
Aalto University

School of Science

Degree Programme in ICT Innovation

Anastasiia Karpenko

Practical Use of O-MI/O-DF messag-
ing standards in mobile application for
IoT.
Creating an open system for smart EV charg-
ing.

Master’s Thesis
Espoo, September 18, 2017

Supervisors: Professor Kary Främling, Aalto University,
Professor Maurizio Marchese, University of Trento

Advisor: M.Sc. Andrea Buda

Aalto University
School of Science
Degree Programme in ICT Innovation

ABSTRACT OF
MASTER’S THESIS

Author: Anastasiia Karpenko

Title:
Practical Use of O-MI/O-DF messaging standards in mobile application for IoT.
Creating an open system for smart EV charging.

Date: September 18, 2017 Pages: 78

Major: Service Design and Engineering Code: SCI3022

Supervisors: Professor Kary Främling, Professor Maurizio Marchese

Advisor: M.Sc. Andrea Buda

During the last decades the Internet has become ubiquitously available in most
places of the world, which has made it possible also to implement the Internet
of Things (IoT) paradigm. In this paradigm Internet connects devices with each
other and with their users allowing the development of digital services and ap-
plications that increase the comfort level of everyday human life. Many domains
are interested to exploit the IoT ecosystem, especially public administrations
starting Smart City initiatives all over the world. Cities are becoming smart
in many way: smart mobility, smart buildings, smart environment and so on.
However, the problem of noninteroperability in IoT exists that hinders the seam-
less communication between all kinds of IoT devices. Different domain specific
IoT applications use different messaging standards offered by different providers.
These messaging standards do not comply with each other. The Open Group
published two domain-independent standards O-MI and O-DF aiming to solve
this interoperability problem. In this thesis we want to describe the practical use
of O-MI/O-DF standards in a mobile application for the smart city context, in
particular for the Smart Mobility domain, electric vehicle (EV) charging use case.

First, the overview of IoT domain and its ecosystem with attention to noninter-
operability problem is made. Then the description of six messaging standards
including Open Group’s standards O-MI and O-DF are provided. Then the re-
quirements for IoT messaging protocol are outlined and the comparison of all
these messaging standards are made showing that the domain independent stan-
dards O-MI/O-DF are the most suitable for IoT. After that smart city context
and its requirements are described for the implementation part of the thesis. In
the next chapter the implementation of a mobile application using O-MI/O-DF
messaging standards are described with the details of the application architecture,
structure of messages and overview of the back-end part of the service.

Keywords: Internet of Things, O-MI, O-DF, Smart Cities, Smart Mobil-
ity, EV charging, Messaging Standards, BIoTope project

Language: English

2

Acknowledgements

This master thesis was written for the Master of Science degree in ICT In-
novation with major in Service Design and Engineering.

My personal motivation for this thesis project was to learn how to develop
mobile applications for Android OS and to know more about IoT domain. I
always was interested in Smart City concept and I am very happy that this
thesis was a part of bigger project BIoTope that is directly related to Smart
City domain.

I want to express my gratitude to my supervisor professor Kary Främling
for a chance to join this project, for guidance and support. It is an hon-
our to do the thesis project in the worldwide IoT pioneer group. I would
like to thank my colleagues from ASIA research team for advises, help and
support in this project, especially Andrea Buda, Antti Nurminen, Bhargav
Dave, Asad Javed, Narges Yousefnezhad, Manik Madhikermi. I was glad to
collaborate with the other programmers of BIoTope project: Lauri Isojärvi,
Tuomas Kinnunen and Jussi Pirilä. I want to thank them all.

At last I would like to express my gratitude to my mother and brother
for their love, motivation, encouragement and support.

Espoo, September 18, 2017

Anastasiia Karpenko

3

Abbreviations and Acronyms

AMQP Advanced Message Queueing Protocol
API Application Program Interface
ARPANET Advanced Research Projects Agency Network
bIoTope Building an IoT Open Innovation Ecosystem for Con-

nected Smart Objects
CoAP Constrained Application Protocol
CRUD Create, read, update and delete
CSV Comma-Separated Values
D2D Device-to-Device
D2S Device-to-Server
DDS Data Distribution Service
DOM Document Object Model
DTSL Dynamic Technologies Services Limited
EU European Union
EV Electric Vehicle
GPS Global Positioning System
HTML HyperText Markup Language
HTTP HyperText Transfer Protocol
ICT Information and Communications Technology
IETF Internet Engineering Task Force
IoT Internet of Things
JSON JavaScript Object Notation
JSON-LD JavaScript Object Notation for Linked Data
MobiVoc Open Mobility Vocabulary
MQTT Message Queue Telemetry Transport
NAT Network Address Translation
O-DF OpenDocument Format
O-MI Open Messaging Interface
OMG Object Management Group
POJO Plain Old Java Object

4

QoS Quality of Service
RDF Resource Description Framework
REST Representational State Transfer
S2S Server-to-server
SDK Software Development Kit
SMTP Simple Mail Transfer Protocol
SOA service-oriented architecture
SOAP Simple Object Access Protocol
SoS Systems-of-Systems
TCP/IP Transmission Control Protocol/Internet Protocol
TTL Time-to-Live
UDP User Datagram Protocol
URL Uniform Resource Locator
US United States
USB Universal Serial Bus
W3C The World Wide Web Consortium
Wi-Fi Wireless Fidelity
WWW World Wide Web
XML Extensible Markup Language
XMPP Extensible Messaging and Presence Protocol

5

Contents

Abbreviations and Acronyms 4

1 Introduction 8
1.1 Motivation . 8
1.2 Research Objectives and Framework 9
1.3 Structure of the Thesis . 11

2 Internet of Things and Smart Objects 12
2.1 Introduction to IoT and Smart Objects 12
2.2 IoT Ecosystem . 14
2.3 Interoperability Issues in IoT 16

3 Messaging Protocols in IoT 18
3.1 MQTT . 19
3.2 CoAP . 20
3.3 XMPP . 22
3.4 AMQP . 23
3.5 DDS . 24

4 Open Group Messaging Protocols for IoT 26
4.1 O-DF . 26
4.2 O-MI . 28

5 Suitable Messaging Standard for IoT 32
5.1 Introduction to IoT messaging requirements and Comparison

Framework . 32
5.1.1 Message Delivery Model 33
5.1.2 Message Processing Model 35
5.1.3 Message Failure Model 36

5.2 Comparison of Messaging Protocols 36

6

6 Case study and requirements 39
6.1 What is bIoTope smart mobility? 39
6.2 EV charging use case and user story 41
6.3 The system requirements . 41
6.4 Semantic data models . 42

6.4.1 Schema.org . 42
6.4.2 MobiVoc . 43

7 Implementation 46
7.1 System overview . 46
7.2 User Interface Part: Android application 49

7.2.1 Application Use Case 49
7.2.2 Overview of the App Architecture 51
7.2.3 User Interface . 52
7.2.4 Objects and data parsing 54
7.2.5 API client . 56

7.3 Back-end Part: O-MI Node and EV Charger 57

8 Conclusions 60
8.1 Summary of Findings . 60
8.2 Implications of Research . 61
8.3 Reliability and Validity of the Research 61
8.4 Future work . 61

A Parking Service O-DF examples 68

B O-DF elements mapped to POJO 72

C O-DF queries example 74

7

Chapter 1

Introduction

This Introduction describes the background and theoretical overview about
the research topic. Then we introduce the research objectives and research
framework, followed by an overview of the structure of the thesis.

1.1 Motivation

The first network ARPANET was developed in 1969 [7] and it was the be-
ginning of Internet. First it was developed for military [2] industry and
contained only 2 members but it grew to 213 members during the next 12
years [13, 15] attracting members mainly from the US universities. In the
90s personal computers became used by more and more people along with
active adoption of TCP/IP (Transmission Control Protocol/Internet Proto-
col), HTTP (Hypertext Transfer Protocol) and HTML (Hypertext Markup
Language). All of it lead to establishment of World Wide Web (WWW).

For the last 20 years, Internet became widely used in the world [45]. Inter-
net became the center of the communication paradigm called the Internet of
Things (IoT). In this paradigm, the everyday life objects communicate with
each other and with their users via Internet, they have micro controllers,
transceivers and messaging protocols that allow their communication[1].

IoT emerged from domains, such as logistics, where it was necessary to
organize the product tracking. IoT was first mentioned in 2002, in the scien-
tific article by Huvio, Grönval and Främling [17]. They created a lightweight
distributed system to share information by using peer-to-peer connections for
parcels tracking. A year later, as a variant of IoT implementation, Främling,
Holmström, Ala-Risku and Kärkkainen proposed to use the agent-centric so-
lution, in which each product should have a valid link to its data, available
in Internet during the whole product’s life cycle. The agent handles infor-

8

CHAPTER 1. INTRODUCTION 9

mation requests and maintenance associated with each physical product in
the supply chain [9].

IoT allows the development of a huge variety of applications that will use
the enormous quantity of data generated by IoT devices such as cameras,
home appliances, sensors, actuators, vehicles and so on. These applications
can allow citizens, companies and public administrations to benefit in every-
day life by using new digital services that are built on top of IoT ecosystem.
Domains such as home automation, industrial automation, medicine, energy
management, smart grids, automotive, traffic management and many others
will depend on IoT services and applications [3].

Nowadays, many national governments are willing to adopt digital so-
lutions in the management of public affairs trying to make the concept of
Smart City a reality [35]. So urban context is of a particular interest where
IoT can be applied.The concept of Smart City implies that the digitization
of services can increase the quality of life of the citizens and also reduce the
operational costs of public administrations.

As a result, there will be a stimulus to create new services using IoT
technologies and ecosystem, where the amount of useful data created by these
services can be used to increase transparency and show the actions of local
governments to the citizens. Specifically, IoT can bring benefits to public
services as lighting, surveillance of public areas, garbage collection, hospital
services, educational services as well as transport and parking services [8].

The Smart City market is estimated to reach hundreds of billions of dol-
lars by 2020 with annual spending around 16 billions [31]. This market is
formed by the interconnection of industry and service sectors that are impor-
tant for citizens, such as Smart Governance, Smart Mobility, Smart Build-
ings, Smart Utilities and Smart Environment. However, Smart City market
has not really taken off yet because of a number of different reasons: political,
technical and financial. The most important technical reason is noninterop-
erability of various technologies used in the city and urban development. In
this case, IoT vision can help to implement an integrated ICT platform for
cities and urban environments and release the full potential of Smart City
concept [16, 28].

1.2 Research Objectives and Framework

Interoperability remains one of the main issues for IoT. There is a need
for standartization of the whole field to make it possible to create an open
IoT system for Smart City. Such a system will provide an open platform
where a big number of services offered by different service providers can co-

CHAPTER 1. INTRODUCTION 10

exist, collaborate and communicate with each other. A particular problem
exists with the messaging protocols for IoT. There is a number of messaging
standards that have been used by different IoT - based service providers.
These standards have different characteristics and each of them provides the
best possible quality of service for particular applications in different industry
fields. However, they can hardly be interoperable across these fields.

A number of criteria for IoT messaging standard has been specified [10,
11, 24]. Some of the existing standards (like the domain-independent IoT
messaging protocols O-MI/O-DF, specified by the Open Group), are gener-
ally more suitable for IoT according to the existing requirements.

The aim of the current thesis is to apply the most suitable IoT messaging
protocols to the Smart City domain and to implement a mobile application
based on the potentially opened IoT system that can be used by the ad-
ministration of any city. One of the ongoing smart city projects in Europe,
bIoTope, provided the context for this implementation. This project’s goal
is to build an IoT open innovation ecosystem for connected smart objects
[40]. Its smart mobility use case had a need for a proof - of - concept. The
bIoTope project offered an opportunity to make the implementation of a mo-
bile application in the context of smart parking and Electric Vehicles (EV)
charging field.

According to the background and framework that we have just introduced
we defined the following research questions:

1. Which messaging standards for IoT exist?

2. What are O-MI and O-DF standards, how are they different from the
other existing messaging standards and how well do they suit all the
requirements for messaging standard specific to IoT?

3. How can O-MI/O-DF standards be implemented within a mobile ap-
plication that can be used in a Smart City context, especially in the
smart mobility (parking and EV charging) use case?

The research questions were formed formed due to the necessity to have
a general standard for messaging in IoT applications that will satisfy all the
specific requirements of IoT.

The thesis has three main objectives:

1. To describe O-MI/O-DF messaging standards and to show how they
can enable interoperable communication between devices in IoT.

CHAPTER 1. INTRODUCTION 11

2. To develop a mobile user interface (mobile application) for Android
OS that will call O-MI node and use O-DF format to send to and get
information from it. This mobile application will represent an open
IoT system that can accept publishers and consumers of services that
use O-MI/O-DF standards.

3. To test the mobile application in the context of the bIoTope project,
specifically its smart EV charging use case.

There are several main guidelines to proceed the work with these objec-
tives:

• Background topic discussion that will be focused on the discussion
about what is Internet of Things and smart objects, IoT ecosystem,
mostly used messaging protocols for IoT.

• Context introduction: overview of bIoTope project and particular EV
charging use case.

