
Mustafa Kamal

UI Construction for a Web-Based IDE on an
Industrial IoT System

School of Science

Thesis submitted for examination for the degree of Master of
Science in Technology.
Espoo 24.7.2017

Thesis supervisor:

Prof. Petri Vuorimaa

Thesis advisor:

Mika Luotojärvi M.Sc.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aaltodoc Publication Archive

https://core.ac.uk/display/132598595?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


aalto university
school of science

abstract of the
master’s thesis

Author: Mustafa Kamal

Title: UI Construction for a Web-Based IDE on an Industrial IoT System

Date: 24.7.2017 Language: English Number of pages: 7+85

Department of Computer Science

Professorship: Digital Media Technology Code: T-111

Supervisor: Prof. Petri Vuorimaa

Advisor: Mika Luotojärvi M.Sc.

ABB as one of the leading power and automation company is connecting mil-
lions of electrical devices and systems to industrial internet of things called ABB
AbilityTM. ABB AbilityTM is refining the measured real-time data with calcula-
tions to additional soft sensors signals and Key Performance Indicators (KPIs) at
the various levels from the system edges to central cloud. The engineering of the
calculations requires web based Integrated Development Environment (IDE) that
provides good developer experience for the subject matter experts to be productive
in their work. This thesis aims to construct a user interface for ABB calculation
engine that will help subject matter expert to work on the calculation engine more
efficiently. As the output of this thesis work, a web-based IDE is developed on top
of ABB’s internal front end dashboard framework. The developed user interface
lets user to operate the calculation engine more efficiently and follows their natural
work flow.

Keywords: User Interface, User Experience, Javascript, Integrated Development
Environment, Internet of Things, Parser, Single Page Application



Acknowledgments

It is impossible for me to finish this thesis alone. It takes a lot of supports and
contributions from many people to complete the whole work. I would like to use this
opportunity to articulate my gratitude to all people who have helped me throughout
this thesis work.

First, I would like to thank my thesis supervisor at Aalto University, Professor
Petri Vuorimaa, who has given me so much guidances and directions about how to
proceed with the whole master thesis process.

Many thanks for my thesis advisor at ABB, Mika Luotojarvi, for giving me a
chance to do my master thesis at ABB with a very challenging and interesting topic.
I also want to thank all my other colleagues at ABB for all the help during the thesis
work period.

Big appreciation also goes to my scholarship sponsor, LPDP. Without its support
on both funding and administration, I would not be able to pursue this further degree
education.

I also want to thank my family for all the endless supports during my master
study abroad. Lastly, I want to express my gratitude to Allah the almighty god for
all the blessing He has been giving me in my life.

Helsinki, 08.18.2017

Mustafa Kamal

iii



iv

Abbreviations
AST Abstract Syntax Tree
CRUD Create, Read, Update, Delete
CAGR Compound Annual Growth Rate
CSS Cascading Style Sheet
DAI Data Abstraction Interface
DFA Deterministic Finite Automata
DOM Document Object Model
FSA Finite State Automata
FSM Finite State Machine
GUI Graphical User Interface
HCI Human-Computer Interaction
HTML Hyper Text Markup Language
IDE Integrated Development Environment
IIoT Industrial Internet of Things
IoT Internet of Things
IoT-GSI Global Standards Initiative on Internet of Things
ITU International Telecommunication Union
ITU-T ITU Telecommunication Standardization Sector
JSON JavaScript Object Notation
KPI Key Performance Index
NFA Non-deterministic Finite Automata
OPC Open Platform Communications
OPC DA OPC Data Access
OPC HDA OPC Historical Data Access
PC Personal Computer
REST REpresentational State Transfer
SASS Syntactically Awesome Style Sheets
SDK Software Development Kit
SOA Service Oriented Architecture
SOAP Simple Object Access Protocol
SQL Structured Query Language
UI User Interface
UX User Experience
W3C World Wide Web Consortium
WSDL Web Service Definition Language
XHR XmlHttpRequest



Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

1 Introduction 1
1.1 Background and Motivations . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3.1 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Research Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4.1 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4.2 Constructive Research . . . . . . . . . . . . . . . . . . . . . . 3

1.5 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Industrial Internet of Things 5
2.1 Internet of Things . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Industrial Internet of Things . . . . . . . . . . . . . . . . . . . . . . . 7

3 User Interface Design 11
3.1 User Interface Definition . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 User Interface Quality Factor . . . . . . . . . . . . . . . . . . . . . . 12
3.3 User Interface Design Process . . . . . . . . . . . . . . . . . . . . . . 14
3.4 UI Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4 Web Application Development 20
4.1 Web Technologies Overview . . . . . . . . . . . . . . . . . . . . . . . 20

4.1.1 HTML5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.1.2 CSS 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.1.3 Javascript . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.1.4 Ajax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.1.5 Websocket . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.2 Web Application Architecture . . . . . . . . . . . . . . . . . . . . . . 22
4.2.1 Client-Server Architecture . . . . . . . . . . . . . . . . . . . . 22
4.2.2 Service Oriented Architecture . . . . . . . . . . . . . . . . . . 23

v



vi

5 Parser and Automata Theory 24
5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.2 Parser in a Compiler . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.2.1 Symbol Table . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.2.2 Abstract Syntax Tree . . . . . . . . . . . . . . . . . . . . . . . 26

5.3 Parser Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.4 Parsing Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.5 Non Deterministic Finite Automata . . . . . . . . . . . . . . . . . . . 29

6 ABB AbilityTM 31
6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6.2 cpmPlus History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6.2.1 Features and Functionalities . . . . . . . . . . . . . . . . . . . 32
6.2.2 Data Abstraction Interface (DAI) . . . . . . . . . . . . . . . . 33

6.3 cpmPlus View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
6.3.1 Dashboard Editor . . . . . . . . . . . . . . . . . . . . . . . . . 33
6.3.2 SDK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6.4 cpmPlus Calc Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
6.4.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

7 Requirements 40
7.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
7.2 User Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
7.3 Use Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
7.4 User Interface Consideration . . . . . . . . . . . . . . . . . . . . . . . 45
7.5 Functional requirements . . . . . . . . . . . . . . . . . . . . . . . . . 46

7.5.1 List Calculation Dashboard . . . . . . . . . . . . . . . . . . . 46
7.5.2 Add and Edit Calculation Dashboard . . . . . . . . . . . . . . 47

7.6 Non Functional requirements . . . . . . . . . . . . . . . . . . . . . . . 50
7.6.1 Usability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
7.6.2 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
7.6.3 Integration and Extendability . . . . . . . . . . . . . . . . . . 51
7.6.4 Customizability . . . . . . . . . . . . . . . . . . . . . . . . . . 51
7.6.5 Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

8 Development and Implementation 52
8.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
8.2 Technology Stacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

8.2.1 Prototyping stacks . . . . . . . . . . . . . . . . . . . . . . . . 54
8.3 Prototyping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

8.3.1 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
8.3.2 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
8.3.3 Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

8.4 Parser Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
8.4.1 Server Side Parsing vs Client Side Parsing . . . . . . . . . . . 60



vii

8.4.2 Parser Generator vs Manual Parsing . . . . . . . . . . . . . . 61
8.4.3 Abstract Syntax Tree vs Symbol Table . . . . . . . . . . . . . 61
8.4.4 Syntactical Analysis Process . . . . . . . . . . . . . . . . . . . 62
8.4.5 Symbol Table Format . . . . . . . . . . . . . . . . . . . . . . . 62

8.5 User Interface Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
8.5.1 Widget Development . . . . . . . . . . . . . . . . . . . . . . . 64
8.5.2 Calculation Engine Widgets . . . . . . . . . . . . . . . . . . . 67
8.5.3 Dashboard Arrangement . . . . . . . . . . . . . . . . . . . . . 71

9 Discussion 74
9.1 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

9.1.1 Meeting the Requirements . . . . . . . . . . . . . . . . . . . . 74
9.1.2 Answering Research Questions . . . . . . . . . . . . . . . . . . 74

9.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
9.2.1 Parser Performance Optimization . . . . . . . . . . . . . . . . 75
9.2.2 More Advanced Code Editor Features . . . . . . . . . . . . . . 76
9.2.3 More Advanced IDE Features . . . . . . . . . . . . . . . . . . 76
9.2.4 Drag-and-drop Oriented User Interface . . . . . . . . . . . . . 76
9.2.5 Framework Modernization . . . . . . . . . . . . . . . . . . . . 77
9.2.6 Web Component Implementation . . . . . . . . . . . . . . . . 77

10 Conclusions 78

Bibliography 79



Chapter 1

Introduction

1.1 Background and Motivations
Internet of Things (IoT) technology has been gaining attention of experts all over
the world. IoT enables anything to be connected to the internet. This connection
will make it possible for any objects to communicate with one another. There is an
ever increasing trend to incorporate IoT technology in various field.

The increasing trend of IoT implementation is also happening in the industrial
manufacturing. According to a research report published by World Economy Forum,
industrial internet is indeed transformative [28]. It is more and more important for
any industrial devices to be connected to the internet. This connection will make it
much easier and more efficient to process the raw data, which is retrieved from all
those industrial devices.

ABB as one of the leading power and automation company is connecting millions
of electrical devices and systems to industrial internet of things platform called ABB
AbilityTM. ABB AbilityTM is refining the measured real-time data with calculations
to additional soft sensors signals and Key Performance Indicators (KPIs) at the
various levels from the system edges to central cloud. This data refinement process
is done by the subset system of ABB Ability called calculation engine. All config-
urations of the calculation engine are stored on the proprietary real time database
engine made internally by ABB. The calculation engine would then read any config-
urations that has been stored in the database and execute the calculation based on
those configurations. Results of the calculation can be stored back to the database
for end users consumption.

1.2 Problem Statement
Prior to the newly developed calculation engine, ABB already has a calculation
engine Software Development Kit (SDK). With this SDK, the calculations in ABB
Ability platform are developed with Microsoft Visual Studio and a calculation frame-
work that provides execution environment for the calculations. This approach has
a drawback. It requires direct access (remote desktop) for the user to the back-end

1



2

server and to its resources. This is not an acceptable arrangement especially from
the cyber security perspective.

The new calculation engine was built to solve the security problem. The new
approach provides client-side development of the calculations and contains two in-
dependent parts: a calculation engine (back-end) and client-side editor (front-end),
which should have some level of IDE-like functionality. It allows the possibility of
creating multiple client-side editors with the same server-side back-end. ABB al-
ready has two client-side editors. But these editors are not really IDEs and still
have several limitations.

Without reliable client-side IDE, the only way to work with the new calculation
engine is to directly fill the database tables of this calculation engine with the pre-
ferred configurations. This is a tedious work, especially when it comes to writing
the calculation script. End users of this calculation engine within ABB have so far
just used Microsoft Visual Studio to write their calculation code. After that, they
would copy and paste the code directly to the database. This work flow is inefficient
and slow. Especially, when they need to debug their code. This hinders the efficient
utilization of the engine.

1.3 Objectives
The objectives of this thesis is to design a better user interface for the calculation
engine. Another objective is also to provide a better experience for the end users of
this calculation engine. With better UI/UX, it will be easier for the users to operate
the engine. This will results in a more efficient utilization of the calculation engine.
More efficient usage of the calculation engine also means faster and more productive
work on analyzing all the raw data from the existing IoT system.

The user interface itself is expected to be in the form of a web based application.
This web based application need to be built on top of the existing Javascript-based
ABB’s front end system. It will need to have some level of IDE-like functionality.

1.3.1 Research Questions

With that objectives in mind, here is the list of the research question for this thesis:

• What are the requirements of the web based IDE for ABB Ability
Calculation Engine?
This first question deals with the requirement of such system. In depth re-
quirement analysis will need to be done as the foundation of the development
of the web based IDE later on.

• How should the web based IDE be designed and developed?
This second question deals with the development of the web based IDE. It
investigates the choice of technology, the structure of the code, the layout for
the UI and other technical consideration regarding the development.



3

1.4 Research Methodology
The research methodology for this thesis consists of two approaches: literature study
and constructive research. Literature study is used for the theoretical background
and constructive research is used to answer the main research questions.

1.4.1 Literature Review

This thesis explores the theoretical background by conducting literature study on
various related topics. The study follows the guideline of systematic literature review
in software engineering, which was written by Kitchenham in 2007 [50]. The goal
of this literature study is to get a better and holistic understanding of the current
state of researches in the field of industrial internet of things, user interface design
and web application development in general. With this literature study, this thesis
identifies, analyzes and synthesizes available relevant researches to the topic related
to it [51]. The topics, which were investigated, include:

• Internet of things.

• Industrial internet of things.

• User interface design and study of human-computer interaction.

• Web application development.

• Parser and automata theory.

1.4.2 Constructive Research

To answer the main research question, this thesis uses the constructive research
methodology. Constructive research is a research approach where a solution to
the problem statement is constructed. It implies developing an artifact that solves
a problem with the goal of formulating new knowledge about how to solve, un-
derstand, explain or model the problem [17]. The output of this methodology is
called a construct. The construct could be a theory, algorithm, model, software or
framework. The construct would then be evaluated by some benchmark test on the
construct which has been built. In the case of this thesis, the construct is the web
based IDE application, which will be used to configure a calculation engine on an
industrial IoT system.

The constructive research approach consists of six phases [48][58]:

1. Choose a practical relevant problem to be solved with research potential.

2. Acquire a broader and more holistic understanding of the topic.

3. Build an artifact as a solution construct to the problem.

4. Demonstrate that the solution works.



4

5. Formulate the theoretical body of knowledge based on the presented solution.

6. Evaluate the pertinence of the solution.

This thesis incorporates all the steps. The practical problem in this case is how
to present a better user interface to operate a calculation engine for industrial IoT
system. The second step is done by doing the systematic literature review as well
as assimilating ABB’s industrial IoT system architecture. This includes gathering
information about the relevant researches and understanding the existing ABB’s
code base. The third step is the one which takes most time. The artifact is built in
the form of an actual front-end system, which can be used by the end users at ABB.
The development of the artifact is also demonstrated, evaluated and reiterated. The
last step is examined in the discussion chapter.

1.5 Thesis Structure
This thesis is structured as follows:

• The first chapter (1) contains the introduction of the thesis. The introduction
consists of background and motivation of thesis along with the objective of
the thesis. Next, the research questions are defined. It is then followed by
explanation about the research methodologies used to answer the research
questions.

• The theoretical background is split into four chapters. First theoretical chapter
(2) examines the current state of research on industrial internet of things.
The second part of the theoretical background is written in chapter 3, which
discusses about user interface design. The third theoretical chapter (4) is
about web application technology, which is being used as the foundation of
building the web based IDE application. The last theoretical chapter (5) will
examine the concept of parser and automata theory which is a fundamental
concept for an important part of this thesis.

• The next chapter (6) is called ABB Ability. It contains explanation about the
existing ABB Ability platform to which this thesis work is built upon. This
way, there would be a clearer context for the remaining chapters.

• Chapter 7 is about requirements. It contains in-depth requirement analysis of
the project, which is the object of the thesis work.

• After the requirements are clarified, comes the biggest part of the thesis. That
is the implementation and development of the artifact in this constructive
thesis work. The whole process is written in chapter 8

• Chapter 9 is discussion. This chapter contains evaluation of the thesis work
and the possible future work based on this thesis work.

• The last chapter (10) is the conclusion.



Chapter 2

Industrial Internet of Things

This chapter discusses internet of things in general and also specifically industrial
internet of things. In this chapter, this thesis will examine the characteristic and
general potential of internet of things. This thesis will also look for latest researches
in the field of internet of things. Chapter 2.1 will discuss about internet of things
in general and chapter 2.2 will discuss specifically industrial internet of things.

2.1 Internet of Things
Definition of IoT

Internet of Things (IoT) is a term to define electronic interconnection between ob-
jects. The term was first coined by Kevin Ashton of Procter & Gamble in 1999 [7].
The definition has been standardized in 2013 by Global Standards Initiative on In-
ternet of Things (IoT-GSI). It is defined in ITU-T Recommendations Y.4000/Y.2060
as "A global infrastructure for the information society, enabling advanced services
by interconnecting (physical and virtual) things based on existing and evolving in-
teroperable information and communication technologies" [67].

By that definition, the "things" in the context of IoT, which is often referred as
smart objects, could be anything. It could be physical or virtual objects as long as
these objects are augmented by network capabilities [53]. The physical things could
be in the form of small gadgets like key chain, wristwatches, eyeglasses and various
electrical equipments. It could also be in the form of big items like refrigerator,
cars, industrial robots and buildings. Examples of virtual things are software and
multimedia content. They could also be considered as part of the IoT network as
long as they can be stored, processed and accessed [67].

The electronic interconnection between all the smart objects will enable them to
interact with each other. This interconnection is much more complex than just a
machine-to-machine interconnection. In fact, IoT has been seen as the extension of
machine-to-machine communication [6][42]. In the IoT context, the interconnection
is not limited only between two machines. It is instead a complex interconnection
between multiple machines, which are connected to the global internet infrastruc-
ture.

5



6

One important thing to note is that IoT is not a single monolithic technology [52].
It is instead an umbrella term for collection of technologies, which work together to
form the entity of what we call as IoT. The advance of those underlying technologies
is what drives IoT to gain momentum in the recent years. Silicon chips that keep
shrinking by size over time along with the decrease on price allow for creation of
small sized embedded systems with more computing power to run basic calculations.
Wireless networking technology that keeps finding a way to become faster and faster
has made it possible for all the small device to be connected with ease [14].

Benefits of IoT

The complex inter-networking of things will make it possible for all those objects to
collect and exchange their internal data. This exchange of data could then be used
as a way to sense or control the object remotely through the network. As a result,
data collection could be enhanced. It could be done much more frequently, it could
even be done in real-time [52]. It will also improve access and control of devices. A
good example in this case is home automation [35]. Smart home has been proven
to give high level of ease and convenience for its resident to access and control the
devices in and on the home.

Impacts of IoT

IoT, especially through the use of big data analytics, definitely has a big impact on
our life. Riggin and Wamba (2015) wrote a paper which discusses about the creation
of research framework for the topic of IoT impact. They split the impact on four
level: society, industry, organizational and individual [71].

At the individual level, IoT has huge influence on our daily life. It helps us by au-
tomating many day-to-day tasks such as reordering groceries, tracking body weights
and house monitoring [81][35]. All of those automated tasks increase individual
productivity.

Looking from organizational perspective, IoT has been proven to have a big
impact on increasing business efficiency. Improvements on the data collection, data
handling, access and control of the smart objects are the factors behind it. Varian
Medical System has seen 50 percent reduction in mean time to repair their connected
devices because of the implementation of IoT. As a result, they successfully reduced
customer service costs with 20 percent fewer technician dispatches worldwide [79].
Cisco with their IoT solution has helped its customer, Stanley Black & Decker, Inc.,
to increase Overall Equipment Effectiveness (OEE) on their router production line
by 24 percent among many other improvements [15]. ABB’s connected robot saves
time and money for Injection Technology Corp. It reduces man-hours by 45 percent
and also reduces cycle time by 23 percent [37].

Industry-wise, adoption of IoT could also potentially transforms various indus-
tries. Bandyopadhyay and Sen (2011) discuss in their article how IoT could impact
automotive industry, telecommunications industry, health care industry and many
others [8]. In general, the impact that IoT has on industry is mostly derived from



7

its impact on the organizational level. IoT increases business efficiency, which in
turn drive fundamental change in the industry as well.

