.

Finally, it is possible to run VMM inside a VM on top of which we could run
one or more VMs to create an environment for nested virtualization [25]. Such setup
could be useful, for instance, in software development involving VMMs or much
virtualization, or to provide additional security when operating in a public cloud [26].
In nested virtualization additional virtualization overhead could be as little as six to
eight percent.

2.2 Containers
While VMs are commonly employed and effective technology, not always is such strong
isolation or different guest OS required [27],[28]. In many cases a more lightweight
solution, software container, is enough for the application. Software containers share
the kernel of the host OS, which is the main reason for the lightweight nature of the
software containers. Because of this shared kernel, the guest OS must be the same
as the host OS. The shared kernel also results to lower level of isolation from the
host OS and parallel containers. The lightweight nature of containers also introduces
multiple benefits, such as increased portability, efficiency, and much faster boot time.

The main difference between VMs and containers is the level of virtualization: in
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VMs hardware is virtualized, whereas in containers OS is virtualized [27],[28]. The
difference between containers and VMs is illustrated in Figure 3. Note that there
are now Bins/Libs layers visible in the figure. This layer represents the dependency
binaries and libraries of the Application running in VM or container. Thus, instead
of having to include whole guest OS, it is enough to only pack the dependencies of
the application when using containers. Binaries or libraries from the host OS could
also be exposed to the container, but generally it is considered better practice to
pack everything in the container to keep it independent from the execution platform.
The term containerization is used for this process of packing application with its
dependencies to a container and isolating it from the host OS and other processes.

The isolation in the OS level virtualization is implemented with namespaces and
control groups (cgroups). Namespaces are used to separate container resources from
host resources. For example, the user namespace separates users in container from
users in host system, thus making the host users invisible to container and vice-versa.
Similar namespaces are used with the process tree and networking. Cgroups are
responsible for limiting and monitoring resource usage of a container. These resources
to be limited include memory, CPU time, and disk usage.

The performance overheads of software containers are smaller than with VMs
due to more lightweight virtualization level. The performance of the application
inside the container is in most cases the same or only slightly worse than that of the
same application running natively on the host OS [18],[29],[30]. In most use cases,
comparisons between VM and container performance show that containers have
much smaller decrease in performance. There are also differences between different
containerization technologies and system configurations: exposing host resources,
such as storage volumes or network, will show increase in performance. Thus, the
better performance of software containers compared to VMs comes at a cost of lesser
isolation from the host OS and other containers.

Similarly than with VMs, disk image files are also employed with containers [28].
Containers require a more lightweight image, since OS is not included inside the
image. There is also differences in the image creation process. The shared kernel
with the host OS creates limitations on the type of images that can be on run on a
given host OS.

When building an application from microservices, one approach is to run each
microservice in its own container [28]. This allows scaling up or down the microser-
vice by creating or terminating container instances. The scaling up or down can be
automated with a container orchestration solution, such as Kubernetes [27]. The
orchestration tool will often also provide most of the required operations and mon-
itoring tools for the application. These tools include auto scaling, load balancing,
and service discovery functions.

This section is further divided into two subsections. Section 2.2.1 describes
Docker, a popular container type, and Section 2.2.2 describes Kubernetes, a tool for
Docker container orchestration. These two are both open source systems that are
enablers of containerization and are employed in the practical part of this thesis.
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Figure 3: A VM (a) and a container (b) compared [27],[28].

2.2.1 Docker

Docker provides tools to build, re-use, version, and share containers easily, which
is exciting from DevOps point of view [31],[32]. Docker container images can be
built either interactively or automatically based on instructions provided through
a Dockerfile. Dockerfile is a set of commands that define what is installed to the
container and what commands are run in the build phase. Dockerfile can be used to
build the image from scratch or instructed to use any Docker image as base image
to easily re-use existing images in build phase. Docker includes git [33] like version
control to track different versions of a container. This allows efficient comparison of
version and low-cost uploads and downloads as only the difference files have to be
transferred. Docker encourages sharing images by providing public image registry
where anyone can share or take into use images. It is also possible to create private
registries.

One of the main benefits of Docker images and containers is the possibility of
extensive sharing and re-using of the containers [31],[32]. The Docker images are
built of layers, which can be stacked on top of any existing image. The image that
layers are stacked top of, is called base image. Everything from base image to
commands to install dependencies or application itself are considered layers. Layers
can also contain meta-data about the images, such as maintainers and versions,
environment definitions, and can be employed to add file or directory structures to
images. The layered structure of an image also requires attention in the build phase
as unoptimized build procedure will create larger than necessary images.
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An example of a Docker container image is illustrated in Figure 4. In figure base
image is on the bottom and would be the first command in the dockerfile to create
this image. Layers progress towards the top of the figure, where as in dockerfile they
would progress towards the end of the file and be separated with line breaks.

Docker images are executed with Docker engine. Each container instance executed
with same image shares the layers of the image with writable layer added to the top
[31]. This writable layer is unique for every container instance and all differences to
image filesystem are written to this layer. The changes made to this writable layer
can be committed to make a new image with executed image as the base image and
changes made to writable layer as a new layer on top of that.

Docker has great potential from DevOps and microservices point of view. Docker
provides a way to containerize an application [3],[31]: Dockerfile and Docker build
tools provide an easy way to automate the building of container images, which are
then pushed to private or public Docker registry from where test automation and
deployment automation have access to the container to be tested or deployed. Since
Docker provides a solution to pack the software to a container with its dependencies,
different parts of an application can be build, tested, and deployed independently
allowing building of an application from microservices.

However, all these benefits come at a cost of lesser isolation from the host and
other containers [9]. This means that usage of Docker containers will cause security
issues if the architecture is not well designed [34]. Especially in systems where
additional host resources or operation capabilities need to be exposed to the Docker
container, malicious user might be able to sabotage the host system or parallel
containers: Container that is ran in privileged mode might allow root access to the
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host system. Container orchestration tools, such as Kubernetes, provide solutions to
some of the security issues as low-level control of the containers is hidden from the
user.

2.2.2 Kubernetes

Kubernetes is an orchestration tool for Docker containers [35]. It has gained a lot of
popularity in the cloud computing community due to providing extensive platform
for running Docker containers in different cloud and datacenter environments [27].
Kubernetes provides tools required to efficiently run application built of Docker
containers including load balancing, high availability, service discovery, and automatic
upgrading as well as downgrading of software containers.

Portability is the key benefit provided by Kubernetes [35]. As a container platform,
Kubernetes abstracts away implementation specific properties and tools offered by
different cloud and datacenter providers; The same kubernetes configurations and
recipes can be easily migrated from cloud to another, for example, from OpenStack
to Amazon web services.

Kubernetes provides support for distributed multi-host environments [35]. When
more than one host is used in same Kubernetes configuration, one host acts as a
Kubernetes master node and others as worker nodes. Similar responsibility division
is common in cloud computing systems: for example, OpenStack implements similar
division in multi-host environments.

Kubernetes executes containers inside pods [36]. A pod is the smallest component
orchestrated by Kubernetes and it can contain one or more containers. The containers
inside a pod share resources extensively. Containers in same pod share by default
the same network and the resource sharing can be extended, for example, by adding
a storage volume common for all containers to a pod. Because of this extensive
resource sharing inside a pod, all containers running inside the same pod are always
run on a single Kubernetes node. Pod often comprises an independent component of
an application, with a single task [37].

Kubernetes automatically assign pods to available host node, but preference can
be passed to Kubernetes by using labels [36]. Labels can be used to describe worker
nodes, for example host with memory priority could have memory label. Pods can
be given required labels allowing pods to only be run on host that fulfills all label
requirements.

2.3 Cloud computing
Cloud computing differs from traditional data-center based computing by five key
characteristics [38]: The computing resources are available to be provisioned by
customer manually through user interface (UI) or automatically through application
programming interface (API). The computing resources are accessed over the network
via standardized remote access protocols. The computing resources are provisioned
from the cloud providers resource pool by customer with little or no control over
the physical location of the computing resources or the other users sharing the same
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physical hardware. The amount of provisioned computing resources can be rapidly
scaled up or down to match the actual demand and appear to the customer as infinite.
The usage of the computing resources is measured by the providers and the billing is
based on the actual usage of the resources. For example, computing resources could
be billed by provisioned hours and storage could be billed by provisioned gigabytes
per day.

Clouds are typically divided in three categories based on their accessibility: public,
private, and hybrid [10],[38]. Public cloud is offered by cloud provider for the use
of general public and typically billed on usage based rates. Private cloud is a cloud
available exclusively to limited user base, for example one corporation. The private
cloud can either be offered by in-house provider or bought as a service from third
party provider. Hybrid cloud is a combination of these two; hybrid cloud consists of
two or more independent clouds that are connected through standardized interfaces
allowing seamless portability between these clouds.

Clouds can be further divided into two categories based on their location in the
network: core and edge clouds [39]. Core cloud has the features described earlier by
the key characteristics and is suitable for most applications. Edge cloud is located
at the edge of the network, as close to the end-user as possible, and is required for
delay critical applications, such as augmented reality displays, virtual reality gaming,
and high throughput content delivery. Edge cloud does not comply with all of the
general cloud characteristics presented earlier, but is considered to be a part of the
cloud as it is seamlessly connected to the core cloud. For example, video streaming
application might have its UI and other not so delay critical components operated
from core cloud and content synced to edge cloud to allow high throughput and low
latency streaming of high quality video.

Cloud computing providers usually follow one of three typical service models:
Software as a Service (SaaS), Platform as a Service (PaaS), or Infrastructure as a
Service (IaaS) [10],[38]. In SaaS model provider offers an application, software, as a
service to the end user. Couple examples of such services include Google Drive and
Dropbox. In PaaS model service provider offers a platform, with the OS and possibly
agreed dependencies included, where the customer can deploy their application.
Example of such service is Heroku. Finally, In IaaS service provider offers, in most
cases, virtualized computing infrastructure that the customer can control. Example
of such service is Amazon EC2.

These service models and their providers are illustrated in Figure 5. Note that the
providers can either own and manage the resources necessary to offer their services or
buy these resources from other cloud providers or data-center providers. For example,
IaaS and PaaS providers could offer their services for SaaS providers.

PaaS and IaaS are the most interesting service models from software development
point of view, because the offered service is in the form of computing resources [10].
The difference between these two is not always clear, but generally PaaS provides easier
solution for deploying the application in environment defined by the provider where
as IaaS provides more control over the computing environment and a management
tools to controlling services, such as computing instances, storage volumes and public
IP addresses. PaaS providers might also offer services specific to certain scenarios,
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Figure 5: Illustration of different cloud providers, their products, and their relation
to other cloud providers.

such as web applications, which might cause problems or opportunities depending
on the planned usage.

There are many obstacles in adapting cloud computing, from cross-industry
challenges to cloud specific ones [10]: challenges such as service availability, data
lock-in, data confidentiality, slow or expensive data transfer, and licensing fall in the
first category and solutions from other fields can be adapted to overcome problems:
service availability and avoiding data lock-in can be ensured by using multiple
independent services, data confidentiality can be secured with standard measures
including encryption and firewalls, slow or expensive data transfer over public network
can be in some cases avoided by shipping physical storage devices, and licensing of
software can be negotiated to follow cloud native usage based rates.