• EV Charging mobile application design and implementation.

1.3 Structure of the Thesis

The thesis consists of eight chapters. The chapter that follows the introduc-
tion provides an overview of Internet of Things and smart objects. It shortly
describes the ecosystem of the IoT and points out the main issue in the IoT
area, interoperability issue. Chapter 3 describes the mostly used messaging
protocols in IoT. Chapter 4 describes O-MI/O-DF - the messaging standards
designed by The Open Group. In chapter 5, we present the requirements for
IoT messaging and comparison framework within which the existing IoT mes-
saging protocols will be compared in order to figure out which of them is the
most suitable one. Chapter 6 introduces the bIoTope project and the case
study which will relate to the implementation part of the current thesis. Im-
plementation of the software system (in particular, a mobile application for
Android OS) is described in the chapter 7. Chapter 8 concludes the thesis.

Chapter 2

Internet of Things and Smart Ob-
jects

The Internet of Things (IoT) is a fast growing wave of the Internet devel-
opment. While in the 90’s 1 billion of people were connected over the fixed
Internet and 10 years later another 1 billion of people got connected over
mobile Internet, by the year 2020 there is a potential to connect 28 billion
things and by the year 2050 already 50 billion things (such as bracelets, cars
or home utensils) to the Internet by the means of IoT technologies [18, 25].
The low cost of sensors, good processing power and bandwidth to connect
things create ubiquitous connections. IoT becoming more used in the day-to-
day life with the simple products like fitness trackers and smart thermostats
gaining popularity among the users [18].

The paradigm of IoT [12] evolved from the concept of ubiquitous com-
puting [47] to the model of the object system where the objects are loosely
coupled and decentralized. Each of them has features of sensors, processors
and networking capabilities [1, 22]. IoT uses different means of communica-
tions: wired or wireless network connection. More and more physical entities
that belong to the system and are familiar to the users in everyday life are
becoming smart.

2.1 Introduction to IoT and Smart Objects

The smart objects are digital equipment or household utensils that people
normally use in their life routines. ”Smart” in this context means that the
object can make its own decisions and change behaviour according to the
data that it receives from the surrounding environment or the transferred
data from other objects sensors that are connected over the network, or data

12

CHAPTER 2. INTERNET OF THINGS AND SMART OBJECTS 13

Figure 2.1: Evolution of connected things [25].

that the object received as the outcome of the interactions with the end-users.
IoT environment consists of many networked devices: sensors, data pro-

cessors, actuators, personal mobile devices, consumer electronics, multimodal
systems. Personal mobile devices such as smart phones, tablets and other
wearables form the essential class of smart objects. Smart objects function
in their micro-environment and organize data flows originated from multiple
sources and are consumed by many applications. Smart objects provide the
hardware layer of ”smart services” - service-oriented applications. These ap-
plications are built within the system of objects (agents) that interact with
each other making the IoT environment ”smart”.

Smart environment can get the knowledge about the environment and
the users and apply it for the sake of service improvement and to make
the quality of user experiences in this environment better [22]. The rich
amount of potentially available information nurtures the IoT environment
and provides this degree of smartness to the services that are built on top
of it. The smart objects can adapt to the changing physical conditions of
their environment, can read the state of the environment and see what is
happening to it as the result of user interactions with the environment.

The smart object operates in a well-defined cycle: 1) understanding the
current state of the environment, 2) applying application goals to the state of
the environment and reacting to the results of possible actions of the user, 3)
acting upon the environment with the attempt to change its state. A smart

CHAPTER 2. INTERNET OF THINGS AND SMART OBJECTS 14

object can provide several smart services. Each service consists of direct
observations of the environment and interactions with other smart objects
of the system. It can be illustrated by an example of the indoor climate
control system that measures the temperature in the room and reacts on the
temperature change by decreasing or increasing of the air flow.

A smart service can have more advanced interaction model where informa-
tion is received and processed by cooperative activity. Several smart objects
get and share information to each other about their environment and all the
processes that happen inside the environment. The service uses so called
multi-agent system where each agent can publish and retrieve information
into/from the shared information space[29].

An application is a system of agents distributed over the environment
that continuously interact with each other directly by sharing information.
Smart objects can host these agents inside of them, like it would do server
and desktop computers. If the service is related to several smart objects it
means that the service has collective providers where each object can send its
own piece of information to commonly shared information space. The object
even may not know how and by who this information will be used. All of the
participating objects may acquire and use collectively the knowledge about
environment and its users. They can supply this information to the multiple
services that may apply it to many possible use cases.

As we mentioned earlier these smart objects of IoT are the result of
development of ubiquitous computing concept. The multiple technologies of
this concept, embedded sensors, communication and protocols make the IoT
work but at the same time they raise a lot of challenging questions connected
to standardization of communication protocols. In order to understand better
which protocols are part of IoT we will consider the short overview of IoT
ecosystem.

2.2 IoT Ecosystem

The IoT ecosystem has 7 layers as shown in Figure 2.2. The bottom layer
represents the application domain or market where the devices of IoT may
be used. It can be smart grid or smart home or digital health business area
as an example. The second layer is the layer of smart devices that can be
used in the smart space (various sensors, cameras, GPS, smart meters etc).
Humidity and temperature sensors can be used to show the climate inside
the smart home and video cameras and smart locks can provide security to
the house owners.

The third layer is interconnection layer that is responsible for sending the

CHAPTER 2. INTERNET OF THINGS AND SMART OBJECTS 15

data from the smart devices (sensors) to the computing facility or a cloud.
On the next layer the data is accumulated, sorted and combined according to
the themes (data from sensors, population data, traffic data etc). On the next
higher ”analytics” layer this data is analyzed using various techniques like
machine learning and data mining. The next layer is application layer that
ensures that large distributed applications will have suitable collaboration
and communication software such as software defined networking (SDN) and
service oriented architecture (SOA) [34].

The top layers in the ecosystem represents all the services provided on
the market: health management, energy management, smart transportation,
digital education etc.

Figure 2.2: IoT Ecosystem [34].

In this thesis we will concentrate on interconnection layer. This layer
also has layers with different protocols on each of them as Figure 2.3 shows:
datalink layer, network layer, session layer, security and management layer.
Datalink layer consists of the the protocols that connect two IoT devices
to each other or to the gateway to the cloud. Network layers protocols are
dedicated for routing among the sensors and communicating and aggregating
the information before sending it to the cloud. The session layer consists
of protocols that provide messaging among the devices and actors of the
IoT communications. There are also a number of security and management
protocols [34].

For the multitude of things in IoT there are multitude of the protocols. In
the scope of current work we will focus on the session layer with its messaging

CHAPTER 2. INTERNET OF THINGS AND SMART OBJECTS 16

Figure 2.3: Protocols for IoT [37].

protocols for this many IoT smart devices and smart services that have very
low communication. Because of it the information that is provided by one
service or device is rarely accessible to another service or device. It results in
high fragmentation and shows the problem of interoperability between smart
devices and services. Interoperability is needed to develop user-centered ser-
vices that will use the necessary information generated by other participants
in the smart environment and present it in personalized and context-aware
way to satisfy the target group of users[23].

In the next subchapter we will discuss the interoperability problem and
how the messaging standards can be a solution to it.

2.3 Interoperability Issues in IoT

Ideally the IoT ecosystem creates ”seamless” programmability of each de-
vice or sensor giving the maximum potential of connected experience. That
requires interoperability. It means that IoT has to have standards make dif-
ferent platforms to communicate, be operated and programmed across the
multitude of devices without any concern of the producers, platforms, operat-
ing systems, model, version or industry. The type of device, browser, screen
type, hardware should not affect the connectivity between things, people and
processes.

But in the reality the big problem with interoperability exists. The rea-
sons of this problem are the following: there are many types of devices man-

CHAPTER 2. INTERNET OF THINGS AND SMART OBJECTS 17

ufactured by different producers and cannot be integrated with each other,
software cannot be run on the different operation systems, different versions
of the software or hardware, communication protocol standards are different
across all the things in IoT, different connectors and connectivity frameworks
[32].

The above mentioned reasons are also influenced by the technological gi-
ants (such as Google, Apple, Microsoft, Samsung, IBM and many more) that
contribute to interoperability challenge because they support their individual
operating systems, proprietary protocols and standards. These companies
are trying to promote and protect their own technologies and solutions that
creates the burden to the development and consumerization of IoT [44].

The solution to this problem can be creation of messaging standards for
IoT. There is already a set of existing messaging protocols and standards
that exist at the session sublayer of interconnection layer in IoT ecosystem
that we mentioned before. In the next chapter we will describe the most
used of them.

Chapter 3

Messaging Protocols in IoT

With lots of things connected to Internet there are number of messaging pro-
tocols that use different new types of communication. They are not limited
to the traditional reply-request human-to-device communication but also use
device-to-device, device-to-server, server-to-server communications that are
going to be widely used in IoT [37].

Device-to-device (D2D) communication is for devices to communicate
with each other. Device data then will be collected and send to the server
(device-to-server D2S). Then the server will have to share this data with
server-to-server (S2S) type of communication providing the data back to
devices, other applications and people [37].

The Figure 3.1 describes the basic use cases of protocols on the differ-
ent level of communication. Each of the protocols are mainly used in the
defined patterns of communication. For instance, MQTT protocol is mainly
used for collecting device data and sending it to the servers, XMPP protocol
connects devices to servers and then to people since people are connected to
servers. Both MQTT and XMPP are used for D2S communication pattern.
DDS and CoAP protocols represent the device-to-device (D2D) communica-
tion pattern, AMQP protocol was designed to connect servers to each other
(server-to-server S2S) [37].

These protocols are widely used in IoT and claim to be real-time IoT
protocols with publish-subscribe architecture that can connect millions of
devices [37]. In this subchapter we will describe a number of messaging
protocols that are nowadays widely used in IoT applications.

18

CHAPTER 3. MESSAGING PROTOCOLS IN IOT 19

Figure 3.1: IoT protocols need to address response time [37]

3.1 MQTT

Message Queue Telemetry Transport (MQTT) is a protocol designed in 1999
by IBM for usage by constrained devices in low-bandwidth and unreliable
networks. It is aimed to collect the data from IoT devices in one place and
make it accessible by the enterprise IT infrastructure [41].

The principles of MQTT design aimed to provide more reliability of data
delivery in response to device constrained resource requirements and band-
width. It should provide embedded connectivity between 2 sides: 1) middle-
ware and applications and 2)networks and communications. Architecture of
MQTT is organized around publish/subscribe principle (Figure 3.2).

The system contains three component players: publisher, subscriber and
a broker. In IoT we can define the publishers as lightweight sensors that send
their data to connected broker and go back to the sleeping mode right after
the data has been sent. Subscribers are applications that are interested to
consume some certain sensory data and they subscribe to the broker in order

CHAPTER 3. MESSAGING PROTOCOLS IN IOT 20

to be informed when the new data is available. The brokers sort and classify
the data according to the topics and send the data to subscribers who are
subscribed to that topic accordingly [34].

Figure 3.2: MQTT Architecture [34].

MQTT is quite lightweight however it can have several shortages. MQTT
requires TCP/IP support that can give additional complexity and difficulty
while using small and computationally weak devices (for example, building
sensor networks). Another problem can be the message broker. Since it is
in the middle of MQTT architecture, it can become a point of failure of the
system if something is wrong with the broker.

3.2 CoAP

CoAP stands for Constrained Application Protocol. The purpose of this
protocol is to provide lightweight RESTful (HTTP) interface for IoT. It was
designed by IETF Constrained RESTful Environment (Core) working group.
HTTP client and servers usually use RESTful interface (Representational
State Transfer) as a standard interface for communication. REST can result
in significant overhead and power consumption for lightweight IoT applica-
tions. CoAP can enable low-power IoT devices such as sensors operate and
use RESTful services within their power constraints [34].

CoAp is build over User Datagram Protocol (UDP) that is perfect for
time-sensitive applications and real-time systems instead of TCP that is com-

CHAPTER 3. MESSAGING PROTOCOLS IN IOT 21

monly used in HTTP [25]. CoAP has light mechanism and at the same time
provides reliability for device-to-device communication for devices with lim-
ited amount of memory available [38].

CoAP architecture has two layers: messaging layers that is responsible for
reliability and creation of messages and request/response layer that provides
communication. CoAP has different messaging types: confirmable (repre-
sents reliable transmissions), non-confirmable (not reliable transmissions),
piggyback and separate types that are used request/response communica-
tion (Figure 3.3).

Figure 3.3: CoAP messages [34]

Piggyback type of messaging is used when the server communicates di-
rectly with the client sending the response right after receiving the message
from the client (within the acknowledgement message). The separate type
of messaging is used when the server sends the response separately from
the acknowledgement message that can take some time to be done. CoAP
can communicate messages identical to HTTP CRUD messages in order to
retrieve (GET), create (PUT), update (PUSH) and delete (DELETE) [34].

In GET request the client can set a special flag to enable a subscrip-
tion feature in CoAP, after that the client will start receiving notifications
that will be delivered at ”best effort” eventually. As we mentioned earlier,
CoAP provides reliability by confirming the messages (confirmable or non-
confirmable types of messages) however since UDP has no embedded delivery
control mechanism, CoAP can provide traffic overflow in case of sending data
again and waiting for the acknowledgement message from the receiver [38].

