
Syddansk Universitet

Renormalization schemes for the Two-Higgs-Doublet Model and applications to h 
WW/ZZ  4 fermions

Altenkamp, Lukas; Dittmaier, Stefan; Rzehak, Heidi

Published in:
Journal of High Energy Physics

DOI:
10.1007/JHEP09(2017)134

Publication date:
2017

Document version
Publisher's PDF, also known as Version of record

Document license
CC BY

Citation for pulished version (APA):
Altenkamp, L., Dittmaier, S., & Rzehak, H. (2017). Renormalization schemes for the Two-Higgs-Doublet Model
and applications to h  WW/ZZ  4 fermions. Journal of High Energy Physics, 2017(9), [134]. DOI:
10.1007/JHEP09(2017)134

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 08. Jan. 2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Southern Denmark Research Output

https://core.ac.uk/display/132595875?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1007/JHEP09(2017)134


J
H
E
P
0
9
(
2
0
1
7
)
1
3
4

Published for SISSA by Springer

Received: April 27, 2017

Revised: August 12, 2017

Accepted: September 6, 2017

Published: September 26, 2017

Renormalization schemes for the Two-Higgs-Doublet

Model and applications to h→WW/ZZ→4 fermions

Lukas Altenkamp,a Stefan Dittmaiera and Heidi Rzehakb

aAlbert-Ludwigs-Universität Freiburg, Physikalisches Institut,

79104 Freiburg, Germany
bUniversity of Southern Denmark, CP3-Origins,

Campusvej 55, DK-5230 Odense M, Denmark

E-mail: lukas.altenkamp@physik.uni-freiburg.de,

stefan.dittmaier@physik.uni-freiburg.de, rzehak@cp3.sdu.dk

Abstract: We perform the renormalization of different types of Two-Higgs-Doublet Mod-

els for the calculation of observables at next-to-leading order. In detail, we suggest four

different renormalization schemes based on on-shell renormalization conditions as far as

possible and on MS prescriptions for the remaining field-mixing parameters where no dis-

tinguished on-shell condition exists and make contact to existing schemes in the literature.

In particular, we treat the tadpole diagrams in different ways and discuss issues of gauge

independence and perturbative stability in the considered schemes. The renormalization

group equations for the MS parameters are solved in each scheme, so that a consistent

renormalization scale variation can be performed. We have implemented all Feynman rules

including counterterms and the renormalization conditions into a FeynArts model file, so

that amplitudes and squared matrix elements can be generated automatically. As an appli-

cation we compute the decay of the light, CP-even Higgs boson of the Two-Higgs-Doublet

Model into four fermions at next-to-leading order. The comparison of different schemes

and the investigation of the renormalization scale dependence allows us to test the pertur-

bative consistency in each of the renormalization schemes, and to get a better estimate of

the theoretical uncertainty that arises due to the truncation of the perturbation series.
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1 Introduction

After the discovery of a Higgs boson at the Large Hadron Collider (LHC) [1, 2] at CERN,

the complete identification of this particle is ongoing. The properties of the discovered

particle, such as its couplings, are determined experimentally in order to fully identify

its nature. For the endeavour of the identification of this particle, input from the theory

side is needed in form of precise predictions for the production and decay processes in the

Standard Model (SM) as well as in its extensions that are to be tested. It is also crucial to

provide reliable uncertainty estimates of the theoretical predictions. Underestimating this

uncertainty might lead to wrong conclusions. In the SM, predictions and error estimates are

well advanced, and in SM extensions they are consolidating as well (see, e.g., the reviews

in refs. [3–8]).

One of the simplest extensions of the SM is the Two-Higgs-Doublet Model (THDM) [9,

10] where a second Higgs doublet is added to the SM field content. The underlying gauge

group SU(3)C × SU(2)W ×U(1)Y as well as the fermion content of the SM are kept. After

spontaneous symmetry breaking, there are five physical Higgs bosons where three of them

are neutral and two are charged. In the CP-conserving case, which we consider, one of the

neutral Higgs bosons is CP-odd and two are CP-even with one of them being SM-like.

Even such a simple extension of the SM can help solving some questions that are unan-

swered in the SM. For example, CP-violation in the Higgs sector could provide solutions

to the problem of baryogenesis [11–14], and inert THDMs contain a dark matter candi-

date [15, 16]. An even larger motivation comes from the embedding of the THDM into

more complex models, such as axion [17, 18] or supersymmetric models [19]. Some of the

latter are promising candidates for a fundamental theory, and supersymmetric Higgs sec-

tors contain a THDM (in which the doublets have opposite hypercharges). Even though

the THDM is unlikely to be the fundamental theory of nature, it provides a rich phe-

nomenology, which can be used in the search for a non-minimal Higgs sector without being

limited by constraints from a more fundamental theory.

In this sense, it is obvious that the THDM should be tested against data, and phe-

nomenological studies have been performed recently, e.g., in refs. [20–34]. In order to

provide precise predictions within this model, not only leading-order (LO), but also next-

to-leading-order (NLO) contributions have to be taken into account. For the calculation of

NLO contributions, a proper definition of a renormalization scheme is mandatory. There

is no unique choice, and applying different renormalization schemes can help to estimate

the theoretical uncertainty of the prediction that originates from the truncation of the
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perturbative series. The renormalization of the THDM has already been tackled in sev-

eral publications: first, in ref. [35], the fields and masses were renormalized in the on-shell

scheme, however, the prescription given there does not cover all parameters. In refs. [36, 37],

a minimal field renormalization was applied, and the field mixing conditions were used to

fix some of the mixing angles. In view of an automation of NLO predictions within the

THDM a tool was written by Degrande [38] where all finite rational terms and all divergent

terms are computed using on-shell conditions or conditions within the “modified minimal

subtraction scheme” (MS). Though automation is very helpful, often specific problems

occur depending on the model, the process, or the renormalization scheme considered,

and, it might be necessary to solve these “manually”. Specifically, spontaneously broken

gauge theories with extended scalar sectors pose issues with the renormalization of vacuum

expectation values and the related “tadpoles”, jeopardizing gauge independence and per-

turbative stability in predictions. Renormalization schemes employing a gauge-independent

treatment of the tadpole terms were described recently in refs. [39–41].

In this paper, we perform the renormalization of various types of THDMs (Type I,

Type II, “lepton-specific”, and “flipped”), describe four different renormalization schemes

(for each type), and provide explicit results facilitating their application in NLO calcu-

lations. The comparison of results obtained in these renormalization schemes allows for

checking their perturbative consistency, i.e. whether the expansion point for the perturba-

tion series is chosen well and no unphysically large corrections are introduced. Knowing in

which parts of the parameter space a renormalization scheme leads to a stable perturbative

behaviour is important for the applicability of the scheme. In addition, we investigate the

dependence on the renormalization scale µr which is introduced by defining some param-

eters via MS conditions. In order to investigate the µr dependence consistently, we solve

the renormalization group equations (RGEs) and include the running effects. We also

make contact to different renormalization schemes suggested in the literature, including

the recent formulations [39, 40] with gauge-independent treatments of tadpoles.1 To facil-

itate NLO calculations in practice, we have implemented our renormalization schemes for

the THDM into a FeynArts [44] model file, so that amplitudes and squared matrix ele-

ments can be generated straightforwardly. Finally, we apply the proposed renormalization

schemes in the NLO calculation of the partial decay width of the lighter CP-even Higgs bo-

son decaying into four fermions, h →WW/ZZ→ 4f , a process class that is a cornerstone

in the experimental determination of Higgs-boson couplings, but for which electroweak

corrections in the THDM are not yet known in the literature. The impact of NLO cor-

rections on Higgs couplings in the THDM was, for instance, investigated more globally

in refs. [45, 46]. However, a full set of electroweak corrections to all Higgs-boson decay pro-

cesses in the THDM does not yet exist in the literature, so that current predictions (see,

e.g., ref. [47]) for THDM Higgs analyses globally neglect electroweak higher-order effects.

1In our work we do not consider the “tadpole-pinched” scheme suggested in ref. [39]. Following the

arguments of refs. [42, 43] we consider the “pinch technique” just as one of many physically equivalent

choices to fix the gauge arbitrariness in off-shell quantities (related to the ’t Hooft-Feynman gauge of

the quantum fields in the background-field gauge) rather than singling out “its gauge-invariant part” in

any sense.

– 2 –
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Our calculation, thus, contributes to overcome this shortcoming; electroweak corrections

to some 1→ 2 particle decays of heavy Higgs bosons were presented in ref. [39].2

The structure of the paper is as follows. We introduce the four considered types of

THDMs and our conventions in section 2, and the derivation of the counterterm Lagrangian

is performed in section 3. Afterwards we fix the renormalization constants with renormal-

ization conditions (section 4). The on-shell conditions, where the renormalized parameters

correspond to measurable quantities, are described and applied in section 4.1. The renor-

malization constants of parameters that do not directly correspond to physical quantities

are fixed in the MS scheme, so that they contain only the UV divergences and no finite

terms. We describe different renormalization schemes based on different definitions of the

MS-renormalized parameters in section 4.2. The RGEs of the MS-renormalized parameters

are derived and numerically solved in section 5. The implementation of the results into an

automated matrix element generator is described in section 6, and numerical results for the

partial decay width h → 4f are presented in section 7. Finally, we conclude in section 8,

and further details on the renormalization prescription as well as some counterterms are

given in the appendix.

2 The Two-Higgs-Doublet Model

The Lagrangian of the THDM, LTHDM, is composed of the following parts,

LTHDM = LGauge + LFermion + LHiggs + LYukawa + LFix + LGhost. (2.1)

The gauge, fermionic, gauge-fixing, and ghost parts can be obtained in a straightforward

way from the SM ones, e.g., given in ref. [48]. The Higgs Lagrangian and the Yukawa

couplings to the fermions are discussed in the following and are mostly affected by the

additional degrees of freedom of the THDM. A very elaborate and complete discussion of

the THDM Higgs and Yukawa Lagrangians, including general and specific cases, can, e.g.,

be found in refs. [49, 50].

2.1 The Higgs Lagrangian

The Higgs Lagrangian, LHiggs, contains the kinetic terms and a potential V ,

LHiggs = (DµΦ1)†(DµΦ1) + (DµΦ2)†(DµΦ2)− V (Φ†1Φ1,Φ
†
2Φ2,Φ

†
2Φ1,Φ

†
1Φ2), (2.2)

with the complex scalar doublets Φ1,2 of hypercharge YW = 1,

Φ1 =

(
φ+

1

φ0
1

)
, Φ2 =

(
φ+

2

φ0
2

)
, (2.3)

and the covariant derivative

Dµ = ∂µ ∓ ig2I
a
WW

a
µ + ig1

YW

2
Bµ, (2.4)

2Since we consider the decays of the light Higgs boson h via W- or Z-boson pairs, where at least one of

the gauge bosons is off its mass shell, we have to consider the full 1 → 4 process with all off-shell and decay

effects, rendering a comparison to results on H→WW/ZZ not meaningful.

– 3 –
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where IaW (a = 1, 2, 3) are the generators of the weak isospin. The SU(2) and U(1) gauge

fields are denoted W a
µ and Bµ with the corresponding gauge couplings g2 and g1, re-

spectively. The sign in the g2 term is negative in the conventions of Böhm, Hollik and

Spiesberger (BHS) [48, 51] and positive in the convention of Haber and Kane (HK) [19].

We implemented both sign conventions, but used the former one as default. In general,

the potential involves all hermitian functions of the two doublets up to dimension four and

can be parameterized in the most general case as follows [50, 52],

V =m2
11Φ†1Φ1 +m2

22Φ†2Φ2 −
[
m2

12Φ†1Φ2 + h.c.
]

+
1

2
λ1(Φ†1Φ1)2 +

1

2
λ2(Φ†2Φ2)2 + λ3(Φ†1Φ1)(Φ†2Φ2) + λ4(Φ†1Φ2)(Φ†2Φ1)

+

[
1

2
λ5(Φ†1Φ2)2 + (λ6Φ†1Φ1 + λ7Φ†2Φ2)Φ†1Φ2 + h.c.

]
. (2.5)

The parameters m2
11,m

2
22, λ1, λ2, λ3, λ4 are real, while the parameters m2

12, λ5, λ6, λ7 are

complex, yielding a total number of 14 real degrees of freedom for the potential. However,

the component fields of the two Higgs doublets Φ1 and Φ2 do not correspond to mass

eigenstates, and these doublets can be redefined using an SU(2) transformation without

changing the physics, so that only 11 physical degrees of freedom remain [50]. For each

Higgs doublet we demand that the fields develop a vacuum expectation value (vev) in the

neutral component,

〈Φ1〉 = 〈0|Φ1|0〉 =

(
0
v1√

2

)
, 〈Φ2〉 = 〈0|Φ2|0〉 =

(
0
v2√

2

)
. (2.6)

It is non-trivial that such a stable minimum of the potential exists, restricting the allowed

parameter space already strongly [53]. In general, the vevs are complex (with a significant

relative phase). The Higgs doublets can be decomposed as follows,

Φ1 =

 φ+
1

1√
2
(η1 + iχ1 + v1)

 , Φ2 =

 φ+
2

1√
2
(η2 + iχ2 + v2)

 , (2.7)

with the charged fields φ+
1 , φ

+
2 , the neutral CP-even fields η1, η2, and the neutral CP-odd

fields χ1, χ2.

Additional constraints: since the 11-dimensional parameter space of the potential is

too large for early experimental analyses, we restrict the model in our analysis by imposing

two additional conditions, motivated by experimental results:

• absence of flavour-changing neutral currents at tree level,

• CP conservation in the Higgs sector (even though this holds only approximately).

The former requirement can be ensured by adding a discrete Z2 symmetry Φ1 → −Φ1 (see

section 2.2). This condition implies that the parameters λ6 and λ7 vanish. Permitting

operators of dimension two that violate this Z2 symmetry softly, non-zero values of m12

are still allowed [10, 54]. Concerning the second condition, the potential is CP-conserving

– 4 –



J
H
E
P
0
9
(
2
0
1
7
)
1
3
4

if and only if a basis of the Higgs doublets exists in which all parameters and the vevs

are real [55]. For our description we assume that a transformation to such a basis has

been done already (if the parameters or vevs were initially complex), so that we only have

to deal with real parameters. This renders m12 and λ5 real. However, at higher orders

in perturbation theory CP-breaking terms and complex phases in the Higgs sector are

generated radiatively through loop contributions involving the quark mixing matrix. For

our NLO analysis, this does not present a problem as they appear only beyond NLO in the

specific processes we consider. In addition we assume that a basis of the doublets is chosen

in which v1, v2 > 0 (which is always possible as a redefinition Φi → −Φi changes the sign

of the vacuum expectation value). The potential (2.5) has then the following form,

V = m2
11Φ†1Φ1 +m2

22Φ†2Φ2 −m2
12(Φ†1Φ2 + Φ†2Φ1)

+
1

2
λ1(Φ†1Φ1)2 +

1

2
λ2(Φ†2Φ2)2 + λ3(Φ†1Φ1)(Φ†2Φ2) + λ4(Φ†1Φ2)(Φ†2Φ1)

+
1

2
λ5

[
(Φ†1Φ2)2 + (Φ†2Φ1)2

]
. (2.8)

Expanding the potential using the decomposition (2.7) and ordering terms with respect to

powers of the fields, leads to the form

V = − tη1η1 − tη2η2

+
1

2
(η1, η2)Mη

(
η1

η2

)
+

1

2
(χ1, χ2) Mχ

(
χ1

χ2

)
+ (φ+

1 , φ
+
2 ) Mφ

(
φ−1
φ−2

)
+ . . . , (2.9)

with the tadpole terms proportional to the tadpole parameters tη1 , tη2 and linear in the

fields. The mass terms contain the mass matrices Mη, Mχ, and Mφ and are quadratic in

the CP-even, CP-odd, and charged Higgs-boson fields, respectively. Terms cubic or quartic

in the fields are suppressed in the notation here. Only the neutral CP-even scalar fields can

develop non-vanishing tadpole terms, since they carry the quantum numbers of the vacuum.