In addition to these classic challenges there are also cloud specific challenges
to overcome [10], including performance unpredictability, scalability, debugging of
large distributed systems, and reputation fate sharing: Performance unpredictability
is due to sharing physical resources with other users as their usage will affect the
overall computing performance available. Scalability is a cloud native feature and
efficient implementations might require significant refactoring of an application.
Debugging of large distributed systems is problematic as errors might not occur in
smaller deployments and production size resources are also needed in debugging.
Reputation fate sharing will become a problem if physical resources are shared with
ill-behaving users: resources such as IP addresses might be blacklisted by Internet
service providers or email spam filters.

There exists solutions to these cloud specific challenges, but as cloud technology
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is a relatively new concept many of these solutions are still in development phase
[10]. The solutions being developed include concepts such as machine learning based
predicting scalability and machine learning based debugging tools for large distributed
systems. As cloud computing is currently receiving lot of attention in both academic
community and the industry the development of new technologies is rapid and OSS
gets more and more mature.

This section is further divided into two subsections: Subsection 2.3.1 discusses
differences between traditional and microservice based software and gives examples
of methods to convert traditional to microservice based software. Subsection 2.3.2
described DevOps practices in more detail and gives examples of DevOps mindset
and toolset. These two technologies are fundamental in development of cloud native
applications.

2.3.1 Microservices

Microservices architecture is a modern cloud-native way of building applications [3],[6].
Microservices have three key characteristics: the microservice should implement a
single and clear task, it should be possible to independently develop, build, test, as
well as deploy the microservice, and the microservice should have well defined outside
interfaces. These characteristics allow building larger applications from independent
pieces that communicate with each other through standardized interfaces and can be
extensively re-used in other applications.

One of the key benefits microservices architecture has to offer is the possibility to
develop software in small teams [40]. As applications are built of smaller independent
pieces of code, personnel involved in a large software project can be divided into
small teams focusing to one microservice at a time. This allows teams to push their
changes without having to merge code produced by other teams, which might be
time consuming, and software teams are able to work more efficiently.

As a lot of software has been developed before the cloud era and deployed
on individual mainframe servers, process of migrating from monolithic software
architecture to microservices based is going on in many organizations [3]: much
research attention has been recently directed towards different aspects of microservices.
However, as microservices are relatively new concept there are still open questions
on adaptation process: there is a very wide range of possible combinations of
microservices which causes problems in areas such as configuration management,
performance against isolation trade-off, monitoring, and elastic scheduling [41].

Microservices are often deployed in software containers, most popular at the
moment being Docker [42], as lightweight isolation is enough for most microservices.
Containers provide or implement many cloud native features required by microservices
architecture, such as abstraction of storage or networking services [43]. Contain-
ers and container orchestration also provide extensive automation possibilities for
microservices. While containers and container orchestration have lot to offer for
microservices, microservices can also be run on VM or directly on the host. The
optimal solution for the environment to run microservices in depends greatly on the
implemented service as there is not yet any all-around best practices available in the
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literature [42],[43].
An example of a simple and generic application built of microservices is provided

in Figure 6. In the figure, colored boxes illustrate different building blocks of the
application, microservices. These are isolated from the rest of the application,
for example by the means of Docker containers. Gray arrows indicate database
connections. These could be used for example to implement stateless microservices:
load balancer writes upcoming tasks and reads completed tasks from database,
whereas workers keep track of their status and upcoming tasks through the database.
Blue arrows indicate data connections: typically, all incoming data is received by
load balancer and directed to workers according to internal communication of the
application. Data flow from load balancer to workers can be direct or via database
depending on the needs of the application. Data flow from the application can be
directed out via the load balancer or directly from the workers. The worker nodes
are the ones actually implementing the business logic of the application.

Microservices offer a lot of benefits to all phases of large software projects, but it
might not always be cost efficient to use microservices [40]: microservices require
more code to perform similar task than a monolithic implementation, because of
the more complex inter-process communication (IPC), but offer better flexibility,
scalability, and agility. Generally, microservices architecture offers more benefits for
bigger projects, but each software is unique and trade-offs have to be made.

2.3.2 DevOps

DevOps is a term referring to both mindset of bringing developer and operations
personnel in software project closer together and toolset applied in this process [5].
Some of the goals in DevOps process include delivering and deploying software more
often and in smaller pieces than before. One of the key enablers of DevOps process
is microservices architecture: when software is developed in small independent pieces
it can be built, tested, and deployed more often [3].

Building an application using microservices allows develop-build-test-deploy chains
for each component instead of single chain for the whole application [3]. This allows
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Figure 7: Examples of transformation from single chain (a) to independent development of microservices (b) and transformation
from function specific (c) to cross-functional (d) teams illustrated [3].
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independent development of the microservices so that there is no need to wait for
each component in some phase of the chain. This transformation from single chain
to independent development of microservices is illustrated in Figure 7a–b. There are
differences in different project and the chains illustrated are only examples. The key
enabler of this transformation is the independence of microservices and well defined
external interfaces: as external interfaces are predefined there should not be strict
version requirements between microservices and each microservice can be updated
individually.

Traditionally software has been developed by function specific teams [3]: For
example, when following the chain from figure 7a, development team would develop
the source code and unit tests, build team would compile and build the software as
well as ensure that the versions of different subsystems are compatible with each
other, Quality Assurance (QA) team would take care of developing and managing of
system level tests, and operations team would deploy and operate the application.
In DevOps organization teams are ideally build such that every team is responsible
for whole develop-build-test-deploy chain of a microservice [3]: This requires that
each team is cross-functional. There might still be persons who specialize into some
phase of the chain, but cooperation between team members should be on a level that
allows switching or adapting different roles when needed. This transformation from
function specific to cross-functional teams is illustrated in Figures 7c–d

DevOps practices promote extensive usage of automation to allow faster develop-
build-test-deploy chains and more efficient work flow in cross-functional teams [3].
This extensive usage of automation can be built on top of processes such as continuous
integration (CI) and continuous deployment (CD): CI is typically triggered by change
pushed to the code base of an application and aims to automatically validate the
quality as well as functionality of the code and merges the change to existing code
base. CD takes the automation a step further by automatically deploying changes to
production environment after successful CI execution. Both CI and CD typically
notify the author of the change and stop further automated steps, if integration
or deployment failed for some reason. This is to keep code base and production
environment in functional state and means that human interaction is only needed in
situations where change would cause problems according to a set of predefined rules.

The key benefits achieved through DevOps are faster and more straightforward
develop-build-test-deploy chains, more efficient teams, and widespread automation
of processes in the chain. The develop-build-test-deploy chain of a microservice is
much faster than traditionally because of high level of automation, single responsible
team, and no need to wait for depending subsystems. Teams are more efficient due
to smaller size and high level of automation. Wide spread usage of automation is
possible because of more straightforward chains and independent components.

2.4 Cloud radio access network (Cloud RAN)
RAN is the part of MN connecting core network and physical radio resources [44].
The relative position of RAN and other components of MNs are illustrated in
Figure 8. In the figure, and also later in this section, Long Term Evolution (LTE)
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terminology is used, though these components and technologies can be also generalized
to match other generations of MNs. Figure simplifies MN to four key components:
user equipment (UE), Base Band Unit (BBU), Remote Radio Head (RRH), and
evolved Packet Core (ePC). BBU and RRH together form a base station (BTS, base
transceiver station), eNodeB, and all elements between the UE and ePC comprise
RAN, Evolved Universal Terrestial Radio Access Network (E-UTRAN).

Cloud RAN is a cloud implementation of traditional RAN. The transformation
from traditional RAN to cloud RAN and the challenges of cloud RAN are discussed in
this section. Cloud RAN architecture has received much research attention recently
[2]. The reasons for this research attention include expected decreasing total cost of
ownership in MNs, increasing maintainability, and decreasing power consumption.

Cloud RAN is a continuation of the development from single BTS element to
separate RRH and base band unit BBU [2]. In traditional BTS, signal processing,
conversions between analog and digital signals, power amplification, and filtering are
all done in same element, which is connected to antenna with a short, max tens of
meters long, coaxial cable. This implementation in illustrated in Figure 9a.

In base station with separate BBU and RRH, processing responsibilities are shared
between these elements: BBU takes care of base-band processing and RRH handles
RF processing. Similarly than with single element BTS, coaxial cable connecting
RRH to antenna has to be short. Nevertheless, BBU and RRH are connected via
optical fiber and the length of this cable can be extended to tens of kilometers. This
setup is presented in figure 9b

Cloud RAN makes use of the possibility to have a significant distance between
BBU and RRH by centralizing multiple BBUs to the same location as a cloud service
[2]. In cloud RAN deployment, BBUs are virtualized and centrally located in a data
center, or an edge cloud, as a virtual BBU pool. This BBU pool is connected to the
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RRHs scattered around the area via optical fibers [45],[46]. This allows a cloud like
scalability in three dimensions [47]: number of active RRHs, cell sizes via change in
transmit power of RRHs, and size of BBU clusters assigned to RRH cluster. This
implementation is illustrated in Figure 9c.

The main differences between traditional distributed RAN and cloud RAN are
the cloud RAN’s three scalabilities: number of active RRH, cell size of active RRHs,
and number and size of active BBUs [2]. The number of active RRHs in the same
area can be scaled up or down to meet the demand of peak and quiet hours [47]. In
contrast, traditional BTSs are always on and often designed to meet peak demand.
This causes much unnecessary power consumption in the network. The scalability in
number of active RRHs is partly possible due to scalable cell sizes. By increasing or
decreasing the transmit power of the RRH, cell size of individual RRH is scaled to
meet the requirements of the cluster it belongs to: During peak hours, when more
RRHs are required to handle the network load, transmit power and cell sizes are
scaled down to allow denser network and larger quantity of active RRHs. During
the quiet periods transmit power and cell size are scaled up to allow more sparse
density and smaller quantity of active RRHs. Finally, number and size of virtualized
BBUs is scaled up or down to match the number of active RRHs and computational
resources required by the users served by BBU and RRH clusters.

The scalabilities provide an opportunity for significant cost savings compared to
a traditional distributed RAN [46]. As the number of active RRHs is scaled to match
demand in network instead of keeping all of the BTS on all the time, lot of power is
saved [47]. RRHs with cloud RAN also introduce cost savings in installation and
operation of cell sites, because installation process of RRH is much more lightweight
than that of traditional BTSs, the volume of equipment that needs to be located at
rented property at cell site is much smaller, and the cooling of centralized computation
equipment is much more effective.

Centralization of BBUs to an edge cloud as a virtualized pool provides additional
benefits: as most of the computational equipment is located in a centralized data-
center, cooling and maintaining physical equipment is much more effective than if
they were distributively located. Depending on the scenario, the centralization can
be done at different functional responsibility levels of BBU, thus creating flexible
functional split between BBU and RRH [48]. This allows implementing a cloud
RAN also in environments where there might be limitations in the fronthaul or
the backhaul. Cloud implementation of virtual BBU pool allows effective software
updates and virtual BBU with error state can be instantly replaced with new one.
This allows the operators to offer better service level agreements to their customers.
On demand scaling up and down of the BBU pool results to about 25% decrease in
need for base band computational resources [49] and additional cost savings through
the decrease in power consumption are available through advanced and dynamic
optimization of the cloud RAN installation [50]. Cloud RAN could also serve as a
single interface for multiple radio access technologies removing the need for multiple
physical RANs in the MN [51].