CHAPTER 3. MESSAGING PROTOCOLS IN IOT 22

CoAP supports usage of multicast packages that can be problematic for
some types of networks. Moreover since the security layer in CoAP is pro-
vided by DTSL because that does not work with multicast messages used for
group communication, it can cause the additional complexity for UDP when
dealing with unreliable environments [14].

3.3 XMPP

Extensible Messaging Presence Protocol (XMPP) was designed to connect
people with each other through instant communication for using in chats
and messaging applications (Figure 3.4). Standardized by IETF around 10
years ago, it was being used in the Internet since then and proved its efficiency
over the time. Main advantage of this protocol is human-readable addressing
scheme name@domain.com that facilitates people connection in Internet.

Figure 3.4: XMPP communications model [37]

It runs on top HTTP (therefore on top of TCP). recently it has been used
for IoT applications, mainly because of usage of XML text format that makes
the protocol easily extensible. XMPP provides the developers the choice of

CHAPTER 3. MESSAGING PROTOCOLS IN IOT 23

desired architecture because it supports both publish/subscribe along with
request/response architectures. It was designed for real-time systems and
supports low-latency small messages.

XMPP has some shortages that becomes the reasons of relatively rare use
for IoT applications. It does not provide the quality of service guarantees
that makes it not suitable for device - to - device communication. As well
as XML format with lots of headers and tags create additional overhead
and increased power consumption that is not good for IoT applications [33].
XMPP provides reliable service but is quite slow. ”Real time” in XMPP
means from the point of view of a person measured in seconds, but not from
device-to-device point of view [37].

3.4 AMQP

The Advanced Message Queueing Protocol (AMQP) is the protocol that is
used mainly in financial industry to meet the need in reliable and secure
delivery of important transactions. It operates over TCP and uses pub-
lish/subscribe architecture therefore it is similar to MQTT.

Figure 3.5: AMQP architecture [34]

The difference from the MQTT architecture is that in the broker layer
there are two main parts (Figure 3.5) : a) exchange that is responsible for

CHAPTER 3. MESSAGING PROTOCOLS IN IOT 24

receiving the messages from the publishers and sorting them to queues ac-
cording to special conditions and roles specifically defined earlier, b) queues
represent the specific themes and topics and collect the data that meets the
specified topics. Queues are subscribed by subscribers that will get the data
when it is available in the queue [34].

AMQP is a reliable protocol that provides quality of service guarantees
as at-most-once, at-least-once and exactly-once delivery options [30]. This
protocol is preferably used for server-to-server interaction for servers that
can be deployed with different platforms to communicate for example, data
necessary for analysis. The advantage of interoperability of AMQP fades
away by heaviness of this protocol that make it hard to use on the lightweight
IoT devices.

3.5 DDS

Data Distribution Service (DDS) is another protocol of publish-subscribe
type that is used for device-to-device communication. It was designed by
Object Management Group (OMG) for the purpose of distribution of data
to another IoT devices. It has the benefits of high level quality of service
(QoS) and high reliability because it does not have broker in its architecture.
Therefore it does not have bottlenecks as other protocols that mainly rely on
brokers in their operations [34]. It is suitable for IoT and device-to-device
communication and can efficiently send millions of messages per second to
many devices simultaneously.

It offers an opportunity to filter and select exactly which data goes
to which receiver. Devices can be small or big, for small ones there is a
lightweight version of DDS available that is suitable for running in a con-
strained environment. DDS was used in high-performance sectors such as
defence, industrial and embedded applications such as military systems, wind
farms, hospital integrated applications, medical imaging, asset-tracking sys-
tems, automotive test and safety applications[37]. DDS offers 23 QoS levels
with criteria like security, urgency, priority, durability, reliability and more.
It has two sublayers: publish/subscribe (which is data-centric) and recon-
struction sublayers (which is data-local).

The first sublayer is responsible for the delivery of messages to the sub-
scribers, the second one makes integration of DDS protocol to the application
layer easier though it is optional. Data from the sensors is distributed by
the publisher layers. It has two parts - data writer and data readers that
basically take the responsibilities of the broker in the broker-based architec-
tures. Data writer communicates with the publishers to decide which data

CHAPTER 3. MESSAGING PROTOCOLS IN IOT 25

and which changes in this data will be sent to subscribers who are the re-
ceivers of the sensory data that is delivered to the IoT application. Data
readers read all the data that is published and deliver it to the subscribers
[34].

Data is communicated to devices from devices using relational data model.
It is called ”DataBus” communication and is a networking equivalent of a
database. Data bus controls all the data updates and data access by thou-
sands of simultaneous users the similar way a database controls access to
the stored data. This feature of DDS is suitable and needed by the high-
performance devices that work together as a unified system in complex real-
time applications [37].
In this chapter we described different messaging standards that exist and are
used right now in different IoT applications. These standards have differ-
ent features and provide various opportunities of use. In the next chapter
we will describe another two messaging standards for IoT developed by the
Open Group - O-MI/O-DF.

Chapter 4

Open Group Messaging Proto-
cols for IoT

The Open Group is a global consortium that is aimed to develop new IT
standards in various areas including IoT. The IoT work group of the Open
Group has the goal to develop a unique standard that will solve the inter-
operability problem in IoT. The Open Group standards will do for IoT that
HTML/HTTP did for web - making everything in IoT connected on the fly.

The Open Group was working on and produced two messaging standards:
The Open Data Format (O-DF) and Open Messaging Interface (O-MI). O-DF
represents the information in a standardised way that is understandable and
readable by the majority of information systems [42]. O-MI is an analogue of
HTTP for the Web, as it can transmit the payloads between the devices and
information systems in any format [43]. In this subchapter we will describe
O-DF and O-MI more in detail.

4.1 O-DF

Open Data Format (O-DF) is a standard for representing payload for IoT
applications. It was developed by the Open Group in order to represent
information entities about different objects: devices, services, humans and
so on. The representation of these objects in O-DF is general, independent
from application or context. O-DF messages can be transported via various
methods, the transportation itself is not part of O-DF standard, therefore
O-DF data can be transmitted via network by different low-level network
protocols or even manually by USB storage drive[42].

O-DF is specified using XML schema. It is designed to create information
structures in a similar way they are created in object-oriented programming:

26

CHAPTER 4. OPEN GROUP MESSAGING PROTOCOLS FOR IOT 27

objects and properties of objects. It is general standard for representation
of any object and it useful in such domains as IoT and lifecycle information
management. In IoT there is a problem of publication of data from different
sources such as devices, machines, servers. These devices must be able to
publish their data, provide the opportunity for consumers to access the data,
ensure the authenticity and integrity of the data using secure mechanisms
and provide the opportunity to filter the information according to consumers’
preferences: consumer identity, parameters, context [42].

A structure of O-DF message is a hierarchy with an Objects element on
top of it. This element can contain any number of Object sub-elements.
Each Object element usually has an id sub-element as an identification and
optional description sub-element that provides additional information about
the object for the users.

Object elements also have properties represented with InfoItem sub-element
and any number of Object sub-elements. InfoItem sub-element can contain
additional sub-element called MetaData which has name and values that
represent values from the context of InfoItem. MetaData contains the de-
scription of InfoItem though the structure of it is similar to the structure
of InfoItem. It can be useful to identify Infoitem in the situation when the
system tries to retrieve unknown Infoitem. The example of InfoItem with
multiple values can be seen in Figure 11. As we can see in the example of the
O-DF element hierarchy (Figure 4.1), the Object tree can have any number
of levels [42].

Because of hierarchical structure of O-DF, it can be used in RESTful ser-
vices by sending the data using ordinary URL (Uniform Resource Locator)
address using URL mapping technique [42].

This technique allows the client to request information by connecting to
the special URL that includes designated object’s id and other properties.
As an example of HTTP GET request, the object can be accessed using
the command wget URL/REST/Objects query. If the client wants to
access only specific object, for example Refrigerator and get its current power
consumption, it can be done using the following commands:

wget URL/REST/Objects/Refrigerator/id
wget URL/REST/Objects/Refrigerator/id/PowerConsumption

O-DF offers a way to create, manage and send the information about
things in IoT in a standardized, understandable and universal way. Though
we mentioned that O-DF can be transmitted using various methods, the main
purpose of Open Group was to make it use particular transport protocol
called O-MI (Open Messaging Interface) in a query/response format. In the
next sub-chapter we will describe the O-MI standard [42].

CHAPTER 4. OPEN GROUP MESSAGING PROTOCOLS FOR IOT 28

Figure 4.1: Illustration of O-DF element hierarchy [42]

4.2 O-MI

Open Messaging Interface (O-MI) was created by the Open Group by taking
into example the HTTP and its role in the Internet. In the Internet informa-
tion in HTML format is transmitted by the HTTP protocol into the browser
for human use, and in IoT O-MI is used for transmitting data (preferably
in O-DF format) for information systems use. IoT devices can use O-MI
to communicate and interact with each other. The key of O-MI is in gen-
eral approach to fit the majority of ”things” in IoT that can be basically
anything. As an example, in product lifecycle applications products use O-
MI to communicate with distributed information systems that consume and
publish information in real-time mode.

O-MI can be applied in the lifecycles of everything: people, services and
so on [43]. O-MI can transmit data in any format, such as JSON, XML, CSV
to any O-MI node across the network. O-MI nodes play the roles of client
and server, they use peer-to-peer type of communication with other O-MI
nodes or any other information systems and back-end servers [20]. Unlike
other existing messaging standards that do not have an ability to suite the

CHAPTER 4. OPEN GROUP MESSAGING PROTOCOLS FOR IOT 29

requirements and needs of real-life closed-loop lifecycle management applica-
tions [19–21, 42] without any big modifications, O-MI standard was designed
in the way to overcome problem and to have functional characteristics that
can fulfill these requirements.

O-MI key characteristics [24]:

1. Ability to use ”low-level” transportation protocols. Protocols in-
clude not only network protocols like HTTP, SOAP and SMTP but
also mean of data transportation like copying on and from USB mem-
ory sticks, sending data in the messages on the mobile phones.

2. O-MI supports three main operations: read, write and cancel.
Read operation is for retrieval of information from the things. It can be
immediate read, in this case O-MI nodes can ask for particular values
for the particular period of time, for example, for historical data or
current data at the moment.

Also O-MI supports deferred read also called as subscription. During
subscription the read request is being sent with the specified interval
rate and callback URL that is optional. After subscription has been
made the requester will receive the designated data that will be sent
to him using the earlier specified callback URL. If there is no callback
URL, data can be accessed by read request with specific subscription
ID that is contained in the response of the subscription request. This
feature is useful when there are firewalls or in the situation when the
NAT does not allow the response to reach the callback URL.

Write operation is provided for sending data between the O-MI nodes
and sending the updates at anytime. Cancel operation is used to end
the subscription before it is expired.

3. Different payload formats are allowed. There is a deferred format
for O-MI: O-DF (in XML), however O-MI can is able to send payload
in any text-based format that can be included in the XML message.
Return elements of O-MI response can also have data in other text-
based formats.

4. Time-to-Live (TTL) parameters have to be specified for re-
quests and responses. TTL is the time period during which the
request is valid for transmission to the O-MI node. If the TTL is over
the request has to be removed and the error message has to be sent
instead.

CHAPTER 4. OPEN GROUP MESSAGING PROTOCOLS FOR IOT 30

5. Nodes communicate synchronously between each other. In
any response message it is possible to include a new request message.
This feature can be useful for some type of applications, for example,
control applications. Also it makes possible for client to communicate
with nodes that are located behind the firewalls and NATs.

6. Publication and discovery of new services and metadata. It
allows data providers to publish their services using write operations
as well as to discover services using search engines and URL mapping
(by sending RESTful URL-based queries ”HTTP GET”).

7. Specify the target O-MI node in request. It means that the
requester can list the specific O-MI nodes in the request and the O-MI
nodes that receive the request that will have to re-send the response
to the target O-MI nodes and will be responsible for possible error
handling.

We see that O-MI is general tool used to send and deliver messages in
every text-based format between the nodes. It offers read, write operations
and also subscription options with opportunity to cancel it. Subscription can
be tuned according to the demands of the requested: on interval basis, on
update and on demand. Subscription feature is one of the main characteris-
tics of O-MI standard.

In this chapter we described messaging standards provided by the Open
Group. These standards along with several standards, described in the Chap-
ter 3, are nowadays used in the majority of IoT applications wordlwide. But
which standard is the most appropriate for IoT taking into account the re-
quirements and demands of real-time systems? In the next chapter we will
figure out the most appropriate messaging standard by comparing all of them
with each other.

CHAPTER 4. OPEN GROUP MESSAGING PROTOCOLS FOR IOT 31

Figure 4.2: Infoitem with multiple values [42]

Chapter 5

Suitable Messaging Standard for
IoT

In the previous two chapters we discussed six messaging standards . In this
chapter we will found out which standard is the most appropriate for use in
IoT applications.

