
Aalto University

School of Science

Degree Programme in Computer Science and Engineering

Pekka Pöyry

Coverage based safe regression test se-
lection method for Python programs

Master’s Thesis
Espoo, September 14, 2017

Supervisor: Assoc. Professor Keijo Heljanko
Advisor: Assoc. Professor Keijo Heljanko

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aaltodoc Publication Archive

https://core.ac.uk/display/132598588?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Aalto University
School of Science
Degree Programme in Computer Science and Engineering

ABSTRACT OF
MASTER’S THESIS

Author: Pekka Pöyry

Title:
Coverage based safe regression test selection method for Python programs

Date: September 14, 2017 Pages: 50

Major: Software Engineering

Supervisor: Assoc. Professor Keijo Heljanko

Advisor: Assoc. Professor Keijo Heljanko

Regression testing is a type of testing that aims to verify that the existing test
suite will not find any defects in a modified program. Regression tests are usually
run after each program modification and may take lots of processing time to
complete. Regression test selection is a process where only a relevant subset of
tests are selected from the test suite for execution with the goal of reducing the
time the regression test execution takes. Safe regression test selection methods
are one that can prove that none of the deselected test cases would have found
any defects, so that running them is not necessary.

Researchers have proposed multiple different methods for safe and unsafe regres-
sion test selection. Many of them require control flow graph or similar informa-
tion that can be extracted during code compilation step. Therefore most of these
methods are unsuitable for dynamically typed programming languages where that
information can not be extracted.

This thesis presents a test coverage based regression test selection method that
can be used with interpreted programming languages. The presented method does
not require any changes to tested program’s source code. The presented method’s
test selection precision was tested with existing medium sized proprietary web
application, and the results are somewhat mixed. The overhead imposed by the
coverage based test selection method increased the test suite’s execution time
significantly. The test selection method managed to select a small subset of the
test suite roughly half of the time. In the other half of the time the test selection
had to re-run all tests.

Keywords: testing, regression test selection, test coverage

Language: English

2



Aalto-yliopisto
Perustieteiden korkeakoulu
Tietotekniikan koulutusohjelma

DIPLOMITYÖN
TIIVISTELMÄ

Tekijä: Pekka Pöyry

Työn nimi:
Suorituksen kattavuustietojen käyttämiseen perustuva testien valintatapa
Python-ohjelmille

Päiväys: 14. syyskuuta 2017 Sivumäärä: 50

Pääaine: Ohjelmistotekniikka

Valvoja: Professori Keijo Heljanko

Ohjaaja: Professori Keijo Heljanko

Regressiotestaus on testauksen muoto, jonka tarkoituksena on varmistaa että oh-
jelman olemassa olevat testit eivät löydä virheitä muokatusta ohjelmasta. Regres-
siotestaus suoritetaan yleensä jokaisen ohjelman muutoksen jälkeen, ja sen suo-
ritus voi viedä paljon prosessointiaikaa. Regressiotestien valinta on prosessi jossa
ohjelman kaikkien testien joukosta valitaan muutoksen kannalta oleellinen tes-
tien alijoukko. Valinnan tavoitteena on pienentää testien määrää ja näin vähentää
testien suoritukseen kuluvaa aikaa. Turvalliset regressiotestien valintamenetelmät
ovat menetelmiä jossa voidaan todistaa että valitsemattomat testit eivät olisi voi-
neet löytää virheitä, ja täten ne voidaan jättää suorittamatta.

Tutkijat ovat kehitelleet useita eri menetelmiä turvalliseen ja epäturvalliseen
regressiotestien valintaan. Useat menetelmistä tarvitsevat ohjelmien ohjausvuo-
kaavion tai vastaavaa informaatiota, jota voidaan laskea ohjelmien käännöksen
yhteydessä. Tämän vuoksi menetelmät eivät ole yhteensopivia dynaamisesti tyy-
pitettyjen tulkattujen ohjelmointikielten kanssa, joissa tätä informaatiota ei ole
saatavilla.

Tämä työ esittelee testien kattavuuteen perustuvan menetelmän regressiotestien
valintaan, jota voidaan käyttää tulkattujen ohjelmointikielien kanssa. Esitelty
menetelmä ei tarvitse muutoksia testattavan ohjelman ohjelmakoodiin. Esitellyn
menetelmän testien valinnan tarkkuutta testattiin keskikokoisella verkkosovel-
luksella, ja tulokset olivat osittain ristiriitaisia. Testien valintamenetelmä onnis-
tui valitsemaan pienen testijoukon noin puolessa testitilanteita. Lopuissa testi-
tilanteista menetelmä joutui suorittamaan kaikki testijoukon testit. Menetelmän
käyttämisen havaittiin kuitenkin hidastavan valittujen testien suoritusaikaa mer-
kittävästi.

Asiasanat: testaus, regressiotestien valinta, testien kattavuus

Kieli: Englanti

3



Contents

1 Introduction 6
1.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . 9

2 Background 10
2.1 Software development process . . . . . . . . . . . . . . . . . . 10
2.2 Testing in software development . . . . . . . . . . . . . . . . . 11
2.3 Test prioritization . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.1 Coverage based priorization heuristics . . . . . . . . . . 13
2.3.2 Source code complexity based priorization heuristics . . 14
2.3.3 Source code change set based priorization heuristics . . 14
2.3.4 Past fault detection capabilities . . . . . . . . . . . . . 15

2.4 Test minimization . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5 Test selection methods . . . . . . . . . . . . . . . . . . . . . . 16

2.5.1 Unsafe test selection . . . . . . . . . . . . . . . . . . . 17
2.5.2 Safe test selection . . . . . . . . . . . . . . . . . . . . . 18
2.5.3 Issues with dynamically typed programming languages 19

2.6 Other methods of improving the performance of test suite . . 20

3 Implementation 23
3.1 Idea behind coverage based test selection . . . . . . . . . . . . 23
3.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3 Extracting dependent files . . . . . . . . . . . . . . . . . . . . 26
3.4 Extracting execution paths . . . . . . . . . . . . . . . . . . . . 29
3.5 Transforming execution path to scopes . . . . . . . . . . . . . 31
3.6 Mapping change set to code scopes . . . . . . . . . . . . . . . 32
3.7 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4 Results 37
4.1 Tested application . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2 Test arrangements . . . . . . . . . . . . . . . . . . . . . . . . 38

4



4.3 Test deselection results . . . . . . . . . . . . . . . . . . . . . . 39
4.4 Test performance results . . . . . . . . . . . . . . . . . . . . . 40
4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5 Conclusions 44
5.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5



Chapter 1

Introduction

Testing is widely used method for identifying and reducing the number of
faults in software. Testing consist of tests that contain some code segments
that define how the tested software should behave. The test consist of con-
struction phase where the initial software state is being initialised. After the
construction the test will execute the testable section and after that these
is the phase where the software state is compared to expected value. Usu-
ally there are many tests that require the same software initial state. To
reduce the amount of initialisation code, the construction code can be split
into fixtures. A fixture is a code segment that contains code that initialises
some part of software state. Usually when executing tests, each test will
execute each of their required test fixtures. In some cases it is possible to
share fixture between many tests, and so reduce the time that is taken by
fixture construction in test execution.

Normal software can be seen as taking some input, processing the input
in some way, and finally returning some output while at the same time ter-
minating the program execution. With web applications the input is the
request that is usually sent by a browser and the output is response sent
back to the requester. Unlike normal software, web application usually do
not terminate after processing one request, but rather keep serving incoming
requests until being terminated by some other program. Usually with web
servers all the server state is stored to a database or multiple databases, and
the actual web-server application does not store any state information. In
some cases the web-server may store some intermediate results to some cal-
culations in its internal caches, but those results should not have an effect to
the responses it sends to requests.

With web applications the request path usually determine what process-
ing steps the web application should take when processing that request. For
example path / might show the landing page where as path /contact might

6



CHAPTER 1. INTRODUCTION 7

return page with contact information. Therefore each web application can
be seen to contain multiple different sub-applications and the request path
determines which one of those application gets executed.

Knowing that each test usually tests just the result of a single function,
it is likely that a change to certain sub-application does not have any effect
on tests that will never execute that code. Therefore we could annotate each
test case with information about which sub-application this test case expects
to use. This would allow us to only run a subset of test cases when some sub-
application gets changed. Creating such annotations would take considerate
amount of time and possible mistakes could either increase the time that test
suite execution takes, or in the other case not run all the test cases when
there are changes to the tested code. Therefore it would be preferred to have
some automatic program handle the annotation of test cases so that the risky
manual work is avoided.

With dynamic programming languages the code execution flow can be-
come really complex. Determining code execution flow from given code seg-
ment if often impossible, due to the lack of static typing. Therefore each given
input can be of any type, and accessing any member of an object can cause
arbitrary side effects. Also most web application frameworks usually use lots
of programming language features while trying to make using the framework
as pleasant and effective as possible. Disallowing some of the language fea-
tures to make the execution flow easier to reason about would hinder future
web application development and prevent the use of this method on existing
programs. One possible way of figuring out the dependent code sections for
a test is to measure the code execution coverage during the test run. From
the execution coverage we can determine which functions are not executed
during the execution of the test. When we are recording the test execution
trace we must also include all the code that is executed when the test fixtures
are being executed.

In Python source code each function consist of two parts, name binding
operation and the function body. When we are tracking the code execution
coverage, we can usually see that all the code is only imported once as the
name binding operations are not executed during the test execution. The
code import phase happens only once during the test suite execution when
the source code files are imported. Changes to function name bindings can
cause wild changes on anywhere in the code base, as we are unable to keep
track of code reflection in our code base.