The individual savings described in the last two paragraphs contribute to a total
power savings of cloud RAN are estimated to be around 70% [52],[53], and the



18

18 © Nokia Solutions and Networks 2015

BBUBBU

cloud-ran

BS

BBU

RRH

BBU

Virtual BBU Pool

S1/X2

S1/X2

S1 X2

RRH

Cell size

Number of
active cells

Number
of BBUs

BBUBBUBBU

Virtual BBU Pool

S1 X2

RRH

(a)

18 © Nokia Solutions and Networks 2015

BBUBBU

cloud-ran

BS

BBU

RRH

BBU

Virtual BBU Pool

S1/X2

S1/X2

S1 X2

RRH

Cell size

Number of
active cells

Number
of BBUs

BBUBBUBBU

Virtual BBU Pool

S1 X2

RRH

(b)

18 © Nokia Solutions and Networks 2015

BBUBBU

cloud-ran

BS

BBU

RRH

BBU

Virtual BBU Pool

S1/X2

S1/X2

S1 X2

RRH

Cell size

Number of
active cells

Number
of BBUs

BBUBBUBBU

Virtual BBU Pool

S1 X2

RRH

(c)

Figure 9: A traditional BTS (a), BTS with separate BBU and RRH (b) and a cloud
RAN (c) compared [2].
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total cost savings of 15% in capital expenditures (CAPEX) and 50% in operational
expenditures (OPEX) are expected [53]. In addition to these cost saving, the cloud
RAN is likely to create new business opportunities for virtual operators as they are
not anymore tied to a single operator’s infrastructure instead being able to acquire
RAN resources on demand [48]. This might further increase the usage efficiency of
the MNs through flexible pricing models.

The direct connection of BBUs and RRHs introduces requirements to the edge
cloud that the virtual BBU pool is located in. As stated earlier, the maximum length of
the optical fiber connecting BBU and RRH is some tens of kilometers [2]. This means
that the individual edge clouds can only serve RRHs at relatively small area compared
to the service area of core clouds. The optical fiber connections to the hardware
introduces limitations to the choice of hardware and level of virtualization. This,
in practice, means that private or hybrid clouds have to be used. The performance
requirements for the cloud implementation and solutions to meet them are further
discussed in Chapter 3. The rest of this section will discuss the modernization
requirements for the user-plane applications, which are responsible for implementing
the datapath for user traffic from BBU to core network, and vice-versa, in cloud
RAN.

2.4.1 User-plane modernization

User-plane, like many other telecommunications applications, has traditionally been
implemented as a monolithic piece of software that has been running on dedicated
hardware [2]. However, this monolithic software architecture does not allow efficient
scalability required by cloud RAN. To allow scaling of individual services the user-
plane software has to be modernized. To comply with current state of the art
software architectures and to be able to extensively re-use OSS, user-plane software
modernization will progress towards microservices architecture and DevOps practices.

Out of the three scalabilities provided by cloud RAN, the user-plane containeriza-
tion and modernization discussed in this thesis focuses mainly on the scalability in
the virtual BBU pool. As BBUs are implemented as a pool and should be available
on demand, individual BBUs should be isolated from the host platform and each
other. However, some parts of this isolation might have to be bypassed to meet
telecommunications grade performance requirements. Possible implementations for
isolation of BBUs include Kubernetes pods and VMs. While Kubernetes itself offers
scalability for pods, VM implementation requires some sort of cloud orchestration to
implement scalability and such features.

The implementation of individual BBU, ignoring now the upper level isolation
method, should provide scalability in computational resources to meet different size
requirements of different BBUs. In microservices architecture this scalability is
achieved via load balancing and by scaling the number of available worker units.
This functionality is provided by orchestration, either container or VM depending on
the implementation. To provide stateless functionality database services are required
in BBU. However, since databases are most likely too slow for telecommunications
traffic also a faster datapath must be established between load balancer and each
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worker.
Other aspect of the user-plane modernization is the shift from usage of dedicated

hardware to using general purpose hardware and OS. To maintain the real-time
processing capabilities formerly provided by the hardware and real-time OS, libraries
and kernel modules providing similar functionalities are added to the general purpose
OS. One solution to enable better performance is to, instead of fair scheduling kernel,
use low latency or real-time version of kernel. Although the performance gain is not
visible when there is no other loads on the host, low latency and real-time kernels show
significant performance boost when there exist load from other processes in the host
[54]. This performance boost might be necessary in order to meet telecommunications
grade performance requirements [55].

In addition to moving from dedicated to general purpose hardware, the transfor-
mation from traditional RANs to cloud RAN requires change from static to dynamic
networks [13]. To allow the scalabilities introduced by the cloud RAN, networking
should be also able to scale with the demand. The network scalability is enabled
by two key concepts: software defined networking (SDN) and network function
virtualization (NFV).

SDN is a network architecture where control-plane and data-plane are separated
as well as are highly programmable through APIs. [56]–[58]. This means that
network functions (NF), that traditionally also included the control interfaces, are
controlled from external controller, thus simplifying the responsibilities of a NF to
ones of a packet forwarder. The forwarding is implemented as flow based instead
of destination based, to allow the forwarding of sequences of packets with the same
rule. The network is programmable through APIs supported or provided by NFs
and controllers. Although there have been concerns that SDN would decrease the
network performance, it has been shown that SDN capable networks have quite
promising performance when implemented with technologies such as DPDK [14],[59].
The main driver for SDN adaptations is that SDN is expected to increase efficiency
of network management and to decrease the network operation costs [58].

NFV refers to virtualizing NFs, that have traditionally been run on dedicated
hardware, so that they can be run on commodity servers with general purpose
processors [14][60]. This means replacing the functionality of a traditional physical
NF device, such as a switch or a firewall, with a software implementation. Similarly
than with SDN, performance is expected to decrease with higher level of virtualization.
Nevertheless, this decrease in performance can be compensated by using software
containers instead of VMs and technologies such as DPDK in the virtual network
function (VNF) implementation [61],[62]. The key benefits of NFV include increased
efficiency, increased manageability, decreased power consumption, and decreased
operational costs [60].

Although SDN and NFV are not strictly dependent of each other, these tech-
nologies are highly complementary when implemented together [56],[60]. While SDN
could be implemented on top of physical NFs, VNFs provide additional scaling and
dynamic networking possibilities for SDN. In addition, although NFV could be
implemented without SDN, the gains in performance and manageability are further
enhanced by implementing also SDN.
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To summarize, the user-plane modernization by containerizing and by steering
the implementation towards microservices architecture essentially equals developing
a VNF. Thus, allowing to take advantage of extensive previous research, standard-
ization, and OSS releases related to NFV. For user-plane modernization, SDN is
essential in providing the support and scalability for highly dynamic networks of
cloud RAN software implementations.

Chapter summary
This chapter introduced the key concepts of virtualization, containerization, and
cloud computing. Compared to VMs, software containers provide a more lightweight
solution to achieve a similar effect, as virtualization is done at the OS level. This
allows more lightweight images and better performance. However, these benefits
come at the cost of less isolation from other containers and the host OS. These two
technologies are enablers of cloud computing, which offers the possibility to buy
computing resources as a service. One application of these technologies is cloud RAN
which is expected to provide significant cost and power savings to telecommunications
operators by centralizing BBUs to an edge cloud. The transformation to cloud RAN
requires changes in both software and network architectures, which are enabled by
concepts such as microservices, DevOps, SDN, and NFV.
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3 Performance indicators and enabling open source
software

The performance overheads of virtualization and cloud computing are challenging
in telecommunications applications, because of real-time processing requirements.
This results to different requirements for the system compared to more common
software types. Common OS kernels are not always suitable for telecommunications
applications and libraries to modify OS kernel or bypass it are required to meet the
performance requirements.

To provide basis for container architecture discussion and measurements, this
chapter introduces performance indicators and requirements as well as describes OSS
applied in the practical part of this thesis: Section 3.1 discusses two performance
indicators applied to compare different containerization architectures, and Section
3.2 introduces OSS employed to boost the performance of x86 hardware in pursue
towards telecommunications grade performance.

3.1 Performance indicators
This section describes two performance indicators, throughput and latency, and their
importance for cloud RAN and MNs. The performance indicators will be used to
compare different containerization architectures in Chapter 4.

Throughput is the rate of successful data deliveries over a network. Throughput
is often measured either in packets per second (pps) or bits per second (bit/s). The
relation between these is that bits per seconds equals to packets per second multiplied
by the packet size. As packet size is not constant in different network, packets per
second unit can cause confusions, if the used packet size is not provided.

High throughput is an important feature of modern MN, since smart mobile
devices are increasingly used for applications that send and receive high amounts
of data, such as video streaming. Current LTE networks support data throughputs
of hundreds of Mbits/s between UE and BTS [44]. Deeper in the MN, where single
element handles multiple UEs or BTS, the required throughput is much higher.
Further, the target throughput in 5G MNs are set to range from 1 to more than 10
Gbits/s. In order for current microservices to be re-usable in the future, throughputs
much higher than this should be supported.

In telecommunications, latency is the time delay between sending and receiving
packets. As a time delay, latency is measured with seconds as the base unit. In
telecommunications and other latency optimized systems latency and clock cycles
of processors are closely related. This means that that latency is usually the most
convenient to be measured in nanoseconds or microseconds.

One typical method used for latency measurements is time stamping of packets.
This method is used also by iperf software which will be used for the basic latency
measurements within this thesis [63]. This method provides accurate results provided
that the clocks at transmitting and receiving ends are synchronized. If the clocks are
not accurately enough synchronized the latency can be estimated by looking at the
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latencies to both directions: {
τ12 = ∆t12 + τ
τ21 = ∆t21 + τ

, (1)

where τ12 is the measured latency from host 1 to host 2, τ21 is the measured latency
from host 2 to host 1, ∆t12 is the clock difference from host 1 to host 2, ∆t21 is the
clock difference from host 2 to host 1, and τ is the latency between the hosts. This
equation group can be rearranged to{

τ = τ12 − ∆t12
τ = τ21 − ∆t21

. (2)

Since ∆t12 = −∆t21, clock difference between the hosts can be calculated from

∆t12 = τ12 − τ21

2 (3)

and the actual latency can be then estimated with Equation (2). It has to be noted
that this estimation is quite sensitive to random variations. Thus, the results are the
most reliable when measurements to both directions are conducted simultaneously.

Latency has traditionally been an important metric of a telecommunications
network. In the early days of MNs the traffic was mostly voice calls. In order for
natural conversation to be possible, the latency has to be kept low with minimal
variance. Although latency has not been as critical in traditional data connections,
the latency in 5G MNs has been targeted to be few milliseconds [1]. This is due to
requirements set by emerging technologies, such as augmented reality and self-driving
cars.