In the broader societal sense, IoT also has various impacts. The advent of smart
city could be seen as something that is fueled by the growth of IoT adoption [47].
Jeremy Rifkin in his book, The Zero Marginal Cost Society, goes even further by
inspecting how IoT will affect human civilization. He describes in detail how IoT is
speeding humanity to an era of nearly free goods and services. This precipitate the
rise of global Collaborative Commons as well as diminishing the impact of capitalism
over time [70].

Trends of IoT

In general, IoT has been seen as an emerging technology that will be disruptive for
business, industry and society at large. Gartner, in its 2016 Hype Cycle report, has
listed IoT as one of the emerging technologies in which organization must track to
gain competitive advantage [33]. US National Intelligence Council, in its report,
has listed IoT as one of six technologies that will be disruptive to our future [16].
The Google web search popularity for "Internet of Things" keywords also shows
continuous sign of growth.

Many marketing consulting and technology companies have made forecast on
the adoption of IoT. In 2016, IHS made a forecast that the installed base of IoT
devices will grow from 15.4 billion devices in 2015 to 30.7 billion devices in 2020 and
75.4 billion in 2025 [57]. In 2015, McKinsey made an estimation that the IoT has a
total potential economic impact of $3.9 - $11.1 trillion per year in 2025, which would
amount to 11 percent of the world’s economy in 2025 [63]. Bain & Company Inc, in
its report, expects that annual revenues for IoT vendors could exceed $450 billion
by 2020 [11]. Gartner forecasts that 8.4 billion connected "Things" will be in use in
2017, increasing 31 Percent from 2016 [32]. IDC made a prediction that the global
IoT revenue will reach $7.065 billion by 2020 from $1.927 billion in 2013, gaining
a Compound Annual Growth Rate (CAGR) of 20.04% [59]. Ericsson forecasts that
by 2022, there will be a total of around 29 billion connected devices worldwide, in
which 17.6 billion of it is in the form of wide area IoT and short range IoT [12].

It is hard to make an apple-to-apple comparison between all the forecasts of IoT.
Those forecasts seem to be vary widely. It is because each of the institution has
their own definition of IoT and also their own unique method of forecasting. But
despite the fact that the forecast of either the adoption rate and market growth of
IoT is so divergent, it still shows that IoT is growing nonetheless.

2.2 Industrial Internet of Things
Industrial Internet of Things (IIoT) is the application of the IoT technology to the
manufacturing industry. Industrial internet has been defined by Industrial Internet
Consortium as an internet of things, machines, computers and people, enabling
intelligent industrial operations using advanced data analytics for transformational
business outcomes [56].



8

IIoT is invariably included as one of the most important component of Industrie
4.0 trend. The term Industrie 4.0 was first introduced by the German government
in the strategic planning for their manufacturing industries [10]. The term was later
popularized by representatives of German industry leaders, researchers, industry
associations and unions [44][69]. The German term has now been spread in a more
global sense into Industry 4.0. Industry 4.0 is the next industrial revolution, which
is happening right now [38]. The first industrial revolution is mechanization of
the manual labors. Second industrial revolution is electrification especially in the
form of development of assembly line. Third industrial revolution is digitization
with the introduction of computer technology. The fourth industrial revolution is
the interconnection of all the digital industrial device to form a wide network of
industrial things [21].

Benefits and Potentials of IIoT

IIoT offers many benefits for businesses from various industries. It improves con-
nectivity, increases efficiency and pushes further scalability. All those improvements
can lead to savings in time, resources and costs for the business. Further, higher
efficiency in the industry will indirectly impact the economy at large as well.

The most common benefits that has been tapped by the industry from IIoT tech-
nology is in the case of predictive maintenance. Predictive maintenance is defined
by Joseph Patton in his book, Maintainability and Maintenance Management, as
measurements that detect the onset of system degradation (lower functional state),
thereby allowing causal stressors to be eliminated or controlled prior to any signif-
icant deterioration in the component physical state [68]. IIoT technology provides
a more versatile way to conduct predictive maintenance. With IIoT technology,
system degradation can be detected even before it happens. Utilization of big data
analytics can determine if a degradation is likely to happen based on all the raw
data from the sensors. Predictive maintenance has been known to make a saving
of up to 12 percent over scheduled report, reduce overall maintenance cost by 30
percent and eliminating breakdown by 70 percent [76].

Another obvious way IIoT could help business is by bridging a data gap from
the factory floors up to the executive offices. With IIoT technology, raw data from
sensors and devices can be processed in real-time. The processed data could then
be analyzed and presented to the executive in a decision support system. This way,
IIoT could aid the business decision making process to be faster and more rigorous
[49].

IIoT also has the potential to open up a new revenue channel by allowing the de-
velopment of innovative business models. Accenture in its white paper, has reported
several cases of business which has been implementing a novel business model based
on IIoT technology [18]. Michelin helps truck fleet managers reduce fuel costs and
allows them to pay for tires on a kilometer-driven basis. CLAAS, an agricultural
machinery company, moved into a service based business model by letting farmers
to operate their equipment on autopilot. They also give advice to farmers on how
to improve their crop productivity.



9

Challenges of IIoT

With all the benefits and potentials offered by IIoT, it also comes with its own set
of challenges. Survey conducted by World Economic Forum shows that two of the
biggest hurdles for IIoT are interoperability and security [28].

There are various IIoT device out there manufactured by different companies.
Without a standardized protocol, those devices would not be able to talk to one
another, subsiding the whole point of IIoT. To solve this problem, Industrial Internet
Consortium has published the Industrial Internet Reference Architecture Technical
Report. This resource, represents broad industry consensus, built to drive product
interoperability and simplify development of Industrial Internet systems that are
better built and integrated with shorter time to market and, at the end, able to
better fulfill their intended uses [43].

Security is also an obvious issue. Advent of IIoT means that more data would be
connected to the wider network, either a private network within the organization or
the public internet itself. This puts the data at risk. For this issue, Industrial Inter-
net Consortium has published The Industrial Internet Security Framework (IISF).
This collaborative project is the most in-depth cross-industry-focused security frame-
work comprising expert vision, experience and security best practices [73].

Current State of IIoT

Many innovative manufacturing companies have already implement some level of
IIoT technology in their whole business process [61]. Cisco announced four global
IoT Centres of Excellence at CES 2014. Shell has been implementing an IIoT solu-
tion for their oil field which they call The Smart Field. General Electric has offered
a smart grid solution called GridIQ which depends heavily on IIoT technology. ABB
has long offered IIoT solutions for its various clients. Now, they are moving into a
unified IIoT solution called ABB AbilityTM, which is an integral part of this thesis
[60].

On the public sectors, many governments have already started initiative to ignite
the growth of industrial IoT. Germany inspires many other countries with its indus-
trie 4.0 initiative [10]. USA, under president Barack Obama, has launched Advanced
Manufacturing Partnership program. The program set smart manufacturing as one
of the areas of interest for potential future investment [3]. Many Asian countries
have also started their initiatives. Singapore’s Smart Nation program includes sup-
port for IIoT initiatives in the country [75]. Taiwan initiates Productivity 4.0 as the
answer to industry 4.0 movement [80]. Chinese government has a program called
Made in China 2025 with the goal to comprehensively upgrade Chinese industry.
One of the strategy is to incorporate IIoT technology into Chinese manufacturing
industry [62].

Industrial internet growth momentum could also be seen from the establishment
of Industrial Internet Consortium (IIC). This consortium was founded in March
2014 to bring together the organizations and technologies necessary to accelerate
the growth of the Industrial Internet by identifying, assembling and promoting best



10

practices. Their member includes small and large technology innovators, vertical
market leaders, researchers, universities and government organizations [2].



Chapter 3

User Interface Design

The main task of this thesis work is to build a UI for ABB’s calculation engine. For
this purpose, a thorough examination of theoretical framework for UI design process
needs to be done. The first sub chapter (3.1) will define what is UI to give a clearer
scope of what we are discussing in this chapter. Next sub chapter (3.2) will examine
what constitute a good UI and what factors contribute to how well a UI is and how
do we measure it. After that, sub chapter 3.3 will dig into the topic of systematic UI
design and development process from the literature. Lastly, chapter 3.4 investigates
existing researched approaches to evaluate a UI.

3.1 User Interface Definition
Soren Lauesen in his book, User interface design: a software engineering perspective,
defines User Interface (UI) as the part of the computer system that we can see, hear
and feel [54]. Wilbert O. Galitz expands this definition. Beside being the part of
the computer system that we can see, hear and feel, UI is also the part where we
can talk to, or otherwise understand or direct [30].

UI has two components: input and output. Input component is where the user
gives any command to the computer. In most computer systems, it is done via key-
board and mouse. Output component is where the computer shows its computation
result to the user. In the traditional computer system, it is mostly through the
monitor screen and/or speaker.

UI design is one of the most important topic in the field of Human-Computer
Interaction (HCI). HCI has been defined by Association for Computing Machinery
(ACM) as "a discipline concerned with the design, evaluation and implementation
of interactive computing systems for human use and with the study of major phe-
nomena surrounding them" [39]. The scope of HCI research is not only limited to
the common usage of standard personal computer by an individual. The context of
human in HCI does not only point to a single individual, it reaches to other scopes
such as a group of people or sequence of users. The context of computer in HCI also
does not limited to a single PC workstation. Computers in the modern world are
everywhere and have many forms. Computers can be in the form of big machineries.
There are computers in many modern vehicles. A smartphone can also be considered

11



12

a computer. A small embedded system is also another form of computer. Lastly,
the context of interaction in HCI has a wide meaning of any kinds of interaction
between a user and computer. HCI is a multi-disciplinary field which combines the
study of computer science, engineering, psychology, graphic design and many others.

3.2 User Interface Quality Factor
There are many factors that define a good UI. Many parties have tried to formulate
some set of principles on designing high quality UI. Wilbert O. Galitz in his book,
The Essential Guide to User Interface Design: An Introduction to GUI Design
Principles and Techniques, has derived list of general principles that he took from
various UI design guides of companies and organizations such as Microsoft, IBM
and Open Software Foundation. The list is as follows [30]:

• Aesthetically pleasing. A UI should be aesthetically pleasing by aligning
a good composition of layout, colors and graphical element. It will help the
system to be more inviting for the user.

• Clarity. What is included in the scope of clarity of a UI here is the visual
elements, functions, metaphors and wording. They all need to be clear, un-
derstandable, simple and unambiguous.

• Compatibility. A good UI should provide compatibility to the user, the
task and the product. It needs to appropriate to the needs of the users. The
organization of the system should follow the flow of task at hand. It should
have some level of compatibility to an existing similar system that the user
might already use.

• Comprehensibility. A good UI should be easily learned and understood.

• Configurability. One sign of an exceptional UI is its ability to be easily
customized and personalized to ignite higher sense of belonging from the user.

• Consistency. A system should maintain consistency across its all views.
Similar components should have a similar look and operate similarly. The
function of an element should not change and the result of its action should
always yield the same result.

• Control. The user must have control of the interaction with the UI. Any
result should come from explicit user request and it should be provided as
quickly as possible.

• Directness. A system should provide direct ways to accomplish task.

• Efficiency. A good UI should minimize the tasks needed by the users to
operate it.



13

• Familiarity. Similar to the compatibility point on the user, a UI should
mimic the user’s behavior pattern and utilize familiar concept.

• Flexibility. A system should have some level of flexibility to accommodate
different types of users.

• Forgiveness. A system should be able to tolerate the potential error that
could be made by the users.

• Predictability. Users will naturally predict what would happen throughout
his operating of the system. The UI should take into account this user’s
prediction.

• Recovery. A system should allow the user to go back to some point on the
state of the UI. It should make sure that they would never lose their work for
any reason.

• Responsiveness. A good UI is those which could provide immediate response
to actions that are taken by the users.

• Simplicity. A simple and straightforward UI is one sign of a good UI.

• Transparency. The inner working of an interface should be transparent to
the users, letting them to focus on their task or job.

• Trade-Offs. Many of those principles above have a high chance of conflict-
ing with each other. A good UI should manage a good balance of trade-offs
between all those principles.

Speaking about UI quality, one can not avoid the topic of usability. It could be
concluded that a good UI equal to high usability. Vice versa, a bad UI indicates
low usability. There is an ISO standard, which gives a definition for usability. In
that standard, usability is defined as "The extent to which a product can be used by
specified users to achieve specified goals with effectiveness, efficiency, and satisfaction
in a specified context of use" [45]. According to Soren Lauesen, usability consists of
six factors [54]:

• Fit for use. This is functionality factor. How good is the system in terms of
providing good means of its function.

• Ease of learning. How easy it is to learn the system become another factor
to usability.

• Task efficiency. If it takes less time and less work for a user to achieve a
task, it means that the system has high task efficiency.

• Ease of remembering. A system, which is easy to remember, means it is
easier to operate.



14

• Subjective satisfaction. User personal satisfaction also contributes to the
whole point of system usability.

• Understandability. A system with high usability means that the system is
easy to understand.

All those principles apply for UI in general. Be it UI for desktop application, mo-
bile application, web application or any other kinds of platform. There are of course
some specific principle for each type of UI. In the case of web based application,
especially those, which is considered rich internet application, there is also some set
of principle on designing for this type of UI. Bill Scott in his book, Designing web
Interfaces: Principles and Patterns for Rich Interactions, formulates six principles
in this matter [74]:

• Make it direct. What it means is that the system should be able to respond
directly to the user’s interaction. Examples of design pattern on this principle
includes in-page editing, drag-and-drop and direct selection.

• Keep it lightweight. A good rich internet application should avoid the
problem that usually exists in desktop based UI: tool clutter. One example of
design pattern on this term is contextual tools. What it means by contextual
tools is a set of tools, which only appear on some context. Either only when
it is hovered, or being put directly on a particular area on the page near
to a related content, or something similar to right click menus on desktop
application.

• Stay on the page. There was a time when web applications relies on the
need to refresh and/or open a new page as a result of a particular action. It
was cumbersome and broke user flow. Now, with modern web technologies
like Ajax, we can avoid that problem. It has now became a trend among web
application developers to build a single page application, which does not need
any page refresh at all. Modern web application should go with this principle
to minimize page refresh.

• Provide an invitation. Invitation in this context is the prompts and cues
that help guiding users through an interaction.

• Use transition. Transition in a UI catches the user attention. A good UI
should utilize it without overdoing it.

• React immediately. A good UI should provide immediate feedback to the
user upon any interaction that they have started.

3.3 User Interface Design Process
There are many attempts to conceptualize a systematic approach to UI design pro-
cess. Each attempt has their own pros and cons. Many of those attempts have
similarities on parts of their process.



15

One classical approach is called iterative design. Iterative design is a method-
ology where the process of prototyping, testing, analyzing and refining is done in a
cyclic manner. In this approach, the usage of the ready-made UI is used as a re-
search object towards evolving the UI itself into its better form. This approach will
allow developers to identify any usability issues that could exist on the UI. There
are three core steps on this methodology [65]:

1. Task analysis. The first step is to do user task analysis. This needs to be
done as the basis for developing the prototype later on.

2. Prototype development. The next step is to immediately build the proto-
type based on the result of the task analysis.

3. Usability testing. After the prototype is ready, a quick usability testing is
then conducted to see whether the UI has good usability or not. The result of
this process will be used to refine the prototype.

Figure 3.1: Iterative design diagram

Wilbert O. Galitz in his book, The Essential Guide to User Interface Design: An
Introduction to GUI Design Principles and Techniques, formulates a more detailed
process on designing UI. The process comprises of 14 steps. Those 14 steps are as
follows: [30]

1. Step 1 Know your user or client.
In the first step, we need to identify our users. Who are they? What are their
level of skills, knowledges and experiences? What is the characteristics of their
needs? All these questions need to be observed from the users.

2. Step 2 Understand the business function.
After a thorough understanding of the user, the next step is to determine the
business function. For this purpose, we need to do task analysis to inspect the
user tasks and activities that is going to be the requirement of the UI.

3. Step 3 Understand the principles of good screen design.
Before starting to develop the UI, it is important for the designer to understand
the hardware constraint of the UI. The developer needs to know what kind of
screen he is going to build the UI into. The designer needs to know at least
the basic principles of designing a UI on various types and sizes of screen.



16

4. Step 4 Develop system menus and navigation schemes.
The first part of designing the UI is to develop the menus and navigation
schemes. This is important especially on a large and complex system. A good
navigational system would greatly help the user to navigate through the UI.
It will also help designers on their work by becoming the progress point of
reference throughout the work.

5. Step 5 Select the proper kinds of windows.
The definition of windows in this context is an area of the screen, which con-
tains the UI. This step is especially important for complex system, which needs
multiple windows to operate each part of the system.

6. Step 6 Select the proper device-based controls.
For standard system, which uses regular PC, the control device is usually
keyboard and mouse. But those two options might not be the best choice
for some other type of system. A cash machine might only need a keypad
or touchscreen. Drawing software would be best if it has support for stylus
and/or drawing tablet. Modern smartphone manufacturers are now beginning
to emphasize the usage of microphone as device control by letting users to
speak out the command to a personal assistant software.

7. Step 7 Choose the proper screen-based controls.
In contrast to device-based control, a screen-based controls are the elements on
the screen that could perform as control mechanism for itself or other elements
on the UI.

8. Step 8 Write clear text and messages.
Writing a good wording for the UI is a step in UI design process that is
often overlooked. A clear and meaningful words, messages and text can help
increases the system usability.

9. Step 9 Provide effective feedback, guidance and assistance.
Every user interaction on the UI should be given immediate feedback in some
way. This way the user can have a sense of control on the UI. A good UI
must provide this immediate feedback. It is also important for a UI to provide
guidance and assistance along the way, especially on the part of the UI which
is quite complex.

10. Step 10 Provide effective internationalization and accessibility.
A system that is targeted for wide target users needs to pay attention to inter-
nationalization and accessibility. For example, a UI should take into account
layout for language that use right-to-left script. Another example is providing
good accessibility for blind people by developing a system in accordance to
accessibility guidance from screen reader application.

11. Step 11 Create meaningful graphics, icons and images.
Nice looking visual elements like graphics, icons and images can function as



17

attention grabber for the user. They will ease the user on operating the UI.
Although, the usage of such visual elements needs to be done carefully so that
it would not be distracting for the users.

12. Step 12 Choose the proper colors.
Similar to the function of graphics, color also helps draw attention from the
user. It can help creating a better structure of information on the screen.
On the other hand, if used improperly, it could also has a bad impact on the
system usability.

13. Step 13 Organize and layout windows and pages.
At this point, all the necessary elements that are needed on the UI have been
prepared. The windows have been defined, wording and text have been writ-
ten, visual elements have been prepared, color schemes have been chosen. After
they are all ready, it is time to organize everything in their respective places
on the UI in a good organized layout.

14. Step 14 Test, test, and retest.
Once the UI has been developed, it is important to do a thorough testing
throughout the UI, This testing process needs to be done iteratively alongside
the refinement of the UI itself.

3.4 UI Evaluation
In order to build a really good UI, a thorough evaluation needs to be done. We
have previously mentioned about usability testing as one of the steps in iterative
design. Usability testing is one of the most well-known approach to evaluate a UI.
This chapter will examine four common UI evaluation techniques: usability testing,
heuristic evaluation, software guidelines and cognitive walkthroughs [46].

Usability Testing

Usability testing is the most well-known method of evaluating a UI. It is a well-
studied testing framework that provides systematic way to gather user’s judgment
on the UI. JS Dumas and J Redish in their book, A practical guide to usability
testing, list five characteristics of usability testing [22]:

1. The main goal of the test is to increase the usability of the UI.

2. The participant of the test must be real users.

3. The tester must do real tasks.

4. The facilitator should observe and record what testers do and say.

5. Finally, result of the test observation should be analyzed to identify usability
problems and suggest some changes to fix the problems.