There are several functional requirements for the IoT Messaging protocol,
identified by Främling and Maharjan [11]. In addition there is a comparison
framework for defining the concept of distributed object messaging by Tai
and Rouvellou [39].

First, we will describe the requirements for messaging protocol that should
be used in IoT applications and then introduce the comparison framework
and its terms (Sub chapter 5.1). After that we will compare the protocols
and define one that is the most useful in our case (Sub chapter 5.2).

5.1 Introduction to IoT messaging require-

ments and Comparison Framework

There are several main functional requirements that suitable for IoT messag-
ing standard should have [10, 11, 24]:

1. Implementation for any kind of instances not depending on the appli-
cation domain.

2. Implementation for variety of information systems (mobile, embedded
systems etc).

3. Support for ”synchronous” messaging such as immediate read and write
operations, including ”client-poll” subscriptions

32

CHAPTER 5. SUITABLE MESSAGING STANDARD FOR IOT 33

4. Not restricted to one communication protocol only, it must allow send-
ing messages using protocols like HTTP, SOAP, SMTP, as file copies

5. Possibility to create ad hoc, loosely-coupled, time-limited information
flows ”on the fly”

6. Peer-to-Peer communication possibility for all devices, i.e. client and
server functionality can be implemented for any device, depending on
available processing power, etc.

7. Handling mobility and intermittent network connectivity, i.e. support
for asynchronous messaging capabilities that imply for instance message
persistence, time-to-live, etc.

8. Context-dependent discovery of instances, instance-related services and
meta-data about them

9. Context- and domain-specific ontologies are supported

10. Information of different kinds about more that one instance can be
retrieved using queries by regular expressions.

11. Queries to retrieve historical data between two points in time.

These requirements are also reflected in the parameters of messaging clas-
sification framework, introduced by [39]. We will use this framework to com-
pare existing IoT messaging protocols.

The classification framework is organized around three models: message
delivery model, message processing framework, and message failure model.
Each model represents the number of fundamental messaging features. And
for each feature there are some variations.

5.1.1 Message Delivery Model

The message delivery model contains the features connected to the message
exchange between message sender and message receiver. It is linked with
notifications of receivers that some event (state transition) has occurred.
Message delivery model has the following properties:

1. Messaging API property defines which types of operations are used
for messaging. There are two types of operations: application-independent
(describes generic operations for sending, receiving and administering
the messages) and application-specific operation (interface of applica-
tion functionality is defined by the developer of this application). As a
variant a combination of these types of messaging API can be used.

CHAPTER 5. SUITABLE MESSAGING STANDARD FOR IOT 34

2. Initiation defines how the message delivery happens. It can be initi-
ated by the sender (server) who sends a message to the receiver (client)
(push initiation). Or a receiver can send a query to the server in at-
tempt to get a message (pull initiation). There also is a mixed initiation
type when the same message can be pushed by the sender and pulled
by different receivers.

3. Intermediation shows if there is any intermediate party in the mes-
sage exchange. Intermediate party can be a message queue or channel
objects.

4. Persistence property specifies if there is a data persistence feature
in the messaging protocol. Message can be persistent in case it can
be saved in the persistent store, that is important in case of system
failures so the message can survive in it. Message can be transient.
In this case message data is saved temporarily while the Time-To-Live
(TTL) period is on.

5. Subscription defines if a receiver has the ability to subscribe to mes-
sages from intermediators or senders directly. Usually subscriptions are
needed for push event notifications. Subscriptions can be time interval-
based and event-based.

6. Self-contained: shows whether the message includes all necessary pa-
rameters and data to be understood by the receiver in the right context.
For example, it shows if the message includes TTL parameter or indi-
cated an operation that should be performed etc.

7. Protocol agnostic property shows if the messaging protocol can sup-
port low-level transportation protocols without necessity to change the
messaging protocol itself. In protocol agnostic messaging protocol low-
level transportation protocols such as HTTP, SMTP, SOAP can be
used to transfer the data or even there is a variant to use physical
transfer mechanism such as USB sticks.

8. Synchronicity defines the type of synchronization of message delivery
from the sender to its recipients (end users or intermediators). The mes-
saging model implies asynchronous communication between the sender
and the ultimate recipients. However the synchronous communication
via an intermediator can be implemented as an option to organize asyn-
chronous communication.

CHAPTER 5. SUITABLE MESSAGING STANDARD FOR IOT 35

9. Delivery-guarantee shows the level of guarantee that is provided
for delivery of the message. There is three types of guarantee: low
level guarantee (best-effort delivery) that is basically no guarantee of
delivery, basic delivery guarantee (at-most-once) and the highest level
of guarantee (exactly-once) that does or does not provide the visible
acknowledgments of message delivery to the sender.

10. Piggybacking property shows if the protocol allows to send new re-
quest with the response. This property is important for real-time ap-
plications and applications that are fenced by firewall.

11. Multiple payloads property shows if the protocol supports different
formats of data.

5.1.2 Message Processing Model

The message processing model contains characteristics of the process
of communicating back the result after the message has been delivered.
Message processing happens after the event notification and it is con-
nected to the asynchronous request processing, that is requesting the
result from the remote server asynchronously.

In asynchronous communication there are two essential roles for soft-
ware components: the role of a client and the role of a server. A client
sends the request message and consumes the reply message. A server
consumes the request message and sends the reply message. There are
two properties for message processing:

12. Processing result shows in which format the message is returned to
the requester. There are three formats: a single return value, a single
integrated return value, a set of individual return values. The first for-
mat is used when the server sends only a single response. The latter two
are used when the same message is processed by many recipients that
get back many acknowledgments of results and/or processing results.

In order to integrate multiple returns the messaging protocol should
have an intermediator. The single integrated return value format im-
plies that the response will contain the requested value and the data.
The third format is used when response is sent at different time inter-
vals.

13. Communication defines how the result is received by the client. The
client may receive a separate reply message to the request which will

CHAPTER 5. SUITABLE MESSAGING STANDARD FOR IOT 36

be associated with the request by the id paired id (request/reply id).
There are also two other approaches: callback approach and polling
approach. When the callback approach is used the client sends request
with a callback object reference. Then the server invokes it when the
result is ready. When the polling approach is used the client queries
the poller object for the results which is received by the client with the
request previous.

5.1.3 Message Failure Model

The third category defines the protocol actions and rules linked to
message delivery failures or other errors. In this category there is only
one criterion:

14. Failure Notification: shows the reaction of protocol to the failures,
specifically how it sends failure notifications. There are three types of
notifications: timeout acknowledgments, reply with error message, and
exception.

5.2 Comparison of Messaging Protocols

We will compare the five protocols that we described in the previous chapter
with O-MI/O-DF using the comparison framework introduced earlier. The
results are in Table 5.1. It is visible that AMQP and O-MI/O-DF cover the
majority of properties and there is opportunity to choose between the options.
All the protocols offer intermediate parties to support message transactions
however only O-MI/O-DF protocol has the optional property of interval-
based subscriptions that can be very useful for real-time IoT applications.

The property of self-contained message types is very important when in
different systems the same field names can mean differently. Self-contained
messages allow every system to better understand the semantics of the infor-
mation contained in the message. AMQP and O-MI/O-DF have that prop-
erty offering a possibility for processing software to load the field descriptions
using namespaces and links. Only O-MI protocol is protocol agnostic and
can use different low level transport protocols. Another protocol from the
list - CoAP can be easily integrated with RESTful HTTP services but it runs
on top of not reliable UDP protocol.

Piggybacking feature is supported only by CoAP, DDS and O-MI/O-DF.
This feature is very important for IoT devices. For example in mobile dy-
namic environments it can be hard to provide a fixed IP address for every

CHAPTER 5. SUITABLE MESSAGING STANDARD FOR IOT 37

device. Piggybacking function makes it available for devices without fixed IP
address and located behind the firewall to carry out information exchange.
In this case the feature of callback is very helpful. It can be used for sub-
scriptions allowing to define the special URL where the data or events will
be sent. So if there is no fixed IP address for a device, the processing point
with the fixed IP can be addressed by a callback, and the data from different
sources can be sent there so it can be processed further. O-MI/O-DF is the
only protocol that provides this feature.

The feature of supporting different formats of payload is supported by
all the protocols. This feature is important in IoT because different systems
that to interact with each other have different standards. With this property
combined with self-contained property different systems can better under-
stand how to use the data that was received from the payload. Especially
in the case when the system evolves and the number of interactive actors
increase in many times.

Out of all protocols, CoAP and MQTT were designed to operate in local
environments so they need to be wrapped into a websocket or modified in
another way to be able to communicate on a global level.

As a result of comparison O-MI/O-DF standards is the most suitable
standard for IoT applications. It provides reliable, interoperable and portable
communication infrastructure for all kinds of devices and systems of devices.

CHAPTER 5. SUITABLE MESSAGING STANDARD FOR IOT 38

Table 5.1: Messaging protocol comparison based on 14 criteria.

Property

Sub-property

M
Q
T
T

C
o
A
P

X
M
P
P

A
M
Q
P

D
D
S

O
-
M
I

Messaging​ ​API

Application-specific ✔ ✔

Application-​ ​independent ✔ ✔ ✔ ✔

Initiation

Push ✔ ✔ ✔ ✔ ✔ ✔

Pull ✔ ✔ ✔ ✔ ✔

Intermediation ✔ ✔ ✔ ✔ ✔

Persistence

Transient ✔ ✔ ✔ ✔ ✔

Persistent ✔ ✔ ✔ ✔ ✔

Subscription

Interval-based ✔

Event-based ✔ ✔ ✔ ✔ ✔ ✔

Self-contained ✔ ✔

Protocol-agnostic ✔

Synchronicity

Synchronous ✔ ✔ ✔ ✔ ✔

Asynchronous ✔ ✔ ✔ ✔ ✔ ✔

Delivery-guarantee ✔ ✔ ✔ ✔ ✔

Piggybacking ✔ ✔ ✔

Multiple​ ​payloads ✔ ✔ ✔ ✔ ✔ ✔

Processing​ ​Result

Single​ ​return​ ​value ✔ ✔ ✔ ✔ ✔ ✔

Single​ ​integrated​ ​return​ ​value ✔ ✔

Set​ ​of​ ​individual​ ​return​ ​value ✔ ✔ ✔ ✔

Communication

Separate​ ​message ✔ ✔ ✔ ✔ ✔ ✔

Callback​ ​address ✔ ✔

Failure​ ​Notification

Timeout​ ​of​ ​acknowledgement ✔ ✔ ✔ ✔ ✔

Reply​ ​with​ ​error​ ​message ✔ ✔ ✔ ✔ ✔

Exception ✔ ✔

6

Chapter 6

Case study and requirements

In the frameworks of the current thesis we will implement a mobile applica-
tion for Android OS that is directly linked to bIoTope project and it’s smart
mobility case. In this chapter we will describe the project that owns smart
mobility case and especially its part that is connected with EV parking and
charging service in Helsinki region. The application will mainly be focused
on the EV charging services but since the EV chargers are usually situated
on the parking lots, it is hard to separate these two use cases. We will also
outline the user story and requirements for the project that will later help to
specify the requirements for the user application for searching and booking
EV charging services that the author of the current thesis was working at
(user interface of it).

Many system requirements are very domain specific related to the realities
of EV charging industry and may challenge the existing vocabularies to some
extent. We will discuss which standards and semantic models can be used
in the case study and how can they cope with domain specific details of the
requirements.

6.1 What is bIoTope smart mobility?

BIoTope project attempts to create an ecosystem for smart objects and im-
plement a concept of system-of-systems (SoS) in the platform where it will
gather existing services that use different smart objects connected with each
other. The goal of the project is to make proof-of-concepts in different areas
of smart city and show the feasibility of the SoS platform concept.

The case that we are interested in the current thesis is a part of Smart
Mobility pilot project for Helsinki region. The smart mobility pilot includes
all the services that can be in demand for the car drivers or offered by them:

39

CHAPTER 6. CASE STUDY AND REQUIREMENTS 40

finding the parking free suitable lots, finding available charging stations,
effective route planning service, publishing the information about the car
and making it available for renting out services.

Figure 6.1: BIoTope big picture on the example of the Smart Mobility pilot
case [4]

The Figure 6.1 above illustrates the structure of the ecosystem’s platform.
The platform is divided in 2 pieces: physical and virtual. Physical part
depicts the car and the charging station that have real-time data (gathered
and sent out by sensors) and static data that represents the description of the
objects. Each object has services related to it: car-renting services offered by
the car owner or charging service offered by the charger. All of the objects
are organized as O-MI nodes. Their main goal is to publish the data related
to the objects independently from their virtual representation.

The middle layers are a semantic filling of the objects information by
the means of semantic models: independent or domain dependent. The
higher layer - virtual layer is located in the web service repository. The
communication will be organized via standard Internet protocols like HTTP.

CHAPTER 6. CASE STUDY AND REQUIREMENTS 41

There will be several APIs that will allow the business process to function
around the objects [4].

