
Software Communication in Computer
Aided Engineering

Tuomas Ruippo

School of Engineering

Thesis submitted for examination for the degree of Master of
Science in Technology.
Espoo 12.8.2017

Thesis supervisor:

Prof. Kari Tammi

Thesis advisor:

M.Sc. Janne Ojala

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aaltodoc Publication Archive

https://core.ac.uk/display/132598569?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


aalto university
school of engineering

abstract of the
master’s thesis

Author: Tuomas Ruippo

Title: Software Communication in Computer Aided Engineering

Date: 12.8.2017 Language: English Number of pages: 7+79

Department of Mechanical Engineering

Professorship: Engineering Design

Supervisor: Prof. Kari Tammi

Advisor: M.Sc. Janne Ojala

The growing number of computer aided design software suites used in the engineering
processes of heavy industry. Recently, communicating information between these
software suites has gained more interest. Duplication of data for each software
separately creates risk of quality issues as well as slows the product development
cycles.
The aim of this thesis was to identify the best method for software communication
between PTC Creo and Autodesk Revit. Based on the gaps identified in the
existing methods, a custom solution prototype was developed to better understand
the quality of the existing methods. This custom solution prototype was compared
with the existing methods using established engineering design methodology.
This thesis found the custom solution prototype to be the best method for software
communication between the software suites in question. The custom solution
prototype scored 79.2% of the maximum with the best existing method only
achieving a score of 72.9%. The higher evaluation can be attributed especially to
the high integrability and low cost of the custom solution compared to existing
methods. Owning the solution also enables achieving a competitive edge.

Keywords: CAD, CAE, BIM, Software Communication



aalto-yliopisto
insinööritieteiden korkeakoulu

diplomityön
tiivistelmä

Tekijä: Tuomas Ruippo

Työn nimi: Ohjelmistojen välinen tiedonvälitys tietokoneavusteisessa
suunnittelussa

Päivämäärä: 12.8.2017 Kieli: Englanti Sivumäärä: 7+79

Konetekniikan laitos

Professuuri: Koneensuunnittelu
Työn valvoja: Prof. Kari Tammi

Työn ohjaaja: DI Janne Ojala

Raskas teollisuus hyödyntää kasvavissa määrin erilaisia suunnitteluohjelmistoja osa-
na suunnitteluprosessejaan. Ohjelmistojen kasvava määrä on lisännyt kiinnostusta
tiedon sujuvaan välittämiseen näiden ohjelmistojen välillä. Tiedon kahdentami-
nen erikseen jokaista ohjelmistoa varten lisää laatuvirheiden riskiä ja hidastaa
tuotekehityssyklejä.
Tämän työn tarkoitus oli tunnistaa paras mahdollinen menetelmä tiedon välittä-
miseen PTC Creon ja Autodesk Revitin välillä. Olemassa olevien menetelmien
puutteista johtuen osana työtä tuotettiin oma menetelmäprototyyppi. Tätä mene-
telmäprototyyppiä verrattiin olemassa oleviin menetelmiin käyttäen vakiintuneita
suunnittelumenetelmiä.
Oma menetelmäprototyyppi paljastui vertailussa parhaaksi menetelmäksi tiedon
välittämiseen ohjelmistosta toiseen. Oma menetelmäprototyyppi sai pisteitä 79,2 %
maksimista lähimmän olemassa olevan menetelmän jäädessä 72,9 % maksimipisteis-
tä. Prototyypin saama korkeampi pistemäärä voidaan yhdistää erityisesti hyvään
yhdistettävyyteen muihin järjestelmiin sekä menetelmän matalaan kustannuk-
seen. Tiedonvälitysmenetelmän omistajuus antaa myös mahdollisuuden saavuttaa
kilpailuetua.

Avainsanat: CAD, CAE, BIM, Software Communication



iv

Preface
I want to thank supervisor Kari Tammi and the advisors Janne Ojala and Jukka
Hämäläinen for their guidance. Thanks also to Ville Lähteinen who provided valuable
support for the IPR section.

Otaniemi, 30.6.2017

Tuomas Ruippo



v

Contents
Abstract ii

Abstract (in Finnish) iii

Preface iv

Contents v

Abbreviations vii

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Research Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Structure of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Literature Review 6
2.1 BIM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Software Communication . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Intellectual Property Considerations . . . . . . . . . . . . . . . . . . . 10
2.4 Software Development . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5 Programming Languages . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.6 Solution Variant Evaluation . . . . . . . . . . . . . . . . . . . . . . . 19

3 Methods 25
3.1 Requirements for the Software Communication Solution . . . . . . . . 25
3.2 Comparison of Solution Variants . . . . . . . . . . . . . . . . . . . . . 31
3.3 Software Engineering the Custom Solution . . . . . . . . . . . . . . . 35

4 Analysis of Existing Methods 40
4.1 Need for Software Communication . . . . . . . . . . . . . . . . . . . . 40
4.2 Conversion of Components . . . . . . . . . . . . . . . . . . . . . . . . 41
4.3 Native BIM Support in PTC Creo . . . . . . . . . . . . . . . . . . . . 43
4.4 Commercial Software Communication Solutions . . . . . . . . . . . . 44

5 Custom Solution Prototype 48
5.1 Development of Custom Solution Prototype . . . . . . . . . . . . . . 48
5.2 Custom Solution Prototype Architecture . . . . . . . . . . . . . . . . 58

6 Results 62
6.1 Requirements Review . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.2 Comparison Based on Evaluation Criteria . . . . . . . . . . . . . . . 64



vi

7 Discussion 71
7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
7.2 Future Development . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
7.3 Modeling Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . 74

References 76



vii

Abbreviations

Abbreviations
AEC Architecture, Engineering and Construction
APAC Asia-Pacific Region
API Application Programming Interface
BIM Building Information Model(ing)
CAD Computer Aided Design
CAE Computer Aided Engineering
Capex Capital expenditure
COM Component Object Model
CVCS Centralized Version Control System
DCVS Decentralized Version Control System
FEA Finite Element Analysis
HG Mercurial
IP Intellectual property
IPR Intellectual property rights
JIT Just In Time
JVM Java Virtual Machine
Opex Operating expenditure
PDM Product Data Management
PDF Portable Document Format
PLM Product Lifecycle Management
R&D Research and Development
SVN Subversion
VB Visual Basic
VCS Version Control System
XML EXtensible Markup Language



1 Introduction

1.1 Background
As integrated Computer-Aided Engineering (CAE) solutions have become common-
place in the industry, software communication has become even more important
[34]. In this thesis, software communication is defined as an interface for separate
software suites to communicate using the same data without human intervention.
Software communication reduces the risk of human error and enables a reduction in
tedious, repetitive manual copying tasks. Often, the CAE ecosystem contains multi-
ple software suites for specialized engineering tasks, such as one software suite for
Computer-Aided Design (CAD), another software suite for Finite Element Analysis
(FEA) and a third software suite for Enterprise Resource Planning (ERP).

In an integrated CAE ecosystem, it is mandatory that these systems seamlessly
share information. The ability to share information eliminates the need for separately
configuring the data for each system. Information sharing leads to benefits in the
quality, costs and agility of product development and change management [4, 5].

In the mechanical engineering industry, a core component of CAE is 3D CAD.
Although CAD and other components of CAE, such as Computer Aided Manufac-
turing (CAM), have been extensively used for decades in the mechanical engineering
industry[3], the architecture, engineering and construction (AEC) industry has been
slow to follow suit. The traditional approach to both architectural design and struc-
tural engineering has been to use 2D design, while more developed information
management tools, such as Building Information Modeling (BIM), have only recently
begun to gain acceptance [18]. In 2007, this use of outdated tools and systems in
the AEC industry was estimated to have contributed to 500 billion dollars of waste
in the United States alone [29]. BIM reduces waste because most changes are done
using a detailed model in the early stage, when changes are cheap. Conventional
civil engineering does many changes on-site, when the cost of change is higher. This
difference is described in Figure 3 on page 2.

The reluctance of the AEC industry to implement BIM is often explained by four
quite simple factors. First, the complexity of a large building with all of its systems
is quite high compared to a small-medium mechanical product. Because of this
complexity, IT hardware requirements are also quite high, even by today’s standards.
Most larger buildings are also quite unique in design sharing few obvious features with
other buildings designed even by the same architect or structural engineer. A fourth
reason for this reluctance is the allocation of work in a building project to multiple
subcontractors, which poses challenges in finding other compatible communication
media than traditional 2D drawings.

Nevertheless, these factors often presented as obstacles in implementing BIM
are actually problems best solved using BIM. For example, the complexity of AEC
is better handled using a centralized, consistent information model rather than
numerous unconnected files of varying type. Using BIM to consistently document
the designs makes it easier for building projects to share design features, as this
enables architects and engineers to search for similar designs rather than having to



2

Figure 1: Targeted impact on change cost using BIM

hunt through bookshelves of drawings and project information. Declining IT costs
would allow smaller subcontractors to bid for projects requiring BIM collaboration.

BIM has thus slowly evolved into a key tool for managing the building process.
Contrary to what is commonly thought, BIM is not just a 3D model, but rather a
kind of a visual container for storing as well as relaying metadata along with the
actual 3D information [12, 24]. Thus, BIM is more than a counterpart for CAD in
the building industry, and that the 3D model would not even be required for a model
of building to be BIM.

However, Eastman et al. [12] define BIM as requiring a spatial (3D) representa-
tion of the building, even though that is not the full definition. From a mechanical
engineering viewpoint, BIM is actually somewhat analogous to Product Data Man-
agement (PDM) or Product Lifecycle Management (PLM) systems. Looking at the
list of PLM system capabilities provided by Aram and Eastman [2], items such as
design data visualization, merging of partial models from various sources and manual
notification requests are core functionalities enabled by the use of BIM. Because of
these factors, building information modeling is more of a complete philosophy change
in the building industry than merely a design tool. The 3D design of a building is
rather a subcomponent of the building information model than the actual model.
[12]

Despite the rising interest in BIM solutions witnessed by the building indus-
try, the separation between mechanical CAE software and full-bred BIM software
creates challenges for companies supplying mechanical equipment to buildings. As
customers would also like to have details of the equipment contained in the BIM,



3

mechanical equipment suppliers face a choice between recreating their product infor-
mation at some detail level into BIM compatible formats and implementing software
communication between the two data collections.

KONE is at an interesting crossroads regarding BIM. The product offering is
mechanical in nature, but the products represent integral parts of a building. Thus,
although KONE is designing mechanical products, the methods currently in use are
compliant with and often derived from methods used in the AEC industry.

In anticipation of the growing impact of BIM on the AEC industry and subse-
quently on the market, KONE has done preliminary research on how its customers
see the demands posed by using the BIM approach on the elevator, escalator and
door design. An earlier research paper [22] suggests that BIM will certainly pose
new challenges for KONE when communicating different aspects of the elevator,
escalator and door designs to the customer. Also discussed in the paper is the fact
that as KONE product models are not a part of the construction design as such,
some elements of BIM design, including but not limited to cost, should be excluded
from the scope of KONE BIM content.

Earlier research on integrating BIM design into the whole product design process
of KONE suggested that it would be necessary to examine the possibility of managing
more design tasks using a single model. The research showed, however, that no
perfect fit exists for the company’s needs on the market today. Since this research,
the customer needs dictating the properties of engineered BIM content have been
analyzed more accurately. As a result, the different approaches to create BIM and
their strengths and weaknesses can be more precisely evaluated.

1.2 Research Objective
The aim of this study is to develop a method for software communication between
a mechanical CAE software suite, PTC Creo, and a BIM software suite, Autodesk
Revit. The master data and design are created in PTC Creo, and BIM is used as
an output for communicating product information to the customer. As the product
to be engineered is mechanical in nature, using a mechanical CAE software suite
provides engineering tools that are rarely included in BIM software.

To ensure maximum compatibility with customer systems, the method for software
communication should provide an output that resembles as closely as possible an
accepted output generated natively in a BIM software suite. To achieve this goal,
three existing options were identified:

1. A commercial application for software communication

2. Native support for BIM output in PTC Creo

3. Conversion of components from PTC Creo to Autodesk Revit

Conversion of only components without full incorporation of the assembly conver-
sion was identified as a minimum requirement for an effective solution. It was decided
that a tailor-made application for achieving the objectives of software communication



4

should be prototyped as a part of this thesis. This decision allows for more accurate
estimation of the investment related to creating the final application as well as for
benchmarking the solution against the other approaches in order to gather a business
case for the possible final development of the solution.

The tailor-made application developed in this thesis will be evaluated by comparing
it to the three existing approaches in terms of providing consistent information to
the customer at the lowest effort and cost possible, as well as its security, quality
and management of information.

1.3 Scope
Several exclusions have been made to provide a well-defined research structure. As
this study focuses on the communication between different software architectures,
actual BIM design is excluded from this research. Only those BIM topics will be
studied that explicitly relate to the conversion of models from one format to another.

As mechanical CAD and CAE software suites and their use is more well-established
than their BIM counterparts, mechanical CAD and CAE review are excluded from
the scope of this thesis. This is justified given that thee centrality of CAD has already
been well accepted and does not need similar assurance as the future centrality of
BIM.

Mechanical CAD modeling is not discussed beyond analyzing the requirements
that the conversion process imposes on the models to be converted. Existing models
are simply used as a reference in validating the functionality of different software
communication methods. The goal is to provide a generic solution, well portable to
all types of models.

Using software communication to convert a 3D model from a mechanical CAE
software suite into a BIM software suite creates the opportunity to use original
Research and Development (R&D) design models to produce order specific approval
documentation. Although this possibility is briefly discussed in Chapter 7, further
analysis is beyond the scope of this study.

For the component conversion approach, the process of creating BIM separately
is assumed to be on an optimal level for a separate solution. The improvement of
the separate process is not included in the scope of this thesis.

Although the products of KONE are arranged in groups of centrally controlled
equipment, this thesis concentrates only on the topic of separate pieces of equipment.
Thus, the assembly of groups and the issues related to them are not considered in
this thesis.

As found in the literature review, existing research fails to answer the research
question of this thesis in an acceptable fashion. The specificity of the problem at
hand requires extensive original research in the field related to the research problem.

1.4 Structure of Thesis
This thesis has been structured as follows: First, the relevant literature in fields
of BIM, software communication, intellectual property, software development and



5

solution variant evaluation is studied to establish the relevance of this research as
well as the theoretical foundation of the research. Second, the research methodology
is defined, mostly related to the solution variant selection process as well as the
software engineering process. Third, an analysis is made of the existing methods
as well as the development and architecture of the custom solution. Fourth, the
different approaches are compared based on the selected evaluation criteria, finally
followed by a discussion section of conclusions and future development.



6

2 Literature Review
The previous chapter established the background and state of the art concerning
software communication related to BIM. This chapter analyzes relevant literature
concerning BIM, software communication, intellectual property and the engineering
design of solutions in general. With respect to BIM, the chapter finds that the
benefits of BIM are globally recognized. However, these benefits do not necessarily
equate to a wide demand for BIM at KONE.

The chapter also finds that the insubstantial body of knowledge existing in
software communication shows an increasing need for such communication, but
currently few implementations are available. The intellectual property rights of such
implementations are discussed and found to be non-restrictive. However, the studied
literature suggests that no intellectual property rights should be sought for a future
development either.

Finally, the chapter concludes that software projects are struggling to complete
on time and budget. Therefore, it was decided to apply well-proven concepts used
by engineering design in general to software development as well.

2.1 BIM
It has been predicted that BIM will revolutionize the AEC industry. Such a revolution
would not only introduce cost reductions and gains, thus improving current industry
practices, but would also introduce completely new themes, impossible to achieve
using conventional methods. Some researchers, such as Young et al. [48], even go
as far as stating that without familiarizing oneself with the processes and tools of
BIM, even one’s career and company are at peril. BIM is often associated with such
bold assertions. These statements should be rigorously studied to find the true value
behind them.

A fairly recent paper by Li et al. [27] states that BIM, especially in its 4D
form, has extensive use in the AEC industry. The authors list the usual information
integration, easy sharing and collaboration benefits as the main factors driving BIM
adoption in the industry. This view is quite interesting for several reasons. First,
the authors are not only from China, but are also representing other Pacific region
countries. Additionally, their paper [27] focuses on more significant projects, either
in size, as in the case of Wuhan Expo Centre, or significance as in the case of the
Shanghai Disaster Control Centre. These projects are mainly located in China, with
one project being located in Taiwan [27].

The study by Li et al. [27] is interesting in light of the general experiences of
KONE concerning BIM adoption in the Asia-Pacific region (APAC) and especially
China. From KONE’s perspective, although BIM adoption is quite high in regions
such as Singapore and Australia, China seems to be somewhat slower in adopting
the new technology. Another interesting factor is the focus of their paper [27] on
large-scale, non-residential projects. If the AEC industry in China finds added value
using BIM in large-scale projects and moves to more widespread adoption of BIM,
the volume of BIM production by KONE will increase exponentially. The volume



7

and size of residential projects alone are very large in China, in spite of the recent
industry cool-down.

Three reasons can be speculated for the contradiction between the experiences
of KONE and the situation analysis by Li et al. [27]. First, the current status of
BIM adoption in China might be on a level where the AEC industry does use BIM
but does not require that all specialty equipment be placed in the model. In such a
situation, KONE would not see BIM demand for their products in China, while the
AEC industry would still be implementing BIM. The use of BIM would probably
then focus on the structural aspect of building design, general architectural planning
or other areas where building related specialty equipment can be omitted from the
model while still being able to benefit from the use of BIM.

Another reason for the low demand by the Chinese for BIM at KONE is that
the AEC industry of China might concentrate on applying BIM to the kind of larger
projects described by Li et al. [27]. Thus the large volumes of KONE in the Chinese
residential segment and smaller-scale projects would not correlate to a high demand
for BIM in the region. This can be interpreted as only part of the solution to the
contradiction at hand, since KONE is also a major player in the larger-scale projects.

Another explanation for the lack of correlation between the demand in BIM
seen by KONE and the demand projected based on Li et al. [27] is that KONE
might be failing to successfully market the BIM solutions it offers and has thus been
unsuccessful in turning the customer need for the models into sales of the solutions.
This would naturally be a negative scenario for KONE, since the competition might
be succeeding on the market because of KONE’s failure. A third reason would be
that Li et al. [27] are overstating the maturity of the AEC industry to take advantage
of developments in BIM. One should maintain a certain skepticism when evaluating
new technologies, since there is often a large amount of optimism and marketing
hype related to new, exciting concepts. Here, an analogy could be drawn to additive
manufacturing (AM), often colloquially referred to as 3D printing. AM technologies
are sometimes presented as something that will revolutionize the retail business
completely, which might not represent the complete truth [41].

Li et al. [27] have listed the benefits resulting from adopting BIM for each project.
They discovered six main items: precision when designing complicated features and
the possibility of clash detection, emergency equipment evacuation management,
regulation compliance, an integrated facility monitoring system and maintenance
database, collaboration facilitation in the pre-design stage, and maintenance schedul-
ing.

The benefits found by Li et al. [27] cannot be described as surprising, but what is
quite confusing is the lack of elaboration on the more vague items, such as the upside
that BIM provides compared to 2D design in regulation compliance and the rescue
of equipment in emergencies. These benefits do not seem obvious to a specialty
equipment BIM practitioner, making the paper look exactly like the speculated
marketing hype mentioned earlier.

What is intriguing, however, in the study by Li et al. [27] is the benefits
section of the very first case, Chong Qing International Circus. The case study
concentrates on the challenge posed by the design having a very complicated feature,



8

requiring the use of an advanced CAE software suite, Dassault CATIA. The authors
establish the difficulty of modeling a complicated parametric feature with BIM design
tools, approving instead the decision to use a more advanced modeling tool and
then exporting the output to Autodesk Revit. More recent developments, such as
Revit/Dynamo, partly address the need to communicate complicated parametric
features from more advanced modeling tools [9], but the identified need is still
interesting. Figure 2 on page 8 shows the software communication, with the CATIA
model on the left and the consolidated Revit model on the right.

Figure 2: Chong Qing International Circus City modeled with CATIA and Revit [27]

Even though the models by KONE are far less complex than this case, the
philosophy is the same. Although the output needs to be compatible with Autodesk
Revit, the selection of the actual modeling/engineering tool should not be dictated
by the output. Instead, the optimal tools should be used separately for each stage of
work.