18

Heuristic Evaluation

Heuristic evaluation is an approach to evaluate a UI by involving usability experts.
In this method, several usability experts will be invited to have a look at the UI.
Those experts would then be asked about their opinion about the UI based on their
knowledge and experience in the field of usability. These experts will naturally base
their evaluation on some set of rules. These rules can be in the form of usability
guidelines and principles. The evaluator might already have their own principles or
they might acquire it from another trusted sources [66].

Software Guidelines

This approach works by letting the UI developers to do the evaluation. They will
be given a guideline document. This guideline contains recommendation about how
should the UI be designed. The guideline could contain some rules about layout,
colors, font styling and/or any other design related recommendation. The UI will
then operate the UI and compare every aspect of the UI to the guidelines. More
matching between the UI and the guideline indicates high usability. This approach
alleviates the need for an expert as in heuristic evaluation method [46].

Cognitive Walkthroughs

Cognitive walkthroughs method takes into account the fact that most users prefer to
learn a UI by directly using it to accomplish a task rather than following some manual
guidelines. This method has two phases. The first phase is called preparatory phase
and the second phase is the analysis phase. In the first phase, the evaluator will
prepare four things that will be used as input for the next phase [78]. Those four
items are:

• User population. It is important to clearly define the user population of
the test. In this part, the evaluator is enforced to write down the exact target
users of the test.

• The tasks. This is the description of the tasks that need to be done by the
users/testers.

• Action sequences of the task. This contains detailed sequence of actions
that the users/testers need to take to accomplish the task.

• The UI. Finally, the UI itself is going to be the object of the test. In this
case, the UI can be in the form of live prototype as well as paper draft.

After those four items have been prepared, the second phase can be started.
The testers will be told about the task that they need to accomplish during the task
along with the sequence of action to achieve that task. The tester will then proceed
with the UI and try to follow the sequence of action. During this step, the evaluator
observes the actions done by the tester and then tell and evaluate their story about
the actions that was taken by the users. Wharton et al. suggest these four questions
to construct the story [78]:



19

• Will the user try to achieve the main task by executing action on the sub task?

• Will the user notice that the correct action to achieve some task is available?

• Will the user acknowledge the correct action with the effect that they try to
achieve?

• Will the user perceive that they are progressing toward achieving the task if
they took the correct action?



Chapter 4

Web Application Development

This thesis work is required to be built on top of the existing ABB front end dash-
board system. This system will be explained later in-depth on chapter 6. The
system that they have is in the form of a web application. More specifically, it is a
Javascript based single page application. Thus, it is imperative to investigate the
topic of web application development as well.

4.1 Web Technologies Overview
This section contains a brief overview of web technologies that are being utilized in
this thesis work.

4.1.1 HTML5

HTML is short for Hyper Text Markup Language. HTML5 is the latest version of
HTML. HTML is the main language for creating web pages and web applications.
Web browsers will immediately render the HTML file that it receive. A standard
HTML file contains multiple HTML elements. HTML elements is an individual
component of an HTML page. Each element is written with the name of the element
enclosed with with angle brackets. Optionally, each element could also have its
own attributes. Each HTML element has different functions and will be rendered
differently in the browsers. HTML5 comes with various new features including new
elements such as <progress> to show progress bar and <video> to show video on
the browser [41].

4.1.2 CSS 3

CSS is short for Cascading Style Sheet. CSS3 is the latest version for CSS. CSS is
the language that is being used to give a style to any XML based language including
HTML. The style includes colors, layouts, fonts and animations. CSS can be written
both inside the HTML document and separately in its own independent file [26].

The syntax of CSS comprises of two components: selectors and declaration block.
Selectors contain the syntax to select an element in the XML document that are

20



21

being styled. The declaration block contains list of styling that are being applied to
the selected elements.

SASS

SASS is CSS Preprocessor. It is basically an extension of CSS. It adds several
functionalities, which do not exist on CSS such as variables, nested rules, mixins
and inline imports. All those functionalities increase the efficiency of writing the
stylesheet. SASS has two different syntaxes. The first syntax is called SASS and
the second is called SCSS. SASS relies on indentation to separate selectors and
declaration block. SCSS use similar syntax to CSS, it uses braces to enclose a
declaration block [72].

4.1.3 Javascript

Javascript is a high-level, weakly-typed, dynamic, interpreted programming lan-
guage. Ever since its birth, Javascript was primarily used as a client-side language.
But since the advent of nodeJS, the usage of Javascript as a server side language
starts to increase. As a client-side language, Javascript was used to provide interac-
tivity on a web page.

Javascript specification is based on ECMAscript specification. At the time of this
thesis writing, the latest version of ECMAscript is ECMAscript 2017. The latest
version of ECMAscript comes with various new features that could help developers to
code their application more efficiently. Some of the most popular features includes:
arrow functions, template literals, promises, classes and modules [23].

4.1.4 Ajax

Ajax is short for Asynchronous Javascript and XML. The term was first coined by
Jesse James Garrett in 2005 [31]. Ajax is not really a single monolithic technology, it
is actually a set of client side technologies working together to provide asynchronous
call for a web application. The most important underlying technology behind Ajax
is XMLHttpRequest (XHR). XHR is a Javascript API that lets client to transfer
data to a web server without the need to refresh the web page. This characteristic
provides boost in terms of user experience. It leads many major website in the
world to implement Ajax. This development contributes to further advancement of
Javascript.

4.1.5 Websocket

Websocket is an internet protocol that enables two way communication between a
client and a remote host that has opted-in to allow the communication between
the two parties [27]. The API for websocket protocol has been standardized by
W3C [40]. Websocket protocol is an independent protocol, which relies on TCP
connection. By opening a two way communication channel between the client and



22

the server, websocket allows for a more rapid interaction between the two parties.
This is the reason why websocket has become the main technology for real time
application.

4.2 Web Application Architecture
Len Bass et al. in their book, Software Architecture in Practice, define software
architecture as the set of structures needed to reason about the system, which com-
prises of software elements, relations among them and properties of both [9]. This
definition applies to any kinds of software application including web based applica-
tion.

Web based application works on top of web platform, which relies heavily on
internet protocol. This characteristic gives general flavor to the architecture of web
based application. The architecture of a web application is often characterized by
its composition of elements between the server side system and the client side sys-
tem. The following sub chapters will explain two different types of web application
architecture with regard to its composition on client-side and server-side system.

4.2.1 Client-Server Architecture

In this architecture, the client makes the request to the server. The server responds
to the request, executing any command that needs to be executed based on that
request, and then generates an HTML page. This HTML page will then be sent back
to the users to be loaded on their browser [29]. All the logics and data manipulations
are done on the server. This way the purpose of the client side is just for presentation.
This is why this architecture is sometimes called thin-client architecture.

Figure 4.1: Client server web application architecture schematic

This is the most traditional architecture of a web application. This architecture
was once the most dominant architecture of web application. Prior to emergence of
various new web technologies, the only way of building a web application was with
this architecture. It utilizes the basic protocol of the web, HTTP, along with the
standard HTML, CSS and Javascript. Usage of Javascript in this architecture is
mostly only for eye-candy purpose.



23

4.2.2 Service Oriented Architecture

Service Oriented Architecture (SOA) is an architectural approach where software
is built as composition of independent services. The services are provided through
a published and discoverable interface. The application component will maintain
connection with the services through a messaging protocol over a network [25].

In the case of web application, SOA is implemented with web service. There are
many technologies that can be used in order to build a SOA web application. Some
of the most popular are SOAP, WSDL and REST [24].

Practically, in a SOA web application, the client will first make the request to
retrieve the application from the server. The server will then respond by sending
the whole application to the server. This application usually comes in the form of a
single HTML page and some Javascript files. After the client receive the application,
all operations of the application can be done on the client side. Logics can be dealt
on the client side. Changes of data is communicated to the respecting web service
and handled by the Javascript code. The most popular format to transfer messages
between web service and the client is JSON. In some cases, this architecture can
also be called thick or fat client because the client handles much more than only
presentation.

Figure 4.2: Service oriented web application architecture schematic



Chapter 5

Parser and Automata Theory

One important part of this thesis work is a well integrated code editor inside the
whole IDE user interface. This code editor needs to be able to provide smart auto
completion so that it will make it easier and more comfortable for the end user
of this system to add new calculation code. Thus, a parser is needed to give the
suggestion list on the auto completion feature. To develop the parser, several design
decisions have been made (more on this on chapter 7). One of the design decisions is
to build a client based parser which will read the input code and build a parse tree
out of it. This chapter inspects the theoretical background of parser development.

5.1 Overview
Dick and Ceriel in their book, Parsing techniques, a practical guide, define parsing as
the process of structuring a linear representation in accordance with a given grammar
[20]. They intentionally kept the definition abstract to allow wide interpretation. It
is because parsing technique that they discuss in their book can actually be applied in
various fields and for various types of input data such as natural language sentence,
sequence of geographical strata, a piece of music and, of course, a source code of a
computer program.

For the context of this thesis, parsing is narrowly defined in computer science
terminology. Parsing is the process of examining strings of tokens, which come from
a source code and determine whether each individual token obeys certain syntactical
structure. This syntactical structure refers to explicit convention in the syntactic
definition of the programming language [5].

With that definition of parsing, we can infer that a parser is a computer program,
which reads source code in a programming language as the input string and checks
whether the source code complies with the syntactic definition of the programming
language.

Parser can be used in various ways depending on the type of the input. In the
case of natural language input, the parser is usually in the form of a standalone
application, which extracts some information from the text or builds a grammatical
tree structure of the sentences. For usage of reading markup language like XML
and HTML, parser comes in the form of a file reading tool, which reads the markup

24



25

text and builds the hierarchical structure of the file. In the case of HTML, the
parser is built in the browser and would generate the DOM to be presented as web
page. For most computer programming languages, parser is included in the compiler
or intrepreter software. The following chapters will focus deeper into parser for a
computer programming language.

A parser can either be written manually or generated automatically by a parser
generator based on the supplied grammar. Manual parser construction ensures good
error recovery and it is more flexible in terms of manipulating the parser execution.
But, it takes a lot of work to develop. Parser generator alleviates this problem, a
parser can be generated in minutes given the supplied grammar. There are already
many ready-to-use grammar files for various well-known programming languages.
The downside is that they are quite complex and rigid giving less freedom to the
developer or the user of the parser to customize the inner working of the parser.

5.2 Parser in a Compiler
The way a machine executes a computer programming language is by translating
that language into machine readable commands. This process of translation is called
compiling and it is done by a special computer program called compiler.

According to Aho and Ullman, in their book, The Theory of Parsing, Translation
and Compiling, compiling process in general can be divided into six steps [5]. These
steps are not rigid. Practically, some steps might be done in one single steps. Some
other steps might be split into more steps. Those six steps are as follows:

1. Lexical analysis. Process of turning stream of characters in tokens.

2. Bookkeeping, or symbol table operations. Process of managing list of iden-
tifier existing in the source code along with its detailed information.

3. Parsing or syntax analysis. Process of determining whether the token
matches the valid syntactic structure of the language.

4. Code generation or translation to intermediate code. Process of generating
a lower level intermediate code (assembly).

5. Code optimization. Process of optimizing the generated intermediate code.

6. Object code generation. Process of converting the intermediate language
into executable machine language.

The first four steps described above is called compiler front end and the rest is
called compiler back end. Compiler front-end is part of the compiler, which analyzes
the source code and then builds an intermediate representation of the source code.
An intermediate representation is a representation of a program between the source
code and target languages. To build the intermediate representation, the compiler
would utilizes the two results of source code analysis in the compiler front end phase:
symbol table and abstract syntax tree. Generally, both symbol table and abstract
syntax tree are produced and maintained by the parser.



26

5.2.1 Symbol Table

Symbol table is a data structure, which stores every entities on the source code
(variables, methods, classes etc) along with its detailed information such as its dec-
laration, type and position on the source code. For most programming language,
symbol table is built for every scope definition on the source code. This is because
identifier with the same name could be declared on various scopes on the source
code. For example, i and x are often used as a generic variable name for quick
purpose like for-loop iteration and this could be used in many parts of the source
code [4].

Depending on the programming language, a symbol table maybe utilized in the
following ways [5][4]:

• To check for the semantic correctness of a source program.

• To be used as a resource for generating code.

• To determine the scope and location of an identifier.

• To provide some useful data on interactive debugging session.

• To be referred on the creation of a diagnostic report, either during or after
execution of the application.

The data structure used on a symbol table could be anything from a simple list,
binary tree to hash table. But implementation of most major programming language
compiler uses hash table. This is because symbol table needs to be rapidly read and
written during the analysis process. Hash table provides the fastest way to do those
operations. The key in the hash table would be the name of the identifier and the
value would contain all kinds of information for that particular identifier [4].

5.2.2 Abstract Syntax Tree

The main output of parsing is parse tree. Parse tree in computer science terminology
is often called concrete syntax tree. A parse tree is a rooted hierarchical tree data
structure that represents the syntactic structure of an input string [13].

Abstract syntax tree, or often abbreviated to AST, is a form of parse tree, which
represents the syntactic structure of a source code. It is different to parse tree in a
way that abstract syntax tree does not store all the unnecessary and non-essential
information from the input source code [55]. For example, parentheses of an if
expression in some programming language is treated as non-essential, unlike the
expression itself. In parse tree, these parentheses would still be stored.

Robert Harper describes abstract syntax tree as an ordered tree whose leaves are
variables and whose interior nodes are operators whose arguments are its children
[36]. In this case, variable refers to a generic piece of syntax from some program-
ming languages. This format of variables could differ from one language to an-
other. Hence, abstract syntax trees can be categorized based on each programming



27

Figure 5.1: Example of an abstract syntax tree [19]

language syntactic categories. One example of syntactic distinction between pro-
gramming languages is in terms of expressions and commands. For language with
a certain syntactical expression, each interior node represents an operator whose
children of it represent the operands [4].

5.3 Parser Types
In terms of how the input can be derived from the grammar, a parser can be differ-
entiated in two big categories [20][4]:

• Top-down parsing
Top-down parsing is an approach to parsing by finding the left-most derivations
of an input stream. This approach constructs the parse tree starting from the
root and creates nodes along the way down the parse tree in order. One of
the most common approach to top-down parsing is recursive descent parsing.



28

Recursive descent parsing works by constructing the parse tree from the top
using recursive procedure. There are two kinds of recursive descent parsing:

1. Back tracking
Recursive descent with backtracking is a top-down parsing technique that
works by trying each production rule by doing back tracking. The parser
would then determine which production rule to use. This parsing tech-
nique may require exponential time because of the back tracking process
through the production rule. This exponential time could still occur even
if they terminate.

2. Predictive parsing
In contrast to the previous technique, predictive parsing does not need
back tracking. It has the capability to predict, which production rule to
use to replace the input string. The way this parsing technique predicts
is by using a look-ahead pointer. Look-ahead pointer is a pointer, which
refers to the next token. With this approach, predictive parser can only
accept the kinds of grammar, which is called LL(k) grammar. This tech-
nique employs use of stack and a parsing table. Both of them contains an
end symbol $ to specify empty stack and that the input is consumed. In
the parsing process, it will look into the parsing table to make decision on
the input and stack element combination. Unlike in the recursive descent
with backtracking parsing, predictive parsing will only have one produc-
tion rule to choose. As a result, there is a possibility that no production
rule matches the input string. This will cause the parsing procedure to
fail.

• Bottom-up parsing
In contrast to top-down parsing, bottom-up parsing starts with the initial
input and then tries to rewrite it to the start symbol by moving up through
the grammar rule tree. It starts from the leaf node of the parse tree and
traverses up through the parse tree until it reaches the root node. This parsing
technique is also called Shift-Reduce Parsing. The name comes from the fact
that it works in two steps as follow:

1. Shift step
This step refers to the shifting of the input pointer to the next input
symbol. That next symbol is called the shifted symbol. This symbol
represents a new node on the parse tree and will be pushed onto the
stack.

2. Reduce step
This second step happens when the parser finds a complete grammar
rule on the right hand side of the production rule. It will then replaces
it to left hand side of the production rule. At this point, the top of the
stack will contain a handle. The stack would then be reduced by doing
pop function on it, which replaces the handle with the left hand side non
terminal symbol.



29

5.4 Parsing Process
There are two different approach of parsing process. The first approach is called
scannerless parsing. Scannerless parsing is one approach of parsing where the lexical
analysis and syntactic analysis are done in one step [77]. The other approach breaks
the two processes into a pipeline. The two steps in parsing process is more common
for general programming language. Those steps are lexical analysis and syntactic
analysis.

Lexical analysis is the process by which the stream of input source code is tok-
enized. Every characters in the code would be read and and be broken into words
and/or symbols. This process is done by a lexer. In the case of a programming
language, the tokens would be all identifiers, keywords, constants, strings and paren-
theses and all the operator symbols. Lexical analysis works in two step process. The
first step is scanning and then immediately followed by the second step: evaluating.
The scanning step is usually based on a finite state machine. The scanner would
scan through all the input characters while maintaining state for each scan. With
this state, it determines the possible sequence of characters that can still be counted
as one token. The second step is evaluator. After the scanner finds the stopping
characters for a token, it will then pass it to the evaluator to determine the type of
this token.

Syntactic analysis is the process of parsing itself. In this second step, each tokens
will be checked if it conforms the allowable expression. This conforming process is
often done by referring to a context-free grammar. The parser would run each token
through the grammar component and define to which grammar rules it is comply
to. It will then built the abstract syntax tree based on this token checking process
through the grammar.

All parsers can be generalized to work by utilizing two components. The first
components deals with making substitution and recording a parse tree. The sec-
ond component works as a control mechanism that decides the next move for the
parser. In the field of computer science, the substituting component is called non-
deterministic automaton [20].

5.5 Non Deterministic Finite Automata
Non deterministic Finite Automata (NFA) is a subset of Finite-State Machine
(FSM). FSM, or Finite-State Automata (FSA), is an abstract machine which has
a finite number of states and the state will change when there is an external input
coming to the machine [34]. The term "non-deterministic" is used on this FSA be-
cause this automaton can have several possible moves in response to an input. The
choice of the next move is not predetermined. This is different than Deterministic
Finite Automata (DFA), where each state can only have one possible next move
depending on the input [64]. A DFA is actually a special subset of NFA.

NFA is chosen for the implementation of parser for a reason. The non-deterministic
property of a finite state machine contributes to a substantial efficiency in terms of



30

processing a computer program through an automaton. It makes it possible for us
to write the code in higher level language. What parser does is to construct a parse
tree from a high level language source code using NFA [64]. The parse tree would
then further be compiled into a deterministic automaton which can be executed by
the machine.

NFA works in a parser by managing three elements. The first element is the input
string as the object of the parsing process. The second element is the (partial) parse
tree which keeps updated along the way until the parser reach the terminal state.
And the last element is the internal administration which handles the information
being sent from the parsing of the input string toward the parse tree [20].



Chapter 6

ABB AbilityTM

This thesis work is built on top of ABB AbilityTM platform. To give a clearer context,
this chapter will explain some aspects of the existing ABB AbilityTM platform, which
are connected to this thesis work. This whole chapter is referenced from unpublished
internal ABB document. Chapter 6.1 will provide the general description of what is
ABB AbilityTM and ABB AbilityTM platform. The rest of the chapters will explain
parts of ABB AbilityTM platform, which are connected to this thesis work. Chapter
6.2 will explain about cpmPlus History or sometimes just referred as "History" in
short. Chapter 6.3 describes cpmPlus View or just "View" in short. The last chapter
(6.4) contains description of ABB’s calculation engine.