6.2 EV charging use case and user story

In this thesis we will limit ourselves to the one case study that will focus in the
smart EV charging services. In this section we will present the case study and
its user requirements. The case study attempts to create a unified system
for searching EV chargers along with an app for the users. The existence
of one centralized system will lead to traffic and time waste reduction (in
the process of searching and using charging services), higher trust from the
user side towards service providers. The system will also solve the problem
of different data sources for chargers and non- standardized interfaces of
chargers data access.

The outcomes of the use case implementation will include easy and fast
access to the reliable data about chargers, creation of a single interface and
single data model for the whole service around the EU, the opportunity to
easily update data about domain specific vocabulary with future development
in vocabulary semantics.

The user is the owner of electric vehicle who enters the city by her car. She
needs to recharge the car, therefore uses mobile app to search for charging
stations. The user requests the list of chargers according to the desired
destination or wants to look for the chargers nearby his current location.

The data about chargers is presented to the user via mobile app where
she can select the charger on the map or in the list of chargers. The user
is able to save her preferences for the charger also sort the search according
to charger qualities and for the preferred location. The user sees whether
the charger is available at the moment or occupied. The user picks preferred
charger and books for the time period where it is available for use. Then user
drives to the charger, identifies herself as a user who booked it and starts the
charging service [5].

6.3 The system requirements

Among the main requirements of the system is the accessibility of data in
real time database that contains reliable data about chargers and shows the
availability of the charging points to the user [5].

The different types of data should be available in order to qualify and fit
user decisions in the best possible way:

CHAPTER 6. CASE STUDY AND REQUIREMENTS 42

1. detailed location of the charger,

2. availability of the charger at the moment of search (reservation status),

3. availability of the booking system to reserve the charger in advance,

4. opportunity to see if the charger can be booked in advance or not,

5. the type of charger adaptor,

6. the speed of the charger,

7. the information about payment conditions that depend on the chargerâs
provider rules.

These requirements should be reflected in the semantic data models of the
system. In the following section we will discuss the available semantic models
and chose the most suitable one according to the system requirements.

6.4 Semantic data models

Semantic data models will provide the semantic enrichment of the objects
information. There are several semantic data models available: domain inde-
pendent and domain dependent. We will explore the opportunities of each of
the models and see how they comply to the requirements of the EV charging
industry and its characteristics.

6.4.1 Schema.org

Schema.org is a collaborative community activity. Its purpose is to create
and develop the usage of schemas for structured data on the Internet, in the
web-sites, email messages and in other digital context. The vocabulary of this
collaborative project can be used with many different encodings (JSON-LD,
Microdata, RDFa etc).

The vocabulary contains the vast list of entities, relationships between
them, their properties and actions. While the existing vocabulary covers
many business domains and can be easily extended using the extension stan-
dard, it can be characterized rather as the domain independent semantic
model.

Schema.org was founded and is being developed by reliable companies:
Google, Microsoft, Yahoo and Yandex [36] and it has been used by vast
amount of organizations and web developers. It is useful to explore its op-
portunities of application into the existing case study.

CHAPTER 6. CASE STUDY AND REQUIREMENTS 43

We analyzed the current schema.org vocabulary in the attempt to see
which vocabulary terms will suit the requirements for EV Charging domain.
After the closer look at the vocabulary we admit that schema.org can be
characterized as domain independent semantic model. However some entities
and their characteristics can be applied to EV chargers according to the
required properties.

The closest domain entity to the EV charger is the GasStation [3]. It has
properties from the Place entity and LocalBusiness entity. Some of the prop-
erties can be used for semantic modelling in the current case study: payment
related properties (paymentAccepted, currenciesAccepted), business organi-
zation characteristics (openingHours, address, location, areaServed), place
properties (geo, address, openingHoursSpecification), thing entity properties
(name, image, description).

Another entity type that is related to EV charging service is Reservation
and its more specific type ReservationPackage. Both of them have related
properties that can be used in the EV charging project [36]:

• bookingTime: the date and time for the reservation;

• programMembershipUsed : this property can be used in the case when
booking can be made only by the member of the EV charging provider
program;

• provider : the service provider;

• reservationFor : reservation for EV Charging;

• reservationId ;

• reservationStatus : the current status of the reservation including Reser-
vationCancelled, ReservationConfirmed, ReservationHold, Reservation-
Pending.

• totalPrice: the price for reservation;

• underName: the name of the person that reservation is for.

6.4.2 MobiVoc

MobiVoc initiative provides powerful vocabulary for modelling the mobility
data. It intends to make the data communication between all the available
data sources easier in order to answer the new challenges of the current smart
mobility domain development [46].

CHAPTER 6. CASE STUDY AND REQUIREMENTS 44

There are the examples of these data sources that can be integrated with
each other in one mobility service: map data, vehicle data, weather data,
charging data, energy data, service description and others. MobiVoc provides
standardised vocabulary using Semantic Web technologies and ontologies.

The vocabulary covers various mobility aspects using the recommended
specification of World Wide Web Consortium (W3C) - Resource Description
Framework (RDF) and lingua franca for integrating data and web [26].

Figure 6.2: MobiVoc Schema [27]

After the exploration of MobiVoc types and entities we came to the con-
clusion that this domain-specific semantic vocabulary is more suitable for
usage in EV charging system. MobiVoc was made specifically to reflect the
mobility industry. MobiVoc contains several classes that are directly related
to EV charging.

These classes are connected to each other and describe the properties and
types of charging points, chargers, charging adaptors, charging fees and type

CHAPTER 6. CASE STUDY AND REQUIREMENTS 45

of access. The Figure 6.2 shows all the classes for EV charging [27].

In this chapter we provided an overview of the bIoTope project and its
requirements. This project is a framework within which we implemented the
software system for this thesis. The details of the implementation will be
described in the next chapter.

Chapter 7

Implementation

The implementation part of the current thesis reflects the EV Parking and
Charging system that was implemented as a part of bIoTope project and
used for the current thesis. The author of the thesis implemented the user
interface (Android mobile application) that consumes back-end Parking and
Charging web service implemented by the group of programmers that are
working in the bIoTope project. Though Parking and Charging service is not
implemented by the author of the current thesis it is important to describe
it in order to show the full picture of the system that has been developed. In
this chapter we will describe the architecture of the system, implementation
of the mobile application in details and make an overview the Parking and
Charging service.

7.1 System overview

The EV Parking and Charging system consists of three main components
(Figure 7.1):

1. Client that is represented by a mobile application for Android OS.
This app was implemented by the author of the current thesis. The
application is a tool for searching and booking the EV chargers in the
designated area.

2. Server that has several layers and mainly consists of O-MI nodes.
Server communicated with the mobile application using O-MI/O-DF
messaging standard.

3. EV Charger built especially for the project, that is connected to the
server side and opens or closes charging service according to the server
calls.

46

CHAPTER 7. IMPLEMENTATION 47

Figure 7.1: EV chargers and parking system overview [6]

The general system functionality can be illustrated by these points (Fig-
ure 7.2:

1. Charger creates event subscription to Parking Service for changes in
Pole’s parking space O-DF structure. Service answers with Response
containing returnCode=”200”.

2. An electric vehicle enters Helsinki city and the user sends the geograph-
ical query to the mobile application to search for a parking lots with
available EV chargers. App sends call request to Parking Service for
method FindParking with information of destination and type of vehi-
cle, etc. The Parking and Charging Service (the O-MI node) returns
the list of parking lots with EV chargers.

3. The user can choose the particular parking spot with an EV charger,
navigate to it (the route towards the EV parking spot destination can
be defined using Google Maps automatically from the app). The user

CHAPTER 7. IMPLEMENTATION 48

Charger

Charger

Figure 7.2: EV chargers and parking sequence diagram [6]

can reserve EV parking spot for use, sending the write request to Park-
ing Service with user’s name and picked parking spot set to ”false” (if it
is available at the moment).If Parking Service approves the reservation
it answers with response containing returnCode=”200”.

4. After the parking spot has been booked the user can authorize himself
to open the EV charger. The app sends the write request with user’s
name and lid status ”open”. The service returns the response with
returnCode=”200”.

5. Because the information changed in O-DF structure of the Charger,
a response is send to the Charger. This response contains only the
changed values of the structure. Charger opens lid and turns power on
so that charging is possible. User connects their cable to Charger and
uses the charging service.

6. Parking Service changes Charger’s lid status to ”Locked” after 10 sec-
onds after setting status to ”Open”. Causes a response to be send to
Charger because O-DF changed again.

7. Pole activates lock so that lid will be locked when closed. User closes the
lid. User is about to leave with their vehicle and uses the application to

CHAPTER 7. IMPLEMENTATION 49

release (unbook) the parking space and send releasing write to Parking
Service.

In the following subchapters we will separately describe the user interface
of the service (an Android application) and the back-end part of the service
(server and EV charger).

7.2 User Interface Part: Android application

On the client side there is a mobile application for Android OS. The appli-
cation was developed by the author of this thesis using Java language. The
application can be run on a minimum Android SDK version 14 and maximum
on Android SDK version 25 (Android Nougat).

The application was developed since January until June. There were two
versions of the application:

1. The first version was developed in the period of time from January
till March 2017. It contained simple user interface with map used for
searching for the EV chargers using the current location of the user.
The server part was simulated since it took time to implement the O-MI
node and implement the physical EV charger.

2. The second version was developed during March-June 2017 when
the server implementation was ongoing. The user interface allows the
user not only to search for the EV chargers location according user’s
current location but also to use Google Map search for EV chargers in
desired future location. The user can also reserve the EV parking spot
and unlock the EV charger for immediate usage.

7.2.1 Application Use Case

The application represents simple and usable interface. The user of the app
is able:

• To search for the parking spots with EV chargers nearby
his/her current location. The launch screen of the app shows Google
Map. There is an icon-button in the top right corner of the screen that
enables EV parking spots search by the user’s current location (Figure
7.3, screenshot 1).

• To search for the parking spots with EV chargers in desired
location. In this case the user can use the search widget by typing the

CHAPTER 7. IMPLEMENTATION 50

name of the location in. The search widget will provide the autocom-
plete function provided by Google Places API.

1 2 3 4

Figure 7.3: Using the app: Searching for EV parking spots

• To see the search results pinned on the Google Map. Search
results show the parking lots that have parking spots equipped with
EV chargers. The color of the pin reflects the current availability of
the EV parking spots with the chargers. If the pin is green, it means
that there are available parking spots with EV chargers in this parking
lot. If the pin is red, there are no currently avvailable EV parking spots
(Figure 7.3, screenshots 2,3).

• To read the information about the parking lot: availability of
EV chargers, amount of free parking spots with EV chargers, opening
hours, hourly price for charging and other related information (Figure
7.3, screenshot 4)

• To read characteristics and to choose the desired EV parking
spot from the list of available spots on the parking lot.

• To reserve parking spot with EV charger for immediate use or to
leave parking spot (Figure 7.4, screenshots 6, 8).

CHAPTER 7. IMPLEMENTATION 51

5 6 7 8

Figure 7.4: Using the app: Booking the parking spot and using the EV
charger

• To use the charger: unlock the lid of the charger for immediate use of
charging service (Figure 7.4, screenshot 7). The button ”Use Charger”
unlocks the charger’s lid so the plug can be using inside the charger
pole.

• To get the directions to the parking lot from the current location
of the user by calling Google Maps from the application and loading
the directed route.

7.2.2 Overview of the App Architecture

The architecture of the application is illustrated by the Figure 7.5. The
application can be divided into three parts. Each part is responsible for its
own tasks.

User Interface part constructs user interface and uses different asyn-
chronous tasks (AsyncTask) to get the necessary data from the server. API
client is responsible for communicating with the server, when it is activated
by AsyncTasks. All the data that is received from the server is parsed and
mapped to the model objects and supplied to the User Interface. We will de-
scribe each part of the app architecture in details in the following paragraph
in order to explain how the app is supposed to operate.

CHAPTER 7. IMPLEMENTATION 52

User Interface Model Objects, Parsing, Converting Remote

Map and Search

Parking Lot
Details

EV Spots List
and Booking

Objects

DOM Parser

ToString
Converter

API Client Server OঀMI
Node

OՖDF message

XML queries
XML queries as String

OՖDF reply

XML

maps with

Daʧa

Figure 7.5: App Architecture

7.2.3 User Interface

User Interface part is responsible for user interface construction of the ap-
plication, for sending the server requests in order to get the data from the
server and show it to the user. It includes files that are specific for Android
OS framework. User interface can be divided in three levels:

1. Map and Search that is the launcher screen and shows the first af-
ter the app has been launched (Figure 7.6). This screen is responsible
for searching and getting the parking lots with EV chargers on the
map. This user interface is being managed by the ParkingMapActiv-
ity that holds two fragments: SupportPlaceAutocompleteFragment and
ParkingMapFragment.

SupportPlaceAutocompleteFragment is responsible for searching the lo-
cations with autocomplete function.

ParkingMapFragment is responsible for showing the map and for pin-
ning the found parking lots to the map (putting the markers according
to the location). It holds the AsyncTask (SearchParkingTask) that
searches for the parking lots in the server using the geo location data.