When studying the implementation of BIM for a specialty equipment provider,
one aspect that cannot be ignored is the challenge of providing BIM training for
design engineers not familiar with the AEC methodology. Already in 2006, Woo
[47] identified a gap in the way that educational institutes approach the subject of
BIM in curricula related to AEC. Although the paper establishes the paradigm
change from simple line-based CAD systems to more modern solutions, e.g, BIM
as a matter of fact, the paper also postulates that the best practices for educating
future professionals in the AEC industry were quite immature at the time. [47]

Woo [47] also notes that a significant pedagogical challenge lies in the way that
BIM cannot simply be taught as a fancy method of moving the design from 2D
to 3D. The subject is rather a complete paradigm change in the approach to the
design and engineering process as a whole. Based on more recent experience, the
educational method has probably found a more structured approach to teaching
BIM, but this basic problem remains. As Woo [47] phrases the problem, in addition
to requiring knowledge in the actual CAD side of the environment, BIM requires
high construction expertise as well.

A more recent study by Lee et al. [25] agrees that teaching existing courses as
they are and adding BIM to the curriculum as a course or two does not address the
issue properly. Instead, BIM should be integrated into all courses in order to fully
understand the nature of BIM usage [25]. It is easy to agree. Simple 3D modeling
can be taught in a dedicated course, but as mentioned earlier, 3D is not the full
nature of BIM, since BIM affects the working practices everywhere in the industry.



9

If only the minimum objective is met and a method is found to provide software
communication to effectively convert the PTC Creo component models into Autodesk
Revit component models, engineers are required to use Autodesk Revit to separately
create a product model for customer communication purposes. Although Autodesk
Revit user interfaces have evolved since the publication of the paper by Woo [47],
Autodesk Revit functions might still be difficult to learn at first even after gaining
experience in other CAD systems.

Based on the BIM literature review, this thesis seems justified. The adoption of
BIM as a widely used design tool seems to be widespread enough to make winning
contracts to the AEC industry difficult if BIM cannot be easily provided. Without
direct integration of BIM into the engineering process, the design cannot be commu-
nicated to the customer quickly enough. Even more importantly, collaboration in
the engineering process of the building requires a capability to respond swiftly to
change requests, since completely separating engineering from BIM can hinder this
capability. The customers will then likely move towards more agile competitors.

2.2 Software Communication
An unsubstantial body of knowledge exists specifically to address the software
communication between CAE software suites and BIM software suites. Several
reasons for this can be speculated. Not many companies and their products operate
deep in the interface between mechanical and civil engineering or architecture, let
alone products of a highly complex nature.

Mechanical equipment delivered to be fitted as part of a building often has a
relatively simple interface, such as the main unit of the air conditioning system. If
the system and its interface is very simple, the system can be communicated to BIM
by simply exporting it as a single item into a vendor-neutral CAD format that can
be read by a BIM software suite.

If there are more complex items in the system, such as the air conditioning piping,
they might be rather well addressed in a BIM software suite. This kind of software
generally supports for example piping quite well and may include a good API to
model piping automatically based on coordinate and dimension data alone. However,
a need for advanced software communication between PTC Creo and Autodesk Revit
has been identified by suppliers of equipment with a complicated building interface.

Although the specific kind of software communication sought for by KONE is not
well addressed by existing literature, work on other kinds of software communication
can be found. For example Ojala [34] studied software communication between
PTC Creo and a multi-body simulation (MBS) software suite. The studied software
communication is analogous to the solution studied by this thesis.

Two US patent applications also exist for somewhat similar solutions. In the first,
Glunz et al. [15] propose a “Method and system for creating 3d models from 2d
data for building information modeling (bim)”. The proposed method is actually
quite interesting because many traditional companies are dealing with the problem of
converting legacy 2D drawings to modern 3D models. A significant demand exists for
services and tools that provide this type of functionalities. However, it is not directly



10

comparable to the research objective at hand, because the input in the scope of this
thesis is a 3D model. In the proposed method, 2D data is combined to automatically
generate a 3D model in various formats, including Autodesk Revit.

The other patent application by Glunz et al. [14] is of greater interest in the
context of this thesis. The patent application [14] proposes a “Method and system
for creating composite 3d models for building information modeling (bim)”, which
by subject is very close to the topic of this thesis. Glunz et al. proposal consists of
retrieving several 3D models in different formats and from different vendors and then
combining those models together to create a new model that did not previously exist.

The method should be studied very closely in case the component conversion
solution is selected. In that scenario, the constraint data for compiling a main
assembly 3D model out of individual components could be parsed in a method similar
to the one examined in this thesis. The difference could be that the patent claims
specifically mention that the 3D models are from multiple vendors and in multiple
formats. The solution proposed by this thesis will make use of 3D models from a
single vendor only.

2.3 Intellectual Property Considerations
The software communication solution proposed by this thesis would form a backbone
for the customer deliverable generation for KONE. As a result, the solution has a
high business impact and the intellectual property issues related to such a solution
should be carefully considered.

As patents are not awarded globally, these considerations should be applied in the
jurisdiction(s) where the solution is sought to be applied. KONE is acting globally,
so at least the most important market areas need to be taken into account in the
intellectual property considerations. Jurisdictions usually prevent the application
of devices or deliverables which infringe a patent even if the actual production had
taken place elsewhere [17]. However the patentability study should not be limited to
a specific jurisdiction, because the applied requirements for patentable matter vary
considerably between different jurisdictions.

First consideration around the intellectual property rights should naturally be
the study of the “freedom to operate”. If there are no valid patents which would
restrict the use of a certain method or device, the freedom to operate exists. The
next consideration should be whether there is something to patent in the solution.
Halt et al. [17] define patentability by four requirements, focusing on the patenting
regulations in the United States. An invention should meet four identifiers:

1. Of patentable subject matter

2. Useful, rarely contested in most technical fields

3. Novel, as in not available in public prior art

4. Non-obvious, at least not to a person with ordinary skill in the subject art



11

The European Patent Convention (EPC) has a similar definition. Article 52,
paragraph 1 of the EPC [33] reads

European patents shall be granted for any inventions, in all fields of
technology, provided that they are new, involve an inventive step and are
susceptible to industrial application.

The analogy is quite straight-forward with that of the USC definition. The EPC
also takes a position regarding the patenting of software. Article 52, paragraph 2 of
the EPC reads

The following in particular shall not be regarded as inventions within
the meaning of paragraph 1: ... (c) schemes, rules and methods for
performing mental acts, playing games or doing business, and programs
for computers;

In the United States, the situation is not as clear. The United States Code Title
35 [36] does not have a mention on the eligibility of a computer program as the
subject matter of a patent. The eligibility becomes then very much a matter of
interpretation. This is also evident in the extensive case law history in the US courts.

The courts have invalidated numerous software patents which have sought to
declare proprietary quite fundamental functionalities of webpages for example. A
case example would be the Amazon OneClick patent, which was partly invalidated
in 2007, 8 years after issue. [7] The patent basically claimed ownership of storing
customer information upon login to enable the user to make purchases with a single
click using the existing customer information [17]. To a European observer, this seems
quite bizarre, given that the patent is very broadly targeting a common approach to
computer programming.

The reason to even consider patents issued in the United States might not be
obvious. KONE is not based in the United States and could easily run the applications
elsewhere as well, but US patents protect the holder of the patent from the import of
an accused invention by others. KONE has previously been reluctant to challenge the
validity of this regulation since whether or not the outputs of software are considered
import of the solution itself seems unclear.

Another kind of patent that exists in the United States is a design patent. Design
patents protect the shape and/or surface ornament of an article, which does not fall
under the protection of a utility patent. [17] As the solution proposed in this thesis
is not customer facing and has a very limited user interface based on the standard
console applications in Microsoft Windows, there is no need to consider a design
patent for this solution.

The third patent in existence in the United States is a plant patent. Plant
patents protect companies that practice the breeding and cultivation of plants from
competition. [17] Naturally, plant patents are not interesting in the context of this
thesis.

Existence of patents in the same field should also be studied. Even if it seems
that no parts of the solution can be patented in the area of application, in this case
the European Union, it is possible that patents still exist in other areas. Particularly



12

the United States is known for the existence of patent holding companies or non-
practicing entities. These are companies that base their business models on ownership
of patents and aggressive infringement claims without actually exploiting the patents
for manufacturing or service supply themselves.

The combination of numerous non-practicing entities and the lack of clear rules
within the patent legislation in the United States, makes it crucial to understand
the threat of infringing an existing patent, especially in that market area. As the
proposed solution is not to be used as a public facing application, the risk might
be somewhat mitigated. If the method used to produce the models is not publicly
disclosed, it might be quite difficult for any other patent holders to identify a possible
infringement of their patent, let alone prove its usage in a patent feud.

Another possible strategy against non-practicing entities is heavily used by another
Finnish technology company, Nokia. Nokia is known for routinely publishing company
research papers for inventions and developments that have not been deemed to be of
business value to the company itself. Doing so establishes the inventions as so called
prior art. A technical solution which can be found in prior art cannot be considered
new and as a result prior art is grounds for patent ineligibility or invalidation.

Halt et al. [17] have defined six kinds of prior art:

• The invention is published by another entity than the patent applicant

• The invention is publicly used by another entity than the patent applicant

• The invention is described in a patent by anyone

• The invention is on sale by anyone

• The invention is described in a published in print

• The invention is otherwise made available to the public

All of the above items constitute prior art in case of applicability anywhere in
the world before the effective filing date of the patent application [17]. However Halt
et al. [17] note that the inventor, joint inventor or another entity that received the
subject matter directly or indirectly from the inventor may use, sell or otherwise
make the invention publicly available less than one year prior to the effective filing
date of the patent application without having the subject matter be considered prior
art. This practice is known as the “grace period”. The applicability of the grace
period outside of the United States is not clarified by Halt et al. [17]. Upon review
with the patents department of KONE, the grace period was confirmed not to apply
in Europe.

KONE’s patent department was contacted to estimate the need to mitigate
the possibilities of a non-practicing entity to limit the use of the solution through
patenting. Their estimation was that the risk is not big enough to warrant measures
towards mitigating actions. If it seems that the solution will provide a considerable
competitive edge over the competition, measures to protect the source code as other



13

forms of intellectual property should be taken even if the solution is not patented as
such.

It is not only important to consider the intellectual property implications of the
software solution itself. As BIM is a method for communicating directly with the
customer, CAD software communication is also a matter of intellectual property
rights (IPR) management. The IPR point of view cannot be ignored when evaluating
the use of CAE component models to generate BIM component models. Sharing
BIM component models includes an inherent risk of sensitive or business critical
information leaking to competitors or otherwise malevolent parties. This risk needs to
be mitigated or eliminated. Because of the risk of information leakage, it is important
to value solution variants that display a robust method for managing the IP critical
parts of the models and information.

The requirement to protect the detailed data regarding the components is quite
well compatible with the requirement to keep the size of the models at a reasonable
level. There are then two reasons to simplify the geometry to a level where it does
not require as much space and at the same time protect the detail design. The
detail limitation can be achieved already in the input CAE models with the use of
simplified representations.

Two patent applications in the field of software communication related to BIM
were previously identified. The first dealt with 3D output from 2D input and as such
is not interesting from the point of view of this thesis. The second by Glunz et al.
[14] was very close to the scope of this thesis. Even though this patent application
has been rejected, the rejection is non-final. As a result the patent application and
its applicability to the solutions studied in this thesis should be subject to research.
Whether possible patent infringements should be considered is naturally of great
importance.

The solution proposed by Glunz et al. [14] is based on gathering 3D objects in
different formats and then creating a composite model based on these 3D objects
and a set of parameters and rules. The solution is using a dynamic link library
application (DLL or .dll) as the basis for its function. The solution can be applied in
the BIM and CAE software suites studied in this thesis. [14]

Halt et al. [17] describe the claims of a patent application elementary in the
protection scope definition of the applied patent. Claims are described in literature
as “metes and bounds” defining the rights of the patent holder to prevent others
from taking advantage of the invention the patent is being applied for. [17] Thus to
determine the strength of an existing patent against a solution under development,
the analysis should begin from the claims. If the solution under development does
not fall within the boundaries defined by the claims, infringement is not likely to
happen. Four claims in the patent application can be considered for the possibility
of patent infringement:

1. In claim 1 “receiving ... a set of a plurality of 3D object models for a plurality
of different manufacturers of 3D objects”

2. In claim 1 “wherein selected ones of the rules and parameters include physical
limitations and constraints for combining the set of received plurality of 3D



14

object models”

3. In claim 1 “into a new composite 3D object model for a new physical 3D object
or virtual 3D object that has not previously existed”

4. In claim 7 “the library application includes a Dynamic Link Library (DLL)
library application or a Dynamic Library Loading (DLL) application”

Point one seems to have a possible weakness as the patent application targets a
method where the 3D objects are explicitly from multiple different parties. If the
solution defined by this thesis were to use only objects by a single manufacturer
of 3D objects the patent might not necessarily apply. However, the wording in the
application requires analysis by legal professionals. Whether or not “plurality” means
exclusion of solutions making use of objects by only a single party is unclear.

Point two might also have a weakness depending on the meaning of “physical
limitations and constraints”. Location and orientation information is likely needed if
anything else than software communication of components only is implemented. An
assembly is not easily created without this information. If physical limitations and
constraints are defined in a narrow fashion where they would mean a relationship
between actual components rather than simply their location in an abstract coordinate
system, a weakness might exist.

Point three contains an interesting possibility for a weakness. In the scope of
this thesis, the purpose is to replicate an existing assembly instead of combining
existing objects into a completely new assembly. It seems that such a solution would
not fall inside the boundaries defined as creating “[a] virtual 3D object that has
not previously existed”. As long as nothing new is created, infringement should not
happen.

Point four is the most technical of the four identified items. The solution proposed
by Glunz et al. [14] is based solely on an approach which takes advantage of a
Dynamic Link Library or Dynamic Library Loading application. In case the solution
proposed by this thesis can be executed without making use of such applications, an
infringement can be considered very unlikely.

The fact that the patent application by Glunz et al. [14] exists provokes consid-
eration over the patentability of the solution selected in this thesis. Particularly if
the custom software solution is selected and can be implemented without risk for
infringement of the patent application by Glunz et al. [14], a patent by KONE would
make the field of possible solutions quite difficult for the competition.

Software solutions making use of commercial software suites usually do not contain
such an amount of room for circumventing a patent since the APIs of the software
suites are usually somewhat restrictive. Since importing of an accused invention
could be argued to include using the solution outputs in the United States, a patent
could make even a global impact to the competition’s ability to utilize a similar
approach.

As the patent application by Glunz et al. [14] has already been rejected, applying
for a new patent with similar claims does not seem feasible. Although the rejection is
not yet final, the solution seems to be not of patentable subject matter. The patents



15

department of KONE also commented that the custom communication solution
proposed by this thesis may not contain a novel or non-obvious step compared to
the patent application by Glunz et al. [14]. Applying for a patent for the custom
communication solution is then abandoned. The acceptance of the patent application
seems quite unsure and the value of patenting the solution does not seem to be large
enough to justify investing the time and money on an unsure success.

2.4 Software Development
To meet the requirement of engineering a prototype of a custom software commu-
nication solution, also software development approaches found in literature were
reviewed. Given the importance of different software solutions to the society of today,
there has naturally been extensive research on the subject.

The concept of software engineering was created already in 1968 in a NATO
science committee supported conference [21, 26, 32]. The conference found that a
“software crisis” existed [32]. This crisis meant that software production was not able
to reach acceptable results in a large scale [21]. As a result, there was a “software gap”
[32], a gap between the achievements of software production and what was actually
expected [21]. It was then proposed that the solution would consist of applying tested
engineering practices to software production or “software engineering” [32, 21].

The importance of approaching software development in a systematic fashion
can be seen in the periodically recurring Standish study, which looks into software
projects in large, medium and small companies in the United States [21]. For example
in 2012 the study reported that 18% of the software projects studied never reached
implementation. Additionally 43% of the projects saw challenges in budget, schedule
or scope upon implementation. [21] In some years the results have been as high
as a total of 67% of failed and challenged projects [42]. These numbers seem very
alarming. If 2/3 projects indeed do fail completely or are challenged in any of the
three areas, the prognosis for this development is not good either.

Two studies on software project cancellation by El Emam and Koru [13] and
Sauer et al. [42] do challenge the numbers in the Standish report. El Emam and
Koru [13] found that 15,5% of studied projects were cancelled in 2005, with 11,5% in
2007. This difference was not statistically significant compared to the sample size
[13]. The definition of cancellation was binary, a project was considered cancelled if
it did not deliver any usable functionality by the first release [13].

El Emam and Koru [13] also found that of the delivered projects, between 16%
and 22% were unsuccessful because of performance based issues. El Emam and Koru
[13] found the total of between 26% and 35% for cancelled plus unsuccessful projects
quite high. The article also postulates that the sample projects are actually likely to
perform better than the software industry as a whole. The article finds reasons like
selection bias of unusually skilled respondents in implementation of good software
engineering practices and focus on smaller projects. [13]

Similarly, Sauer et al. [42] found that 9% of the projects studied were abandoned.
The definition of an “abandoned project” is not clearly defined, so it is difficult to
compare the results with those of El Emam and Koru [13]. Sauer et al. also found



16

that 23% of the studied projects were either budget or schedule challenged [42]. Sauer
et al. [42] do not define any indicators for an unsuccessful product like El Emam
and Koru [13] did, so this study cannot be used for direct comparison.

However, the study by Sauer et al. [42] also indicates quite different numbers
for unsuccessful projects than the Standish report. As high as 67% of the studied
projects were found to be delivered close to budget, schedule and scope expectations
[42]. It would be very interesting to see the quality perceived by the customer also
being analyzed when seemingly two thirds of the projects are successful.

Looking at studies like this, the importance of taking their learnings into account
cannot be ignored. The lessons taught by the failures in contemporary software
projects should be closely studied in order to avoid repeating them. Even though
the sample El Emam and Koru [13] studied for the reasons of project cancellation is
as small as 18, their findings should still be studied to avoid similar traps. El Emam
and Koru [13] found 11 reasons for cancellation (in order of occurrence frequency):

1. Senior Management was not sufficiently involved (33% of cancelled projects)

2. The scope and requirements of the project were changed too often (33%)

3. The project was poorly managed (28%)

4. The project went over budget (28%)

5. Technical skills were lacking (22%)

6. The developed system was obsolete by time of release (22%)

7. The project went over schedule (17%)

8. Technology was too new for implementation (17%)

9. The project was insufficiently staffed (11%)

10. There were critical quality issues (11%)

11. End users were insufficiently involved in development (6%)

It is important to note that there are multiple reasons for cancellation that are
not root causes. In root cause analysis, knowing how and what happened is merely
a starting point, the actual crux is why it happened [40]. For example items 2, 4,
6, 7 and 10 are not root causes, so they are not of much use when planning a new
software project. Planning to not surpass the budget is not exactly revolutionary.

Instead, attention should be turned to studies such as the one conducted by
Lehtinen et al. [26]. This study looks to utilize root cause analysis, or identification
of causality between project failure causes. By doing so, the study seeks to not only
list generic causes for abandoning a project, but also to explain why these generic
causes arose.

Lehtinen et al. [26] start by citing a wider range of causes for software project
failures from a previous study conducted by McLeod and MacDonell [28]. McLeod



17

and MacDonell [28] also categorize these causes in four groups: causes related to
people, methods, tasks and environment. With the categorization, a closer look at
the possible root cause is already achieved. Lehtinen et al., however,take the root
cause analysis further. The causes divided into four categories are shown in Figure 3
on page 17.

Figure 3: Summary of the common causes of project failures [26]

Lehtinen et al. [26] explain their approach by stating that the previous literature
has not paid much attention to the interrelations of the different causes, let alone
their causality relations. Lehtinen et al. [26] claim that the software processes cause
the engineering problems to be causally related to one another. They continue by
claiming that the study of these causalities is beneficial in avoiding these failures in
future projects.

Root cause analysis (RCA) is a method commonly implemented in many tools
related to process development, such as Six Sigma and CMMI [26]. Rooney and
Heuvel [40] describe RCA as a method used to identify the answers to questions
what, how and why related to a specific problem. They also define RCA to include
recommendations for process development to prevent the issue from recurring in the
future [40].

