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A method for detecting non-stationary
oscillations in process plants

Vesa-Matti Tikkala ∗ Alexey Zakharov ∗
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∗ Aalto University School of Chemical Technology,
Department of Biotechnology and Chemical Technology,

P.O. Box 16100, 00076 Aalto, Finland
(email: vesa-matti.tikkala@aalto.fi)

Abstract: This paper proposes a method for detecting oscillations in non-stationary time
series based on the statistical properties of zero-crossings. The main development presented is a
technique to remove non-stationary trend component from the analysed signals before applying
an oscillation detection procedure. First, the method extracts the signal’s baseline that is utilized
to stationarize the signal. Then, an index describing the regularity of the stationarized signal’s
zero-crossings is computed in order to determine the presence of oscillation. The properties
and performance of the method are analysed in simulation studies. Furthermore, the method
is comprehensively tested with industrial data in a comparative study in which the proposed
method is tested against other oscillation detection methods using industrial benchmark data
and in tests on paperboard machine process . Finally, the simulation and industrial results are
analysed and discussed.

Keywords: Fault detection, oscillation, diagnosis, industrial application

1. INTRODUCTION

Demands to optimize and run industrial processes more ef-
ficiently are increasing constantly due to tightening global
competition. Since modern industrial processes are com-
plex and large-scale, operator-based monitoring cannot
guarantee timely detection and reliable diagnosis of the
faults and abnormalities. Therefore, the automatic detec-
tion and diagnosis of different abnormal and faulty condi-
tions in the processes have become increasingly important.

A common example of such abnormal behaviour of a
process plant are persistent oscillations that readily prop-
agate in the process and cause excessive variation in the
process variables as well as in the product quality. They
are commonly a significant reason for inefficient operation
and production losses (Jämsä-Jounela et al., 2013) and
therefore early detection of oscillations becomes highly
important.

Oscillations have no clear mathematical definition, but are
typically considered as periodic patterns in a signal that
are not however disguised by noise (Karra and Karim,
2009). The oscillations in process plants are typically
originated under feedback control (Desborough and Miller,
2001; Ender, 1993), and they may have various causes
which have been categorized by Thornhill and Horch
(2007) into non-linear and linear causes. The non-linear
causes include for example extensive static friction in the
control valves, on-off or split range control, sensor faults,
process non-linearities, and hydrodynamic instabilities.
The most common linear causes are poor controller tuning,
controller interaction, and structural problems involving
process recycles (Thornhill and Horch, 2007).

Detecting oscillations by visual inspection can be straight-
forward, but in case of a large-scale process plant which
may contain hundreds or thousands of signals, manual
analysis becomes practically infeasible. In such cases,
mathematical tools are required to determine the presence
of oscillation(s) and its basic characteristics, such as period
or magnitude. In Jelali and Huang (2010), a list of desired
features for an oscillation detection method are presented:
(i) utilization of data without further process knowledge,
(ii) capability to handle slowly varying trends, (iii) ro-
bustness to white and coloured noise, (iv) capability to
handle multiple oscillations, and (v) completely automatic
operation without human intervention.

The mathematical methods and techniques to detect os-
cillations are typically based on analysing the shape or
regularity of zero-crossings of a signal or its autocorre-
lation function, or spectral content of the signal using
power spectral density or various decomposition tech-
niques. Comprehensive reviews and comparisons of the
oscillation detection methods have been presented e.g. by
Horch (2006) and Choudhury et al. (2008).

The first approaches to oscillation detection were based on
the regularity of large enough integral absolute error (IAE)
of a control loop error signal (Hägglund, 1995; Thornhill
and Hägglund, 1997). The industrial implementation of
the IAE method has been discussed by Hägglund (2005).
Forsman and Stattin (1999) provided a modified version of
the IAE method in which the regularity of upper and lower
IAEs were considered separately enabling more accurate
detection of non-symmetric oscillations.



The properties of the auto-correlation function (ACF) of
a signal have also been used by several authors to detect
oscillatory signals. Miao and Seborg (1999) proposed a
method based on the decay ratio of an ACF, whereas
Thornhill et al. (2003) used the zero-crossings of the ACF
to determine the presence of an oscillation. The decay ratio
method measures the attenuation of oscillations in the
ACF of a signal to determine the presence of an oscillation.
The ACF method by Thornhill et al. (2003) detects the
oscillations by means of the regularity of zero-crossings
in a filtered ACF and is capable of detecting multiple
oscillations with different frequencies.