Geo Location are latitude and longitude of either the current user lo-
cation or of the location of the desired user location in the future (the

CHAPTER 7. IMPLEMENTATION 53

SearchParkingTask

ParkingMapActivity

SupportPlaceAutocompl
eteFragment

ParkingMapFragment

Is responsible for
launcher screen and
hosts the fragments of
UI

Has the map and
sends requests to ˌind
EV parking lots to the
server

Is responsible for the
location search and
autocomplete feature

Figure 7.6: UI and class diagram of the launcher screen

place where the user is heading to). The desired user location latitude
and longitude coordinates are supplied by the SupportPlaceAutocom-
pleteFragment.

2. Parking Lot Details Screen (Figure 7.7) shows the characteristics
of the parking lot that the user chooses from the map. This screen
is operated by the ParkingDetailActivity. It has the map where the
current parking lot is pinned to. It shows the information about the
opening hours, address of the parking lot and other important informa-
tion. It also has the button ”Choose an EV Spot” that will bring the
user to the next screen of the third level. On button click the Async-
Task (SearchParkingLotsListTask) is called that connects the server in
order to get the renewed data about the EV parking spots that are
available at the current parking lot.

3. EV Spots List and Charger (Figure 7.4) show the list of EV spots
that are available on the chosen parking lot. From this list the user can
reserve an EV parking spot and use the charger. The user interface is
organized by the EvSpotsListActivity that hosts the list of the available
EV parking spots. It has two AsyncTasks for making the reservation
of the EV parking spot (ReserveParkingTask) and for opening the lid
of the charger to use it (UseChargerTask). Each item (an EV park-

CHAPTER 7. IMPLEMENTATION 54

 SearchParkingSpotsListTask

ParkingDetailActivity

Populates the screen with deʧails
about chosen parking loʧ, pins it on
the map.

On button click use AsyncTask to
call to the server to update the
parking spots list

Figure 7.7: UI and class diagram of the parking lot detail screen

ing spot) in the list is organized by the EvParkingSpotsAdapter that
manages the buttons for reservation of the parking lot and for using
the EV charger. It also manages the information allocation in the list
item: details of the charger, type of charging plug and so on.

7.2.4 Objects and data parsing

This part in the app architecture is responsible for data parsing, processing
and mapping to the objects.

ToStringConverterFactory is responsible for converting XML queries
to String object in order to pass this String object to the API client in the
POST request.

XML Parser (DOM parser) is responsible for parsing the XML data
from O-DF reply from the server and for mapping the data from O-DF
elements to the related objects. Figure 7.9 shows the class diagram that
includes all the objects (POJO) that exist in the application. These objects
are constructed in the same way as the O-DF Object elements and the mem-
ber variables inside the POJO objects represent InfoItems. Objects also can
contain the list of other objects.

The main object element is ParkingService. It contains all other nested
elements. According to the O-DF structure, ParkingService has the list of

CHAPTER 7. IMPLEMENTATION 55

ReserveParkingTask
UseChargerTask

EvSpotsListActivity

EvParkingSpotsAdapter

Shows the list of EV
parking spots that
belong to the current
parking lot

Populates each list
item with the related
daʧa and manages the
buttons

AsyncTasks send
requests to the server
to reserve the Ev
parking spot and use
the related charger

Figure 7.8: UI and class diagram of the EV spots list screen

object elements called ”ParkingFacilities” (Figure A.1). In the application
POJO named ParkingService has the list of ParkingLot objects. In O-DF
structure ParkingLot object has several properties and contains the list of
ParkingSpaceTypes (Figure A.2). In application there is a POJO Parking-
Section that is an equivalent of ParkingSpaceTypes element in O-DF. The
application only requests and uses ParkingSections with the specific id ”Elec-
tricVehicleParkingSpace”. But the Parking and Charging Service contains
other types that can be used in other web and mobile applications (for ex-
ample, for parking sections for motorbikes or bicycles or usual cars that do
not need an EV charger).

In O-DF structure, each ParkingSpaceType has a list of Spaces (Figure
A.2). In application ParkingSection has the list of ParkingSpot objects. Each
parking spot that belongs to the ParkingSection designated to EV cars has a
Charger object(Figure A.3). All in all the application uses the POJO objects
that can be directly mapped to the O-DF structure of the Parking Service.
The Figure B.1 compares all the names of the O-DF Object elements to the
related POJO objects used in the application.

CHAPTER 7. IMPLEMENTATION 56

Figure 7.9: Class diagram of the objects

7.2.5 API client

API client is constructed using special library Retrofit. API client creates
the RetrofitService that calls the O-MI node to the following API address

http:biotope.cs.hut.fi/omi/node/.
RetrofitService makes the POST calls to the server adding the String ob-

ject in the body of the call. String object contains the related query that is
initially in XML format but it is converted to String by ToStringConverter-
Factory.

The app calls to the server using four different queries.

1. Find Parking call request is used to get the list of parking lots at
the specified geo location (Figure C.1). In this query it is important to
specify which type of parking lot it is needed. Since in the app we are
interested only in the parking with EV chargers, the value of InfoItem
ParkingUsageType should be set to ElectricVehicleParkingSpace. It is
important to pass the coordinates to the value of InfoItems Longitude
and /textitLatitude accordingly.

2. Reservation of Parking Spot write request is used when the user

CHAPTER 7. IMPLEMENTATION 57

wants to use the specific chosen parking spot (Figure C.2). In the
request it is important to include the id of the parking lot and id of the
parking spot. The value of parking spot InfoItem Available should be
set to false. The username of the application current user should also
be included in the request in the InfoItem User ’s value.

3. Unbooking of Parking Spot is a write request that is used to free
the parking spot after it has been used by the user (Figure C.3). The
write call is similar to the previous one (to reserve the parking spot),
however the value of InfoItem Available should be set to true.

4. Open the Charger Lid request is sent when the user wants to use the
charger (Figure C.4). This request can be combined with the reserva-
tion request or can be sent separately after the parking spot is reserved
by the user. In the request it is important that the parking spot’s In-
foItem ”Available” should be set to false and the value of InfoItem User
should have the username of the current user. The InfoItem’s LidStatus
value should be set to Open. In this case the lid will be opened and
the user can start using the charger.

7.3 Back-end Part: O-MI Node and EV Charger

In this subchapter we will describe what the service back-end part contains
and how it communicates with the client to let the reader understand the
whole organization of the system. The server part for the EV Charging appli-
cation was implemented by a team of programmers for the bIoTope project.
The server part is organized over several components that communicate with
each other. It consists of software block and hardware block (Figure 7.10).

Software block represents the O-MI node server that contains several
components.

All O-MI basic operation are implemented by the server. The current
underlying transport protocols that are supported by the O-MI node are
HTTP and websockets. Any O-MI operation is transported using an HTTP
POST.

O-MI service. The server has the element that is responsible for pars-
ing the requests, authentication and authorization of the client. Then each
request is handled by the Request Handler.

Request Handler sends the particular request to the next responsible el-
ements according to the nature of the request. All the ”read” requests are
sent to the database, that is maintained by the server.

CHAPTER 7. IMPLEMENTATION 58

OঀMI service

Re̍uest
Handler

Subscription
Handler

Callback
Handler

Agents

Database

EV Charger

HTTP/WS

Read

Write/Call

Handles callback parameter
Parsing
Authentication
Authorization

Responsible agents
handle different
write/call requests software

Subscriptions
and polls

hardware

Figure 7.10: Organization of the back-end part

Database stores the data about O-DF structure including Object(s) and
InfoItems.

All the requests concerning write/call operations are distributed by the
Request Handler to responsible agents.

Agents. Agents are the actors that can programmatically interact with
the core of an O-MI node. Generally an agent is a worker thread that gets
data from different data sources separately. For that it uses specific protocols
and turn them into objects that can be used by the O-MI node core.

Current implementation has one agent that communicates with the database
and make the necessary changes in the data inside the database according to
the ”write/call requests”.

Subscription Handler. There is a subscription mechanism offered by the
O-MI server that allows responses based on the events or time intervals to
a number of subscribers. In the current system there is only one subscriber
to the O-MI server. It is the external EV charger - a hardware element of
the system that aims at receiving the notifications about the lid status. All

CHAPTER 7. IMPLEMENTATION 59

the subscriptions and polls are handled by the Subscription Handler that
receives related requests from the Request Handler. Subscription handler is
also responsible for polling the data using subscription ID integrated into
the read request (in case when callback address is not provided). In order to
eliminate the active subscriptions Subscription Handler processes ”cancel”
requests that stop and delete related subscriptions.

Callback Handler O-MI server provides the subscribers a feature of call-
back, when the subscriber can specify a different URL from the address that
has sent the request. It is called the callback address. So the message will
be sent to the callback address during an active subscription. For handling
these messages forwarded to a callback address there is an element called
Callback Handler. In the current implementation the EV charger provides
the callback address.

Hardware block includes the EV charger with the lid. EV charger hosts
an ESP8266 Wi-Fi chip for control, A7 GSM module for long-range cellular
communications and Sonoff relay for electricity control. The software has
been written in C with very small memory footprint, and communicates to
O-MI service using websockets.

EV charger is connected to the software block and receives the informa-
tion about the charger lid status from the O-MI node. Since it is too difficult
to maintain connection to the EV charger through GSM, the charger is sub-
scribed to the messages from the O-MI node. The charger can operate the
lid according to the lid status, communicated by the O-MI node.

The default status of the lid is ”closed”, so that the lid could be locked
and the charger cannot be used. But If the lid status is ”open” the charger
unlocks the lid so the user can open it, put the charging plug inside and
start charging. The status ”open” is only valid during 2 seconds for security
reasons. This period of time will be enough for the user to be able to open
the lid and start using the charger. If the status changes to ”closed”, the
lid automatically locks. However through the application the status can be
easily changes again to ”open”.

Chapter 8

Conclusions

8.1 Summary of Findings

The main focus of this thesis research was to develop a mobile application us-
ing the O-MI/O-DF messaging protocols for IoT and test them in the smart
EV charging context provided by the European Smart City project bIoTope.
The first chapters of the thesis (chapters from 2 to 5) provide an overview
of IoT concept, its ecosystem and issues, highlighting the necessity to create
a unified standard for IoT messaging. Several existing messaging protocols
were discussed and compared with O-MI/O-DF using the special comparison
framework that reflects the main functional requirements for a general IoT
messaging standard. This comparison showed that currently used messag-
ing standards suit the requirements for unified IoT messaging standard only
partially. However, O-MI/O-DF is the best candidate to implement the ma-
jority of these requirements (transport protocol independency, subscription,
support of different payload formats and more).

Then, in chapter 6 the context of the thesis was introduced. The con-
text was provided by the European Smart City project, bIoTope that aims
to create a system of systems for IoT where many services from different
providers can be published using the unified messaging protocol O-MI/O-
DF. The project provided the system requirements for the implementation
part of the current thesis research.

In chapter 7, we described the implementation part of the mobile applica-
tion for smart EV charging. We started from the more specific requirements
and use case of the application, then followed with the description of the sys-
tem architecture and details of construction of the user interface for Android
OS that communicates with the server part using O-MI and O-DF. We ex-
plained each part of the application and their functionality. We demonstrated

60

CHAPTER 8. CONCLUSIONS 61

the queries in O-DF that mobile app sent to the O-MI node and showed the
connection of the O-DF structure elements to the classes of objects that play
key role in the application. O-DF was structured specifically for the use case
of the application - smart EV charging. The mobile user interface was imple-
mented by the author of the current thesis. In the end we shortly described
the back-end part of the system (the O-MI node and charger pole) that was
implemented by other group of programmers who participate in the bIoTope
project.

8.2 Implications of Research

This thesis had three main objectives. The first one was to demonstrate
O-MI and O-DF standards and to show why these standards are the most
suitable standards for IoT messaging. The second objective was to develop a
mobile application that communicates with O-MI node using O-DF messages.
The third objective was to test the application in the context of smart EV
charging provided by the European project bIoTope. The mobile application
was implemented and it was demonstrated how O-MI and O-DF can be used
in a mobile application.

8.3 Reliability and Validity of the Research

The mobile application that was implemented for this research thesis is just a
proof-of-concept, therefore the application has a restricted functionality. The
data about the EV chargers is mocked on the server that communicated with
the mobile interface. However it uses the real charger pole constructed by
one of the programmers specifically for the bIoTope project. The core design
of the application, user requirements (that were provided by the bIoTope
project) can be applicable to other systems. It can be reused in the real EV
charging system with the actual data (existing parking lots and EV chargers).

8.4 Future work

We learned that O-MI/O-DF standards provide better interoperability for
IoT than other existing messaging standards. It is particularly important
for smart city applications. The result of this thesis is a mobile application
that uses O-MI/O-DF messaging standards to communicate with the server.
This simple application is an example that shows a potentially opened IoT

CHAPTER 8. CONCLUSIONS 62

system in smart city context. A system that uses unified standard to publish
and communicate different types of services from different domains.

However there are many ways to improve the mobile application and
expand the service.

First of all, user profiles and user authentication feature should be created.
The existing application is designed to be used only by a unique user. But
for the full service capability it should support the features of registration,
user account creation and authentication.

Then, when the user will be using the EV charger, the amount of the
charged energy and the time should be also registered in the app.