CHAPTER 1. INTRODUCTION 8

1.1 Problem statement

As the web platform has formed into universal web service platform working
in all devices, many companies have started building more and more web
applications. As the actual application is running on web servers, has the
time and effort required to bring out new features and bug fixes to the users
of the services decreased. As the feature release pipeline has gotten shorter,
the specific quality assurance steps have been mostly replaced by continuous
integration services running the application’s test suite. These test suites try
to find new regressions as existing bugs are fixed and new features are being
added to the application. As the number of features in the application grows,
the test suite containing tests for these features will also grow. Running
large test suite will take considerable amount of time and this hinders the
application development speed. The developers may offload the test suite
execution to Continuous Integration (CI) server and continue working on
some other bug fix or new features while the test suite is running, but this
introduces a new context switch to the work flow. As the test suite keeps
increasing there may be need to parallelize the test suite execution to several
CI servers and this will slowly make regression testing more expensive.

As the hardware performance has increased, the relative expense of soft-
ware engineering has increased. This has increased the usage of dynamic
programming languages like Python and Ruby in web application develop-
ment. Dynamically typed programming languages allow more expressive
source code compared to statically typed languages. At the same time the
testing effort need to be extended to offset the missing compilation step,
that is likely to catch simple faults in programming code. These dynamically
typed programming languages can’t take advantage of compilation to ma-
chine code without special arrangements, so the performance is also worse
when compared to compiled languages.

Most medium to large web applications contain hundreds of different end-
points. Each endpoint is a single sub-application that gets executed when
request’s path matches the endpoint’s path pattern. Each endpoint is re-
sponsible of doing certain actions and returning certain page. As most bug
fixes and new features only modify the source code ran by very few endpoints,
running all the tests for each endpoint increases the test suite runtime un-
necessarily. This thesis presents a way of intelligently storing test execution
trace and dependency information and running only the test cases where the
execution trace contains modifications.

Decreasing the test suite runtime can increase development efficiency,
as there is less waiting for tests to pass. Even with slow test suites the



CHAPTER 1. INTRODUCTION 9

test selection method may offer significant runtime reductions allowing the
developer to run the test suite on their own machine instead of waiting until
the CI service has ran the tests. By being able to run the subset of tests
that is covering the current change set the developer can run the subset of
tests and safely ignore all other test cases. This may bring to test result
feedback loop to fraction of it previous length. On CI services the faster test
execution will save money, as less hardware is needed to run the same test
suites. Likewise by not running some test cases the CI service can return
test suite result faster.

1.2 Structure of the Thesis

This thesis consist of Chapters: Introduction, Background, Implementation
and Results. In the introduction chapter we explain what this thesis is all
about and why it is important. In the background chapter we will explain
regression testing in more detail and go through different methods designed
to make regression testing faster. Some test selection methods are ”safe” as
in they will never fail to detect faults, and other methods are ”unsafe” as in
they can fail to detect some faults. As explained in the introduction chapter
we are more interested in safe test selection methods, as then out method will
always detect all the faults that the normal tests suite execution would. In
the background chapter we also explain why some of the explained methods
can not be used with dynamic programming languages.

In Chapter 3 we explain in details our proposal to make regression testing
faster with coverage based safe tests selection method. Our goal is to mainly
target web applications written in Python programming language, but other
Python applications should also be able to use our method without any
changes. The chapter also contains discussion about limitations of our test
selection method.

In Chapter 4 we test our implementation with medium sized proprietary
web application. We utilize the tested application’s source code repository
in order to test how well the implementation would have performed with in
actual code changes that have been implemented to the application in the
past.

In the Chapter 5 we conclude our thesis and discuss the limitations and
future research possibilities.



Chapter 2

Background

2.1 Software development process

The simplified process of developing a hotfix or a new feature to a application
is shown in Figure 2.1. A hotfix is a small modification that fixes previous
conflict between the implementation and the specification, or changes some
small piece in the specification. The process starts from specification that
defines how the application should behave. The specification might be for a
single feature, or modification to existing feature. The developer implements
the specification to the application by modifying and extending the existing
application source code. After the developer has made the changes to the
application source code, the next step is to write a set of new tests that test
that the new feature works as intended. If the specification is about a hotfix
the developer may write a regression test that makes sure that the application
behaves as the specification defines. The testing phase also consist of running
portion of tests that are related to the changed source code section. Usually
the developer chooses this test set manually without any help from automatic
tools. If any of the chosen tests finds a fault in the application the developer
needs to return back to implementation phase to make sure that the tests
pass. After all the chosen tests pass without finding any faults the changed
application can be moved to regression testing phase. In regression testing
the whole application test suite is executed to make sure that none of the tests
find any faults in the application. If faults are found, the developer needs
to return to implementation phase to fix the found faults in the application,
or to change the tests to behave as the new specification defines. After the
regression test phase has been passed, the changed application is moved to
code review phase. In this phase some other developer makes sure that the
changes to the application source code behave as the specification expects

10



CHAPTER 2. BACKGROUND 11

Specification

Implementation

Testing

Regression testing

Code review

Deploy

Figure 2.1: High level overview of the development process

and that the changes are easy to understand. If this is not the case, the
development phase is returned to implementation phase. It is also checked
that the new feature or hotfix is tested enough. In case the testing is lacking
the phase is returned to testing section. After the code review is done, the
new feature or hotfix is ready to be deployed to the production use.

2.2 Testing in software development

Software testing is a process with the goal of finding defects in the tested
program [19]. A defect is any kind of incorrect behaviour done by the tested
program. Incorrect behaviour can range from function returning invalid value
to taking too long to calculate the result. Incorrect behaviour can also be
the action of calling some unwanted function or forgetting to call some other
function. The incorrect behaviour for each test is specified in the test. Testing
is considered to take significant portion of the total time of typical software
project.

Testing as a process consist of running a test suite. A test suite is a
collection of test cases. Test case consist of program input state and some
code sequence to be executed. In the rest of this paper we are going to assume
that the tested code sequence is unable to access information outside the
input state. With this assumption each test case can be seen as deterministic



CHAPTER 2. BACKGROUND 12

state machine, as the tested code is unable to get any non-deterministic data
in that it could use to change the execution trace between different execution
times. We are also going to assume that there is always just one test executor
process, and so rule out the option of getting non-deterministic execution
from different process execution orderings. The test’s code sequence will
return an boolean representing whether the test case found a defect. The
tests can be seen as small subprograms that execute some part of the tested
program and make sure it behaves in the expected manner on one single
input case.

Testing is an important part of software development as it increases con-
fidence to the expected behaviour of the application. Usually a test suite
consisting of multiple test cases is created when the application is created.
Regression testing means running modified software against the existing test
suite. The purpose of regression testing is to find new defects that the newly
added modifications introduced to the the application. As the application
development is continued, new test cases are created to make sure that the
new features or bug fixes are working. These new test cases are added to the
test suite so that all the following regression tests runs check that the there
hasn’t been regressions in these features or bug fixes. During development
some of the existing test cases might become obsolete, meaning that the test
case is no longer matching the expected behaviour. The obsolete tests cases
are removed from the test suite so that the test suite consist of test testing
the expected behaviour of the program.

Mathematically testing can be explained as follows: Let P be our pro-
gram, P ′ our modified program and T our test suite for P . Regression testing
is testing P ′ with T . Because with large tests sets the testing is time consum-
ing, some algorithms have been developed to test P ′ against some smaller
subset of T . This is called test selection. Some algorithms have also been de-
veloped to make fault detection faster by ordering the tests according to some
external factor. Test coverage and previous test fault detection capabilities
have been some of the proposed factors [26].

After a modification have been made the the application, the tests can
be divided into four groups: Reusable, retestable, obsolete and new [30].
Reusable tests are tests that are still valid after the change, and where the
modification did not have any effect on the execution path. As there are
no changes in the execution path, these test do not need to be retested
during regression test. Retestable tests cases are test cases where the test
execution trace contains modifications. These tests need to be tested during
regression test to make sure that the modified application does not contain
faults. Obsolete test are tests that are no longer needed after the application
modification. New tests cases are tests cases that were written with the



CHAPTER 2. BACKGROUND 13

application modification to make sure the modification works as intended.
With complex software and extensive test suite the execution regression

tests tend to take considerate amount of time. Finding faults in regression
suite faster would give major benefits to the speed of software development, as
the developers would not need to wait so long to get the test results. There are
several techniques that aim to make detection of failures in test suite faster,
including test selection, test prioritization and test suite minimization.

2.3 Test prioritization

In some cases the developers want to have the information whether any test
in the test suite will find a fault or not as soon as possible. Especially with
long running test suites getting information about the failure in the beginning
of the test suite may let developers know about the issue many hours earlier
compared to a test failure that happens closer to the end of the test suite.
Test prioritization is a technique that alters the order in which the tests are
executed. Its goal is to make the test suite execute fault revealing test cases
as soon as possible. If an fault revealing test case is found, the developer can
be notified before all of the test cases have been executed. Optionally the
test suite execution can be terminated after the first fault revealing test case
has been found. There are multiple different prioritization techniques with
different performance behaviours [17, 26].

Test priorization techniques are similar to test selection techniques. The
only major difference in the methods is that the test selection algorithms have
some end condition that specifies when rest of the test can be left unselected.
Every test selection technique can be turned into test priorization technique
by first running the tests that the test selection algorithm selected, and then
running the unselected tests. Every test priorization technique can be turned
into test selection technique by adding it some end condition. For example
one such condition could be that select the first half of the tests ordered by
the priorization technique and leave the other half unselected.

Test priorization can order tests based on many different techniques.
Usually the priorization is done by some simple heuristic or combination
of heuristics. The most used heuristics are covered in following subsections.