In MNs latency can be defined to take into account different combinations of
the components in the system. For example, radio latency is the propagation delay
over radio channel from BTS to UE, or vice-versa, and fronthaul latency is the
propagations delay in optical fiber from BBU to RRH, or vice-versa. End-to-end
latency refers to latency between first source element and last destination element. For
example, in MN UE could be the source element and internet server the destination
element.

As this thesis focuses on cloud networking performance and ICC, the thesis
uses term latency to describe end-to-end latency between source and destination
processes which are being run in containers or VMs on top of cloud infrastructure.
This definition is illustrated in figure 10.

These two indicators, latency and throughput, form the basis for performance
analysis as they give fast overview of the achieved networking performance. There
are also more parameters to consider in more detailed performance analysis, such as
jitter which is the variation in latency. Those further parameters, however, are not
discussed nor analyzed in this thesis.

3.2 Enabling open source software
Several open source technologies are being developed by the open-source community
to allow more efficient virtualization and data plane prosessing with x86 hardware.
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This section describes three technologies that are employed during the practical part
of this thesis. Subsection 3.2.1 discusses DPDK, a set of open source libraries for fast
path networking. Subsection 3.2.2 describes OVS, an open source implementation of
virtual switch. Subsection 3.2.3 discusses OpenStack, an open source cloud computing
software.

3.2.1 Data Plane Development Kit (DPDK)

DPDK [17] is a set of open source libraries and drivers for fast packet processing
[17]. It was originally developed for x86 architecture, but the support has since been
extended to also other CPU architectures, such as ARM. DPDK allows bypassing
some kernel functions, thus providing more direct access to HW resources. Linux
user-land applications gain more control on process with usage of DPDK: for instance,
logical cores can be occupied for the use of a process or a network interface card
(NIC) can be accessed without going through the OS [62]. This allows executing
high speed data-plane applications on x86 architecture instead of dedicated HW.

Applications employing DPDK access the DPDK libraries through linking to
Environment Abstraction Layer (EAL) [64]. EAL is created by DPDK with make and
configuration files to match the physical environment. EAL gains access to low-level
system resources and is the entry point to other DPDK libraries. In addition to
initializing DPDK for use of the application, EAL is responsible for tasks such as
assigning cores, reserving memory, providing debug functionalities, and providing
access to PCI memory.

DPDK uses hugepages for memory allocations [64]. Hugepages are much larger,
in x86 hardware typically 2 MB or 1 GB, than normal memory pages of 4 kB. This
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usage of larger page size allows better performance, since less pages have to looked
trough to find relevant memory section.

DPDK processes are divided into two categories depending on their memory
usage: Primary processes, which are responsible for initializing memory, and secondary
processes, which can attach to memory initialized by a primary process. Multiple
primary processes can co-exist in a single system as long as they are using different
hugepages. In this case different primary processes are not able to reach each other’s
resources. Secondary processes can only be started if there is primary process they
can attach to. In case of crash of a primary process, secondary processes are still
capable of accessing the memory allocated before the crash. However, secondary
process cannot be converted to primary processes. Thus, no new memory allocations
can be made as there is no primary process to allocate those.

One of the key features provided by DPDK, from container networking point of
view, are poll mode drivers (PMD) for network interfaces, which provide significant
performance boost compared to kernel drivers [17]. Kernel drivers are often based
on interrupts, meaning that the interface sends an interrupt to the driver when new
packets are available [65]. This causes overhead in network performance, but allows
efficient computing from the scheduling point of view. To overcome this overhead,
DPDK PMDs constantly poll the interface for new packets [64]. This allows better
performance in terms of throughput and latency, but consumes much more computing
resources [17]. PMD often consumes all processing time available at the core it is
being run on.

DPDK libraries and drivers enable boosting the performance of an application
running in Linux user-space. This allows implementing efficient VNFs and SDN on
general purpose hardware and OS. An example of a software supporting performance
optimization with DPDK is Open vSwitch (OVS).

3.2.2 Open vSwitch (OVS)

OVS is an OSS implementing a distributed multi-layer virtual switch [66]. The
difference between OVS and standard linux bridge is the support for multi-server
deployments; OVS provides cloud native implementation for VM or container net-
working [67]. OVS offers wide support for VM migrations from one host to another:
both network configuration and live network state are migrated with the VM to the
new host. OVS is widely used and the OVS kernel module has been part of Linux
kernel since version 3.3.

The performance of OVS can be boosted by compiling and running it with
DPDK [68]. This DPDK support has been available since OVS version 2.4.0. Before
that there has been commercial solutions implementing similar features [16]. The
performance of OVS with DPDK boosting shows an up to 12x speedup compared to
the performance of native OVS [68].

OVS provides features for: security, monitoring, quality of service (QoS), and
automated control [67]. Security features OVS implements include virtual local area
network (VLAN) isolation and traffic filtering. Monitoring features include tools such
as NetFlow. QoS service features include traffic queueing and shaping. Automated
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control allows controlling of the OVS via OpenFlow and OVS database protocol.
A running OVS consists of two main processes: a daemon implementing the switch,

ovs-vswitchd, and a database server responsible for providing the daemon the current
state of the switch, ovsdb-server. In addition to these two processes, OVS provides
tools for configuration and management of daemon as well as database processes and
for building release binaries. OVS package also includes tools for management of
OpenFlow switches and controllers. These tools are not only compatible with OVS
but allow management of any OpenFlow compatible switch or controller, virtual or
physical.

A typical use case for OVS, or any other virtual switch, is to provide networking
for virtualized cloud infrastructure; virtual switches are typically used to divide
limited physical resources of host machine for VMs that are deployed in it [69]. OVS
is well suited for cloud networking because of its support for distributed switching.
For example, OVS can be used to provide switching for OpenStack [70], an open
source cloud computing software [71].

3.2.3 OpenStack

OpenStack [70] is an open source cloud computing software for controlling of com-
puting, storage, and networking resources. It is used to convert datacenter resources
into a cloud implementation. This allows controlling the resources in the datacenter
through OpenStack dashboard or OpenStack APIs and allows exposing the resources
to the user as a public, private or hybrid cloud.

When compared to DPDK and OVS, OpenStack is a higher-level solution; Whereas
DPDK and OVS solve or implement quite simple tasks, OpenStack aims to provide a
complete solution for cloud computing. OpenStack is built of many smaller projects,
such as: Nova computing service, Cinder block storage service, Neutron networking
service, Horizon web based management service, and many more [70]. In addition to
these OpenStack based projects, many other OSS, such as OVS, is employed.

In addition to offering a cloud platform for general purpose computing, Open-
Stack provides a platform for VNFs [72]. The key enablers to allow this is the
support for standardized interfaces and popular networking plug-ins as well as drivers.
The OpenStack’s capability for NFV has been proved by many companies in the
telecommunications field [70].

Similarly than many other OSS, OpenStack is available both as a pure open
source package released under Apache 2.0 licence and as a customized solutions
offered by software vendors [70]. This thesis uses the pure open source version of
OpenStack in the measurements.

OpenStack can be deployed to a wide variety of hardware setups, ranging from
all-in-one installation to full-rack setup with multiple compute nodes [70]. There
exists both open-source and commercial tools to deploy OpenStack automatically.
In this thesis OpenStack is deployed with DevStack, a tool provided by OpenStack
for developing and testing of OpenStack [71]. All-in-one setups are deployed for
measurements with and without DPDK boosting in OVS. The OVS with DPDK
datapath is deployed by enabling networking-ovs-dpdk plugin [73]. The configuration
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files provided to DevStack scripts are presented in Appendix B.

Chapter summary
This chapter discussed the performance indicators used in evaluation of different
containerization approaches to be proposed and introduced the main OSS that will
be used in the measurements. The discussed indicators, latency and throughput,
give good overview of the networking performance and can be measured with openly
available software. The main OSS to be used in the measurements, in addition to
Docker and Kubernetes that were already introduced in Chapter 2, consist of DPDK,
OVS, and OpenStack.
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4 Containerization architectures and measurements
To analyze the feasibility of adopting a combination of virtualization and containeriza-
tion methods in a cloud RAN environment in terms of network performance and ICC
this chapter proposes two containerization architectures with fast ICC capabilities.
The two architectures are described in detail and their performance is measured in
terms of throughput and latency.

The chapter is divided into two sections: First, Section 4.1 describes different
containerization architectures proposed to implement isolation, scalability, and per-
formance requirements. Second, Section 4.2 introduces the measurement setup and
describes the measurement results.

4.1 Containerization architectures
One of the challenges when building user-plane application from containerized
microservices is how to provide fast networking interfaces for each microservice. By
default, Docker containers are connected to internet and each other via docker0
bridge, which is a normal Linux bridge [31]. This implementation depends on kernel
networking stack, which is usually implemented with interrupt based drivers, and
the performance is further affected by kernel scheduler.

One solution to increase the network performance is to use DPDK, which was
described in previous chapter, and the PMDs it provides [68]. However, since
containers share kernel with host OS, host’s NICs and possibly other physical resources
are also visible from inside the container. This will not be a problem if number of
containers accessing the physical resources is strictly controlled. However, in cloud
native applications one of the key design principles is to allow applications to scale
up and down rapidly and freely. As briefly discussed in Section 2.3.1, load-balancing
is often applied to divide input data from single source to multiple worker nodes. In
DPDK accelerated container networking, this would be equivalent to one container
being connected to physical NIC and providing networking or similar datapath for
application containers.

Before going into the implementation, the general purpose system has to be
prepared to be used with DPDK. This means optimizing the kernel parameters,
reserving and mounting hugepages, as well as binding network interfaces to DPDK
compatible drivers. First, kernel parameters have to be optimized for DPDK usage.
This includes activating memory management tools, isolating physical cores from
kernel scheduling, and reserving hugepages memory. For example, in CentOS this
could be done with grubby tool:
# grubby --update -kernel=ALL --args="iommu=pt intel_iommu=on"
# grubby --update -kernel=ALL --args="isolcpus =2-7"
# grubby --update -kernel=ALL --args="default_hugepagesz =1G

hugepagesz =1G hugepages =8"
# reboot 0

where the first command activates input output memory management unit (IOMMU)
[64], the second command isolates cores 2–7 from kernel scheduling [14], and the
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third command sets the default hugepage size to one Gigabyte as well as reserves
eight 1GB hugepages at boot time [64]. Reboot is required to activate these changes.
In addition to or instead of 1 GB hugepages smaller 2 MB hugepages can be reserved.
The smaller hugepages can also be reserved at run time. The hugepages are then
mounted to the system with the commands:
# mkdir -p /mnt/huge
# mount -t hugetlbfs nodev /mnt/huge/

where the first command creates the directory for the mounting point and the
second command actually mounts the hugepage tables file system to the system [65].
Finally, the network interfaces to be controlled by DPDK PMDs are bound with
dpdk-devbind.py utility:
# ./${RTE_SDK}/usertools/dpdk -devbind.py -b \

${driver_name} ${pci_address}

This command binds the specified interfaces to specified driver. Meaning that it can
be used to both reserve or release interfaces to or from DPDK PMD usage.