Further, in the mass terms, only particles with the same quantum numbers can mix, so

that the three different types of scalars (neutral CP-even, neutral CP-odd, and charged)

do not mix with one another. Of course, through the cubic and quartic terms, which are

not shown here, these particles interact with each other. The tadpole parameters are

tη1 = −m2
11v1 − λ1v

3
1/2 + v2(m2

12 − λ345v1v2/2), (2.10a)

tη2 = −m2
22v2 − λ2v

3
2/2 + v1(m2

12 − λ345v1v2/2), (2.10b)

where we introduced the abbreviations λij... = λi + λj + . . ., and the mass matrices are

given by

Mη =

(
m2

11 + 3λ1v
2
1/2 + λ345v

2
2/2 −m2

12 + λ345v1v2

−m2
12 + λ345v1v2 m2

22 + 3λ2v
2
2/2 + λ345v

2
1/2

)
, (2.11a)

Mχ =

(
m2

11 + λ1v
2
1/2 + (λ34 − λ5)v2

2/2 −m2
12 + λ5v1v2

−m2
12 + λ5v1v2 m2

22 + λ2v
2
2/2 + (λ34 − λ5)v2

1/2

)
, (2.11b)

Mφ =

(
m2

11 + λ1v
2
1/2 + λ3v

2
2/2 −m2

12 + λ45v1v2/2

−m2
12 + λ45v1v2/2 m2

22 + λ2v
2
2/2 + λ3v

2
1/2

)
. (2.11c)

– 5 –
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The fields can be transformed into their mass eigenstate basis via(
η1

η2

)
=

(
cosα − sinα

sinα cosα

)(
H

h

)
, (2.12a)(

χ1

χ2

)
=

(
cosβn − sinβn
sinβn cosβn

)(
G0

A0

)
, (2.12b)(

φ±1
φ±2

)
=

(
cosβc − sinβc
sinβc cosβc

)(
G±

H±

)
. (2.12c)

where h, H correspond to the CP-even, A0 to the CP-odd, and H± to the charged mass

eigenstates.3 The fields G±, G0 correspond to the Goldstone bosons. After a rotation of

the fields, the potential has the following form,

V =− tHH − thh

+
1

2
(H,h)

(
M2

H M2
Hh

M2
Hh M2

h

)(
H

h

)
+

1

2
(G0, A0)

(
M2

G0
M2

G0A0

M2
G0A0

M2
A0

)(
G0

A0

)

+ (G+, H+)

(
M2

G+ M2
GH+

M2
GH+ M2

H+

)(
G−

H−

)
+ interaction terms (2.13)

with the tadpole parameters

tH = cαtη1 + sαtη2 , th = −sαtη1 + cαtη2 , (2.14)

where general abbreviations for the trigonometric functions sx ≡ sinx, cx ≡ cosx, tx ≡
tanx are introduced. After the elimination of m11, m22 using the above equations, the

entries of the mass matrices contain also the tadpole parameters th, tH . Using

v2 = v2
1 + v2

2, tanβ =
v2

v1
, (2.15)

we obtain for the mass parameters of the CP-even Higgs bosons,

M2
H =

2s2
α−β
s2β

m2
12 +

v2

2

(
2λ1c

2
βc

2
α + 2λ2s

2
αs

2
β + s2αs2βλ345

)
− 2tH

s3
αcβ + c3

αsβ
vs2β

− th
s2αsα−β
vs2β

, (2.16a)

M2
h =

2c2
α−β
s2β

m2
12 +

v2

2

(
2λ1c

2
βs

2
α + 2λ2c

2
αs

2
β − s2αs2βλ345

)
− tH

s2αcα−β
vs2β

− 2th
c3
αcβ − s3

αsβ
vs2β

, (2.16b)

M2
Hh =

s2(α−β)

s2β
m2

12 +
v2

2

[
s2α(−c2

βλ1 + s2
βλ2) + s2βc2αλ345

]
− tH

s2αsα−β
vs2β

− th
s2αcα−β
vs2β

, (2.16c)

3In order to avoid a conflict in our notation, we define αem = e2/(4π) as electromagnetic coupling

constant and consistently keep the symbol α for the rotation angle.

– 6 –
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the ones of the mass matrix of the CP-odd Higgs fields result in

M2
A0

= 2c2
β−βn

(
m2

12

s2β
− λ5v

2

2

)
− 2tH

c2
βn
cβsα + s2

βn
sβcα

vs2β
− 2th

c2
βn
cβcα − s2

βn
sβsα

vs2β
,

(2.17a)

M2
G0

= 2s2
β−βn

(
m2

12

s2β
− λ5v

2

2

)
− 2tH

s2
βn
cβsα + c2

βn
sβcα

vs2β
− 2th

s2
βn
cβcα − c2

βn
sβsα

vs2β
,

(2.17b)

M2
G0A0

= −s2(β−βn)

(
m2

12

s2β
− λ5v

2

2

)
− tH

s2βnsα−β
vs2β

− th
s2βncα−β
vs2β

, (2.17c)

and the ones of the mass matrix of the charged Higgs-boson fields are

M2
H+ = c2

β−βc

[
2m2

12

s2β
− v2

2
(λ4 + λ5)

]
− 2tH

c2
βc
cβsα + s2

βc
sβcα

vs2β
− 2th

c2
βc
cβcα − s2

βc
sβsα

vs2β
,

(2.18a)

M2
G+ = s2

β−βc

[
2m2

12

s2β
− v2

2
(λ4 + λ5)

]
− 2tH

s2
βc
cβsα + c2

βc
sβcα

vs2β
− 2th

s2
βc
cβcα − c2

βc
sβsα

vs2β
,

(2.18b)

M2
GH+ = −

s2(β−βc)
2

[
2m2

12

s2β
− v2

2
(λ4 + λ5)

]
− tH

s2βcsα−β
vs2β

− th
s2βccα−β
vs2β

. (2.18c)

At tree level we demand vanishing tadpole terms corresponding to tH = th = 0 and diagonal

propagators, so that the mixing terms proportional to M2
Hh, M2

G0A0
, M2

GH+ vanish at LO.

This yields βc = βn = β and fixes the angle α as well. At NLO such a diagonalization is not

possible, as the propagators receive also mixing contributions from the field renormalization

and from (momentum-dependent) one-loop diagrams, so that there is no distinct condition

to define the mixing angles. Therefore we keep the bare mass mixing parameters M2
Hh,

M2
G0A0

, M2
GH+ and the tadpole terms tH, th in this section, and specify defining conditions

for the bare parameters α, βn, βc and the tadpole terms later. With the above equations,

m12, λ1, λ2, λ3, λ4 can be traded for the masses of the physical bosons MH, Mh, MA0 , MH+ ,

and the mixing angle α. The parameter λ5 cannot be replaced by a mass or a mixing angle

as it appears only in cubic and quartic Higgs couplings and acts like an additional coupling

constant. Explicit relations can be obtained by inverting eqs. (2.16), (2.17a), and (2.18a).

The other parameters are related to the masses by

λ1 =
1

c2
βv

2

[
c2
αM

2
H + s2

αM
2
h −M2

Hhs2α − s2
β

(
M2

A0

c2
β−βn

+ λ5v
2

)]

+ tH
cβn (2sβsβncα + cα+βcβn)

v3c2
βc

2
β−βn

− th
cβn (2sβsβnsα + sα+βcβn)

v3c2
βc

2
β−βn

, (2.19a)

λ2 =
1

s2
βv

2

[
c2
αM

2
h + s2

αM
2
H +M2

Hhs2α − c2
β

(
M2

A0

c2
β−βn

+ λ5v
2

)]

+ tH
sβn(2cβcβnsα − cα+βsβn)

v3s2
βc

2
β−βn

+ th
sβn(2cβcβncα + sα+βsβn)

v3s2
βc

2
β−βn

, (2.19b)
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λ3 =
1

v2s2β

[
s2α(M2

H −M2
h) + 2c2αM

2
Hh

]
−

M2
A0

v2c2
β−βn

+
2M2

H+

v2c2
β−βc

− λ5

+
2tH
v3s2β

[
sβcα

(
2s2
βc

c2
β−βc

−
s2
βn

c2
β−βn

)
+ cβsα

(
2c2
βc

c2
β−βc

−
c2
βn

c2
β−βn

)]

+
2th
v3s2β

[
cβcα

(
2c2
βc

c2
β−βc

−
c2
βn

c2
β−βn

)
+ sβsα

(
s2
βn

c2
β−βn

−
2s2
βc

c2
β−βc

)]
, (2.19c)

λ4 = λ5 +
2M2

A0

v2c2
β−βn

− 2M2
H+

v2c2
β−βc

+
2tHsβc−βn (sα+β−βc−βn − sβ−αcβc−βn)

v3c2
β−βcc

2
β−βn

+
2thsβc−βn (cα+β−βc−βn + cβ−αcβc−βn)

v3c2
β−βcc

2
β−βn

, (2.19d)

m2
12 =

1

2
λ5v

2s2β +
M2

A0
s2β

2c2
β−βn

+
tH

(
sβcαs

2
βn

+ cβsαc
2
βn

)
vc2
β−βn

+
th

(
cβcαc

2
βn
− sβsαs2

βn

)
vc2
β−βn

.

(2.19e)

The tree-level relations are easily obtained by setting βc = βn = β and tH = th = M2
Hh =

M2
G0A0

= M2
GH+ = 0,

λ1 =
1

c2
βv

2

[
c2
αM

2
H + s2

αM
2
h − s2

β(M2
A0

+ λ5v
2)
]
, (2.20a)

λ2 =
1

s2
βv

2

[
s2
αM

2
H + c2

αM
2
h − c2

β(M2
A0

+ λ5v
2)
]
, (2.20b)

λ3 =
s2α

s2βv2
(M2

H −M2
h)− 1

v2
(M2

A0
− 2M2

H+)− λ5, (2.20c)

λ4 =
2(M2

A0
−M2

H+)

v2
+ λ5, (2.20d)

m2
12 =

s2β

2
(M2

A0
+ λ5v

2). (2.20e)

Parameters of the gauge sector: mass terms of the gauge bosons arise through the

interaction of the gauge bosons with the vevs, analogous to the SM. After a rotation into

fields corresponding to mass eigenstates, one obtains relations similar to the SM ones:

MW = g2
v

2
, MZ =

v

2

√
g2

1 + g2
2, e =

g1g2√
g2

1 + g2
2

, (2.21)

where the electric unit charge e is identified with the coupling constant of the photon field

Aµ in the covariant derivative. Inverting these relations and introducing the weak mixing

angle θW via cos θW = g2/
√
g2

1 + g2
2, one can replace v and the gauge couplings g1 and g2 by

v =
2MWsW

e
, g1 =

e

cW
, g2 =

e

sW
. (2.22)

Mass parameterization: the relations (2.14), (2.15), (2.19a,b,d,e), and (2.22) between

the masses, angles, and the basic parameters can be used to reparameterize the Higgs

Lagrangian and change the parameters

{pbasic} = {λ1, . . . , λ5,m
2
11,m

2
22,m

2
12, v1, v2, g1, g2}, (2.23)
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in favour of the bare mass parameters including one parameter from scalar self-interactions

which we take as λ3,

{p′mass} = {MH,Mh,MA0 ,MH+ ,MW,MZ, e, λ5, λ3, β, tH, th}. (2.24)

Additionally, one has to keep in mind that we keep the mixing parameters α, βn, and βc
generic, and they have to be fixed by additional conditions (which will be given later).

One can use eq. (2.19c) to trade λ3 for α, in which case the mixing angle becomes a free

parameter of the theory. Then, one obtains the parameter set

{pmass} = {MH,Mh,MA0 ,MH+ ,MW,MZ, e, λ5, α, β, tH, th}. (2.25)

2.2 Yukawa couplings

The Higgs mechanism does not only give rise to the gauge-boson mass terms (which are

determined by the vevs), but via Yukawa couplings, it introduces masses to chiral fermions.

Since both Higgs doublets can couple to fermions, the general Yukawa couplings have

the form

LYukawa =−
∑
k=1,2

∑
i,j

(
L̄′Li ζ

l,k
ij l
′R
j Φk + Q̄′Li ζ

u,k
ij u′Rj Φ̃k + Q̄′Li ζ

d,k
ij d

′R
j Φk + h.c.

)
, (2.26)

with the mixing matrices ζf,k, k = 1, 2, in generation space for the gauge-invariant interac-

tions with Φ1 and Φ2, respectively, and the generation indices i, j = 1, 2, 3. The left-handed

SU(2) doublets of quarks and leptons are denoted Q′L =
(
u′L, d′L

)T
and L′L =

(
ν ′L, l′L

)T
,

while the right-handed up-type quark, down-type quark, and lepton singlets are u′R, d′R,

and l′R, respectively. The primes indicate that we deal with fields in the interaction basis

here; fields without primes correspond to mass eigenstates. The field Φ̃k, k = 1, 2, is the

charge-conjugated field of Φk. Since, in the general THDM, there are two mass mixing

matrices for each type f of fermions, flavour-changing neutral currents (FCNC) can occur

at tree level, which, however, are experimentally known to be strongly suppressed. Ac-

cording to the Paschos-Glashow-Weinberg theorem [56, 57], FCNC are absent at tree level

if each type of fermion couples only to one of the Higgs doublets. This can be achieved by

imposing an additional discrete Z2 symmetry. It should be noted that the soft-Z2-breaking

term proportional to m12 in the Higgs potential does not introduce FCNC. The Yukawa

Lagrangian reduces then to

LYukawa = −
∑
i,j

(
L̄′Li ζ

l
ijl
′R
j Φn1 + Q̄′Li ζ

u
iju
′R
j Φ̃n2 + Q̄′Li ζ

d
ijd
′R
j Φn3 + h.c.

)
, (2.27)

with ni being either 1 or 2. Depending on the exact form of the symmetry, one distin-

guishes four types of THDMs. In Type I models, all fermions couple to one Higgs doublet

(conventionally Φ2, but this is equivalent to Φ1 due to possible basis changes) which can be

ensured by demanding a Φ1 → −Φ1 symmetry. In Type II models, down-type fermions cou-

ple to the other doublet, which can be enforced by the symmetry Φ1 → −Φ1, d′Rj → −d′Rj ,

l′R → −l′R. The other two possibilities are called “lepton-specific” (Type X) and “flipped”

(Type Y) models. An overview over the couplings and symmetries of the different models is
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ui di ei Z2 symmetry

Type I Φ2 Φ2 Φ2 Φ1 → −Φ1

Type II Φ2 Φ1 Φ1 (Φ1, di, ei)→ −(Φ1, di, ei)

Lepton-specific Φ2 Φ2 Φ1 (Φ1, ei)→ −(Φ1, ei)

Flipped Φ2 Φ1 Φ2 (Φ1, di)→ −(Φ1, di)

Table 1. Different types of the THDM having in common that only one of the Higgs doublet

couples to each type of fermions. This can be achieved by imposing appropriate Z2 symmetry

charges to the fields.

given in table 1. For each of the fermion types, a redefinition of the fields can be performed

in order to get diagonal mass matrices, analogously to the SM case. Similar to the SM,

the coupling of fermions to the Z boson is flavour conserving, and a CKM matrix appears

in the coupling to the charged gauge bosons. By specifying the model type, the Higgs-

fermion interaction is determined, and one can write them, widely following the notation

of ref. [58], as

LYukawa,int =−
∑
i

∑
f=u,d,l

mf,i

v

(
ξfh f̄ifih+ ξfH f̄ifiH −2iI3

W,fξ
f
A0
f̄iγ5fiA0 −2iI3

W,f f̄iγ5fiG0

)
−
∑
i,j

[√
2Vij
v

ūi(−mu,iξ
u
A0
ω− +md,jξ

d
A0
ω+) djH

+ + h.c.

