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Influence of Multi-microphone Signal
Enhancement Algorithms on the Acoustics
and Detectability of Angular and Radial
Source Movements

Micha Lundbeck1,2, Laura Hartog1,2, Giso Grimm1,2,
Volker Hohmann1,2, Lars Bramsløw3 , and Tobias Neher1,4

Abstract

Hearing-impaired listeners are known to have difficulties not only with understanding speech in noise but also with judging

source distance and movement, and these deficits are related to perceived handicap. It is possible that the perception of

spatially dynamic sounds can be improved with hearing aids (HAs), but so far this has not been investigated. In a previous

study, older hearing-impaired listeners showed poorer detectability for virtual left-right (angular) and near-far (radial) source

movements due to lateral interfering sounds and reverberation, respectively. In the current study, potential ways of improving

these deficits with HAs were explored. Using stimuli very similar to before, detailed acoustic analyses were carried out to

examine the influence of different HA algorithms for suppressing noise and reverberation on the acoustic cues previously

shown to be associated with source movement detectability. For an algorithm that combined unilateral directional micro-

phones with binaural coherence-based noise reduction and for a bilateral beamformer with binaural cue preservation,

movement-induced changes in spectral coloration, signal-to-noise ratio, and direct-to-reverberant energy ratio were greater

compared with no HA processing. To evaluate these two algorithms perceptually, aided measurements of angular and radial

source movement detectability were performed with 20 older hearing-impaired listeners. The analyses showed that, in the

presence of concurrent interfering sounds and reverberation, the bilateral beamformer could restore source movement

detectability in both spatial dimensions, whereas the other algorithm only improved detectability in the near-far dimension.

Together, these results provide a basis for improving the detectability of spatially dynamic sounds with HAs.
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processing
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Introduction

Hearing-impaired listeners are known to exhibit consid-
erable difficulties in complex environments relative to
normal-hearing peers. For example, in situations where
multiple talkers are present their ability to understand
speech deteriorates more dramatically compared with
quiet conditions (Dirks, Morgan, & Dubno, 1982;
Plomp, 1978); thus, hearing-impaired listeners require a
better signal-to-noise ratio (SNR) to achieve a perform-
ance similar to that of normal-hearing listeners (Plomp,
1986). Hearing aids (HAs) can help by restoring audibil-
ity and by improving the SNR. This can improve speech
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reception in noise, but it may also compromise spatial
hearing abilities such as movement perception (e.g.,
Carlile & Leung, 2016). Together with source distance
judgments (e.g., Akeroyd, Gatehouse, & Blaschke,
2007), the perception of source movement has been
found to be difficult for hearing-impaired listeners,
which in turn has been related to the experience of handi-
cap (Gatehouse & Noble, 2004). Although bilateral HA
fittings can provide some benefit in complex situations
compared with unaided listening, research has shown
that there clearly is room for further improvement
(Noble & Gatehouse, 2006). Therefore, the identification
of possible avenues for improving these abilities by
studying the effects of HA signal processing on the per-
ception of spatial dynamics is a worthwhile goal.

Despite this, research into the spatial hearing abilities
of hearing-impaired listeners has been largely restricted
to localization and discrimination performance in rela-
tively simple acoustic scenarios. In realistic environ-
ments, sound sources and listeners typically both move
around but so far hardly any research into motion per-
ception with hearing impairment has been carried out.
One exception is the study of Brimijoin and Akeroyd
(2014) who found that for both normal-hearing and
hearing-impaired listeners detection thresholds for self-
motion (i.e., rotations of the head) were smaller than for
source motion, suggesting more accurate spatial hearing
abilities with self-motion cues. In a recent study, we
investigated sensitivity to angular and radial source
movements as a function of acoustic complexity with
young normal-hearing (YNH) and older hearing-
impaired (OHI) listeners (Lundbeck, Grimm,
Hohmann, Laugesen, & Neher, 2017). That is, we used
virtual acoustics to simulate complex sound scenarios
with a moving target source and multiple static inter-
ferers. The YNH listeners were only slightly affected by
the number of concurrent sound sources in the left-right
(L-R) dimension and did not show poorer performance
in the near-far (N-F) dimension when reverberation was
added. For the (linearly aided) OHI listeners, we found
that concurrent interfering sounds impaired the detect-
ability of L-R source movements, and reverberation that
of N-F source movements.

The results from our previous study raise the question
of how to compensate these deficits with HA signal pro-
cessing. Over the past decades, researchers have studied
L-R localization performance in static auditory space for
listeners with hearing loss with or without HAs. In a
recent review chapter, Akeroyd and Whitmer (2016)
summarized several studies investigating different types
of aided performance in L-R localization tasks. For
example, Keidser et al. (2006); Keidser, O’Brien, Hain,
McLelland, and Yeend (2009); Picou, Aspell, and
Ricketts (2014); and Van den Bogaert, Klasen,
Moonen, Van Deun, and Wouters (2006) all investigated

different HA features including directional microphone
settings in terms of their influence on the sound localiza-
tion performance of hearing-impaired listeners. While
Keidser et al. (2006) found that there was scope for
improving the localization performance of hearing-
impaired listeners, the other studies indicated minimal
effects of directional microphones.

In contrast to most other research on spatial hearing
with HAs, Best, Mejia, Freeston, Van Hoesel, and Dillon
(2015) recently addressed the performance of bilateral
beamformers in static and dynamic multitalker environ-
ments. They found that, relative to conventional direc-
tional microphones, the tested beamformer algorithms
were generally superior for speech perception and L-R
localization in noise involving fixed frontal targets but
not for situations involving head movements. Neither
source movement nor N-F spatial perception were
addressed in their study.