The app should offer to a user an opportunity to pay for the charging ser-
vice, so payment features should be implemented in the application. There
are various solutions for digital payment offered by some providers such as
PayPal and some others. These solutions could be integrated in the appli-
cation in order not to spend internal resources for initial development of a
payment solution from scratch.

The application could also add a feature of indoor mapping of the location
of the EV chargers inside the big parking lots. It should make the chargers
search easier for the user that arrived to the parking lot and is looking for
the exact location of the parking space that he is interested in.

On the server side, the real existing parking lots with EV chargers should
be published to the O-MI node. The server could contain other digital ser-
vices that could be also published using O-MI and O-DF protocols. The
parking lots could offer parking spaces for other kinds of vehicles such as
motorbikes, ordinary cars, bigger vehicles.

The usage of O-MI/O-DF protocols opens a lot of opportunities for digital
service providers in the smart city.

Bibliography

[1] Atzori, L., Iera, A., and Morabito, G. The Internet of Things:
A Survey. Computer Networks 54, 15 (2010), 2787–2805.

[2] Baran, P. Reliable digital communications using unreliable network
re- peater nodes. RAND Corporation papers, document P-1995 (1960).

[3] Bellavista, P., Cardone, G., Corradi, A., and Foschini, L.
Convergence of MANET and WSN in IoT urban scenarios. IEEE Sen-
sors Journal 13, 10 (2013), 3558 – 3567.

[4] BIoTope Documentation. D2.1 ecosystem stakeholder requirements
report and pilot definition, 2016.

[5] BIoTope Documentation. D2.4 biotope sos reference platform spec-
ification v.1.0, 2016.

[6] BIoTope Documentation. D6.2 proof-of-concept ”smart building
and equipment” implementation v1, 2017.

[7] Braden, R. T. A server host system on the arpanet. ACM New York,
USA (1977).

[8] Cuff, D., Hansen, M., and J., K. Urban sensing: Out of the woods.
Communications of the ACM 51, 3 (2008), 24 – 33.

[9] Främling, K., Holmström, J., Ala-Risku, T., and
Kärkkainen, M. Product agents for handling information about phys-
ical objects. Report of Laboratory of Information Processing Science
series B, TKO-B 153/03, Helsinki University of Technology (2003), 20.

[10] Främling, K., Kubler, S., and Buda, A. Universal Messaging
Standards for the IoT from a Lifecycle Management Perspective. Lour-
nal of LaTeX Class Files 11, 4 (2012).

63

BIBLIOGRAPHY 64

[11] Främling, K., and Maharjan, M. Standardized communication
between intelligent products for the IoT. Proc. 11th IFAC Workshop on
Intelligent Manufacturing Systems (2013), 157 – 162.

[12] Gershenfeld, N., Krikorian, R., and Cohen, D. The Internet
of Things. Scientific American 291, 4 (2004), 76–81.

[13] Hafner, K. Where wizards stay up late: The origins of the internet.
Journal of Engineering Education, Simon Schuster (1998).

[14] Hartke, K. Observing resources in the constrained application proto-
col (coap). RFC 7641 (2015).

[15] Hauben, R. From the arpanet to the internet. A Study of the
ARPANET TCP/IP Digest and of the Role of Online Communication
in the Transi- tion from the ARPANET to the Internet (2001).

[16] Hernandez-Muñoz, J., Vercher, J., Muñoz, L., and Galache,
J. Smart Cities at the forefront of the future Internet. The Future
Internet, Lecture Notes Computer Science 6656 (2011), 447 – 462.

[17] Huvio, E., Grönvall, J., and Främling, K. Tracking and tracing
parcels using a distributed computing approach. In: SOLEM, Olav
(ed.) Proceedings of the 14th Annual Conference for Nordic Researchers
in Logistics (NOFOMA’2002) , Trondheim, Norway, 12-14 June (2002),
29 – 43.

[18] Jankowski, S., Covello, J., Bellini, H., Ritchie, J., and
Costa, D. The internet of things: making sense of the next mega-
trend, 2014.

[19] Jun, H. B., Shin, J. H., Kiritsis, D., and Xirouchakis, P. Sys-
tem architecture for closed-loop plm. International Journal of Computer
Integrated Manufacturing 20, 7 (2007), 684–698.

[20] Kiritsis, D., Bufardi, A., and Xirouchakis, P. Research issues
on product lifecycle management and information tracking using smart
embedded systems. . Advanced Engineering Informatics 17 (2003), 189–
201.

[21] Kiritsis, D., and RolstadaÌs, A. Promise-a closed-loop product
lifecycle management approach. . in IFIP 5.7 Advances in Production
Management Systems: Modelling and Implementing the Integrated En-
terprise (2005).

BIBLIOGRAPHY 65

[22] Kortuem, G., Kawsar, F., Sundramoorthy, V., and Fitton,
D. Smart objects as building blocks for the internet of things. IEEE
Internet Computing 14, 1 (2010), 44–51.

[23] Korzun, D., Kashevnik, A., and Balandin, S.I.and Smirnov,
A. The Smart-M3 Platform Experience of Smart Space Application
Development for Internet of Things. NEW2AN/ruSMART 2015, LNCS
9247 (2015), 56–67.

[24] Kubler, S., Främling, K., and Buda, A. A standardized approach
to deal with firewall and mobility policies in the IoT. Pervasive and
Mobile Computing 20 (2015), 100–114.

[25] Kurose, J. F., and Ross, K. W. Computer Networking: A Top-
Down Approach (5th ed.). Boston, MA: Pearson Education., 2010.

[26] MobiVoc Website, Mission Statement. Supporting human mo-
bility by data mobility. webpage, 2017. https://www.mobivoc.org/en/

goals.html. Accessed 02.05.2017.

[27] MobiVoc Website, Schema. Mobivoc: Open mobility vocabulary.
webpage, 2017. http://schema.mobivoc.org/. Accessed 02.05.2017.

[28] Mulligan, C. E. A., and Olsson, M. Architectural implications of
smart city business models: An evolutionary perspective. IEEE Com-
munication Magazine 51, 6 (2013), 80 – 85.

[29] Nixon, L., Simperl, E., Krummenacher, R., and Martin-
recuerda, F. Tuplespace-Based Computing for the Semantic Web:
A Survey of the State-of-the-Art. Knowl. Eng. Rev. 23 (2008), 181–
121.

[30] OASIS AMQP Technical Committee. Oasis amqp version 1.0,
sections 2.6.12-2.6.13. Accessed 10.05.2017.

[31] Pike Research. On smart cities. webpage, 2017. http://

smartcitiescouncil.com/tags/pike-research. Accessed 02.09.2017.

[32] Prophet.com. Interoperability: The challenge facing the internet of
things. webpage, 2014. https://www.prophet.com/thinking/2014/02/

interoperability-the-challenge-facing-the-internet-of-things/.
Accessed 02.05.2017.

https://www.mobivoc.org/en/goals.html
https://www.mobivoc.org/en/goals.html
http://schema.mobivoc.org/
http://smartcitiescouncil.com/tags/pike-research
http://smartcitiescouncil.com/tags/pike-research
https://www.prophet.com/thinking/2014/02/interoperability-the-challenge-facing-the-internet-of-things/
https://www.prophet.com/thinking/2014/02/interoperability-the-challenge-facing-the-internet-of-things/

BIBLIOGRAPHY 66

[33] Saint-Andre, P. Extensible messaging and presence protocol
(xmpp): Core, 2011. https://tools.ietf.org/html/rfc6120. Accessed
11.05.2017.

[34] Salman, T. Internet of things protocols and standards. web-
page, 2015. http://www.cse.wustl.edu/~jain/cse570-15/ftp/iot_

prot/index.html. Accessed 04.05.2017.

[35] Schaffers, H., Komninos, N., Pallot, M., Trousse, B., Nils-
son, M., and Oliveira, A. Smart cities and the future internet:
Towards cooperation frameworks for open innovation. The Future In-
ternet, Lecture Notes Computer Science 6656 (2011), 431 – 446.

[36] Schema.org website. Welcome to schema.org. webpage, 2017. http:
//http://schema.org/.. Accessed 02.05.2017.

[37] Schneider, S. Understanding the protocols behind the internet
of things. Electronic Design (2013). http://www.electronicdesign.

com/iot/understanding-protocols-behind-internet-things. Accessed
04.05.2017.

[38] Shelby, Z., Hartke, K., and Bormann, C. The constrained ap-
plication protocol (coap). RFC 7252 (2014).

[39] Tai, S., and Rouvellou, I. Strategies for integrating messaging and
distributed object transactions. In IFIP/ACM International Conference
on Distributed systems platform (2000), 308–330.

[40] The bIoTope website. The biotope project. webpage, 2017. http:

//www.biotope-project.eu/. Accessed 17.09.2017.

[41] The MQTT protocol official website. Interoperability: The
challenge facing the internet of things. webpage, 2014. http://www.

mqtt.org.. Accessed 02.05.2017.

[42] The Open Group. Open data format (o-df), an open group internet
of things (iot) standard, 2014. http://www.opengroup.org/iot/odf/.
Accessed 10.05.2017.

[43] The Open Group. Open messaging interface (o-mi), an open group
internet of things (iot) standard, 2014. http://www.opengroup.org/iot/
omi/index.htm. Accessed 10.05.2017.

https://tools.ietf.org/html/rfc6120
http://www.cse.wustl.edu/~jain/cse570-15/ftp/iot_prot/index.html
http://www.cse.wustl.edu/~jain/cse570-15/ftp/iot_prot/index.html
http://http://schema.org/.
http://http://schema.org/.
http://www.electronicdesign.com/iot/understanding-protocols-behind-internet-things
http://www.electronicdesign.com/iot/understanding-protocols-behind-internet-things
http://www.biotope-project.eu/
http://www.biotope-project.eu/
http://www.mqtt.org.
http://www.mqtt.org.
http://www.opengroup.org/iot/odf/
http://www.opengroup.org/iot/omi/index.htm
http://www.opengroup.org/iot/omi/index.htm

BIBLIOGRAPHY 67

[44] Tracy, P. Iot interoperability: Where it stands and what comes
next. webpage, 2016. http://www.rcrwireless.com/20161031/

internet-of-things/iot-interoperability-tag31-tag99. Accessed
02.05.2017.

[45] Treese, W. The open market internet index for 11 november 1995.
webpage, 1995. Treese.org. Accessed 02.09.2017.

[46] University of Bonn Website. About project mobivoc. webpage,
2017. http://eis.iai.uni-bonn.de/Projects/MobiVoc.html. Accessed
02.05.2017.

[47] Weiser, M. The Computer for the Twenty-First Century. Scientific
American 265, 3 (1991), 94–104.

http://www.rcrwireless.com/20161031/internet-of-things/iot-interoperability-tag31-tag99
http://www.rcrwireless.com/20161031/internet-of-things/iot-interoperability-tag31-tag99
Treese.org
http://eis.iai.uni-bonn.de/Projects/MobiVoc.html

Appendix A

Parking Service O-DF examples

In the appendix A there is O-DF structure of the parking service. In these
three figures there are O-DF structures of the parking service element (Figure
A.1), parking space types (Figure A.2) and parking spot (Figure A.3).