The oscillation detection methods have been developed
also based on wavelets (Matsuo et al., 2003), the poles
of autoregressive and moving-average models (Salsbury
and Singhal, 2005). Moreover, a variety of multivariate
methods have been developed to decompose spectral data
using for example on principal component analysis (Thorn-
hill et al., 2002) and non-negative matrix factorization
(Tangirala et al., 2007).

The most significant difficulty related to oscillation detec-
tion using these methods is the non-stationarity of the time
series. Many of the methods in the literature utilize fea-
tures, such as autocorrelation, that assume the stationarity
of the data. Therefore, such methods may fail if applied
to time series with trends or slow variations in their mean
value. Typically, linear trends are easy to remove by de-
trending and in some cases slowly varying, non-stationary
trends could be removed using appropriate high-pass fil-
tering. However, such procedures are very challenging to
automate in order to analyse large amounts of signals
without manual effort. For example filtering techniques
usually require parameters to be determined specifically
in each case.

Therefore, to address the aforementioned issues, the aim
of this paper is to propose a method that is capable to
handle non-stationary signals and can be used automati-
cally without manual pre-processing to detect oscillatory
disturbances. The method utilizes a baseline computation
procedure to stationarize the signals, computes the me-
dian and mean absolute deviation of the intervals between
consecutive zero-crossings, and incorporates them into a
robust statistic index. As a result, the oscillation detection
also becomes robust against noise in the analysed signals.
Thus, the method also becomes attractive for analysing
measurements signals and control loops of process plants.

The paper is organized as follows. Section 2 provides a
detailed description of the proposed oscillation detection
method. Next, the experiments are presented in Section 3.
The results of the simulation tests and industrial data
are presented in Sections 4 and 5, respectively. Finally,
the results are discussed and the paper is concluded in
Section 6.

2. THE ROBUST ZERO-CROSSING METHOD FOR
OSCILLATION DETECTION IN NON-STATIONARY

TIME SERIES

The proposed method, referred hereinafter as the robust
zero-crossing (RZC) method, utilizes the statistical prop-
erties of intervals between consecutive zero-crossings (ZC)

to detect oscillations. Due to a developed baseline com-
putation procedure the RZC method is capable to detect
oscillations also in non-stationary signals.

The RZC method first computes the moving trend, or the
”baseline” of a non-stationary signal by finding the consec-
utive ZC intervals and the local minimum and maximum
values of the signal between them. For a discrete-time
signal x(t), t = 1, . . . , n, the time instants of zero-crossings
tz,i are defined as

tz,i ={t | sign{x(t− 1)− b(t− 1)} 6= sign{x(t)− b(t)}},
i = 1, . . . ,m (1)

where b(t) is the baseline of the signal at time t and m
is the number of zero-crossings in x(t). The local maxima
and minima, a+

i and a−i , are used to calculate the shift in
the signal’s baseline for each interval:

b(t) =

a−i +
a+
i + a−i

2
, t = tz,i, i = 1, . . . ,m

b(t− 1), otherwise
(2)

where

a+
i = max{x(t1)− b(t1), x(t2)− b(t2)},

tz,i−1 ≤ t1 ≤ tz,i, tz,i−2 ≤ t2 ≤ tz,i−1, (3)

and

a−i = min{x(t1)− b(t1), x(t2)− b(t2)},
tz,i−1 ≤ t1 ≤ tz,i, tz,i−2 ≤ t2 ≤ tz,i−1, (4)

The above formulation ensures that a+
i and a−i represent

correctly the oscillation’s maximum and minimum ampli-
tudes whether the last half period has been positive or
negative.

Before x(t) can be stationarized, the baseline is corrected
by backward shifting and interpolation. The backward
shifting is done because b(t) is computed based on last two
half periods and therefore it lags behind the true baseline,
the estimate of which is denoted as bc(t) hereinafter. The
backward shifting is defined as bc(tz,i) = b(tz,i+1), and the
interpolation as follows:

bc(t) =

bc(tz,i) + (t− tz,i)
bc(tz,i)− bc(tz,i−1)

tz,i − tz,i−1
, tz,i−1 < t < tz,i

bc(t), t = tz,i
(5)

Finally, the signal is stationarized by subtracting the
computed baseline xs(t) = x(t) − bc(t). If the signal is
already stationary, this procedure does not alter its shape
or properties.