]

−
∑
i

[√
2ml,iξ

l
A0

v
ν̄L
i l

R
i H

+ + h.c.

]
−
∑
i,j

[√
2Vij
v

ūi(−mu,iω− +md,jω+) djG
+ + h.c.

]

−
∑
i

[√
2ml,i

v
ν̄L
i l

R
i G

+ + h.c.

]
, (2.28)

where ml,i, mu,i, and md,i are the lepton, the up-type, and the down-type quark masses,

respectively, and Vij are the coefficients of the CKM matrix. Left- and right-handed fermion

fields, fL and fR, are obtained from the corresponding Dirac spinor f by applying the

chirality projectors ω± = (1 ± γ5)/2, i.e. f = (ω+ + ω−)f = fL + fR. The coupling

coefficients ξfH,h,A0
are defined as the couplings relative to the canonical SM value of mf/v

and are shown in table 2. Note that we have used βn = βc = β in eq. (2.28) and table 2,

which is most relevant in applications; the generalization to independent βn, βc, β is simple.

3 The counterterm Lagrangian

The next step in calculating higher-order corrections is the renormalization of the theory.

In this section we focus on electroweak corrections of O(αem). The QCD renormalization

of the THDM is straightforward and completely analogous to the SM case, since all scalar

degrees of freedom are colour singlets and do not interact strongly. In the formulation of
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Type I Type II Lepton-specific Flipped

ξlH sinα/ sinβ cosα/ cosβ cosα/ cosβ sinα/ sinβ

ξuH sinα/ sinβ sinα/ sinβ sinα/ sinβ sinα/ sinβ

ξdH sinα/ sinβ cosα/ cosβ sinα/ sinβ cosα/ cosβ

ξlh cosα/ sinβ − sinα/ cosβ − sinα/ cosβ cosα/ sinβ

ξuh cosα/ sinβ cosα/ sinβ cosα/ sinβ cosα/ sinβ

ξdh cosα/ sinβ − sinα/ cosβ cosα/ sinβ − sinα/ cosβ

ξlA0
cotβ − tanβ − tanβ cotβ

ξuA0
cotβ cotβ cotβ cotβ

ξdA0
cotβ − tanβ cotβ − tanβ

Table 2. The coupling strengths ξf of H, h,A0 to the fermions relative to the SM value of mf/v,

see eq. (2.28). Note that the sign of ξfA0
is defined relative to the coupling of the Goldstone-boson

field G0 and the relation βn = βc = β is used here.

the basic Lagrangian in the previous section, we dealt with bare parameters and fields. To

distinguish those from renormalized quantities, in the following we indicate bare quantities

by subscripts “0” consistently. We perform a multiplicative renormalization, i.e. we split

bare quantities into renormalized parts and corresponding counterterms, use dimensional

regularization, and allow for matrix-valued field renormalization constants in the case that

there are several fields with the same quantum numbers. The counterterm Lagrangian δL
containing the full dependence on the renormalization constants can be split into several

parts analogous to eq. (2.1),

δLTHDM = δLGauge + δLFermion + δLHiggs,kin − δVHiggs + δLYukawa, (3.1)

where the Higgs part of the Lagrangian δLHiggs is split up into the kinetic part δLHiggs,kin

and the Higgs potential part δVHiggs. Since the gauge fixing is applied after renormalization,

no gauge-fixing counterterms occur, and since ghost fields occur only in loop diagrams, a

renormalization of the ghost sector is not necessary at NLO for the calculation of S-matrix

elements. Though, for analyzing Slavnov-Taylor or Ward identities a complete renormaliza-

tion procedure would be advisable. Our renormalization procedure, thus, widely parallels

the treatment described for the SM in [48]; an alternative variant that is based on the

transformation of fields in the gauge eigenstate basis, as suggested for the SM in ref. [51]

and for the MSSM in ref. [59], is described in ref. [60].

3.1 Higgs potential

According to eq. (2.8), the Higgs potential contains 8 independent parameters which have to

be renormalized. In addition, there are two vevs and two gauge couplings completing the set

of input parameters of (2.23). We have carried out different renormalization procedures and

in this paper discuss the renormalization of the Lagrangian in the mass parameterization

1. with renormalization of the mixing angles,
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2. alternatively, taking the mixing angles as dependent parameters and applying the

field transformation after renormalization.

Additionally we have performed a renormalization of the basic parameters and a subsequent

transformation to renormalization constants and parameters of the mass parameter set

similar to Dabelstein in the MSSM [59].4 The latter has been used, after changing to our

conventions for field and parameter renormalization, to check the counterterm Lagrangian.

In the following, we give a detailed description of method (a), while method (b) is briefly

described in appendix A.

3.1.1 Renormalization of the mixing angles

In this section we show that the counterterms of mixing angles that are not used to replace

another free parameter of the theory are redundant in the sense that they can be absorbed

by field renormalization constants. We sketch the argument for generic scalar fields ϕ1, ϕ2,

which are transformed into fields h1, h2 corresponding to mass eigenstates by a rotation by

the angle θ, (
ϕ1,0

ϕ2,0

)
= Rϕ(θ0)

(
h1,0

h2,0

)
=

(
cθ,0 −sθ,0
sθ,0 cθ,0

)(
h1,0

h2,0

)
, (3.2)

where we added subscripts “0” to indicate bare quantities. The general argument can

be applied to the neutral CP-even, the neutral CP-odd, and the charged Higgs fields of

the THDM by replacing h1, h2 by H, h, or G, A0 or G±, H±, respectively, and by

substituting the angle θ by α, βn, or βc. The fields corresponding to mass eigenstates are

renormalized using matrix-valued renormalization constants, so that the renormalization

transformation reads(
h1,0

h2,0

)
=

(
1 + 1

2δZh1h1
1
2δZh1h2

1
2δZh2h1 1 + 1

2δZh2h2

)(
h1

h2

)
, θ0 = θ + δθ. (3.3)

Applying this renormalization transformation to eq. (3.2) leads to(
ϕ1,0

ϕ2,0

)
=

[(
cθ −sθ
sθ cθ

)(
1 + 1

2δZh1h1
1
2δZh1h2

1
2δZh2h1 1 + 1

2δZh2h2

)
+

(
−sθ −cθ
cθ −sθ

)
δθ

](
h1

h2

)

=

(
cθ −sθ
sθ cθ

)(
1 + 1

2δZh1h1
1
2(δZh1h2 − 2δθ)

1
2(δZh2h1 + 2δθ) 1 + 1

2δZh2h2

)(
h1

h2

)
. (3.4)

One can easily remove the dependence on the mixing angle with a redefinition of the mixing

field renormalization constants by introducing

δZ̃h2h1 = δZh2h1 + 2δθ, δZ̃h1h2 = δZh1h2 − 2δθ. (3.5)

Then, the eq. (3.4) reads(
ϕ1,0

ϕ2,0

)
=

(
cθ −sθ
sθ cθ

)(
1 + 1

2δZh1h1
1
2δZ̃h1h2

1
2δZ̃h2h1 1 + 1

2δZh2h2

)(
h1

h2

)
. (3.6)

4Details about this method can be found in ref. [60].
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Obviously, the dependence on δθ can always be removed from the Lagrangian by a re-

definition of the field renormalization constants. As a simple shift of the mixing field

renormalization constant is performing the task, the renormalization of the mixing angle

θ can be seen as an additional field renormalization (as it is done, e.g., in ref. [58]). This

argument is general and holds for any renormalization condition on θ. Without loss of

generality one can even assume that such a redefinition has already been performed and

set δθ = 0 from the beginning, as done in method (b) in appendix A. Of course, the book-

keeping of counterterms depends on the way δθ is treated. This can be seen by considering

the mass term of the potential. The general bare mass term can be written using the

rotation matrix Rϕ(θ0) as

Vh1h2 =
1

2
(h1,0, h2,0) RT

ϕ(θ0)Mϕ,0Rϕ(θ0)

(
h1,0

h2,0

)

=
1

2
(h1,0, h2,0) RT

ϕ(θ + δθ) (Mϕ + δMϕ) Rϕ(θ + δθ)

(
h1,0

h2,0

)
. (3.7)

This expression can be expanded in terms of renormalized and counterterm contributions,

yielding

Vh1h2 =
1

2
(h1,0, h2,0)

(
M2

h1
+ δM2

h1
δθ(M2

h2
−M2

h1
) + fθ({δp})

δθ(M2
h2
−M2

h1
) + fθ({δp}) M2

h2
+ δM2

h2

)(
h1,0

h2,0

)
,

(3.8)

where we obtain off-diagonal terms from the counterterm δθ of the mixing angle and from

the renormalization of the mass matrix. The latter contribution depends on the indepen-

dent counterterms {δp} and is abbreviated by fθ({δp}). At NLO, the mixing entry of the

mass matrix reads

δM2
h1h2

= δθ(M2
h2
−Mh1) + fθ({δp}), (3.9)

and since the renormalization of the redundant mixing angle can be chosen freely, coun-

terterm contributions in the Lagrangian can be shifted arbitrarily from mixing terms to

mixing-angle counterterms. Note that fθ({δp}) does not change by such redistributions,

since it is fixed by the remaining renormalization constants.

3.1.2 Renormalization with a diagonal mass matrix — Version (a)

In this prescription, we use the angle α as an independent parameter instead of λ3. To

define α at NLO, we demand that the mass matrix of the CP-even Higgs bosons (in the

Lagrangian), written in terms of bare fields, is diagonal at all orders (i.e. in terms of bare

or renormalized parameters). Equation (2.19c) with

M2
Hh,0 = 0 + δM2

Hh = 0, M2
Hh = 0 (3.10)

then defines the parameter α. Note that (momentum-dependent) loop diagrams tend to

destroy the diagonality of the matrix-valued two-point functions (inverse propagators) in
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the effective action as well. Below, the field renormalization will be chosen to compensate

those loop effects at the mass shells of the propagating particles. It is relation (3.10) that

distinguishes α from the case of a redundant mixing angle, such as θ in the previous section,

which can be chosen freely or absorbed by field renormalization constants. The relation

between α and λ3 of eq. (2.19c) is the same for bare and renormalized quantities and can

be used to eliminate λ3 from the theory. For each of the independent parameters of the

mass parameter set (2.25) we apply the renormalization transformation

M2
H,0 = M2

H + δM2
H, M2

h,0 = M2
h + δM2

h , M2
A0,0 = M2

A0
+ δM2

A0
,

M2
H+,0 = M2

H+ + δM2
H+ , M2

W,0 = M2
W + δM2

W, M2
Z,0 = M2

Z + δM2
Z,

e0 = e+ δe, λ5,0 = λ5 + δλ5 α0 = α+ δα,

β0 = β + δβ, tH,0 = 0 + δtH, th,0 = 0 + δth, (3.11)

so that the 12 parameter renormalization constants are

{δpmass} = {δM2
H, δM

2
h , δM

2
A0
, δM2

H+ , δM
2
W, δM

2
Z, δe, δλ5, δα, δβ, δtH, δth}, (3.12)

corresponding to {pmass}. In this part we describe the commonly used tadpole renormaliza-

tion (which is gauge dependent) and describe a gauge-independent scheme in section 4.2.3.

The higher-order corrections of the mixing angles βn and βc are irrelevant according

to section 3.1.1 and we can choose

βn,0 = βc,0 = β0 = β + δβ, (3.13)

which defines the mixing terms uniquely and ensures that the angles βn, βc, and β do not

have to be distinguished at any order. From these conditions, we can compute the mass

mixing terms from eq. (2.17c) and eq. (2.18c) to

M2
G0A0,0 = 0 + δM2

G0A0
= −eδtHsα−β + δthcα−β

2MWsW
,

M2
GH+,0 = 0 + δM2

GH+ = −eδtHsα−β + δthcα−β
2MWsW

. (3.14)

The field renormalization is performed for each field corresponding to mass eigenstates,(
H0

h0

)
=

(
1 + 1

2δZH
1
2δZHh

1
2δZhH 1 + 1

2δZh

)(
H

h

)
,(

G0,0

A0,0

)
=

(
1 + 1

2δZG0
1
2δZG0A0

1
2δZA0G0 1 + 1

2δZA0

)(
G0

A0

)
,(

G±0
H±0

)
=

(
1 + 1

2δZG+
1
2δZGH+

1
2δZHG+ 1 + 1

2δZH+

)(
G±

H±

)
, (3.15)

with the field renormalization constants δZH, δZHh, δZhH, δZh, δZG0 , δZG0A0 , δZA0G0 ,

δZA0 , δZG+ , δZGH+ , δZHG+ , and δZH+ for the CP-even, the CP-odd, and the charged

Higgs fields. We denote the complete set of parameter and field renormalization constants
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with {δRmass}. All renormalization constants are of O(αem), i.e. all contributions of O(α2
em)

or higher are omitted.

Applying the renormalization transformations (3.11), (3.15) to the bare potential

of eq. (2.13) and linearizing in the renormalization constants results in V ({pmass}) +

δV ({pmass}, {δRmass}) with the LO potential as in eq. (2.13), but with renormalized quan-

tities and the counterterm potential of O(αem),

δV ({pmass}, {δRmass}) =− δtHH − δthh

+
1

2

(
δM2

H + δZHM
2
H

)
H2 +

1

2

(
δM2

h + δZhM
2
h

)
h2

+
1

2

(
δM2

A0
+ δZA0M

2
A0

)
A2

0 +
(
δM2

H+ + δZH+M2
H+

)
H+H−

+
e

4MWsW
(−δtHcα−β + δthsα−β) (G2

0 + 2G+G−)

+
1

2

(
M2

HδZHh +M2
hδZhH

)
Hh

+
1

2

(
M2

A0
δZA0G0 + 2δM2

G0A0

)
G0A0

+
1

2

(
M2

H+δZHG+ + 2δM2
GH+

)
(H+G− +G+H−)

+ interaction terms. (3.16)

The interaction terms are derived in the same way, but they are very lengthy and not

shown here.