6.1 Overview
ABB AbilityTM could be seen as a complete portfolio of ABB digital solution. ABB
digital solution itself is the kind of solution that lets ABB deliver value to the cus-
tomers through digital and connected technology. So far, ABB already has installed
base of more than 70 million connected devices, 70,000 digital control systems and
6,000 enterprise software solutions [1].

All those devices, control systems and enterprise software solutions are currently
mostly disconnected with each other. They are all deployed at the customer site.
They work in their own silos of business unit. There is no common way to integrate
and visualize all of the information that could be collected. This is the driver to the
development of unified ABB AbilityTM Platform.

ABB AbilityTM platform is a set of common, integrated and standardized digital
enabling technologies. These set of technologies are used to build the ABB AbilityTM

solutions. These technologies exist at the device, gateway, and cloud level. It
makes it possible for ABB to develop solutions more quickly, reliably, and securely.
Solutions developed on top of the ABB AbilityTM platform will be more integrated
and work in a consistent manner. Future development of ABB digital solution from
all business units will always be built on top of ABB AbilityTM platform.

ABB AbilityTM platform has many components included with it. Here are list
of those components which are related to this thesis work:

31



32

• cpmPlus History

• cpmPlus View

• cpmPlus CalcEngine

6.2 cpmPlus History
cpmPlus History is a proprietary time-series database engine built by ABB. More
specifically, it is a process historian software, which comprises of several independent
but integrated software technology components. All those components work together
to provide a highly scalable software platform to build products and systems for
manufacturing process industries and utilities. Many ABB solutions are utilizing
cpmPlus History. This is a list of example solutions that are based on the cpmPlus
History:

• Power plant information and condition monitoring systems.

• Data logger for various high speed data producers, such as variable speed
drives, power distribution devices, analyzers, and vibration monitoring sys-
tems.

• Process data warehouse systems.

• Overall equipment effectiveness (OEE) reporting systems.

• Electricity distribution automation and SCADA historian systems.

6.2.1 Features and Functionalities

The core of cpmPlus History is a relational database system called RTDB. This
RTDB is equipped with built-in columnar features for optimized time series signal
processing and storage. cpmPlus History implements the standard data models for
process information, events/alarms, and equipment model. Equipment model is a
dynamic modeling tool for application specific data models.

Beside the core historian functionality, cpmPlus History also contains a full func-
tional platform to build solutions from data acquisition, processing, and storage to
analytics, public interfaces, and visualization. Here is a list of some functionalities
offered by cpmPlus History:

• Data acquisition connectivity from control systems and devices.

• Input stream processing with alarm detection, automatic aggregation func-
tions, and integrated event notification to the users of the data.

• Data storage with redundant system configurations.

• Engineering tools and APIs for integration with remote engineering such as
DCS or SCADA system.



33

• SDKs and hosting services for analytical applications.

• Public interfaces for bidirectional data access including OPC DA, HDA, and
UA servers, and ODBC/SQL.

6.2.2 Data Abstraction Interface (DAI)

In term of system architecture, ABB AbilityTM platform implements a data ab-
straction interface on its digital solution. This data abstraction interface will act as
a bridge between the client layer and the data provider and storage layer. Client
layer is where all the applications reside. Data provider and storage layer contain
various types of data and storage engine, including ABB’s own RTDB. The DAI is
domain-independent middle ware technology. This interface hide the details of the
actual data storage to make the client data access transparent and independent from
the data storage. This interface uses secure websocket for communication between
clients and servers as well as in system-to-system communication. DAI provides
means to transform the data structures from various data sources to a unified ob-
ject model and publish them in the standard interface. For example, what constitute
as a "table" in traditional relational database model is called "class" in this DAI.
Table rows will be mapped to "instance". Table column is called property.

6.3 cpmPlus View
cpmPlus View is a web based front end dashboard system. It is a tool to build
application user interface. cpmPlus works as a single page application. It is built
with HTML5 and vanilla Javascript with internally developed framework. cpmPlus
View API provides asynchronous data access from web browsers to the data sources
that are connected to the cpmPlus Data Abstraction Interface (websocket server).
It has two main modules: dashboard editor and SDK.

6.3.1 Dashboard Editor

Dashboard editor is a tool to build and layout a dashboard using ready-to-use wid-
gets without much need of programming. With the dashboard editor, the user can
just drag and drop widgets of their choice and configure them however they want.
The client widget library contains basic business graphics and samples on how to
implement your own or to embed third party widgets.

Widgets

The dashboard editor already has several default widgets that can be used. The
default widgets are categorized into five categories:

• Dashboard basics
This category contains some generic widgets with various purpose that might



34

be needed to construct the dashboard. Below is the list of widgets of this
category:

– Dashboard. Every dashboard can function as an independent widget
on another dashboard with the help of this dashboard widget.

– Horizontal splitter. This widget is used to create a splitting point
between widgets horizontally. With this splitter, widgets that is attached
to this splitter can be resized horizontally.

– Vertical splitter. Similar to the horizontal splitter but this one allows
for vertical resizing.

– HTML. This widget has two modes. On the first mode, it can show any
HTML script that is put by the users. The other mode is that it will
act as an iframe if the user provides a link to the external source for the
frame.

– Label. This widget is meant to be generic label.

– Panel. This widget acts as generic panel that can be used for various
purposes.

– Top bar. This is a default top bar, which contains standardized top bar
for various ABB application. This widget contains a logo of ABB and
can be inserted with a navigation menu.

– Theme selector. This widget allows users to switch the theme of the
dashboard.

• Controls
This category contains widgets that function as control mechanism on the
dashboard. Below is the list of widgets of this category:

– Button. This widget acts as generic button for various purposes.

– Input. This widget acts as generic input text for various purposes.

– On/off slider. This widget acts as an on/off switch. Similar function
to HTML checkbox.

– Single property editor. This is a highly robust widget. This widget
can edit any property of a class on the database. The format of this
editor adapt to the type of the property. If the property being set on this
widget is of text data type, this widget will show an input text. If the
property is in a form of enumeration, this widget will show a selector and
so on.

– Time bar. This widget shows time bar, which can be used in conjunction
with any other widget to show time constrained data.

– Time input. This widget allows user to input time value in a more
convenient way than regular input text.



35

• Data browsing
This category contains widgets for browsing data in various ways. Below are
some of the important widgets of this category:

– Data list. This is one of the most important widgets in the dashboard
editor. This widget lists data from a class in complete tabular format.
It allows user to add, edit and delete instance directly from within the
table.

– Property grid. This widget shows list of properties of a class in grid
format, user can edit the value of each property from this grid.

– Property list. This widget shows list of property of a class in list format.

• Data visualization
This category contains widgets for visualizing data in various ways. Below is
the list of widgets on this category:

– Chart. With this widget, user can show some data from the database in
chart format.

– Gauge. With this widget, user can show a data from the database in
gauge format.

– Legend. This widget acts as legend for any other visualization widgets.

– Pie chart. This widget shows pie chart based on the selected data from
the database by the user.

– Radar chart. This widget shows radar chart based on the selected data
from the database by the user.

– Ruler. This chart shows ruler as guidance for other data visualization
widgets.

– Status widget. This widget shows customizable status based on some
configuration and data source from the database.

– Value. This widget shows value of an instance property of a class.

• Navigation
This category contains widgets that deal with navigation throughout the dash-
board. Below is the list of widgets of this category:

– Navigation button. This button is used to direct the user to another
dashboard.

– Navigation tree. This widget contains list of dashboards that can be
navigated by the user.

– Pivot navigator. This widget allows user to swipe left or right to switch
between dashboard.



36

6.3.2 SDK

SDK is the development kit for extending the functionality of cpmPlus View. It
contains tools, API and functionalities that will make it easy for a web developer to
build his/her own widget or construct a specially customized dashboard. The SDK
contains:

• web socket server API to access the data in the data sources.

• Driver SDK to implement the connectivity to the data sources. Deliverable
includes drivers to cpmPlus History, OPC DA, HDA, and SQL databases.

• JavaScript client API to access the data in the data sources through the web-
socket server.

• Widget library with trend chart, chart ruler, data list, gauge, label, pie chart,
time bar, value, and value bar widgets.

• Base widget to implement new widgets or wrapping 3rd party widgets.

• Examples and tutorials of display and widget implementations.

6.4 cpmPlus Calc Engine
cpmPlus Calc Engine, or CalcEngine, is a tool, which is created to implement and
execute calculations on a predefined data. This predefined data can be accessed via
the data abstraction interface, which is mentioned in the cpmPlus history chapter.
The data could be in the form of numerical real-time and historized process data,
events and alarms, notification and other type of application specific data.

The calculation itself is a logical statement and/or an equation that could have
input and output data. The calculation should be written in C# code. The calcula-
tion engine would then execute the calculation code based on its other configurations.

cpmPlus Calc Engine is an independent technology component. It can be used
with cpmPlus History. The current implementation of CalcEngine uses ABB’s pro-
prietary real time database engine called RTDB. This database is used to store all
its calculation code and configurations. CalcEngine would constantly look through
any configuration data that are inserted to its classes on RTDB and execute any
entries that need to be executed.

6.4.1 Architecture

CalcEngine has two sets of tables (or in the case of cpmPlus history, it is called
classes). The first set is called implementation classes and the second is operation
classes. The reason behind this separation is so that it is possible to use the same
logic for multiple parameter sets and task configurations.

Implementation classes contain classes, which define the calculation logic along
with all its parameters. These parameters is going to be used as input/output data
of the calculation. Below is the list of implementation classes:



37

• CalcDefinition
Defines the calculation logic together with the associated CalcParameter. This
is the class, which contains the calculation code. One of the properties of this
class is CodeType. This is where the users define, in which language do they
write the calculation code. The options are C#, Simplified C# and VB. VB
option is about to be deprecated. Simplified C# means that the engine will
wrap the input code with a boilerplate code like below:

1 namespace ABB.Vtrin.CalcEngine
2 {
3 public class CalcClass_NameOfTheCalcDefinition :

CalcInstance
4 {
5 public void Calculate(ref double A, double B)
6 {
7 A = A + B;
8 }
9 }

10 }

Listing 6.1: Sample boilerplate code

Non simplified C# will execute the code, which is written by the user as is,
so it gives more flexibility. With non-simplified mode, user can add their own
library, namespace, class, etc.

• CalcParameter
Represents a parameter, which CalcDefinition uses either as an input or an
output. So, one of the property of this class is a reference to CalcDefinition.
Another class, which is referred by this class, is CalcParameterType. This
class defines the data type of the parameter being used. This class also has
a property that define array dimensions of the parameter, it could be in any
positive integer number. If the parameter is not an array, it should be set
to 0. Another important property that this class has is IsOutput that define
whether this is the parameter, which is being used by the user to write the
calculation result.

• CalcParameterType
This class contains a list of available data types for CalcParameter. All entries
in this class are generated by the CalcEngine backend.

• CalcDependency
This class represents an external dependency such as a DLL or code snippet
that can be attached to a CalcDefinition. There are two types of dependency
that the user can choose:

– EquipmentType. It refers to an equipment model in the database.

– External Library. It refers to an entry in CalcExternalLibrary.



38

• CalcExternalLibrary
Contains external code/DLLs used by CalcDefinition. There are three types
of library that the user can choose:

– Code Snippet(C#). If this type is chosen, the user would have to write
the code snippet in this class.

– DLL(File path). If this type is chosen, the user would have to put the
absolute path to the DLL (in which the Calc Engine process must be able
to access this)

– DLL(BLOB stored in the database). With this option, the user would
have to upload the DLL to the database and it shall be store as a byte
string.

On the other side, operation classes contain mappings of actual data to the
parameters combined with some task configuration like scheduling, process manage-
ment and batch jobs. Here is the complete list of operation classes:

• CalcProcess
This class contains listing of system process executing CalcTask, which are
assigned to it. This class defines properties such as process priority, number
of threads and mode (either to run as 32-bit or default 64-bit).

• CalcTask
A CalcTask represents an executable calculation. It joins a Calc Definition
and Calc Parameters with mappings to actual values, and can be executed by
various CalcTaskTrigger. This class contains a property that defines the con-
structor parameter for a calculation. It contains the set value of a parameter
in the calculation. It is stored in JSON. There are also various properties that
control how the task will be executed.

• CalcMapping
This is where the user can select the data from the data abstraction layer to
be used as a parameter in the code later on. After selected here, the entry
would need to be connected to the CalcParameter via CalcParameterMapping.
There are two most important properties on this class:

– ClassName : string
Name of the class from the data abstraction layer, which the instances
should be fetched

– WhereString : string
Optional string to limit which instances are fetched.
(e.g., "Name=’MyVariable’")

In addition, there are also other properties that define external data source.
On this properties, the user would have to put the connection string to the
external data source.



39

• CalcParameterMapping
This class combines a CalcMapping and a CalcParameter for use by a CalcTask.
So, this class has properties that refer to CalcParameter, CalcMapping and
CalcTask. Apart from those properties, there are also properties that config-
ure this parameter mapping such as setting only the property of the mapped
class instance instead of the instance itself.

• CalcTaskTrigger
A trigger that can be attached to a CalcTask to execute the calculation. There
are three types of task trigger:

– Periodical scheduler. With this type, the task would be triggered pe-
riodically based on the scheduler that has been defined in CalcScheduler.

– Event based. With this type, the task would be triggered based on
value change that happens on a CalcMapping.

– Triggered by other calculation. With this type, the task would be
triggered based on execution of another task.

• CalcScheduler
Defines how to run a CalcTask periodically. The scheduling properties of
this class includes start time, end time, execution internal, unit of execution
interval and base time.

• CalcBatchJob
This class is used for scheduling batch jobs for CalcTasks, for example, when
wanting to perform recalculation.

• CalcTaskDiagnostics
This class contains diagnostic information of a task.

• CalcSimulation
This class is used for testing a calculation without actually committing any
values to the database. Real values are read for the configured period, but
the written values are returned as JSON instead of being committed to their
actual destination.



Chapter 7

Requirements

The first research question of this thesis is "What are the requirements of the web
based IDE for ABB Ability Calculation Engine?". To provide answers for that
question, extensive requirement analysis needs to be done. This chapter contains
in-depth requirement analysis of the web based IDE system. Chapter 7.1 will provide
general overview of the requirement analysis process of this thesis work. The next
chapter (7.2) contains the stakeholder analysis for the web based IDE, which resulted
in the user profile. Chapter 7.3 describes several use cases of the web based IDE.
Chapter 7.4 explain some issues on the approach of the user interface development.
Chapter 7.5 contains complete listing of features and functionalities that the system
should have. The last chapter (7.6) lists some non functional requirements for the
system.

7.1 Overview
ABB already has the calculation engine back end running. There is already a de-
tailed internal document containing requirement specification for the calculation
engine. This document functions as the initial basis for further requirement analysis
specific for the front end development. The requirement analysis process starts by
defining the user profile. Since, of course, the user profile of calculation engine back
end and front end is the same, this part is largely adapted from the calculation
engine backend requirement document. The same thing applies to the next part of
the process: use case analysis. In this part, the use cases, which have already been
listed on the backend requirement document, are adapted to front-end requirements.
The next part is UI consideration analysis. Here, I determine some issues regarding
the expectation of the user interface and how it should be developed. After that, I
make a list of functional and non functional requirement for the software based on
all the information from the previous chapters.

40



41

7.2 User Profile
First step on the requirement analysis process is to do stakeholder analysis. In this
case, we narrow down the stakeholder only to those people who will directly operate
the Calc Engine. The Calc Engine is considered to have several different user groups:

1. Subject matter experts
Subject matter expert is an expert in a particular field on a business unit.
One of their tasks, which is related to the Calc Engine, is to calculate KPIs
for the particular piece of equipment type that he knows in details. They are
less likely to have in depth knowledge of programming languages, but they
know math. So, they definitely know what kind of mathematical calculation
is needed to measure the KPIs of the device that they are handling. They
would prefer to work the properties of the equipment template instead of the
individual process variables. This way, they can develop one calculation and
execute it for all instances of the equipment.

2. Site engineers
They are the engineer who work at the customer site. They implement cal-
culations to detect anomalies in a process. The calculation will be based on
the data from a particular device combined with data from another system.
They might also want to share the results of the calculations in the form of
notifications to some defined groups of users. They may have basic level of pro-
gramming skills, but they would prefer to be able to set up the calculations as
simple as possible. They would appreciate easy maintenance and monitoring
of thousands of calculations that they have made.

3. Process engineers
They are engineers who implement some process calculations for the purpose
of monitoring and reporting the process operation. In this case, there could be
thousands of calculated variables on the plant level. They are likely to have
basic programming skills. Furthermore, they are also likely to be able to learn
normal control structures and calling external functions to implement advance
calculations. For this advance and complex calculation, a good way to debug
that could provide extensive diagnostics and validation is essential.

4. Project engineers
They are the engineers whose task is to install, configure and maintain an
ABB AbilityTM digital solution, which includes the Calc Engine. This engineer
would need an easy way to configure the Calc Engine. As well as a way to
monitor the execution and resource usage of the Calc Engine.



42

7.3 Use Cases
Use case 1 – Cyclic Process Calculations with History Values

In this first use case, the user is a site engineer in a power plant. The user already
has 2000 equations, in which the parameter of the function is coming from the
database of historical raw sensor/device data. The user has in depth knowledge of
the equation and how the plant process work. The user don’t know much about
programming languages nor usage of any software development tools like Ms Visual
Studio. But, it is possible for them to learn basics of programming to implement
their calculations. The user understands the concept of variable, historical data
stream and also the quality status information of data.

Requirements:

1. All configuration should be done inside ABB’s internal user interface frame-
work (cpmPlus UI). This UI should be accessible from the user’s PC so that
they don’t need to access directly to the database server.

2. There should be an easy way to configure scheduling execution of a calculation.

3. The user should be able to write the calculation code using C# language right
from the browser.

4. The user should be able to choose any pre-stored scheduling configuration,
which can be applied to many calculations.

5. There should be a way for the user to avoid any unnecessary structure on the
calculation code such as namespace and class definition. There would be many
calculations, which are actually just simple equations like A = B + C.

6. Variable from the database along with their attributes should be simply refer-
enced in the code editor on the browser, e.g.,
NameOfTheVariableFromBD.nameOfItsAttribute or
NameOfTheVariableFromBD.aFunctionOfThisVariable()

7. The code editor should have auto completion feature. The auto completion
should be able to provide list of variables and methods of an object so the
user does not have to remember them. It should be fast and still have good
usability even if the code has millions on variables.

8. The variable in the code editor should have a way to be connected to variable
value from the database, either for read or write access.

9. The UI should provide a way to set the scheduling time period for a calculation.



43

Use case 2 – Batch based calculations

The user is an engineer dealing with production process. He needs to implement
calculations based on some event on his production process such as calculating raw
material and energy consumption for a paper reel. The calculation itself would be
simple, but the user would need cumulation of historical data over some batch time
period.

Requirements:

1. There should be way to trigger the execution of a calculation based on some
event, i.e., value change of a variable from the database.

2. Calculation execution should also be able to be triggered by execution of an-
other calculation.

3. User should be able to alternate between mode of execution for a calcula-
tion whether it should be by periodical scheduler, event based or triggered by
another calculation execution.