2.3.1 Coverage based priorization heuristics

Coverage based priorization heuristics are quite common. In coverage based
heuristics the tests are ordered by the number of code statements that are
covered by the execution of each test. Similarly the test ordering can be



CHAPTER 2. BACKGROUND 14

based on how many additional statements get covered by the test suite when
the test is executed. Both of these techniques can also be calculated on
function level, where instead of measuring statement coverage, we measure
function coverage. Function is considered covered if it gets called during the
test execution. It is impossible to extract the tests’ statement or function
coverage after arbitrary changes have been applied to the application without
running the tests, but we may assume that the coverage is really close to the
coverage of the previous version, and use the coverage information from that
test execution. One other alteration to this method is to greedily order the
tests based on how much new coverage value the tests adds.

Using the test coverage as an input for priorization heuristics is easy as
the coverage information is quite often already available. The reason for the
availability is that various testing standards have mandates for acceptable
coverage values [17], so the coverage is already being measured.

2.3.2 Source code complexity based priorization heuris-
tics

In addition to the coverage based priorization techniques there are also tech-
niques that try to order tests based on arbitrary probability that the test
fill find fault. The probability can be approximated by mutation analysis
where application source code statements or functions are being exposed to
modifications and then the existing tests are given scores based on how many
faults the test found in the mutated application [7]. The idea behind this
method is that by using mutation analysis we can calculate approximation
of how likely each test will find mutations in the source code covered by each
test. One other alteration to this method is to greedily order the tests based
on how much probability score value each test adds.

2.3.3 Source code change set based priorization heuris-
tics

There are also approximation heuristics that calculate the test’s fault finding
probability by comparing the code changes and giving each function fault
index value based on the complexity of changes made to the functions. The
test’s fault probability is calculated by summing the executed functions’ fault
indexes and using that sum to order the tests [7]. Simpler version for fault
index calculation is to simply use the number of added, removed, or modified
source code lines in a function and use that number as the approximation
of how likely that function is to contain new fault [8]. The major difference



CHAPTER 2. BACKGROUND 15

when compared to the other methods mentioned above, is that in the source
code change set based priorization heuristics the test heuristic result depends
on what changes the tested version has. This sounds reasonable as if the
change set only modifies small portion of the tested application, the faults
revealed by the regression testing are most likely to be revealed by the tests
with coverage on the change set. One other alteration to this method is to
greedily order the tests based on how much new fault index value each test
adds.

There are also heuristics that take the compiled application binaries as an
input instead of source codes [27]. In this case the solution uses basic block
granularity to detect which tests cover which sections of the application. Also
application changes are detected at basic block granularity. A basic block is
maximal group of statements with single entry and single exit points. This
solution is shown to work with large software applications [27]. One positive
aspect of using compiled binary executables as a input to the heuristics is
that it removes incorrect priority changes caused by renaming of variables
in source code. Any heuristics that takes compiled binary application as an
input can not be used with application where the application source code
is executed with interpreter. The issue is that the traced coverage or basic
blocks are for the interpreter code and not the actual application source
code. The application source code is just data that the interpreter processes
and therefore the solution would be unable to detect any changes to the
application code.

2.3.4 Past fault detection capabilities

One other way of approximating test’s fault finding probability is to use
the test’s historical fault detection performance from the previous test suite
runs [15]. This method assumes that tests that have detected faults recently
are more likely to find faults than the tests that have not found any faults
recently. The method is designed for situations where running the full test
suite is not simply feasible, and only a portion of it can be run during testing.
The method will prefer to run tests that have not been run recently. This
will cause the method to cycle through all tests over a number or test suite
executions.

2.4 Test minimization

Test minimization is a technique to reduce the number of test in a test suite.
The idea behind test minimization is that there are certain set of requirements



CHAPTER 2. BACKGROUND 16

that the application should satisfy [30]. With the assumption that each test
can test one or more requirements, it is possible to discard tests of which
would test some already tested requirements. There are multiple basis on
which the minimization can be based, coverage is one often used. It is easy to
find examples where the assumption behind test minimization does not hold.
In Listing 2.1 we have example where function multiply should be doing
multiplication operation, but is actually doing addition. As the coverage of
test test multiply 2 2 already covers everything that test multiply 2 3

covers, the test minimization techniques could discard the fault revealing test
test multiply 2 3.

In real life situations it is easy to see similar cases. Lets assume that
we have a webpage to where a user can post new orders. When the page
receives new order, it should store the order details to database and send
the user confirmation email about the order. Lets also assume that there
are two separate integration tests; test order email content for the sent
email’s content and test order saved to database to test database storage
process. In this case both of these tests may have exactly the coverage
in the application source code, and one of them may be discarded. The
assumptions that the test minimization is based on may not apply for such
applications where the tests are written by developers, and such using it to
reduce test suite execution time might not be suitable solution in these cases.
There is also research that suggests that the test suite minimization can
significantly compromise the fault-detection capabilities of test suites [25].

Listing 2.1: Minimal example where test minimization fails

def mult ip ly ( a , b ) :
return a + b

def t e s t m u l t i p l y 2 2 ( ) :
a s s e r t mult ip ly (2 , 2) == 4

def t e s t m u l t i p l y 2 3 ( ) :
a s s e r t mult ip ly (2 , 3) == 6

2.5 Test selection methods

A test in a test suite is modification-traversing if there is code modification,
insertion or removal within the test’s execution path [22]. Test selection
techniques that always select all modification-traversing tests are called safe
test selection techniques.



CHAPTER 2. BACKGROUND 17

2.5.1 Unsafe test selection

There are also techniques where redundant test runs are avoided [21]. Ran-
dom test selection and test minimization are some examples of these tech-
niques. Both of these methods will reduce the number of test executed, but
also the fault detection capabilities of the test suite [11, 14].

In data flow based methods program slicing is used to create definition-use
pairs for all variables [12, 30]. The test selection works by selecting all tests
that cover any changes in definition-use pairs between the different program
versions. Because statement that doesn’t affect function output is not visible
in definition-use pairs, it is possible to add certain type of statements to
a function without data flow based test selection methods noticing it [30].
Therefore the method is not safe test selection method. Also with data flow
based methods it is undefined how the control flow of the program is handled
when the programming language allows changes to control flow by throwing
exceptions.

In dynamic slicing the execution trace of each test is calculated and only
the statements that affect the test output are marked as covered [1]. By
only running the tests that had changes in those covered rows, we can ig-
nore changes that do not affect the test output. The dynamic slicing by
itself is unsafe because conditional jumps that were not taken do not di-
rectly affect the test output. Calculating the needed dependencies between
data and control statements is more complicated on dynamic languages like
Python, but it is possible [6]. Relevant slice is a superset of dynamic slice
that also contains statements that could have affected the test output had
they evaluated differently [1]. Even when relevant slice is used to select the
test the technique is not safe. The technique is not safe as it is possible to
add new statements that do not create new variable or change any existing
variables. These statements can be modification revealing, but they are not
visible in relevant slices [30]. Therefore the tests that would execute these
added statements are not selected.

In firewall based methods a figurative firewall is build around the modules
with changes in the code or specification [16]. The firewall will be constructed
using control-flow and data-flow information [29]. The firewall will limit the
modules to which there is need to run integration tests. The method is built
around several assumptions that may not be easy to fulfil. For example the
method requires that the program call graph needs to be acyclic, meaning
that there is no recursion [16]. Also the method imposes severe restrictions to
the usage of pointers in applications. As in Python variables store references
to objects and references are technically pointers without arithmetics, it can
be seen that the referenced firewall based methods are unsuitable to use in



CHAPTER 2. BACKGROUND 18

any non-trivial Python application.
One other option is also to use manual test selection, where some experts

decide which tests should be selected. Manual test selection is considered
ineffective and may be unreliable for larger programs [4]. The problem is that
with even with moderately sized programs finding the relevant test cases for
some code change is hard, as the program internals may be unclear to the
person doing the test selection process.

2.5.2 Safe test selection

Safe test selection is a case of test selection where it can be proven that
the tests that were not selected can not fail [23]. One safe test selection
technique is based on Control Flow Graphs (CFG) [23]. CFG represents all
possible control flow paths that can be taken when the application is exe-
cuted. With CFG methods a CFG is constructed of the application source
code. By tracking which tests traverse which CFG edges we get to know
which CFG nodes and edges are visited by each test. By mapping the code
changes to the CFG it can be seen which test traverse to CFG nodes with
changes. All the tests than do not traverse to changed nodes can be left
unexecuted, as there cannot be any changes to the result of those tests. Con-
struction of CFG for an application may not be easy. In one implementation
for C-language the implementation failed to analyze 15% of the tested appli-
cation’s procedures [23]. In another implementation for C++ -language the
whole analyzing step was replaced with simulation because suitable analyzer
application was not available [24].

TestTube [5] is an solution for safe test selection for application written
in C language. The TestTube works by modifying the application source
code so that the application execution will produce list of all functions that
were executed. Then with static analysis tools the information about used
variables is added to the function lists, and all this information is stored
to a database. During the test selection phase the static analysis is redone
and the changes are seen by comparing the results with the previous static
analysis. Based on the changes this solution will select the tests to which
the change set between the versions could have affected. The static analysis
steps most likely can not be implemented to Python programming language
because of its object-oriented features and reflection capabilities. One such
case is seen in Figure 3.4 in Section 3.7. The addition of function add two

will change the output of test unknown function because the reflection
exposes the new function. Making the static analysis understand all similar
situations robustly is a hard issue. The referenced research didn’t include
any mentions of testing common refactoring changes: adding, removing and



CHAPTER 2. BACKGROUND 19

renaming functions.
Pythia is another test selection tool for C programs [28]. Pythia works by

modifying the application source code so that the application execution will
produce basic block execution trace for each test. A basic block is maximal
group of source code statements with single entry and single exit points. Both
the basic blocks and their execution trace are stored for the test selection
phase. In the test selection phase the source code files of the new and the old
version are compared with UNIX tool diff and based on the differences all the
modification-traversing test cases can be selected. Converting the approach
taken by Pythia to Python language might not be practical, as the concept
of basic block does not suite Python. As the Python code is interpreted it is
not easy to find any basic blocks.