The prescription for the field renormalization (3.15) is non-minimal in the sense that

a renormalization of the doublets with two renormalization constants,

Φ1,0 = Z
1/2
H1

Φ1 = Φ1

(
1 +

1

2
δZH1

)
,

Φ2,0 = Z
1/2
H2

Φ2 = Φ2

(
1 +

1

2
δZH2

)
, (3.17)

actually would be sufficient to cancel the UV divergences. However, the prescription with

matrix-valued renormalization constants allows us to renormalize each field on-shell. The

UV-divergent parts of the renormalization constants in eq. (3.15) cannot be independent,

and relations between the UV-divergent parts of the two prescriptions exist. They can be

obtained by applying the renormalization prescription (3.17) to the left-hand side and (3.15)

to the right-hand side of eqs. (2.12), transforming thereafter the interaction states on the

left-hand side to mass eigenstates and comparing both sides. This results in

δZh

∣∣
UV

= s2
α δZH1

∣∣
UV

+ c2
α δZH2

∣∣
UV
,

δZH

∣∣
UV

= c2
α δZH1

∣∣
UV

+ s2
α δZH2

∣∣
UV
,

δZHh

∣∣
UV

= sαcα
(
−δZH1

∣∣
UV

+ δZH2

∣∣
UV

)
+ 2δα

∣∣
UV
,

δZhH

∣∣
UV

= sαcα
(
−δZH1

∣∣
UV

+ δZH2

∣∣
UV

)
− 2δα

∣∣
UV
,

δZA0

∣∣
UV

= δZH+

∣∣
UV

= s2
β δZH1

∣∣
UV

+ c2
β δZH2

∣∣
UV
,
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δZG0

∣∣
UV

= δZG+

∣∣
UV

= c2
β δZH1

∣∣
UV

+ s2
β δZH2

∣∣
UV
,

δZG0A0

∣∣
UV

= δZGH+

∣∣
UV

= sβcβ
(
−δZH1

∣∣
UV

+ δZH2

∣∣
UV

)
+ 2δβ

∣∣
UV
,

δZA0G0

∣∣
UV

= δZHG+

∣∣
UV

= sβcβ
(
−δZH1

∣∣
UV

+ δZH2

∣∣
UV

)
− 2δβ

∣∣
UV
. (3.18)

We will use these relations to derive UV-divergent parts for specific renormalization con-

stants in section 4.2. In appendix A we discuss a different choice of the mixing angles

which is suited for the renormalization with λ3 as an independent parameter.

3.2 The Higgs kinetic part

After expressing the Higgs kinetic term

LH,kin = (DµΦ1)†(DµΦ1) + (DµΦ2)†(DµΦ2) (3.19)

in terms of bare physical fields, mixing angles, and parameters, one can apply the renorma-

lization transformations (3.11) and (3.15) to obtain the counterterm part of the kinetic

Lagrangian which introduces scalar-vector mixing terms. The explicit terms are stated in

appendix B.1.

3.3 Fermionic and gauge parts

Since the THDM extension of the SM does not affect the gauge and the fermion parts of the

Lagrangian, the renormalization of these parts is identical to the SM case. It is described

in detail in ref. [48] in BHS convention, which is included in the standard implementation

of the FeynArts package [44]. Other renormalization prescriptions can, e.g., be found

in refs. [61, 62]. Therefore, we here do not repeat the renormalization procedure of the

CKM matrix, which does not change in the transition from the SM to the THDM, and spell

out the renormalization of the fermionic parts only for the case where the CKM matrix

is set to the unit matrix, i.e. Vij = δij . The transformation of the left- and right-handed

fermions and of the gauge-boson fields are

fσi,0 =
(

1 + 1
2δZ

f,σ
i

)
fσi , f = ν, l, u, d, σ = L,R, i = 1, 2, 3, (3.20)(

Z0

Abare

)
=

(
1 + 1

2δZZZ
1
2ZZA

1
2δZAZ 1 + 1

2δZAA

)(
Z

A

)
, W±0 =

(
1 +

1

2
δZW

)
W±, (3.21)

where the bare photon field is denoted Abare to distinguish it from the neutral CP-odd

field A0. Mixing between left-handed up- and down-type fermions does not occur, owing

to charge conservation. Inserting this into the Lagrangian directly delivers the renormalized

and the counterterm Lagrangians.

3.4 Yukawa part

The renormalization of the Yukawa sector is straightforward in Type I, II, lepton-specific,

and flipped models and can be done by taking the Lagrangian of eq. (2.28), replacing

the vev v, and applying the renormalization transformations of section 3.1.2, as well as a

renormalization of the fermion masses,

mf,i,0 = mf,i + δmf,i. (3.22)

The corresponding counterterm couplings are stated in appendix B.2.
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Parameters:

EW (3): δM2
Z, δM

2
W, δe, (δcW, δsW)

fermion masses (9): δmf,i, f = l, u, d, i = 1, 2, 3

Higgs masses (4): δM2
H, δM

2
h , δM

2
A0
, δM2

H+

Higgs potential (3): δλ3 or δα, δλ5, δβ

tadpoles (2): δtH, δth

Fields:

EW (5): δZW, δZZZ, δZZA, δZAZ, δZAA

left-handed fermions (12): δZf,Li , f = ν, l, u, d, i = 1, 2, 3

right-handed fermions (9): δZf,Ri , f = l, u, d, i = 1, 2, 3

Higgs (12): δZH, δZHh, δZhH, δZh

δZA0 , δZA0G0 , δZG0A0 , δZG0

δZH+ , δZHG+ , δZGH+ , δZG+

Table 3. The renormalization constants used to describe the THDM, separated into sectors of

parameter and field renormalization. The renormalization constants in parentheses are not in-

dependent, but useful for a better bookkeeping. The numbers in parentheses are the numbers of

independent renormalization constants. In total there are 38 field and 21 parameter renormalization

constants to fix.

4 Renormalization conditions

The renormalization constants are fixed using on-shell conditions for all parameters that

are accessible by experiments. However, not all parameters of the THDM correspond to

measurable quantities, so that we renormalize three parameters of the Higgs sector in the

MS scheme, where the renormalization constants only contain the standard UV divergence

∆UV =
2

4−D − γE + ln 4π =
1

ε
− γE + ln 4π (4.1)

in D = 4− 2ε dimensions and with the Euler-Mascheroni constant γE. In section 4.2, four

different options, resulting in four different renormalization schemes, are presented. An

overview over the renormalization constants introduced in the previous section is shown in

table 3. In the following, we adapt the notation of ref. [48], i.e. we use the same symbols

for the renormalized and the corresponding unrenormalized Green function, self-energies,

etc., but denoting the renormalized quantities with a caret.

4.1 On-shell renormalization conditions

4.1.1 Higgs sector

Tadpoles: we start with the (irreducible) renormalized one-point vertex functions

Γ̂H,h = iT̂H,h =
H,h

. (4.2)
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Figure 1. Generic tadpole diagrams. There is one diagram for each massive fermion (f), scalar

(S), gauge-boson (V ), and ghost field (u).

At NLO the renormalized tadpole T̂ consists of a counterterm contribution δt and an

unrenormalized one-loop irreducible one-point vertex function T resulting from the dia-

grams shown in figure 1. In the conventional, but gauge-dependent tadpole treatment one

demands that these two contributions cancel each other,

T̂H = δtH + TH = 0, T̂h = δth + Th = 0, (4.3)

which means that explicit tadpole diagrams can be omitted from the set of one-loop di-

agrams for any process. However, as a remnant of the tadpole diagrams the tadpole

counterterms appear also in various coupling counterterms and need to be calculated. It

should be noted that the condition on the tadpoles does not affect physical observables as

long as physically equivalent renormalization conditions are imposed on the input param-

eters. This is, in particular, the case for on-shell renormalization, where input parameters

are tied to measurable quantities. That means, changing the tadpole renormalization con-

dition shifts contributions between Green functions and counterterms and merely changes

the bookkeeping, but the dependence of predicted observables on renormalized input pa-

rameters remains the same. The situation changes if an MS renormalization condition is

used, where the counterterm is not fixed by a measurable quantity, but by a divergence

in a specific Green function, so that the gauge-dependent tadpole terms can affect the

relation between renormalized input parameters and observables. The gauge-independent

treatment of tadpole contributions is based on a different renormalization condition and

discussed in section 4.2.3.

Scalar self-energies: for scalars, the irreducible two-point functions with momentum

transfer k are

Γ̂ab(k) = a b
k

= iδab(k
2 −M2

a ) + iΣ̂ab(k), (4.4)

where both fields a, b are incoming and a, b = H,h,A0, G0, H
±, G±. The first term is the

LO two-point vertex function, while the functions Σ̂ab are the renormalized self-energies

containing loop diagrams and counterterms. Generic diagrams contributing to the self-

energies are shown in figure 2. Mixing occurs only between H and h, between A0 and G0,

and between H± and G±. For the neutral CP-even fields we obtain

Σ̂hh(k2) = Σhh(k2) + δZh(k2 −M2
h)− δM2

h , (4.5a)

Σ̂HH(k2) = ΣHH(k2) + δZH(k2 −M2
H)− δM2

H, (4.5b)

Σ̂Hh(k2) = ΣHh(k2) +
1

2
δZHh(k2 −M2

H) +
1

2
δZhH(k2 −M2

h)− δM2
Hh, (4.5c)
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Figure 2. Generic self-energy diagrams for the heavy, neutral CP-even Higgs self-energy, for other

scalar self-energies the diagrams are analogous. Only massive particles contribute.

and for the CP-odd fields

Σ̂A0A0(k2) = ΣA0A0(k2) + δZA0(k2 −M2
A0

)− δM2
A0
, (4.6a)

Σ̂G0G0(k2) = ΣG0G0(k2) + δZG0k
2 − δM2

G0
, (4.6b)

Σ̂G0A0(k2) = ΣG0A0(k2) +
1

2
δZA0G0(k2 −M2

A0
) +

1

2
δZG0A0 k

2 − δM2
G0A0

. (4.6c)

The charged sector involves the following self-energies,

Σ̂H+H−
(k2) = ΣH+H−

(k2) + δZH+(k2 −M2
H+)− δM2

H+ , (4.7a)

Σ̂G+G−
(k2) = ΣG+G−

(k2) + δZG+ k2 − δM2
G+ , (4.7b)

Σ̂G±H∓
(k2) = ΣG±H∓

(k2) +
1

2
δZHG+(k2 −M2

H+) +
1

2
δZGH+ k2 − δM2

GH+ . (4.7c)

The mass mixing constants are given in eqs. (3.10) and (3.14). On these two-point functions

we now impose our renormalization conditions. First, we fix the renormalized mass param-

eters to the on-shell values, so that the zeros of the real parts of the one-particle-irreducible

two-point functions are located at the squares of the physical masses:

Re Σ̂HH(M2
H) = 0, Re Σ̂hh(M2

h) = 0,

Re Σ̂A0A0(M2
A0

) = 0, Re Σ̂H+H−
(M2

H+) = 0. (4.8)

Using eqs. (4.5), (4.6), and (4.7), fixes the mass renormalization constants to

δM2
H = Re ΣHH(M2

H), δM2
h = Re Σhh(M2

h),

δM2
A0

= Re ΣA0A0(M2
A0

), δM2
H+ = Re ΣH+H−

(M2
H+). (4.9)

For the propagators of the fields, we demand that the residues of the particle poles are not

changed by higher-order corrections. This determines the diagonal field renormalization
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constants by conditions on the one-particle-irreducible two-point functions,

lim
k2→M2

H

Re
i Γ̂HH(k2)

k2 −M2
H

= −1, lim
k2→M2

h

Re
i Γ̂hh(k2)

k2 −M2
h

= −1,

lim
k2→M2

A0

Re
i Γ̂A0A0(k2)

k2 −M2
A0

= −1, lim
k2→M2

H+

Re
i Γ̂H+H−

(k2)

k2 −M2
H+

= −1, (4.10)

which implies

δZH = −Re Σ′HH(M2
H), δZh = −Re Σ′hh(M2

h),

δZA0 = −Re Σ′A0A0(M2
A0

), δZH+ = −Re Σ′H
+H−

(M2
H+), (4.11)

where we introduced Σ′(k2) as the derivative w.r.t. the argument k2. To fix the mixing

renormalization constants, we enforce the condition that on-mass-shell fields do not mix, i.e.

Re Σ̂Hh(M2
H) = 0, Re Σ̂Hh(M2

h) = 0,

Re Σ̂G0A0(M2
A0

) = 0, Re Σ̂G+H−
(M2

H+) = 0. (4.12)

After inserting the renormalized self-energies we obtain

δZHh = 2
δM2

Hh − Re ΣHh(M2
h)

M2
h −M2

H

, δZhH = 2
δM2

Hh − Re ΣHh(M2
H)

M2
H −M2

h

,

δZG0A0 = 2
δM2

G0A0
− Re ΣG0A0(M2

A0
)

M2
A0

, δZGH+ = 2
δM2

GH+ − Re ΣH+G−
(M2

H+)

M2
H+

. (4.13)

Since Goldstone-boson fields do not correspond to physical states, we do not render Green

functions with external Goldstone bosons finite, so that we need not fix the constants δZG0 ,

δZA0G0 , δZG+ , δZHG+ ; we could even set them to zero consistently. The possible ZA0 and

W±H∓ mixings vanish for physical on-shell gauge bosons due to the Lorentz structure

of the two-point function and the fact that polarization vectors εµ are orthogonal to the

corresponding momentum. Using the convention

Γ̂ZA0
µ (k) = kµ Σ̂ZA0(k2) = kµ

[
ΣZA0(k2)− 1

2
MZδZG0A0

]
,

Γ̂W±H∓
µ (k) = kµ Σ̂W±H∓

(k2) = kµ

[
ΣW±H∓

(k2)± i

2
MWδZGH+

]
, (4.14)

where all fields are incoming and k is the incoming momentum of the gauge-boson fields,

the vector-scalar mixing self-energies obey

εµZkµ Re Σ̂ZA0(k2)
∣∣∣
k2=M2

Z

= 0, εµWkµ Re Σ̂W±H∓
(k2)

∣∣∣
k2=M2

W

= 0. (4.15)

The mixing self-energies on the other on-shell points k2 = M2
A0

and k2 = M2
H+ , respectively,

are connected to the mixing of A0 or H± with the Goldstone-boson fields of the Z or the

W boson and can be calculated from a BRST symmetry [63]. The BRST variation of the

Green functions of one anti-ghost and a Higgs field

δBRST〈0|T ūZ(x)A0(y)|0〉 = 0, δBRST〈0|T ū±(x)H±(y)|0〉 = 0, (4.16)
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implies Slavnov-Taylor identities. While the variation of the anti-ghost fields yields the

gauge-fixing term, the variation of the Higgs fields introduces ghost contributions which

vanish for on-shell momentum resulting in5[
k2Σ̂ZA0(k2) +MZΣ̂G0A0(k2)

]
k2=M2

A0

= 0, (4.19)[
k2Σ̂W±H∓

(k2)∓ iMWΣ̂G±H∓
(k2)

]
k2=M2

H+

= 0. (4.20)

We have verified these identities analytically and numerically. Together with the renor-

malization condition of eq. (4.12) we conclude that

Σ̂ZA0(M2
A0

) = 0, Σ̂W±H∓
(M2

H+) = 0. (4.21)

This set of renormalization conditions ensures that no on-shell two-point vertex function

obtains any one-loop corrections, and the corresponding external self-energy diagrams do

not have to be taken into account in any calculation.