The focus of Lehtinen et al. [26] was specifically on so called bridge causes. These
are the causes which connect one process area with others. In addition to the bridge
causes, the article attempted to identify the most obvious causes to target in process
development. [26] The article concluded, however,that prevention of software project
failure requires a case-specific analysis [26]. Even so, a closer look at the results of
Lehtinen et al. [26] discloses a number of highly likely causes in case of a software



18

project failure.
Software engineering is seen in the literature as an extension of engineering sciences

in general, but also other opinions exist. Mohaptra [30] notes that the software
industry needs to be studied separate from the manufacturing industry because of
fundamental differences between these branches of industry. Even if results have
been achieved by applying for example the engineering practices from mechanical and
manufacturing industry, the comparison cannot be made directly. Productivity of a
manufacturing industry is determined by technology, human resource, competence,
skill of management and capital, whereas software development processes can be
productive and successful without large amounts of capital and high-level technology
[30].

Therefore, to ensure a productive and successful software development project,
one cannot draw conclusions of successful methods from the way manufacturing
industry functions. [30] This is especially important in this type of a study where
KONE is an established player in the manufacturing industry and the internal KONE
processes may not be applicable in this prototype development.

2.5 Programming Languages
Programming languages evolved to improve the productivity of software developers.
Early software implementations were written either in machine code or very low-level
programming languages such as Assembly. The resulting software was both restricted
to a certain computer architecture and quite difficult to learn because the individual
instructions need to be written explicitly. [39, 6] Numerous programming languages
were created during the late 1950s and the 1960s, as research sought to provide an
answer to this problem [39].

As the software engineering problem of this thesis is focused on APIs that allow
the use of Visual Basic .NET as well as C] .NET, this thesis will focus on these
two programming languages. To be exact, PTC Creo does not contain a C] API,
but one of its APIs can be leveraged directly using also other languages. Although
PTC Creo also provides officially supported APIs for C, C++, JavaScript and Java
on top of the languages mentioned above, Autodesk Revit only provides officially
supported APIs for Visual Basic .NET as well as C] .NET. Shells for Python and
Ruby are maintained purely by third parties. The shells are then unfeasible for use
in business-critical solutions in a global enterprise.

Purdum [38] notes that some critics propose that “C] is the result of Microsoft’s
stubbornness in refusing to promote a language it did not develop”. Purdum then
goes on to defend Microsoft that the major reasons for developing this programming
language are type-safety of the programs written in C] and the managed environment
the code is run in. While Purdum’s arguments are sound, the criticism is probably
not completely off-target either. After all, Microsoft is a publicly traded corporation
looking to gain market shares and profits, so it does seem convenient for the company
to promote their own developments over others. Haukilehto [19] notes that C] was
developed as a “perfect language” as Microsoft and Oracle ran into conflict over the
extensions to the Java Virtual Machine (JVM).



19

According to Nagel et al. [31], C] is considerably easier to learn than C++ and
comparable in difficulty to Java. One could add C as another language that is more
difficult in nature to a beginner. While the syntax of C] is similar to C, memory
management is considerably easier because of the garbage collection functionality that
comes with the .NET Framework. C++ offers some optional memory management
tools such as constructors and destructors, while .NET Framework handles most of
the memory management tasks automatically, whereas C requires the programmer to
completely manually implement these functionalities. Arguably, memory management
is the root cause for most of the mistakes in a C source code created by a beginner.

It should not be implied that C] cannot be a good beginner language because
it does give a kick start to easily get simple programs done using the standard
libraries of the .NET Framework. Regardless, it is important to understand the
concepts of lower-level actions that the standard libraries take care of. This means
that understanding the basics of C or C++ does in general prove advantageous to a
developer working with source code written in C].

When discussing computer programs, the subject of performance and resource
requirements is always topical. Several sources [38, 31] state somewhat vaguely that
C] was designed for performance as well as for other factors. However, the use of the
CLR alone means that the performance of software written in C] cannot achieve the
level of performance seen with similar software written in lower-level languages, such
as C++ [31].

The performance restriction is somewhat intuitive. As source code written in C]

is managed by the .NET Framework and compiled just in time (JIT) for each time
the program is run, there is a built-in resource overhead associated with running
programs written in C]. In addition, as working in C] is based on the standard
libraries, the abstraction level might hide machine instructions that are unnecessary
in the task at hand. Working on a lower abstraction level allows the programmer
to manage the program closer to the machine instruction level, enabling constantly
requesting only the actions that are needed.

However, as Nagel et al. [31] argue, this applies to developments where the
time-criticality or performance level is measured in milliseconds and machine cycles.
The implementation proposed in this thesis is not anywhere near on the level of these
types of performance requirements, so the methodology of this thesis does give a
lower weight to the performance of the software solution from a language selection
perspective.

2.6 Solution Variant Evaluation
While Mohaptra [30] established that the manufacturing industry methods for product
development cannot be directly applied to software engineering, manufacturing
industry methods may provide valuable insight to evaluating software solutions as
well. As Bosch et al. [5] note, the engineering process has lost popularity in software
engineering, leading to a plurality of issues. These issues include for example lack of
process discipline, mismatched engineering processes and insufficient pre-iteration
cycle work.



20

The findings by Bosch et al. [5] are aligned with the findings by Sauer et al.
[42] as well as El Emam and Koru [13]. The software engineering field does not
seem to have matured to the level of older technical fields in the engineering process.
Consequently, looking into technical fields where the engineering process has been
held to a high value might provide valuable tools for solution variant evaluation.

Pahl et al. [35] provide one of the more extensive studies into systematic engi-
neering design. Their work is mostly focused on engineering design in the field of
mechanical engineering. Pahl et al. [35] establish a two phase evaluation paradigm.
First, viable solution variants are selected from a large field of possible variants by
elimination and preference. After the field of possible solution variants is narrowed,
actual evaluation is performed.

Selection is done by eliminating impractical solution variants by assessing compat-
ibility with the overall task at hand, requirements list fulfilment, principle realisability
and permissible costs. Preference items, such as safety, ergonomy and company
preference for example related to immaterial property conditions are also considered
in the selection after the initial elimination. [35]

Related to this study, such a selection of solution variants does not seem important
because the field of possible high-level solutions identified is not very extensive. When
assessing the details of the custom software solution, even a selection phase might
become feasible. As a result, this study will not provide a selection of solution
variants on a concept level, but instead the list of solution variants is defined directly.

Pahl et al. [35] present two ways of evaluating the selected solutions, the Cost-
Benefit Analysis and Guideline VDI 2225. Regardless of which method of evaluation
is used, the process contains somewhat similar steps. The evaluation process begins
with identifying evaluation criteria, based on a set of objectives for the solution. Pahl
et al. [35] are ambiguous on the differences between the requirements list, objectives
and general design guidelines, but the differentiation may be made so that objectives
combine the function specific requirements with the general guidelines encompassing
the system of which the function is a part.

According to Pahl et al. [35], the Cost-Benefit Analysis requires a hierarchical
objective tree at this stage, based on the requirements list. The objective tree is
arranged so that different objective areas are on the horizontal axis. Subobjectives
of each area run down vertically with the more complex on top. The evaluation
criteria are then defined using the simplest subobjectives. Benefit of the objective
tree is the facilitation of taking all decision-critical subobjectives into account. VDI
Guideline 2225, however,proposes an approach where a non-hierarchical list of criteria
is assembled based on the technical details as well as minimum demands and wishes.
[35]

To be able to evaluate the different solution variants, one must begin identifying
the criteria which are used in this evaluation. Pahl et al. [35] approach the evaluation
from a mechanical engineering standpoint, so the headings that they present cannot
be directly implemented in this thesis, but must be applied with due consideration.
Pahl et al. [35] propose the use of objectives as the basis for establishing the
evaluation criteria. The objectives can be distributed into general and task-specific.
The general objectives are fulfilment of the technical function, attainment of economic



21

feasibility and the observance of safety requirements [35]. These general objectives
apply partially also to software engineering problems, although the observance of
safety requirements is not as relevant as in typical mechanical engineering.

Pahl et al. [35] also propose several headings for the task-specific objectives.
Safety as an objective can be applied also in the scope of this thesis if considered
in the wider sense of availability and reliability, as these are very relevant aspects
for software as well. Ergonomics in the context of human-machine interface is quite
similarly a good objective header. Production in the sense of implementation, quality
control, operation, maintenance, expenditure and recycling in the sense of usability in
other contexts on top of the initially identified task and integrability to other systems
can also be accepted. Headers such as assembly and transport should, however,be
discarded as irrelevant in the context of this thesis.

Independent of the used method, Pahl et al. [35] propose several conditions that
the objectives should satisfy. Naturally the objectives should cover the requirements
as completely as possibly. In addition, the objectives should be formulated in such a
way that valuation of one objective does not affect the valuation of another. Otherwise
one objective might have weight that is not obvious to the observers. Pahl et al.
[35] also note that the objectives should be quantitative whenever possible and as
concretely qualitative as possible when quantitative objectives cannot be achieved.
According to Pahl et al. [35] evaluation criteria derived from the objectives should
also be formulated in a way that attributes high value to positive evaluation.

Even though being a study for a software solution, these conditions for the
objectives should be followed in this study as well. However, at this stage of
evaluation criteria identification, it does not seem possible to identify either the
Cost-Benefit Analysis or the Guideline VDI 2225 as the optimal choice for this thesis.

Upon successfully identifying suitable evaluation criteria, weighting of these
criteria should follow [35]. Weighting means defining a relative value for each
criterion or objective so that the importance of each objective relative to the others
can be determined.

In the Cost-Benefit analysis, criteria or objectives are weighted stepwise according
to the objective tree. The weights of each branch add up so that the overall weight of
the solution is 1 (or 100). [35] The weight of a subobjective then defines the amount
of value that subobjective adds to the overall solution.

On the other hand, when following Guideline VDI 2225, weightings are rarely
used. Only in cases where some objectives have significantly higher values compared
to the others, multipliers such as 2x or 3x can be used. Normally all of the objectives
have similar value in the evaluation. [35]

Related to this study, it seems that this part of the Guideline VDI 2225 method
might be more feasible. Since the objectives list should not be very long or complex,
it seems that a nonhierarchical, mostly unweighted list of criteria might be a viable
solution. However, more information about the later stages for both methods is
required.

After evaluation criteria has been identified and weighted, the Cost-Benefit
Analysis includes one more step [35]. The objectives or criteria are assigned a
preferably quantifiable parameter. For example, when the objective for building an



22

internal combustion engine is light weight construction, the parameter to be followed
could be power produced divided by mass of the engine. When following the VDI
2225 Guideline, this parameter definition is ignored and assessing values for the
evaluation criteria occurs immediately after the possible weighting of the criteria [35].
The evaluator should also understand how the value function for a certain evaluation
criterion behaves. The value function can be linear or exponential, increasing or
decreasing. [35] The value function assigns correlation between the parameter and
the value scale. In case Guideline VDI 2225 is used, the parameters may not be
assigned at all [35]. Particularly qualitative evaluation criteria may make for difficult
parameter assignment, but understanding the concept of a value function is still
relevant to make proper evaluations.

Figure 4: Scale of values in Cost-Benefit Analysis and guideline VDI 2225 [35]

Value assessment for different objectives or criteria is the next item in the process
description by Pahl et al. [35]. In the case of Guideline VDI 2225, the variants are
valued on a scale of zero to four. The Cost-Benefit Analysis method implements
a scale of zero to ten. Pahl et al. note that while the granularity provided by the



23

Cost-Benefit Analysis might be beneficial in some cases, the rougher scale in use for
the Guideline VDI 2225 is often sufficient. The value scale for both the Cost-Benefit
Analysis and Guideline VDI 2225 is presented in Figure 4 on page 22.

Pahl et al. [35] continue that the high resolution valuation in the Cost-Benefit
Analysis might often be more difficult because the required thorough analysis might
not even be possible at this stage. If one or even multiple solution variants lack a
concrete prototype, valuing the properties of an abstract concept might be best done
on a simpler scale. It seems that the risk of losing information in such a case is low
compared to the added simplicity.

For this study, the method of Guideline VDI 2225 again seems more suitable
to follow than the Cost-Benefit Analysis. Seemingly the solutions analyzed by this
study force the observer to allow for qualitative objectives and partly vague value
definitions. Thus, the shorter scale proposed by the Guideline VDI 2225 seems more
feasible.

When the different solution variants have been valued for each objective, Pahl
et al. [35] propose that the overall value is determined next. The overall value is
often calculated by simple addition, which Pahl et al. [35] point is by definition
only acceptable in cases where the independency condition is met. Even when the
condition is not completely met, Pahl et al. [35] argue that the addition method is
good enough. It seems easy to agree with their conclusion. The logical assumption
is that by adding the points valued for a variant in different objectives or criteria,
the best solution variant should be obvious.

Guideline VDI 2225 also proposes that at this stage, the economic rating based
on manufacturing costs should be determined [35]. In the case of a software solution,
capital expenditure (Capex) and operating expenditure (Opex) should be used instead
of manufacturing costs. Capital expenditure includes all costs that are related to
making the solution ready to use. These can be costs related to physical assets, for
example servers or workstations, but also development costs required to prepare the
solution as well as legal costs for patents. [1] Capital expenditure is nonrecurring.
As such, if perpetual software licenses are bought, they can be considered Capex.

Operating expenditure in contrast includes the costs for operating the solution.
Operating expenditure includes for example the non-perpetual license costs of software
as well as the costs of running the software such as cloud costs. Also software
monitoring and support are included in Opex.

For the comparison of different solution variants, Pahl et al. [35] propose that
an economic rating and technical rating should be used separately, if the source
data allows for an estimate on the economic rating. Guideline VDI 2225 specifically
suggests that this economic rating could then be used on the other axis of an s-
diagram, or a strength diagram. For this purpose, the technical and economic ratings
should be calculated relative to the optimal solution and not simply as absolute values.
The Cost-Benefit Analysis, however, allows for simply looking for the maximum
evaluation [35].

Regarding the solution variants to be proposed in this thesis, it seems that the
economic rating might be possible to calculate with reasonable effort. Thus it seems
that adapting the method outlined in Guideline 2225 might be reasonable, because



24

the economic rating should be brought in as a variable every time possible.



25

3 Methods
In the previous chapter, BIM in general, the state-of-the-art of software communica-
tion between mechanical CAE and BIM and the software development methods for
creating the prototype benchmark as provided by other researchers were analyzed.
In the this chapter, the outcome of this analysis is arranged into methods used in
this thesis. The engineering design principles are applied to the scope of this thesis
by creating the requirements list and evaluation chart to be used in development
and comparison of the solution variants.

3.1 Requirements for the Software Communication Solution
As established in the literature review, the design manual by Pahl et al. [35] can
be used as a guideline of solution selection in the scope of this thesis. Although
Pahl et al. [35] originally based their book on engineering design in the field of
mechanical engineering, the general engineering themes are shared also by other fields
of technology. The proposed approach was not heavily in conflict with literature in
the field of software engineering, such as Mohaptra [30].

Pahl et al. [35] claim that at the core of a solution development and selection
should be a requirements list. This list documents the desired functionalities of
the solution in question and provides a basis on which to perform the evaluation
and verification of the solution. Pahl et al. [35] also propose following criteria that
the solution requirements established in a requirements list should satisfy. The
requirements should meet three criteria:

• Cover the needs for the solution as completely as possible

• Be defined to maintain their relative independency

• Be quantitative whenever possible

Independency in this context means that the evaluation of one requirement should
not directly affect the evaluation of another. If and when quantitative requirements
cannot be achieved, qualitative requirements should be defined in as concrete words
as possible.

The requirements list setup should be started with very generic demands on the
first step, such as “Enable Added Value in the Customer Process”. The demand
should then be iteratively reviewed until concrete requirements are found. Pahl et al.
[35] refer to the first step as “statement”. The statement includes five items:

• Communicate subcontractor building interface to the customer

• Enable added value in the customer process

• Provide a feasible investment

• Minimize the maintenance cost



26

• Enable IPR control

Based on the literature review, the most important task for a BIM object is to
provide communication between two parties. In the scope of this thesis, the most
important communication partner is the customer. Therefore the requirements listing
starts with communicating subcontractor building interface to the customer. If the
solution fails this requirement, further analysis is futile.

When the first point is revisited for the second step, referred to by Pahl et al.
[35] as “development”, the building interface can be divided into two parts. The
interface consists of geometry and parameter information:

• Communicate subcontractor building interface to the customer

– Communicate relevant geometry
– Communicate relevant parameters

The third step is “refinement” [35]. The items can further be divided by refining
the term “relevant” as something that is screened. If the information is not properly
screened, the customer will likely be overloaded with the amount of detail, which
increase model size and reduces performance. Including the refinement step, the first
item would look as follows with the numbered items as requirements to be included
in the list.

• Communicate subcontractor building interface to the customer

– Communicate relevant geometry
1. Communicate geometry in BIM compatible format
2. Screen amount of geometry detail

– Communicate relevant parameters
3. Communicate parameters in BIM compatible format
4. Screen amount of parameters

The same steps are for the second item in the statement list, “Enable added
value in the customer process”. Essentially this item means that the structure and
content of KONE’s BIM must allow the customer to fully utilize the tools enabled
by BIM use in general. As per the literature review and KONE sales organization
experiences, these tools include but are not limited to clash detection, standardized
material management and custom material management.

In the refinement step, clash detection requires that the components are individ-
ually identifiable in order to achieve meaningful results. If the components cannot
be identified individually, the clash will be detected between the main assembly and
the conflicting object. Since the main assembly can be several hundreds of meters
tall, such a result is not particularly useful.

Standardized material management allows the model to be viewed in a layered
way. For example all of the doors could be hidden from the model simply by hiding



27

that content category. The categorization can happen in the model classification
of Autodesk Revit, standardized classifications and especially the classification of
exports to the open IFC format. These categories are manipulated either directly in
the model properties or alternatively as parameter-value pairs of the model. The
refined requirements for standardized material management would be manipulation
of model category and manipulation of standard classification parameter values.

The refinement of custom material management translates to the possibility of
defining the main assemblies and components in a certain way. The definition allows
the customer to use for example naming based spreadsheet tools for model analysis.
This requirement has often been heard from the sales organizations. The customers
seem to routinely expect for example subcontractor models to be delivered with a
certain naming scheme. The custom material management doesn’t necessarily require
industry standards to be used, but can be based on any identification of the model.
Typically custom material management is not used for model manipulation directly,
such as hiding certain component types, but rather as an input for some customized
tool. The refined requirement for custom material management is manipulation of
model naming convention for both components and the main assembly.

The second item is spread out into different steps:

• Enable added value in the customer process

– Enable meaningful clash detection
1. Enable individual identification of components

– Enable standardized material management
2. On-demand model category manipulation
3. On-demand standard classification parameter value manipulation

– Enable custom material management
4. On-demand modifiable model naming convention

An implicit requirement for the solution is that the investment needs to be feasible.
The feasibility of the investment is often related to how well the existing processes can
be enhanced. The different process enhancements are the development for investment
feasibility. One way to enhance a process is to simplify it. Process step elimination
often leads to significant reductions in operating costs and allows existing resources
to be spent better. The solution should preferably perform better than the current
method for achieving similar results. To make the solution a feasible investment for
KONE, the solution needs to also be easily scalable to the global organization of
KONE.

These developments can be refined further. The process step elimination should
be refined as eliminating manual process steps and streamlining the automated parts.
The performance should be better than with the current methods in terms of time
and infrastructure requirements.

Large-scale implementation can be refined to being able to respond to the amount
of yearly requests and being able to scale up at a reasonable price. The scaling costs



28

are quite interesting, because all companies are looking to grow their business. The
scaling costs then should not be restrictive, but the costs should relate mostly to
infrastructure instead.

The amount of yearly requests based on the orders received by KONE is measured
in hundreds of thousands. In 2016, KONE received orders for 158 000 new equipment
units [23]. Each unit can be assumed to account for at least 5 tendered units and
revisions combined. The refinement then is that the solution needs to be feasibly
able to support 800 000 requests per year. The cost of scaling the production up
should also be minimized.