The studies reviewed above have in common that they
used static or pseudo-dynamic (i.e., successive presenta-
tions of a target signal from different discrete locations)
scenarios to investigate the influence of HA algorithms.
So far, no systematic research appears to have been con-
ducted into the effects of HAs on target source move-
ment detection in the L-R and N-F dimension in the
presence of interfering sounds and reverberation. In the
current study, we therefore investigated the influence of
different multimicrophone signal enhancement algo-
rithms on source movement detection in acoustically
complex situations. To that end, we used a higher
order Ambisonics-based system for simulating complex
sound scenes together with a computer simulation of
bilateral multi-microphone HAs. The HAs were config-
ured to process the input signals in different ways.
More specifically, the algorithms that we chose sup-
pressed sound coming from non-frontal directions and
furthermore attenuated spatially diffuse sound compo-
nents such as reverberation. Reverberant sound is
known to enhance auditory distance perception but it
can also degrade localization performance (Valimaki
et al., 2012).

In our previous study, we found that OHI listeners
were negatively affected by reverberation in terms of
their ability to perform a source movement detection
task. In addition, we found that monaural spectral
changes clearly increased as a result of source move-
ments. On the basis of these findings, we started the
current study with a detailed acoustic analysis to inves-
tigate changes in acoustical parameters that we previ-
ously had found to be related to source movement
perception: changes in monaural spectral information,
direct-to-reverberant energy ratio (DRR), as well as
SNR. In doing so, our aim was to find out whether
the chosen HA algorithms would alter these measures
in a way that could be beneficial for HA users in a
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source movement detection task. We then evaluated the
most promising HA algorithms in a listening test to
explore the potential for improving source movement
detection with HAs.

In summary, the current study had the following aims:

1. To acoustically evaluate various signal enhancement
algorithms in terms of their ability to enhance acous-
tic cues that have previously been shown to be asso-
ciated with L-R and N-F source movement detection;

2. To evaluate the most promising HA algorithms for
improving L-R and N-F source movement detection
with a group of OHI listeners.

Methods

The current study was approved by the ethics committee
of the University of Oldenburg. All participants pro-
vided written informed consent and received financial
compensation for their participation.

Experimental Setup

The experimental setup was based on the one from our
previous study (Lundbeck et al., 2017). The acoustic
environment was simulated using a toolbox for creating
dynamic virtual acoustic environments (TASCARpro
version 0.128; Grimm, Luberadzka, Herzke, &
Hohmann, 2015). A two-dimensional (horizontal-plane)
23rd-order ambisonics receiver with max-rE decoding
(Daniel, 2000) was used, resulting in a theoretical fre-
quency range of 16 kHz without spatial aliasing artifacts.
It was configured to produce 48 virtual loudspeaker sig-
nals with a spatial resolution of 7.5�. The virtual listener
was seated at the center of the simulated loudspeaker
array. As the aim of the current study was to include
different HA algorithms, multimicrophone signals were
generated by convolving the virtual loudspeaker signals
with binaural room impulse responses for the corres-
ponding directions. The impulse response measurements
were taken from the database of Thiemann and van de
Par (2015). They were recorded in an anechoic chamber
(volume¼ 238m3) with a head-and-torso simulators
equipped with two behind-the-ear (BTE) HA dummies.
Each dummy consisted of the BTE shell with three built-
in omnidirectional microphones (front, middle, and rear)
but without any other electronic components.

The simulated acoustic scenario was an entrance hall
of approximately 10.5m� 6m� 2.8m with solid walls
(including various large glass surfaces) and a wooden
floor (see Lundbeck et al., 2017). The head of the virtual
listener was placed 1m away from the middle of the
shorter wall facing along the longer side at a height of
1.5m. In the reference condition, the target source was

located 1m away from, and directly in front of, the lis-
tener. A change in complexity of the scenario was
achieved by adding four static interfering sound sources
at a distance of 1m each with azimuthal angles of �45�

and �90� relative to the frontal direction.

HA Signal Processing

For the simulation of the different HA algorithms, we
used the master hearing aid (MHA) research platform
(Grimm, Herzke, Berg, & Hohmann, 2006). The MHA
comes with a set of representative mulit-microphone
signal enhancement algorithms. In the current study,
we compared algorithms based on a pair of unilateral
directional microphones (DIR), a binaural coherence-
based noise reduction (NR) scheme for the suppression
of spatially diffuse signals (COH), a bilateral beamfor-
mer with binaural cue preservation (BEAM), as well as
different combinations thereof. In addition, we included
a reference condition without any processing
(UNPROC). All signal processing was carried out at a
sampling rate of 16 kHz. Prior to their presentation, all
stimuli were resampled to 44.1 kHz.

Unprocessed. The UNPROC condition corresponded to a
pair of omnidirectional microphones that were simulated
using the front microphone signals of the two BTE
devices. No other processing was applied.

Combination of DIR and COH. Apart from testing the DIR
and COH algorithms separately, we also tested them in
series (combination of DIR and COH [DIRCOH]) to
achieve stronger suppression of noise and reverberation.

DIR: In the DIR condition, the front and rear micro-
phone signals of each BTE device were processed using a
simple delay-and-subtract beamformer (e.g., Doclo &
Moonen, 2003) to simulate a pair of static forward-
facing cardioid microphones. To compensate for the
high-pass characteristic that is typical of directional
microphones, we spectrally equalized each output
signal with a finite impulse response (FIR) filter that
ensured that the frontal target signals sounded highly
similar across the UNPROC and DIR conditions.