There have been some surveys comparing different test selection meth-
ods [9], but none of the listed methods are directly compatible for dynamic
programming languages.

2.5.3 Issues with dynamically typed programming lan-
guages

Most safe test selection algorithms require code flow graph or similar for the
application code [9]. As with all dynamically typed languages with first-class
functions, getting static code flow graph is not possible [3]. There have been
a few ideas how to get approximation of it, but so far no reliable method for
extracting it have been found [10]. It is possible to create code flow graphs
for portions of the application code when the types of variables are fixed [3],
but that is not robust enough for safe tests selection. For example the code
a + b code flow graph can be calculated when both variables are of type
integer. If the variable a happens to be some other type with custom add

method, the calculation of code flow graph would get complicated. As the
types of variables are not fixed, it might not always be feasible to calculate
the possible types for each variable.

The point of analyzing control and data flow graphs is to get more preci-
sion to the test selection. As seen on the previous section getting the analysis
to work robustly is not easy for even for statically typed languages. With
dynamically typed programming languages the analysis gets even more com-
plicated. The dynamic typing preventing getting variable type information,
first-class functions and classes causing issues with graphing dependencies,
and the possibility to mutate data structures during execution are some of
the issues that prevent the construction of graph of data and control depen-
dencies [6]. In the presented implementation we will omit all complicated



CHAPTER 2. BACKGROUND 20

analysis steps, and simply fall back to rerun all case on non-trivial changes
to application source code.

The positive side of interpreted languages is that each source code line
gets directly executed as it is without any compilation steps. This makes it
easier to track which source code lines have been executed. For example with
compiled languages the compiler may replace function calls with the function
body to avoid the function call overhead [13]. There are several different
optimizations that the compilers can do, and these will make it harder to get
information about the executed source code statements. It may be possible
to disable these optimizations during the test suite execution, but doing that
may also negatively affect the amount of time it takes to execute the test
suite. With interpreted languages it may be possible to get information
about the executed source code statements during the application execution.
The presented implementation is going do exactly that, and the method is
explained in more detail in Section 3.4.

2.6 Other methods of improving the perfor-

mance of test suite

In this section the word performance only means the execution speed of the
test suite, and not the fault detection ability of the suite. There are multiple
other ways of improving the testing performance, such as:

• Replacing integration tests with faster unit tests.

• Running tests in parallel on many computers.

• Mocking slow parts of the tested application.

• Splitting the web application to microservices.

Because in the reference implementation of Python programming lan-
guage the compiled bytecode is interpreted, the performance is worse when
compared to compiled languages. On the other hand the language is more
expressive than most compiled programming languages, which makes it suit-
able for web development, where coding efficiency is important. Because
of the slower execution speed and good coding efficiency it is possible that
the performance issues in test suite are more likely to hit Python projects
compared to other more static programming languages.

The most trivial way of making the test suite more performant is to run
less code in test suite. Unit tests test only small portions of the application
code. With integration tests a lot bigger portion of the application source



CHAPTER 2. BACKGROUND 21

code is executed. By designing the application in a way that makes it easy
to test portions of it using unit tests improves the tests suite runtime when
compared to test suite where all those tests are integration tests. The process
of turning some existing integration tests to unit tests is likely to take lots
of development time and is so expensive. It is also possible that some of the
changes will reduce the fault detention abilities of the test suite, as fewer
code lines gets executed.

To make test suite execute faster, one might want to take advantage of the
parallelism in test execution. Because the Python interpreter cannot support
more than one simultaneous thread execution [2], threading solutions are not
feasible in situations where the execution is CPU limited. If the test execution
does lots of IO-operations the threading solution may be able to speed up
the test execution. The one simultaneous thread execution limitation can
be worked around by dividing the test suite to multiple smaller subsets, and
then running each subset in its own process. After each test subset has been
executed the results can be combined and returned as if all the tests were run
in sequentially. The subsets can be created so that the total test execution
for the tests within the subset are close to one another. This way all the
test suite subsets complete close to one another and the parallel execution
is maximised. The different subsets can be executed on a single or multiple
computers. On a single computer the amount of memory and processor
cores will limit the number of parallel test executions. Running tests in
parallel on many computers increases the resource need and therefore costs.
It also makes testing infrastructure a bit more complicated, as the different
computers need to distribute the test subsets and collect the results.

Another way of speeding up test execution is to replace the slow sections of
the code with mocks, that return some predetermined value without actually
executing the time wise expensive operation. The slow section might be
calling some external other application, doing something IO-wise expensive
or simply some CPU-wise expensive operation. Some examples for such
actions might be expensive database operations and repeated cryptography
operations. Changing the test suite to use more mocking takes development
time. It might also reduce the fault detection ability of the test suite if the
mock doesn’t behave as the mocked code section does.

With micro-service approach the application is split into several smaller
independent micro-service applications that each handle just small portion
of the original monolithic applications tasks [20]. Each micro-service has its
own test suite, and for changes that do not modify the micro-services inter-
face only the tests inside that micro-services test suite need to be considered
when running regression tests. Changes to micro-services interface should be
rare when the micro-service is correctly designed from the start. Converting



CHAPTER 2. BACKGROUND 22

monolithic application to use micro-service approach increases the develop-
ment overhead and makes the system architecture more complex. Therefore
the decision whether to go with micro-service based approach should not
solely rely on whether it would make testing more efficient.



Chapter 3

Implementation

In this section we are going to present a method for safe test selection that
will select all the fault revealing tests cases that rerunning all the tests would.
This way the test suite execution runtime can be reduced significantly. The
Section 3.1 contains mathematical explanation of the idea behind the imple-
mentation and all the assumptions that must hold for it to work as expected.
This is followed by Section 3.2 where overview of the implementation details
are given. The Sections 3.3, 3.4 and 3.6 will explain the different parts of the
implementation in more detail. This chapter’s final Section 3.7 will explain
some of the limitations that this test selection method has.

3.1 Idea behind coverage based test selection

Let P be our program, P ′ our modified program and T our test suite for
P . Let R be any single test case in T . Assuming that the program code
and test setup is deterministic, and that the test environment behaves de-
terministically, the execution of test R will always take the same execution
path covering statements Stest + Sprogram. When the change set containing
all changes between P and P ′ does not contain changes to any statements in
Sprogram, with the assumption that Stest+Sprogram does not access the source
code or any other form of any of the statements changed between P and P ′,
the test R execution path when run with P ′ must deterministically take the
same path as it did when tested against P . Therefore the result of test R
must be identical on both programs P and P ′. Assuming that test case R
did not find any faults in P it can seen that R can not find any faults in P ′,
and therefore there is no need to run that test.

This proof relies on three assumptions that must hold. First is that
the application source code must be deterministic. If the program is non-

23



CHAPTER 3. IMPLEMENTATION 24

deterministic, the coverage recorded in analysis phase may not contain some
reachable statements. This allows the test selection phase to leave these test
out of the selection, as there exists an execution path that will result in the
test passing. With non-deterministic code the presented method is as good
as re-run all, as rerunning the test may not find the fault either.

The second assumption made in the proof is that the environment must
behave deterministically. The main limitation here is that we are limited to
testing single-threaded applications, as otherwise the different interleavings
in threading would make the program behave non-deterministically. This
also forces the user to keep the same interpreter and prevents changes to the
versions of installed libraries. By requiring deterministic environment we are
also ignoring all possible issues that may come from the environment, such
as execution timing differences between test runs. In our test application
the test setup and the application code will read the contents of files from
filesystem. To validate the assumption that the test environment will return
the same content between the test runs we need to manually keep track of
which tests read which files, and when the contents of those files changes.
This logic is explained in detail in Section 3.3.

The third assumption made in the proof is that the program will not
access any unexecuted functions source code. There are several different ways
to access the source of a python function. Python standard library offers dis
module1 that can extract function’s bytecode representation. Raw source
code version can also be extracted using inspect module2. The presented
test selection method assumes that any such way of accessing unexecuted
functions code is not used. It is assumed that the extraction of bytecode or
source code versions of a function is not used that commonly in application
production code.

An example application is shown in Listing 3.1. If the change set only
contains modifications inside function func a, then the execution coverage for
test func b still stays the same. Therefore changes to func a do not force
use to run test test func b. On the other hand if there are any modifications
to add one or in any of the functions’ name bindings, all tests need to be
re-run.

1https://docs.python.org/3/library/dis.html
2https://docs.python.org/3/library/inspect.html



CHAPTER 3. IMPLEMENTATION 25

Listing 3.1: Source code of simple example case

def add one ( i ) :
return i + 1

def func a ( ) :
return add one (1 )

def func b ( ) :
return add one (2 )

def t e s t f u n c a ( ) :
a s s e r t func a ( ) == 2

def t e s t f u n c b ( ) :
a s s e r t func b ( ) == 3

3.2 Overview

The safe test selection method has two phases: Analysis and test selection.
In analysis phase all the tests in a test suite are executed while tracing the
executed source code. All the executed source code statements during a
single test is referred to as the test coverage. During analysis we also track
all file access operations for each test. All tests that are accessing files are
marked as dependent on those accessed files. The test selection phase is done
after analysis phase when we want to test that all the regression tests in the
test suite still pass. At the selection phase we have dependency and coverage
information from the analysis phase as well as a change set containing all
changes done to all files between the analysis phase and test selection phase.
We can use file dependency map and execution coverage measurements in
the test selection phase to only select those tests that have modifications in
either executed source code, or in the dependent files.

Our test selection method’s analysis works by using each test’s execution
coverage to build a list of distinct scopes that are visited by the test. A
scope in this context is one or more source code statements depending on
how precise granularity is wanted. The smallest and most precise granularity
is program statements. Other higher levels of granularity are function, class
and module. Most safe test selection methods use statement level granular-
ity [9]. More smaller granularity levels can deselect more tests than larger
granularity, as there is more information about the test execution coverage.