Use case 3 – Equipment template based calculations

The user is an engineer, who works on energy efficiency analyses for a certain type of
pump system. This type of system already has an equipment template stored in the
database. The user wants to implement calculations for all instances of that pump
system simply by selecting the equipment template as a variable on the calculation
code.

Requirements:

1. There should be a way to connect the calculation with equipment templates
so that the system can execute the calculation to all the equipment instances.

2. Beside implementing a calculation on an equipment template, it should also
be possible to implement calculation on a single equipment instance.

3. The attributes of the equipment should be easily be referenced from the code
editor. So, whenever the user uses an equipment instance or template as one
of the variable in the calculation code, they can just simply type dot after that
variable and the code editor should show list of its attributes as auto complete
suggestion.

Use case 4 – Alarm/event analyses

There is a case where a statistical calculations need to be done for alarms and events
collected, e.g., from the control systems.

Requirements:

1. There should be a way in the user interface to use OPC events and/or other
classes, which exist in the database (or more exactly data abstraction inter-
face). The system should provide a way to include the classes along with their
attribute in the calculation code.



44

2. It should be easy for user to switch usage of classes and/or OPC events from
a calculation.

Use case 5 – Storing event frames

In the case when an interesting event happened, the user wants to store some data
with time period from around the time the event happened (event frame). This
data could be attributes detected by his calculation. For example, when there is a
machine failure, the user might want to store detailed high resolution information
before and after the incident.

Requirements:

1. The system should provide a way to create and modify class instances from
within the calculation. This could be in the form of ABB standard database
engine’s event frames or some user configured one.

Use case 6 – Initiating notifications

After making the calculation, the user might want the system to send notification
in the form of email, SMS or other type of notification. For example, an asset
monitoring system detects from its calculation that an asset needs to be recalibrated,
and thus sends a work order request notification to the responsible person.

Requirements:

1. It is most likely that there is already a notification/alert class in the data
abstraction interface being handled by a separate notification service. So,
initiating a notification could be as simple as making a new instance in that
class. With that in mind, the system should provide a way for the user to
easily set the calculation to make new instance to that notification class.

Use case 7 – Accessing foreign data

In this case, a calculation needs some data from other systems. For example:

• ABB database system has a hierarchical data access. In this case, the user
might want to use data from another level of hierarchy.

• Another example is usage of data from another system, i.e, an asset monitoring
system needs maintenance data from plant maintenance system.

Requirements:

1. The user interface should provide a way for user to use the standard data
abstraction interface connection string. The usage of connection string will
automatically connect the system to the other database system given that the
connection string is valid and the target data abstraction interface exist.



45

Use case 8 – Power to simple implementation

A subject matter expert on a business unit of ABB wants to implement some per-
formance calculations on equipments, which he/she is responsible for. He/she does
not want to learn complicated programming language just for this purpose. He/she
wants a system where he/she can just use predefined functions on his own calcula-
tions. For example, an engineer in motor department wants to check the temperature
integral of a motor from some time periods last year. He/she wants to know if the
temperature of that electrical motor has reached the limit for its damage, which has
been set by the manufacturer. He/she wants to know the maximum temperature
the motor has ever reached.

Requirements:

1. The system should allow the user to implement calculations on an equipment
template by using the attribute names of the equipment model. It should not
be a concern for the user whether those attributes are of basic data types or
references to other object types.

2. It should be possible for the user to implement this kind of calculation with-
out much hassle with the help of the language structure and the code edi-
tor itself. For example, to get the maximum temperature of an equipment
from the default time period, the user should be able to just use something
like NameOfTheEquipmentAttribute.MAX. If the user wants to get the maxi-
mum temperature from different historized database class or from non-default
time period, the user should just need to use something similar like this
EquipmentAttribute.GetMAX(AnotherHistoryClass, start, time_period).

7.4 User Interface Consideration
Based on the list of classes used by the calculation engine described in the previous
chapter, the user interface needs to provide a way to Create, Read, Update and
Delete (CRUD) an instance to all of those classes in a convenient and sensible way.
The CRUD should not be in the form of common CRUD UI. In this context, what
is meant by common CRUD UI is to show tabular view of each class with remove
and edit button on each row and add new instance button for each class table.

On a web based application, the common CRUD UI can usually be generated
automatically. The generation process is done by the web application framework of
choice. The framework generates the basic CRUD UI based on the data model that
we have supplied to the framework.

ABB already has this common CRUD user interface for the calculation engine.
The user can use the ABB’s default desktop application, which is used to interact
with the data abstraction interface. But, it was proven to be inefficient and confusing
for end user. From the cyber security perspective, this is also not an optimal solution
because it requires the user to be logged in directly to the server via remote desktop.

With all the considerations listed above, it is clear that a new approach to the
user interface is needed. The user interface should allow the user to update some



46

data into the calculation engine classes without the need to access the server directly.
The ideal user interface for this calculation engine needs to reflect the flow that most
users have in mind when using the calculation engine.

By analyzing the user profile and the use case described above, we can hypoth-
esize the basic work flow for most users as follows:

1. User who is responsible for some equipments know some available raw data
from those equipments and they want to work some calculation based on those
data

2. They would want to choose the data from the database

3. After selecting the data and making it available to be used on the calculation
code, they would proceed on writing the calculation code

4. Upon writing the calculation code, they would need to set the name and give
some description to the calculation

5. When they are done writing the calculation code, they will have to proceed
configuring the execution of the calculation

6. Finally, they will submit that calculation

7. If there is something wrong with the code that they write or configuration that
they make, the system should give a feedback so that they can fix it

8. If everything is well configured, the user should be redirected to a page which
lists all the calculation that they have along with all its essential information.

7.5 Functional requirements
Based on the user profile, use case and user interface consideration described in the
previous three chapters, it can be inferred that the user interface will need two pages
or dashboards: list calculation dashboard and add/edit calculation dashboard. The
following subsection will detail the list of features and functionalities that are needed
on each dashboard.

7.5.1 List Calculation Dashboard

The list calculation dashboard should contain the list of all the calculations created
by the user. List of features and functionalities that should exist in this dashboard
are listed below:

• There should be an "add calculation" button, which will redirect the user to
"add calculation dashboard".



47

• There should be a filtering features. This dashboard will potentially have thou-
sands of calculations, so filtering functionality is imperative. The user should
be able to type something on the filter input box and the system would show
the list of the calculations, which have been filtered based on the appearance
of the filter keyword on the calculation name or calculation description.

• Each calculation on the list calculation dashboard should have its own box,
which will contain information about this particular calculation such as:

– The calculation name

– The calculation description

– The active language mode that is being used on the calculation (whether
C# or simplified C#)

– List of parameters that is being used on the calculation. Each list should
show the name of the parameter along with its type.

– List of dependencies that are being used on the calculation. Each list
should show the name of the dependency along with its type (whether it
is and external library or an equipment property).

– List of tasks, which use this calculation. Each task should show its list
of parameter mapping and details about the task trigger.

In addition, each calculation box should also have these components:

– Remove button. Every time the user clicks the remove button, there
would be a confirmation dialog asking the user if he/she really wants to
remove the calculation. Clicking yes would mean that the calculation
along with all its attribute (parameters, dependencies and tasks which
use it) is deleted.

– Open button. This button will let users to open and edit the calculation.

– Clone button. With this button, the user can easily copy a calculation
and make new edits in there.

7.5.2 Add and Edit Calculation Dashboard

This dashboard will contain a big form where the user can fill all the necessary
information to add and/or edit a calculation. All the information would be used to
create a new or edit an existing instance of calculation engine classes which relates
to a single calculation definition. Those classes are CalcDefinition, CalcParame-
ter, CalcDependency, CalcTask, CalcTaskTrigger, CalcMapping and CalcParame-
terMapping. Below is the list of all features and functionalities that should exist
here:

• To fill all the property of CalcDefinition, this dashboard should show a code
editor, a field to fill the name and description of the definition and also a
checkbox to switch between language mode (C# and simplified C#)



48

• A good code editor is paramount for this dashboard. Below are list of features
that should exist on the code editor:

– Syntax highlighting. The supported language is C#, so the code editor
should be able to show good syntax highlighting for C# language

– Automatic indentation. Just like all code editor, automatic indenta-
tion is a necessity.

– Highlight matching parentheses. Some codes might be complex
enough that finding the matching parentheses could be a hassle. So,
it is important for this code editor to have this feature.

– Code folding. The fact, that some method on the calculation code
could be pretty complex, means that some methods could have many
lines. Code folding will be a good feature to let users see the whole
structure of the code.

– Cut, copy, and paste functionality. ABB already has a legacy calcu-
lation engine system. That legacy system already has several calculation
code. In the case of migration by the user, it will be pleasant for them if
they could just copy paste their code to the code editor here.

– Auto completion. The auto complete feature should be able to give
completion suggestion based on what has already been put on the code
and also the available attributes and properties of a parameter that has
been selected by the user.

• On the standard non simplified C# mode, the code editor should initially show
the default boilerplate code.

• Whenever the user switch the language, the code editor content should change
to the code of the active language mode while storing the current code on the
previous language mode. This way, that the user can get their old code back
if they switch back the language.

• This dashboard should show UI to manage dependency for this particular
calculation. The user should be able to add, edit and remove new dependency
to this calculation. They should also be able to add, edit and remove any
library that can be used as dependency for any calculation.

• This dashboard should have an area where the user can configure the param-
eter setting for the calculation code. This parameter setting area should be
developed as follows:

– There should be an "add parameter" button to add new parameter to
the calculation code.

– After the user clicks "add parameter" button, it should show a form con-
taining field to add parameter name (which is going to be the parameter
name on the code), parameter type select (the options should be taken
from CalcParameterType), "is output" and "is array" checkbox.



49

– when the user clicks save on that form, it should show a parameter box
which shows the used parameter on the code. The code editor should be
updated to show that this parameter can now be used on the code. In
the non simplified C# mode, the parameter name and its type should
appear as the parameter to the main Calculate method.

– Each parameter box should have an edit button to edit any field of this
parameter.

– Each parameter box should also have a remove button to remove this
parameter from this calculation.

• This dashboard should have an area to configure the task, which will use
this calculation definition. Below are descriptions of how this area should be
developed:

– The user should be able to add, edit and remove new task for this calcu-
lation definition.

– Each task should have its own configuration panel which will have all the
settings to configure the task. This task configuration panel should have
three components:

∗ Parameter mapping setting area.
This is the area where the user can configure, which data from the
database should be mapped to the parameter, which is being used
in the calculation code. Setting for parameter mapping of a task
depends on the parameter that has been set by the user previously
on the parameter setting area. Whenever the user clicks save on the
add new parameter form, a new parameter mapping block should
appear here. This parameter mapping block should contain the form
for the user to configure the class name, where string, property and
also the defaulthistory property. It should also show options whether
to use external data source or not. If the user wants to use external
data source for a parameter, the box should show a form, which
contains connectionstring inputbox. After the user clicks save on
the parameter mapping form, it should show the saved parameter
mapping box. This mapping should then be able to be referenced
from the code editor. Each box should show edit button to edit the
preferred mapping.

∗ Task setting.
This component should show a form with the following field for each
task: process selector, period length override input box, period length
override unit selector, diag update interval second inputbox and max
run seconds before killed inputbox. For process field, it should also
show a button to manage process. Either to add new process or
editing/removing the existing process. If the language mode being
used is the non simplified c#, the task setting should show the con-
structor parameter buttons. When the user clicks this button, there



50

should be a window showing list of parameter on the code constructor
along with inputbox for its value. All the parameter values set here
will be stored in JSON format to ConstructorParameter property in
CalcTask class.

∗ Task trigger setting.
This component should show a form to configure the task trigger.
User should be presented with task trigger type selector, which con-
tains three options: periodical scheduler, event based and triggered
by other task. If the user selects periodical scheduler, the user should
be presented with scheduler selector, which contains list of available
scheduler configurations. Besides this selector, there should be a
button to manage the scheduler. Either to add new schedule config-
uration, or to edit and delete existing schedule configuration. If the
user selects event based, the user should be presented with mapping
selector, which contains list of existing mapping. This mapping will
trigger the execution of this calculation if the value of that mapping
changes. If the user selects triggered by other task, the user should
be presented with task selector, which contains list of existing tasks.
The task trigger setting should also shows the setting for min trigger
and max trigger.

• This dashboard should also have a console, which will shows any errors from
the calculation engine.

• This dashboard should have a back button, which will take the user back to
the calculation list dashboard without saving anything.

• Lastly, this dashboard should have a submit button, which will save all the
configurations of this calculation along with its dependency, parameter and
task settings. If there are still errors retrieved from calculation engine, all the
errors will be shown on the console. If there is no error, then the user will be
redirected to the list calculation dashboard including his new calculation.

7.6 Non Functional requirements

7.6.1 Usability

As with the case with all user interface development, usability plays a big role. The
user interface has to be user-friendly, intuitive and follows user’s work flow. It should
be built in a way that could easily be understood right away without the need to
read manual guideline.

There should be a way for users to test their calculation configuration. With
this test, they could see what would be the result (values of result variables) of the
execution of their calculation configuration at the moment. The execution order of
the calculations shall be visualized and maintainable to the user so that he/she can
easily understand the execution order relations and adjust them.



51

Despite the requirement that the UI should be intuitive to users, a proper engi-
neering documentation is still needed. The documentation should have step by step
instructions for configuring calculations.

7.6.2 Performance

The system should always run smoothly. The auto completion feature on the code
editor need to be able to work smoothly even with code with 20000 lines of code and
up to 1 million variables. The calculation listing dashboard should have no problem
listing thousands of calculations at once.

7.6.3 Integration and Extendability

The UI has to be built on top of the existing ABB front end dashboard system,
cpmPlus View. It needs to follow the design architecture of cpmPlus View. Each
page should be a cpmPlus view dashboard of its own. Each dashboard should be
constructed using widgets especially built for calculation engine web based IDE.
In terms of the code, it has to follows ABB standard coding style guide. It must
utilizes the internal API of cpmPlus View. All these to make sure the system has
good integration with ABB existing system. This will help the system to be more
extendable for future development.

7.6.4 Customizability

With cpmPlus View’s dashboard-widget architecture. Each widget being built
should be customizable. This way the user can customize their own calculation
engine IDE according to their own preference.

7.6.5 Diagnostics

By default, the calculation Engine collects diagnostic information on the execution
of the calculations such as includes invalidity of the calculation, execution time of
the calculation and resource usage of the calculation. The users should be informed
clearly and straightforwardly if their calculation is invalid.



Chapter 8

Development and Implementation

This chapter discusses about the development and implementation of the web based
IDE. The goal is to address the requirements detailed in the previous section (chap-
ter 7). Before going in deep with the development process of each part, chapter 8.1
will describe the general picture of the process of the development and/or implemen-
tation of the web based IDE. The next section (chapter 8.2) will contain explanation
of the technology stacks chosen as the basis of the development of the whole system.
Chapter 8.3 describes the process of initial prototyping phase. After those three
subsections, this chapter will continue on sub chapter 8.4 with detailed development
process of the parser/lexer, which constitutes the biggest part of the development
of the whole system. After that, chapter 8.5 will continue with the next essential
part of the system, the UI itself.

8.1 Overview
There are several steps taken for the purpose of the development of this thesis work:

1. Initial learning of the cpmPlus view code base.
Since the UI needs to be built on top of cpmPlus View, it is necessary to learn
the basic usage of cpmPlus view beforehand. And later on, I need to get used
to the cpmPlus view SDK so that I would be able to extend its functionality.
Usage of cpmPlus view itself is quite easy, the UI is intuitive enough to be
learned on its own. Learning the SDK is much more harder. It is because the
documentation for it is scarce. I have to dig through the code of the existing
system or the existing widget in order to understand what is happening under
the hood.

2. Learning to use the calculation engine.
The calculation engine is the back-end, which needs the front-end yet to be
built. So, it is essential for me to understand the basic usage of the calculation
engine too. Basic usage of calculation engine is pretty straightforward. One
day is enough to learn it. But, there are many complex use cases allowed
by the calculation engine. These complex use cases need quite some time to

52



53

apprehend. One training session with the back-end developer is enough for
basic usage of the engine. But for all the complex cases, I have to repeatedly
ask the developer for more explanation. Again, documentation for the complex
use case does not exist.

3. Rapid prototyping.
Because it takes some time to be familiar with the cpmPlus View and calcula-
tion engine architecture, I decided to go with rapid prototyping immediately
after I understand the basic usage of cpmPlus View and also the basic use case
of calculation engine. This prototyping phase serves the purpose of showing
quick proof of concepts of how the UI will be built later on. This prototyp-
ing phase also helped me getting used to the cpmPlus View SDK and the
calculation engine.

4. Parser development.
In order to build a better user experience for the users who will write their
calculation code, it is important to provide a good code editor for them. One
of the most important features that is expected from the code editor is a smart
auto completion feature. To provide this auto completion feature, the system
should be able to read the code and build some form of syntax tree out of it.
This is the purpose of the parser.

5. User interface design.
The dashboard system uses a form of widget drag and drop mechanisms. So,
for the purpose of developing the UI for the calculation engine web based IDE,
I developed some widgets exclusively built for calculation engine.

In addition to the main tasks, there are some subtasks, which will be explained
later in respective subchapters.

8.2 Technology Stacks
The UI of the calculation engine needs to be built on top of ABB existing front end
dashboard system, cpmPlus View. With that consideration, the choice of technology
stack depends heavily on the technology stack of the underlying system.

The core code of cpmPlus View is built with pure Javascript without any use of
third party framework. Since it was built around 2011, it still uses the ECMAscript
5.1. So far, it has not utilized any other more modern features of the latest Javascript
version (ECMAscript 6). ECMAscript 6 contains several useful features that could
potentially increase the efficiency of cpmPlus view. The web based IDE uses several
features of ECMAscript 6 such as template literal, extended parameter handling
and promises.

One crucial part of this UI system is its ability to connect to the back-end
system including the data abstraction layer. The data abstraction layer interacts
with the database engine. In the case of calculation engine, the database is stored
in ABB’s proprietary database engine system called RTDB. RTDB is short for Real



54

Time DataBase. As the name suggests, this database engine emphasize its real
time functionality. The calculation engine will work in real-time with all its data
inputs and outputs. This is why it is important for the UI system to be able to
connect to the back-end system in real-time manner. For this purpose, cpmPlus
view utilizes websocket technology. With websocket, it is possible for cpmPlus view
to use publish/subscribe scheme instead of traditional web based request/receive
scheme.

Since we are building a web based IDE, code editor will definitely be one of the
most important components of the UI. For the code editor itself, cpmPlus View
already uses ace code editor for some part of their system. Since ace editor has been
integrated into the cpmPlus view, it is advantageous to use it for the calculation
engine code editor, too. This way there will be no more additional overhead of
integrating any other open source Javascript based code editor.

The whole development was done using Microsoft Visual Studio. It is the stan-
dard IDE being used internally by ABB’s software engineers. For the versioning
system, ABB uses TFS, which is integrated into Microsoft Visual Studio.

8.2.1 Prototyping stacks

For initial prototyping phase, the main consideration factor is to develop it as quick
as possible. With that in mind, it was inadvisable to code it directly with cpmPlus
View SDK. It is because with cpmPlus View SDK, the long initial learning curve
will impede the process of rapid prototyping. Thus, the choice of stack for prototyp-
ing purpose depends only on my familiarity with the technology itself. Bootstrap
was chosen as the front-end framework. Bootstrap is the most popular front-end
framework nowadays. Bootstrap already has quite many solid and ready-to-use UI
components. All interaction code was done using jQuery. jQuery also already has a
mature API to manipulate DOM and utilizes Ajax based call.