Next, the determination of the presence of an oscillation is
based on calculating the regularity of zero-crossings. In an
oscillating signal, in which the period is close to regular,
the average interval between the ZCs differs from that of
an non-oscillating or noise signal and the variation of the
intervals is small compared to their average length.

The above can be incorporated into a statistical test that
is used to detect oscillations. The test is based on the fact
that the distribution of time interval between consecutive
zero-crossings ∆tz,i = tz,i−tz,i−1 in non-oscillating signals
resembles typically geometric distribution. This can be
shown rigorously for a pure Gaussian noise signal and
it can be reasonably assumed for other non-oscillating
signals. To demonstrate this, Figure 1 shows examples of



Fig. 1. Examples of non-oscillating signals and their zero-crossing distributions: Gaussian noise (top row), correlated
noise (middle row) and industrial measurement signal (bottom row).

such signals with the corresponding zero-crossing distribu-
tions, which appear have a shape similar to the geometric
distribution.

Since the mean and standard deviation of geometric distri-
bution are equal, the following hypotheses can established:

H0 : ∆̄tz = σ∆tz H1 : ∆̄tz = 3σ∆tz , (6)

where ∆̄tz is the mean and σ∆tz is the standard deviation
of the interval between consecutive zero-crossings, respec-
tively.

In order to test the hypothesis, a statistic r can be
calculated as follows (Thornhill et al., 2003):

r =
1

3

∆̄tz
σ∆̄tz

(7)

If the value of r is greater than one, the presence of an
oscillation can be determined.

The above index uses the mean and standard deviation
of the ZC interval which may cause problems due to
measurement noise, when the method is implemented in
time domain . In contrast to the ACF method by Thornhill
et al. (2003), the current method has no inherent filtering
properties and therefore needs to address the noise by
other means. To this end, robust statistics are utilized: the
mean is replaced with the median ∆̃tz = median(∆z,i) and
the standard deviation is replaced with the mean absolute
deviation (MAD) from median defined as:

MAD(∆tz) =
1

m− 1

m∑
i=1

(|tz,i − ∆̃tz|). (8)

Median is a more robust measure of central tendency
in case of asymmetrically tailed distributions or outliers.
These features are also often present in distributions
related to zero-crossings. Furthermore, median absolute
deviation was selected due to its ability to address outliers
in the data better than regular standard deviation, which
consequently increases the robustness of the detection

result. Consequently, the index rRZC can be re-written
as

rRZC =
1

3

∆̃tz
MAD(∆tz)

(9)

Finally, the presence of an oscillation is determined if
rRZC > 1 with an estimated period pRZC = 2∆̃tz. The
RZC algorithm can be summarized as follows:

(1) Compute the baseline b(t) the signal x(t).
(a) Determine the initial baseline value b(1) = x(1)

and the sign of the first half period.
(b) Find the next zero-crossing and compute the

corresponding values of a+
i and a−i .

(c) Compute the new baseline level b(tz,i) = a−i +
a+
i

+a−
i

2 .
(d) Repeat steps 1b and 1c until all m zero-crossings

have been processed.
(2) Compute the corrected baseline by backward shifting

bc(tz,i) = b(tz,i+1) and interpolating according to (5).
(3) Compute the stationarized signal xs(t) = x(t)−bc(t).
(4) Find the zero-crossings tz,i of xs(t) and compute

∆tz(i).
(5) Compute the median and median absolute deviation

of ∆tz and calculate the rRZC-statistic.

3. EXPERIMENT DESCRIPTION

The RZC method was tested and analysed in simulation
tests and in a comparison study using industrial bench-
mark data. The simulation tests aimed at studying the
effect of noise to the performance of the method, whereas
the objective of the industrial tests was to investigate the
method’s operation using real measurement signals and to
compare its performance against other similar oscillation
detection techniques.



Fig. 2. Test signals for signal-to-noise ratio analysis

3.1 Simulation tests

In the simulation tests, the performance of the method
was analysed using signals with sinusoidal oscillations and
superimposed random noise. Noise is always present in
industrial data and it may have a significant effect on
the performance of the method. To study its effect on the
results, a set of oscillating signals with different signal-to-
noise ratios ranging from 0.5 to 50 were generated. The
signal-to-noise ratio was defined as a ratio of variances of
the oscillation and a normal random signal: SNR = σosc

σnoise
.