The fifth item is spread out into different steps:

• Provide a feasible investment

– Simplify the process
1. Eliminate manual process steps
2. Streamline automated process steps

– Better performance than current solution
1. Perform better than the current manual process
2. Require less infrastructure than the current manual process

– Support large-scale implementation
1. Support 800 000 yearly requests
2. Minimize the cost of scaling up

Minimizing the maintenance cost is a multi-faceted requirement. In general, the
objective can be achieved either by reducing maintenance effort, simplifying the
scope of maintenance or reducing the unit cost of maintenance. In the development
step, these methods can be seen as minimizing the amount of items to be maintained
(effort), minimizing the amount of different item types to be maintained (scope) and
enabling the maintenance to be performed by different parties (unit cost).

The maintenance effort is an understandable factor in the total maintenance cost.
As the solution for software communication does not relate to the development of the
content as such, reducing the maintenance effort is based on preferably not requiring
duplicates to be kept.

Maintenance scope reduction essentially means that the items to be maintained
should be similar in nature. For example changes can be related to the application
source code or 3D model content. These two items are probably too different to be
handled by a single specialist. Instead, two different resources need to be used, often
leading to higher cost.

Enabling different parties to work on the maintenance might seem counter-intuitive
to the maintenance scope reduction. However, an important difference exists between
the two. Scope reduction means that several resources are needed to implement
changes, whereas enabling different parties to work on the maintenance means that
the solution is generic and owned by KONE so that maintenance work can be done



29

in-house or purchased from a variety of vendors. Inviting tenders openly tends to
lower the unit cost for maintenance.

The sixth item is spread out into different steps:

• Minimize maintenance cost

– Minimize maintenance effort
1. Minimize duplication of data

– Minimize maintenance scope
2. Minimize amount of different maintenance tasks

– Minimize maintenance unit cost
3. Enable the maintenance to be performed by different parties

BIM might provide an edge in the tightening market situation. As a result, IPR
management is a very important topic. The implicit requirement in IPR management
is naturally not infringing the patents, copyrights and trademarks held by others. In
total, IPR management can be developed into three items, not infringing the patents
of others, preventing others from using a similar solution and preventing others from
patenting a similar solution.

The refinement for an optimal solution in the sense of infringement is that it either
consists of completely original code or is licensed for use from others, making it legal for
use by KONE in the first place. Additionally, the solution should avoid infringement
of patents and copyrights held by others in both of these cases. Preventing others
from using a similar solution can be refined to being of patentable subject matter.

It is also important to restrict the competition from at least preventing KONE
from utilizing a similar concept with a patent. Describing a feasible solution in
enough detail in this thesis will constitute public prior art, rendering the said solution
impossible to patent by anyone. The novelty criterion for patentability described in
literature will not be fulfilled after publication of prior art.

The seventh item is spread out into different steps:

• Enable IPR control

– Avoid infringement of IPRs held by others
1. Consist of original code or be licensed for use from others
2. Avoid infringement of a patent or copyright held by another party

– Prevent others from using a similar solution
3. Be of patentable subject matter

– Prevent others from patenting a similar solution
4. Be possible to describe in enough detail to prevent others from patent-

ing a similar solution



30

Figure 5: Requirements list for communication solution based on Pahl et al. [35]

Finally, the requirements have been gathered. The enumerated refinements are
collected to a requirements list shown in Figure 5 on page 30. The items on the
requirements list have also been categorized to wishes and demands. The implicit
requirements 1, 3 and 13 are naturally demands. Also requirements 2 and 4 are
identified as demands because the customer is likely unable to incorporate KONE’s



31

BIM into their own if the file size is too large because of too much detail.
Requirement 5 is a demand because clash detection is widely recognized in litera-

ture as a standard benefit of BIM. Requirements 9, 11 and 15 are defined as demands
because they significantly enhance KONE’s current approach to implementing BIM.
Even if only these items are achieved by implementing a new solution, the investment
might still be feasible. Their value compared to the rest of the requirements is then
remarkably higher.

Requirement 19 is an absolute demand. Time and money consuming patent
infringement court cases could be in order if the selected solution is implemented
into production and only then deemed to infringe a patent held by someone else. In
the best case scenario, time and money is lost but losing the patent argument could
lead to a need to fundamentally change the production processes in a short period of
time.

The rest of the requirements are defined as wishes. Issues solved by solutions
fulfilling requirements 6 through 8 can also be solved quite easily with separate tools
used in the BIM process. However, including them in the software communication
solution would naturally simplify BIM related tasks and reduce work that could be
automated.

Requirements 10 and 12 provide a solid enhancement to the BIM process and
requirement 14 ensures flexibility in scaling. However, these requirements are not
critical provided that the solution is otherwise feasible enough. Requirements 16
and 17 relate to making the maintenance of the solution as easy and affordable as
possible. Otherwise highly valuable solutions can justify a high maintenance effort.
However, low-effort maintenance is usually heavily preferred.

Requirement 20 is considered a wish because software solutions are not usually
of patentable subject matter globally by definition. As described in literature, the
European Union does not issue patents to inventions consisting only of a software
solution. Even though some regions such as the United States issue patents also for
software, this is not enough to constitute a demand level requirement. Requirement
21 is a demand, because competitor patents would prevent KONE from utilizing the
selected solution in the future, causing fundamental changes to the systems.

3.2 Comparison of Solution Variants
To determine the optimal solution for the research problem of this thesis, a comparison
system is required. Pahl et al. [35] propose selecting solution variants for evaluation
by means of elimination and preference when faced with a large number of solution
variants. In this case, solution variants were already limited to four in the initial
study phase. As a result, evaluation of the solution variants can follow directly.

Pahl et al. [35] presented two different methods for evaluating solution variants,
the Cost-Benefit Analysis and the Guideline VDI 2225. Based on the literature
review, the Guideline VDI 2225 is found to be more suitable for the purposes of
this thesis. The decision to use Guideline VDI 2225 is based on multiple factors.
Seemingly Guideline VDI 2225 is better equipped to be used in the evaluation of
abstractions, whereas the Cost-Benefit Analysis might be more suitable, when the



32

solution variants are more concretely defined. For example, the vagueness of the
solution variants make the 0-4 scale used in Guideline VDI 2225 more feasible than
the 0-10 scale of the Cost-Benefit Analysis. The valuation of variants with a greater
resolution is not likely to provide any added value in this case, because the objective
of achieving adequate software communication is quite vague.

As proposed by Pahl et al [35], five steps are taken in the evaluation process:

1. Identifying evaluation criteria based on objectives

2. Weighting of the evaluation criteria using multipliers

3. Assessing values to the different criteria

4. Determining overall value of the solution variants

5. Comparison of concept variants

According to Pahl et al. [35], the step for compiling and assigning parameters to
each evaluation criteria can be omitted when using Guideline VDI 2225.

The literature review identified eight relevant objective headings:

• Fulfilment of technical function

• Attainment of economic feasibility

• Reliability and availability

• Human-machine interface

• Operation

• Maintenance

• Expenditure

• Reusability and integrability

The objectives and the derived evaluation criteria should fall under these headers.
In the technical function fulfilment, performance of the solution is quite important.
Performance in this case is defined as the time it takes to repeat a PTC Creo assembly
as a Autodesk Revit assembly. For a partial conversion solution, the time to convert
an individual component is also calculated as an average of the components of a
system in order to evaluate the feasibility of keeping the current manual process for
creating BIM.

The importance of performance of a solution is obvious, as it naturally is more
pleasing to the users not to wait for the models for extended periods of time. KONE
also has an automated standard process with high volumes. The solution needs to
enable automation and rediuction of the infrastructure requirements. Furthermore,
following the throughput volumes of the solution is also important. A high evaluation



33

will be awarded to a solution that works quickly and can be easily automated. A
quick solution in this context is defined as one that is able to achieve the full software
communication for a system level model in less than 10 minutes.

Attainment of economic feasibility should be related to the specified amount of
yearly requests. A solution that receives a high evaluation in economic feasibility
must have a low operating cost compared to the development and implementation
cost. Such a solution will quickly bring returns on investment.

Cost is always an interesting factor in any kind of development and the expenditure
should be considered next to the feasibility. When planning development based on
conceptual design, achieved benefit and added value is weighed against the cost
of developing and operating a solution. The solution cost is divided into capital
expenditure (Capex) and operating expenditure (Opex). Capex is easy to understand
as the price of purchase, or the initial cost of implementing a solution. Opex is
the cost related to the rest of the lifecycle of a solution. Everything that has been
developed also needs to be kept in operation and maintained until it is finally retired,
possibly at some cost as well.

An off the shelf commercial solution typically comes at a higher capital expenditure,
but with a smaller and much more predictable operating expenditure. In an in-
house application such as the one prototyped in this thesis, capital expenditure is
typically low, but operating expenditure is likely to be higher and may include higher
unpredictability. As the owner of the solution is inside the company, there is more
risk of running into trouble with newer software versions and different requirements
than with a commercial product.

Scalability of a solution is also evaluated. In case production volumes need to be
scaled up, a higher evaluation is given to a solution which can be scaled at little else
than the increased infrastructure costs. Ideally, enhancing application hardware will
directly lead to better solution metrics.

Reliability and availability of the different solutions might not be a good evaluation
criterion even though it is interesting from an application development point of view.
Similar levels of reliability and availability should be possible to implement regardless
of the solution. As a result, all of the variants would receive a similar score, rendering
the criterion obsolete.

Human-machine interface of the solution should be as simple as possible. BIM
is simply an output for KONE so the process phase should not cause extra effort.
All three variants can be implemented in a way that does not require more human
interference than the click of a single button for the software communication itself.
In the component conversion variant, an interface is required to create the main
assembly BIM, but this process was excluded of the scope of this thesis.

Genericity of the solution falls under the reusability and integrability header.
The selected solution should be applicable to as many different conversion scenarios
as possible. To receive a high genericity evaluation, a solution variant must not
be dependent on any modeling methodology defined for creating the CAE model.
According to Pahl et al. [35] evaluation criteria should be positively formulated, for
example “few modeling requirements”.

Having a clearly generic solution available for conversion is essential, since KONE



34

is only in the process of defining the modeling methodology and approach to properly
model the system level of their products. This methodology will certainly see changes
and adjustments during the implementation phase.

If these changes can be made without a need to make large adjustments to the BIM
conversion solution, the change process remains more agile. If the BIM conversion
solution needs major rework for each iteration of the modeling methodology, the
increased cost and schedule implications are a major hindrance to the R&D time to
market.

Even when a stable modeling methodology is achieved, a generic conversion solu-
tion remains vital to the overall performance of KONE. The modeling methodology
is not likely to address other than a quite high-level guideline. Great variety exists in
the product portfolio of KONE, which will likely result in quite versatile approaches
to modeling on the detail level. If a highly generic solution can be achieved, the risk
of facing surprises with conversion of different kinds of models is naturally limited.

The integrability of the solution is an evaluation objective in its own right. The
research for a conversion solution is part of a bigger ecosystem development ongoing
at KONE. An ecosystem is an interconnected web of tools and processes, so the
level of integration is another very important objective when evaluating the different
solutions. The purpose of the ecosystem development is to integrate the different
processes and tools used in the engineering process for a product in order to reduce
the throughput times for both R&D and custom engineering processes.

To achieve a high evaluation for integrability, a solution must display a clear
method and interface for input and output to the process. These interfaces should
preferably be possible to customize as well as implement with an enterprise service
bus (ESB) approach. In a best case scenario, the interfaces exist not only for the
conversion solution as a whole but also for the individual parts that make up the
solution.

Although being a factor in the operating expenditure of a solution, emphasis
should be placed on the maintainability of a solution. The maintainability consists
of costs in terms of time and cost of maintenance in case of product changes and
in case of platform changes. Product changes in this context mean changes to the
content that is to be communicated from one piece of software to another. Platform
changes in this context mean for example yearly migrations to a newer version of
PTC Creo or Autodesk Revit and the implications of those changes.

As there are different factors affecting the cost levels for a solution, care must be
placed into cost comparison between different solution variants. Not only are the
absolute amounts important, but a believable and well defined development plan
and a clear proposal for the required maintenance and support for the solution are
required for a high evaluation. As the research is focused on a critical part of the
engineering process, the capital expenditure is less important than the operating
expenditure.

The intellectual property rights that relate to a solution are also an important
factor to consider. If the solution is owned by KONE and and it is of patentable
subject matter as described in literature, the solution could provide an edge compared
to the competition. To achieve a high evaluation, an optimal solution fulfills both of



35

these categories. Even if it cannot be patented, IPR ownership is still valuable as
changes and customizations can be made at will. A poor solution in this sense is
owned by someone else and in the worst-case scenario subject to an existing patent.

Once the evaluation criteria have been identified, weighting of the evaluation
criteria is the next step in the systematic approach described by Pahl et al. [35].
Multipliers are used to express pronounced differences in importance of evaluation
criteria in Guideline VDI 2225. Of the defined evaluation criteria, low operating
expenditure and few modeling methodology requirements are seen to be of critical
importance. Therefore multipliers (2×) are added. The value determination and
comparison of the solution variants is performed in the Results and Discussion
sections of this thesis. The evaluation criteria to be used are presented in Figure 6
on page 36.

3.3 Software Engineering the Custom Solution
As existing off-the-shelf software and features in PTC Creo may not be able to accu-
rately address the specific needs that KONE requires of the software communication
solution between PTC Creo and Autodesk Revit. Therefore a prototype for a custom
solution was developed. Special emphasis is placed on engineering the prototype
of the custom solution in this thesis in order to benchmark the existing solutions
and additionally determine the feasibility and required effort of implementing this
type of a solution in full. This subsection concentrates on the methods used in the
prototyping task.

Two different languages were considered for the prototype development. The
Application Programming Interfaces (API) of PTC Creo and Autodesk Revit both
directly support C] .NET and Visual Basic (VB) .NET. The languages were evaluated
and then selected based on evaluation criteria.

C] .NET is a high-level, object-oriented, class-based programming language
developed by Microsoft in support of the launch of their .NET framework. C] .NET
is roughly based on C and C++ with special additions to the functionalities.

VB .NET is also a high-level, object-oriented language developed by Microsoft in
support of the launch of their .NET framework. VB .NET is an upgrade of classic
VB, created to allow support for the new .NET framework. VB .NET is based on
the latest “legacy” implementation of the original language, VB 6.0 or VB6. Despite
being based on VB6, VB .NET should perhaps be considered as a different language
altogether [43, 10].

Because of this, legacy source code written in VB 6.0 does not compile in VB
.NET [43, 10]. It should be noted that while conversion of legacy VB6 projects can
be done semi-automatically using Visual Studio .NET and its conversion wizard, the
conversion is not perfect and should still be checked manually [10].

Davis [10] has established some guidelines to be followed in order to successfully
convert projects between VB6 and VB.NET. These guidelines contain for example
critically assessing whether a portion of the application makes sense in VB.NET,
rewriting the source code so that native features of VB.NET are taken advantage of
and finally redesigning the application architecture so that XMLs and other ways



36

Figure 6: Evaluation chart for communication solution based on Pahl et al. [35]

to facilitate interoperability between different pieces of software becomes easier to
apply.

It should be noted that KONE has on some occasions chosen to start from
scratch rather than attempt to convert an existing application. This has been caused
partially by the difficulties in the conversion and partially by the advantages gained
by re-engineering the solution completely. Proposed changes which could not have
been done with the VB6 application architecture could then be taken into account
in the re-engineering.

Although Davis [10] argues that VB .NET is a simpler language to start with
and thus might be a suitable choice for this type of a development, VB .NET has not
been specifically engineered from ground up to be used with the .NET Framework.



37

The C] .NET programming language was selected based on Autodesk Revit and
PTC Creo providing full API support, developer’s previous C and C] experience and
company’s related BIM developments being written in the same language. The APIs
would have provided support for VB .NET as well and the developer had similar
experience in VB but the related BIM developments determined the selection of C]

.NET.
Despite the impression several sources [10] give, it is possible to do prototype

level .NET software engineering without the Integrated Development Environment
(IDE) that Microsoft provides for this use, Visual Studio (VS) .NET. Other sources
[45, 38] actually point out that Microsoft also provides a free IDE called Visual C]

Express (VCE), although this IDE contains the restriction of only being able to
handle C] and not any of the other languages supported by the .NET Framework.

The options are not limited to these two either. The initial development version of
the project was programmed with the open source IDE SharpDevelop, which proved
to be a fairly positive experience. However, VS .NET proved more advantageous
because SharpDevelop only supports .NET Framework up to version 4.5.1. VS also
provides support for other languages than C], for example VB. The debugging
environment could be better defined to work with PTC Creo and Autodesk Revit to
achieve a quicker debugging process.

An integral part of a modern software development project is some kind of a
version control system (VCS) [8]. The purpose of using version control software is to
ensure quality of the development even with a geographically distributed development
team, and to allow for merging different versions of the source code [8, 11]. Merging
allows combination of the work of each of these developers in a semiautomated
fashion. Merging is important especially when two or more developers are working
on a different part of the same file. [8]

De Alwis and Sillito [11] postulate that the VCS selected is essential to the
organization of the whole development process. They compare the impact that the
VCS has on the arrangements of the projects to other auxiliary tools, such as the issue
tracking system. The selected software development process should be evaluated in
combination with the selected VCS to determine the compatibility between these
items.

Basically VCS can be arranged in two different ways. The repository of the VCS
can either be centralized (CVCS) or decentralized (DVCS). [8, 11] Centralized VCSs,
like Subversion have been the tool of choice before, but the DVCSs have been gaining
popularity already a number of years ago [11].

A CVCS would have a single central stable repository, with limited number of
people having been granted the rights to commit changes to this master repository.
Typically the structure of a CVCS repository will consist of a “trunk”, the part where
the changes will be committed, “branches”, which can be used for stable releases,
or developments outside of the trunk and “tags”, which are most commonly used
for releasing. [11] The branches can also be grown out of the trunk for example to
create technological experiments or addressing larger bugs outside of the trunk. Tags,
however, are more like status checks of the code and are not usually used for actual
developments.



38

On the contrary, a DVCS does not have a master repository like the CVCSs.
Instead, every copy of the repository becomes a master repository that contains the
commit history available. [11] The importance of branches grow larger in the DVCS
technologies, since all changes are done in the branches and only then pushed to the
main development.

Since there are no central master repositories, community often seeks to choose
the most successful branches as principal. [11] De Alwis and Sillito [11] mention the
Linux kernel and its principal branch, the branch of Linus Torvalds. Other branches
may coexist to provide sandbox, testing and validation areas for the changes to be
proposed or implemented. As a side product of using a DVCS, de Alwis and Sillito
[11] mention the multiplied backup that the decentralized approach provides, for
example for disaster recovery situations.

For version control, four different tools were considered. Git is a decentralized
source code version control tool developed for the development of the Linux Kernel.
[37] Subversion (SVN) is a centralized file version control tool developed to version
control complete directory structures containing any kind of file types. A shell
extension for simple usage is available. [8] Mercurial (hg) is a decentralized source
code version control tool, which also has a shell extension available. [11] Bazaar is a
version control tool which can be used in both centralized and decentralized modes.
[16]

While version control in a prototype project created by just one developer is not
as critical as with a larger development team, it was deemed important to begin the
systematic way of working already at the prototyping stage. The project would likely
grow in size if and when the prototype would prove successful.

Based on the above, developing a well-defined development process at an early
stage would likely lower the costs and quicken the actual development phase. The
decentralized approach to a VCS was to be preferred, because the development team
would likely be based at locations far from each other. The network connections
between these locations might be poor enough to render working on a centralized
repository difficult or impractical.

Subversion was left out early in the comparison process, because it seems more
logical to version control source code lines themselves rather than the files as a whole
as Subversion does. Bazaar was dropped because the support items are dated from
2012, and thus seems like there has not been much development ongoing after that.
The final evaluation was then considering only Git and Mercurial as possible VCS
tools.

On a quick glance, Git and Mercurial seem fairly similar. Both are decentralized
code management VCSs and both offer a Windows Shell Extension to provide a cleaner
user experience for a beginner, compared to working directly from the command line.
It seems also that the selection of a VCS is quite similar to selecting a programming
language to use in a simple project. Both have some marginal upsides, but mostly it
seems that developers base their liking on one or the other more or less on personal
preference.