COH: In the COH condition, a binaural NR scheme
for attenuating incoherent signal segments (Grimm,
Hohmann, & Kollmeier, 2009) was used. This algorithm
is effective in spatially diffuse environments. Using a time
constant of 40 ms, it first estimates the short-term coher-
ence C(n, m) in frequency bin n and time segment m. It
then maps the resultant values onto the interval [0, 1] and
applies an exponent a to them. a determines the NR
strength, with larger values leading to greater attenu-
ation of signal segments with a given level of binaural
coherence (see Neher & Wagener, 2016; their Figure 1).
In the current study, we set a to 1.0. Because the gains
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for the left and right channels are always identical with
COH processing, interaural time and level differences
(ITDs and ILDs) are unaffected. However, incoherent
sounds as caused by early reflections and late reverber-
ation, for example, are attenuated, which is why COH
processing can increase the DRR.

Bilateral beamformer. The BEAM algorithm corresponded
to a bilateral beamforming algorithm after
Rohdenburg, Hohmann, and Kollmeier (2007). This
algorithm makes use of the minimum variance distor-
tionless response beamformer (Bitzer & Simmer, 2001).
It generates a single-channel estimate of the desired
target signal based on the available input signals and
then applies a binaural postfilter (Lotter & Vary, 2006)
to this estimate. By applying identical gains to the left
and right sides, the original ITDs and ILDs of the input
signal are preserved. For the current study, we used a
nonadaptive, forward-facing implementation based on
six input signals (three per side) and the front BTE
microphone signals as reference signals for the binaural
postfilter. Furthermore, we spectrally equalized the
output signals using another FIR filter that compen-
sated for any monaural spectral changes in the frontal
(0�) direction.

Tested HA algorithms. For the acoustic analyses, we tested
the DIR and COH algorithms both in isolation and in
combination with each other, and we also tested the
BEAM algorithm. Because the serial combination of
the DIR and COH algorithms and the BEAM algorithm
in isolation resulted in the clearest acoustical changes
(see later), we focused the perceptual evaluation on
these two HA conditions (see Table 1).

Stimuli

The stimuli that we used were very similar to those from
our previous study (Lundbeck et al., 2017). That is, we
made use of five different environmental sounds. As the
target sound, we chose a broadband noise-like fountain
signal. This was because pilot measurements had shown
that, compared with other more modulated signals such
as a ringing phone, the fountain signal led to clearer
acoustic changes, presumably due to its large bandwidth,
which is an important factor for movement detection,
especially in the angular dimension (e.g., Chandler &
Grantham, 1992). As interfering sounds, we used record-
ings of ringing bells, bleating goats, pouring water, and
humming bees. The target sound (S1) was presented at a
nominal level of 65 dB sound pressure level (SPL) and
the other sounds (S2–S5) at 62 dB SPL (nominal) each,
as measured under reverberant conditions at the position
of the virtual listener. The duration of each sound was
2.3 s without reverberation and 3.1 s with reverberation.

Technical Measurements

The acoustic analyses that we conducted were based on
the results of our previous study (Lundbeck et al., 2017).
Those results indicated that under reverberant condi-
tions, monaural spectral changes play a particular role
for source movement detection. Furthermore, the listen-
ing tests indicated that interfering sounds lead to poorer
detection thresholds in the L-R dimension and that
reverberation leads to poorer detection thresholds in
the N-F dimension. For the L-F dimension, we therefore
chose monaural spectral and SNR changes as our meas-
ures of interest. For the N-F dimension, we additionally
analyzed changes in the DRR.

General setup and procedure. We performed the analyses
separately for the L-R and N-F dimension. For the gen-
eration of the stimuli, we used the median L-R and N-F
detection thresholds across all OHI listeners and condi-
tions tested earlier (Lundbeck et al., 2017). Specifically,
we generated stimuli where the target signal moved 28�

in the L-R direction or 1.5m in the N-F direction relative
to the reference position (0�, 1m re. the listener). The
signal processing chain used for the acoustical analyses
is shown in Figure 1. The virtual listener was equipped

Figure 1. Signal processing chain used for the acoustical analyses.

Following the generation of the stimuli using TASCAR (left) and

the hearing aid processing in the MHA (middle), different output

channels (1–6) were analyzed using different measures (right).

SNleft, SNright¼ left and right channel of signal mixture; Sleft,

Sright¼ left and right channel of target only; Nleft, Nright¼ left and

right channel of interferers only; ITDs¼ interaural time differ-

ences; ILDs¼ interaural level differences; HA¼ hearing aid;

MHA¼master hearing aid; DRR¼ direct-to-reverberant energy

ratio; SNR¼ signal-to-noise ratio.

Table 1. Overview of the HA Conditions Used for the Acoustic

and Perceptual Measurements.

Type of measurement HA condition

Acoustical UNPROC, DIR, COH, DIRCOH, BEAM

Perceptual UNPROC, DIRCOH, BEAM

HA¼ hearing aid.

4 Trends in Hearing



with two BTE devices with up to three microphones
each. The microphone signals generated in this manner
were then processed in the MHA. More specifically, we
used the shadow-filtering method, that is, we estimated
any gains or filter coefficients based on the signal mixture
(targetþ interferers) and then applied these gains or filter
coefficients separately to the target and interfering sig-
nals. Depending on the measure of interest (see later), we
then analyzed different output signals. To be able to
reveal short-time changes in the chosen measures, we
used a 100-ms analysis window with 50% overlap.

Binaural cues. To analyze the influence of the HA algo-
rithms on binaural cues, we applied the binaural
hearing model of Dietz, Ewert, and Hohmann (2011).
This model takes a binaural stimulus as input and then
estimates ITDs and ILDs, which are the dominant cues
for L-R spatial hearing. Consistent with our expect-
ations, we found that the binaural cues were generally
unchanged by the HA algorithms that we tested (data
not shown). In the following, we therefore focus on the
other measures.