A set of eleven test signals, with a sine wave that has a
period of 20 samples, was generated. Randomly generated
noise sequences were added to the test signals and the
resulting signals are presented in Figure 2.

3.2 Comparison study on industrial benchmark data

A study using a benchmark data set provided by Jelali
and Huang (2010) was carried out in order to test the
RZC method and to compare its performance against
other oscillation detection methods. The methods used in
the comparison test are the IAE method by Hägglund
(1995), modified IAE method by Forsman and Stattin
(1999) and the ACF method by Thornhill et al. (2003).
These methods are also based on calculating regularity
properties related to zero-crossings in the analysed signals.
In addition, they are simple to implement in an industrial
setting, do not require complex preprocessing, and have
been widely tested using industrial data.

The other methods were implemented according to the
descriptions in the respective publications and the limit
values for the oscillation indices were selected based on
the given suggestions. For the IAE method, an oscillation
is detected if rIAE > 1.3. The limit for the mIAE method
was rmIAE > 0.3, whereas the ACF method uses a limit
of rACF > 1. The tuning parameters related to the
mIAE method, α = 0.55 and γ = 0.75, were determined
according to the suggestions given by Forsman and Stattin
(1999).

A set of 35 signals was selected from the benchmark
data set for the comparison study analysis. The main

Fig. 3. Industrial test data from a paperboard machine
process

criteria for the signal selection were to include a wide
range of signals with different properties: stationary/non-
stationary, clean/noisy. Signals were excluded if they did
not contain a sufficient number of oscillation periods,
contained abrupt step-wise changes. In addition, the most
of the pure noise signals were neglected, since they do not
add any value to the investigation. The signals used in the
study are listed in the results section, Table 1.

3.3 Industrial tests on board machine data

Another test on industrial data was conducted using
a data set from an paperboard machine process, later
referred to as the board machine. Data from ten control
loops were collected. The loops included two flow control
loops from the stock preparation section as well as one
level control loop and seven pressure control loops from
the drying section. These control loops are among the
most important ones in the board machine, since they
are involved in the control of the product quality. The
flow control loops in stock preparation are critical due to
their role in controlling the flow ratios of the board raw
materials. Whereas, the drying section loops are directly
used to control the moisture of the board, which is one of
the most important quality variables.

Time series of 270-1000 samples were collected with a
sampling interval of ten seconds. A part of the data
is presented in Figure 3 which shows that oscillatory
behaviour is clear in each loop. However, in some signals
the oscillation shape is slightly irregular and especially the
flow loops FC1 and FC2 as well as PC2 are quite noisy.

4. SIMULATION RESULTS

The simulation results illustrate the operation of the
method, as presented in Figure 4. It shows a non-
stationary signal with a varying trend and a superimposed
regular oscillation with a period of 20 samples. The top
panel shows the signal and the computed baseline which
follows closely the non-stationary trend of the signal.
In the bottom plot, a more detailed presentation of the
method is shown. The detected baseline b(t) indicates the



Fig. 5. The effect of noise on the RZC method perfor-
mance. Detected period (top panel) and oscillation
index rRZC (bottom panel) as a function of signal-to-
noise ratio.

result of the first step of the method where the baseline
levels are calculated according to the minima a−i and
maxima a+

i of the zero-crossing intervals. The line depicted
with squares indicates the corrected baseline bc(t) after the
backward shifting and interpolation step. It represents the
second step of the method and illustrates how the non-
stationary trend is extracted from the original signal.

In order to investigate the effect of noise on the per-
formance, the method was also evaluated using a set of
oscillatory signals having various signal-to-noise ratios, see
Figure 2. The results indicate that the RZC method is
capable to detect oscillations correctly in signals with rel-
atively low SNR. Figure 5 shows the estimated oscillation
period and the computed oscillation statistic rRZC as a
function of SNR. Also, the detection limit rlim = 1 is
shown.