Although these preparations are most natural to be done from the host environ-
ment as the root user, these commands could also be entered from a container with
a privileged access to the host system. However, it is considered a bad practice to do
modifications to the host system from inside a container as that would introduce an
increased risk of security vulnerabilities to the product. After these preparations, a
DPDK process running in a container with correctly configured access rights is able
to occupy the resources required and to implement a containerized VNF with DPDK
accelerated datapath. The access rights given to the container can be further limited
with well-designed mounting points and extended usage of cgroups [74].

This section discusses two different approaches for DPDK accelerated communica-
tions: OVS networking with DPDK datapath and shared memory based IPC. OVS
with DPDK datapath is commonly used in OpenStack networking, but its support
for container networking through virtio-user virtual device is relatively new feature
[64]. This virtio-user PMD is connected to vhost-user backend thus comprising a
para-virtualized networking interface. The communication in this interface is based
on shared memory. A pure shared memory based IPC in container communications
provides more lightweight implementation for the datapath, but lacks the standard-
ized networking interfaces. When the the processes communicating with each other
are in different containers the IPC is often referred as ICC.

First, in OVS with DPDK datapath the fast ICC is based on networking over
vhost-virtio port pairs. The implementations for these ports and their drivers are
provided by DPDK libraries. The creation of vhost ports is done via OVS interfaces
and creation of virtio port by DPDK libraries at the start time of DPDK process.
Similarly to other DPDK drivers, vhost and virtio drivers are implemented as PMDs,
meaning that the interface is constantly being polled for new data. This results to,
ideally, 100% usage of a processor core. To allow efficient usage, PMD processes
are usually mapped to specific cores and excluded from the kernel scheduler [64].
This approach is illustrated in Figure 11. Note that the figure is simplified so that
only DPDK boosted connection and port related to these are visible. In actual
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Figure 11: OVS networking with DPDK datapath illustrated.

implementation, other networking would likely also be implemented to allow remote
management and monitoring of the application containers.

The first step in creating a set of containers communicating through OVS with
DPDK datapath is to launch the OVS. The OVS can be launched as a native process
or inside a container. OVS in a Docker container is launched with command:
$ docker run \

--privileged \
-v /mnt/huge:/mnt/huge \
-v /usr/local/etc/openvswitch /:/usr/local/etc/openvswitch/ \
-v /usr/local/var/run/openvswitch /:/usr/local/var/run/

openvswitch/ \
-v /usr/local/var/log/openvswitch /:/usr/local/var/log/

openvswitch/ \
--net=host \
--name=ovs \
-d ovs -docker;

where --privileged option allows running the container with privileged rights, -v
flag mounts host directories to container, --net option selects the networking for
container, --name option sets the name for container, and -d flag set the container to
run in detached mode. The image used is ovs-docker, which Dockerfile is provided in
Appendix A. This command mounts four directories to container: default hugepage
mount, default OVS database location, default OVS socket location, and default
OVS log location to container. In addition, if OVS is connected to network interface
via DPDK PMD additional mounts might be required depending on the driver type.
The command also sets the container to use host network to make it easier to create
networks for other containers running on the host. The OVS could also be run
directly on the host system.

The ovs-docker container contains a bash script, included in Appendix A, as an
entrypoint to launch the ovsdb-server and ovs-vswitchd processes. The bash script is
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responsible of passing further parameters, including the DPDK parameters, such as,
core mask, socket memory, and file prefix, to these OVS processes. As the container is
launched with host networking and mounted with OVS default directories, controlling
of the OVS can be done from the host as if the processes were running natively on
the host.

The Docker containers connected to the OVS can be connected via either network
namespaces or via DPDK virtual device. However, only DPDK virtual device provides
support for interface with DPDK PMDs. In both cases an OVS bridge has to be
created in order to be able to provide OVS networking for the containers. This is
done with the ovs-vsctl tool. For example, command to create bridge named br0
would be
$ ovs -vsctl add -br br0 -- set bridge br0 datapath_type=netdev;

where the part of the command after -- selects the datapath type for the bridge.
If DPDK virtual devices are used to connect the containers, the bridge has to be
configured to use user-space datapath instead of the kernel datapath. If the connection
is made via networking namespaces, ovs-docker utility can be used to create
connection from the bridge to the container and do all the necessary configurations.
The main difference between these connection types is that networking namespaces
approach can be used for general purpose networking while DPDK virtual device
based connection is limited to usage of a single DPDK process only.

In order to use DPDK virtual device from inside a container, a port of dpdkvhos-
tuser type has to be created to the bridge with ovs-vsctl tool. For example the
command to add port vhost_user1 to bridge br0 would be
$ ovs -vsctl add -port br0 vhost_user1 -- \

set Interface vhost_user1 type=dpdkvhostuser;

where the part of the command after -- selects the type of the port. OpenFlow
rules to direct packets from port to another can be created with ovs-ofctl tool. For
example, command to create direct flow for all ethernet packets in bridge br0 from
port one to port two would be
$ ovs -ofctl add -flow br0 \

in_port=2,dl_type =0x800 ,idle_timeout =0,action=output :1;

where the port numbers used are OpenFlow port indexes associated to the ports.
The unix socket associated with this port has to be mounted to docker container,
and a virtual device of type virtiouser connected to this unix socket has to be created
with --vdev option of the DPDK EAL. For example, assuming that one port of
dpdkvhostuser type has been created, pktgen-docker with one DPDK virtual device
port is started with command
$ docker run \

--rm \
--privileged \
--net=none \
-v /usr/local/var/run/openvswitch/vhost_user1 :/var/run/vh1 \
-v /mnt/huge:/mnt/huge \
--name pktgen -it \
pktgen -docker \
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-c 0xC -n 4 -m 1024 --file -prefix=pktgen_ \
--vdev=net_virtio_user0 ,path=/var/run/vh1 -- \
-T -P -m "3.0";

where --rm option sets the container to be deleted after it is completed, the first
mount, .../vhost_user1, is the socket file created by OVS at port creation time, -c
0xC is core mask defining which cores DPDK should occupy, -n 4 defines number of
memory channels used by DPDK, -m 1024 defines how many megabytes of memory
DPDK should reserve, --vdev=... defines virtual device for virtio driver with path
to socket mounted to the container, –file-prefix=pktgen_ defines file prefix DPDK
uses for lock and configuration files of the process to be started, -- splits the arguments
to those passed to DPDK EAL and to those passed to pktgen, -T option enables
colored output, -P enables promiscuous mode for ports, and -m "3.0" defines core
to port mappings.

The DPDK virtual device implements similar interface that is used with VMs.
This means that the level of the virtualization for the networking is higher than
with the default networking namespaces based implementation. This increase in the
level of virtualization might be visible in the performance. Nevertheless, usage of
virtual devices and DPDK PMDs might provide possibilities for more simple bridge
configurations or increased efficiency when working with physical NICs. In order to
maximize performance of the ICC, implementation closer to IPC, such as shared
memory, could be better than networking.

Second, DPDK shared memory based ICC relies on memory shared between
primary and secondary DPDK processes. In this approach, memory allocation and
data structures are provided by DPDK. Sharing memory, and other DPDK resources,
between containers requires introducing common DPDK configuration and lock files
for all containers accessing the same resources. This is easiest done by exposing same
directory from host to all containers sharing same resources. Similarly than with
DPDK network drivers, memory interfaces could be polled for new data constantly.
However, the memory interfaces don’t have common standards suitable for ICC
the same way the network interfaces do. This means that, for example, available
open source solutions might not be compatible with each other. This approach
is illustrated in Figure 12. Note that here only one of the DPDK processes is a
DPDK primary process. Only this primary process is able to reserve and release
memory. Secondary processes, here mem-tester containers, are dependent of the
primary process and cannot allocate new memory; if the primary process is lost, the
secondary processes might be required to restart depending on the shared memory
usage patterns.

Similarly as with OVS implementation, the container in responsibility of managing
the memory has to be started first. There are two common approaches to implement
the shared memory based ICC: peer to peer and client-server models. From Dockers
perspective there is not much difference, both scenarios require similar mounts and
docker options. The difference between these implementations is visible in the
software implementation and parameters passed to the container entrypoint. An
example container for shared memory ICC, shm-docker that is not implemented
within this thesis, would be launched with a command similar to:
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Figure 12: DPDK shared memory based ICC illustrated.

$ docker run \
--privileged \
-v /mnt/huge:/mnt/huge \
-v /tmp/shm -docker/var/run /:/ var/run/ \
--name=shm \
-d shm -docker ${shm -docker -arguments};

Again, similarly than ovs-docker, the container is launched with privileged rights and
default hugepages mount location mounted. In addition, /var/run/ directory, which
is the default location for DPDK configuration and lock files, is mounted from host
system to container. This same host directory should be mounted to all containers
that require access to same shared memory resources as /var/run/ to allow DPDK
processes in the container to communicate with each other. If communication with
host DPDK processes is not required any host directory can be mounted to containers
as /var/run/ to avoid mounting unnecessary files. Alternatively, DPDK files could
be directed to other directory and this directory mounted to containers.

The clients or peers of the primary process are started similarly. The main
difference in arguments is the process type passed to DPDK EAL with --proc-type
argument. The client instance or joining peer instances have to have process type
set to auto or secondary in order for them to be possible to attach to the primary
process with the same file-prefix. The difference between peer and client programs
comes from the software implementation. If the same binary is executed in multiple
instances with detection of process type, the instances are peers of each other. If
there is separate server process started first from different binary, the instances to be
attached are clients of this server. The arguments passed to the process also depend
on this process type.

The main difference between these approaches, OVS networking and shared
memory based ICC, is the compatibility for multi-host setup. While OVS has great
built-in support for creating networking spanning multiple physical machines, DPDK
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shared memory based IPC is limited to providing communication within one physical
machine at a time due to requiring containers to have access to same memory regions.
This is not necessarily a limitation, since the expected performance boost provided
by shared memory might be more important than possibility to directly communicate
with containers on remote hosts. After all, these two approaches essentially solve
different problems. While both provide solutions for ICC, shared memory is purely for
IPC and OVS for communications via networking. For example, when implementing
a microservice in a Kubernetes pod the communications to and from pod could be
done with OVS and ICC within a pod with DPDK shared memory.

These approaches, OVS with DPDK datapath and shared memory based inter-
process communications, have in common that much host resources has to be exposed
to the containers for the solutions to work. Both solutions rely on hugepages to get
better memory performance. The usage of hugepages requires running the container
with privileged rights and access to hugepages mount directory on the host machine.
Also, since DPDK is used in both approaches containers and processes have to be
mapped to specific processor cores to allow efficient usage of computing resources.
This core mapping will most likely cause additional work with Kubernetes and scaling
implementations. This exposing of host resources and specific requirements for host
resource utilization violate the idea of containers working as isolated and independent
pieces of an application. Nevertheless, trade-off has to be made between isolation and
performance in order to meet the performance requirements of user-plane applications
with the current implementations of OSS available.

Technologies such as Kubernetes pods and VMs in OpenStack cloud can be used
to overcome challenges caused by this decreasing isolation. The approaches and
solutions provided by these technologies are different. While VMs and OpenStack
would bring back the isolation by implementing stronger virtualization, Kubernetes
would rely on containers and automated resource management. The trade-off is,
again, between performance and isolation.