Monaural spectral changes. To analyze the influence of the
different HA algorithms on monaural spectral cues, we
applied a coloration measure of Moore and Tan (2004).
After the simulation of peripheral auditory processing,
this measure computes the internal excitation pattern for
a given input stimulus. In doing so, it considers both the
magnitude of the changes in the excitation pattern and
the rapidity with which the excitation pattern changes as
a function of frequency. It then combines this informa-
tion into a single dimensionless measure of spectral dis-
tance or coloration. In its original form, this measure is
further transformed into a prediction of perceived nat-
uralness. For our purposes, however, we used the meas-
ure of coloration. Furthermore, we always analyzed the
stimulus channel ipsilateral to the movement direction
(captured at the frontal BTE microphone) and refer-
enced it to the stationary equivalent of the same stimu-
lus. We did this as this measure needs an unprocessed
(here: stationary) signal to compare the processed (here:
moving) signal with. In other words, we measured rela-
tive changes in monaural spectral coloration.

SNR changes. As the HA algorithms included directional
and NR processing for the attenuation of unwanted
signal components, we estimated the SNR due to the
applied signal processing. To that end, we used the sep-
arate target and interfering signals (see Figure 1, middle
panel; channels 3þ 4: target alone, channels 5þ 6: inter-
ferers alone). Based on these signals, we calculated the
short-term level ratio between the target and interferers
at the ipsilateral side (L-R dimension) or averaged across
the two sides (N-F dimension).

DRR changes. For the stimuli moving along the N-F
dimension, we calculated the DRR. The DRR declines
proportionally with source distance in reverberant rooms
(e.g., Bronkhorst & Houtgast, 1999). To estimate the
DRR, we created two stimuli per condition: one with
reverberation and one without it. We then subtracted
the anechoic stimulus (comprising the direct sound
only) from the reverberant stimulus to create the dif-
fuse-sound stimulus. We then fed the direct- and dif-
fuse-sound signals separately into the MHA and
processed them with the different HA algorithms. By
comparing the DRR at the in- and output of the
MHA, we could measure DRR changes due to the
applied HA processing.

Perceptual Measurements

Participants. The participants were 20 OHI listeners (14
men, 6 women) aged 63 to 80 years (median: 72.5
years). Fifteen of them had bilateral HA experience of
at least 2 years. Initially, we measured the participants’
hearing thresholds at the standard audiometric frequen-
cies from 0.125 to 8 kHz. All participants had symmetric,
sloping mild-to-moderate sensorineural hearing losses.
The participants were divided into two groups—9 for
the 1þ 0 (target without interferers) and 11 for the
1þ 4 (target with four interferers) groups—based on
the results of an initial target detection task (see
Detectability of Target Signal section). The average
audiograms of the two resultant groups are shown in
Figure 2. The mean pure-tone average hearing loss cal-
culated across 0.5, 1, 2, and 4 kHz and both ears (PTA4)
was 58.3 dB HL for the 1þ 0 group and 46.8 dB HL for
the 1þ 4 group. The median age was 78 years (Group
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1þ 0) and 71 years (Group 1þ 4), respectively. Two
paired t tests showed a significant difference in terms of
PTA4 (p< .001) but not in terms of age (p> .1). Seven of
the 11 listeners in Group 1þ 4 had taken part in the
previous study, whereas none of the listeners in Group
1þ 0 had taken part previously.

General setup and procedure. The test setup for the percep-
tual measurements was based on the one from the tech-
nical analyses. As our earlier study (Lundbeck et al.,
2017) had revealed a clear negative influence of reverber-
ation on N-F but not L-R movement detection, we car-
ried out the listening test under reverberant (T60¼�0.8
s) conditions only. Stimulus presentation was via a 24-bit
RME (Haimhausen, Germany) Hammerfall DSP 9632
soundcard, a Tucker-Davis Technologies (Alachua,
USA) HB7 headphone buffer and a pair of Sennheiser
(Wennebostel, Germany) HDA200 headphones.
Calibration was carried out using a B&K 4153 artificial
ear (Nærum, Denmark), a B&K 4134 1/200 microphone, a
B&K 2669 preamplifier, and a B&K 2610 measurement
amplifier. For implementing the different psychoacoustic
measurements, we used the psylab toolbox (Hansen,
2006). To ensure adequate audibility, we amplified the
stimuli for each participant in accordance with the
‘‘National Acoustics Laboratories–Revised-Profound’’
(NAL-RP) fitting rule (Dillon, 2012). Figure 3 illustrates
the use of NAL-RP amplification for the target stimulus
used here. The gray dashed line corresponds to the grand
average hearing thresholds of our participants plotted in

terms of 1/3-octave band SPLs. The black and gray solid
lines without any symbols depict the long-term average
spectrum of the target signal at the eardrum as calculated
with a diffuse field-to-eardrum transformation (ANSI,
2007). The black and gray solid lines with diamonds
show the effects of NAL-RP amplification prescribed
for the grand average hearing thresholds of our partici-
pants. These data show that, on average, the target signal
was several decibels (ranged from 2 to 8 dB) hearing
threshold between 0.25 and 5 kHz.