It is noted that the oscillation is detected correctly with
SNRs greater or equal to 1.25, at which the oscillation
index is rRZC = 1.12. However, the estimated period is
lower (pRZC = 14) than the true period. The period is
estimated correctly for SNRs higher than 1.5. In order
to demonstrate the benefits of using the robust statistics
in the oscillation index, the standard oscillation indices
calculated according to (7) are also presented. It can be
seen that especially in the lower SNR range the robust
rRZC performs better than the standard index. For exam-
ple, at SNR of 1.25 the standard index fails to detect the
oscillation and underestimates the period even more than
the robust index: r = 0.89 and p = 12.28.

These results indicate that the performance of the current
method is at acceptable level in case of noisy signals.
However, in extreme cases, where the noise variance is of
similar magnitude compared to the signal variance, the
results are affected and the oscillation is not detected
properly. It is notable that in very noisy signals the
estimated oscillation period appears to be smaller than
the true one. The results still suggest that the method’s
performance is sufficient for industrial applications.

5. INDUSTRIAL RESULTS

5.1 Comparison test results

The RZC method was tested using the benchmark data
signals along with three other methods and their perfor-
mance was analysed and compared. For the sake of brevity,
only three cases are presented and discussed here in detail
in order to provide an insight to the properties of the RZC
method.

The first case example deals with a non-stationary signal
CHEM7, time series of which is presented in the top left
panel of Figure 6. The signal has a clear increasing trend
and the magnitude of the oscillation is slightly varying.
During the time between 1000-1500 samples, the magni-
tude of the oscillation becomes almost zero and makes
the recognition of these periods impossible. However, in
this case, the RZC method provides a correct detection
result with rRZC = 3.03 and a correctly estimated pe-
riod pRZC = 22 samples, while the true period appears
to be around 22–24 samples. Also, the IAE and mIAE
methods provide correct detections with respective index
values rIAE = 1.87 and rmIAE = 0.54. Both methods
estimated also the oscillation period correctly. However,
the ACF method failed to detect the oscillation due the
non-stationary trend.

By studying the distribution of zero-crossing intervals in
the right hand side panel of Figure 6, it can be clearly
seen that the majority of them are between 8-12 samples.
However, there are some intervals between 20-30 samples
which are caused by the variations in the oscillation
magnitude around t = 1000 − 1500 samples. Fortunately,
due to the robustness of the oscillation index computation,
these do not affect the detection result.

Next case (Figure 7) exhibits a noisy signal which clearly
has a periodic pattern with a non-sinusoidal shape. The
period of the oscillation is approximately 16-20 samples.
In this case, the RZC method fails to detect the oscillation
because of the noise in the signal rRZC = 0.58. In
particular, there are significant noisy parts close to the
centre line of the oscillation which causes spurious zero-
crossing detections. The noise appears to be the cause for
the IAE and mIAE methods to also fail in this case. The
only method that succeeds to detect the oscillation is the
ACF method, rACF = 1.94 and pACF = 16.75 samples,
which is due the filtering property of the autocorrelation
function.

The third example case is a noise signal that has no
oscillation, see Figure 8. The RZC method provides a
correct detection result, rRZC = 0.84. The IAE and mIAE
methods do not detect any oscillations, whereas the ACF
method detects falsely an oscillation with a period of
15.35 samples while rACF = 2.29. The false detection is
due to a dominant frequency in the signal that caused
fluctuations to the auto-correlation function. Examination
of the distribution plot of the zero-crossings in Figure 8
shows a shape close to the geometric distribution which is
characteristic to pure noise signals.

The full results of the comparison study are presented in
Table 1, which lists the tested signals with the period of
oscillation as well as the corresponding detection results



Fig. 4. Oscillation detection using the proposed RZC method. Top panel shows a non-stationary oscillating signal and
the computed baseline. Bottom panel shows a detailed illustration of the detected baseline and the final corrected
baseline.

Fig. 6. Case example 1: CHEM7, detected oscillation, rRZC,7 = 3.03. Original signal (top left), stationarized signal
(bottom left), the distribution of zero-crossing intervals (top right), and the autocorrelation (bottom right).

and the estimated periods by each method. The periods
shown in the second column have been estimated through
a careful visual inspection. For each method, the calcu-
lated oscillation indices and binary indices indicating the
detection decisions are reported. The table entries with
bold numbers show the correct detection results.