4.1.2 Electroweak sector

The fixing of the renormalization constants of the electroweak sector is identical to the

SM case. The mass renormalization constants are fixed in such a way that the squares of

the masses correspond to the (real parts of the) locations of the poles of the gauge-boson

propagators. The field renormalization constants are fixed by the conditions that residues

of on-shell gauge-boson propagators do not obtain higher-order corrections, and that on-

shell gauge bosons do not mix. For a better bookkeeping we also keep the dependent

renormalization constants δcW and δsW in our calculation. This results in [48]

δM2
W = Re ΣW

T (M2
W), δZW = −Re Σ′WT (M2

W),

δM2
Z = Re ΣZZ

T (M2
Z),

δZZZ = −Re Σ′ZZ
T (M2

Z), δZAA = −Re Σ′AA
T (0),

δZAZ = −2Re
ΣAZ

T (M2
Z)

M2
Z

, δZZA = 2Re
ΣAZ

T (0)

M2
Z

,

δcW =
cW
2

(
δM2

W

M2
W

− δM2
Z

M2
Z

)
, δsW = −cW

sW
δcW. (4.22)

5A particularly simple, alternative way to derive these identities is to exploit the gauge invariance of the

effective action in the background-field gauge, as done in ref. [43] for the SM. The respective Ward identities

for the background fields differ from the Slavnov-Taylor identities only by off-shell terms, which vanish on

the particle poles. Generalizing the derivation of ref. [43] to the THDM and adapting the results to our

conventions for self-energies, the desired Ward identities for the unrenormalized background fields read

0 = k2ΣẐÂ0(k2) +MZΣÂ0Ĝ0(k2) +
e

2cWsW

(
T Ĥsβ−α − T ĥcβ−α

)
, (4.17)

0 = k2ΣŴ±Ĥ∓
(k2)∓ iMWΣĜ±Ĥ∓

(k2)∓ ie

2sW

(
T Ĥsβ−α − T ĥcβ−α

)
, (4.18)

where the carets on the fields indicate background fields. Setting k2 to M2
A0

or M2
H+ , respectively, and

adding the relevant renormalization constants, directly leads to the identities (4.19) and (4.20).
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The electric charge e is defined via the eeγ coupling in the Thomson limit of on-shell external

electrons and zero momentum transfer to the photon, which yields in BHS convention [48]

δZe = −1

2

(
δZAA +

sW
cW
δZZA

)
. (4.23)

4.1.3 Fermions

The renormalization conditions for the fermions are identical to the ones in the SM, de-

scribed in detail in ref. [48]. We demand that the (real parts of the locations of the) poles

of the fermion propagators correspond to the squared fermion masses, and that on-shell

fermion propagators do not obtain loop corrections. Assuming the CKM matrix equal to

the unit matrix, the results for the renormalization constants simplify to

δmf,i =
mf,i

2
Re
[
Σf,L
i (m2

f,i) + Σf,R
i (m2

f,i) + 2Σf,S
i (m2

f,i)
]
,

δZf,σi = −Re Σf,σ
i (m2

f,i)−m2
f,i

∂

∂k2
Re
[
Σf,L
i (k2) + Σf,R

i (k2) + 2Σf,S
i (k2)

]∣∣∣
k2=m2

f,i

,

σ = L,R, (4.24)

where we have used the usual decomposition of the fermion self-energies into a left-handed,

a right-handed, and a scalar part, Σf,L
i , Σf,R

i , and Σf,S
i , respectively. The expressions for a

non-trivial CKM matrix can be found in ref. [48].

4.2 MS renormalization conditions

In the four renormalization schemes we are going to present, the imposed on-shell conditions

are identical, and the differences only occur in the choice of different MS conditions. The

parameters α or λ3 governing the mixing of the CP-even Higgs bosons, and the parameters

β and λ5 need to be fixed. A formulation of an on-shell condition for these parameters is

not obvious. One could relate the parameters to some physical processes, such as Higgs-

boson decays, and demand that these processes do not receive higher-order corrections.

However, so far, no sign of further Higgs bosons has been observed, hence, there is no

distinguished process, and such a prescription does not only require more calculational

effort, but could introduce artificially large corrections to the corresponding parameters,

which would spread to many other observables, as discussed in refs. [39, 64]. Therefore, we

choose to renormalize these parameters within the MS scheme, though different variables

(such as α or λ3) can be chosen to parameterize the model. Imposing an MS condition on

either of the parameters leads to differences in the calculation of observables. In addition,

gauge-dependent definitions of MS-renormalized parameters spoil the gauge independence

of the relations between input parameters and observables. However, gauge dependences

might be even acceptable if the renormalization scheme yields stable results and a good

convergence of the perturbation series. The price to pay is that subsequent calculations

should be done in the same gauge or properly translated into another gauge. We will discuss

different renormalization schemes based on different treatments of α or λ3 parameterizing

the CP-even Higgs-boson mixing, of the parameter β, and of the Higgs coupling constant

λ5 in the following. We begin with the so-called MS(α) scheme.
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4.2.1 MS(α) scheme

In this scheme the independent parameter set is {pmass} of eq. (2.25), so that the parameters

β, α, and λ5 are renormalized in MS. The corresponding counterterm Lagrangian was

derived in section 3.1.2.

The renormalization constant δβ: the renormalization constant δ tanβ = δβ/c2
β of

the mixing angle β is related to the renormalization constants of the vevs by demanding

the defining relation tan β = v2/v1 for bare and renormalized quantities. In MS, δβ can

be most easily calculated using the minimal field renormalization (3.17) with the following

renormalization transformation of the vevs,

v1,0 = Z
1/2
H1

(v1 + δv1), v2,0 = Z
1/2
H2

(v2 + δv2), (4.25)

Using the well-known relation [65]

δv1/v1 − δv2/v2 = finite, (4.26)

the general form of δβ in the MS scheme

δβ =
s2β

2

(
δv2

v2
− δv1

v1
− 1

2
δZH1 +

1

2
δZH2

) ∣∣∣∣
UV

(4.27)

simplifies to

δβ =
s2β

4
(−δZH1 + δZH2)

∣∣
UV

=
s2β

4c2α
(δZh − δZH)

∣∣
UV

=
s2β

4s2α
(δZhH + δZHh)

∣∣
UV
, (4.28)

where
∣∣
UV

indicates that we take only the UV-divergent parts, which are proportional to

the standard divergence ∆UV. The explicit calculation of the UV-divergent terms of δZh,

δZH according to eqs. (4.11) in ’t Hooft-Feynman gauge reveals that only diagrams with

closed fermion loops contribute to the counterterm,

δβ = −∆UV
e2

64π2M2
Ws

2
W

∑
f

cfξ
f
A0
m2
f , (4.29)

with the colour factors cquark = 3, clepton = 1 and the coupling coefficients ξfA0
as defined in

table 2. In the class of Rξ gauges this result is gauge independent at one-loop order [39, 40].

Neutral Higgs mixing: in the neutral Higgs sector, relations between field renormal-

ization constants can also be used to determine another parameter in MS. The first four

equations of eqs. (3.18) can be solved for δα in various ways, e.g., yielding

δα
∣∣
UV

=
1

4
(δZHh − δZhH)

∣∣
UV
. (4.30)

The field renormalization constants can be inserted according to eqs. (4.11), (4.13) using

δM2
Hh = 0, thus

δα = Re
ΣHh(M2

H) + ΣHh(M2
h)

2(M2
H −M2

h)

∣∣∣∣
UV

. (4.31)
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An explicit calculation of the counterterm yields for the fermionic contribution,

δα
∣∣
ferm

= ∆UV
e2s2α

64π2M2
Ws

2
Ws2β(M2

H −M2
h)

∑
f

cfξ
f
A0
m2
f (M2

H +M2
h − 12m2

f ), (4.32)

and for the bosonic contribution

δα
∣∣
bos

=−∆UV
λ2

5M
2
Ws

2
W

8π2e2(M2
h −M2

H)s2
2β

[
s2(α−3β) + 10s2(α−β) + 13s2(α+β)

]
+ ∆UV

λ5

128π2(M2
h −M2

H)s2
2β

[
− 4M2

H(13c2α + 2c2(α−2β) − 27c2β)s2α

+ 4M2
h(13c2α + 2c2(α−2β) + 27c2β)s2α + 2M2

H+(s2(α−3β) − 6s2(α−β) + 13s2(α+β))

−M2
A0

(7s2(α−3β) + 86s2(α−β) + 91s2(α+β)) + 4(2M2
W +M2

Z)s2(α−β)s
2
2β

]
+ ∆UV

e2

1024π2(M2
h −M2

H)M2
Ws

2
Ws

2
2β

[
− 2M4

H(−36c2α + 5c4α−2β + 31c2β)s2α

+ 4M2
hM

2
H(5c4α−2β − 29c2β)s2α − 2M4

h(36c2α + 5c4α−2β + 31c2β)s2α

+ 32M4
H+s2(α−β)s

2
2β + 2M2

HM
2
H+(3s4α + 4s2(α−β) + s4(α−β) + 9s4β − 12s2(α+β))

− 2M2
hM

2
H+(3s4α − 4s2(α−β) + s4(α−β) + 9s4β + 12s2(α+β))

− 2M4
A0

(5s2(α−3β) + 42s2(α−β) + 41s2(α+β))

+M2
A0
M2

H(−49s4α + 112s2(α−β) − 7s4(α−β) + s4β + 96s2(α+β))

+M2
A0
M2

h(49s4α + 112s2(α−β) + 7s4(α−β) − s4β + 96s2(α+β))

+ 4M2
A0
M2

H+(s2(α−3β) − 6s2(α−β) + 13s2(α+β))

+ 4(2M2
W +M2

Z)s2(α−β)s2β((M2
h −M2

H)s2α + 2M2
A0
s2β)

+ 48(2M4
W +M4

Z)s2(α−β)s
2
2β

]
. (4.33)

This result, which is derived in ’t Hooft Feynman gauge, is gauge dependent [39, 40].

Higgs self-coupling: the Higgs self-coupling counterterm δλ5 has to be fixed via a ver-

tex correction. We define this renormalization constant in MS as well, as there is no

distinguished process to fix it on-shell. Any 3- or 4-point vertex function with external

Higgs bosons is suited to calculate the divergent terms. Since the HA0A0 vertex correction

involves fewest diagrams, it is our preferred choice. The condition is

Γ̂HA0A0
∣∣
UV

=

A0

A0

H

∣∣∣∣∣∣∣∣
UV

= 0. (4.34)

Solving this equation for δλ5 fixes this renormalization constant. The generic one-loop

diagrams appearing in this vertex correction are shown in figure 3, the contribution of the

diagrams involving closed fermion loops is

δλ5,ferm = ∆UV
e2λ5

16π2M2
Ws

2
W

∑
f

cf

(
1 +

c2β

s2β
ξfA0

)
m2
f . (4.35)
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Figure 3. Generic diagrams contributing to the HA0A0 vertex correction used for the renormal-

ization of λ5.

The diagrams containing only bosons lead to

δλ5

∣∣
bos

= ∆UV
λ5

32π2

(
2λ1 + 2λ2 + 8λ3 + 12λ4 − 9g2

2 − 3g2
1

)
= −∆UV

λ2
5c

2
2β

4π2s2
2β

+ ∆UV
λ5e

2

64π2M2
Ws

2
Ws

2
2β

[
M2

H(2 + c2(α−β) − 3c2(α+β))

+M2
h(2− c2(α−β) + 3c2(α+β)) +M2

A0
(1− 5c4β)

− 4M2
H+s

2
2β − 6(2M2

W +M2
Z)s2

2β

]
. (4.36)

Since λ5 is a fundamental parameter of the Higgs potential, an MS definition leads to a

gauge-independent counterterm.

4.2.2 MS(λ3) scheme

In this scheme, the independent parameter set is {p′mass} defined in eq. (2.24). The renor-

malization of β and λ5 is identical to the previous renormalization scheme and not stated

again, but now the parameter λ3 (instead of α) is an independent parameter being renor-

malized in MS. This has the advantage that this parameter is gauge independent, as it

is a defining parameter of the basic parameterization of the Higgs potential and thus is

safe against potentially gauge-dependent contributions appearing in relations between bare

parameters. As stated above, the MS renormalization of the parameter β generally breaks

gauge independence, but in Rξ gauges the gauge dependence cancels at one loop [39, 40],

so that this scheme yields gauge-independent results at NLO. We take the counterterm

potential of section 3.1.2, but treat δα as a dependent counterterm. As α is a pure mix-

ing angle, we choose to apply the renormalization prescription of section 3.1.2, where the
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mixing angle diagonalizes the potential to all orders. The relation between δα and the

independent constants is given in eq. (3.9) with δM2
Hh = 0,

δα =
fα({δp′mass})
M2

H −M2
h

, (4.37)

where fα({δp′mass}) can be obtained from eq. (2.16c) by applying the renormalization

transformation of eq. (A.2) (which is identical to the renormalization transformation of

section 3.1.2, but renormalizing λ3 instead of α). This yields

fα({δp′mass}) =
1

2
t2α
(
δM2

h − δM2
H

)
+
s2β

(
δM2

A0
− 2δM2

H+

)
2c2α

+
δβc2β

(
M2

H −M2
h

)
t2α

s2β
+

2M2
Ws2β(δλ3 + δλ5)s2

W

e2c2α

+
s2β

(
M2

A0
− 2M2

H+

)
+ (M2

h −M2
H)s2α

c2α

(
δZe −

δsW
sW
− δM2

W

2M2
W

)
− e [δtH (sα−3β + 3sα+β) + δth (cα−3β + 3cα+β)]

8MWc2αsW
. (4.38)

The UV-divergent term of δα has been calculated in eq. (4.31), and by renormalizing δλ3

in MS scheme, it is clear that the dependent δα must now have a finite part in addition.

We choose this finite term in such a way that the finite part in δλ3 (which results from δλ3

by setting ∆UV to zero) vanishes and obtain

δα
∣∣
MS(λ3)

= Re
ΣHh(M2

H) + ΣHh(M2
h)

2(M2
H −M2

h)

∣∣∣∣
UV

+
fα({δp′mass})
M2

H −M2
h

∣∣∣∣
finite

, (4.39)

where δλ3 drops out as it has no finite part. The divergent part of δλ3 can be calculated by

solving eq. (4.37) and using the knowledge about the divergent parts of δα from eqs. (4.32)

and (4.33). This results in

δλ3 =

[
e2c2α

4M2
Ws

2
Ws2β

(
Re ΣHh(M2

H) + Re ΣHh(M2
h)
)
− δβe2s2αc2β

(
M2

H −M2
h

)
2M2

Ws
2
Ws

2
2β

− δλ5 −
e2s2α

4M2
Ws

2
Ws2β

(
δM2

h − δM2
H

)
−
e2
(
δM2

A0
− 2δM2

H+

)
4M2

Ws
2
W

−
e2
(
s2β

(
M2

A0
− 2M2

H+

)
+ (M2

h −M2
H)s2α

)
2M2

Ws
2
Ws2β

(
δZe −

δsW
sW
− δM2

W

2M2
W

)
+
e3 [δtH (sα−3β + 3sα+β) + δth (cα−3β + 3cα+β)]

16M3
Ws

3
Ws2β

]
UV

. (4.40)

The fermionic contribution to δλ3 is given by

δλ3

∣∣
UV,ferm

= − δλ5

∣∣
UV,ferm

−∆UV
3e4

32π2M4
Ws

4
W

∑
i

(
ξuA0
− ξdA0

)2
m2
u,im

2
d,i

−∆UV
e4

64π2M4
Ws

4
W

∑
f

cf

(
1+

c2β

s2β
ξfA0

)
m2
f

[
M2

A0
− 2M2

H+ +
s2α

s2β
(M2

h−M2
H)

]
(4.41)
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with the massive fermions f = e, . . . , t and the generation index i. For the bosonic contri-

bution we obtain

δλ3

∣∣
UV,bos

= ∆UV
1

32π2

[
(λ1 + λ2)(6λ3 + 2λ4) + 4λ2

3 + 2λ2
4 + 2λ2

5 − 3λ3(3g2
2 + g2

1)

+
3

4
(3g4

2 + g4
1 − 2g2

2g
2
1)

]
= ∆UV

λ2
5

2π2s2
2β

+ ∆UV
e2λ5

128M2
Wπ

2s2
Ws

3
2β

[
12(2M2

W +M2
Z)s3

2β +M2
A0

(27s2β − s6β)

+ 2M2
H+(−19s2β + s6β) +M2

H(−22s2α − 3s2(α−2β) − 8s2β + s2(α+2β))

+M2
h(22s2α + 3s2(α−2β) − 8s2β − s2(α+2β))

]
+ ∆UV

e4

256M4
Wπ

2s4
Ws

3
2β

[
− 2M4

H(−3 + c2(α−β) + 2c2(α+β))s2α

+ 4M2
hM

2
H(c2(α−β) + 2c2(α+β))s2α − 2M4

h(3 + c2(α−β) + 2c2(α+β))s2α

−M4
A0

(−7s2β + s6β)−M2
A0
M2

H(11s2α + s2(α−2β) + 2s2β)

+M2
A0
M2

h(11s2α + s2(α−2β) − 2s2β) + 12M4
H+s

3
2β + 16M2

HM
2
H+s2βs

2
α+β

+ 16M2
hM

2
H+c

2
α+βs2β + 2M2

A0
M2

H+(−11s2β + s6β)

+ 6(2M2
W +M2

Z)s2
2β((M2

h −M2
H)s2α + (M2

A0
− 2M2

H+)s2β)

+ 6(6M4
W − 4M2

WM
2
Z +M4

Z)s3
2β

]
. (4.42)

4.2.3 The FJ tadpole scheme

Since tadpole loop contribution TS are gauge dependent [66], the connection among bare

parameters potentially becomes gauge dependent if δtS = −TS enters the relations between

bare parameters, as it is the case if renormalized tadpole parameters tS are forced to van-

ish. Note that these gauge dependences systematically cancel if on-shell renormalization

conditions are employed, i.e. if predictions for observables are parameterized by directly

measurable input parameters. If some input parameters are renormalized in the MS scheme

this cancellation of gauge dependences does not take place anymore in general, and the

gauge dependence is manifest in relations between predicted observables and input param-

eters at NLO. In the MS(α) and the MS(λ3) renormalization schemes, the bare definitions

of α and β contain tadpole terms leading to a gauge dependence (although the MS(λ3)

scheme is gauge independent at NLO in Rξ gauges).