To investigate the perceptual consequences of the dif-
ferent HA algorithms, we carried out a listening test with
20 OHI listeners. Initially, we assessed each listener’s
ability to detect the target signal in the presence of the
four interferers (see Detectability of Target Signal sec-
tion). Subsequently, we measured movement detection
thresholds in the UNPROC condition and with two
HA algorithms that we selected based on our acoustical
analyses (see Tested HA Algorithms section). For those
participants who had problems detecting the target
signal in the presence of the interferers (Group 1þ 0),
we performed the detection threshold measurements
with the target signal alone (no interferers). For the
other participants (Group 1þ 4), we performed the
measurements with all five signals (see Source
Movement Detection Thresholds section).

Prior to the actual measurements, we familiarized the
participants with the stimuli and the procedure. Using a
graphical user interface, they could listen to several static
target stimuli, first without (both groups) and then with
the four interferers (only Group 1þ 4). Furthermore, we
also varied the HA algorithm, so that the participants
could acquaint themselves with the different sounds.

Detectability of target signal. To assess target detectability
in the presence of the four interferers, we used a single-
interval two-alternative-forced-choice paradigm with 50
trials. In half of the trials, a static target sound was pre-
sent, while in the other trials, only the four interferers
were presented. Each interval had a duration of 3.1 s. On
each trial, the task of the participants was to indicate
whether they heard the target sound by pressing a
button on the screen (Yes or No). Using a threshold cri-
terion, pcorrect, of 90% detection accuracy, we divided
the participants into two groups. The good performers
could easily hear out the target sound (Group 1þ 4:
mean pcorrect¼ 98.1%, standard deviation¼ 2.9%),
whereas the poor performers could not (Group 1þ 0:
mean pcorrect¼ 57.4%, standard deviation¼ 13.2%).

Source movement detection thresholds. Depending on the
outcome of the target detectability measurements, we car-
ried out the source movement detection threshold meas-
urements with (Group 1þ 4, good performers) or without
(Group 1þ 0, poor performers) the four interferers.
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Figure 3. Illustration of the effects of NAL-RP amplification on

the target stimulus (fountain). Gray dashed line: Grand average

hearing thresholds (in dB SPL) for the OHI group. Error bars

denote� 1 standard deviation. Black solid line without symbols:

LTAS of the target signal at the eardrum without amplification.

Black solid line with diamonds: LTAS of the target signal at the

eardrum with NAL-RP amplification.

LTAS¼ long-term average spectrum; OHI¼ older hearing-

impaired; NAL-RP¼National Acoustics Laboratories–Revised-

Profound.
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The procedure for measuring the detection thresholds
was very similar to that used in our previous study
(Lundbeck et al., 2017). On half of the trials, we simu-
lated a moving target sound, whereas in the other trials,
the target sound remained static at the reference position
(0�, 1m). For the angular measurements, we randomized
the direction of movement (toward the left or right),
whereas for the radial measurements, we always simu-
lated a withdrawing (N-F) movement. In this manner,
we ensured the same reference position (0�, 1m) for
both movement dimensions. To control the extent of
the movement, we varied the velocity (in �/s or m/s) in
the adaptive procedure. For the angular source move-
ment measurements, the velocity ranged from 2 to 30�/s
(starting value: 17.4�/s) across all tracks. For the radial
source movement measurements, it ranged from 0.25 to
3.7m/s (starting value: 1.74m/s). The smallest step size
was 2� or 0.25m. The stimulus duration was constant (2.3
s), thus the amount of movement was proportional to the
velocity. On each trial, the task of the participants was to
indicate whether they heard a movement (independent of
the direction) of the target sound or not by pressing a
button on the screen (Yes or No).

For the adaptive procedure, we used the single-inter-
val adjustment-matrix method of Kaernbach (1990).
This procedure takes hits, misses, false alarms, and cor-
rect rejections into account and in this way enables
unbiased adaptive testing. A so-called payoff matrix
determines the magnitude of the changes made to the
adaptive parameter (in our case, the velocity) for each
combination of stimulus and response. The adjustment
factors that we used were �1 (hits), 1 (misses), 2 (false
alarms), and 0 (correct rejections). For our measure-
ments, we chose a desired target performance of
t¼ 0.5. A run was terminated after 12 reversals, and
the first four reversals were discarded from the analyses.
A single run took 3 to 5min to complete. Before the
actual measurements, each participant completed two
training runs with six reversals each, one with the
UNPROC condition and the other with the BEAM con-
dition. The actual measurements were performed with
the UNPROC, BEAM, and DIRCOH conditions.

We estimated the detection thresholds by taking the
arithmetic mean of the last eight reversal points of each
measurement run. In this manner, we quantified the
smallest displacement (in � or m) of the target source
that the participants were able to detect within the 2.3
s over which the movements occurred. In our paradigm,
an optimal test run would have resulted in a MAMA
threshold of 4.6� and a MAMD threshold of 0.35m,
and all our participants had thresholds that were clearly
higher than those values. In the following, we will refer
to these thresholds as the minimum audible movement
angle (MAMA) and minimum audible movement dis-
tance (MAMD) thresholds.

We carried out the L-R and N-F source movement
measurements in separate blocks. Within these blocks,
we tested the various conditions in randomized order.
After 1 to 2 weeks, we performed a set of retest meas-
urements. In total, we measured six L-R thresholds and
six N-F thresholds per listener (and thus 240 thresholds
in total).

Prior to the statistical analyses, we examined the dis-
tributions of the various data sets. According to
Kolmogorov–Smirnov’s test, all data sets fulfilled the
requirements for normality (all p> .05). We therefore
used parametric statistical tests to analyze our data.
Whenever appropriate, we corrected for violations of
sphericity using the Greenhouse-Geisser correction.