Finally, a summary of the comparison study is presented in
Table 2, which reports the percentages of correct results,
false alarms, missed alarms for each method. The results
show that the RZC method has the highest rate of correct
results, 85.7%, the smallest number of missed alarms, and
no false alarms at all. These results are encouraging in per-
spective of industrial implementation for automatic anal-

ysis of measurement signals. The rate of correct detection
results is sufficiently high for the method to be reliable,
also with unpreprocessed industrial data. In addition, the
fact that no false alarms were occurred is a very positive
result and contributes significantly to the overall reliability
in industrial use.

Table 2. Summary of the oscillation detection
results using the benchmark data.

RZC IAE mIAE ACF

Correct results 85.7 37.1 51.4 68.6
False alarms 0 0 2.9 11.4
Missed alarms 14.3 62.9 45.7 20.0



Fig. 7. Case example 2: CHEM24, missed detection, rRZC,23 = 0.58. Original signal (top left), stationarized signal
(bottom left), the distribution of zero-crossing intervals (top right), and the autocorrelation (bottom right).

Fig. 8. Case example 23: CHEM23, no oscillation, rRZC,24 = 0.84. Original signal (top left), stationarized signal (bottom
left), the distribution of zero-crossing intervals (top right), and the autocorrelation (bottom right).

5.2 Test results on board machine data

The RZC method was tested using a data set from an
industrial board machine process. The data contained
oscillations with different and sometimes irregular shapes
and some of the signals were quite noisy. However, the test
results were encouraging: in each case the oscillation was
detected successfully and the estimated periods were close
to the true periods of the oscillations.

Table 3 summarizes the computed oscillation indices rRZC
and the estimated periods pRZC . The oscillations in the
flow control loops were clearly detected, the oscillation
index having a value of 1.31 in both cases as well as the

periods were correctly estimated. The reported results for
the level control loop are equally good.

In case of the pressure control loops, there are some
variation in the results. The oscillation and its period is
correctly detected in loops PC1, PC3, PC4, PC5 and PC6.
However, in loop PC2, the noise in the signal makes the
oscillation slightly more difficult to detect; the oscillation
index is barely over the detection limit. In addition, the
noise causes the period to be estimated smaller than it
actually is. According to visual inspection the period is
approximately 12–15 samples (2–2.5 minutes), whereas
the RZC method reports a period of 10 samples. Similar
problem occurs with loop PC7 in which the estimated



Table 1. Results of the comparison test of different oscillation detection methods using industrial
benchmark data. Bolded table entries indicate correct detection results.

Signal Period RZC IAE mIAE ACF
pRZC rRZC iRZC pIAE rIAE iIAE pmIAE rmIAE imIAE pACF rACF iACF

CHEM1 140–170 151 1.90 1 148.80 0.73 0 128.60 0.14 0 161.89 2.75 1
CHEM2 190–230 142 1.11 1 145.00 0.39 0 94.50 0.00 0 205.33 1.83 1
CHEM3 –* – 0.77 0 – 0.13 0 – 0.28 0 – NaN 0
CHEM4 139–143 140 16.85 1 – 0.39 0 – 0.16 0 136.71 3.51 1
CHEM5 120–130 – 0.05 0 – 0.46 0 – 0.15 0 125.71 63.21 1
CHEM6 22–25 22 4.37 1 – 0.43 0 – 0.17 0 23.81 4.70 1
CHEM7 22–24 22 3.03 1 23.20 1.87 1 22.20 0.54 1 – 0.58 0
CHEM8 8–10 – 0.28 0 – 0.47 0 – 0.06 0 204.33 3.02 1a