The choice was made to use Mercurial as the VCS of this development project.
The decision was based on studying the different developer community sites such as



39

GitHub and Stack Overflow to gain an idea of the experiences of the developers using
these tools. This study indicated that while Git provides a powerful tool stacked
with features that are useful for experienced developers, Mercurial provides a simpler
workflow and a more compact and manageable set of tools.



40

4 Analysis of Existing Methods
The previous chapter established the methodology and road map to be followed by this
thesis for developing and evaluating a software communication method. This chapter
presents the analysis of the existing software communication methods. The analysis
begins with a look at the different error scenarios that may occur in the conversion,
simultaneously providing justification for automating the conversion process. The
native BIM support of Creo is found to actually be one of the commercial solutions,
thus eliminating this solution variant.

4.1 Need for Software Communication
The minimal requirement for software communication was defined as a means to
convert components modeled in PTC Creo into Autodesk Revit in order to reduce
the number of component libraries requiring maintenance, since multiple instances
of the same data can increase the number of errors in the component instances. The
multiple instances may also require specific knowledge of a certain system, in this
case a certain modeling software. As a result, the differences in the data systems
may require separate “librarians” for each library of instances.

The customer demand for the BIM of system assemblies also dictates that it is not
feasible to use large manufacturing CAE component models directly converted into
the correct format, since large models slow down the coordination work of the general
contractor. The high level of detail in manufacturing models also provides little
added value because the manufacturing details are rarely relevant to the customer
outside of the building interface. As proposed in Weygant et al. [46], only details
distinguishable at a distance of 3 meters should be included in BIM.

Thus, it would be feasible to include component models with a lower level of
detail to be included in a BIM assembly. The same component models could be used
for general design and BIM because the general design of for the system assemblies
only needs only approximately the level of detail used for the BIM of the system
assembly, the same component models could be used for general design and BIM.
Since the layout design of the system rarely requires that all of the manufacturing
details be taken into consideration, using component models with these details poses
a performance issue. As a result, layout design could also be accelerated by using a
lower level of detail in the CAE component models to be used in the layout design.

Having different levels of detail available for the component model is a standard
operational pattern in CAE modeling. Since the general design does not require
models containing the exact manufacturing details, the use of manufacturing CAE
component models for general design can result in an unnecessary risk of leaking
innovative or sensitive design features to competitors or otherwise malevolent parties.

However, creating an effective barrier to deny unnecessary access to the manufac-
turing CAE component models is not a trivial task. Although using the standard
representation based approach to simplify the manufacturing CAE component model
for layout design does solve the related performance issues, the PLM solution related
to PTC Creo, Windchill, does not support a method for including access management



41

to the representations. The structure of the model always includes all details even
when shown in simplified representation.

Thus, because of IPR management issues, the CAE component models used for
layout design and for generating the BIM component model need to be separable from
the manufacturing CAE component model. This separation can be created to allow
the manufacturing subcomponents to coexist with the layout design subcomponents
in the same component assembly with the manufacturing subcomponents being
suppressed when not needed. The manufacturing subcomponents can then be stored
in a restricted-access location, while the layout design features are available for layout
design as well as BIM component model generation.

4.2 Conversion of Components
It is possible to copy the desired amount of geometry from the manufacturing
subcomponent to the layout design subcomponent. However, this only applies to the
non-configurable geometry, i.e. geometry that does not vary based on parameters.
The configurable geometry needs to be modeled separately to the layout design
subcomponent. As a result, the theoretical probability for a modeling error in
configurable geometry is exactly the same for doing manufacturing and layout design
CAE component models separately as it is for CAE and BIM component models
separately. However, there are several factors to be accounted for.

First, the need for at least partly separate manufacturing and layout design
component models in PTC Creo has been established. A separately modeled BIM
component model would then be a third repetitive design task, again adding to the
possible modeling error sources as well as hindering the speed of change implementa-
tion.

Another factor is if the engineer creating the manufacturing component model also
creates the layout design subcomponents, the engineer will likely be less prone to mak-
ing errors in the layout design subcomponent that do not exist in the manufacturing
subcomponent.

It could be argued that the second factor also applies for creating the BIM for the
component. However, the third factor of the enhanced quality assurance of having
both the manufacturing and the layout design subcomponent in the same component
assembly does not replicate into the BIM component model. The enhanced quality
assurance means that the engineer can verify model consistency for the manufacturing
and layout design subcomponents at the same time. As a fourth factor, modeling in
PTC Creo is different from modeling in Autodesk Revit. In addition to requiring
different competences, doing the layout design CAE and BIM component models
separately also requires licenses to be provided for both software suites to the
component engineers. In a large, global corporation such as KONE, the license cost
impact cannot be ignored.

In addition to reducing the number of errors in the component models, other
factors also need to be taken into account. As the products of KONE consist of a large
number of components, the speed and agility of the product development is heavily
affected by the speed and agility of the component development. If the component



42

developments implemented in the manufacturing CAE component model need to be
driven separately into the BIM component models, the time it takes to implement
a change is increased. An important target identified by KONE is to decrease the
time to market of research and development, also favoring the component conversion
approach over modeling components separately in different software suites.

The need for converting the layout design CAE component models into BIM
component models has been established. As a result, studying the methods for
converting the component models is justified. An important factor in the conversion
is the need for both constraint configurability on the component assembly level and
geometric configurability on the part level. Both kinds of configurability are quite
common in the components used by KONE and need to be taken into account when
evaluating the different solutions.

Configurability in all forms poses a challenge to component conversion or CAD
software communication. Constraint configurability of an assembly requires the
subcomponents to be converted separately from the export software suite and then a
reassembly in the import software suite. Geometric configurability requires either
that the geometry is modeled natively in the import software suite, or that the import
software suite is able to open the native file format of the export software suite.

In this case, constraint configurability requires that the subcomponents are
exported from PTC Creo into a vendor-neutral CAD file which is then imported
into Autodesk Revit using a template specific to the subcomponent type. Using
another template specific to the component in question, the subcomponents are then
reassembled according to the original constraints.

If only components are converted, the need exists to have a master assembly
for the system. In addition, each component type needs to have a master template
that is compatible with the system assembly and each subcomponent type for each
component type also needs a master template that is compatible with the component
assembly. As a result, there is a large number of items to be maintained for BIM in
addition to the maintenance items in CAE.

The properties of Autodesk Revit also dictate that translation constraints can
be created in only one direction. This results in a very limited selection of methods
to create the component assemblies. In some cases, the original CAE component
model might also be configurable translation-wise in multiple directions. In these
cases creating a similar BIM component model might not be possible at all.

A limitation of this kind needs to be considered as a major downside. If no such
cases are identified at the development stage, trusting that there will be no such
cases in the future seems naive. A large risk exists that a solution is created that
might not be fundamentally able to handle a future development. If such a scenario
would materialize, the solution would need to be completely overhauled for a single
component. Providing the BIM for the specific customer case would also be unusually
slow.

The geometric configurability in this case requires that the geometry is analyzed
on the feature level. The file formats that Autodesk Revit is able to import are very
limited. For example, Autodesk Revit is not able to import the file format of PTC
Creo.



43

Based on initial studies, feature level analysis of the geometry is only possible
in the more advanced APIs of PTC Creo and would require a significant software
engineering development. To work on the feature level would also mean that the
conversion task would consist of a very large number of different operations. The
number of operations in turn would result in a substantially long period of time
required for the task.

Essentially, communicating a CAE component assembly into a BIM component
assembly is analogous to actually communicating the whole system assembly. In a
system assembly, just one more assembly level is included in the conversion. The
logic and functionalities for the system level conversion thus already exist, shifting
the burden of proof. Instead of reasoning the system level conversion, justification
should be provided for still maintaining system level master assemblies in Autodesk
Revit.

In addition, BIM essentially comprises means for communications between KONE
and the customer instead of a design tool for the internal use of KONE. As a result, if
the conversion is done between the PTC Creo assembly and Autodesk Revit assembly,
the requirements for converting geometric configurability can be ignored.

When converting individual components, one must also consider the fact that
several hundred engineers are designing and modeling components. To be able to
repeat the system level design in BIM would equate to defining very strict component
level modeling rules. All components of a similar type would have to display exactly
similar behavior in order for the system level BIM assembly to function correctly.
Even though the restrictions only apply to the references which are used to constrain
the component to the system, they still pose a major issue. Particularly in case of
differences in the way that a specific component is used in different products, making
component conversion truly generic is very challenging.

It is generally not preferable to provide the customer with a model that enables
configuring the geometry of components. Even the constraint configurability can
be largely ignored based on the same reasons. The system assembly should be
provided as KONE has engineered and configured instead of enabling changes to the
configuration by the customer. Even though components can still be moved in the
converted assembly, breaking the relationships between the components makes it
significantly more cumbersome to make such changes.

4.3 Native BIM Support in PTC Creo
Native support for BIM formats in PTC Creo in use by KONE would naturally
present a convenient solution for the software communication requirements of KONE.
The native support in commercially provided software suites naturally makes the
provider of such software accountable for smooth operations using the software. This
applies to both third party software and PTC Creo itself.

Using such commercial software might result in cost reductions and rationaliza-
tions. Such benefits can be achieved through the fact that the core competences of
KONE are not in the software business. However, the limitations of ready-made
solutions should be taken into account both with third party software as well as with



44

PTC Creo itself. In terms of customizability and perfect fit for the exact use case at
hand, pre-engineered solutions can rarely prepare for all possible scenarios.

The need for configurability in the software usually arises with the solutions that
KONE uses. This is partly due to the fact that KONE operates globally, and has
grown to such a position mostly by means of purchasing competitors. As a result, the
different divisions have a large variety in operating procedures. Thus, harmonized
solutions might be difficult to achieve with an off the shelf product.

In addition, the main products of KONE are immensely configurable in nature.
The different product variants have even been estimated to outnumber the amount of
stars in the Milky Way, estimated at 109 to 4∗109. This figure does not even represent
the full challenge, since KONE offers also a possibility to customize the products.
Thus, variations introduced by all possible customer requests are countless. As a
result, the genericity of the solution should be highly valued in solution selection. Any
software communication solutions should aim at containing the minimum number of
strict constraints in the operation.

To gain knowledge on the future developments planned by PTC, the local vendor
of the CAE software in Finland was contacted. The vendor was aware of some
upcoming plans by the software provider and helped to contact the software provider
to better understand the future road map. The same vendor was also selling one
potential solution in Finland and agreed to provide additional information on that as
well. The vendor estimated that the possible future software communication solution
to be integrated into PTC Creo would probably be the same as was already sold by
the local vendor. Seemingly there would be no developments related to BIM formats
for PTC Creo itself outside of this conversion tool.

As noted above, the benefits of using a solution directly built into PTC Creo are
very similar to those gained by using software by third party providers. In addition it
was deemed that the possible solution to be built into PTC Creo would actually be
an integration of a third party application. Because of these facts, it did not seem to
make sense to analyze a software communication solution integrated into PTC Creo
any further in isolation. Instead, this thesis focuses on comparing the commercial
software communication solutions with the tailor-made prototype.

4.4 Commercial Software Communication Solutions
The market for software communication solutions between mechanical CAE software
and BIM software is not mature, but solutions still exist. Although the majority of
solutions concentrate on CAE software and do not provide support for BIM specifically,
some suitable solutions do exist. KONE has received multiple marketing visits from
a commercial software provider that offers a solution for software communication
between PTC Creo and Autodesk Revit. This solution needs to be evaluated.

Initial evaluation of the solution was performed by another employee of KONE.
An interview of the employee led to the following notes. The solution is based on
extracting the feature data and recreating a custom .bxf file from PTC Creo. This
.bxf file is then imported into Autodesk Revit containing several important aspects
in the import.



45

The import process seems to be quite quick compared to the .sat export/import
leveraged in the custom software solution proposed by this thesis. This might result
from the fact that the .bxf file contains less irrelevant information compared to the
.sat file. If the custom software solution is selected, the optimization should be
studied to achieve similar results.

From a general BIM point of view, the focus of this solution is somewhat misplaced.
Seemingly, the paradigm that the solution is based on concentrates on converting
all possible features that might be used in CAE modeling as accurately as possible.
The result then is an accurate 3D representation of the original design.

As established in the literature review based on for example by Weygant [46] and
Eastman et al. [12], there is little reason in modeling accurately in too much detail.
Weygant [46] sets the limit at not modeling features that cannot be distinguished
at a distance of 3 meters. Naturally simplified representation approaches could
be leveraged also in combination with commercial software solutions to screen the
amount of detail.

The analyzed commercial solution utilizes an add-in in PTC Creo to export the
.bxf file and then a separate add-in to import it into Autodesk Revit. The working
principle of the analyzed commercial software solution is quite interesting. The
vendor does not specify which API of PTC Creo they are utilizing. As the add-in is
only run on a local system instead of an automated solution, usage of the VBAPI is
possible.

The VBAPI utilizes a Component Object Model (COM) interface to connect
the application to the instance of PTC Creo and this interface cannot be l on
multiple Creo sessions at one time. While this is not an issue when implemented for
manual use, it effectively limits the use of the solution on a server. To maximize the
performance of a server solution, it should be possible to run multiple instances at
the same time. However, the used API was not communicated, so the evaluation
should not be tipped either way by this point.

The vendor does not specify how they are using the Autodesk Revit API to run
the application, but based on existing knowledge, the solution seems to be running
as a Dynamic Link Library application. As shown in the literature review, a patent
application by Glunz et al. [14] exists that claims the use of a Dynamic Link Library
application for 3D object conversion between a multitude of input software suites,
including PTC Creo, and a multitude of output software suites, including Autodesk
Revit.

The other claims highlighted by the literature review and the possible weaknesses
included in them also apply to the commercial solutions, such as the creation of a
3D object that has not previously existed and the fact that existing 3D objects are
simply replicated elsewhere. However, the most concrete and fundamental claim
made by Glunz et al. in their patent application [14], the Dynamic Link Library
application, seems to be in conflict with the analyzed commercial solution. As a
result, the commercial solution would need to be customized to leverage other means
of running the application, or risk infringement of the patent application by Glunz
et al. [14] if its rejection is lifted.

The amount of customization is the most important deficit of the commercial



46

software solution that can be seen in the analysis. Most of the points covered lead to
the conclusion that while good results can be achieved with the commercial software
solution, the necessary coverage requires some customization effort. Even though
these points independently rarely require heavy effort, the cumulative scope of work
is extensive.

As already shown, the solution would likely need to be rebuilt to leverage the
REST API of Autodesk Revit. In addition, the analyzed commercial solution is now
only used manually and has not been shown to support assemblies of individually
identifiable components in the main assembly. This means that at least the assembly
of components would need to be built as a customization in order to effectively run
the software communication sought by KONE.

There are several issues with the amount of customization required for commercial
software. The solution is a full product being sold, which means that functionality
extensions are either customer specific additions to the product or the product itself
is extended. If the functionalities are added separately, there is some concern over
how the functionalities are supported by the version changes of the product.

Naturally customer specific add-in maintenance can be expected to be invoiced
separately in case the customer wants to keep the add-in. This cost should be taken
into account in the comparison of solutions. Even if a customer specific add-in is
bought, whether the vendor would be interested in selling the complete source code
for the add-in remains unproven. As a result, the add-in cannot effectively be opened
for bidding by other software vendors.

If the functionalities are added to the product version of the software directly, the
support from the changing product versions can be expected to be better and the
maintenance cost lower as the software vendor can split the costs between all of their
customers. However, this also means that all of the functionalities are available for
purchase by the competition. Any expected competitive edge is then potentially lost.
The vendor is also not likely to sell the entire source code of the solution, meaning
that the product cannot effectively be opened for bidding by other software vendors,
since there does not seem to exist other solutions that could fulfill the technical
specification at least without similar heavy customization.

Regardless of the chosen route, the solution will also contain features that are
not required by KONE. As the custom solution proposed by this thesis shows, the
required functionalities of the actual component conversion are quite limited. Simply
communicating geometry from PTC Creo to Autodesk Revit does not seem to be
complicated at all. However, the analyzed commercial solution contains features such
as material and lighting communication that are not included in the current state of
the custom communication prototype. The value of these extra features needs to be
carefully considered to determine whether having them readily available for future
outweighs the induced cost.

Depending on heavily customized commercial software also reduces the possibility
of changing vendors in case of problems with the vendor. In a hypothetical scenario of
the vendor going bankrupt or facing for example IPR conflicts, the amount of required
customization means that there might be a heavy impact on business. If a competing
solution cannot be found and implemented in a short period of time, some work



47

around needs to be found or the integral role that a BIM software communication
solution is predicted to have will be left unfulfilled. As the analysis shows, especially
the intellectual property rights might become an issue.



48

5 Custom Solution Prototype
The previous chapter analyzed the identified existing software communication meth-
ods. This chapter describes the development and architecture of the custom solution
prototype. The prototype, its design and development are described in detail to
comply with the scientific principles of reproducibility and falsifiability. The develop-
ment achieves all set objectives and a functioning prototype is achieved using the
described architecture.

5.1 Development of Custom Solution Prototype
The geometry of a given component is at the heart of any CAD software communica-
tion problem. Other features of the model, such as parameters can often be quite
simply read, stored and written in the destination software suite, but geometry in
typical products is complicated enough to cause problems. To avoid these issues, us-
ing a vendor-neutral file format is a common method for transferring 3D information
between software for different purposes.

This vendor-neutral file contains the geometry information as plaintext structured
in publicly disclosed manner. In comparison, the proprietary files may also include
encrypted portions. Vendor neutral files allow the communication of geometry without
disclosing the details used in the proprietary formats to the public. The drawback
in vendor neutral files is that metadata, history information and the distinction of
features is usually lost. Instead, the file only contains the geometry of the original
model.

Autodesk Revit is quite limited with the file formats it accepts for direct software
communication. The software communication between PTC Creo and Autodesk
Revit was then initially assumed to require complicated functionalities to recreate
the communicated geometry. For example, commonly used transfer file formats .stp
and .iges are not supported. In addition using the 3D .dwg format created by the
vendor of Autodesk Revit seemed to result in meshed surfaces.

The industry also seems somewhat immature in doing this type of software
communication, so the common search engine based software development approach
was not applicable here. Searches with seemingly relevant search strings returned
quite few results, mainly focusing on irrelevant communication routes as well as the
commercial software described in the previous sections.

As a suitable vendor-neutral format seemingly does not exist, the expert interviews
then suggested that there would be two options. The first one would be to use APIs
for PTC Creo which allow the developer to access individual features of the geometry
on a deeper level and then collect information which would allow programmatic
remodeling of the geometry in Autodesk Revit.

PTC Creo also provides a view of the model as a program file. This file allows
the modeler to do simple programming in the model as well as some details on
the geometry or assembly data. The other option would be similar as the first one,
but instead of using a different API, the approach would depend on analyzing this
program file of the CAE assembly, sub-assemblies and parts.



49

Regardless of which of these options was picked, the pros and cons would have
been quite similar. Both options allow quite robust applications, which lead to only
few modeling requirements. The amount of work ahead would still be remarkable,
since both alternatives would essentially mean creating a deep-diving feature extractor
for PTC Creo in addition to a limited-scope programmatic remodeler for Autodesk
Revit. The scope of this thesis would then have to be limited to include only a
theoretical analysis of such a solution with possibly some very minor practical studies.
The expert interviews suggested that the first option would be preferred, since the
vendor of the software is considering the discontinuation of the program file in its
current format.

During considerations of which of these approaches to employ, related studies led
to the conclusion that the ACIS .sat file format could be used for the communication.
The ACIS .sat is not exactly a vendor-neutral file format, as it is the output file of
the proprietary 3D ACIS Modeler modeling kernel. However, it is supported by both
PTC Creo and Autodesk Revit.

Detailed studies confirmed that the .sat format would indeed be useful for the
development. An initial performance study with an actual main assembly resulted
in one failed conversion out of 17 components in the main assembly. The error was
found to be most likely caused by complicated cast geometry incompatible with
Autodesk Revit import from .sat.

Further tests in the scope of this thesis revealed no errors of similar kind. However,
the discovery of .sat files as a medium to communicate geometry from PTC Creo to
Autodesk Revit led to leveraging this communication method in the current processes
for creating BIM representations of the components in the operations of KONE. One
instance of creating such a BIM representation resulted in a similar import error,
caused by having a sheet metal model cut in the area of a bend.