Results

Technical Measurements

L-R dimension. Concerning the L-R dimension, the acous-
tical changes that we observed were generally as
expected. Regarding the monaural spectral changes,
our analyses revealed that the BEAM and DIRCOH
algorithms generally led to clear increases (except for
DIRCOH under reverberant conditions), suggesting
that they could be suited for improving source movement
detectability. Figure 4 shows the resultant spectral col-
oration relative to the static condition in the presence of
four interferers with and without reverberation. As can
be seen, reverberation by itself also increased the spectral
changes in the target signal.

Figure 5 shows the SNR changes caused by the three
HA algorithms over the course of the target source
movement in the presence of the four interferers. The
panel on the left shows the SNR in the condition without
reverberation and the panel on the right that with
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reverberation. It is noticeable that the SNR generally
varied substantially over the course of the source move-
ment. This was because of the inherent temporal fluctu-
ations of the environmental sounds that we used as
stimuli. Concerning the influence of the DIRCOH and
BEAM algorithms, the DIRCOH algorithm led to a
larger SNR improvement in the condition without rever-
beration compared with the BEAM algorithm. In the
reverberant condition, the SNR improvements were
greater for BEAM than for DIRCOH.

N-F dimension. Concerning the N-F dimension, the acous-
tical changes were also as expected. To illustrate, the
DRR generally decreased with increasing source dis-
tance, irrespective of the HA algorithm (Figure 6, left).
Furthermore, the BEAM and especially the DIRCOH
algorithm led to DRR increases. The same was essen-
tially true with respect to monaural spectral coloration
(Figure 6, right), suggesting that monaural spectral cues

may provide salient information about N-F source
movements.

Regarding the SNR changes relative to UNPROC,
the BEAM and especially DIRCOH algorithm led to
clear increases, as shown in Figure 7.

Summary. The acoustic analyses showed that the
DIRCOH and BEAM algorithms led to changes in
SNR, DRR, and monaural spectral coloration, suggest-
ing better target signal detectability in the presence of
multiple interferers as well as reverberation. For the
spectral coloration and DRR measures, these changes
were largely monotonic in nature, thus providing a cue
proportional to the source movement.

Perceptual Measurements

Initially, we examined the test–retest reliability of the
MAMA and MAMD thresholds. For Group 1þ 4, we
found relatively strong correlations for the MAMA
(Pearson’s correlation coefficient, r¼ 0.65, p< .001) and
MAMD (r¼ 0.75, p< .00001) thresholds. The same was
not true for Group 1þ 0 (MAMA: r¼ 0.31, p> .1;
MAMD: r¼ 0.28, p> .2). Closer inspection revealed
that there was relatively small intersubject spread in the
detection thresholds obtained for this group (MAMA:
5.5–24.6�; MAMD: 0.3–1.1m). In general, a small
spread is a bad precondition for finding a clear correl-
ation. Furthermore, in the data of Group 1þ 0 about
two thirds of the retest thresholds decreased, whereas
the other ones increased relative to the test thresholds,
leading to the weak correlation coefficients noted earlier.
To improve test–retest reliability, we excluded two par-
ticipants from the MAMA analysis and one from the
MAMD analysis, as these listeners had rather divergent
test–retest results (MAMA: �16�; MAMD: �0.9m).
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This resulted in higher correlation coefficients (MAMA:
r¼ 0.42, p¼ .06; MAMD: r¼ 0.44, p< .05). Two paired t
tests performed on the remaining test–retest data of the
two groups revealed no training effects (Group 1þ 0:
t22¼ 1.6; Group 1þ 4: t27¼ 2.2; both p> .05). For the
following analyses, we therefore used the means of the
test–retest measurements or the single remaining thresh-
olds in the case of three participants.

L-R dimension. Figure 8 shows means and 95% confidence
intervals of the MAMA thresholds for the different
groups and HA conditions. For Group 1þ 0, the thresh-
olds varied little across HA conditions and listeners, as
already noted earlier. For Group 1þ 4, the thresholds
were much higher for the UNPROC and DIRCOH con-
ditions than for the BEAM condition. Furthermore, the
UNPROC condition was characterized by the largest
spread and the BEAM algorithm by the smallest spread.

To test for statistical differences among the three HA
conditions, we conducted a repeated-measures analysis
of variance per group with HA condition (UNPROC,
DIRCOH, and BEAM) as within-subject factor. For
Group 1þ 0, we found no effect of HA condition, F(2,
16)¼ 2.4, p¼ .79. For Group 1þ 4, the effect of HA con-
dition was highly significant, F(2, 20)¼ 38.1, p< .0001. A
series of planned contrasts showed that the BEAM con-
dition differed significantly from both the UNPROC and
the DIRCOH condition (both p< .001).

N-F dimension. Figure 9 shows means and 95% confidence
intervals of the MAMD thresholds for the different
groups and HA conditions. As can be seen, Group
1þ 0 obtained thresholds of around 1m or lower in all
conditions. In other words, the different HA conditions
did not appear to affect the performance of these partici-
pants. Furthermore, the variance across them was

generally small. In contrast, for Group 1þ 4, there
appeared to be a clear influence of HA condition on
movement detectability.

To test for statistical differences among the three HA
conditions, we conducted a repeated-measures analysis
of variance per group with HA condition (UNPROC,
DIRCOH, and BEAM) as within-subject factor. For
Group 1þ 0, the effect of HA condition was not signifi-
cant, F(2, 12)¼ 1.1, p¼ .37), while for Group 1þ 4, it
was strongly significant, F(2, 18)¼ 13.6, p< .001). A
series of planned contrasts showed that the BEAM and
DIRCOH conditions differed significantly from the
UNPROC condition (p< .001 and p< .05, respectively)
and also from each other (p< .01).