CHAPTER 3. IMPLEMENTATION 26

However it also increases the processing and storage requirements for the
analysis phase. In this solution we have decided to use function level gran-
ularity, as it offers good balance between precision and performance. With
the assumption that the tested applications functions do not contain exces-
sive number of branching, the statement level granularity would not help the
implementation to deselect significantly more tests. As later seen in the Sec-
tion 4.3 the achieved deselection performance with function level granularity
is not an issue with the tested application.

The application source code and the test suite are expected to be stored in
a Git version control system repository. The source code repository consist of
successive commits, each of which stores a change set and the the information
about the preceding commits [18]. Each commit can be identified using an
unique hash of its contents.

The high level overview of the presented method is shown in Figure 3.1.
In the analysis phase the application test suite is run while recording the
test coverage for each test separately. Then using the coverage data each
covered source code line is mapped to a scope. A list of tuples containing
test identifier and scope information is stored into a database, where it can
be easily queried during selection phase. Each tuple also contains hash of
the current commit in source code repository. This hash is used to calculate
what is the actual change set during the selection phase. In the selection
phase all the changes in the change set are mapped to the source code, and
code scopes are being calculated for the changes. These change set scopes
tell us all the scopes that have been modified. The actual test selection is
simply selecting all the tests that have same scopes as the change set. In
case the change set makes modifications to the code outside functions, all
the tests need to be re-run. Creation or removal of global variables or classes
are some examples of such modifications. We call these modifications code
structure modifications.

3.3 Extracting dependent files

File access operation is an operation where the full or partial content or other
attributes are accessed from a file in a file system. File access operation could
also be operation where the test or tested code would write to some file in
filesystem, but assuming that the tests don’t communicate with one other
file write operations can’t change the result of any other tests. Therefore
write operations can be ignored. Files that are accessed during the test
execution are called dependent files. These files can be accessed by the tested
application or the test code. With a web application the accessed files may



CHAPTER 3. IMPLEMENTATION 27

Analysis phase

Selection phase

Source code

Test suite Test coverages

Test scopes and
dependent files

Tests with changes
in execution path or

dependent files
Change set scopesChange set

Figure 3.1: High level overview of the process

include static translation database and templates. Templates are files that
are used to construct HTML responses to request. Templates are usually
mix of HTML markup code interleaved with application source code that
handles all the dynamic parts of the page.

File access operation can target a file that is part of the repository con-
taining the applications source code and test suite. In these cases the file
access is interesting, as any source code change set may contain changes to
that file. When the accessed file is not stored in the source code repository,
the application change sets cannot contain changes to this file. Therefore the
application source code change sets do not contain changes to these files, and
these file access operations can be ignored. The exception to this is if the
targeted file that is not in the repository is later added to the repository. In
any case we can’t track changes to files that are not stored to the repository,
so we are going to ignore such changes. We will assume that all accessed files
outside the repository are never changed, or the contents are determined by
some other file that is stored to the repository.

One common case for accessing files outside the application repository
is a case where application dependency library is loading some static data
files from its installation folder. With Python applications the dependency
libraries are usually resolved and installed by a program called pip. Pip
supports specifying the exact versions of the dependency libraries as well as
hashes of the downloaded libraries. With the assumption that the application



CHAPTER 3. IMPLEMENTATION 28

dependency libraries are always installed deterministically, it is reasonable to
assume that the static data files of libraries are not changed. All the depen-
dency libraries are usually defined in a file that is stored in the application
repository. That file can also specify the exact version of each library that
makes sure that dependency libraries will not change when the dependency
resolution is done later. The same file can also include hashes for the down-
loaded libraries to make sure that no one can change the content of libraries
while keeping the same version number. Therefore it can be assumed that
any change to dependency library needs to cause a change to the file con-
taining the dependency library’s version and hash. A change to that file will
result in re-running all tests again, so the changes to dependency libraries
are detected automatically.

Another limitation to file access operations tracking are file listing opera-
tions. The tested application code or test code may ask the operating system
to list all the files in certain folder. We will simply assume that either the
result of such operation is always the same, or that the difference in the
operation result will not have any effect to the code runtime. It is assumed
that these cases are rare, and any such operations are not tracked.

With the Python testing environment we can track file access operations
by overwriting the file access functions in Python language’s standard library
during the test initialisation. The overwritten file access functions will keep
track of accessed files, but will otherwise behave exactly the same way as
the original file access function. The presented implementation will only
hook open-function, as it was used for all file access operations in the tested
application. There are other functions in Python standard library that may
be used to access file contents or attributes in the file system, but those are
ignored in the implementation. The tests can also access file contents by
calling external libraries or programs, but those file access operations are
also ignored.

All file access operations done during tests initialisation phase in fixture
construction are marked to affect all tests that use that fixture. This is
demonstrated in Listing 3.2. The fixture sample line is reading the contents
of file sample file4, so as test test func uses that fixture, it gets dependent
on that file. Similarly the test function test func2 directly opens the same
file, so that test is also dependent on that file. Both test function will later
on call function text found from sample files, which open either just file
sample file1 if the condition on line 6 holds, or both sample file1 and
sample file2 if it doesn’t hold on the first round on loop on line 4-7. The
files opened by the function are also marked as dependency files to both test
functions.



CHAPTER 3. IMPLEMENTATION 29

Listing 3.2: Source code of example demonstrating different file access
operations

1 from pyte s t import f i x t u r e
2
3 def t e x t f o u n d f r o m s a m p l e f i l e s ( t ex t ) :
4 for f i l ename in [ ’ s a m p l e f i l e 1 ’ , ’ s a m p l e f i l e 2 ’ ] :
5 content = open( f i l ename ) . read ( )
6 i f t ex t in content :
7 return True
8 return False
9

10 @f ix ture
11 def s a m p l e l i n e ( ) :
12 return open( ’ s a m p l e f i l e 4 ’ ) . r e a d l i n e s ( ) [ 0 ]
13
14 def t e s t f u n c ( s a mp l e l i n e ) :
15 a s s e r t t e x t f o u n d f r o m s a m p l e f i l e s ( s a m p l e l i n e )
16
17 def t e s t f u n c 2 ( ) :
18 s a m p l e l i n e = open( ’ s a m p l e f i l e 4 ’ ) . r e a d l i n e s ( ) [ 0 ]
19 a s s e r t t e x t f o u n d f r o m s a m p l e f i l e s ( s a m p l e l i n e )

3.4 Extracting execution paths

In order to know which source code lines are executed by which tests we need
to be able to track the execution path of the each individual test. As any
test fixture construction phase can execute application functions, we must
also track the execution path during fixture construction. The execution
path taken by fixture construction is shared to all tests using that fixture.
Also the execution path taken during code import phase is shared between
all tests. The execution path during import phase usually contains just the
few used custom decorator functions.

The executed source code lines can be divided into three groups based on
the source code file location: Application source code, Test suite source code
and dependency library source code. We are only tracking the execution
path in application source code. The dependency libraries are not usually
stored in the application repository, so we cannot calculate the change set
during test selection phase. Also it can be assumed that modifications to
dependencies happen relatively rarely compared to application source code.



CHAPTER 3. IMPLEMENTATION 30

The third reason to exclude dependency libraries execution paths is perfor-
mance. Tracking the execution path causes some processing overhead and
storing the results also takes more space.

The execution path inside test suite source code can also be ignored, as
we can simple rerun all tests in any files that were modified by the change
set during test selection phase. This works with the assumption that tests do
not import code from other test suite test files, and changes to general test
suite files will cause re-running of all tests, as the presented method cannot
prove it safe. Another option would be to also track the execution within
the test suite. That would increase the amount of storage required by the
test coverage information, but the increase would most likely be minimal.
Usually the test code is simpler than the tested application code, so the
coverage information would only increase little.

To be able to know which application source code lines can get executed
during each test, we are running the test and tracing its execution path. This
path will cover all the application source code lines that can get executed
during that test assuming that all the executed source code was deterministic.
If there is any source of nondeterministic behaviour in the executed source
code, the test coverage may not cover all possibly executed application source
code lines. We will assume that all the executed source code is deterministic.
Dependency libraries may exhibit nondeterministic behaviour internally as
long as the nondeterministic behaviour does not change which application
source code lines get executed.

The source code execution tracing is done by Python library called Cov-
erage.py3. The library internally uses function settrace4 from the sys module
of the standard library. The settrace function allows setting a trace function
that gets invoked before any source code lines are executed. The coverage
tracing library will handle tracking and storing of the executed lines as the
test suite is being executed. The library will determine which of the executed
source code lines belongs to the application and which to some other library.
The execution trace inside dependency libraries is ignored as explained ear-
lier in this section. The coverage tracing library will output us list of source
code files that were executed and also exact executed line numbers for each
of those source code files.

The situation with source code inside templates is not so simple. As the
template code is not pure python code, the Python interpreter will never
directly run that code. The template code is executed by a library called

3https://pypi.python.org/pypi/coverage
4https://docs.python.org/3/library/sys.html#sys.settrace



CHAPTER 3. IMPLEMENTATION 31

Jinja25. That library is responsible for execution of all template logic, and
at this point we know of no reliable ways of making the coverage tracing
library report the coverage in templates. There have been attempts to im-
plement special plugin to the tracing library that would make the tracing
library understand which template lines gets executed, but so far we know of
no reliable and robust method of achieving this. The fact that our implemen-
tation can not track the coverage inside the templates is not a major issue.
All the template files that are executed need to be read from the filesystem
before they can be executed. These file access operations will be tracked
and marked as dependent files as explained in Section 3.3. This will reduce
the implementations granularity from functions to files, but still allows us
to do safe test selection. Special case may be needed to make sure that the
application code will not cache any template reads between tests. Any such
caching would be against the assumption made in Section 3.1, and might
lead to unsafe test selection.