The geometry communication seems to be reliably solved with the use of ACIS
.sat files as communications medium. As a result, the scope of this thesis was kept
at the original ambition level of creating a technical prototype. As less attention
was required for the communication of the geometry itself, enough resources were
available for building a complete communication solution.

Once the feasibility of ACIS .sat as a communications medium was confirmed,
the actual development work could be initiated. Development of the solution was
begun by setting up a source code repository using the selected version control tool,
Mercurial. The immediate deployment of a source code repository ensures that the
risk of source code losses and version mix-ups is mitigated.

In a project that requires proper documentation of the progress, such as a thesis,
starting version control from the first line of code also provides a convenient way of
tracking and reviewing the progress for documentation purposes. As source code was
committed to the repository upon successful implementation of each step, the steps
can be traced back in the Mercurial log file. Mercurial can also be used to version
control the documentation itself, since the document was chosen to be written in
LATEX.

Of the three modules, the BIM part was the first one to be considered. First
studies concentrated on establishing the import of the ACIS .sat files to a component



50

template. To enable flexible testing, the initial studies were done as an external
command instead of a full add-in with automatic triggering. The difference is that an
external command can be executed at will instead of being executed automatically.
The actual automatically triggering add-in would only be created at a later stage.
There were also sample commands of a similar nature included in the software
development kit (SDK) provided by the vendor of Autodesk Revit.

First tests with a new API are often hindered with the intrinsic traits of application
in question. Implementation of the specific API often requires some customization
with respect to the structure of how to perform different actions. Once the structure is
understood, the development starts picking up pace. In Autodesk Revit, one example
of a recognizable trait could be the use of transactions when making any changes
to the model, which essentially is a database. For example importing geometry
constitutes a change to the database and therefore requires a transaction to be
used. The management of these transactions is therefore essential to successful and
well-structured API calls in Autodesk Revit.

The import of models requires establishing a proper set of ACIS .sat import
instructions. The SDK samples are based on different source formats, so some
adaptation for the ACIS .sat import is required. Of the import instructions, the most
important is the placement of the imported content. Origin to origin import was
selected to enable maximal robustness of the import. The imported content would
then always represent a replicate of the CAE source model, including the coordinate
system.

After successful implementation of the generic import command, first version of
the add-in BIM module and the orchestration executable were created. At this stage,
the BIM module only consisted of triggering the external command upon application
start. This step was still quite important, since it was implemented using the event
handling in Autodesk Revit, on which the rest of the implementation would be based.
Initially, only the event triggered when the application was initialized was used, but
the logic is quite similar in other events as well. The orchestration executable at this
stage took the form of copying the .dll and add-in manifest files for the BIM module
to the correct folder, starting the application and deleting the copied files once the
BIM module finished running.

Next development item was to leverage also other events, including custom ones
and event handlers for those. Instead of triggering an external command when the
application reported successful startup, the functionality was split to different parts
that are triggered based on the progress of the software communication. The split
was done to prepare for the next stage of development, where imports would be done
in success for the components and finally for the main assembly.

Separate templates for the components and the main assembly were implemented
to enable different properties for these items. Ideally in the production phase global
templates would be used by default. The different country units could also customize
their own templates according to the specific local needs. For example a European
country unit uses a different set of Assembly Code identifications than what Autodesk
Revit offers by default. The Assembly Code is a standardized set of identifications to
be used for different types of material in a BIM of a building. These identifications



51

aid in classification of the different types for example for view filtering. Using a local
template, this country unit could then acquire their models with the local Assembly
Code defined directly in the BIM output without a need for customization for all
models separately.

Component imports are a preliminary requirement for recreating the main as-
sembly in BIM. For assembly, the location and orientation of the components in
the coordinate system of the assembly need to be defined. In the solution proposed
by this thesis, the components are replicated in BIM with the source component
coordinate system and then located and oriented around the Z axis in the main
assembly coordinate system according to source main assembly.

Autodesk Revit API contains a location coordinate vector property for all compo-
nents in an assembly that must be set when placing a component. In this coordinate
system, the X axis is normal to a “right” plane, Y axis to a “back” plane and Z
axis to a “top” plane. The names here refer to the viewing direction from which the
positive side of the plane is seen normal to the viewing direction. These directions
should be taken into account when comparing to the default coordinate system in a
different software suite. If the directions differ, a coordinate transformation needs to
be done during import.

When it comes to orientation, the most effective way to account for different
orientations is to import the component in a single orientation and then rotate
the component instance in the assembly to its proper orientation. Unfortunately,
Autodesk Revit prevents a component from being rotated in the assembly around
any other axes except Z.

Such a limitation is quite interesting, since any benefits from it are quite difficult
to see. Autodesk Revit actually offers a property for any component that prevents
an assembly from using the component in any other orientation except vertical. The
horizontal-vertical definition is much more rigid overall than in common mechanical
CAD applications.

Regardless of the reasoning behind the limitation, it is important to account for
by other means. These other means could include orienting the component already
in the component file. The drawback is that the same component will need to be
imported in multiple instances that each contain a different orientation.

The component import was tested with skeleton geometry as well as regular
component geometry. The only geometry limitation to the component export seems
to be that the geometry needs to be solidified. Unsolidified surface geometry seems
to be prone to meshing as well as losing some of the mesh elements somewhere in the
communication process. The solidifying requirement needs to be taken into account
in the modeling phase. This does not seem like an overly limiting requirement as
there does not seem to be any specific reason to use unsolidified surface geometry.
Surface modeling is not widely used by KONE anyway since most of their components
consist of quite simple geometry.

In the prototype solution, the assembly is only broken down to the components
on the first level of the assembly. For proving the technical feasibility this is enough.
In the production solution there is a need to break some of the first level components
of the main assembly to the subcomponent level. The use of umbrella assemblies on



52

the main assembly level is quite common in the existing structures of KONE. At
the moment, there does not seem to be any good method to identify an umbrella
assembly that should be broken down into subcomponents. An external document
which lists the umbrella assemblies used by different platform models looks like the
only suitable way to identify these assemblies. The solution is not optimal since the
external document naturally needs to be maintained separately, but since the amount
of platform models in existence would probably be well under 50, the task does seem
manageable. Each platform model is also owned by a dedicated manager, so the
maintenance of the external document should be readily available for distribution.

After component imports and recreation of the main assembly were functioning
correctly, the 3D aspect of the import was more or less in shape. Some effort was put
into the implementation of the orchestration module as a form application instead
of a console, in preparation for potentially implementing the solution as a locally
run application. However, the added value was quite low, so effort was put into
continuing the development of technical functionalities instead. If a user interface is
needed at some stage, it would be relatively easy to implement on top of a working
solution. Deficiencies in the solution itself could not be similarly covered by a pretty
interface.

In addition to 3D geometry, an important aspect of 3D models and especially
BIM is the information content. In most applications this information is mainly
stored as parameter-value pairs. In a sense, BIM doesn’t exist without parameters,
since a plain 3D model is incapable of catering for many of the possibilities of BIM.

Some parameters can be set in the local templates mentioned earlier, but many
should be created by the communication solution based on what exists in the source
CAE model. For example the main dimensions, forces and electrical values should be
stored in BIM to be provided to the customer as information. Naturally the identity
data of the model, such as manufacturer and manufacturer identification should be
stored as well.

Autodesk Revit API provides quite straightforward calls for parameter creation
and value assignment although there are three items worth mentioning. Firstly
Autodesk Revit provides two different kinds of parameters, family and shared param-
eters. Family is Autodesk Revit term for a model that represents a smaller entity
than a project, which is the other kind of a model produced by Autodesk Revit.
In this sense a family parameter is one that can only be accessed on the family
level, whereas a shared parameter can be accessed on the project level to which the
individual families are loaded. Probably the parameters created in the export should
be mostly shared, since the parameters that need not be shared in a project can be
excluded in the communication altogether.

Secondly, Autodesk Revit parameters are further differentiated to type and
instance parameters. Type parameters of one family type (in practice, one model)
can only have a single value in all instances of the type that exist in a project.
Instance parameters allow these instances to have a different value for the instance
parameter in question.

This classification should not pose a major issue even in the production solution
because the individual pieces of equipment provided by KONE have a unique identi-



53

fication which can be used as the model name. There would then not be instances
of the same family type on the project level, since each piece of equipment would
make up a unique family type, hence allowing the use of purely type parameters. If
individual component instances would need to have different parameter information
assigned to them, instance parameters would be needed, but converting a type
parameter to an instance parameter is quite effortless.

Thirdly, the technical name for a certain parameter used by KONE might seem
like a cipher to the customer. Providing a plaintext parameter whose value is derived
from the technical parameter does seem like a good alternative. The technical-
plaintext pair is the easiest to provide in the local main assembly template, with the
formula of the plaintext parameter equaling the technical name. Translations can be
then provided in the same step as well.

To prepare for the 2D view generation, a method for accessing the different
2D views of the model was created. This method was also used as a first step to
recreating the datum planes in the CAE model as reference planes in BIM. In the
prototype solution, all datum planes in the skeleton of the CAE model were imported.
In the production phase, selective import should be implemented, for example using
a layer that includes the planes that should be imported.

An important development point concerning the reference planes was also identi-
fied at this stage. In PTC Creo, datum planes scale automatically to adapt to the
size of the geometry in the model. However, Autodesk Revit lacks this type of a
functionality, and reference planes need to be drawn to a specific length.

In the scope of this thesis, the length of the reference planes would not be an
important issue since the number of planes is quite low, owing to testing purposes
only. As a result, the issue was solved by simply identifying the major dimensions
of the model and extending the planes slightly further than these dimensions. In a
production solution however, a more sophisticated way of creating reference planes
of varying length might be required.

As the BIM module was in quite good shape with the described functionalities,
the remaining item would be to develop the CAE module. There the first step was
to connect to the software instance, since the calls would be made through a COM
interface instead of a .dll extension. Somewhat surprisingly the connection is not as
simple as one would expect for an API of a software suite this large. The preparations
include defining new environment variables needed by the interface and registration
of the API as a COM object.

The initial tests of the API revealed some peculiar traits, similar to the transaction
management in Autodesk Revit API. As the interface is originally intended to be
used with VB, the corresponding C] code is quite verbose and different from typical
code written in the language. In addition, managing the COM connection in the
development phase where software crashes are quite common is somewhat challenging,
since a crash leaves the current connection to the software instance open even if the
instance is closed. As a result, the orchestration module was enhanced with an initial
call to kill all processes related to the COM connection.

In the production solution, the used PTC Creo API should be switched. The
COM interface does not allow for more than one Creo instance to be run at any given



54

time. Naturally, the scalability of the solution is quite limited as a result. Using
another API removes this limitation, allowing a server to run multiple processes in
parallel. Even if the solution is distributed to run the CAE module locally, KONE
also has an automated standard process that leverages pre-engineered technical
platforms. Configurations created by engineering automation would then benefit
from the possibility of running multiple PTC Creo instances at a given time.

Once the connection setup was achieved, developing the required code for the
export was quite simple. The SDK for PTC Creo contained a sample for exporting a
2D drawing in PTC Creo’s native format as a Portable Document Format (PDF).
Only small modifications were needed and the code was quite concise. Basically
the only items to consider were the structure of the ACIS .sat file and whether the
geometry would be exported as shells, quilts or solids.

The structured ACIS .sat was a compelling option, as potentially it could solve
replication of main assembly as well. As identification of components as individual
objects is a must-have requirement, a cleanly structured import would only require
small adjustments such as renaming as well as parameter and material assignments.
Unfortunately further study revealed that Autodesk Revit ACIS .sat import would
lose the structure of the model. The original plan of recreating the main assembly
programmatically would then have to be followed.

An interesting consideration was required when exporting files from PTC Creo.
The API throws an exception if the string length of the filename exceeds 40 characters,
including the full directory path. Since 40 characters cannot be seen as a loose
limitation since the path is also included, the files are initially saved as “0.sat” to
minimize the risk of throwing the exception. The name is then changed using the
normal Windows API calls for renaming a file.

Geometry can be exported as shells, quilts or solids. The difference between the
three is that a quilt is nothing more than individual surfaces at defined location. A
shell is a hollow entity bordered by defined surfaces. Finally a solid has a thickness
even if it is hollow.

Studies on the different types revealed that Autodesk Revit supports only solid
geometry ACIS .sat import properly. Surface geometry was prone to meshing of the
surface and losing some of the mesh elements. As there are no requirements on the
type of geometry in the finished Autodesk Revit model, solid import can be chosen.

The initial COM connectivity was only implemented for a fresh instance that
is created at runtime of the communication solution. If the production solution is
distributed so that the CAD module is run locally, starting the import should be
possible directly from an open instance of PTC Creo. Waiting for PTC Creo to
restart does not make sense for the user. Accordingly, an alternative process was
created in the orchestration where the communication solution would connect to an
existing PTC Creo instance if one exists and no COM connections are open.

The ACIS .sat exports from PTC Creo and corresponding imports in Autodesk
Revit were now available. The XML interface between the two would be considered
next. The first item to be created in the structure was the component information.
Initially only the location of the component was extracted from the main assembly.

In PTC Creo, the location is noted as an XYZ coordinate vector, quite similarly



55

to the notation in Autodesk Revit. The notable difference is that PTC Creo uses a
different coordinate system. In PTC Creo coordinate system, the X axis is normal
to a “right” plane, Y axis to a “top” plane and Z axis to a “front” plane. The names
here refer to the viewing direction from which the positive side of the plane is seen
normal to the viewing direction.

The coordinates in the interface XML document are defined in the coordinate
system of Autodesk Revit. The mapping of PTC Creo coordinates to this coordinate
system and the abstract directions in terms of Autodesk Revit views that are taken
from the positive coordinate axis direction can be found in table 1 on page 55.

Table 1: Coordinate mapping between PTC Creo and Autodesk Revit

View Direction Autodesk Revit PTC Creo
“Right” X X
“Back” Y -Z
“Top” Z Y

Parameter information must also be included in the interface XML since the ACIS
.sat export/import does not include model parameters. The dimension parameters
could be sought from either the main assembly of the skeleton model of the assembly.
In the production solution all mechanical, electrical and identity parameters might
not be stored in the skeleton model and they should probably be sought from the
main assembly instead. The effort to change the logic is insignificant as changes are
required to only a single line of code.

The proposed solution looks up all parameters that exist in the skeleton. In the
production solution it is likely that some sort of screening of the parameters will be
required as the model will probably include several hundred parameters all of which
will not be interesting in BIM. Another reason to screen the list of parameters is
that some of the information included in the parameters may be confidential.

The parameters found from the source model are separated to different groups in
the interface XML. This is due to the importance of classifying parameter information
in BIM to mechanical, electrical, identity and dimensional data for example. In
the production solution it might be beneficial to replace this logic with a single
list of parameters that is then classified in BIM according to a reference document.
The same reference document could also be used for the screening of parameters
mentioned above. If a reference document needs to be created anyway, it would be a
feasible solution also for the classification since no logic would be hardcoded, but
defined in a light external document instead.

The datum plane features are important for the purpose of referring to certain
planes of the produced BIM when it is loaded into another family or a project in
Autodesk Revit. Like parameters, datum planes cannot be communicated in the
ACIS .sat files. Instead, enough information about them need to be stored in the
interface XML in order to replicate them in PTC Creo. The datum planes are looked
up from a part skeleton model with the same name as the main assembly.



56

To create a reference plane in Autodesk Revit, the information that is required
includes the name of the plane, the direction of the plane and the position in the
coordinate system. The prototype solution includes a logic that first determines the
three planes that pass through the origin in different directions. All of the other
planes are then traced back to these original three planes. If a plane has a normal in
the Z direction for example, its references are traced back to the plane that passes
through the origin and has a normal in the Z direction. The offsets to the references
in the chain are summed to get the total offset. This total offset is recorded in the
interface XML along with the direction of the plane.

However, an inherent weakness exists in this logic. If a plane is defined with
another type of a reference than an offset from another plane, this logic will not be
able to trace the offset of the plane back to one of the origin planes. This shortcoming
should be addressed in the production solution with a complementary approach that
supports also planes that are defined with other constraints, such as through a point.
Otherwise a modeling requirement is required.

Tens of datum planes are likely to exist in a model that is used in the production
solution. The datum planes that should appear in BIM should be screened to avoid
a jungle of reference planes appearing in the BIM representation of the model. A
complicated set of reference planes is even more troubling in BIM, because individual
planes cannot be identified by name from the upper level.

A similar lookup approach that is proposed for the screening of parameters
could be used also for the screening of datum planes. However, a more suitable
approach also exists. The planes can be easily identified if the planes that should be
communicated to BIM are included in a single layer with a predefined name. In this
approach, making modifications to the screening can be made directly to the model
and explicit datum plane names need not be known.

Once the location of the components can be exported to the interface XML, the
orientation needs to be addressed. The already implemented rotation functionality
in Autodesk Revit works with Euler angles, which define the orientation around the
coordinate axes. The PTC Creo API in turn provides the orientation of a component
in an assembly with a 3 × 3 rotation matrix. The orientation can be calculated using
Slabaugh’s algorithm [44] presented in Figure 7 on page 57 lets the Euler angles be
ψ for rotation around the X axis, θ for rotation around the Y axis and φ for rotation
around the Z axis. The rotation matrix is of the form

R =

R11 R12 R13
R21 R22 R23
R31 R32 R33

 (1)

When implementing this algorithm, the different coordinate systems employed
by PTC Creo and Autodesk Revit need to again be taken into account. This is
done by assigning switching θ for φ. Now the Euler angles can be written for all
components in the interface XML. A new node should be created for instances of
the same component if ψ or φ is different than for the previous instances. This is
due to the rotation limitation in Autodesk Revit noted earlier.

The warnings and errors that are meant to be cleared by the user prevent the



57

Figure 7: Pseudo-code for computing Euler angles from a rotation matrix [44]

solution from running completely independently. Autodesk Revit API provides a
possibility to programmatically “swallow” the popups from appearing, which can be
implemented here. Instead of having these errors and warnings appear as popups,
they are logged in specific log files for analysis of runtime errors. The orchestration
module also shows at the end of the run whether any errors or warnings have appeared
during runtime. In PTC Creo popup handling is not as convenient. All exceptions
need to be separately handled via normal C] exception handling and still some items
may pop up unexpectedly.

The only step still remaining in the development was the support for simplified
representations in the CAE module. A simplified representation is quite eponymous.
Parts are hidden from an assembly and features from parts to reduce the amount of
details in a model. This can be done for multiple reasons. First of all, performance is
enhanced when working on very large models if the amount of details is tuned down.
Particularly in combination with an export solution, the simplified representations
allow control of information. The manufacturing details of components will not be
exported unnecessarily. For example in a BIM export, the customer is probably
happier with a smaller model, where the amount of geometry information is limited.

Simplified representations should be activated prior to the ACIS .sat export in
PTC Creo. Unfortunately the use of simplified representations constitutes a modeling
requirement. While PTC Creo provides readily available representations such as a
light geometry representation, the software communication to BIM is likely to neces-
sitate the use of multiple different kinds of simplified representations. Different levels
of detail are inherent in BIM and different components should be possible to portray
in different levels of detail. This probably requires different simplified representations,
all of which need to then explicitly named for the software communication solution



58

to recognize them. In the production solution the orchestration module would need
to extract the level of detail to be used from the communication request. If the
specific simplified representation does not exist for a certain component, the default
representation should be used.

5.2 Custom Solution Prototype Architecture
During the initial studies into the research objective, a gap in the existing software
market was identified. Even though solutions for software communication between
PTC Creo and Autodesk Revit already existed, these solutions did not take into
account the specific needs of KONE. To fill this gap, a prototype for such a solution
would be created.

Figure 8: Custom Prototype Architecture

The high-level architecture of the solution is presented in Figure 8 on page 58.
The structure of the solution is based on separating the actions done in different
software to individual modules. Since one module is dedicated of orchestrating the
collaboration between the different software, there are three modules in total. The
interface between these modules is a structured XML document combined with the
ACIS .sat files. The ACIS .sat files pass the geometry in a simple fashion, while the
XML document contains the information that cannot be transferred in the ACIS
.sat files. This information includes the metadata for using the ACIS .sat files in the
application, transformation matrices to replicate the position of the components in
the main assembly, parameter-value pairs as well as data required to recreate datum
plane features.