Both of these technologies, Kubernetes and OpenStack provide support for the
approaches discussed in this section. However, with both technologies the usage of
shared memory based ICC is somewhat limited. In OpenStack the memory can be
shared only within as VM and in Kubernetes the memory can be shared only within
a pod. Nevertheless, these limitations comply with the idea of isolating independent
pieces of software. Both technologies support networking both to and within a pod
or a VM with OVS. Openstack provides support for OVS networking with DPDK
datapath through networking-ovs-dpdk plugin [73] and OVS provides support for
Kubernetes through ovn-kubernetes plugin [75]. The plugins can be used to provide
networking to the pod or the VM. If OVS networking inside a pod or a VM is
required, an OVS can be run inside the pod or the VM as described earlier in this
section. The actual implementations with Kubernetes or OpenStack are left for
future work.

The containerization architectures presented in this section are designed based
on several assumptions on the performance differences of the applied technologies.
For networking, it has been assumed that OVS provides better performance and
manageability than the default linux bridge and that the performance of OVS is
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Table 1: The versions of the main OSS software applied in the measurements.
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oss-ver
Table of OSS versions used

Software Version

Ubuntu server 16.04 Xenial

Docker 1.12.6

DPDK 17.05.1

Open vSwitch 2.7.0 (with patches)

DevStack stable/ocata

further increased by using DPDK PMDs. It has been also assumed that shared
memory provides more efficient ICC and IPC at the cost of worse standardization of
the interfaces. These performance related assumptions are to be verified through
measurements.

4.2 Measurements
To support the analysis of Section 4.1, measurements are conducted. The goal
of the measurements is to compare performance of the proposed networking and
ICC methods in terms of the indicators presented in Section 3.1. Measuring the
performance of a complete implementation or a product like system is not in the
scope of this thesis.

4.2.1 Measurement setup

The measurements are performed with a VM operated in private cloud. The VM used
has 16 virtual CPUs and 32 GB of memory. Further details of the VM are omitted
from this thesis, as they are not strictly necessary in the process this thesis applies
in the comparison of the proposed approaches. The measurements with physical
NICs are performed with 4 core desktop computers that have 16 GBs of memory and
two NICs: one for management connections and one Intel 82574L Gigabit Network
Controller for performance measurements.

The OSS software applied in the measurements are listed in Table 1 with version
information. The versions listed in table are used in both native and containerized
applications. In physical machine Ubuntu server was installed via installation virtual
media where as in VMs cloud base image was used. In both cases generic version
of kernel is used. The Dockerfiles to build containers used in the measurements are
provided in Appendix A.

Four types of measurements are conducted: unix bridge compared to OVS bridge
in container networking, OVS networking with native datapath compared to OVS
networking with DPDK datapath in VM networking, performance of OVS in container
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Table 2: The versions of the measurement tools applied in the measurements.
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meas-tool-ver
Table of measurement tool versions used

Software Version

DPDK-pktgen 3.3.9

iperf 2.0.9

iperf3 3.0.11

and VM networking, and DPDK boosted networking with physical interfaces from
native application compared to containerized application.

First, performance of DPDK OVS bridge without DPDK PMDs boosting is
compared to normal Linux bridge. Measurements are performed with iperf3 and
iperf softwares [63] acquired in image from Docker hub [76] and build from Dockerfile
listed in Appendix A, respectively. OVS bridge is created with ovs-vsctl tool
and interfaces to Docker containers, started with no networking, are created and
attached with ovs-docker tool. Unix bridge is created by Docker engine at Docker
daemon start time and Docker containers are attached to this bridge at container
instance start time when no networking settings are given. Throughput is measured
with unlimited Transmission Control Protocol (TCP) connection and latency with 1
Mbit/s User Datagram Protocol (UDP) connection. In both cases the connections is
open for 60 seconds to get a view on the average performance.

To continue step-by-step in evaluating the gained performance, OVS bridge
performance is measured from VM to VM with and without DPDK boosting. The
measurements are conducted with VMs as in containers the support for DPDK
boosted connection would require DPDK process to connect to the DPDK interface.
Thus, by using VMs instead of containers here same measurement tool can be used in
both cases. The measurements are conducted in OpenStack installation booted with
DevStack following instructions for single VM installation [71]. In DPDK boosted
measurement case, installation is modified to comply also with networking-ovs-dpdk
instructions [73]. In measurements two VMs are created to OpenStack cloud and
connected to each other and to external networks via single internal network. The
connection between VM and OVS in implemented with vhost-virtio pair. This
measurement setup is illustrated in Figure 13. Note that here same network is used
for both management of the instances and the performance measurements.

In these two first cases, the measurements are performed with iperf and iperf3
network performance measurement tools. Although both are based on original
iperf, these tools provide support for different measurement scenarios. In these
measurements iperf3 is used to measure throughput and iperf to measure latency.
With both software one instance acts as a server and other as a client. In latency
measurements two server-client pairs are executed simultaneously and latency is
calculated as described in Equations (2) and (3) presented in Section 3.1. Servers
are started with commands:
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Figure 13: Measurement setup for VM to VM connection using OVS bridge to
compare network performance with and without DPDK.

$ iperf3 -s;
$ iperf -sue;

where -s stands for server, -u for udp traffic, and -e for extended output. The
clients are executed with commands:
$ iperf3 -t 60 -c ${server_ip};
$ iperf -ut 60 -c ${server_ip};

where -t stands for test execution time which takes time in seconds as a parameter,
and -c for client which takes server ip as a parameter. When iperf or iperf3 are run
from inside a container, the options for iperf and iperf3 stay the same. The containers
are started as interactive containers, with default or no networking depending on the
measurement case.

In order to obtain information on how DPDK PMDs affect the network perfor-
mance when enabled on both sides of the interface, performance is measured for
different container and VM networking cases. The cases to be compared are from
container to container, from VM to VM, and from container in VM to container in
VM. The containers are started as described in Section 4.1 and the VMs are started
through OpenStack commandline interface. The measurement are conducted with
DPDK pktgen. Two of these measurement cases are illustrated in Figure 14 and
container to container case is similar to one illustrated in Figure 11. The illustrated
cases are for throughput measurements. Latency measurements are conducted so
that both sending and receiving is done from same container or VM. In this case
VM or container will have two network interfaces bound to DPDK PMDs. This
is because DPDK pktgen requires that same core is responsible for both sending
and receiving the packets to avoid time synchronization issues. Note that in the
figures VMs are connected to separate networks via two interfaces. Management and
measurement networks have to be now separated, because after binding an interface
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to DPDK it is no longer available to kernel and, for example, ssh connection via that
interface is not possible to the VM. The management network and connections are
not necessarily required as the measurement can be performed automatically, but
the management connections are useful for debugging and development purposes.

Finally, to verify that containers can be used also to communicate with physical
interfaces without significant decrease in performance, native application is compared
to containerized one. The application used is DPDK pktgen, similarly than in the
previous measurement case. In contrast to previous measurements, this measurement
is performed with physical NICs. The measurement setup is similar to one illustrated
in Figure 14 given that instead of VMs physical machines are used, instead of
dpdkvhostuser ports physical NICs are used, and the networking isn’t provided by
DevStack or OVS.

In these two last cases, the measurements are performed with DPDK pktgen
software. The pktgen is used to both send and receive the packets. Both throughput
and latency are measured with this tool. As DPDK pktgen used processor clock
to measure latency, the latency measurements have to performed in such way that
packet are sent and received from the same core. The pktgen software is started with
commands:
$ ${pktgen} -c 0xC -n 4 -m 1024 --file -prefix=pktgen_ -- \

-T -P -m "3.0";
$ ${pktgen} -c 0xC -n 4 -m 1024 --file -prefix=pktgen_ -- \

-T -P -m "3.[0 -1]";

where ${pktgen} is the path to pktgen binary. The first command is used for
throughput measurements and second command for latency measurements. The
software itself is controlled as described in [64]. When DPDK pktgen is run in a
container the pktgen options stay the same. The container is started as interactive
container with privileged rights, without networking, and with /mnt/huge/ mounted
for hugepages access.

To conclude, the measurements will proceed step-by-step from default Docker
networking to comparing DPDK boosted communications in VM and container
networking. It is expected that the performance will increase as the measurements
proceed: OVS bridge should provide better performance than linux bridge, and
OVS bridge should perform better with than without DPDK boosting. Finally,
containerized application should not perform significantly differently when compared
to a native application.

The measurements introduced here focus on ICC inside a single host. While
from VM to VM and from container in VM to container in VM measurements
provide some insight on how the performance will change when more networking and
virtualization is introduced, more thorough measurements with multiple physical
host involved would be necessary to evaluate the performance of an actual product.
Those measurements, however, are not in the scope of this thesis. Instead they will
be part of the further feasibility evaluations.
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Figure 14: Two of the OVS with DPDK datapath measurements illustrated: VM to
VM (a) and container in VM to container in VM (b).
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Figure 15: The results of performance, throughput (a) and latency (b), comparison
of OVS bridge and Linux bridge in container (C) networking.

4.2.2 Measurement results

The measurement results are presented in the same order than the measurement
cases were introduced: First, unix bridge compared to OVS bridge in container
networking; OVS networking with native datapath compared to OVS networking
with DPDK datapath in VM networking; performance of OVS in container and VM
networking; and finally, DPDK boosted networking with physical interfaces from
native application compared to containerized application.

First, the results from performance measurements of OVS bridge without DPDK
PMDs and Linux bridge are illustrated in Figure 15. The figure shows that with
OVS bridge, even without the DPDK boosting, throughput shows an improvement
of about 10 percent and latency shows a decrease of about 60 percent. Furthermore,
the additional benefits from taking OVS into use are the multi-host capabilities
and increased configurability of OVS. However, for most applications the ease of
use of the default Docker networking will be worth more than the improvement in
performance.

The results from OVS bridge performance comparison with and without DPDK
boosting are illustrated in Figure 16. From the figure, it can be seen that the
throughput is significantly better and latency much shorter, with DPDK enabled.
This is expected behavior as PMDs provided by DPDK libraries should provide better
performance at a cost of larger CPU time and memory usage. However, at this point
DPDK PMDs are only used at the OVS side of the interface; While vhost-port at the
bridge is implemented with DPDK PMD, the virtio-port at the VM is using a driver
provided by the guest kernel. Further increase in performance is expected when both
sides of the interface are using DPDK PMDs in the ports. In addition, introducing
an OpenFlow rule to create direct flow of traffic from sending to receiving port does
not provide different results.

These two first measurement cases also illustrate the virtualization overheads
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Figure 16: The results of performance, throughput (a) and latency (b), comparison
of OVS bridge with and without DPDK boosting in VM networking.

present in OS level and hardware level virtualizations. While an increase in perfor-
mance is seen for VM to VM connection when using DPDK boosting with OVS, the
throughput is far from that of container to container measurements. This is due to
heavier virtualization of the network interface in the VM. Similarly, the latencies are
several times shorter with containers than with VMs.