Fleischer and Jegerlehner [67] proposed a renormalization scheme for the SM, referred

to as the FJ scheme in the following, that preserves gauge independence for all bare param-

eters, including the masses and mixing angles.6 In this scheme, the parameters are defined

in such a way that tadpole terms do not enter the definition of any bare parameter so that

all relations among bare parameters remain gauge independent. This can be achieved by

demanding that bare tadpole terms vanish, tS,0 = 0, for all fields S with the quantum num-

bers of the vacuum. Since tadpole conditions have no effect on physical observables and

6A similar scheme, called βh scheme, was suggested in ref. [68]. A comparison of that approach to the

conventional MS and FJ schemes can be found in ref. [40].

– 27 –



J
H
E
P
0
9
(
2
0
1
7
)
1
3
4

change only the bookkeeping, such a procedure is possible. The disadvantage is that now

tadpole diagrams have to be taken explicitly into account in all higher-order calculations.

In particular, the one-particle reducible tadpole contributions destroy the simple relation

between propagators and two-point functions. In the SM, the FJ scheme does not affect

observables if all parameters are renormalized using on-shell conditions — as usually done

— except for the strong coupling constant αs, which is, however, directly related to the

strong gauge coupling, a model defining parameter. A gauge-independent renormalization

scheme for the THDM can be defined by applying the FJ prescription and imposing the

MS condition on mixing angles [39, 40]. The bare physical parameters defined in the FJ

scheme differ by NLO tadpole contributions (including divergent and finite terms) from the

gauge-dependent definition of the bare parameters {pmass} given in eq. (2.25). Exceptions

are e and the parameter λ5, which is a parameter of the basic potential and therefore gauge

independent by construction. The renormalization of λ5 in MS is identical to the one in

the previous schemes.

It should be noted that in refs. [39, 40] m2
12 is chosen as independent parameter in

contrast to our choice of λ5. The latter, however, is closer to common practice used in

the MSSM [69, 70]. Moreover, in refs. [39, 40] tadpole counterterms are reintroduced by

shifting the Higgs fields according to ηi → ηi + ∆vη,i, i = 1, 2, where the constants ∆vη,i
can be chosen arbitrarily, since physical observables do not depend on this shift, which can

be interpreted as an unobservable change of the integration variables in the path integral.

In refs. [39, 40], this freedom of choice is exploited, and ∆vη,i are chosen in such a way that

the fields η1, η2 do not develop vevs at all orders. This affects the form of the counterterm

Lagrangian and the definition of the renormalization constants with the consequence that

the formulae given in eq. (3.16) and section 4.1 cannot be applied.

We have implemented the FJ scheme following the strategy of ref. [40] by perform-

ing the shifts ηi → ηi + ∆vη,i and in an alternative, simpler (but physically equivalent)

way. In this simplified approach we keep the dependence of the Lagrangian in terms of

gauge-dependent masses and couplings. In addition we keep the tadpole renormalization

condition (4.3), so that the definitions of the renormalization constants of the on-shell pa-

rameters and the Z factors according to section 4.1 remain valid (otherwise we needed to

take into account actual tadpole diagrams everywhere). In this simplified approach the

counterterms for α and β which reproduce the results in the FJ scheme result from the

previously derived δα and δβ by adding appropriate finite terms,

δα
∣∣
FJ

= δα+ finite terms,

δβ
∣∣
FJ

= δβ + finite terms, (4.43)

which depend on the (finite parts of the) tadpole contributions TH and Th.

Before performing the full calculations, we outline the strategy of the derivation of

those finite terms for β; for α everything works analogously. We start by exploiting the

fact that the form of the tadpole renormalization cannot change physical results if all

counterterms for independent parameters are determined by the same physical conditions.

This means, as mentioned above, that we can simply define the bare tadpoles to vanish, but
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this forces us to include all explicit tadpole contributions to Green functions. We indicate

quantities in this variant by a superscript “t” in the following. We get the same physical

predictions in this “t-variant” if we use the counterterm

δβt = δβ + ∆βt(TH, Th) (4.44)

instead of δβ, where δβt is calculated in the same way as δβ, but with tadpole countert-

erms omitted and explicit tadpole diagrams (including divergent and finite parts) in the

occurring Green functions taken into account. Note that the MS prescription to include

only divergent terms, which is employed to define δβ, is not applied to the new tadpole

contribution ∆βt(TH, Th). Otherwise the new ∆βt terms could not be fully compensated

by explicit tadpole contributions occuring elsewhere, so that there would be differences in

the renormalized amplitudes. In fact, applying the MS prescription to ∆βt(TH, Th) as well

defines the FJ renormalization scheme,

δβt
∣∣
FJ

= δβ + ∆βt(TH, Th)
∣∣
UV
. (4.45)

The quantity δβt
∣∣
FJ

is the gauge-independent counterterm for β introduced in ref. [40]

which is to be used in the t-variant, where all explicit tadpole diagrams are included in

Green functions (or equivalently are redistributed by the ∆v shift as described ref. [40]).

We can translate the FJ renormalization prescription back to our renormalization scheme

(with vanishing renormalized tadpoles) by the counterpart of eq. (4.44), but now formulated

in the FJ scheme,

δβt
∣∣
FJ

= δβ
∣∣
FJ

+ ∆βt(TH, Th), (4.46)

i.e. δβ
∣∣
FJ

is the counterterm for β to be used in our counterterm Lagrangian in order to

calculate renormalized amplitudes in the FJ scheme. Combining the above formulas, we

obtain the finite difference between δβ in the (gauge-dependent) MS scheme and δβ
∣∣
FJ

in

the (gauge-independent) FJ scheme,

δβ
∣∣
FJ

= δβt
∣∣
FJ
−∆βt(TH, Th)

= δβ + ∆βt(TH, Th)
∣∣
UV
−∆βt(TH, Th)

= δβ −∆βt(TH, Th)
∣∣
finite

. (4.47)

The renormalization constant δβ
∣∣
FJ

: we begin our calculation of δβ|FJ with an al-

ternative computation of δβ in the MS(α) scheme, because eq. (4.26) cannot be applied

in the FJ scheme. To avoid the use of eq. (4.26), we calculate the counterterm in the

MS(α) scheme from the field renormalization constant by employing the last two equations

of eq. (3.18). This results in

δβ =
1

4
(δZG0A0 − δZA0G0)

∣∣
UV

=
2δM2

G0A0
− Re ΣG0A0(M2

A0
)− Re ΣG0A0(0)

2M2
A0

∣∣∣∣∣
UV

, (4.48)

with δM2
G0A0

as given in eq. (3.14). In the second step, δZG0A0 from eq. (4.13) and

δZA0G0 = 2
−δM2

G0A0
+ Re ΣG0A0(0)

M2
A0

(4.49)
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have been used. Equation (4.49) results from demanding finiteness of the G0A0 mixing

self-energy at zero-momentum transfer, k2 = 0, but actually any other value of k2 would

be possible as well, since we only have to remove all UV-divergent terms in the mixing.

The non-vanishing tadpole counterterms in the MS(α) scheme are δtS = −TS . In the

transition to the t-variant, δβ gets modified by two kind of terms: first, there are no

tadpole counterterms, i.e. the δM2
G0A0

term is absent, and second, there are explicit tadpole

contributions to ΣG0A0 . This implies

∆βt(TH, Th) = δβt − δβ = −
δM2

G0A0

M2
A0

−
Re Σt,G0A0(M2

A0
) + Re Σt,G0A0(0)

2M2
A0

∣∣∣∣∣
TH,Th

, (4.50)

where the superscript “t” indicates that one-particle-reducible tadpole diagrams are in-

cluded in the self-energies. The subscript “TH, Th” means that only the those explicit

tadpole contributions are taken into account here. Inserting δM2
G0A0

from eq. (3.14) and

evaluating the (momentum-independent) tadpole diagrams for the G0A0 mixing, ∆βt eval-

uates to

∆βt(TH, Th)

= − 1

M2
A0

[
δM2

G0A0
+ Re Σt,A0G0(0)

∣∣
TH,Th

]
= − 1

M2
A0

[
δM2

G0A0
+

H
G0 A0

+
h

G0 A0

]
= − e

2MWsWM2
A0

[
THsα−β + Thcα−β + TH

(
M2

A0
−M2

H

)
sα−β

M2
H

+ Th

(
M2

A0
−M2

h

)
cα−β

M2
h

]

= − e

2sWMW

(
TH

sα−β
M2

H

+ Th
cα−β
M2

h

)
. (4.51)

The counterterm δβt
∣∣
FJ

of the FJ scheme in the t-variant, thus, reads

δβt
∣∣
FJ

= δβ + ∆βt(TH, Th)
∣∣
UV

= δβ − e

2sWMW

(
TH

sα−β
M2

H

+ Th
cα−β
M2

h

)∣∣∣∣
UV

, (4.52)

which is in agreement with refs. [39, 40]. This translates to our treatment of tadpoles as

δβ
∣∣
FJ

= δβ −∆βt(TH, Th)
∣∣
finite

= δβ +
e

2sWMW

(
TH

sα−β
M2

H

+ Th
cα−β
M2

h

)∣∣∣∣
finite

, (4.53)

where again “finite” means that ∆UV is set to zero in the tadpole contribution. Using this

counterterm, it is possible to keep the form of the counterterm Lagrangian derived in sec-

tion 3 to obtain results in the gauge-independent FJ scheme, although the above countert-

erm Lagrangian employs a gauge-dependent (but very convenient) tadpole renormalization.

Alternatively, δβ could be fixed by an analogous consideration of the ZA0 mixing,

leading to

δβ|UV =

[
s2β

4c2α
(δZH − δZh) +

ΣZA0(k2)

MZ

]
UV

, (4.54)
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which is independent of k2 and does not use relation (4.26). The transition to the FJ

scheme then simply amounts to replacing the one-particle-irreducible self-energy ΣZA0 by

Σt,ZA0 , which includes tadpole diagrams. The result δβt
∣∣
FJ

of this procedure is again given

by eq. (4.52), as it should be.

The renormalization constant δα
∣∣
FJ

: we apply the same method to the renormaliza-

tion constant δα
∣∣
FJ

, starting from eq. (4.31). The difference between δα and δαt is entirely

given by the explicit tadpole diagrams that appear in the change from ΣHh to Σt,Hh in

eq. (4.31),

∆αt(TH, Th) = δαt − δα = Re
Σt,Hh(M2

H) + Σt,Hh(M2
h)

2(M2
H −M2

h)

∣∣∣∣
TH,Th

, (4.55)

which evaluates to

∆αt(TH, Th) = Re
Σt,Hh(M2

h)

M2
H −M2

h

∣∣∣∣
TH,Th

=
1

M2
H −M2

h

[
H

h H

+
h

h H

]
=

e

M2
H −M2

h

(
TH

ChHH

M2
H

+ Th
ChhH

M2
h

)
, (4.56)

with the coupling factors of the hHH and hhH vertices

ChHH =
esβ−α

2MWsWs2β

[
−(3s2α + s2β)

(
M2

A0
+ 4λ5

M2
Ws

2
W

e2

)
+ s2α

(
M2

h + 2M2
H

)]
, (4.57a)

ChhH =
ecβ−α

2MWsWs2β

[
(3s2α − s2β)

(
M2

A0
+ 4λ5

M2
Ws

2
W

e2

)
− s2α

(
2M2

h +M2
H

)]
. (4.57b)

The counterterm δαt
∣∣
FJ

of the FJ scheme in the t-variant, thus, reads

δαt
∣∣
FJ

= δα+ ∆αt(TH, Th)
∣∣
UV

= δα+
e

M2
H −M2

h

(
TH

ChHH

M2
H

+ Th
ChhH

M2
h

) ∣∣∣∣
UV

, (4.58)

which is again in agreement with refs. [39, 40]. This translates to our treatment of tad-

poles as

δα
∣∣
FJ

= δα−∆αt(TH, Th)
∣∣
finite

= δα+
e

M2
h −M2

H

(
TH

ChHH

M2
H

+ Th
ChhH

M2
h

) ∣∣∣∣
finite

. (4.59)

Concerning the use of δα
∣∣
FJ

in our counterterm Lagrangian to obtain renormalized ampli-

tudes in the gauge-independent FJ scheme, the same comments made above for δβ
∣∣
FJ

apply.

4.2.4 The FJ(λ3) scheme

In the MS(λ3) scheme, the parameters λ3 and λ5 are defining parameters of the basic

parameterization and gauge independent by construction. Therefore, the condition on δβ

is the only renormalization condition potentially being gauge dependent. To provide a

fully gauge-independent renormalization scheme where λ3 is an independent quantity, we

apply the FJ scheme to the parameter β and keep the renormalization of λ3 and λ5 as in
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the MS(λ3). We call the resulting scheme the FJ(λ3) scheme. The renormalization of the

parameters reads:

δβ
∣∣
FJ

as in eq. (4.53),

δλ3 as in eqs. (4.40)−(4.42).

4.3 Conversion between different renormalization schemes

In the previous section, we have presented four different renormalization schemes, which

treat the mixing parameters differently. When observables calculated in different renormal-

ization schemes are compared, particular care has to be taken that the input parameters are

consistently translated from one scheme to the other. The bare values of identical indepen-

dent parameters are equal and independent of the renormalization scheme. Exemplarily,

for a parameter p, the renormalized values p(1) and p(2) in two different renormalization

schemes 1 and 2 are connected via the bare parameter p0,

p0 = p(1) + δp(1)(p(1)) = p(2) + δp(2)(p(2)), (4.60)

within the considered order. If p is a dependent parameter in one or both schemes, it must

be calculated from the independent renormalized parameters and their counterterms from

the relations between bare and renormalized quantities. For converting an input value from

one scheme to another, one can solve for one renormalized quantity

p(1) = p(2) + δp(2)(p(2))− δp(1)(p(1)). (4.61)

At NLO, this equation can be linearized by substituting the input value of p(1) by p(2)

in the computation of the last counterterm. The differences to an exact solution are of

higher order and beyond our desired NLO accuracy. However, large counterterms or small

tree-level values can spoil the approximation so that in this case a proper solution using

numerical techniques could improve the results. Another benefit of a full solution of the

implicit equation is the possibility that one can switch to another scheme and back in a

self-consistent way, while start and end scenarios in scheme (1) do not exactly coincide

when switching from scheme (1) to (2) and back to (1) using the linearized approximation.