59

Having clearly separated modules is beneficial, because the different functionalities
can then also be used by other tools without having dependencies in the other modules.
If the prototype proposed by this thesis is developed to a production solution, the
different modules should be distributed between different systems. For example
running the CAE module locally enhances performance, since the main assembly
does not need to be moved over the network.

The three modules are implemented with slightly different approaches. The
orchestration module drives the function of the solution. It is implemented as a
console application executable. The console allows for definition of parameters for
the communication, such as the main level assembly to be used and whether or not to
include the datum features in the conversion. Information about the communication
process can also be given to the user via the console. For example the duration of
the conversion or error details can be shared conveniently. In a production solution,
this executable should be turned into a Windows service that would be run on a
server. The functionality would also likely need review if the CAE module is moved
to be run at a different location.

The BIM module imports the ACIS .sat files as components and recreates the
main assembly, adding parameter and datum information. Autodesk Revit does not
allow for running scripting or automation directly in an executable. Instead, the
script needs to be packaged in a dynamic-link library (DLL or .dll) that is included
as an add-in to Autodesk Revit. This add-in is then defined to run automatically
every time an instance of the software is initiated. Alternatively, orchestration
could be included in the add-in itself. In a production solution this would enhance
performance, since Autodesk Revit would not need to be separately launched for all
conversion instances. The BIM module is then implemented as a completely separate
.dll that is added to Autodesk Revit using the orchestration module.

The used API of PTC Creo allows direct calls from an executable, taking advantage
of the Component Object Model (COM) interface. As a result, the CAE module
consists simply of a separate class inside the orchestration executable that contains
the required modules for the communication. In a production solution, this module
should be run locally to enhance solution performance.

The functional flow of the solution is described in Figure 9. The communication
begins by running the orchestration module. A console window is opened in which user
defines the communication parameters, such as the path for the main model. After
the communication parameters are defined, the automated part of communication is
begun and the communication timer started.

The orchestration module flushes all working directories and kills any processes
related to the COM interface. Existing processes are killed because the COM interface
allows a connection to only a single instance of PTC Creo and connections need to
be closed explicitly. In case of errors in the previous run, a connection may be left
open, thus preventing all other connections. In case a different API would be used
in the production solution, this limitation could be avoided.

Once all existing connections have been closed, a new software instance can be
initiated and connected to. If a suitable software instance already exists, a new
instance does not need to be opened, but the connection can be made to the existing



60

Figure 9: Custom Prototype Functional Flow

instance. Once the connection is complete, the orchestration executable is able to
make the calls instructed in the CAE module to the software instance. The main
assembly is then opened for analysis.

Datum plane information is the first set of information to be extracted from
the model. The datum planes are gathered from the skeleton model of the main
assembly. Recorded information includes the direction of the plane and the offset
from the reference of the datum plane. Parameter information is similarly extracted
from the skeleton model of the main assembly. The parameters are listed in four
groups: dimensional, mechanical, electrical and identity parameters.

Component extraction can be divided into two sections. The geometry of the
components is exported from PTC Creo as ACIS .sat files and stored in the working
directory. The location and orientation of the component instance are extracted
from the main assembly to be written in the Interface XML.

Finally the information acquired from PTC Creo model is written into an Interface
XML. The XML is structured into the following nodes under the root: Imports,
Components, Datums and Parameters. The Imports node contains child nodes for all



61

unique components that need to be imported, while the Components node contains
child nodes for all instances of a component in the main assembly. The location and
orientation information are both stored as attributes to support flexible locating and
orientation in Autodesk Revit. In addition, the component names and the ACIS .sat
filenames are stored as attributes.

Datums node contains child nodes for all datum planes found in the extraction
phase. The nodes have the name, reference, offset from the reference and direction
information as attributes of the nodes. The Parameters node contains the different
parameter groups available as child nodes. The name of the parameter group is
written as an attribute and the parameters of the group are in turn child nodes of
the ParameterGroup node. For the parameters, name, value and type are recorded.

Once the CAE module is run through, the orchestration module copies the .dll
file and the add-in manifest for it to the appropriate locations. The .dll and add-in
are copied separately during each run to prevent the communication process from
starting when Autodesk Revit is opened for other purposes. This makes the solution
convenient for local use, although in a dedicated server environment it could be left
out as well. When the files are at their proper location, Autodesk Revit can be
started. As the communication solution is set to start running as soon as Autodesk
Revit reports successful startup, the BIM module requires no other trigger.

The BIM module begins importing the unique components to a defined component
template. The imported components are then saved as native Autodesk Revit files.
These component models are then placed and oriented appropriately in an assembly
template. The parameters and reference planes are created to complete the main
assembly replication. Finally the orchestration module receives completion report
from the BIM module and informs the user that the process has finished and also
reports possible errors.



62

6 Results
The previous chapter provided the foundation for evaluation of the different solution
variants. In this chapter, the established evaluation criteria is applied based on
the analysis according to the engineering design methodology described by Pahl et
al. [35]. The evaluation is preceded by confirming that the solution variants to be
evaluated meet the previously defined requirements. In the evaluation, the custom
solution prototype is given the highest score both in its current state as well as the
estimated potential of future improvements.

6.1 Requirements Review
Before proceeding to the actual evaluation, the solution variants should be reviewed
against the requirements list (Figure 5) to ensure that they meet all demands.
Solutions which do not meet all of the demands should be immediately rejected. As
noted previously, support for BIM formats integrated in PTC Creo should not be
separately studied, since the researched commercial communication solution is likely
to form the integrated communication tool. Thus, only three solution variants will
be evaluated:

• Component conversion only

• Commercial communication solution

• Custom communication solution

Pahl et al. [35] note that the variants should be assigned impersonal identification.
Accordingly, the component conversion will be identified as solution Variant A,
the commercial communication solution as solution Variant B and the custom
communication solution as solution Variant C.

Communicate geometry in BIM compatible format

The communication of geometry in the broad sense can be achieved by all three of
the proposed solution variants. Further limitations will be studied in the evaluation
round.

Screen amount of geometry detail

A similar amount of geometry detail can be achieved in all three by taking advantage
of the simplified representations concept in PTC Creo. Alternatively a shrinkwrap
can be used. Variant B also has built-in features to exclude components based on
volume and quantity. This demand will then be fulfilled already at the input end,
making the screening easy and convenient.



63

Communicate parameters in BIM compatible format

Parameters will need to be added to the replicated model in Autodesk Revit. Pa-
rameter communication can be achieved with all three variants, although in Variant
A some light customization is required. In Variant A, the main assembly is still built
manually or with a separate automation solution from the communicated components.
As the parameters will actually be on the main level, the components will not receive
any parameters. Instead, a simple tool is required to copy the parameter values for
the main assembly from an engineering configurator, such as the PDM system used
by KONE.

Screen amount of parameters

Regardless of the variant, parameter screening is quite similar and can be achieved
for example using a screening lookup.

Enable individual identification of components

The individual identification of components is a crucial requirement from the clash
detection point of view. All of the variants support structuring the model in a way
that allows the individual identification. Variant B only supports structuring the
model either as a a flat assembly, which does not support the individual identification,
or simple logic to break the model down to individual subassemblies or fully down to
the part level.

A potential weakness of the solution variants may exist in the structuring, because
likely some compromise between subassembly structure and part level structure would
be the optimal solution in the production version. Variant A gives full control over
the structure, because the main assembly is a completely separate model in Autodesk
Revit. Variant C can be customized to any logic which seems feasible from a
maintenance standpoint compared to the gained business value.

Eliminate manual process steps

Manual step elimination is an essential requirement in making the investment into the
tool feasible for KONE. In Variant A the eliminated manual step is the maintenance
of the BIM representation of a given component. With variants B and C the whole
process step of creating a BIM representation of the system is eliminated.

Perform better than the current manual process

The enhanced process for creating BIM should perform better than the current one
to gain added value. In Variant A the performance enhancement comes in terms
of better quality. When component BIM representations are no longer manually
created from 2D drawings, risk of errors can be reduced as shown earlier. In variants
B and C the automatic generation of BIM both increases the quality and reduces the
time required to deliver a BIM of the scope of delivery of KONE to the customer.



64

Support 800 000 yearly requests

The software communication solution is required to support the full amount of tender
and order models of KONE, estimated at 800 000 yearly BIM requests. Technically
all variants will be able to support the load by adding infrastructure. In Variant A,
manpower is needed, while variants B and C can be mostly handled with software
automation.

Minimize duplication of data

Duplication of data is a critical quality risk and the software communication solution
needs to minimize such duplication. All solution variants reduce at least one step of
data duplication, component modeling in Autodesk Revit. The amount of components
is measured in thousands globally, making the component duplication the most
important target for elimination. In variants B and C, also main assembly models in
Autodesk Revit can be eliminated.

Avoid infringement of a patent or copyright held by another pary

The final demand on the requirements list is to avoid infringement of a patent or
copyright held by another party. In other words, the freedom to operate needs to
exist. If this is not the case, alternatives such as licensing or purchase of the applying
intellectual properties need to be considered. Such actions naturally come at a cost.
Based on the literature review, all solution variants seem to have freedom to operate.
Variant B is licensed from the intellectual property owner and variants A and C
consist of proprietary software exclusively created for KONE.

As all solution variants pass the demand check, these can now be assessed based
on the evaluation criteria in the section below.

6.2 Comparison Based on Evaluation Criteria
The three remaining solution variants are evaluated using the nine criteria shown in
the evaluation chart based on Pahl et al. [35] presented previously in Figure 6. As
proposed in the Methods section, this thesis uses the Guideline VDI 2225 scale of
0–4 for evaluation. The evaluation results are shown in Figure 10.

Good Time-wise Performance

In this thesis, performance is defined the time it takes to communicate information
from PTC Creo to Autodesk Revit. The performance evaluation of Variant A must
be quite different from a comparable assessment of the other variants. Because
assembly of the converted component models is also required, the comparison cannot
be made directly by evaluating the time it takes to do the software communication
of the main assembly as a whole. While analyzing the solution, it was also found
that Autodesk Revit API actually offers limited support in the attempt to create
configurable assemblies, because the orientation options are limited. As a result,



65

Figure 10: Scored evaluation chart for communication solution based on Pahl et al.
[35]

Variant A is evaluated at 1 for performance. Because the mentioned limitations are
fundamental to the solution, no improvement can be made.

Variants B and C are quite similar in terms of performance. The communication
happens quite quickly, only taking under ten minutes to complete for a typical
simplified representation assembly of KONE. The performance can be further
enhanced by suppressing the graphical interface. This is not a major enhancement,
but potentially helps running the solution on systems that have less advanced display
drivers. As a result, both variants are given a score of 3 for the present variant and
4 for what is possible after improvement.



66

Low Capex

All solutions are assumed to utilize limited period licensing for the required software,
which will be included in Opex instead. As a result, Capex evaluations consist of
development needs and server infrastructure requirements only.

For variant A, the solution could technically be implemented without large
investments. If the components are communicated manually from PTC Creo to
Autodesk using the standard functionalities, the only investment required is the
training for the people performing the communication. If the solution is sought
to be automated, some software development is required. The development of the
functionality itself is not too heavy, but as noted, variant A requires a large amount
of start parts and templates to run it correctly. The current IT systems require little
modification to accept variant A, but the large amount of existing component models
requires heavy harmonization work The estimated time required is four person weeks
for start parts and templates and two person weeks for the software development.
In addition, the harmonization is estimated at 26 person weeks. Despite these
drawbacks, the small server infrastructure costs lead to a score of 2 for Capex.

Variant B is quite ready to run as it is a commercial product. However, two
items warrant some development. The solution needs to be customized to the use
of KONE, because currently it can only be run manually. KONE uses a standard
process which needs to run automatically. In addition, the existing systems at KONE
need to be modified to accept the new module in the process. The effort estimate for
these tasks is 3 person weeks for system modification and 3 person weeks for solution
customization. The variant requires production and acceptance/testing environments
to be set up from the server infrastructure point of view, leading to a score of 3.

Variant C is only proposed as a prototype in this thesis. It needs to be finalized
and the current systems modified to accept the new module. This development is
estimated to take 5 person weeks for finalizing the current solution and 3 person weeks
to modify the existing systems. The variant requires similar server infrastructure as
Variant B and is then awarded 2 points for Capex.

Low Opex

For operating expenditure (Opex), the salary and license costs are considered. Moni-
toring costs will be quite similar for all solutions so they are excluded from the study.
Variant A is the only variant to require salary costs as main assembly BIM will still
need to be manually created in the manual process cases. To estimate the cost to
support the required load of 800 000 requests, an estimate on the amount of manual
process cases is first required. The manual process is responsible of roughly 15% of
yearly orders but can be assumed to require more revisions than automatic process
cases. At 30% of yearly requests the required cost would likely require a team of 8-10
modelers to support the load. Also the license costs for these modelers need to be
accounted for. Variant A is given a score of 1 point for Opex.

Variants B and C require no salary costs and only a few PTC Creo and Autodesk
Revit licenses for the servers. As a large benefit, both variants will eliminate the
need for a separate BIM automation solution. The main difference between the two



67

is that Variant B also comes with a license cost. A license is required for both the
automation servers as well as the manual process engineers. As the single yearly
license cost reported for Variant B is roughly 3000 euros, the cost is not insignificant
given that there is a potential pool of several hundred engineers requiring the solution.
As a result, Variant B is awarded 2 points for Opex, while Variant C receives 4
points.

Low Cost of Scaling Up

The cost of scaling up the solution is studied based on scaling up 10 000 yearly
requests. For variant A with the current manual and automated processes, this would
mean that 1500 new requests a year need to be handled manually and 8500 new
requests in the automated process. Based on estimating one request to require 4
hours to fulfill, an assumed 40 hour work week would give 150 person work weeks
required. The requirement can then be rounded to 3 person work years or three
extra resources. The automated solution is able to support roughly 50 000 yearly
requests per model production server, so the cost can be assumed to be around
25% of a virtual server allocation when including the required setup and test costs.
Variant A is given a score of 1 point for scaling up because of the sizeable workforce
requirement.

For variants B and C, only the server costs are required. The elimination of
required manual effort is significant. Also the automated solution can be scaled down
and only used for certain simple cases where no model in PTC Creo is required.
Achieving the desired software communication requires the use of two separate server
systems, of which the first is used to extract the data from PTC Creo models in the
automated process. This server is not required in the automated process. The other
is used in both automated and manual processes to generate the actual BIM. The
server costs are then doubled, although the handling times are roughly the same.
The cost of scaling up by 10 000 yearly requests is then 50% of a virtual server
allocation. Variants B and C are evaluated at 3 points.

Amount of Information Communicated

Variants A and C are based on the .sat conversion, which allows for fairly little detail
to be communicated. Only the geometry can be passed for the component models. In
addition, Variant C contains the possibility to add parameter and datum information
which can also be added to variant A with further improvement. Additional benefits
for items such as connectors, materials and lighting, present in Variant B can mostly
also be added to Variant C with further improvement.

For the amount of information, variant A is then awarded 2 points for the present
variant and 3 points for what is possible with improvement. Variant C is awarded 3
points for the present variant and 4 points for improved variant. Variant B already
receives 4 points for the present variant.



68

Few Modeling Methodology Requirements

Making variant A generic enough not to require modeling methodology requirements
is not a trivial task. Each component type to be converted requires its own method
of conversion, since the master assemblies in Autodesk Revit have been specifically
engineered to meet the requirements of the users so that the placement of components
is natural to the engineering process.

In addition to requiring a specific conversion method, only adapting a component
conversion requires more discipline at the input end. To automate the conversion,
certain datum features would need to be recognized, ergo all of the component types
would require a certain start part. Additionally, generic start parts for components
hosted in different orientations would be required. By different hosting, two generic
types of components can be identified: wall based and floor based components. A
start part would define the necessary datum features in a way recognizable for the
application.

In the solution variant analysis, a very alarming feature of the variant A was
found. Software communication of models between PTC Creo and Autodesk Revit
eliminates the geometric configurability of parts. KONE’s products consist largely of
components that feature geometric configurability. As a result, a library of component
models lacking geometric configurability cannot be accepted.

The API is capable of constraint configurable assemblies only with respect to
a single coordinate direction. As a result, any assembly that requires constraint
configurability in more than one direction would be out of scope for such a solution.
Scope limitations are fairly dangerous in a large scale process definition like the one
at hand. If the scope of the solution is limited to only cover some of the possible
components, at least two parallel processes must coexist. Parallel processes waste
many of the proposed benefits and should only be implemented as a transition phase
between the old and new processes or very special cases.

Concluding the argumentation of variant A support for few modeling requirements,
the criterion for solution variant needs to be valued. According to the chosen
evaluation method, Guideline VDI 2225, the valuation should be done on a scale
of zero to four. Because the lack of geometric configurability is unacceptable, the
modeling methodology requirements evaluation criterion is assigned a value of 0 in
the present variant.

With further solution improvement to communicate the components with the
correct parameter values required by the case at hand, the modeling methodology
requirements are eliminated in terms of geometric configurability. However, the
solution is then quite close to Variant C and will still require explicit start parts to
be used. Component start parts would naturally require maintenance and ownership.
Before the R&D unit responsible for the design of components fully incorporate
the BIM component model creation process, maintenance and development of a
potentially very large selection of components would be required. Since BIM is a
quickly evolving field, a real possibility exists to require changes in the fundamentals
of the component modeling methodology. Variant A is then assigned a just tolerable
value of 1 for possible after improvement.



69

Variants B and C are easier in this sense. They do not place heavy requirements
on the modeling methodology. Both variants have some recognized deficiencies in
communicating more advanced geometric features such as boundary blends and
sweeps as well as non-planar cutouts in sheet metal. However, the products of KONE
are mostly quite simple, especially when simplified representations are utilized. For
producing reasonable BIM content, both variants do require simplified representations
however. Both variants will then receive a score of 3 for modeling requirements.

Well Integrable

Integrability is a key factor when looking to enhance the overall engineering and
documentation process of KONE. An optimal software communication solution
integrates well to the rest of the process. Variant A keeps the BIM process separated
from the rest of the engineering process. If BIM is generated separately, integration
is not well implemented. However, information can still be moved between different
systems. Integrability is then evaluated at 1 point for variant A.

Variants B and C are easier to integrate since they can make full use of the main
assembly 3D models. Of the two, Variant C is slightly better since the source code
is exclusive property of KONE. As such, even parts of the solution can be reused
elsewhere. The evaluation for integrability is 3 points for Variant B and 4 points for
Variant C.

Low Cost for Product Change Implementation

Change management of the products is an interesting topic, especially with BIM
being in state of speedy development. For variant A the cost for implementing a
change in product consists of the effort to create a new BIM representation of a
given component. The effort is not huge, especially if changes are made to create
the component models on demand, but it cannot be ignored. A new component
type altogether requires the creation of suitable start parts and templates for future
components of the same kind. In case changes are made to the main assembly, variant
A requires corresponding changes to the appropriate master model for creating the
main assembly in Autodesk Revit. Variant A is given 1 point for the present variant
and 2 points for improvement possibilities.

Variants B and C accept changes very quickly. Since these solutions are not
tied to the content being communicated, changes to the content do not constitute a
maintenance item if the modeling methodology is not changed. Only changes to the
desired structuring would require maintenance work. The variants are then given 3
points for product change implementation.

Low Cost for Platform Change Implementation

In case the platforms for CAE and BIM are updated, the software communication
solution needs to comply. All variants use quite fundamental API calls, so major
modifications are not expected in case of changes to the software platform. Variants
A and C are then assigned 3 points for the platform change management. Variant



70

B is awarded 4 points because the solution seems to be in the roadmap of being
included directly in PTC Creo.

Patentability and Ownership of Solution

For patentability and ownership of the solution, the variants are compared to the
similar rejected patent application of Glunz et al. [14]. None of the solutions seem
to provide no more novel and innovative steps than the rejected patent application
[14]. Patentability does not then seem to exist for any of the variants. Variant A is
merely taking advantage of the existing functionalities in PTC Creo and Autodesk
Revit to create a solution leaning heavily on manual work and does not then seem
to provide any real possibility for a competitive edge. The evaluation for ownership
of the solution is then 2.

Variant B is facing a similar situation. The solution is available for purchase by
the competition as well and in the roadmap of being included directly in PTC Creo.
This inclusion makes the risk of leaning on a single solution vendor smaller as the
confidence of solution stability is higher even if the solution is not owned by KONE.
Variant B is awarded 2 points as well.