3.5 Transforming execution path to scopes

In analysis phase we need to be able to map each source code line listed in the
execution trace mapping to code scope. Different granularities can be chosen
for the scope. Some examples for scope granularity are statement, function
and module level granularity. For this implementation we have chosen to
use function level granularity. It offers better precision during test selection
phase but causes less overhead to selection phase compared to statement
level granularity. Example of our a mapping is shown in Listing 3.3. The
comments after each source code line represent the scope that the line would
be assigned to. The code scope algorithm simply selects all source code lines
that form a function body and assigns them to a scope that is named after
the function name. For example in the listing source code lines 4-5 form
the function body for the function foo. The name binding on line 3 is not
part of the function body. When the function is inside class, the name of
the class followed by a single dot character is added to the scope name as
a prefix. This can be seen in function qux on line 18. The source code
statements inside a function body can never form a new scope. For example
the function body of baz on line 13-14 can not form its own scope, as it is
already inside the function body of function bar. Therefore the function baz

is completely inside the the function body for function bar.
All source code lines that do not belong to any function’s body get as-

5https://pypi.python.org/pypi/Jinja2



CHAPTER 3. IMPLEMENTATION 32

signed to scope named global. Changes to global scope force the test
selection algorithm to select all tests, as all tests execute some code that is
assigned to global scope.

Listing 3.3: Example of function scopes for source code lines

1 a = 13 # g l o b a l
2 # g l o b a l
3 def f oo ( ) : # g l o b a l
4 print ( ’ h e l l o ’ ) # foo
5 return 1 # foo
6 # g l o b a l
7 class B( object ) : # g l o b a l
8 b = 13 # g l o b a l
9 # g l o b a l

10 @staticmethod # g l o b a l
11 def bar ( ) : # g l o b a l
12 def baz ( ) : # B. bar
13 value = 14 # B. bar
14 return value # B. bar
15 return bas ( ) # B. bar
16 # g l o b a l
17 def qux ( s e l f ) : # g l o b a l
18 return bas ( ) # B. qux

As the scope’s name is directly formed from the function’s name and the
possible class name, there is a possibility for a scope name collision when
same function name is used in more than one source code file. In these cases
the scopes are considered equal, and the test selection phase is more likely
to select some unneeded tests cases. This is not considered to be a problem,
as it is assumed that such cases are rare.

3.6 Mapping change set to code scopes

During the test selection phase we need to be able to calculate the code
scopes for each changed code line in the change set. The change set con-
tains information about additions and removals of source code lines. In the
simplest case the change set only adds or removes source code lines from
within a single function’s body. In more complex cases whole functions can
be added or removed from multiple files. The algorithm for finding scopes
with changes consists of the following steps:



CHAPTER 3. IMPLEMENTATION 33

1. For each source code file that has been modified compared to the previ-
ous version, take the previous version of the file and extract the list of
source code line numbers where the source code line has been removed.

2. For each of those files, take the previous version of the file and calculate
the code scopes as explained in Section 3.5.

3. Create a set of scopes by selecting the scopes from step 2 where the
line number matches the one from step 1.

4. For each source code file that has been modified compared to the pre-
vious version, take the current version of the file and extract the list of
source code line numbers where the source code line has been added.

5. For each of those files, calculate the code scopes as explained in Sec-
tion 3.5.

6. Create a set of scopes by taking the scopes from step 5 where the line
number matches the one from step 4.

7. Create a set of scopes by selecting the union of sets from steps 3 and 6.
This set contains the scopes that have been modified when compared
to the previous version.

For steps 1 and 4 we will get the change set from Git versioning sys-
tem. The previous version mentioned in the algorithm steps references to
the previous version of which we have the coverage information available.
There may be multiple sequential commits in the Git repository that are not
tested. Similar method of using the change set differences to determine the
regression tests that need to be run is not a novel idea, as there is at least
one existing solution using it [28].

Changes to test suite can be handled by simply rerunning all the tests
that contain modifications. This works with the assumption that test files
will not import code from other test files. If that assumption does not hold,
we would need to also track the test coverage inside the module containing
the tests in the test suite. Tracking the coverage inside test module would
require small changes to the presented application. This feature was not
needed for the tested application, so it was omitted.

Any change to any non-code file can be mapped to tests by using the
file dependency information that is recorded during test execution. If the
file with changes is not used by any tests, we have two different options
how to proceed. One option is to assume that the file content is irrelevant
to the test suite and the change will not require rerunning of any tests.



CHAPTER 3. IMPLEMENTATION 34

For example usually all written documentation within the code repository
does not affect any test results, and with these changes re-running of any
tests is not necessary. The other option is to assume that the file could
change the result of any test, so we have to re-run all tests. The choice
which option to take would require us to somehow determine if the file is
important or not. Example of such important a file is requirements.txt

file. When a program called Pip is used as a Python package manager to
install application’s dependency libraries, requirements.txt file will be used
to define all library dependencies that the application has. Changes to that
file can affect the installed libraries and so may invalidate any test results
where we used libraries. As we don’t track any coverage information within
libraries, we must assume that all tests can be affected and thus re-run all is
the only option. The presented implementation always follows the pessimistic
approach where it re-runs all tests after change to file without dependency
information.

3.7 Limitations

To be able to know which code sections will be run by a test, the execution
trace while running that test must be deterministic, meaning that executing
the test should always execute the same code lines in the same order and
return the same result. Otherwise the recorded scope lists might not contain
some visited code sections, and changes to those section might not trigger
rerunning of the test.

During any integration test the whole application source code base gets
imported. If there are any changes to any definitions (modifications to classes
or global scope), some other part might use reflection or some other way
to change the code behaviour. Therefore changes to global scope or class
members will always require full test set execution. Example of such case
is presented in Listing 3.4. If we uncomment the line 2, the output of test
test foo changes. Similarly by uncommenting the lines 21-23 we introduce
a new function to the Processor class, and that addition will change the
output of test test unknown function.



CHAPTER 3. IMPLEMENTATION 35

Listing 3.4: Example of global code change affecting test execution path

1 a = 13
2 # a = 15
3
4 def f oo (b ) :
5 return a + b
6
7 def t e s t f o o ( ) :
8 a s s e r t foo (1 ) == 14
9

10 class Proces sor ( object ) :
11 @staticmethod
12 def proce s s ( func name , va lue ) :
13 i f hasattr ( Processor , func name ) :
14 return getattr ( Processor , func name ) ( va lue )
15 return value
16
17 @staticmethod
18 def add one ( value ) :
19 return value + 1
20
21 # @stat icmethod
22 # d e f add two ( v a l u e ) :
23 # return v a l u e + 2
24
25 def t e s t add one ( ) :
26 a s s e r t Proces sor . p roc e s s ( ’ add one ’ , 12) == 13
27
28 def te s t unknown funct ion ( ) :
29 a s s e r t Proces sor . p roc e s s ( ’ add two ’ , 12) == 12

Changes to dependency libraries lead to rerunning all tests. This is per-
formance limitation as tracing dependency code during test execution would
lead to lower performance and greatly increase the space needs to store the
executed scopes for each tests.

It is assumed that all file access operations are done through open-function.
If files in the file system are accessed in any other way, it is not tracked by
our implementation. This leads to incomplete file dependency extraction
which may cause invalid test selection. This may result either in incorrectly
small test set selection, or unnecessary re-test all situation. The re-test all



CHAPTER 3. IMPLEMENTATION 36

happens if the accessed file is not found from the file dependency database,
meaning that no other test execution opened that file. If the file is found
from the file dependency database, meaning that that the execution of some
other test uses the open-function to read its contents, the incorrectly small
test selection may happen. The reason for this is explained in Section 3.6.



Chapter 4

Results

In this section we are going to present the test arrangements and results
for our safe test selection method. We are testing the presented method’s
selection results and also the performance aspects of the analysis and test
selection phases. The questions this section will answer to are:

• In how many percent of test suite runs we managed to deselect some
tests?

• When tests deselection worked, how many percentage of tests did it
manage to deselect?

• How much overhead does the analysis phase takes compared to full test
suite runtime?

• How much time does the test selection process takes on average?

4.1 Tested application

The implementation was tested against proprietary web application that has
been under active development for 6 years. The main purpose of the applica-
tion is to store and process user fed information, and generate different kinds
of reports out of that information. The application is written in Python
and consist of about 100,000 lines of source code handling over 300 different
endpoints. The definition of endpoint is explained in the Section 1.1. At the
time of testing the used Python interpreter was CPython 2.7.11. The appli-
cation has dependency to a bit over 100 different open source code packages,
of which several have been originally written for this application. About the
half of the application code is located in template files. Templates consist
of basic HTML structure and mix of Python code that constructs HTML

37



CHAPTER 4. RESULTS 38

representation for the presented data. Templates are used to generate both
the web pages and the reports.

The application’s test suite has about 11,000 test cases and it takes about
3 hours to run it on the used development machine. The line coverage of the
entire test suite is over 90%. The test suite consists of unit tests testing small
portions of the application and integration tests that test the behaviour of
one or more simulated requests. There are also some tests that validate the
structure of some certain data files stored among the code files.

4.2 Test arrangements

The presented test selection method is tested with the application presented
in the previous section. The selection algorithm performance can be mea-
sured by tracking the percentage of change sets where the algorithm can rule
out some test cases. Of the cases where the method failed to deselect any
test cases we manually tracked the most common reasons for the failure.
The deselection failure error results were grouped separately for bug fixes
and features, as to measure whether new features are more likely to make
code changes that cause the coverage based tests selection to fail.

Another performance metric is to track how large of a portion of the test
cases the method managed to leave unselected. Due to timing constraints we
were not able to track the execution time for each selected test. We instead
only measure the portion of tests that was selected and assume that the
average execution time of selected tests is relatively close to the execution
time of unselected tests. With this assumption we can approximate the
actual time taken by test set execution from the portion of tests selected in
each case.