The results for OVS bridge networking in VM and container networking are
illustrated in Figure 17. Unfortunately, the measurement connection was not stable
enough for reliable throughput measurements due to problems most likely in the
measurement configuration or the used drivers. The pktgen software showed a very
high packet loss with many different configurations. For this reason, only latency
results are presented for this measurement case. The Figure 17a shows that the
guest side DPDK PMD does not provide considerable performance gain with VMs,
compared to latencies shown in Figure 16b, when using routing provided by OVS
to direct packets. Nevertheless, from the Figure 17b it can be seen that significant
performance gain can be achieved with VMs by using a direct flow between the
VMs. However, with containers the latency is the same than without the DPDK
PMDs even when using direct flows. It seems that the heavier virtualization of the
networking interface can not outperform the networking provided by OVS kernel
datapath.

Finally, the results from comparison between native and containerized application
for communication through physical NIC are presented in Figure 18. From the figure,
it can be seen that there is no significant difference in performance between native
and containerized DPDK application. Containerized application shows only slightly
worse performance with smallest packet size. However, it has to be noted that in this
case small differences could also be due to limitations in the measurement hardware.
The used desktop computers are not able to reach the line rate of NICs with the
smallest packet size. It will be left for future work to replicate these measurements
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Figure 17: The results of latency comparison, with routing (a) and flow configurations
(b), of OVS bridge in VM and container networking.
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Figure 18: The results of throughput, in kpps (a) and Mbit/s (b), comparison of
native and containerized application accessing a physical NIC.

with more suitable NICs and carrier grade servers.
The measurement results presented here confirm the assumptions made earlier

with two exceptions: for inter-container communications the DPDK PMDs do not
provide better performance in terms of latency, and for inter-VM communications
the performance gain, in terms of latency, is only visible when direct flow is defined
between the measurement ports. The measurement results are similar to those already
available in the literature: container technologies perform better than virtualization
technologies and the performance of the containers is close to that of a similar native
process [18],[29],[30],[61].

It has to be noted that results from different measurements cases presented here
are not directly comparable as the measurements have been conducted in slightly



43

different setups with different test tools. Nevertheless, the measurements results
are suitable for evaluating the feasibility of containerization architectures and ICC
approaches in user-plane applications. Further, the measurement results provide base
line for making decisions on which architectures and approaches should be tested in
more product like environment.

Chapter summary
This chapter proposed different approaches for ICC, implemented using OSS such
as Docker, DPDK, OVS, and OpenStack. These approaches were analyzed and
measured to effectively compare the performance achieved. Based on both analysis
and performance measurements, it seems that the DPDK and OVS can be used
to boost the networking and ICC performance. In addition, it is expected that
performance could be further enhanced by implementing a shared memory based
ICC. Combination of the proposed approaches will in the future be implemented to
a more product like environment and its feasibility for usage in cloud RAN will be
further evaluated.
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5 Conclusions
This thesis summarized the fundamentals of virtualization, containers, and cloud
computing, and discussed the transformation from traditional RAN to cloud RAN
in terms of software containerization. The thesis introduced the OSS that have been
commonly used to implement VNFs. This thesis proposed two approaches, OVS
with DPDK boosted datapath and shared memory based ICC, for fast ICC based on
the containerization discussion. These approaches were compared through discussion
and measurements.

The proposed containerization approaches seem suitable to be used as building
blocks of cloud RAN software. These proposed approaches are compatible with
microservices architecture and with DevOps practices, thus offering a cloud native
solution for cloud RAN software development. The performance measurements show
promising results even with the issues in vhost-virtio connections. Nevertheless, the
vhost-virtio interfaces for containers though DPDK virtual devices are relatively
new technology and there are multiple organizations in the open source community
developing approaches for DPDK boosted container networking. It is expected, that
the DPDK virtual device support will be further developed.

The aim of this thesis was to evaluate the current and future feasibility of adopt-
ing a combination of virtualization and containerization methods in a cloud RAN
environment in terms of network performance and ICC. From the measurements,
it can be concluded that the proposed approaches are already suitable for most
applications in terms of network performance in ICC and the network performance
with physical NICs compared to native application. In measurements, containers
showed significantly better performance than VMs with the performance of container-
ized application being similar or only slightly worse than that of native application.
Further, although the performance of VMs was improved by using DPDK PMDs
and OpenFlow rules, the performance provided by VMs was still worse than that
of containers. However, the problems in implementing the networking with DPDK
virtual devices through vhost-virtio interfaces might indicate that the technology
is not yet mature enough to be used in applications with carrier grade availability
requirements. Nevertheless, the active open source community around the related
solutions should ensure future feasibility.

Since the aim of this thesis has been met and the inspected technologies are found
to be feasible to be used in cloud RAN user-plane applications the work continues
towards an actual implementation. The rest of this chapter will discuss the topics
defined to be out of the scope of this thesis as well as items left for future work and
suggest directions for future work.

Future work
This section discusses the items mentioned in this thesis but either defined to be out of
the scope of this thesis or left for future work. In addition to the shared memory based
ICC described in Section 4.1, these items include further containerization architecture
designing with orchestration provided by Kubernetes or OpenStack; Implementing
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more strict security and access rights for the containers; Further measurements to with
these new architecture designs and high performance equipment; and implementing
the proposed containerization architecture to an actual MN component as well as
evaluating the performance of this containerized component against traditional one.
Based on this discussion, this section suggests directions for future work.

To use containers as the building blocks of a user-plane application in cloud
RAN, the orchestration of containers has to be well designed. While this thesis
discussed the means of ICC between containers and container networking, there are
still questions on how containers with DPDK processes can be orchestrated with
Kubernetes. Problems might rise especially in automatic occupying of hardware
resources, such as CPU cores or NICs. There are also decisions to be made on the role
of VMs and OpenStack in the containerization architecture related to the trade-off
between isolation and performance.

The access from to container to the host system should be limited to minimum.
Within this thesis the containers have been run with privileged rights and with wide
access to host hugepages and other resources. Similar approach cannot be used in a
product because of the security risks involved. The containerization architecture and
host system should be further developed to avoid any unnecessary access to the host
resources.

Further measurements are required to further analyze the required level of per-
formance boosting in the container networking. The single host and host to host
measurements presented in this thesis should be extended to cover more combinations
of possible container networking and ICC scenarios. The measurements should be
combined and further developed to a single suite, possibly by using some test automa-
tion framework, that automatically analyzes multiple scenarios at once and provides
concise performance report. This further development of the performance test would
allow automated performance evaluation of current or future microservices.

Finally, the proposed architectures should be implemented to an actual MN
component or similar system to verify the feasibility to use the proposed architectures
in a user-plane application in cloud RAN.
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A Dockerfiles
This appendix presents the four dockerfiles that were used to create the Docker
container images that were employed in the measurements: First, dockerfile to create
dpdk-docker image is presented in Listing A1; dockerfile to create ovs-docker image
is presented in Listing A2, and scripts copied to the container in Listings A3–A5;
dockerfile to create pktgen-docker image is presented in Listing A6; and finally,
dockerfile to create iperf-docker image is presented in Listing A7.

The dockerfiles presented here are either based on commonly available base image,
or the dpdk-docker image. Dpdk-docker is based on Centos Docker base image that
is acquired from Docker hub. The Dockerfiles to create ovs-docker and pktgen-docker
are based on dpdk-docker. The dockerfile to create iperf-docker is based on Alpine
Docker base image from Docker hub.

The dockerfiles presented here are built into a docker images using the docker
build command. All of the dockerfiles presented here allow passing software version,
destination folder, and flag to either keep or remove compilers after installation.
In addition, dpdk-docker can be configured to build shared libraries and to enable
debug logging via build arguments. For example, command to build dpdk-docker
with DPDK version 17.05.1, with shared libraries, debug logging enabled, and with
compiler left to image, would be
$ docker build \

--build -arg dpdk_ver =17.05.1 \
--build -arg shared=y \
--build -arg debug=y \
--build -arg leave_compiler=y \
.;

All of the build arguments to these four dockerfiles presented here have default values.
This means that build command can be also executed without any build arguments.

Listing A1: dpdk-docker/build/Dockerfile
1 FROM centos
2

3 # Specify arguments for the Dockerfile:
4 # - dpdk_ver: version to be installed. Exported to image as

DPDK_VERSION.
5 # - dest_dir: directory to install DPDK. Exported to image as

RTE_SDK.
6 # - debug=y: enable or disable DPDK debug features. By default n.
7 ARG dpdk_ver
8 ARG dest_dir
9 ARG debug=n

10 ARG shared=y
11 ARG leave_compiler=n
12

13 # Specify DPDK version to be installed and destination folder.
14 ENV DPDK_VERSION=${dpdk_ver : -17.05} \
15 RTE_TARGET=x86_64 -native -linuxapp -gcc \
16 RTE_SDK=${dest_dir:-/usr/src/dpdk} \
17 DPDK_BUILD=$RTE_SDK/$RTE_TARGET
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18

19 # Fetch and untar DPDK sources.
20 RUN yum install -y --noplugins wget && \
21 wget http :// fast.dpdk.org/rel/dpdk -${DPDK_VERSION }.tar.xz && \
22 tar xf dpdk -${DPDK_VERSION }.tar.xz && \
23 rm -f dpdk -${DPDK_VERSION }.tar.xz && \
24 mv dpdk -*${DPDK_VERSION} ${RTE_SDK} && \
25 yum remove -y wget && \
26 yum clean all
27

28 WORKDIR $RTE_SDK
29

30 # Disable compilation of kernel modules. These should be compiled
and loaded from the host.

31 # Enable compilation of vhost -virtio virtual device requirements.
32 # Set Debug features on/off.
33 RUN sed -i s/CONFIG_RTE_EAL_IGB_UIO=y/CONFIG_RTE_EAL_IGB_UIO=n/ ${

RTE_SDK }/ config/common_linuxapp && \
34 sed -i s/CONFIG_RTE_KNI_KMOD=y/CONFIG_RTE_KNI_KMOD=n/ ${RTE_SDK

}/ config/common_linuxapp && \
35 sed -i s/CONFIG_RTE_LIBRTE_VHOST=n/CONFIG_RTE_LIBRTE_VHOST=y/ $

{RTE_SDK }/ config/common_base && \
36 sed -i s/CONFIG_RTE_LIBRTE_VHOST_NUMA=n/

CONFIG_RTE_LIBRTE_VHOST_NUMA=y/ ${RTE_SDK }/ config/
common_base && \

37 sed -i s/CONFIG_RTE_LIBRTE_PMD_VHOST=n/
CONFIG_RTE_LIBRTE_PMD_VHOST=y/ ${RTE_SDK }/ config/common_base
&& \

38 sed -i s/CONFIG_RTE_LIBRTE_VIRTIO_PMD=n/
CONFIG_RTE_LIBRTE_VIRTIO_PMD=y/ ${RTE_SDK }/ config/
common_base && \

39 sed -i s/CONFIG_RTE_VIRTIO_USER=n/CONFIG_RTE_VIRTIO_USER=y/ ${
RTE_SDK }/ config/common_base && \

40 sed -i "s/CONFIG_RTE_BUILD_SHARED_LIB=n/
CONFIG_RTE_BUILD_SHARED_LIB=${shared }/" ${RTE_SDK }/ config/
common_base && \