8.3 Prototyping
Before getting into the actual development process, I decided to build a quick proto-
type first. The reason for that is because it takes time to fully master the cpmPlus
View SDK and the calculation engine. The documentation is still scarce and com-
munication with the respective developer was limited and not so smooth. So, instead
of taking too much time on learning the code base myself, I decided to just go with
quick prototyping as soon as I got a good enough basic understanding of how cpm-
Plus View and calculation engine work. This prototyping phase also helps me to get
used to the cpmPlus View SDK and also the calculation engine.

8.3.1 Approach

The prototype was built outside of the cpmPlus View. It is then integrated into the
cpmPlus view using ready-to-use HTML widget in the cpmPlus view. This widget



55

allows for setting the content of the widget from external source by specifying the
URL of the external content. When setting the content to be coming from external
source, the widget will act as an HTML frame. I set the URL to be the location of
my prototype.

Figure 8.1: Prototype arrangement

Being an externally and independently developed application from the cpmPlus
view, the prototype, of course, still needs a lot of communications back and forth
with the cpmPlus view, which will then communicate with the back-end system
(calculation engine). For this purpose, I used Javascript postMessage API. This, of
course, creates a lot of unnecessary communication overhead. In the real system,
this approach will penalize the performance quite hard. But, just for the sake of
prototype, it should be fine.

8.3.2 Scope

The main purpose of the prototype is to quickly demonstrate the UI for main end
user work flow that have been mentioned in the previous chapter. In this work flow,
there is a clear flow that the user can follow to work on a calculation. This work
flow comes with the assumption that most users of the calculation engine do not
really care about taking care of configurations for so many other aspects that can
actually be configured in the calculation engine in a decoupled fashion. They just
want to pick some data source that they know, code some calculation on those data
and then immediately run the calculation. So with the proposed UI, the user will



56

do all those three things in a single page. This work flow has a downside that it
become less decoupled and less flexible than how the back-end system can actually
work. The back-end system (the calculation engine itself) is actually a very loosely
tangled system to ensure higher flexibility. But, this flexibility comes with more
complexity for the end user.

The prototype does not fulfill the whole requirement. Two dashboards that
are listed in the requirement were built. They are list calculation dashboard and
add/edit calculation dashboard.

List Calculation Dashboard Prototype

Figure 8.2: List calculation dashboard prototype

The list calculation dashboard was built without any functionality. This dash-
board prototype just shows how would the layout of this dashboard be developed.
The prototype consists of two columns. The first column shows list of calculations
where each calculation is shown in its own box. There is also a link to add new cal-
culation on this column. The second column shows list of calculation engine classes
along with its instances. The first column is built to reflect the user perception on
the cohesion of the calculation definition, whereas the second column is built on the
basis of how the system is developed in a decoupled fashion, class by class.



57

Figure 8.3: Add calculation dashboard prototype

Add/Edit Calculation Dashboard Prototype

As for the add/edit calculation dashboard, only some features were developed. Those
features are parameter builder and the code editor. As for the task configuration,
the prototype set everything by default despite it having the UI for the task config-
uration. So, the UI for task configuration was there just for layout demonstration



58

purpose.
This dashboard prototype was arranged following the presumed user work flow.

Parameter builder is put on top as the first thing that the user would do upon adding
new calculation. Right below the parameter builder, there is a code editor reflecting
the next task on the user work flow after selecting the parameter from the database.
At the bottom, there is a section to configure task for execution of the calculation.

Parameter Builder

The parameter builder was built in the form of tabular view. This section is meant
to fill the data for CalcParameter, CalcMapping and CalcParameterMapping on the
calculation engine class. The table has six columns:

• Class name. In this cell, the user would be presented with a selector, which
contains list of all classes in the database. This field would be stored on the
"Class" property of CalcMapping class. That property itself in the database
is actually in the free text form. The choice for a free text data type is to
accommodate those who need to use external data source where the list of
classes is unknown by the system. In this context, the user needs to write
down the name of the class manually. But for the prototype, the feature to
use external data source was dismissed. So, it was decided that the class field
here will use HTML selector instead of regular input box. The selector would
provide better user experience for the user.

• Instance. In this cell, the user selects the instance, which he/she wants to
use as a parameter in the code. The options of the selector depend on the
class selected by the user. It will show list of instances of whatever class the
user selects in the previous cell. This field will fill the "WhereString" property
on the CalcMapping class. This field has the same issue as the class selector.
In the database, this field is in the form of free text. For this field, it is not
only to allow flexibility for those who use external data source, but also for a
much more flexible way to selecting the target instance. Again, this flexibility
is dismissed on the prototype. So, this field is presented as instance selector
only.

• Parameter Type. This cell will contain parameter type selector. The type
will be used as the parameter data type on the code. The options of this selec-
tor comes from CalcParameterType. This field will fill the "Type" property
of CalcParameter class.

• Is Array. This cell contains a checkbox to determine, whether this parameter
is an array or not. This field will fill the "ArrayDimensions" property on
CalcParameter class. This property is meant to allow users to use parameter
with any dimension of array. But for now, the system only allows 0 or 1 option.
0 means this parameter is not an array and 1 means that this parameter is a
one dimensional array. Thus, the field that is being used is a checkbox.



59

• Is Output. This cell contains "Is Output" checkbox. This field will fill the
"IsOutput" property on CalcParameter class.

• Parameter Name. This cell will show an input box for the user to put
a name to this parameter. This field will fill the "Name" property on the
CalcParameter.

Looking at the presented field above, it is clear that not all properties of those
three target classes for this parameter builder section is presented. For example,
there is no way for the user to set the DSN property on CalcMapping. There is also
no way for the user to fill the "Defaulthistory" property on CalcParameterMap-
ping. All those properties are left blank by default because it is not essential for
prototyping purpose.

Code Editor

ABB’s cpmPlus View already has a code editor implemented for some parts of the
system. They use a third party code editor called Ace Editor. It is a Javascript
based code editor. So, it is logical to use the same code editor for this prototyping
purpose as well. On top of the code editor section, I put code name field, language
selector field and a dependency button. On the bottom of the code editor, I added
a console with a "debug" checkbox. Below that, there is a bar, which shows the
position of the cursor on the code editor.

Whenever the user types something into the name field. The code editor will
be updated to show that this code is using the name. Whenever the user changes
the language via the language selector, the content of the code editor would also be
switched to the corresponding language. Whenever the user clicks on the dependency
button, a pop up will appear showing a sample of how the dependency configurator
layout would look like.

The main thing that I wanted to show on this prototype is the auto complete
functionality on the code editor. The auto completion feature get the list of auto
complete suggestion based on the content of the code and also the selected parameter
from the database. This prototype already has basic level of that functionality. The
initial parser development (which will be explained deeper in the later chapter) was
done in parallel during the prototyping phase. The basic parser has already been
able to construct a good enough symbol table to be used on the auto completion
system. The code editor is also connected to the parameter builder to provide auto
completion on object property from the database.

8.3.3 Feedback

The prototype was done in roughly two weeks. After that, I showed the demo of
the prototype to the team at ABB. Below are some of their feedback:

• The list calculation dashboard should not show the list of calculation in a box
format. Because box format like that is only suitable for showing images.



60

• The add calculation dashboard has too much whitespace. There are many
areas within the screen, which do not really show anything.

• This whitespace issue, in effect, forces the UI to exceed the viewport. It
means that the user will be required to scroll through the page to set up all
the configuration for their calculation.

• This scrolling issue is worsened by the fact that the code editor also has scroll
bar of its own. This creates a stacked scroll bar, which is a bad design pattern
on UX perspective.

• The instance selector might not work well in the case that there are tons of
options for the instance. ABB already has UI component to overcome this
issue and it was suggested that I use that UI component.

The feedback is then later analyzed whether they are justifiable. I asked for
opinion from another developer regarding the feedback to get better aggregate feed-
back. Most of those feedbacks were eventually taken as a good suggestion for future
development of the real system.

8.4 Parser Development
One of the most important components of an IDE is a code editor. The ideal
code editor of an IDE should be versatile by offering features like auto completion,
syntax checking, debugger integration, etc. In the case of this thesis work, we limit
the scope of the expected IDE-like functionality to auto completion only. In order
to provide auto completion functionality on the code editor, the system should be
able to read the code and build a data structure out of it in the form of syntax
tree and/or symbol table. The auto completion features will then utilize this data
structure to provide the auto completion. For this purpose, we need to implement
a parser in our system.

There are several design decision that needs to be made regarding the develop-
ment of the parser. First, I need to decide whether to use server side parsing or
client side parsing. Second, I have to decide whether to use parser generator or
build the parser manually. Lastly, I have to decide what to build on behalf of the
parser, whether I should build the abstract syntax tree, the symbol table or both.
The following chapter will elucidate every decisions that was made.

8.4.1 Server Side Parsing vs Client Side Parsing

The first issue that needs to be decided prior to the parser development is whether
to use server side or client side parsing. I and the team at ABB had a disagreement
whether to use server side parsing or client side parsing.

Server side parsing means to use a fully functional third party C# parser, which
is already available and mature. This mature third party parser can only work on
the server. It means that the process of parsing would need to be run with some



61

communication overhead between client and server. On every code change, the client
would resend the changed code to the server to be handled by the parser. The parser
would then do its job parsing the code and build a complete abstract syntax tree
and symbol table. This will result in a much more versatile tree, which can also be
used for syntax checking, grammatical analysis and some level of execution. But,
there will be the problem of communication overhead. Resending the code over and
over again from the client to the server would be an expensive operation. Especially,
if it needs to be sent on every keystroke.

Another options is to do client side parsing. The advantage of doing it on the
client side is that it could work faster because there is no communication over head.
The downside is that it would not be as versatile as using full blown parser on the
server side.

Finally, we decide to do client side parsing with consideration that we will not
really need a fully functioning parser. We do not need a full complex functionality
of an IDE.

8.4.2 Parser Generator vs Manual Parsing

As has been mentioned in the theoretical chapter about parsing, there are two ways
to make a parser. We can generate it using parser generator or we can build it
manually.

In the context of this thesis work, there is not so many options on using parser
generator. This is because our case is pretty specific and rather rare. What we want
is a parser generator that could generate a parser based on the C# grammar. Since
we work on Javascript environment, the generator needs to be able to generate the
parser in Javascript. There are several Javascript based parser generator out there
such as PEG.js, nearley and Jison. They are all capable of generating a Javascript
based parser with each of their own parsing algorithm. But the problem is none
of them already has ready-to-use C# grammar. It means that I will have to write
the grammar definition myself. This could be challenging considering the scope of
C# grammar. It would be even more challenging because their documentation on
writing a complex grammar is quite limited.

With that consideration, I decided to write the parser manually. The fact that
we have limited the scope only to auto completion also becomes a factor in this
decision. By writing the parser manually, I can have more flexibility on the scope of
the parser that I am going to build. I can pick some areas of the parser development
that is truly needed for the purpose of this thesis works.

8.4.3 Abstract Syntax Tree vs Symbol Table

A parser, along with the lexer, can generate both abstract syntax tree and symbol
table. Abstract syntax tree will enable highly robust code editor with various func-
tionality such as syntax checking and code validation. Symbol table contains all the
objects needed for the auto completion suggestion list. Building and maintaining
abstract syntax tree is harder and much more complex than building a symbol ta-



62

ble. Since the code editor is based on Javascript, both of these objects will have to
be stored as Javascript objects. Maintaining both abstract syntax tree and symbol
table by a parser as Javascript objects will take considerable amount of time. Since
we have already limited our scope only to auto completion feature, it was decided
that the object that the parser will build and maintain is only the symbol table.

8.4.4 Syntactical Analysis Process

Before the syntactical analysis process begins, the parser needs to have tokens to
process with. These tokens are generated by the lexer during the lexical analysis
process. For this thesis work, the tokenization is handled by the Ace code editor.
Ace code editor already has built-in lexer that they use for the purpose of code
indentation and syntax highlighting.

I utilized the tokens that are already available from the Ace code editor. The
tokens include: identifier (variable names, class names, method names, etc), com-
ments, keywords, punctuation, open and closing brackets, parentheses and operators.
In a full parser, all of these tokens will need to be parsed and processed into the
abstract syntax tree. But, since I have decided to only build a symbol table, I am
only interested in identifier, and keywords. The rest of the token is just used to
determine how should the identifier be stored in the symbol table.

Every time the user makes some changes to the code, Ace will redo the tokeniza-
tion and provides new streams of tokens. Once the tokens are ready, the parser will
iterate through all the tokens. On every iteration, the parser will determine how
and where should the current token gets stored in the symbol table based on various
factors on the grammatical specification.

The process of rebuilding the symbol table is repeated every time there is a
change in the code. If the user types a character or pastes a snippet of code in the
code editor, the lexer will re-read the whole code, do the syntactical analysis process
and rebuild the entire symbol table. This rebuilding process also happened every
time there is a change on the code which is done programmatically by some other
outer process. For example, whenever the user types down the calculation name on
the calculation name input box, the system will automatically use that name and
augment it to the name of the main class on the code. After that, the parser will
do its job and rebuild the symbol table.

8.4.5 Symbol Table Format

The outcome of my parser is a symbol table. This symbol table is stored in a
Javascript object. The way that I built the symbol table is a little bit different than
the symbol table that is created by most parsers. With the different approach that
I took, the symbol table here actually resembles collection of lexicons from the code
which is stored in a structured tree along with its detailed information. This is why
I call it LexTree.

A symbol table is commonly built as a hierarchical tree. The hierarchy of the tree
follows the scoping code block of the input source. The deeper the code block scope,



63

the deeper the symbol table tree goes. For a parser in a compiler, this approach is
essential.

Figure 8.4: LexTree symbol table

As for the specific need of this thesis
work, a full hierarchical architecture is
not necessary. It is because the usage of
symbol table in our case is only to pro-
vide auto completion. It is not going to
be used for further processing like build-
ing of an intermediate representation.

In my symbol table, the number of
the root branches is fixed. As can be
seen from figure 8.4, the root of my Lex-
Tree will always have 7 branches. The
first two branches ($editor and $session)
are there for parsing purposes only. It does not really represent anything from the
code. The rest of the branches represent all type of identifiers that are being parsed
by the parser.

Each branch will contain all the respective identifiers successfully parsed from
the code. They are all stored in a non hierarchical way. All parsed identifiers from
any block scope will be stored right below its respective root branch. For example,
a variable, which is declared inside a method scope, will be put right below the
variables root branch along with any variable, which is declared from its class scope.
The hierarchical information of each particular identifier is instead stored in "parent"
attribute inside their object on the LexTree.

With fully hierarchical tree, the system would need to traverse the whole tree
to gather instances for the auto completion list. With my LexTree approach, full
tree traversal is not needed. The system just needs to iterate through all respective
identifiers, which have the correct parent attribute.

Every identifier on this LexTree has range attribute. This attribute contains the
row and column position of that identifier on the code. For identifiers, which define
a new block scope such as namespace, class and method, there is also an attribute
called insideRange. This is similar to the range attribute, but in insideRange the
row and column position that is being stored is the first opening position of the
scope and the closing of the scope.This information is used to detect position of the
cursor inside the code editor relative to the structure of the code.

8.5 User Interface Design
The bigger picture of this thesis work is to design a UI for ABB’s industrial IoT
system. This chapter will elaborate the process of designing the UI for ABB’s
calculation engine.



64

Figure 8.5: Parent attribute on LexTree object

8.5.1 Widget Development

CpmPlus View uses widgets that can be dragged and dropped anywhere within the
dashboard. For the purpose of building the UI for the calculation engine, I developed
several widgets exclusively. Each of these widgets work together forming a cohesive
dashboard for the calculation engine UI.

A widget is coded in a Javascript file. Below is the minimum Javascript code
that is needed to build a widget. This widget does nothing. All the widget code
must be written inside the widget function.

1 if(!ABB.Mia.Widgets.SampleNamespace) ABB.Mia.Widgets.
SampleNamespace ={};

2 ABB.Mia.Widgets.SampleNamespace.cSampleEmptyWidget=function(
parentelement , config)

3 {
4 var pub=ABB.Mia.cWidgetBase(parentelement);
5 pub.base.ReadProperties(config);



65

Figure 8.6: Positional attribute on LexTree object

6

7 // widget 's code must be written here
8

9 return pub;
10 };
11 ABB.Mia.Components.Add("ABB.Mia.Widgets.SampleNamespace.

cSampleEmptyWidget", ABB.Mia.cWidgetBase);

Class Inheritance

This piece of code gives a brief notion about ABB’s internal Javascript develop-
ment framework. It shows how the internal framework implements inheritance in
Javascript. In this sample code, it is shown in line 4 that the cSampleEmptyWidget
has a variable called pub. Every widget must have this variable where it stores all
of its public functions/variables. In order to inherit from a class, the pub object
is set to an instance of an inherited class. In the case of this sample widget code,



66

it is inheriting the cWidgetBase class. The inherited class stores all of the public
functions and variables of that superclass to the child class. Every protected mem-
ber of that class should be put inside pub.base. ReadProperties on the 5th line
is a method that reads the widgets’ saved properties that the Dashboard Editor
has saved. In order to, for example, restore the widget’s position when loading the
widget, the widget needs to call ReadProperties with the config it has been given.
Finally, the pub object need to be returned from a constructor of this widget (called
SampleEmptyWidget in this example).

Widget definition

Before the widget can be used in the dashboard, there is another step that needs
to be done. That step is to prepare an mdw file. Mdw file is a file, which informs
the cpmPlus View about the widget’s information, such as name of the widget,
category, path to the icon file, and which javascript and css files to load and from
where. Below is the sample of the mdw file:

1 //(widgets/tutorial /1/ emptywidget.mdw)
2 {
3 "Name": "Sample Empty Widget",
4 "Category": "Sample",
5 "IsBrowsable": true ,
6 "Class": "ABB.Mia.Widgets.Tutorial.cSampleEmptyWidget",
7 "Icon": "sampleemptywidget.png",
8 "Sources": ["$/sampleemptywidget.js"]
9 }

Widget Properties

A widget can have properties. These properties can be used to make a widget
customizable through cpmPlus dashboard editor. To add modifiable properties to a
widget, the properties need to be declared in the widget constructor. Below is the
sample code on how to add a property to a widget:

1 if(!ABB.Mia.Widgets.SampleNamespace) ABB.Mia.Widgets.
SampleNamespace ={};

2 ABB.Mia.Widgets.SampleNamespace.cSampleEmptyWidget=function(
parentelement , config)

3 {
4 var pub=ABB.Mia.cWidgetBase(parentelement);
5

6 pub.base.AddProperty(
7 "NewProperty", // name of the property
8 ABB.Mia.cPropertyType.Text , // type of the property
9 {

10 Description: "Color of the widget",
11 DefaultValue: "hello",
12 Browsable: true ,



67

13 Serializable: true
14 }
15 );
16

17 ...
18 };

Widget Connection to the Database

cpmPlus View has many ways to connect to the database. All connections to the
database are done using Websocket technology. The framework already provides
several APIs to add, edit and remove any instances on the database. The main
entrance to the database manipulation API is through DBConnection object. Below
are some of the most important functions on the API to work with the database.