The change sets used in the performance evaluation are extracted from
the application source code repository. The tested change sets are all the dif-
ferences in the repository between two consecutive application version. Each
tested change consist of one or several code change commits done to address
a single item in the issue tracking system. The code change sets are always
labeled either as a bug fix or a new feature. With each application version the
test set passes without finding any faults. The performance evaluation was
done to the last 500 application versions. Of these versions 181 were done to
fix a bug in the application and 319 versions contained general improvements
or new features.

Third measured performance metric is how much more time it takes to
run the test set with the execution tracing and how much time it takes to
select the changed tests. The time taken by execution tracing depends on



CHAPTER 4. RESULTS 39

how much of the test set execution time is used inside the application code.
As explained in the Section 3 the execution trace inside dependency packages’
source code is not tracked. This allows us to store less execution trace data
and reduces the time added by execution tracing.

4.3 Test deselection results

Test deselection is a case where the test selection algorithm decided to not
run the deselected tests, because the test case had no mutation on its exe-
cution path or inputs, and so could not be fault revealing. Test deselection
is called successful if the algorithm managed to deselect even one test case.
In unsuccessful test deselections the algorithm could not deselect any tests,
meaning that all tests in the test suite had to be re-run.

The results for issues where no test cases could be deselected are listed in
the Table 4.1. The average test’s deselection success rate was 34%. Of the
deselection failures 52% were caused by code structure modifications. Faced
with structure modifications the coverage based method simply cannot make
any safe deselections, as the modification done in the change set can have
an effect already when the application code is being imported. The second
largest deselection error source with 4% of the cases were modifications to
code dependencies. As explained in the Section 3.7 the execution path in
the code dependency libraries is not being tracked, so the information about
which tests access which libraries is not available. Therefore any library
change forces the safe test selector to fall back to use re-run all method. As
the dependencies change so rarely, storing the execution trace information
for them is not important.

When the change sets done for bug fixes are separated from the ones done
for features and improvements, the results change significantly. The bug fix
changes are less likely to make code structure modifications, and this leads to
to test deselection success rate of 47% for those change sets. For the feature
change sets the deselection success rate dropped to 26%, which is mostly
caused by the increased 59% portion of code structure modifications. The
portion for deselection failures caused by change to code dependencies didn’t
change significantly.

For the succeeding test case deselection cases, the number of selected tests
is shown in Figure 4.1. In the majority of these cases the deselection method
managed to deselect vast portion of the tests. In most cases there were very
few test that needed to be run. This is reasonable as a change to a single
endpoint’s code does not require running any tests for any other endpoint.

The number of tests visiting each code scope is visualised in Figure 4.2.



CHAPTER 4. RESULTS 40

#For all #Bug fix #Feature
Total test suite runs 500 (100%) 181 (100%) 319 (100%)
Some test cases can be unselected 169 (34%) 85 (47%) 84 (26%)

Re-run all:
Code structure modification

261 (52%) 74 (41%) 187 (59%)

Re-run all:
Modification to dependency

20 (4%) 6 (3%) 14 (4%)

Table 4.1: List containing coverage based test selection test deselection per-
formance and most common reasons for its failure.

As the scope granularity was chosen to function level granularity, the graph
shows how many tests actually execute each function in the application.
The lowest recorded number of tests covering a specific function was zero,
meaning that some functions were not covered by any test. The highest
number of tests executing single function was over 11,000 meaning that each
test in the test suite executed that function. When the scopes are ordered
by the number of functions visiting them, it can be seen that the grow rate
in number of visiting tests is behaving logarithmically.

From the same Figure 4.2 we can see that the percentage of tests that
cover arbitrary scope is on average very low. Over 70% of scopes are being
visited by 1% or less of the test cases. Also just 5% of all scopes that are vis-
ited by more than half of test cases. Those scopes are mostly executed during
the test initialisation, and are responsible for starting up the application for
testing. As seen from the Figure 4.1 change sets containing modification to
those sections are relatively rare, as the number of test suite runs where large
portion of tests were selection was low.

4.4 Test performance results

The presented method consist of two phases: Analysis and tests selection.
The analysis phase runs all the tests while tracing each test’s coverage, so it
imposes some performance overhead compared to simply running all tests.
When running on a development machine the test suite takes 2h 7min and
with the tracing the time increases to 4h 20min. So the analysis phase roughly
doubles the execution time compared to a normal rerun all case.

The test selection process performance depends on how large the change
set is and how many rows there are stored in the coverage database. If the
analysis phase have been done to multiple application versions, the coverage
rows for each versions are stored in the same database. With single applica-



CHAPTER 4. RESULTS 41

Figure 4.1: Approximation of portion of tests selected in test suite runs.

tion versions coverage information in the database the test selection always
took less than a few seconds, so the overhead is not significant. Selection
performance was not tested when the coverage database had coverage infor-
mation from multiple different application versions. If the performance of the
coverage database would become a problem with multiple application ver-
sions, it is easy to split the database so that each application version stores
its coverage information to separate database file.

The coverage database with coverage information of single application
version used in total 345 MB of space. The database contained in total bit
over 1.7M rows. Of these rows around 1.6M were used to store link between
scopes and tests and 0.1M to store file access operations in tests.

4.5 Discussion

The presented coverage based test selection method proved to select only
small portion tests when the change set didn’t make changes to the applica-
tion structure. The most significant issue with it is that with the tested ap-
plication over 50% of the change sets had application code structure changes
as can be seen from the Table 4.1. Code structure changes can make major
differences to the tests’ coverage, and so prevent the presented test selection
method from deselecting any tests.

Smaller improvements to the granularity of template files could also be
done. Template files contain mix of Python code and HTML code. The test



CHAPTER 4. RESULTS 42

Figure 4.2: Number of tests using scopes.

execution trace method used can not track the coverage inside the template
files. There is a plugin that would allow tracking on template files, but its
coverage results proved to be too unreliable to use in this context. From
the file dependency information we get low granularity information on which
template file changes would require selection of which tests. Dependency
files can not understand the changes inside templates, and so any change
to a template would select all test cases where that file is accessed. With
template coverages we could achieve the same granularity as in python code,
so changes to any function would only select tests that visit that function.

When the test selection selects small portion of the tests it is easy to keep
the test scopes up to date. When faced with re-run all situation, creating the
test scopes would require the execution of all test cases, and with the tested
application that would take several hours on developers’ machines. With
the measured code structure modification rate the presented code selection
method cannot make it feasible to run the tested application’s test suite on
developers’ machines.

If the analysis phase was being calculated on the Continuous Integration
servers, the developers machines could use that database when doing the
test selection. This would remove the constant re-run all tests case when
new change set with code structure modification gets merged to the used
source code base.

In the cases where developer’s change set would make code structure mod-



CHAPTER 4. RESULTS 43

ifications, the test selection method could ignore the code structure changes
and use the other scopes with changes to do the selection. This turns the
whole selection algorithm to unsafe to make it more performant. This way
the developer is not facing the re-run all test cases situation, but rather left
with some tests that could detect a fault in the change set. The full re-run
all process could be handled in the CI server side.

Modification to dependency libraries is a change where we do not have test
scopes available. As seen from the results the dependency libraries change
relatively rarely, that re running all test cases in this case is completely feasi-
ble solution. Tracking and storing test scopes in dependency code would slow
down the test suite execution and increase the storage space requirements
for test scope information.



Chapter 5

Conclusions

In this paper we tried to find a solution to the performance issues in regression
testing when facing ever increasing amount of test cases. We researched ex-
isting work related to test selection methods, and came to the conclusion the
the current test selection algorithms are not suitable for dynamic program-
ming languages, such as Python. Our proposition consists of an algorithm
that tries to select a small subset of test is the test suite in a way that the
selected tests still find all the possible faults that the recent modification
caused.

The presented algorithm works by tracing the test suite execution and
creating a map about which tests execute which functions. With the as-
sumption that the tested application is deterministic it can be seen that a
test does not need to be re-executed if the change set only contains modifi-
cations to the contents of unrelated functions. Unfortunately this algorithm
cannot deselect any tests if the change set has any modifications to functions
definition or the general structure of the source code. Similarly the algorithm
also keeps track of files opened by tests, and so can choose fault-revealing test
subset in cases where the results of some tests may depend on the contents
of some files. This feature is important in web applications where template
files are often used to construct responses to requests.

The proposed algorithm can be integrated into existing applications test
suite without any modifications to the source code of the tested application.
In our work we tested our test selection algorithm against the historical ver-
sions of existing proprietary medium sized web application, and got some
conflicting results. The test selection algorithm managed to deselect large
portions of the test cases when the change sets made changes within func-
tions. Unfortunately roughly the half of the change sets contained changes to
function definitions and other structure of the source code, making the test
selection algorithm fail to deselect any test cases. Also the implementation

44



CHAPTER 5. CONCLUSIONS 45

had major negative effect on the test suite runtime.

5.1 Future work

As discussed in Section 3.6 there needs to be some logic that decides which
change sets require re-running test. The presented implementation chose the
pessimistic approach where a change to file without dependency information
required us to re-run all tests, because there exists files where that is the only
option. We could replace that pessimistic approach with some heuristics that
would somehow detect if the changed files are important, and so reduce the
number of re-run all occurrences. It could also be researched whether cleaning
the change set would help us reduce the number of changes sets that make
changes to global scope. Cleaning in this context means ignoring all non-
code aspects of the code, such as changes to code comments or any changes
that have no effect to the code’s execution. Such cleaning has been done
in some previous research [28] where the code was transformed to canonical
form before the change set was calculated, but it is unclear how much effect
it has to test selection performance.