The comparison of both methods allows for a consistency check of the computation and

for an analysis of perturbative stability. We have derived the Higgs mixing angles α and

β and their counterterm in all schemes. The finite parts of the gauge-dependent coun-

terterms δα, δβ are given here for the different renormalization schemes indicated by the

respective index:

δα
∣∣
MS(α),finite

= 0, (4.62a)

δα
∣∣
MS(λ3),finite

= δα
∣∣
FJ(λ3),finite

=
fα{δp′mass}
M2

H −M2
h

∣∣∣
finite

, (4.62b)

δα
∣∣
FJ(α),finite

= −∆αt(TH, Th)
∣∣
finite

=
e

M2
h −M2

H

(
TH

ChHH

M2
H

+ Th
ChhH

M2
h

)∣∣∣∣
finite

. (4.62c)
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For the angle β we obtain the following finite terms in the MS and the FJ schemes,

δβ
∣∣
MS(α),finite

= δβ
∣∣
MS(λ3),finite

= 0, (4.63a)

δβ
∣∣
FJ(α),finite

= δβ
∣∣
FJ(λ3),finite

= −∆βt(TH, Th)
∣∣
finite

=
e

2sWMW

(
TH

sα−β
M2

H

+ Th
cα−β
M2

h

)∣∣∣∣
finite

. (4.63b)

With these formulae we can convert the input variables for α and β easily into each other.

For instance, the conversion of the input values of α and β defined in the MS(α) scheme

into the other renormalization schemes reads

α
∣∣
MS(λ3)

= α
∣∣
MS(α)

+
fα{δp′mass}
M2

h −M2
H

∣∣∣∣
finite

, β
∣∣
MS(λ3)

= β
∣∣
MS(α)

, (4.64a)

α
∣∣
FJ(α)

= α
∣∣
MS(α)

+ ∆αt(TH, Th)
∣∣
finite

, β
∣∣
FJ(α)

= β
∣∣
MS(α)

+ ∆βt(TH, Th)
∣∣
finite

, (4.64b)

α
∣∣
FJ(λ3)

= α
∣∣
MS(α)

+
fα{δp′mass}
M2

h −M2
H

∣∣∣∣
finite

, β
∣∣
FJ(λ3)

= β
∣∣
MS(α)

+ ∆βt(TH, Th)
∣∣
finite

. (4.64c)

Within a given scheme, λ3 and α can be translated into each other using the tree-level

relation (2.20c). Note that, thus, the numerical values of α, β, and λ3 corresponding to a

given physical scenario of the THDM are different in different renormalization schemes. In

turn, fixing the input values in the four renormalization schemes to the same values corre-

sponds to different physical scenarios. In particular, this means that the “alignment limit”,

in which sβ−α → 1 so that h is SM like (see, e.g., refs. [27, 54, 71]), is a notion that depends

on the renormalization scheme (actually even on the scale choice in a given scheme).7

Exemplarily, the conversions of cβ−α from the MS(α) scheme into the MS(λ3) (green),

FJ(α) (pink), and FJ(λ3) (turquoise) schemes are shown in figure 4(a). The results of

the transformations in the inverse directions are displayed in figure 4(b), and all other

conversions can be seen as a combination of the presented ones. The input values (defined

before the conversion) correspond to the low-mass scenario called “A” of a THDM of Type I

(based on a benchmark scenario of ref. [72]) with

Mh = 125 GeV, MH = 300 GeV, MA0 = MH+ = 460 GeV, λ5 = −1.9, tanβ = 2.

(4.65)

Specifically, scenario A is a scan in cβ−α in the mass parameterization, Aa and Ab are

points of the scan region used to analyze the scale dependence:

A: cos (β − α) = −0.2 . . . 0.2, (4.66a)

Aa: cos (β − α) = +0.1, (4.66b)

Ab: cos (β − α) = −0.1. (4.66c)

7In this brief account of results, we do not consider the (phenomenologically disfavoured, though not

excluded) possibility that the heavier CP-even Higgs boson H is SM-like, which is discussed in detail

in ref. [28].
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Figure 4. (a) Conversion of the value of cβ−α from MS(α) to the MS(λ3) (green), FJ(α) (pink),

and FJ(λ3) schemes (turquoise) for scenario A. Panel (b) shows the conversion to the MS(α) scheme

using the same colour coding. The solid lines are obtained by solving the implicit equations (4.61)

numerically, the dashed lines correspond to the linearized approximation. The phenomenologically

relevant region is highlighted in the centre.

The MS parameters are defined at the scale

µ0 =
1

5
(Mh +MH +MA0 + 2MH+). (4.67)

The motivation for this choice will become clear below. The remaining input parameters

for the SM part are given in appendix C. In both plots, we highlight the phenomenologically

relevant region in the centre. The solid lines are the result obtained by solving the implicit

equations (4.61) numerically, the dashed lines correspond to a linearized conversion. All

curves show only minor conversion effects in the parameter values, i.e. the solution of the

implicit equations agrees well with the approximate linearized conversion, affirming that

the contributions of the higher-order functions ∆αt, ∆βt, and fα of eqs. (4.64a)–(4.64c)

are small, and perturbation theory is applicable. Since the values of the parameters change

when going from one renormalization scheme to another, the alignment limit does not

persist in these transformations, i.e. in this scenario the alignment limit sensitively depends

on the definition of the parameters at NLO.

For the schemes with λ3 as input parameter, some singular behaviour in the pa-

rameter conversion can be observed in the phenomenologically disfavoured region where

cβ−α <∼ − 0.3. This artifact in the conversion appears when c2α → 0 (see, e.g., eq. (4.38)),

indicating the breakdown of the MS(λ3) and FJ(λ3) schemes in such parameter regions.

Already this case-specific study shows that stability issues of different renormalization

schemes have to be carefully carried out for all interesting parameter regions and that the

applicability of a specific scheme in general does not cover the full THDM parameter space,

– 34 –



J
H
E
P
0
9
(
2
0
1
7
)
1
3
4

a fact that was also pointed out in ref. [39] for the THDM and that is known from NLO

calculations in the MSSM (see, e.g., refs. [73, 74]). Specifically, if the MS(λ3) and FJ(λ3)

schemes are not applicable in a region that might be favoured by future data analyses, it

would be desirable and straightforward to replace λ3 by λ1 or λ2 as independent parameter,

thereby defining analogous schemes like MS(λ1), etc. . .

To address this issue properly, was our basic motivation to introduce and compare

different renormaliztion schemes. We will continue this discussion in more detail in a

forthcoming publication, where further THDM scenarios are considered.

5 The running of the MS parameters

Parameters renormalized in the MS scheme depend on an unphysical renormalization scale

µr. The one-loop β-function of a parameter p can be obtained from the UV-divergent parts

of its counterterm δp,

βp(µ
2
r ) =

∂

∂ lnµ2
r

p(µ2
r ) =

∂

∂∆UV
δp. (5.1)

Since the renormalization constants are computed in a perturbative manner, the β-

functions have a perturbative expansion in the coupling parameters. Note that the last

equality in eq. (5.1) holds in the FJ schemes for α and β only in the t-variant explained

above, because the finite contributions ∆αt and ∆βt depend on the scale µr.

As discussed in the previous sections, the ratio of the vevs, tan β, the Higgs mixing

parameter α or λ3, and the Higgs self-coupling λ5 are renormalized in the MS scheme. For

each renormalization scheme described in section 4.2, one obtains a set of coupled RGEs

involving the β-functions of the independent parameters. Therefore, the scale dependence

varies when different schemes are applied. In the perturbative expansion of the β-function

we consider only the one-loop term, being second order in the coupling constants, e.g., in

the MS(α) scheme

βp(µ
2
r ) = Apαem +Bpλ5 + Cpλ

2
5/αem. (5.2)

The dependence on the strong coupling constant vanishes at one-loop order as the pa-

rameters renormalized in MS appear only in couplings of particles that do not interact

strongly. The coefficients Ap, Bp, Cp of the respective renormalized parameter can be eas-

ily read from the divergent terms which have been derived in the previous section. We have

checked them against the β-functions given for λ3 and λ5 in ref. [50] and for β in ref. [65]

(supersymmetric contributions need to be omitted).

In general, RGEs, which are a set of coupled differential equations, cannot be solved

analytically. Usually numerical techniques, such as a Runge-Kutta method, need to be em-

ployed to solve the RGEs and to compute the values of the parameters at a desired scale.

Moreover, we emphasize that the renormalization-group flow of a running parameter de-

pends on the renormalization scheme of the full set of independent parameters. That means

the fact that we use on-shell quantities, such as all the Higgs-boson masses, to fix most
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Figure 5. The running of cβ−α for the low-mass scenario A with cβ−α = 0.1 (a) and cβ−α = −0.1

(b) in the MS(α) (blue), MS(λ3) (green), FJ(α) (pink), and FJ(λ3) (turquoise) schemes.

of the scalar self-couplings has a significant impact on the running of our MS parameters.

The renormalization-group flow in other schemes was, e.g., investigated in refs. [50, 75–78].

The scale dependence of cβ−α for µ = 100−900 GeV is plotted in figure 5, for the

scenario defined in eq. (4.65) with cβ−α = 0.1 (l.h.s) and cβ−α = −0.1 (r.h.s) and input

values given at the central scale µ0 stated in eq. (4.67). We observe that the choice

of the renormalization scheme has a large impact on the scale dependence. While the

MS(α) scheme introduces only a mild running, the other schemes show a much stronger

scale dependence, so that excluded and unphysical values of input parameters can be

reached quickly. A similar observation has also been made in supersymmetric models

for the parameter tan β [64]. Gauge-dependent MS schemes have a small scale dependence

while replacing the parameters by gauge-independent ones like in the FJ schemes introduce

additional terms in the β-functions which induce a stronger scale dependence. In figure 5(b)

one can also see that the curves for the MS(λ3) and the FJ(λ3) schemes terminate around

250 GeV. At this scale, the running of λ3 yields unphysical values for which eq. (2.20c)

with the given Higgs masses becomes overconstrained, and no solution with |s2α| ≤ 1

exists. This is unique to the λ3 running as only there an implicit equation needs to be

solved to obtain the input parameter α. For the other cases we prevent the angles from

running out of their domain of definition by solving the running for the tangent function

of the angles.

6 Implementation into a FeynArts Model File

The Mathematica package FeynRules (FR) [79] is a tool to generate Feynman rules

from a given Lagrangian, providing the possibility to produce model files in various output

formats which can be employed by automated amplitude generators. We have inserted

the Lagrangian into FR in its internal notation to obtain the corresponding counterterm
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Lagrangian after the renormalization transformations. Before this insertion, we have com-

puted and simplified the Higgs potential and the corresponding counterterm potential (3.16)

with inhouse Mathematica routines. Using FR, the tree-level and the counterterm Feyn-

man rules as well as the renormalization conditions in the MS(α) and MS(λ3) schemes

have been implemented into a model file for the amplitude generator FeynArts (FA) [44].

The renormalization conditions of the FJ(α) and the FJ(λ3) have not been included in

the model file, because using eqs. (4.62), (4.63) it is straightforward to implement the cor-

responding finite terms of δα and δβ. With such a model file, NLO amplitudes for any

process can be generated in an automated way.

The FA NLO model file for the THDM, obtained with FR, has the following features:

• Type I, II, flipped, or lepton-specific THDM;

• all tree-level and counterterm Feynman rules;

• renormalization conditions according to the MS(α) and MS(λ3) schemes;

• all renormalization constants are implemented additionally in MS as well, which

allows for fast checks of UV-finiteness;

• BHS and HK conventions;

• CKM matrix set to the unit matrix (the generalization is straightforward).

This model file has been tested intensively, including checks of UV-finiteness for several

processes, both numerically and analytically. This allows for the generation of amplitudes

(and further processing with FormCalc [80]) for any process at the one-loop level, at any

parameter point of the THDM. The model file can be obtained from the authors upon

request.

7 Numerical results for h → WW/ZZ → 4f

In this section we present first results from the computation of the decay of the light,

neutral CP-even Higgs boson of the THDM into four fermions at NLO. The computer

program Prophecy4f [81–83]8 provides a “PROPer description of the Higgs dECaY

into 4 Fermions” and calculates observables for the decay process h→WW/ZZ→4f at

NLO EW+QCD in the SM. We have extended this program to the calculation of the

corresponding decay in the THDM in such a way that the usage of the program and its

applicability as event generator basically remains the same. Owing to the fact that LO

and real-emission amplitudes in the THDM receive only the multiplicative factor sβ−α
with respect to the SM, the bremsstrahlung corrections as well as the treatment of infrared

singularities could be taken over from the SM calculation [81, 83] via simple rescaling.

The calculation in the THDM, the implementation in Prophecy4f, as well as results of

the application will be described in detail in an upcoming publication. We just mention

8http://prophecy4f.hepforge.org/index.html
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that we employ the complex-mass scheme [84] to describe the W/Z resonances, as already

done in refs. [81–83] for the SM. Note that the W/Z-boson masses as well as the weak

mixing angle are consistently taken as complex quantities in the complex-mass scheme to

guarantee gauge invariance of all amplitudes in resonant and non-resonant phase-space

regions. Consequently all our renormalization constants of the THDM inherit imaginary

parts from the complex input values, but the impact of these spurious imaginary parts

is beyond NLO and negligible (as in the SM). Moreover, we mention that the modified

version of Prophecy4f makes use of the public Collier library [85] for the calculation of

the one-loop integrals. Apart from performing two independent loop calculations, we have

verified our one-loop matrix elements by numerically comparing our results to the ones

obtained in ref. [40] for the related Wh/Zh production channels (including W/Z decays)

using crossing symmetry.

In this paper, we present first results in order to demonstrate the use and the self-

consistency of our renormalization schemes, employing again the scenario inspired by the

first benchmark scenario of ref. [72] where the additional Higgs bosons are not very heavy.

The input values of the THDM parameters for a Type I THDM are given in eqs. (4.65)

and (4.66). Since cβ−α is the only parameter of the THDM appearing at LO, our process

is most sensitive to this parameter. We vary cβ−α in the range [−0.2,+0.2] in scenario A

for the computation of the partial decay width for h → WW/ZZ → 4f , Γh→4f
THDM, which is

obtained by summing the partial widths of the h boson over all massless four-fermion final

states 4f . The parameters of the SM part of the THDM are collected in appendix C. Note

that a non-trivial CKM matrix would not change our results, since quark mass effects of the

first two generations as well as mixing with the third generation are completely negligible

in the considered decays.

To perform scale variations we take two distinguished points named Aa and Ab with

cβ−α = ±0.1. For the central renormalization scale we use the average mass µ0 defined in

eq. (4.67) of all scalar degrees of freedom. The scale µ of αs is kept fixed at µ = MZ which

is the appropriate scale for the QCD corrections (which are dominated by the hadronic

W/Z decays).