68

APPENDIX A. PARKING SERVICE O-DF EXAMPLES 69

<omiEnvelope ttl="10" version="1.0" xmlns="http://www.opengroup.org/xsd/omi/1.0/">
 <response>
 <result msgformat="odf">
 <return returnCode="200">
 </return>
 <msg>
 <Objects xmlns="http://www.opengroup.org/xsd/odf/1.0/" xmlns:xs="http://
www.w3.org/2001/XMLSchema" xmlns:odf="http://www.opengroup.org/xsd/odf/1.0/">
 <Object>
 <id>ParkingService</id>
 <Object type="list">
 <id>ParkingFacilities</id>
 <Object type="schema:ParkingFacility">
 <id>CSBuildingParkingLot</id>
 <InfoItem name="MaxParkingHours">
 <value unixTime="1496236429"
dateTime="2017-05-31T16:13:49.394+03:00">20</value>
 </InfoItem>
 <InfoItem type="mv:isOwnedBy" name="Owner">
 <value unixTime="1496236429"
dateTime="2017-05-31T16:13:49.394+03:00">Aalto University</value>
 </InfoItem>
 <Object type="schema:OpeningHoursSpecification">
 <id>openingHoursSpecification</id>
 <InfoItem name="opens">
 <value unixTime="1496236429" type="schema:Time"
dateTime="2017-05-31T16:13:49.394+03:00">00:00</value>
 </InfoItem>
 <InfoItem name="closes">
 <value unixTime="1496236429" type="schema:Time"
dateTime="2017-05-31T16:13:49.394+03:00">24:00</value>
 </InfoItem>
 </Object>
 <Object type="schema:GeoCoordinates">
 <id>geo</id>
 <InfoItem name="latitude">
 <value unixTime="1496236429" type="xs:double"
dateTime="2017-05-31T16:13:49.394+03:00">60.187556</value>
 </InfoItem>
 <InfoItem name="longitude">
 <value unixTime="1496236429" type="xs:double"
dateTime="2017-05-31T16:13:49.394+03:00">24.8213216</value>
 </InfoItem>
 <Object type="schema:PostalAddress">
 <id>address</id>
 <InfoItem name="addressCountry">
 <value unixTime="1496236429"
dateTime="2017-05-31T16:13:49.394+03:00">Finland</value>
 </InfoItem>
 <InfoItem name="streetAddress">
 <value unixTime="1496236429"
dateTime="2017-05-31T16:13:49.394+03:00">Konemiehentie 4</value>
 </InfoItem>
 <InfoItem name="addressRegion">
 <value unixTime="1496236429"
dateTime="2017-05-31T16:13:49.394+03:00">Espoo</value>
 </InfoItem>
 <InfoItem name="addressLocality">
 <value unixTime="1496236429"
dateTime="2017-05-31T16:13:49.394+03:00">Otaniemi</value>
 </InfoItem>
 <InfoItem name="postalCode">
 <value unixTime="1496236429" type="xs:double"
dateTime="2017-05-31T16:13:49.394+03:00">2150.0</value>
 </InfoItem>
 </Object>
 </Object>

Figure A.1: Parking Service O-DF

APPENDIX A. PARKING SERVICE O-DF EXAMPLES 70

<Object type="list">

 <id>ParkingSpaceTypes</id>

 <Object type="mv:ParkingUsageType">

 <id>ElectricVehicleParkingSpace</id>

 <InfoItem type="mv:hasVehicleLengthLimitInM"

name="MaxLength">

 <value unixTime="1496236429" type="xs:float"

dateTime="2017-05-31T16:13:49.394+03:00">2.5</value>

 </InfoItem>

 <InfoItem type="mv:hasTotalCapacity" name="TotalCapacity">

 <value unixTime="1496236429" type="xs:int"

dateTime="2017-05-31T16:13:49.394+03:00">2</value>

 </InfoItem>

 <InfoItem type="mv:hasVehicleWidthLimitInM" name="MaxWidth">

 <value unixTime="1496236429" type="xs:float"

dateTime="2017-05-31T16:13:49.394+03:00">2.5</value>

 </InfoItem>

 <InfoItem type="mv:hasNumberOfVacantParkingSpaces"

name="NumberOfVacantParkingSpaces">

 <value unixTime="1496236429" type="xs:int"

dateTime="2017-05-31T16:13:49.394+03:00">2</value>

 </InfoItem>

 <InfoItem type="mv:PriceParking" name="HourlyPrice">

 <value unixTime="1496236429" type="xs:int"

dateTime="2017-05-31T16:13:49.394+03:00">2</value>

 </InfoItem>

 <InfoItem type="mv:hasVehicleHeightLimitInM"

name="MaxHeight">

 <value unixTime="1496236429" type="xs:float"

dateTime="2017-05-31T16:13:49.394+03:00">2.5</value>

 </InfoItem>

Figure A.2: Parking Space Types O-DF

APPENDIX A. PARKING SERVICE O-DF EXAMPLES 71

<Object type="list">
 <id>Spaces</id>
 <Object type="mv:ParkingSpace">
 <id>EVSpace2</id>
 <InfoItem name="Available">
 <value unixTime="1496236429"
dateTime="2017-05-31T16:13:49.394+03:00">true</value>
 </InfoItem>
 <InfoItem name="User">
 <value unixTime="1496236429"
dateTime="2017-05-31T16:13:49.394+03:00">NONE</value>
 </InfoItem>
 <Object type="mv:Charger">
 <id>Charger</id>
 <InfoItem type="mv:Model" name="Model">
 <value unixTime="1496236429"
dateTime="2017-05-31T16:13:49.394+03:00">ExampleI</value>
 </InfoItem>
 <InfoItem type="mv:Brand" name="Brand">
 <value unixTime="1496236429"
dateTime="2017-05-31T16:13:49.394+03:00">Exampler</value>
 </InfoItem>
 <Object type="mv:Plug">
 <id>Plug</id>
 <InfoItem type="mv:CableAvailable"
name="CableAvailable">
 <value unixTime="1496236429"
dateTime="2017-05-31T16:13:49.394+03:00">false</value>
 </InfoItem>
 <InfoItem type="mv:ChargingSpeed"
name="ChargingSpeed">
 <value unixTime="1496236429"
dateTime="2017-05-31T16:13:49.394+03:00">mv:Standard</value>
 </InfoItem>
 <InfoItem type="mv:PlugType" name="PlugType">
 <value unixTime="1496236429"
dateTime="2017-05-31T16:13:49.394+03:00">Schuko Plug</value>
 </InfoItem>
 <InfoItem type="mv:Voltage" name="Voltage">
 <value unixTime="1496236429"
dateTime="2017-05-31T16:13:49.394+03:00">240V</value>
 </InfoItem>
 <InfoItem type="mv:Power" name="Power">
 <value unixTime="1496236429"
dateTime="2017-05-31T16:13:49.394+03:00">2400W</value>
 </InfoItem>
 <InfoItem type="mv:LockerAvailable"
name="LockerAvailable">
 <value unixTime="1496236429"
dateTime="2017-05-31T16:13:49.394+03:00">true</value>
 </InfoItem>
 </Object>
 </Object>
 </Object>

Figure A.3: Parking Spot O-DF

Appendix B

O-DF elements mapped to POJO

72

APPENDIX B. O-DF ELEMENTS MAPPED TO POJO 73

Figure B.1: O-DF elements to POJO

Appendix C

O-DF queries example

In Appendix C there are collected the examples of queries to the server for
different operations: finding the parking lots of desired location (Figure C.1),
reservation of parking spot (Figure C.2), unbooking (leaving) the parking
spot (Figure C.3), opening the lid of the EV charger (Figure C.4).

74

APPENDIX C. O-DF QUERIES EXAMPLE 75

<omiEnvelope xmlns="http://www.opengroup.org/xsd/omi/1.0/" version="1.0"
ttl="0">
 <call msgformat="odf">
 <msg>
 <Objects xmlns="http://www.opengroup.org/xsd/odf/1.0/">
 <Object>
 <id>ParkingService</id>
 <InfoItem name="FindParking">
 <value type="odf">
 <Objects>
 <!-- Contains only required parameters -->
 <Object type="FindParkingRequest">
 <id>Parameters</id>
 <description lang="English">List of possible
parameters to request.</description>
 <InfoItem name="ParkingUsageType">
 <value unixTime="1495635263"
dateTime="2017-05-24T17:14:23.724+03:00">mv:ElectricVehicleParkingSpace</
value><!-- Works without mv: too -->
 </InfoItem>
 <Object type="schema:GeoCoordinates">
 <id>Destination</id>
 <InfoItem name="latitude">
 <value unixTime="1495635263" type="xs:double"
dateTime="2017-05-24T17:14:23.724+03:00">60.187556</value>
 </InfoItem>
 <InfoItem name="longitude">
 <value unixTime="1495635263" type="xs:double"
dateTime="2017-05-24T17:14:23.724+03:00">24.8213216</value>
 </InfoItem>
 </Object>
 </Object>
 </Objects>
 </value>
 </InfoItem>
 </Object>
 </Objects>
 </msg>
 </call>
</omiEnvelope>

Figure C.1: Find Parking Request

APPENDIX C. O-DF QUERIES EXAMPLE 76

<omiEnvelope xmlns="http://www.opengroup.org/xsd/omi/1.0/" version="1.0"
ttl="0">
 <write msgformat="odf">
 <msg>
 <Objects xmlns="http://www.opengroup.org/xsd/odf/1.0/">
 <Object>
 <id>ParkingService</id>
 <Object>
 <id>ParkingFacilities</id>
 <Object>
 <id>CSBuildingParkingLot</id>
 <Object>
 <id>ParkingSpaceTypes</id>
 <Object>
 <id>ElectricVehicleParkingSpace</id>
 <Object>
 <id>Spaces</id>
 <Object type="mv:ParkingSpace"><!-- TYPE ATTRIBUTE
MUST BE GIVEN AGENT USES IT FOR PARSING! -->
 <id>EVSpace1</id>
 <InfoItem name="Available">
 <value>false</value>
 </InfoItem>
 <InfoItem name="User">
 <value>YOUR_USERNAME</value>
 </InfoItem>
 <id>Charger</id>
 <InfoItem name="LidStatus">
 <value>Open</value>
 </InfoItem>
 </Object>
 </Object>
 </Object>
 </Object>
 </Object>
 </Object>
 </Object>
 </Object>
 </Objects>
 </msg>
 </write>
</omiEnvelope>

Figure C.2: Reservation of Parking Spot Request

APPENDIX C. O-DF QUERIES EXAMPLE 77

<omiEnvelope xmlns="http://www.opengroup.org/xsd/omi/1.0/" version="1.0"
ttl="0">
 <write msgformat="odf">
 <msg>
 <Objects xmlns="http://www.opengroup.org/xsd/odf/1.0/">
 <Object>
 <id>ParkingService</id>
 <Object>
 <id>ParkingFacilities</id>
 <Object>
 <id>CSBuildingParkingLot</id>
 <Object>
 <id>ParkingSpaceTypes</id>
 <Object>
 <id>ElectricVehicleParkingSpace</id>
 <Object>
 <id>Spaces</id>
 <Object type="mv:ParkingSpace"><!-- TYPE ATTRIBUTE
MUST BE GIVEN AGENT USES IT FOR PARSING! -->
 <id>EVSpace1</id>
 <InfoItem name="Available">
 <value>true</value>
 </InfoItem>
 <InfoItem name="User">
 <value>YOUR_USERNAME</value><!--Service will
check that this is same as the current user, but will actually write NONE
to it. -->
 </InfoItem>
 <Object><!-- If not given when freeing space. Lid
cannot be opened afterwards without creating new reservation.-->
 <id>Charger</id>
 <InfoItem name="LidStatus">
 <value>Open</value>
 </InfoItem>
 </Object>
 </Object>
 </Object>
 </Object>
 </Object>
 </Object>
 </Object>
 </Object>
 </Objects>
 </msg>
 </write>
</omiEnvelope>

Figure C.3: Unbooking of Parking Spot Request

APPENDIX C. O-DF QUERIES EXAMPLE 78

<omiEnvelope xmlns="http://www.opengroup.org/xsd/omi/1.0/" version="1.0"
ttl="0">
 <write msgformat="odf">
 <msg>
 <Objects xmlns="http://www.opengroup.org/xsd/odf/1.0/">
 <Object>
 <id>ParkingService</id>
 <Object>
 <id>ParkingFacilities</id>
 <Object>
 <id>CSBuildingParkingLot</id>
 <Object>
 <id>ParkingSpaceTypes</id>
 <Object>
 <id>ElectricVehicleParkingSpace</id>
 <Object>
 <id>Spaces</id>
 <Object type="mv:ParkingSpace"><!-- TYPE ATTRIBUTE
MUST BE GIVEN AGENT USES IT FOR PARSING! -->
 <id>EVSpace1</id>
 <InfoItem name="User">
 <value>YOUR_USERNAME</value><!-- Service will
check that this is same as current user's username before opening the
lid. -->
 </InfoItem>
 <Object>
 <id>Charger</id>
 <InfoItem name="LidStatus">
 <value>Open</value>
 </InfoItem>
 </Object>
 </Object>
 </Object>
 </Object>
 </Object>
 </Object>
 </Object>
 </Object>
 </Objects>
 </msg>
 </write>
</omiEnvelope>

Figure C.4: Open the Charger Lid Request

	Cover page
	Abbreviations and Acronyms
	Contents
	1 Introduction
	1.1 Motivation
	1.2 Research Objectives and Framework
	1.3 Structure of the Thesis

	2 Internet of Things and Smart Objects
	2.1 Introduction to IoT and Smart Objects
	2.2 IoT Ecosystem
	2.3 Interoperability Issues in IoT

	3 Messaging Protocols in IoT
	3.1 MQTT
	3.2 CoAP
	3.3 XMPP
	3.4 AMQP
	3.5 DDS

	4 Open Group Messaging Protocols for IoT
	4.1 O-DF
	4.2 O-MI

	5 Suitable Messaging Standard for IoT
	5.1 Introduction to IoT messaging requirements and Comparison Framework
	5.1.1 Message Delivery Model
	5.1.2 Message Processing Model
	5.1.3 Message Failure Model

	5.2 Comparison of Messaging Protocols

	6 Case study and requirements
	6.1 What is bIoTope smart mobility?
	6.2 EV charging use case and user story
	6.3 The system requirements
	6.4 Semantic data models
	6.4.1 Schema.org
	6.4.2 MobiVoc

	7 Implementation
	7.1 System overview
	7.2 User Interface Part: Android application
	7.2.1 Application Use Case
	7.2.2 Overview of the App Architecture
	7.2.3 User Interface
	7.2.4 Objects and data parsing
	7.2.5 API client

	7.3 Back-end Part: O-MI Node and EV Charger

	8 Conclusions
	8.1 Summary of Findings
	8.2 Implications of Research
	8.3 Reliability and Validity of the Research
	8.4 Future work

	A Parking Service O-DF examples
	B O-DF elements mapped to POJO
	C O-DF queries example