1 // create new DB Connection object
2 var connection = pub.base.GetDashboard ().GetConnection ();
3

4 // create new DB instance object
5 var dbInstance = connection.Classes.ClassName.Instances.Add();
6

7 dbInstance.WhenReady(function (){
8

9 // setting property value to a DB instance
10 dbInstance.base.SetPropertyValue("PropertyName", "

propertyValue");
11

12 // committing any changes on the dbInstance to the
database

13 dbInstance.commitChanges ();
14

15 // executed when the commit process is done
16 db.WhenCommitDone(doneCallback);
17

18 // executed when the commit process is failed
19 db.WhenCommitFailed(failedCallback);
20 });
21

22 // used to subscribe to any change on the database
23 connection.SubscribeChanges(subscribedClass , null , null , null ,

callback);

8.5.2 Calculation Engine Widgets

For the purpose of designing a UI for calculation engine on cpmPlus view platform,
I developed several widgets. These widgets were made exclusively for calculation
engine. The widgets that I developed are not meant to be reusable for any other



68

purposes. In total, I have developed six different widgets with their own unique func-
tionality. All widgets work together through some configuration on the dashboard
editor.

Here is the list of widgets that has been developed for the calculation engine:

• Code editor widget
This is the widget where the users write their calculation code. Below, is the

Figure 8.7: Code editor widget screenshot

list of features that are available on this widget:

– Set the name, description and type of a calculation definition.
– Add dependency to the calculation definition.
– Edit dependencies of the calculation.
– Remove dependencies from the calculation.
– Manage (add, edit delete) external library to be used as dependency on

a calculation definition.
– Code editor with syntax highlighting, indentation, cursor detection and

integrated auto completion support.

• Parameter selector widget
This widget is created to easily select and configure parameter, which will be
used as the parameter to the main function on the calculation code. Below is
the list of features that are available on this widget:



69

Figure 8.8: Parameter selector widget screenshot

– Add new parameter.

– Edit parameter.

– Remove parameter.

– See details for a parameter block.



70

• Console widget
This widget will show any error retrieved from the calculation engine regarding
the calculation that is being worked on.

Figure 8.9: Console widget screenshot

• Task configurator widget
This is where the user can set the configuration of tasks for the calculation.

Figure 8.10: Task configurator widget screenshot

Below are list of features that are available on this widget:

– Manage (add, edit, delete) process.



71

– Manage (add, edit, delete) task.

– Manage (add, edit, delete) scheduler.

• Action bar widget
This widget is the "glue" between all the other widgets, which are used in the

Figure 8.11: Calc action bar widget screenshot

add calculation dashboard. This widget contains the submit/edit button that
will submit new instance of calculation or edit the loaded calculation from the
database. If there is no error in the user’s calculation code and configuration,
this widget will redirect the user to list calculation dashboard.

• Calc list widget
This widget is used for the list calculation dashboard. It lists all the calcula-
tion.

8.5.3 Dashboard Arrangement

Based on what has been defined in the requirement, the UI is split into two pages:
list calculations dashboard and add/edit calculation dashboard.

List Calculations Dashboard

This dashboard consists of only one big widget, which takes the whole area of the
dashboard. The name of the widget is CalcList. This widget lists all existing
calculations. Whenever the user clicks "open" button on this dashboard, it will open
the add/edit calculation dashboard with some context data to notify the AddCalc
Dashboard that it should be on edit mode instead of add new mode. And, also to
populate all the fields (code editor, param fields and task configurations settings)
with the value of the referring calculation.

Add/Edit Calculation Dashboard

This dashboard is used to add a new calculation or edit the existing calculations.
Calculation here means the whole package of the calculation that includes the code
definition, parameters setting, and task settings. This dashboard contains four wid-
gets: code editor, console, parameter selector, configurator and action bar.



72

Figure 8.12: List calculations dashboard screenshot



73

Figure 8.13: Add/edit calculation dashboard screenshot



Chapter 9

Discussion

This chapter contains evaluation of the thesis vis-à-vis the initial goal and the re-
search questions that have been defined (chapter 9.1). Lastly, this chapter will
discuss about several improvement possibilities for the future work (chapter 9.2).

9.1 Evaluation
This section evaluates the thesis work with regard to the requirement of the system
and the research question that has been defined.

9.1.1 Meeting the Requirements

The requirements for this thesis work have been defined in chapter 7. The re-
quirements are split in two categories: functional requirements and non-functional
requirements. All the functional requirements elaborated in chapter 7.5 have been
implemented. The process of the implementation has been explained in chapter 8.
As for the non-functional requirement, more comprehensive testing still needs to be
done in order to check whether the developed system has met the non-functional re-
quirements or not. For example, non-functional requirement about usability would
mean that a usability testing is applied for the UI. Performance requirement might
need some thorough stress testings.

In general, the system that has been developed in this thesis work is complete.
The users have been able to execute most important tasks of the calculation engine
through the newly designed UI.

9.1.2 Answering Research Questions

There are two research questions that have been defined on this thesis work. The
first question is "What are the requirements of the web based IDE for ABB Ability
Calculation Engine?". Extensive requirement analysis has been done to answer
this question. The result of this requirement analysis has been written down in
chapter 7. The second question is "How should the web based IDE be designed and

74



75

developed?". The whole system has now been developed and implemented. The
detailed process of the development and implementation is elaborated in chapter 8.

9.2 Future work
This thesis work is not perfect. It still has some bugs and caveats. It also has count-
less opportunities for improvement. This section outlines potential improvements
that could be done related to this thesis work. Some of these improvements are
specific for the development of calculation engine UI. Some others are more general
recommendations on the framework behind the UI.

9.2.1 Parser Performance Optimization

Initially the parser was built without much attention to performance. The reason
for that is because it comes with the assumptions that most of the code written by
the user would probably be just simple code, so there is no need to build a parser
that will be able to work flawlessly with code, which has thousands of lines of code.

But later, it has come to realization that there are some edge cases where the
code could reaches tens of thousands of lines of code. Basic testings were done to
check how reasonable the current implementation of the parser in handling large
code with thousands and tens of thousand of lines of code. The parser began to feel
slow and unresponsive when the code has more than 3000 lines of code.

This problem presents opportunity for performance optimization. There are
many things that could be done to increase the performance of the parser such as:

• Diff-ing algorithm implementation. With implementation of diff-ing al-
gorithm, the system would be able to determine the changes that have been
made to the code. This could then be used to increase the performance of the
parser. The parser can parse only the change of the code instead of running
through the whole code for every changes made by the user.

• Conditional real-time parsing. Another strategy that could potentially
increase the perceived performance of the parser is to implement conditional
parsing. Real time parsing could be done normally when the number of lines on
the code is still below some threshold level. When it has exceed the threshold,
the system could use different strategy on parsing. For example, the parser
could do periodical parsing (i.e., re-parse every 60 seconds) instead of event
triggered parsing (i.e., re-parse on every keystroke event).

• Web worker utilization. HTML5 comes with a powerful new feature called
web worker. This feature lets a web page to run scripts on the background.
Clever implementation of web worker could open the opportunity for multi-
threading programming. Multi-threading parsing would potentially increase
the parser performance dramatically.



76

• Context sensitive parsing. The way the current parser works is without
looking at the context. It just re-reads the whole code and rebuilds the symbol
table from the beginning. The system already has a way to determine the
position of the cursor relative to the code. It could detect if the user adds
new code in a particular block scope. The parser could utilize this information
by re-parsing only that particular block scope since all the other block scope
would not be affected.

9.2.2 More Advanced Code Editor Features

Currently, the available code editor does not have advanced features that require
it to understand the code. The most advanced feature of the code editor is only
the auto completion. The rest of the features are just basic features of code editor,
which could be derived from the lexer such as syntax highlighting, code folding,
auto-indentation and so on.

With a full parser that builds not only the symbol table, but also the abstract
syntax tree, more advanced features could be developed such as:

• Error checking. With error checking feature, the code editor could tell the
user, which part of the code generated the errors.

• Syntax validation. A full parser would immediately be able to tell if the syntax
written by the user is not valid since it won’t match the provided grammar.

9.2.3 More Advanced IDE Features

Not only can we improve the features of the code editor per se, we can also add
more IDE-related features such as:

• Code versioning

• Live debugger

• Refactoring facilities

• Better navigation to and from references/declarations

9.2.4 Drag-and-drop Oriented User Interface

This idea has been surfaced several times during the development of this thesis work
by some engineers at ABB. With this drag-and-drop UI, the users no longer need to
write their own calculation code. Instead, they can just drag and drop some ready
made calculations to the "canvas". On this canvas they can drop some data block
and calculation code block. They can then wire every block according to their needs.



77

9.2.5 Framework Modernization

ABB cpmPlus View currently still uses ECMAscript 5. There is nothing wrong
with it. But sticking with the old version of Javascript would mean that we are
missing the potential for a better and more efficient way to extend the system.
The latest version of Javascript offers array of new features and functionalities that
could dramatically help developers code faster, more effective and more efficient.
The resulting code could also be easier to read for other developers to extend.

Not all browsers have supported all the latest features of Javascript. This could
become a compatibility issue. To overcome this problem, the system could imple-
ment transpiler software like Babel. This transpiler would trans-compile any code
written in the latest version of Javascript into the earlier version of Javascript that
is already well-supported by most browsers. With this approach, we can exploit
all the new features that are offered by the language without sacrificing browsers
compatibility.

9.2.6 Web Component Implementation

cpmPlus View works with widget system. Each widget has its own functionality
that could be dragged and dropped anywhere on the dashboard. Each widget is
expected to work independently with standardized way to communicate with other
widgets. There is sometimes a problem where styling from some widgets clashed
with other widgets. This problem could be solved with web components.

Web components are a set of new HTML features that encourage encapsulation
and interoperability of HTML elements. This is exactly what is expected from
cpmPlus view widget system. In the future, every widget can be developed as a
single new web component. The encapsulation features of web components will
alleviate the styling clashes problem.

There is also a possibility to import third party web component to be used as
a new widget on cpmPlus View. ABB could also publish its own web components
to be used by another parties. This will provide much bigger options of widgets for
the user to build their own dashboard without the need to hand code every single
widget for them.



Chapter 10

Conclusions

The main goal of this thesis work is to design a good web based UI for ABB’s
calculation engine as part of their IIoT platform. The UI is expected to have some
level of IDE-like functionalities. The approach that is taken on this thesis work is
by building such system with constructive research methodology.

The end result of this thesis is a cohesive UI that reflects the user’s work flow.
The approach helps alleviating the complexities that exist on the underlying system.
The finalized design allows end users at ABB to efficiently utilize the calculation
engine. The end users can operate the calculation engine in a more natural way
according to their task regarding the usage of calculation engine.

This thesis also has become a proofing point of ABB’s internal front-end dash-
board system. It proves that such a complex UI system could be built on top of this
platform.

Opportunities for future improvement of the UI are endless. The end result of
this thesis work serves as the initial footstep towards an even more robust UI that
could approximate the features of traditional desktop based IDE. Future versions of
the UI could incorporate a code editor with full IDE functionality such as syntax
checking, validation, live debugging and so on.

Once deployed, the UI along with its back-end calculation engine could help
boosting the efficiency of many ABB’s engineers working directly with real world
problem that could be solved by utilizing the calculation engine.

78



Bibliography

[1] ABB Ability. url: http://new.abb.com/abb-ability (visited on 08/07/2017).

[2] About Us | Industrial Internet Consortium. url: http://www.iiconsortium.
org/about-us.htm.

[3] ADVANCED MANUFACTURING: A Snapshot of Priority Technology Areas
Across the Federal Government. 2016. url: https://www.whitehouse.gov/
sites/whitehouse.gov/files/images/Blog/NSTC%20SAM%20technology%
20areas%20snapshot.pdf.

[4] Alfred V Aho, Ravi Sethi, and Jeffrey D Ullman. Compilers: principles, tech-
niques, and tools. Vol. 2. Addison-wesley Reading, 2007.

[5] Alfred V. Aho and Jeffrey D. Ullman. The Theory of Parsing, Translation,
and Compiling. Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1972. isbn:
0-13-914556-7.

[6] M. Alam, R. H. Nielsen, and N. R. Prasad. “The evolution of M2M into IoT”.
In: 2013 First International Black Sea Conference on Communications and
Networking (BlackSeaCom). July 2013, pp. 112–115. doi: 10.1109/BlackSea
Com.2013.6623392.

[7] Kevin Ashton. That ’Internet of Things’ Thing. url: http://www.rfidjour
nal.com/articles/view?4986.

[8] Debasis Bandyopadhyay and Jaydip Sen. “Internet of Things: Applications
and Challenges in Technology and Standardization”. In: Wireless Personal
Communications 58.1 (2011), pp. 49–69. issn: 1572-834X. doi: 10.1007/
s11277-011-0288-5. url: http://dx.doi.org/10.1007/s11277-011-
0288-5.

[9] L. Bass, P. Clements, and R. Kazman. Software Architecture in Practice. SEI
Series in Software Engineering. Pearson Education, 2012. isbn: 9780132942782.
url: https://books.google.com/books?id=-II73rBDXCYC.

[10] BMBF-Internetredaktion. Zukunftsprojekt Industrie 4.0 - BMBF. url: https:
//www.bmbf.de/de/zukunftsprojekt-industrie-4-0-848.html.

[11] Ann Bosche et al. How Providers Can Succeed in the Internet of Things. Tech.
rep. Bain and Company Inc, 2016. url: http://www.bain.com/Images/
BAIN_BRIEF_How_Providers_Can_Succeed_In_the_IoT.pdf.

[12] Patrik Cerwall et al. Ericsson Mobility Report. Tech. rep. Ericsson, June 2017.

79

http://new.abb.com/abb-ability
http://www.iiconsortium.org/about-us.htm
http://www.iiconsortium.org/about-us.htm
https://www.whitehouse.gov/sites/whitehouse.gov/files/images/Blog/NSTC%20SAM%20technology%20areas%20snapshot.pdf
https://www.whitehouse.gov/sites/whitehouse.gov/files/images/Blog/NSTC%20SAM%20technology%20areas%20snapshot.pdf
https://www.whitehouse.gov/sites/whitehouse.gov/files/images/Blog/NSTC%20SAM%20technology%20areas%20snapshot.pdf
http://dx.doi.org/10.1109/BlackSeaCom.2013.6623392
http://dx.doi.org/10.1109/BlackSeaCom.2013.6623392
http://www.rfidjournal.com/articles/view?4986
http://www.rfidjournal.com/articles/view?4986
http://dx.doi.org/10.1007/s11277-011-0288-5
http://dx.doi.org/10.1007/s11277-011-0288-5
http://dx.doi.org/10.1007/s11277-011-0288-5
http://dx.doi.org/10.1007/s11277-011-0288-5
https://books.google.com/books?id=-II73rBDXCYC
https://www.bmbf.de/de/zukunftsprojekt-industrie-4-0-848.html
https://www.bmbf.de/de/zukunftsprojekt-industrie-4-0-848.html
http://www.bain.com/Images/BAIN_BRIEF_How_Providers_Can_Succeed_In_the_IoT.pdf
http://www.bain.com/Images/BAIN_BRIEF_How_Providers_Can_Succeed_In_the_IoT.pdf


BIBLIOGRAPHY 80

[13] Ian Chiswell and Wilfrid Hodges. Mathematical logic. Vol. 3. OUP Oxford,
2007.

[14] Michael Chui, Markus Löffler, and Roger Roberts. “The internet of things”.
In: McKinsey Quarterly 2.2010 (2010), pp. 1–9.

[15] Cisco. Leading Tools Manufacturer Transforms Operations with IoT. 2014.
url: http://www.cisco.com/c/dam/en_us/solutions/industries/docs/
manufacturing/c36-732293-00-stanley-cs.pdf.

[16] US National Intelligence Council. Disruptive Civil Technologies: Six Technolo-
gies With Potential Impacts on US Interests Out to 2025. Tech. rep. US Na-
tional Intelligence Council, 2008.

[17] Gordana Dodig Crnkovic. “Constructive Research and Info-computational Knowl-
edge Generation”. In: Model-Based Reasoning in Science and Technology: Ab-
duction, Logic, and Computational Discovery. Ed. by Lorenzo Magnani, Walter
Carnielli, and Claudio Pizzi. Berlin, Heidelberg: Springer Berlin Heidelberg,
2010, pp. 359–380. isbn: 978-3-642-15223-8. doi: 10 . 1007 / 978 - 3 - 642 -
15223-8_20. url: http://dx.doi.org/10.1007/978-3-642-15223-8_20.

[18] Paul Daugherty et al. “Driving unconventional growth through the Industrial
Internet of Things”. In: White Paper, Accenture (2015).

[19] Dcoetzee. Abstract syntax tree for Euclidean algorithm. [Online; accessed July
25, 2017]. 2011. url: https://commons.wikimedia.org/wiki/File:Abstra
ct_syntax_tree_for_Euclidean_algorithm.svg.

[20] Grune Dick and H Ceriel. Parsing techniques, a practical guide. Tech. rep.
Technical Report, Tech. Rep, 1990.

[21] R. Drath and A. Horch. “Industrie 4.0: Hit or Hype? [Industry Forum]”. In:
IEEE Industrial Electronics Magazine 8.2 (June 2014), pp. 56–58. issn: 1932-
4529. doi: 10.1109/MIE.2014.2312079.

[22] J.S. Dumas and J. Redish. A Practical Guide to Usability Testing. Human/-
computer interaction. Intellect, 1999. isbn: 9781841500201. url: https://
books.google.fi/books?id=4lge5k%5C_F9EwC.

[23] ECMA International. Standard ECMA-262 - ECMAScript Language Speci-
fication. 5.1. June 2011. url: http : / / www . ecma - international . org /
publications/standards/Ecma-262.htm.

[24] Thomas Erl. Service-oriented architecture: a field guide to integrating XML
and web services. Prentice hall, 2004.

[25] Thomas Erl. Service-oriented architecture: concepts, technology, and design.
Pearson Education India, 2005.

[26] Elika Etemad. CSS Namespaces Module Level 3. W3C Recommendation. W3C,
Mar. 2014. url: http://www.w3.org/TR/2014/REC-css-namespaces-3-
20140320/.

http://www.cisco.com/c/dam/en_us/solutions/industries/docs/manufacturing/c36-732293-00-stanley-cs.pdf
http://www.cisco.com/c/dam/en_us/solutions/industries/docs/manufacturing/c36-732293-00-stanley-cs.pdf
http://dx.doi.org/10.1007/978-3-642-15223-8_20
http://dx.doi.org/10.1007/978-3-642-15223-8_20
http://dx.doi.org/10.1007/978-3-642-15223-8_20
https://commons.wikimedia.org/wiki/File:Abstract_syntax_tree_for_Euclidean_algorithm.svg
https://commons.wikimedia.org/wiki/File:Abstract_syntax_tree_for_Euclidean_algorithm.svg
http://dx.doi.org/10.1109/MIE.2014.2312079
https://books.google.fi/books?id=4lge5k%5C_F9EwC
https://books.google.fi/books?id=4lge5k%5C_F9EwC
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.w3.org/TR/2014/REC-css-namespaces-3-20140320/
http://www.w3.org/TR/2014/REC-css-namespaces-3-20140320/


BIBLIOGRAPHY 81

[27] I. Fette and A. Melnikov. The WebSocket Protocol. RFC 6455. http://www.
rfc-editor.org/rfc/rfc6455.txt. RFC Editor, Dec. 2011. url: http:
//www.rfc-editor.org/rfc/rfc6455.txt.

[28] World Economy Forum. Industrial Internet of Things: Unleashing the Poten-
tial of Connected Products and Services. Tech. rep. World Economy Forum,
Jan. 2015.