Variant C is completely controlled by KONE. As a result, changes can be easily
implemented and the solution developed by the best possible party in all scenarios.
Variant C is then awarded 3 points for the last evaluation criterion.

Variant C with improvements has the highest score at 40 points, which is 83.3%
of the maximum score. Without improvements, Variant C compiles 38 points or
79.2%, which is still two points better than Variant B with improvements.



71

7 Discussion
In the previous chapter, results achieved by this thesis were presented. In the this
chapter, conclusions are drawn from the results. In addition, a future development
plan is proposed. The arrangement of the custom solution to a production service
is justified and described as a split between a network service and a local solution.
Possible enhancements that can be achieved via using a REST API are also described.
The chapter proposes not to pursue intellectual property rights for the solution.
Finally, suggestions are made for modeling methodology limitations to comply with
the proposed software communication solution.

7.1 Conclusions
This thesis has studied the optimal solution for software communication between
PTC Creo and Autodesk Revit. A custom built software solution using the official
APIs of the PTC Creo and Autodesk Revit suites gives a high level of customizability
and offers flexibility for changes. As a result, this thesis finds that the custom built
software solution to solve the research objective in an optimal way.

Furthermore, as part of this thesis, the feasibility and technical concept of the
custom software solution were proven by creating a functional prototype. To leverage
the results in production use, this thesis proposes a requirements list for a software
development project. The functional prototype should be used as a starting point
for the software development project. As part of the next project, the potential
weaknesses of this study should be considered. These potential weaknesses might
include for example the material assignments of BIM component models produced
by software communication. In case customers begin to request material assignments
as part of the BIM deliverable, the creation of these assignments in the software
communication process should be closely studied.

The literature review revealed extensive studies into best practices in software
development and analysis of reasons for the failure of software development projects.
These best practices and failure causes were analyzed and should be taken into account
in the proposed software development project. The reviewed studies show that if the
best practices are not followed, the risk of failure in the extensive implementation of
such a development project is large.

The evaluation of different solution variants gave expected results, with the mini-
mum objective of communicating component models only receiving the lowest score.
The commercial solution received a fairly high score and the detail of information
which can be communicated should be duly noted. The integrability and operating
expenditure of the custom solution seems advantageous, as few customers seem to
be requesting much detail in the component information at the moment.

7.2 Future Development
Although it seems that the prototype performs at an acceptable level and that the
cases that it has been used for in testing show substantial potential, several important



72

developments are proposed. These developments will raise the value of the solution
even higher than what it is today. This increase in value should also be achievable
at a relatively low cost, because the software is entirely owned by KONE.

The most reasonable way of arranging the solution for scalable production use is
to turn the solution into a service. A centralized service running on dedicated servers
is beneficial in multiple ways when compared with a scenario where the software
communication solution is run locally on the engineers’ systems. First of all, it removes
the need to provide a license for Autodesk Revit for all system level engineers. The
approximate license cost for Autodesk Revit at the time of publication is 2600 euros
per year [20] and KONE is employing approximately 200 system level engineers. If
the software communication approach were to be implemented individually for each
designer, the license costs are obviously unsustainable. The license costs can be
significantly reduced by completing the software communication process on a server,
reserving a single license for both PTC Creo and Autodesk Revit.

The engineers working in the customer interface naturally still need a complete
Autodesk Revit installation. They need to be able to communicate with the customer,
which requires extensive work in Autodesk Revit itself. However, the engineers
creating the initial general design of the elevator do not require a Autodesk Revit
installation, but could be provided with a viewer instead. Thus, the designer can
verify that the design still matches the design intent even after converting the design
into Autodesk Revit. However, because they do not actually perform any work
in Autodesk Revit, a complete installation combined with a license would lead
to significant waste. KONE has committed heavily into the principles of Lean
engineering and manufacturing processes. Such waste would be in direct conflict
with these principles.

A discussion with a software company working extensively on add-ins for PTC Creo
produced an interesting variation. Autodesk Revit part of the software communication
solution could well be implemented as a service on a centralized server. However, it
might be viable to implement the PTC Creo part of the solution rather as a local
item.

There are several benefits in this approach. First, the network traffic is significantly
alleviated, because complete PTC Creo assemblies are not sent to the central server,
but instead only the configuration XML combined with the vendor-neutral CAD
file format component models are sent. According to initial tests, the size of the
complete system level PTC Creo model is approximately 4,5 times the size of just the
vendor-neutral CAE file format component models. Since the scale of the discussion
is in the gigabyte range, a 4,5 fold reduction in the amount of data to be transferred is
quite significant from a network load point of view. Because of heavy customization,
the system level CAE model cannot be loaded permanently on the server, since in
some cases the customer requirements necessitate more than mere configuration of a
pre-engineered model.

Second, the software communication can be based directly on the model that
the engineer is working on. No separate saving and compressing the model files is
required. In addition, the visibility settings that a user is currently applying on the
model can be taken into account. Automatically detecting the visibility settings



73

leaves less room for a human error causing quality risks.
Third, both the performance and the capacity of the software communication

solution are enhanced, when using a hybrid approach like the one proposed. If the
server only needs to take care of half of the process, there will naturally be less queue
even in busy hours because half of the process of software communication has already
been done. As a result, users will see shorter reaction times to the requests because
of the shorter queues but also because the server takes less time to reassemble the
vendor-neutral CAD file format according to the instructions in the XML.

However, there are also downsides to splitting the process between local and
server-based items. If some components are run locally, it means that there is more of
a risk of semi-complete models being created with an outdated engineering structure.
It is more difficult to control decentralized solutions compared to centralized solutions.
Some workarounds exist, such as forcing the solution to check for updates every time
that a run of the solution is attempted.

As mentioned in the IPR section, the patent application by Glunz et al. [14]
might prove troublesome. The results section mentioned the use of the REST API
of Autodesk Revit as a possible development item to circumvent the patent. As the
patent application [14] only claims an application running via the use of DLL, the
REST API seems to provide a method to avoid any possible trouble caused by the
earlier patent.

However, applying for a patent is always a compromise. Since there are costs
involved in applying for and maintaining a patent, in case the patent does not provide
value, the investment might not be feasible. Having the working principle published
in this thesis means that any attempts to apply for a further patent should be rejected
by the patent office. If the patent is not rejected by the patent office, the chances
of a favorable outcome from any ensuing law suits are significantly increased with
proof of prior art.

The KONE legal department has reviewed the need and benefits of applying for
a patent. As a result, the decision has been made to not pursue a patent for the
working principle with the use of the REST API. The fact that the working principle
is published is seen to be enough.

The logical next step in the development of CAE to BIM conversion is the
automatic generation of approval drawings based on BIM. Creating drawings from
BIM brings about several key benefits. Having the approval drawings and BIM as
mutually connected objects in a single deliverable file is a step forward in itself. It
also allows a group of connected systems to be assembled only at this stage, helping
reduce the performance requirements of the computers used in the CAE phase.
Customers seem to value having elements from the building design incorporated in
the same drawings that show the relevant parts of the delivered systems as well.

KONE products are generally arranged in groups. The customers usually also
would prefer seeing the groups of equipment as a hierarchical structure in BIM.
The next evolution of the solution should be able to not only provide software
communication between CAE and BIM, but to also include data from KONE’s PDM
solution, thus generating the groups and all devices related to its function.



74

7.3 Modeling Requirements
To allow for successful conversion, several factors would have to be taken into account.
These factors affect both the export from PTC Creo to the vendor-neutral CAD file
and the import of this vendor-neutral CAD file to Autodesk Revit. It is important to
note that unsolidified surface features are not allowed, since they cannot be imported
into Autodesk Revit.

Some of the features were built to not appear in the vendor-neutral CAD file
at all, but rather be documented as information in the extensible markup language
(XML) file. This XML file is then to be read and the features modeled natively into
the final model in Autodesk Revit.

Features that do not appear in the vendor-neutral CAD file include the specified
datum/reference planes as well as the parameters that were to be created in Autodesk
Revit. Thus, the approach taken to build for example the datum planes in PTC
Creo does not dictate the way the reference planes are arranged in the final BIM file.
Since importing features like datum/reference planes with the vendor-neutral CAD
file is often problematic, it is often more feasible to use the definition of the feature
to model it natively in Autodesk Revit. In addition, the definition for these features
is not as difficult to extract to the XML as it is for the geometry using the basic API.

To capture features like datum/reference planes and parameters easily, they
should be arranged in a single skeleton on the main assembly level in order to have
all necessary datums appear in the final model. Optimally, this skeleton would not
contain any other datums except those to be included in BIM. If the single skeleton
contains all datum planes that should be repeated in BIM, no additional lookups are
needed to limit the repeated datum planes. As a secondary solution, these planes can
also be included in a single group inside the skeleton, if it is necessary to also include
datum planes that are not to be repeated in BIM. To create the planes correctly, the
naming and relative position in the system of the first datum planes in all directions,
XY, XZ and YZ should be standardized. If this standardization is done, all other
planes can be placed according to these original planes. Additionally, the converted
systems are easy to use in BIM because their relative origin in the physical structure
is the same.

As for parameters, parameter types should be limited to those known to both
PTC Creo and Autodesk Revit. If other types are to be used, their usage should
be limited to PTC Creo integral use. Because the parameter types are mapped in
advance between the two software suites, asking for parameter types unknown to
Autodesk Revit to be communicated is likely to cause an error. The parameters
that are to be included in the final output of the software communication should be
provided in the initial configuration XML file.

The vendor-neutral file format import to Autodesk Revit limits the features
to be used in the CAE modeling to rather simple ones. However, considering the
requirements of BIM, this is an issue that would need to be resolved at some stage
anyway. As proposed by Weygant [46], the level of detail should be limited to
items that are possible to distinguish from a distance of 3 meters. Any complicated
geometry or advanced surface models can be omitted as long as the overall space



75

reservation and building interface of the component in question can be determined
by the customer based on the BIM provided. This seems well aligned with the
requirements for component model detail level in the general design phase.

CAD modeling can be roughly divided into surface and solid modeling. Surface
modeling develops a geometric shape by first creating the surfaces of the shape.
Then, the volume limited by these surfaces is solidified to create physical volumes of
material.

Solid modeling seeks to partly semi-automate the process. Instead of defining
surfaces, a section of the shape is typically created and then extruded along a
specified route. Surface modeling is the earlier innovation of the two, but still is
heavily used creation of most complex geometry. In some scenarios, surfaces might
be left unsolidified in CAE, for example to define a space reservation.

To determine possible limitations in the utilization of these two different paradigms,
the conversion through the vendor-neutral CAD file format was tested using both.
The vendor-neutral CAD file transferred the geometry in an acceptable fashion to
Autodesk Revit regardless of which method of modeling was used in PTC Creo.
However, the results showed that pure surface geometry without solidification did
not transfer acceptably from PTC Creo to Autodesk Revit.

Space reservation features often represent simple, box-like geometry. Such features
require relatively little data to determine their shape, size and location definition.
Software communication between PTC Creo and Autodesk Revit can then be achieved
by passing the definition as numbers instead of the geometry as a vendor-neutral
CAD file format. The feature can then be remodeled natively in Autodesk Revit with
reasonable effort. Accordingly, this thesis proposes that space reservations created
with pure surface geometry in the CAE engineering phase should be communicated
with native features in Autodesk Revit.



76

References
[1] Appuhami, B. R. The impact of firms’ capital expenditure on working capital

management: An empirical study across industries in thailand. International
Management Review 4, 1 (2008), 8.

[2] Aram, S., and Eastman, C. Integration of plm solutions and bim systems for
the aec industry. In Proceedings of 30th International Symposium of Automation
and Robotics in Construction and Mining, Montréal (2013), pp. 1046–1055.

[3] Bernard, F. The dassault systemes success story, 2010.

[4] Bosch, J. From software product lines to software ecosystems. In Proceedings
of the 13th international software product line conference (2009), Carnegie Mellon
University, pp. 111–119.

[5] Bosch, J., and Bosch-Sijtsema, P. From integration to composition:
On the impact of software product lines, global development and ecosystems.
Journal of Systems and Software 83, 1 (2010), 67–76.

[6] Brooks, F. No silver bullet, essence and accidents of software engineering.
IEEE Computer, 20 (4): 10. April, 1987.

[7] Closa, D., and Falk Giemsa, J. Patent Law for Computer Scientists.
Springer, 2010.

[8] Collins-Sussman, B., Fitzpatrick, B., and Pilato, M. Version control
with subversion. " O’Reilly Media, Inc.", 2004.

[9] Danhaive, R. A., and Mueller, C. T. Combining parametric modeling
and interactive optimization for highperformance and creative structural design.
Proceedings of the International Association for Shell and Spatial Structures
(IASS) (2015).

[10] Davis, H. Visual Basic .NET Programming. John Wiley & Sons, 2006.

[11] De Alwis, B., and Sillito, J. Why are software projects moving from
centralized to decentralized version control systems? In Cooperative and Human
Aspects on Software Engineering, 2009. CHASE’09. ICSE Workshop on (2009),
IEEE, pp. 36–39.

[12] Eastman, C., Eastman, C. M., Teicholz, P., Sacks, R., and Liston, K.
BIM handbook: A guide to building information modeling for owners, managers,
designers, engineers and contractors. John Wiley & Sons, 2011.

[13] El Emam, K., and Koru, A. G. A replicated survey of it software project
failures. IEEE software 25, 5 (2008).



77

[14] Glunz, B. F., and Munoz, Alfredo, F. Method and system for creating
composite 3d models for building information modeling (bim). https://www.
google.com/patents/US20150248504, 2015.

[15] Glunz, B. F., Pearson, Wayne, R., and Munoz, Alfredo, F. Method
and system for creating 3d models from 2d data for building information modeling
(bim). https://www.google.com/patents/US20150248503, 2015.

[16] Gyerik, J. Bazaar Version Control. Packt Publishing Ltd, 2013.

[17] Halt, G. B., Donch, C., Stiles, A., and Robert, F. Intellectual property
in consumer electronics, software and technology startups. Springer, 2014.

[18] Hardin, B., and McCool, D. BIM and construction management: proven
tools, methods, and workflows. John Wiley & Sons, 2015.

[19] Haukilehto, A. Visual C .NET. Edita Publishing Oy, 2002.

[20] Inc., A. Autodesk revit subscription, 2017.

[21] Janes, A., and Succi, G. Lean software development in action. Springer,
2014.

[22] Kallio, T. Plan for implementing building information modeling: a customer
survey. Tampere University of Technology, 2014.

[23] KONE. Annual review, kone 2016. http://www.kone.com/en/Images/KONE_
Annual_Review_2016_tcm17-37391.pdf, 2016.

[24] Lancaster, F. D., and Tobin, J. Integrated project delivery: Next-
generation bim for structural engineering. ASCE, Orlando, Florida 254 (2010).

[25] Lee, N., Dossick, C. S., and Foley, S. P. Guideline for building informa-
tion modeling in construction engineering and management education. Journal
of Professional Issues in Engineering Education and Practice 139, 4 (2013),
266–274.

[26] Lehtinen, T. O., Mäntylä, M. V., Vanhanen, J., Itkonen, J., and
Lassenius, C. Perceived causes of software project failures–an analysis of their
relationships. Information and Software Technology 56, 6 (2014), 623–643.

[27] Li, J., Wang, Y., Wang, X., Luo, H., Kang, S.-C., Wang, J., Guo,
J., and Jiao, Y. Benefits of building information modelling in the project
lifecycle: construction projects in asia. International Journal of Advanced
Robotic Systems 11 (2014).

[28] McLeod, L., and MacDonell, S. G. Factors that affect software systems
development project outcomes: A survey of research. ACM Comput. Surv. 43,
4 (Oct. 2011), 24:1–24:56.

https://www.google.com/patents/US20150248504
https://www.google.com/patents/US20150248504
https://www.google.com/patents/US20150248503
http://www.kone.com/en/Images/KONE_Annual_Review_2016_tcm17-37391.pdf
http://www.kone.com/en/Images/KONE_Annual_Review_2016_tcm17-37391.pdf


78

[29] Miller, R., Strombom, D., Iammarino, M., and Black, B. The
commercial real estate revolution: nine transforming keys to lowering costs,
cutting waste, and driving change in a broken industry. john wiley & Sons, 2009.

[30] Mohapatra, S. Information Theory and Best Practices in the IT Industry.
Springer Science+Business Media, LLC, 2012.

[31] Nagel, C., Evjen, B., Glynn, J., Skinner, M., and Watson, K. Pro-
fessional C# 2008. John Wiley & Sons, 2011.

[32] Naur, P., and Randell, B. Software engineering: Report on a conference
sponsored by the nato science committee, garmisch, germany, 7th to 11th october
1968. In Software Engineering: Report on a conference sponsored by the NATO
SCIENCE COMMITTEE (1969), Nato.

[33] Office, E. P. The european patent convention. http://www.epo.org/
law-practice/legal-texts/epc.html, 2016.

[34] Ojala, J. Interoperability in Computer Aided Design. Aalto University, 2013.

[35] Pahl, G., Beitz, W., Feldhusen, J., and Grote, K.-H. Engineering
design: a systematic approach. Springer Science & Business Media, 2013.

[36] Patent, U. S., and Office, T. Patent laws, united states code ti-
tle 35 - patents. https://www.uspto.gov/web/offices/dcom/olia/aipa/
PatLaws1214.pdf, 2000.

[37] Preiße, R., and Stachmann, B. Git: Distributed Version Control–
Fundamentals and Workflows. Brainy Software Inc, 2014.

[38] Purdum, J. Beginning Object-Oriented Programming with C#. John Wiley &
Sons, 2012.

[39] Regan, G. O. A brief history of computing. Springer Science & Business
Media, 2008.

[40] Rooney, J. J., and Heuvel, L. N. V. Root cause analysis for beginners.
Quality progress 37, 7 (2004), 45–56.

[41] Ruippo, T. 3D-tulostuksen kuluttajasovellukset. Aalto University School of
Engineering, 2013.

[42] Sauer, C., Gemino, A., and Reich, B. H. The impact of size and volatility
on it project performance. Communications of the ACM 50, 11 (2007), 79–84.

[43] Sheldon, B., Hollis, B., Windsor, R., McCarter, D., Herman, T.,
et al. Professional Visual Basic 2012 and. NET 4.5 Programming. John
Wiley & Sons, 2012.

[44] Slabaugh, G. G. Computing euler angles from a rotation matrix, 2010.

http://www.epo.org/law-practice/legal-texts/epc.html
http://www.epo.org/law-practice/legal-texts/epc.html
https://www.uspto.gov/web/offices/dcom/olia/aipa/PatLaws1214.pdf
https://www.uspto.gov/web/offices/dcom/olia/aipa/PatLaws1214.pdf


79

[45] Watson, K., Nagel, C., Pedersen, J. H., Reid, J. D., Skinner, M.,
and White, E. Beginning Visual C# 2005. John Wiley & Sons, 2008.

[46] Weygant, R. S. BIM content development: standards, strategies, and best
practices. John Wiley & Sons, 2011.

[47] Woo, J. H. Bim (building information modeling) and pedagogical challenges.
In Proceedings of the 43rd ASC National Annual Conference (2006), pp. 12–14.

[48] Young, N., Jones, S., Bernstein, H., and Gudgel, J. Smartmar-
ket report on building information modeling (bim): Transforming design and
construction to achieve greater industry productivity, 2008.


	Abstract 
	Abstract (in Finnish)
	Preface
	Contents
	Abbreviations
	Introduction
	Background
	Research Objective
	Scope
	Structure of Thesis

	Literature Review
	BIM
	Software Communication
	Intellectual Property Considerations
	Software Development
	Programming Languages
	Solution Variant Evaluation

	Methods
	Requirements for the Software Communication Solution
	Comparison of Solution Variants
	Software Engineering the Custom Solution

	Analysis of Existing Methods
	Need for Software Communication
	Conversion of Components
	Native BIM Support in PTC Creo
	Commercial Software Communication Solutions

	Custom Solution Prototype
	Development of Custom Solution Prototype
	Custom Solution Prototype Architecture

	Results
	Requirements Review
	Comparison Based on Evaluation Criteria

	Discussion
	Conclusions
	Future Development
	Modeling Requirements

	References