CHEM9 120–130 126 6.51 1 126.87 3.31 1 116.83 0.83 1 125.13 4.68 1
CHEM10 15–18 16 2.96 1 16.84 2.45 1 – 0.26 0 16.18 5.27 1
CHEM11 125–135 – 0.08 0 – 0.46 0 – 0.04 0 132.38 11.89 1
CHEM12 – – 0.19 0 – 0.44 0 – 0.04 0 129.56 2.10 1
CHEM13 17–24 20 1.93 1 – 0.41 0 – 0.11 0 – 0.35 0
CHEM14 35–45 36 1.12 1 – 0.09 0 104.82 0.38 1b – 0.32 0
CHEM15 7–10 8 4.42 1 7.19 1.53 1 – 0.15 0 7.46 1.03 1
CHEM16 85–95 89 3.66 1 – 0.34 0 – 0.30 0 90.70 18.37 1
CHEM17 17–20 18 1.69 1 – 0.26 0 – 0.22 0 – 0.16 0
CHEM18 16–18 16 3.00 1 – 0.98 0 17.34 0.38 1 16.93 5.51 1
CHEM19 15–19 18 1.89 1 – 0.31 0 22.25 0.30 1 – 0.19 0
CHEM20 40–80 – 0.30 0 – 0.43 0 – 0.04 0 49.00 3.77 1
CHEM21 – – 0.68 0 – 0.72 0 – 0.08 0 – 0.97 0
CHEM22 – – 0.78 0 – 0.78 0 – 0.09 0 30.11 1.58 1
CHEM23 – – 0.84 0 – 0.98 0 – 0.07 0 15.36 2.29 1
CHEM24 16–20 – 0.58 0 – 0.52 0 – 0.23 0 16.75 1.94 1
CHEM25 16–18 16 2.81 1 – 0.95 0 17.13 0.40 1 16.88 6.18 1
CHEM26 – – 0.21 0 – 0.57 0 – 0.07 0 55.78 2.65 1
PP1 120–170 134 1.55 1 – 0.33 0 – 0.18 0 152.36 4.32 1
PP2 – – 0.32 0 – 0.38 0 – 0.06 0 – 0.19 0
PP3 130–145 135 3.35 1 – 0.50 0 133.77 0.35 1 133.15 19.01 1
PP4 55–60 56 4.65 1 – 0.28 0 – 0.13 0 57.12 34.59 1
POW1 18–22 20 4.24 1 – 0.30 0 20.22 0.37 1 19.66 4.50 1
POW2 56–58 58 4.81 1 58.82 1.88 1 58.42 0.49 1 58.79 25.09 1
POW3 – – 0.30 0 – 0.44 0 – 0.09 0 81.59 1.13 1
POW4 42–50 44 1.98 1 – 0.60 0 46.32 0.46 1 48.23 7.26 1
POW5 40–50 40 1.25 1 – 0.48 0 37.30 0.34 1 49.41 6.47 1

* missing period length indicates no oscillation
a ACF method detects an oscillation, but not the correct one
b mIAE method detects an oscillation, but gives wrong period

period is 14 samples, while the true period being 15–18
samples. In this case, the error is however smaller.

Despite the aforementioned faults the results can be con-
sidered very positive. They give another clear indication
that the RZC is capable of detecting oscillations in indus-
trial data due to its stationarization procedure and robust
oscillation statistic.

Table 3. Oscillation detection results on the
board machine data.

Loop Period pRZC rRZC

samples minutes

FC1 27–30 4.5–5.0 26 1.31
FC2 20–23 3.3–3.8 20 1.31
LC1 16–17 2.7–2.8 16 3.54
PC1 13–17 2.2–2.8 16 2.75
PC2 12–15 2.0–2.5 10 1.06
PC3 15–18 2.5–3.0 16 3.98
PC4 15–19 2.5–3.2 16 3.15
PC5 14–17 2.3–2.8 16 6.93
PC6 17–18 2.8–3.0 16 8.37
PC7 15–18 2.5–3.0 14 2.66

6. CONCLUSIONS

This paper presented a method for detecting oscillations in
non-stationary signals. The proposed method detected the
zero-crossings of the signal in order to compute its base-
line. The signal was stationarized and the regularity of the
zero-crossing intervals was studied using robust statistics
in order to determine the presence of an oscillation.

The method was tested with simulation and industrial
data. In the simulation tests, it was studied how measure-
ment noise affects the performance of the method. As a
result, it was concluded that the proposed oscillation index
contributes significantly to the robustness of the method
and therefore the RZC method would be usable in prac-
tical applications. The industrial tests revealed that, in
terms of performance, the method is comparable to other
proven methods found in the literature. In addition, it is
successfully capable of detecting oscillations in industrial
measurements and control loops.

The RZC method possesses several attractive features
which make it suitable for industrial implementation in
large-scale processes. First, the method is capable of
analysing large amount of signals automatically, since



there are no tuning parameters and no data preprocessing
required. Secondly, the method is robust against noise and
the rate of false alarms was negligible in the presented
industrial tests.

In future research, the main objectives are to further
develop the method by improving the handling of abrupt
variations in the signals and to test the method more
comprehensively with larger amounts industrial data.
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