[29] Roger Fournier. A Methodology for Client/Server and Web Application De-
velopment. Upper Saddle River, NJ, USA: Yourdon Press, 1999. isbn: 0-13-
598426-2.

[30] Wilbert O Galitz. The essential guide to user interface design: an introduction
to GUI design principles and techniques. John Wiley & Sons, 2007.

[31] Jesse James Garrett. "Ajax: A New Approach to Web Applications". [Archived
from the original on 2 July 2008. Retrieved 19 June 2008.] Feb. 2005. url:
https://web.archive.org/web/20080702075113/http://www.adaptivepa
th.com/ideas/essays/archives/000385.php.

[32] Gartner Says 8.4 Billion Connected "Things" Will Be in Use in 2017, Up 31
Percent From 2016. Feb. 2017. url: http://www.gartner.com/newsroom/
id/3598917.

[33] J Gartner. Gartner’s 2016 Hype Cycle for Emerging Technologies Identifies
Three Key Trends That Organizations Must Track to Gain Competitive Ad-
vantage. 2016.

[34] Arthur Gill et al. “Introduction to the theory of finite-state machines”. In:
(1962).

[35] Richard Harper. Inside the smart home. Springer Science & Business Media,
2006.

[36] Robert Harper. Practical foundations for programming languages. Cambridge
University Press, 2016.

[37] J. Barlow Herget. Abby to the rescue. Tech. rep. ABB, 2004. url: https:
//www02.abb.com/global/seitp/seitp202.nsf/0/276d1cba54cbb71dc
125723700470e55/$file/Itech.pdf.

[38] M. Hermann, T. Pentek, and B. Otto. “Design Principles for Industrie 4.0
Scenarios”. In: 2016 49th Hawaii International Conference on System Sciences
(HICSS). Jan. 2016, pp. 3928–3937. doi: 10.1109/HICSS.2016.488.

[39] Thomas T. Hewett et al. ACM SIGCHI Curricula for Human-Computer In-
teraction. Tech. rep. New York, NY, USA, 1992.

[40] Ian Hickson. The WebSocket API. Candidate Recommendation. W3C, Sept.
2012. url: http://www.w3.org/TR/2012/CR-websockets-20120920/.

[41] Ian Hickson et al. HTML5. W3C Recommendation. W3C, Oct. 2014. url:
http://www.w3.org/TR/2014/REC-html5-20141028/.

http://www.rfc-editor.org/rfc/rfc6455.txt
http://www.rfc-editor.org/rfc/rfc6455.txt
http://www.rfc-editor.org/rfc/rfc6455.txt
http://www.rfc-editor.org/rfc/rfc6455.txt
https://web.archive.org/web/20080702075113/http://www.adaptivepath.com/ideas/essays/archives/000385.php
https://web.archive.org/web/20080702075113/http://www.adaptivepath.com/ideas/essays/archives/000385.php
http://www.gartner.com/newsroom/id/3598917
http://www.gartner.com/newsroom/id/3598917
https://www02.abb.com/global/seitp/seitp202.nsf/0/276d1cba54cbb71dc125723700470e55/$file/Itech.pdf
https://www02.abb.com/global/seitp/seitp202.nsf/0/276d1cba54cbb71dc125723700470e55/$file/Itech.pdf
https://www02.abb.com/global/seitp/seitp202.nsf/0/276d1cba54cbb71dc125723700470e55/$file/Itech.pdf
http://dx.doi.org/10.1109/HICSS.2016.488
http://www.w3.org/TR/2012/CR-websockets-20120920/
http://www.w3.org/TR/2014/REC-html5-20141028/


BIBLIOGRAPHY 82

[42] Jan Holler et al. From Machine-to-machine to the Internet of Things: Intro-
duction to a New Age of Intelligence. Academic Press, 2014.

[43] Industrial Internet Reference Architecture Technical Report. Tech. rep. Indus-
trial Internet Consortium, June 2015. url: http://www.iiconsortium.org/
IIRA-1-7-ajs.pdf.

[44] "Industrie 4.0: Mit dem Internet der Dinge auf dem Weg zur 4. industriellen
Revolution". url: http://www.vdi- nachrichten.com/Technik- Gesell
schaft/Industrie- 40- Mit- Internet- Dinge- Weg- 4- industriellen-
Revolution.

[45] Ergonomic requirements for office work with visual display terminals (VDTs)
– Part 1: General introduction. Standard. International Organization for Stan-
dardization, May 1997.

[46] Robin Jeffries et al. “User Interface Evaluation in the Real World: A Compari-
son of Four Techniques”. In: Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. CHI ’91. New Orleans, Louisiana, USA: ACM,
1991, pp. 119–124. isbn: 0-89791-383-3. doi: 10.1145/108844.108862. url:
http://doi.acm.org/10.1145/108844.108862.

[47] J. Jin et al. “An Information Framework for Creating a Smart City Through
Internet of Things”. In: IEEE Internet of Things Journal 1.2 (Apr. 2014),
pp. 112–121. issn: 2327-4662. doi: 10.1109/JIOT.2013.2296516.

[48] E. Kasanen, K. Lukka, and A. Siitonen. “The Constructive Approach in Man-
agement Accounting Research”. In: Journal of Management Accounting Re-
search 5 (1993), pp. 241–264. url: http://web.ebscohost.com/ehost/
detail?vid=4%5C&%5C#38;hid=115%5C&%5C#38;sid=53bed057-a011-4f88-
a1ed-129172160157%5C%40sessionmgr102.

[49] J. Kaur and K. Kaur. “Availing Internet of Things in Industrial decision mak-
ing: A survey”. In: 2016 International Conference on Electrical, Electronics,
and Optimization Techniques (ICEEOT). Mar. 2016, pp. 2164–2168. doi: 10.
1109/ICEEOT.2016.7755075.

[50] B. Kitchenham and S Charters. Guidelines for performing Systematic Litera-
ture Reviews in Software Engineering. 2007.

[51] Barbara Kitchenham. © Kitchenham, 2004 Procedures for Performing Sys-
tematic Reviews. 2004.

[52] Hermann Kopetz. Real-time systems: design principles for distributed embed-
ded applications. Springer Science & Business Media, 2011.

[53] G. Kortuem et al. “Smart objects as building blocks for the Internet of things”.
In: IEEE Internet Computing 14.1 (Jan. 2010), pp. 44–51. issn: 1089-7801.
doi: 10.1109/MIC.2009.143.

[54] Soren Lauesen. User interface design: a software engineering perspective. Pear-
son Education, 2005.

http://www.iiconsortium.org/IIRA-1-7-ajs.pdf
http://www.iiconsortium.org/IIRA-1-7-ajs.pdf
http://www.vdi-nachrichten.com/Technik-Gesellschaft/Industrie-40-Mit-Internet-Dinge-Weg-4-industriellen-Revolution
http://www.vdi-nachrichten.com/Technik-Gesellschaft/Industrie-40-Mit-Internet-Dinge-Weg-4-industriellen-Revolution
http://www.vdi-nachrichten.com/Technik-Gesellschaft/Industrie-40-Mit-Internet-Dinge-Weg-4-industriellen-Revolution
http://dx.doi.org/10.1145/108844.108862
http://doi.acm.org/10.1145/108844.108862
http://dx.doi.org/10.1109/JIOT.2013.2296516
http://web.ebscohost.com/ehost/detail?vid=4%5C&%5C#38;hid=115%5C&%5C#38;sid=53bed057-a011-4f88-a1ed-129172160157%5C%40sessionmgr102
http://web.ebscohost.com/ehost/detail?vid=4%5C&%5C#38;hid=115%5C&%5C#38;sid=53bed057-a011-4f88-a1ed-129172160157%5C%40sessionmgr102
http://web.ebscohost.com/ehost/detail?vid=4%5C&%5C#38;hid=115%5C&%5C#38;sid=53bed057-a011-4f88-a1ed-129172160157%5C%40sessionmgr102
http://dx.doi.org/10.1109/ICEEOT.2016.7755075
http://dx.doi.org/10.1109/ICEEOT.2016.7755075
http://dx.doi.org/10.1109/MIC.2009.143


BIBLIOGRAPHY 83

[55] Kent D Lee. Programming languages: An active learning approach. Springer
Science & Business Media, 2008.

[56] Shi-Wan Lin et al. Industrial Internet Vocabulary. Tech. rep. Industrial In-
ternet Consortium, July 2015. url: http://www.iiconsortium.org/pdf/
Industrial-Internet-Vocabulary.pdf.

[57] Sam Lucero. IoT platforms: enabling the Internet of Things. Tech. rep. IHS
Markit, Mar. 2016. url: https://cdn.ihs.com/www/pdf/enabling-IOT.
pdf.

[58] Kari Lukka. “The key issues of applying the constructive approach to field
research”. In: Reponen, T.(ed.) (2000), pp. 113–28.

[59] Denise Lund et al.Worldwide and Regional Internet of Things (IoT) 2014–2020
Forecast: A Virtuous Circle of Proven Value and Demand. Tech. rep. IDC, May
2014.

[60] Scott MacDonald and Whitney Rockley. ABB Ability. url: http://new.abb.
com/abb-ability.

[61] Scott MacDonald and Whitney Rockley. The Industrial Internet Of Things
IIoTReport. Tech. rep. McRock Capital, 2014. url: http://www.mcrockcapi
tal.com/uploads/1/0/9/6/10961847/mcrock_industrial_internet_of_
things_report_2014.pdf.

[62] Made In Chine 2025. url: http://english.gov.cn/2016special/madeinc
hina2025/.

[63] James Manyika et al. "THE INTERNET OF THINGS: MAPPING THE
VALUE BEYOND THE HYPE". Tech. rep. "McKinsey and Company", June
2015. url: http://www.mckinsey.com/~/media/McKinsey/Business%
20Functions/McKinsey%20Digital/Our%20Insights/The%20Internet%
20of%20Things%20The%20value%20of%20digitizing%20the%20physical%
20world / Unlocking _ the _ potential _ of _ the _ Internet _ of _ Things _
Executive_summary.ashx.

[64] John C Martin. Introduction to Languages and the Theory of Computation.
Vol. 4. McGraw-Hill NY, 1991.

[65] J. Nielsen. “Iterative user-interface design”. In: Computer 26.11 (Nov. 1993),
pp. 32–41. issn: 0018-9162. doi: 10.1109/2.241424.

[66] Jakob Nielsen and Rolf Molich. “Heuristic Evaluation of User Interfaces”. In:
Proceedings of the SIGCHI Conference on Human Factors in Computing Sys-
tems. CHI ’90. Seattle, Washington, USA: ACM, 1990, pp. 249–256. isbn:
0-201-50932-6. doi: 10.1145/97243.97281. url: http://doi.acm.org/10.
1145/97243.97281.

[67] Overview of the Internet of things. Global Standards Initiative on Internet of
Things, June 2012. url: http://handle.itu.int/11.1002/1000/11559.

[68] Joseph D Patton. Maintainability and maintenance management. Vol. 350.
Instrument Society of America Research Triangle Park, NC, 1980.

http://www.iiconsortium.org/pdf/Industrial-Internet-Vocabulary.pdf
http://www.iiconsortium.org/pdf/Industrial-Internet-Vocabulary.pdf
https://cdn.ihs.com/www/pdf/enabling-IOT.pdf
https://cdn.ihs.com/www/pdf/enabling-IOT.pdf
http://new.abb.com/abb-ability
http://new.abb.com/abb-ability
http://www.mcrockcapital.com/uploads/1/0/9/6/10961847/mcrock_industrial_internet_of_things_report_2014.pdf
http://www.mcrockcapital.com/uploads/1/0/9/6/10961847/mcrock_industrial_internet_of_things_report_2014.pdf
http://www.mcrockcapital.com/uploads/1/0/9/6/10961847/mcrock_industrial_internet_of_things_report_2014.pdf
http://english.gov.cn/2016special/madeinchina2025/
http://english.gov.cn/2016special/madeinchina2025/
http://www.mckinsey.com/~/media/McKinsey/Business%20Functions/McKinsey%20Digital/Our%20Insights/The%20Internet%20of%20Things%20The%20value%20of%20digitizing%20the%20physical%20world/Unlocking_the_potential_of_the_Internet_of_Things_Executive_summary.ashx
http://www.mckinsey.com/~/media/McKinsey/Business%20Functions/McKinsey%20Digital/Our%20Insights/The%20Internet%20of%20Things%20The%20value%20of%20digitizing%20the%20physical%20world/Unlocking_the_potential_of_the_Internet_of_Things_Executive_summary.ashx
http://www.mckinsey.com/~/media/McKinsey/Business%20Functions/McKinsey%20Digital/Our%20Insights/The%20Internet%20of%20Things%20The%20value%20of%20digitizing%20the%20physical%20world/Unlocking_the_potential_of_the_Internet_of_Things_Executive_summary.ashx
http://www.mckinsey.com/~/media/McKinsey/Business%20Functions/McKinsey%20Digital/Our%20Insights/The%20Internet%20of%20Things%20The%20value%20of%20digitizing%20the%20physical%20world/Unlocking_the_potential_of_the_Internet_of_Things_Executive_summary.ashx
http://www.mckinsey.com/~/media/McKinsey/Business%20Functions/McKinsey%20Digital/Our%20Insights/The%20Internet%20of%20Things%20The%20value%20of%20digitizing%20the%20physical%20world/Unlocking_the_potential_of_the_Internet_of_Things_Executive_summary.ashx
http://dx.doi.org/10.1109/2.241424
http://dx.doi.org/10.1145/97243.97281
http://doi.acm.org/10.1145/97243.97281
http://doi.acm.org/10.1145/97243.97281
http://handle.itu.int/11.1002/1000/11559


BIBLIOGRAPHY 84

[69] “Recommendations for implementing the strategic initiative INDUSTRIE 4.0”.
In: (Apr. 2013). url: http://www.acatech.de/fileadmin/user_upload/
Baumstruktur_nach_Website/Acatech/root/de/Material_fuer_Sonderse
iten/Industrie_4.0/Final_report__Industrie_4.0_accessible.pdf.

[70] Jeremy Rifkin. The zero marginal cost society: The internet of things, the col-
laborative commons, and the eclipse of capitalism. Palgrave Macmillan, 2014.

[71] F. J. Riggins and S. F. Wamba. “Research Directions on the Adoption, Usage,
and Impact of the Internet of Things through the Use of Big Data Analytics”.
In: 2015 48th Hawaii International Conference on System Sciences. Jan. 2015,
pp. 1531–1540. doi: 10.1109/HICSS.2015.186.

[72] "". Sass Documentation. [Online; accessed August 31, 2017]. url: http://
sass-lang.com/documentation/file.SASS_REFERENCE.html.

[73] Sven Schrecker et al. Industrial Internet Security Framework. Tech. rep. In-
dustrial Internet Consortium, Sept. 2016. url: http://www.iiconsortium.
org/pdf/IIC_PUB_G4_V1.00_PB-3.pdf.

[74] Bill Scott and Theresa Neil. Designing web interfaces: Principles and patterns
for rich interactions. " O’Reilly Media, Inc.", 2009.

[75] Singapore Smart Nation. url: https://www.smartnation.sg.

[76] GP Sullivan et al. “Operations & Maintenance Best Practices”. In: A guide to
achieving operational efficiency, Release 2 (2004).

[77] Eelco Visser et al. Scannerless generalized-LR parsing. Universiteit van Ams-
terdam. Programming Research Group, 1997.

[78] Cathleen Wharton et al. “Usability Inspection Methods”. In: ed. by Jakob
Nielsen and Robert L. Mack. New York, NY, USA: John Wiley & Sons, Inc.,
1994. Chap. The Cognitive Walkthrough Method: A Practitioner’s Guide,
pp. 105–140. isbn: 0-471-01877-5. url: http://dl.acm.org/citation.
cfm?id=189200.189214.

[79] J Williams. “Internet of Things: Science Fiction or Business Fact?” In: Harvard
Business Review Analytic Services Report (2014).

[80] Ming-Ji Wu. Smart Machine and Productivity 4.0 in Taiwan: Now and Future.
May 2016.

[81] Richard Yonck. “Connecting with Our Connected World”. In: The Futurist
47.6 (2013), pp. 16–21.

http://www.acatech.de/fileadmin/user_upload/Baumstruktur_nach_Website/Acatech/root/de/Material_fuer_Sonderseiten/Industrie_4.0/Final_report__Industrie_4.0_accessible.pdf
http://www.acatech.de/fileadmin/user_upload/Baumstruktur_nach_Website/Acatech/root/de/Material_fuer_Sonderseiten/Industrie_4.0/Final_report__Industrie_4.0_accessible.pdf
http://www.acatech.de/fileadmin/user_upload/Baumstruktur_nach_Website/Acatech/root/de/Material_fuer_Sonderseiten/Industrie_4.0/Final_report__Industrie_4.0_accessible.pdf
http://dx.doi.org/10.1109/HICSS.2015.186
http://sass-lang.com/documentation/file.SASS_REFERENCE.html
http://sass-lang.com/documentation/file.SASS_REFERENCE.html
http://www.iiconsortium.org/pdf/IIC_PUB_G4_V1.00_PB-3.pdf
http://www.iiconsortium.org/pdf/IIC_PUB_G4_V1.00_PB-3.pdf
https://www.smartnation.sg
http://dl.acm.org/citation.cfm?id=189200.189214
http://dl.acm.org/citation.cfm?id=189200.189214

	Abstract
	Abbreviations
	Contents
	Introduction
	Background and Motivations
	Problem Statement
	Objectives
	Research Questions

	Research Methodology
	Literature Review
	Constructive Research

	Thesis Structure

	Industrial Internet of Things
	Internet of Things
	Industrial Internet of Things

	User Interface Design
	User Interface Definition
	User Interface Quality Factor
	User Interface Design Process
	UI Evaluation

	Web Application Development
	Web Technologies Overview
	HTML5
	CSS 3
	Javascript
	Ajax
	Websocket

	Web Application Architecture
	Client-Server Architecture
	Service Oriented Architecture


	Parser and Automata Theory
	Overview
	Parser in a Compiler
	Symbol Table
	Abstract Syntax Tree

	Parser Types
	Parsing Process
	Non Deterministic Finite Automata

	ABB AbilityTM
	Overview
	cpmPlus History
	Features and Functionalities
	Data Abstraction Interface (DAI)

	cpmPlus View
	Dashboard Editor
	SDK

	cpmPlus Calc Engine
	Architecture


	Requirements
	Overview
	User Profile
	Use Cases
	User Interface Consideration
	Functional requirements
	List Calculation Dashboard
	Add and Edit Calculation Dashboard

	Non Functional requirements
	Usability
	Performance
	Integration and Extendability
	Customizability
	Diagnostics


	Development and Implementation
	Overview
	Technology Stacks
	Prototyping stacks

	Prototyping
	Approach
	Scope
	Feedback

	Parser Development
	Server Side Parsing vs Client Side Parsing
	Parser Generator vs Manual Parsing
	Abstract Syntax Tree vs Symbol Table
	Syntactical Analysis Process
	Symbol Table Format

	User Interface Design
	Widget Development
	Calculation Engine Widgets
	Dashboard Arrangement


	Discussion
	Evaluation
	Meeting the Requirements
	Answering Research Questions

	Future work
	Parser Performance Optimization
	More Advanced Code Editor Features
	More Advanced IDE Features
	Drag-and-drop Oriented User Interface
	Framework Modernization
	Web Component Implementation


	Conclusions
	Bibliography