41 sed -i "s/\( DEBUG .*=\)[yn]/\1${debug}/" ${RTE_SDK }/ config/
common_base

42

43 RUN yum install -y --noplugins make gcc gdb pciutils iproute sudo
numactl -devel && \

44 make install T=$RTE_TARGET DESTDIR=install && \
45 make config T=$RTE_TARGET && \
46 # make clean && \
47 (test "$leave_compiler" == "y" || yum remove -y make gcc gdb)

&& \
48 yum autoremove -y && yum clean all
49

50 ENV LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$RTE_SDK/$RTE_TARGET/lib
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Listing A2: ovs-docker/build/Dockerfile
1 FROM dpdk -docker
2

3 # Specify arguments for the Dockerfile:
4 # - ovs_ver: version to be installed. Exported to image as

OVS_VERSION.
5 # - dest_dir: directory to install OVS. Exported to image as

OVS_DEST.
6 ARG ovs_ver
7 ARG dest_dir
8 ARG leave_compiler=n
9

10 # Specify OVS version to be installed and destination folder.
11 ENV OVS_VERSION=${ovs_ver : -2.7.0} \
12 OVS_DEST=${dest_dir:-/usr/src/ovs}
13

14 # Fetch and untar OVS sources.
15 RUN yum install -y --noplugins wget git && \
16 git config --global https.proxy ${http_proxy} && \
17 git config --global http.proxy ${https_proxy} && \
18 git config --global url."https ://".insteadOf "git://" && \
19 git clone --depth 1 https :// github.com/openvswitch/ovs.git && \
20 mv ovs ${OVS_DEST} && \
21 yum clean all
22

23 WORKDIR $OVS_DEST
24

25 # Configure OVS to use DPDK , build , and install.
26 RUN yum install -y --noplugins make gcc gdb perl numactl -devel

libpcap -devel python -six openssl automake libtool && \
27 ./boot.sh && ./ configure --with -dpdk=$RTE_SDK/$RTE_TARGET && \
28 make install && \
29 make clean && \
30 (test "$leave_compiler" == "y" || yum remove -y make gcc gdb)

&& \
31 yum autoremove -y && yum clean all
32

33 COPY scripts /* /usr/local/bin/
34

35 ENTRYPOINT ovs -docker -start.sh

Listing A3: ovs-docker/build/scripts/ovs-docker-cleanup.sh
1 #!/bin/bash -x
2

3 # Remove any existing OVS processes and files
4 pkill -9 "(ovsdb -server)|(ovs -vswitchd)";
5 rm -f /usr/local/var/run/openvswitch /*;
6 rm -f /usr/local/etc/openvswitch /*;
7 mkdir -p /usr/local/etc/openvswitch;
8 mkdir -p /usr/local/var/run/openvswitch;
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Listing A4: ovs-docker/build/scripts/ovs-docker-init-db.sh
1 #!/bin/bash -x
2

3 ovsdb -tool create /usr/local/etc/openvswitch/conf.db vswitchd/
vswitch.ovsschema;

Listing A5: ovs-docker/build/scripts/ovs-docker-start.sh
1 #!/bin/bash -x
2

3 # Remove any existing OVS processes and files
4 ovs -docker -cleanup.sh;
5

6 # Init OVS DB
7 ovs -docker -init -db.sh;
8

9 # Start OVS DB server as detached process
10 export OVS_DB_SOCK =/usr/local/var/run/openvswitch/db.sock
11 ovsdb -server --remote=punix:$OVS_DB_SOCK \
12 --remote=db:Open_vSwitch ,Open_vSwitch ,manager_options \
13 --private -key=db:Open_vSwitch ,SSL ,private_key \
14 --certificate=db:Open_vSwitch ,SSL ,certificate \
15 --bootstrap -ca -cert=db:Open_vSwitch ,SSL ,ca_cert \
16 --pidfile --detach --log -file;
17

18 # Modify dpdk params passed to ovs -vsctl here
19 ovs -vsctl --no -wait set Open_vSwitch . \
20 other_config:dpdk -init=true \
21 other_config:dpdk -lcore -mask=0xC \
22 other_config:dpdk -socket -mem="1024" \
23 other_config:dpdk -extra="--file -prefix=ovs_";
24 ovs -vswitchd unix:$OVS_DB_SOCK --pidfile --log -file;

Listing A6: pktgen-docker/build/Dockerfile
1 FROM dpdk -docker
2

3 # Specify arguments for the Dockerfile:
4 # - pktgen_ver: to be installed. Exported to image as

PKTGEN_VERSION.
5 # - dest_dir: to install pktgen. Exported to image as PKTGEN_DEST.
6 ARG pktgen_ver
7 ARG dest_dir
8 ARG leave_compiler=n
9

10 # Specify DPDK version to be installed and destination folder.
11 ENV PKTGEN_VERSION=${pktgen_ver : -3.2.8} \
12 PKTGEN_DEST=${dest_dir:-/usr/src/pktgen}
13

14 # Fetch and untar DPDK sources.
15 RUN yum install -y --noplugins wget && \
16 wget http :// dpdk.org/browse/apps/pktgen -dpdk/snapshot/pktgen -${

PKTGEN_VERSION }.tar.gz && tar xf pktgen -${PKTGEN_VERSION }.
tar.gz && rm -f pktgen -${PKTGEN_VERSION }.tar.gz && mv pktgen
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-${PKTGEN_VERSION} ${PKTGEN_DEST} && \
17 yum remove -y wget && \
18 yum clean all
19

20 WORKDIR $PKTGEN_DEST
21

22 RUN yum install -y --noplugins make gcc gdb libpcap -devel && \
23 make && \
24 (test "$leave_compiler" == "y" || yum remove -y make gcc gdb)

&& \
25 yum autoremove -y && yum clean all
26

27 ENTRYPOINT ["./app/x86_64 -native -linuxapp -gcc/pktgen"]
28 CMD ["--help"]

Listing A7: iperf-docker/build/Dockerfile
1 FROM alpine
2

3 # Specify arguments for the Dockerfile:
4 # - iperf_ver: to be installed. Exported to image as IPERF_VERSION

.
5 # - dest_dir: to install iperf. Exported to image as IPERF_DEST.
6 ARG iperf_ver
7 ARG dest_dir
8 ARG leave_compiler=n
9

10 # Specify iperf version to be installed and destination folder.
11 ENV IPERF_VERSION=${iperf_ver : -2.0.9} \
12 IPERF_DEST=${dest_dir:-/usr/src/iperf}
13

14 # Fetch and untar iperf sources
15 RUN apk add --no -cache wget ca -certificates && \
16 if [ "${IPERF_VERSION}" \< "3.0.0" ]; then \
17 wget https :// iperf.fr/download/source/iperf -${IPERF_VERSION

}-source.tar.gz && \
18 tar xf iperf -${IPERF_VERSION}-source.tar.gz && \
19 rm iperf -${IPERF_VERSION}-source.tar.gz; \
20 else \
21 wget https :// github.com/esnet/iperf/archive/${IPERF_VERSION

}.tar.gz && \
22 tar xf ${IPERF_VERSION }.tar.gz && \
23 rm ${IPERF_VERSION }.tar.gz; \
24 fi && \
25 mkdir -p $(dirname ${IPERF_DEST }) && \
26 mv iperf -${IPERF_VERSION }*/ ${IPERF_DEST} && \
27 apk del --no -cache wget ca -certificates;
28

29 WORKDIR ${IPERF_DEST}
30

31 # Compile and install iperf
32 RUN apk add --no -cache build -base && \
33 sed -i ’s/-pg//’ src/Makefile* && \
34 ./ configure CXXFLAGS="-static -libgcc␣-static -libstdc ++" && \
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35 make && \
36 make install && \
37 if [ "${IPERF_VERSION}" \> "3.0.0" ]; then \
38 ln -s /usr/local/bin/iperf3 /usr/local/bin/iperf; \
39 fi && \
40 if [ "$leave_compiler" != "y" ]; then \
41 apk del --no -cache build -base; \
42 fi;
43

44 ENTRYPOINT ["iperf"]
45 CMD ["--help"]
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B DevStack configuration files
This appendix presents the local.conf files used in setting up the DevStack. Configu-
ration file for setup with OVS with DPDK datapath is presented in Listing B1 and
configuration file for setup with default OVS installation is presented in Listing B2.
In both listings DEVSTACK_BRANCH string is to be replaced with actual name of the
used OpenStack branch, for example stable/ocata.

Listing B1: local.conf file to setup OpenStack with DPDK boosted OvS
1 [[ local|localrc ]]
2 ADMIN_PASSWORD=secret
3 DATABASE_PASSWORD=$ADMIN_PASSWORD
4 RABBIT_PASSWORD=$ADMIN_PASSWORD
5 SERVICE_PASSWORD=$ADMIN_PASSWORD
6

7 DEST=/ ephemeral/stack
8 LOGFILE=$DEST/logs/stack.sh.log
9 enable_plugin heat https ://git.openstack.org/openstack/heat

DEVSTACK_BRANCH
10 disable_service tempest
11

12 enable_plugin networking -ovs -dpdk https :// github.com/openstack/
networking -ovs -dpdk DEVSTACK_BRANCH

13 OVS_DPDK_GIT_REPO=http :// dpdk.org/git/dpdk -stable
14 OVS_DPDK_GIT_TAG=v17 .05.1
15 OVS_GIT_TAG=add49d45bb7e87ad2ad8ccef8d6447ca8a57c89c
16 OVS_PATCHES=https :// patchwork.ozlabs.org/patch /781100/ raw/
17

18 OVS_DPDK_MODE=controller_ovs_dpdk
19 disable_service n-net
20 enable_service n-cpu
21 enable_service neutron
22 enable_service q-svc
23 enable_service q-agt
24 enable_service q-dhcp
25 enable_service q-l3
26 enable_service q-meta
27

28 OVS_NUM_HUGEPAGES =8192
29 OVS_CORE_MASK =0x2
30 OVS_PMD_CORE_MASK =0xC
31 OVS_DATAPATH_TYPE=netdev
32 OVS_LOG_DIR =/opt/stack/logs
33

34 [[post -config|$NOVA_CONF ]]
35 [libvirt]
36 cpu_mode=host -passthrough
37 firewall_driver=nova.virt.firewall.NoopFirewallDriver
38 scheduler_default_filters=RamFilter ,ComputeFilter ,

AvailabilityZoneFilter ,ComputeCapabilitiesFilter ,
ImagePropertiesFilter ,PciPassthroughFilter ,NUMATopologyFilter
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Listing B2: local.conf file to setup OpenStack without native OvS
1 [[ local|localrc ]]
2 ADMIN_PASSWORD=secret
3 DATABASE_PASSWORD=$ADMIN_PASSWORD
4 RABBIT_PASSWORD=$ADMIN_PASSWORD
5 SERVICE_PASSWORD=$ADMIN_PASSWORD
6

7 DEST=/ ephemeral/stack
8 enable_plugin heat https ://git.openstack.org/openstack/heat

DEVSTACK_BRANCH
9 disable_service tempest

10

11 [[post -config|$NOVA_CONF ]]
12 [libvirt]
13 cpu_mode=host -passthrough
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