Discussion

The current study aimed to evaluate HA algorithms that
can enhance acoustic cues that are relevant to L-R and
N-F source movement detection in acoustically complex
scenarios. Another aim was to test the most promising
HA algorithms in terms of improving L-R and N-F
source movement detection with a group of OHI lis-
teners. For that purpose, we used a test setup based on
virtual acoustics together with a computer simulation of
different HA algorithms. For the acoustic analyses, we
used stimuli akin to those used for the perceptual meas-
urements. The analyses showed that the serial combina-
tion of directional microphones and binaural coherence-
based noise reduction DIRCOH as well as a bilateral
beamformer with binaural cue preservation (BEAM)
caused consistently greater changes in monaural spectral
cues compared with no HA processing. Furthermore,
whereas there were only small SNR increases in the L-
R dimensions, we found large SNR and DRR improve-
ments in the N-F dimension. Based on these results, we
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evaluated these two algorithms perceptually with the
help of 20 OHI listeners. The data analyses revealed
clear improvements in the ability to detect dynamic
changes in azimuth or distance under complex (but not
single-source) conditions.

Acoustic Effects

In general, the changes in acoustic cues that we observed
were as expected and can be related to the physical effects
of the HA algorithms that we tested. To recapitulate,
these algorithms focused on spatial filtering and de-
reverberation. Due to their narrow main lobes, bilateral
beamformers have better spatial selectivity in the acous-
tic look direction than unilateral directional micro-
phones (e.g., Dillon, 2012). At the same time, their
polar patterns are typically characterized by larger spec-
tral ripples (e.g., see Neher, Wagener, & Latzel, 2017,
their Figure 3). In the current study, we spectrally equal-
ized the DIR and BEAM algorithms in the 0� direction
(see HA Signal Processing section). When the target
source moved around the static beamformer pattern, it
was subjected to clear spectral coloration, as demon-
strated by our acoustical measurements (Figure 4).

As the DIR algorithm was not as spatially selective,
the suppression of sounds near the acoustic look direc-
tion was not as strong as for the BEAM algorithm.
Nevertheless, sounds (including reflections) from the
sides and especially behind the listener were clearly atte-
nuated. In addition, the COH algorithm effectively de-
reverberated the stimuli, as apparent from our DRR
measurements (Figure 6). In the N-F dimension where
the target always stayed in front of the listener, the
DIRCOH algorithm most likely led to better perform-
ance compared to the BEAM algorithm because of the
greater SNR improvements (Figure 7).

As mentioned earlier, stimulus velocity generally co-
varies with the stimulus duration. For our study, we
decided to use a fixed stimulus duration and varied the
velocity in the adaptive measurements. It is possible that
the velocity influenced the effects of some of the algo-
rithms, especially the COH algorithm. Within a given
time window, a high velocity may lead to a different
degree of binaural coherence than a low velocity, for
example. As a result, the acoustical effects of the COH
algorithm could have co-varied with source velocity,
which in turn might have affected movement detection
performance. However, pilot measurements (data not
shown) showed that for the range of velocities tested
here the resultant acoustical differences were negligible.

We also observed a clear influence of the room con-
dition (with vs. without reverberation). That is, the
changes in monaural spectral coloration were generally
greater under reverberant than anechoic conditions. In
the simulated environment with reflective surfaces,

constructive and destructive interference patterns arose
between the indirect and direct sound components which
were likely perceivable in terms of spectral coloration.
This implies that there was a specific room contribution
to these changes and that rooms with other characteris-
tics in principle could lead to different spectral changes.

Perceptual Effects

Regarding the perceptual results for the two movement
dimensions, it is likely that the differences that we
observed were related to different technical results
(SNR, monaural spectral coloration, and DRR). In the
N-F dimension, we observed large SNR improvements
(likely because the target signal did not overlap spatially
with the interferers) and coloration changes for both
BEAM and DIRCOH. Consistent with this, the detection
thresholds of Group 1þ 4 with these two algorithms were
also improved. In the L-R dimension, the BEAM algo-
rithm provoked the largest changes in the monaural col-
oration measure. Qualitatively speaking, the perceptual
data correlated with this finding in the sense that there
was also a clear threshold improvement for Group 1þ 4.
DIRCOH, on the other hand, did not provoke large spec-
tral coloration changes, nor did it achieve a clear SNR
improvement. This was probably why it did not result in a
threshold improvement for this group in this dimension.

It is also worth noting that the variance in the data from
Group 1þ 0 in general, and in those for the BEAM condi-
tion in the L-R dimension and the DIRCOH and BEAM
conditions in the N-F dimension from Group 1þ 4, was
quite low (Figures 8 and 9). For Group 1þ 0, the detection
task was generally easy, which probably resulted in a per-
ceptual floor effect. In principle, the same might have been
true for those thresholds of Group 1þ 4 that improved
significantly with the HA signal processing.