In existing research it has been noticed that the test selection performance
is sensitive to the program and its test suite [11]. The characteristics of
web applications might be better or worse for coverage based test selection.
Therefore one research case would be to implement similar test selection
methods to existing non-web applications and report the actual selection
performance results. So far most research has used example applications
that are small and do not represent the characteristics of real applications
that are being used in the field. Similarly it could be researched how the
tracing granularity affects the test selection performance. In the presented
algorithm we chose to use function level granularity without any proof that it
would be the best option. The best granularity might also be affected by the
characteristics of the tested application. With function level granularity the
test tracing performance could be improved by using setprofile1 interpreter
hook that is called less often the one used by the implementation. The other
performance overhead could most likely be mitigated by normal optimization
tricks.

This experimental test selection performance done in Section 4 used the
historical versions of a proprietary application, but this test does not show
that the test selection algorithm always chooses the fault revealing test cases.
Because of the development processes used during the application develop-

1https://docs.python.org/3/library/sys.html#sys.setprofile



CHAPTER 5. CONCLUSIONS 46

ment, the test suite of every single tested version of the application passes
without finding any faults. Therefore we can not take this test as an indicator
that the test selection method would find all failing test cases. In general case
there might be some aspect to the testing that makes the presented method
unsafe. Even though proving that the test selection is safe might not be
feasible, testing the algorithm in real life situation would increase confidence
in the presented algorithm.

As seen from Chapter 4.3 the tested application’s history contained lots
of changes that changed the structure of source code. In some cases it might
be preferred to ignore the made changes to the code structure, and just run
the test cases that execute functions that are changed in the change set.
This makes the algorithm unsafe, meaning that it might not select all fault
revealing test cases. The positive effect of this change is that it would make
the algorithm to choose small subsets more often. In some cases it might
be preferred that the developer can locally execute the small, relevant test
subset and let the CI handle running the full test suite.



Bibliography

[1] Agrawal, H., Horgan, J. R., Krauser, E. W., and London, S.
Incremental regression testing. In Proceedings of the Conference on Soft-
ware Maintenance, ICSM 1993, Montréal, Quebec, Canada, September
1993 (1993), D. N. Card, Ed., IEEE Computer Society, pp. 348–357.

[2] Beazley, D. M. Python essential reference. Addison-Wesley Profes-
sional, 2009.

[3] Ben-Asher, Y., and Rotem, N. The effect of unrolling and inlining
for Python bytecode optimizations. In Proceedings of of SYSTOR 2009:
The Israeli Experimental Systems Conference 2009, Haifa, Israel, May
4-6, 2009 (2009), M. Allalouf, M. Factor, and D. G. Feitelson, Eds.,
ACM International Conference Proceeding Series, ACM, p. 14.

[4] Biswas, S., Mall, R., Satpathy, M., and Sukumaran, S. Re-
gression test selection techniques: A survey. Informatica (Slovenia) 35,
3 (2011), 289–321.

[5] Chen, Y., Rosenblum, D. S., and Vo, K. Testtube: A system
for selective regression testing. In Proceedings of the 16th International
Conference on Software Engineering, Sorrento, Italy, May 16-21, 1994.
(1994), B. Fadini, L. J. Osterweil, and A. van Lamsweerde, Eds., IEEE
Computer Society / ACM Press, pp. 211–220.

[6] Chen, Z., Chen, L., Zhou, Y., Xu, Z., Chu, W. C., and Xu, B.
Dynamic slicing of python programs. In IEEE 38th Annual Computer
Software and Applications Conference, COMPSAC 2014, Vasteras, Swe-
den, July 21-25, 2014 (2014), IEEE Computer Society, pp. 219–228.

[7] Elbaum, S. G., Malishevsky, A. G., and Rothermel, G. Pri-
oritizing test cases for regression testing. In Proceedings of the Inter-
national Symposium on Software Testing and Analysis, ISSTA 2000,
Portland, OR, USA, August 21-24, 2000 (2000), D. J. Richardson and
M. J. Harold, Eds., ACM, pp. 102–112.

47



BIBLIOGRAPHY 48

[8] Elbaum, S. G., Malishevsky, A. G., and Rothermel, G. Test
case prioritization: A family of empirical studies. IEEE Trans. Software
Eng. 28, 2 (2002), 159–182.

[9] Engström, E., Runeson, P., and Skoglund, M. A systematic
review on regression test selection techniques. Information & Software
Technology 52, 1 (2010), 14–30.

[10] Fritz, L. Balancing cost and precision of approximate type inference
in Python.

[11] Graves, T. L., Harrold, M. J., Kim, J.-M., Porter, A., and
Rothermel, G. An empirical study of regression test selection tech-
niques. ACM Transactions on Software Engineering and Methodology
(TOSEM) 10, 2 (2001), 184–208.

[12] Gupta, R., Harrold, M. J., and Soffa, M. L. An approach to
regression testing using slicing. In Software Maintenance, 1992. Pro-
ceerdings., Conference on (1992), IEEE, pp. 299–308.

[13] Hwu, W. W., and Chang, P. P. Inline function expansion for com-
piling C programs. In Proceedings of the ACM SIGPLAN’89 Conference
on Programming Language Design and Implementation (PLDI), Port-
land, Oregon, USA, June 21-23, 1989 (1989), R. L. Wexelblat, Ed.,
ACM, pp. 246–257.

[14] Jones, J. A., and Harrold, M. J. Test-suite reduction and prioriti-
zation for modified condition/decision coverage. IEEE Trans. Software
Eng. 29, 3 (2003), 195–209.

[15] Kim, J., and Porter, A. A. A history-based test prioritization
technique for regression testing in resource constrained environments.
In Proceedings of the 24th International Conference on Software Engi-
neering, ICSE 2002, 19-25 May 2002, Orlando, Florida, USA (2002),
W. Tracz, M. Young, and J. Magee, Eds., ACM, pp. 119–129.

[16] Leung, H. K., and White, L. A study of integration testing and
software regression at the integration level. In Software Maintenance,
1990, Proceedings., Conference on (1990), IEEE, pp. 290–301.

[17] Li, Z., Harman, M., and Hierons, R. M. Search algorithms for
regression test case prioritization. IEEE Trans. Software Eng. 33, 4
(2007), 225–237.



BIBLIOGRAPHY 49

[18] Loelinger, J., and MacCullogh, M. Version Control with Git -
Powerful Tools and Techniques for Collaborative Software Development:
Covers GitHub, Second Edition. O’Reilly, 2012.

[19] Myers, G. J., Sandler, C., and Badgett, T. The art of software
testing. John Wiley & Sons, 2011.

[20] Namiot, D., and Sneps-Sneppe, M. On micro-services architecture.
International Journal of Open Information Technologies 2, 9 (2014),
24–27.

[21] Pan, J., and Center, L. T. Procedures for reducing the size of
coverage-based test sets. In Proceedings of International Conference on
Testing Computer Software (1995), Citeseer.

[22] Rothermel, G., and Harrold, M. J. Analyzing regression test
selection techniques. IEEE Trans. Software Eng. 22, 8 (1996), 529–551.

[23] Rothermel, G., and Harrold, M. J. A safe, efficient regression
test selection technique. ACM Trans. Softw. Eng. Methodol. 6, 2 (1997),
173–210.

[24] Rothermel, G., Harrold, M. J., and Dedhia, J. Regression test
selection for C++ software. Softw. Test., Verif. Reliab. 10, 2 (2000),
77–109.

[25] Rothermel, G., Harrold, M. J., Ostrin, J., and Hong, C.
An empirical study of the effects of minimization on the fault detection
capabilities of test suites. In 1998 International Conference on Software
Maintenance, ICSM 1998, Bethesda, Maryland, USA, November 16-19,
1998 (1998), IEEE Computer Society, pp. 34–43.

[26] Rothermel, G., Untch, R. H., Chu, C., and Harrold, M. J.
Prioritizing test cases for regression testing. IEEE Trans. Software Eng.
27, 10 (2001), 929–948.

[27] Srivastava, A., and Thiagarajan, J. Effectively prioritizing tests
in development environment. In Proceedings of the International Sym-
posium on Software Testing and Analysis, ISSTA 2002, Roma, Italy,
July 22-24, 2002 (2002), P. G. Frankl, Ed., ACM, pp. 97–106.

[28] Vokolos, F. I., and Frankl, P. G. Pythia: A regression test
selection tool based on textual differencing. In Reliability, quality and
safety of software-intensive systems. Springer, 1997, pp. 3–21.



BIBLIOGRAPHY 50

[29] White, L. J., and Leung, H. K. A firewall concept for both control-
flow and data-flow in regression integration testing. In Software Mainte-
nance, 1992. Proceerdings., Conference on (1992), IEEE, pp. 262–271.

[30] Yoo, S., and Harman, M. Regression testing minimization, selection
and prioritization: a survey. Softw. Test., Verif. Reliab. 22, 2 (2012),
67–120.


	Cover page
	Contents
	1 Introduction
	1.1 Problem statement
	1.2 Structure of the Thesis

	2 Background
	2.1 Software development process
	2.2 Testing in software development
	2.3 Test prioritization
	2.3.1 Coverage based priorization heuristics
	2.3.2 Source code complexity based priorization heuristics
	2.3.3 Source code change set based priorization heuristics
	2.3.4 Past fault detection capabilities

	2.4 Test minimization
	2.5 Test selection methods
	2.5.1 Unsafe test selection
	2.5.2 Safe test selection
	2.5.3 Issues with dynamically typed programming languages

	2.6 Other methods of improving the performance of test suite

	3 Implementation
	3.1 Idea behind coverage based test selection
	3.2 Overview
	3.3 Extracting dependent files
	3.4 Extracting execution paths
	3.5 Transforming execution path to scopes
	3.6 Mapping change set to code scopes
	3.7 Limitations

	4 Results
	4.1 Tested application
	4.2 Test arrangements
	4.3 Test deselection results
	4.4 Test performance results
	4.5 Discussion

	5 Conclusions
	5.1 Future work