In the N-F dimension, a few participants from Group
1þ 4 performed as well as YNH listeners (Lundbeck
et al., 2017) and as the OHI listeners tested only with
the target sound (Group 1þ 0). For them, neither rever-
beration nor the concurrent interferers seemed to increase
thresholds. Broadly speaking, these differences across par-
ticipants are consistent with the large variability among
hearing-impaired listeners that is typically observed in
relation to spatial hearing (and many other) tasks (e.g.,
Noble, Byrne & Ter-Horst, 1997). Comparison with cor-
responding data of Brimijoin and Akeroyd (2014) is not
straightforward as these authors used speech signals for
their moving target measurements. Furthermore, poor per-
formers were selected for the nonmasked condition in our
study, whereas Brimijoin and Akeroyd (2014) tested a
non-specific group of subjects. This may explain why the
mean MAMA of 11� of Group 1þ 0 was higher than the
mean MAMA of 7� found by Brimijoin and Akeroyd
(2014).
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Interestingly, we observed a clear influence of HA
algorithm on the detection thresholds of Group 1þ 4
but not on those of Group 1þ 0. In fact, the detection
thresholds of Group 1þ 0 were unaffected by the HA
algorithms. A potential explanation for this is that
Group 1þ 0 obtained rather low thresholds in the
UNPROC condition that were only 2 to 3� higher than
those of YNH subjects (Lundbeck et al., 2017), so there
was less room for improvement with the BEAM and
DIRCOH algorithms than for Group 1þ 4. Another
possible explanation could be that the algorithms did
not provide sufficiently large acoustic changes for low
baseline detection thresholds (and thus low movement
velocities). In the acoustic analyses, we found increases
in, for example, monaural spectral cues with greater
source movements, but for participants with low
UNPROC thresholds, these were perhaps not perceiv-
able. Because we tested these participants only in the
target-only scenario, it is unclear how they would per-
form when tested with interferers. It is noteworthy that
the two groups differed in PTA4 (see Participants sec-
tion). That is, Group 1þ 0 had a greater hearing loss
than Group 1þ 4. This could be an explanation for
their inability to detect the target signal in the scenario
with four interferers. Furthermore, Group 1þ 4 included
nine listeners who had already taken part in our previous
study. Consequently, their greater experience with the
task could have put them at an advantage, despite the
training included in the current study for all of our par-
ticipants (see Perceptual Measurements section).

Given the sloping hearing losses of our participants, it
is possible that they did not weight all frequencies
equally when making their source movement judgments.
However, most of them were experienced HA users and
so were accustomed to listening to high-frequency sound,
as provided by the NAL-RP amplification used here
(Figure 3). In principle, more research could be devoted
to developing effective predictors of the spatial hearing
abilities of hearing-impaired listeners, but this was
beyond the scope of the current study. Instead, our
approach was to rely on established acoustic measures.

Limitations

Our test scenarios were created using a higher order
Ambisonic-based toolbox. As discussed in Lundbeck
et al. (2017), the simulation method is an important
factor for the accuracy with which a sound field can be
synthesized. The aim of the toolbox that we used is not
to reproduce a given sound field in a physically correct
manner but rather to achieve a perceptually plausible
approximation. Research into higher order ambisonics
has shown that the spatial hearing abilities of normal-
hearing listeners are essentially unaffected at the center
position of the array (Daniel, 2000; Daniel, Moreau, &

Nicol, 2003). In addition, Ambisonics rendering with an
order of 23 and 48 horizontal-plane loudspeakers (as
used in the current study) has been found to be sufficient
for an accurate technical evaluation of different multi-
microphone HA algorithms, in terms of both beam pat-
tern analysis and SNR behavior (Grimm, Ewert, &
Hohmann, 2015). With this degree of spatial resolution,
spatial aliasing at the ear position occurs above approxi-
mately 16 kHz and thus above the Nyquist frequency of
the HA algorithms tested here (see HA Signal Processing
section). What is more, the setup used here has been
found to be capable of room simulations with room
acoustical parameters comparable to those of the
actual rooms (Grimm, Heeren, & Hohmann, 2015).
Altogether, these results provide support for the general
validity of our simulation approach.

Nevertheless, due to the lack of a head-tracking device,
we effectively prevented our listeners from following the
source movements. Natural head movements have been
found to differ substantially among individuals (Grimm,
Luberadzka, et al., 2015) and are considered an import-
ant factor for spatial perception under dynamic condi-
tions (e.g., Brimijoin & Akeroyd, 2012). Thus, future
work should ideally address the influence of head move-
ments on source movement detectability.

Furthermore, our study was limited to one particular
acoustic environment. It would be important to investi-
gate other types of environments and scenarios that
reflect other complex listening tasks such as a traffic situ-
ation or a group discussion (cf. Grimm, Kollmeier, &
Hohmann, 2016). Challenges in real life with multiple
sources occur in various scenarios that differ in spatial
complexity and the task of the listener. Another limita-
tion is that we only considered a frontal starting position
for the target signal. In addition, the BEAM and DIR
algorithms were non-adaptive and always steered
towards 0�. Consequently, for the L-R dimension the
target source moved outside of the (frequency-depend-
ent) main lobe of these algorithms and was thus attenu-
ated, especially for BEAM. The main lobe of BEAM had
a width of about �10� over a broad frequency range (see
Rohdenburg, 2008, Figure 4.5a). For greater source azi-
muths, the target signal was spectrally filtered, leading to
improved detectability. In future studies, it would be
important to investigate the influence of adaptive beam-
forming algorithms, which are likely to lead to different
results.

It would also be important to assess performance with
non-frontal source movements in multi-source environ-
ments, for which bilateral beamformers have been found
to deteriorate performance (Best et al., 2015). In add-
ition, it would make sense to test different target signals
that are representative of real-world communication
scenarios (e.g., speech). Finally, other aspects of spatial
perception such as counting or locating multiple
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concurrent sources in a complex environment, as, for
example, studied by Best, Buchholz, and Weller (2017),
should ideally also be covered in order to assess the per-
ception of spatial awareness more holistically.

Summary

Based on a computer simulation of a complex listening
environment combined with bilateral HA processing, the
current study showed that selected multi-microphone
signal enhancement algorithms can enhance acoustical
features that are related to source movement perception.
Furthermore, it showed clear improvements in source
movement detectability for a group of OHI listeners in
complex scenarios with reverberation and concurrent
interfering signals. In future studies, it would be of inter-
est to investigate movement perception further in com-
bination with wearable HAs.
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