7.1 Scale variation of the width

The running of the MS-renormalized parameters α and β is induced by the Higgs-boson

self-energies (and some scalar vertex for λ5), i.e. the relevant particles in the loops are all

Higgs bosons, the W/Z bosons, and the top quark. If all Higgs-boson masses are near the

electroweak scale, say ∼ 100−200 GeV, where the W/Z-boson and top-quark masses are

located, then the scale Mh turns out to be a reasonable scale, as expected. However, if some

heavy Higgs-boson masses increase to some generic mass scale MS and the mixing angle

β − α stays away from the alignment limit, there is no decoupling of heavy Higgs-boson

effects, so that MS acts as generic UV cutoff scale appearing in logarithms log(MS/µr).

The renormalization scale µr has to go up with MS to avoid that the logarithm drives the

correction unphysically large. The optimal choice of µr, though, is somewhat empirical.

A good choice of the central scale µ0 should come close to the stability point (plateau in
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Figure 6. The decay width for h→ 4f at LO (dashed) and NLO EW (solid) in dependence of the

renormalization scale with β and α defined in the MS(λ3) scheme. The result is computed in all

four different renormalization schemes after converting the input at NLO (also for the LO curves)

and displayed for the benchmark points Aa (a) and Ab (b) using the colour code of figure 5.

the µr variation) in the major part of THDM parameter space. Our choice (4.67) of µ0

effectively takes care of this and is eventually justified by the numerics.

To illustrate this and to estimate the theoretical uncertainties due to the residual scale

dependence, we compute the total width while the scale µr is varied from 100−900 GeV.

Results with central scale Mh are shown in appendix D, proving that this would be not a

good choice. The parameters α and β are defined in the MS(λ3) scheme, and to compute re-

sults in other renormalization schemes their values are converted using eqs. (4.64a)–(4.64c),

which are solved numerically without linearization. Thereafter the scale is varied, the RGEs

solved, and the width computed using the respective renormalization scheme. The results

are shown in figure 6 at LO (dashed) and NLO EW (solid) for the benchmark points Aa

and Ab. The QCD corrections are not part of the EW scale variation and therefore omit-

ted in these results. The benchmark point Aa shows almost textbook-like behaviour with

the LO computation exhibiting a strong scale dependence for all renormalization schemes,

resulting in sizable differences between the curves. However, each of the NLO curves shows

a wide extremum with a large plateau, reducing the scale dependence drastically, as it is

expected for NLO calculations. The central scale µr = (Mh + MH + MA0 + 2MH+)/5 lies

perfectly in the middle of the plateau regions motivating this scale choice. In contrast,

the naive scale choice µ0 = Mh is not within the plateau region, leads to large, unphysical

corrections, and should not be chosen. The breakdown of the FJ(α) curve for small scales

can be explained by the running which becomes unstable for these values (see figure 5(a)).

For all renormalization schemes, the plateaus coincide and the agreement between the

renormalization schemes is improved at NLO w.r.t. the LO results. This is expected, since
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Scenario Aa Scenario Ab

∆LO
RS [%] 0.67 0.84

∆NLO
RS [%] 0.08 0.34

Table 4. The variation ∆RS of the h→4f width using different renormalization schemes for input

parameters defined in the MS(λ3) scheme.

results obtained with different renormalization schemes should be equal up to higher-order

terms, after the input parameters are properly converted. The relative renormalization

scheme dependence at the central scale,

∆RS = 2
Γh→4f

max (µ0)− Γh→4f
min (µ0)

Γh→4f
max (µ0) + Γh→4f

min (µ0)
, (7.1)

expresses the dependence of the result on the renormalization scheme. It can be computed

from the difference of the smallest and largest width in the four renormalization schemes

normalized to their average. In the calculation of ∆RS, the full NLO EW+QCD corrections

to the width Γh→4f should be taken into account. In table 4, ∆RS is given at LO and

NLO and confirms the reduction of the scheme dependence in the NLO calculation. In

addition, as already perceived when the running was analyzed, the MS(α) scheme shows

the smallest dependence on the renormalization scale, which attests a good absorption of

further corrections into the NLO prediction.

The situation for the benchmark point Ab is more subtle. For negative values of cβ−α
the truncation of the schemes involving λ3 at µr = 250−300 GeV as well as the breakdown

of the running of the FJ(α) scheme, which both were observed in the running in figure 5(b),

are also manifest in the computation of the h→4f width. Therefore, the results vary much

more, and the extrema with the plateau regions are not as distinct as for the benchmark

point Aa. They are even missing for the truncated curves. Nevertheless, the situation

improves at NLO. As for scenario Aa, the central scale choice of µ0 is more appropriate in

contrast than the choice of Mh.

For both benchmark points, the estimate of the theoretical uncertainties by varying

the scale by a factor of two from the central value for an arbitrary renormalization scheme

is generally not appropriate. A proper strategy would be to identify the renormalization

schemes which yield reliable results, and to use only those to quantify the theoretical

uncertainties from the scale variation. In addition, the renormalization scheme dependence

of those schemes should be investigated. This procedure should be performed for different

parameter regions (and corresponding benchmark points) separately, which is beyond the

scope of this work.

7.2 cβ−α dependence

The decay width for h→ 4f in dependence of cβ−α in scenario A is presented in figure 7 for

all renormalization schemes with the input values α and β defined in the MS(λ3) scheme.

The LO (dashed) and the full NLO EW+QCD total widths (solid) are computed in the
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Figure 7. The decay width for h → 4f at LO (dashed) and full NLO EW+QCD (solid) for

scenario A in dependence of cβ−α. The input values are defined in the MS(λ3) scheme and are

converted to the other schemes at NLO (also for the LO curves). The results computed with

different renormalization schemes are displayed with the colour code of figure 5, and the SM (with

SM Higgs-boson mass Mh) is shown for comparison in red.

different renormalization schemes after the NLO input conversion (without linearization)

and using the constant default scale µ0 of eq. (4.67). The SM values are illustrated in

red. At tree level the widths show the suppression w.r.t. to the SM with the factor s2
β−α

originating from the HWW and HZZ couplings. The differences between the renormal-

ization schemes are due to the conversion of the input. As the conversion induces NLO

differences in the LO results, a pure LO computation is identical for all renormalization

schemes as the conversion vanishes at this order and is represented by the LO curve of

the MS(λ3) scheme. The suppression w.r.t. the SM computation does not change at NLO,

while the shape becomes slightly asymmetric, and the NLO results show a significantly

better agreement between the renormalization schemes. Deviations of the THDM results

from the SM expectations can be investigated when the SM Higgs-boson mass is identified

with the mass Mh of the light CP-even Higgs boson h of the THDM. The relative deviation

of the full width from the SM is then

∆SM =
ΓTHDM − ΓSM

ΓSM
, (7.2)

which is shown in figure 8 at LO (dashed) and NLO (solid) in percent for parameters defined

in the MS(λ3) scheme. The SM exceeds the THDM widths at LO and NLO. The LO shape

which is just given by c2
β−α shows minor distortions due to the parameter conversions. At

NLO, the shape is slightly distorted by an asymmetry of the EW corrections, and a small
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Figure 8. The relative difference of the decay width for h → 4f in the THDM w.r.t. the SM

prediction at LO (dashed) and NLO EW+QCD (solid). The input values are defined in the MS(λ3)

scheme and are converted to the other schemes at NLO (also for the LO curves). The results

computed with different renormalization schemes are displayed with the colour code of figure 5.

offset of −0.5% is visible even in the alignment limit where the diagrams including heavy

Higgs bosons still contribute. The NLO computations show larger negative deviations,

and this could be used to improve current exclusion bounds or increase their significance.

Nevertheless, in the whole scan region the deviation from the SM is within 6% and for

phenomenologically most interesting region with |cβ−α| < 0.1 even less than 2%, which is

challenging for experiments to measure.

8 Conclusions

Confronting experimental results on Higgs precision observables with theory predictions

within extensions of the SM, provides an important alternative to search for physics beyond

the SM, in addition to the search for new particles. The THDM comprises an extended

scalar sector with regard to the SM Higgs sector and allows for a comprehensive study of the

impact of new scalar degrees of freedom without introducing new fundamental symmetries

or other new theoretical structures.

In this article, we have considered the Type I, II, lepton-specific, and flipped versions

of the THDM. We have introduced four different renormalization schemes which employ

directly measurable parameters such as masses as far as possible and make use of fields

that directly correspond to mass eigenstates. In all the schemes, the masses are defined

via on-shell conditions, the electric charge is fixed via the Thomson limit, and the coupling

λ5 is defined with the MS prescription. The fields are also defined on-shell which is most
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convenient in applications. The renormalization schemes differ in the treatment of the

coupling λ3 and the mixing angles α and β: in the MS(α) scheme, α and β are renormal-

ized using MS conditions. In the MS(λ3) scheme instead λ3 and β are MS-renormalized

parameters. In addition to the conventional treatment of tadpole contributions, we have

implemented an alternative prescription suggested by Fleischer and Jegerlehner where the

mixing angles α and β obtain extra terms of tadpole contributions, rendering these schemes

gauge independent to all orders. It should, however, be noted that the MS(λ3) scheme is

also gauge independent at NLO in the class of Rξ gauges. We have also discussed relations

to renormalization procedures suggested in the literature for the THDM.

A comparison of these four different renormalization schemes allows for testing the per-

turbative consistency, and, for the parameter regions and renormalization schemes fulfilling

this test, estimating the theoretical uncertainty due to the truncation of the perturbation

series. To further investigate the latter, we have investigated the scale dependence, solving

the corresponding RGEs. One important observation is that it is crucial to be very careful

and specific about the definitions of the parameters applied, i.e. the declaration of the

renormalization scheme of the parameters is vital if one aims at precision. This is already

relevant in the formulation of benchmark scenarios, because a conversion to a different

scheme might alter the physical properties of the scenario significantly. For example, the

alignment limit may be reached with one specific set of parameters defined in a specific

renormalization scheme, but converting these parameters consistently to parameters in a

different renormalization scheme might shift the parameters away from the alignment limit.

The different renormalization schemes have been implemented into a FeynArts model

file and are thus ready for applications.9 As a first example, we have applied and tested

the different schemes in the calculation of the decay width of a light CP-even Higgs boson

decaying into four massless fermions. We discuss the dependence of the total h→4f decay

width on the renormalization scale and advocate a scale that is significantly higher than

the naive choice of µr = Mh, taking care of the different mass scales in the THDM Higgs

sector. In addition, results for various values of cos(β − α), a parameter entering the

prediction already at LO, are presented. The deviations of the SM are relatively small, in

the phenomenologically interesting region they are about 2−6% — a challenge for future

measurements.

The detailed description of the calculation of the decay width in the THDM and a

survey of numerical results will be given in a forthcoming paper. This includes a deeper

investigation in the renormalization scale dependence and the comparison of different renor-

malization schemes for more benchmark points as well as differential distributions.
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Württemberg through bwHPC and the DFG through grant no INST 39/963-1 FUGG.

A Field rotation after renormalization — Version (b)

In this appendix, we present another technical variant of our renormalization procedure

which is based on a renormalization of the bare potential (2.13). This prescription is

similar to the one of section 3.1.2, however, the rotations of the fields are applied to the

renormalized fields after the renormalization transformation. Therefore, α, βn, and βc are

pure mixing angles, and λ3 must be chosen to parameterize the potential (corresponding

to the set {p′mass}). As no counterterms to the mixing angles exist, we can write their

behaviour in the renormalization transformation schematically as

α0 = α+ 0, βc,0 = β + 0, βn,0 = β + 0. (A.1)

This is analogous to the renormalization of the MSSM suggested in ref. [69], where the

additional angle does not obtain any higher-order corrections. Each parameter of eq. (2.24)

has to be renormalized,

M2
H,0 = M2

H + δM2
H, M2

h,0 = M2
h + δM2

h , M2
A0,0 = M2

A0
+ δM2

A0
,

M2
H+,0 = M2

H+ + δM2
H+ , β0 = β + δβ, λ3,0 = λ3 + δλ3,

λ5,0 = λ5 + δλ5 M2
W,0 = M2

W + δM2
W, M2

Z,0 = M2
Z + δM2

Z, ,

e0 = e+ δe, tH,0 = 0 + δtH, th,0 = 0 + δth, (A.2)

so that the parameter renormalization constants are

{δp′mass} = {δM2
H, δM

2
h , δM

2
A0
, δM2

H+ , δM
2
W, δM

2
Z, δe, δλ5 δλ3, δβ, δtH, δth}. (A.3)

In addition we renormalize each field according to eq. (3.15). Applying the renor-

malization transformation of eqs. (A.2), (3.15) results in the potential V ({p′mass}) +

δV ({p′mass}, {δR′mass}) with the already known LO potential and the counterterm potential

up to quadratic terms

δV ({p′mass}, {δR′mass}) =− δtHH − δthh

+
1

2
(δM2

H + δZHM
2
H)H2 +

1

2
(δM2

h + δZhM
2
h)h2

+
1

2
(δM2

A0
+ δZA0M

2
A0

)A2
0 + (δM2

H+ + δZH+M2
H+)H+H−

+
e

4MWsW
(δthsα−β − δtHcα−β)(G2

0 + 2G+G−)

+
1

2

(
2δM

2
Hh +M2

HδZHh +M2
hδZhH

)
Hh
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+
1

2

(
2δM

2
G0A0

+M2
A0
δZA0G0

)
A0G0

+
1

2

(
2δM

2
GH+ +M2

H+δZHG+

)
(H+G− +G+H−), (A.4)

with the Hh mixing terms of eq. (4.38)

δM
2
Hh = fα{δp′mass}. (A.5)

and the mixing terms of the CP-odd and charged sectors

δM
2
G0A0

= −M2
A0
δβ − eδtHsα−β + δthcα−β

2MWsW
, (A.6)

δM
2
GH+ = −M2

H+δβ − e
δtHsα−β + δthcα−β

2MWsW
, (A.7)

which are marked with a bar here to distinguish them from the corresponding constants of

our renormalization version a.

B Supplemental results for counterterms

In this appendix we supplement the derivation of the counterterm Lagrangian of section 3

by some more details.

B.1 Scalar-Vector mixing terms

The scalar-vector mixing terms cancel at LO against terms in the gauge-fixing contribution.

Since the gauge fixing is applied to renormalized fields, NLO counterterms to the mixing

contributions still survive.10 The mixing of gauge-boson and scalar fields in terms of bare

parameters and general mixing angles (without gauge fixing) is

LSV = MZcβ−βnZµ∂
µG0 − iMWcβ−βc(W

+
µ ∂

µG− −W−µ ∂µG+)

+MZsβ−βnZµ∂
µA0 − iMWsβ−βc(W

+
µ ∂

µH− −W−µ ∂µH+). (B.1)

Together with the renormalization transformation (3.11) and (3.15), one obtains the SV

mixing counterterms as

δLZG0 = Zµ∂
µG0(M2

ZδZZZ + δM2
Z)/(2MZ), (B.2a)

δLWG+ = −i(W+
µ ∂

µG− −W−µ ∂µG+)(M2
WδZW + δM2

W)/(2MW), (B.2b)

δLZA0 = MZZµ∂
µA0(δZG0A0/2 + δβ − δβn), (B.2c)

δLWH+ = −iMW(W+
µ ∂

µH− −W−µ ∂µH+)(δZGH+/2 + δβ − δβc), (B.2d)

where we have set the renormalization constants δZG0 , δZA0G0 , δZG+ , δZHG+ to zero.

When the counterterm definition (3.13) is inserted, the contributions from the mixing

angle vanish.

10It is also possible to formulate the gauge fixing in terms of bare fields, however, one has to renormalize

and fix all constants appearing in the gauge fixing separately, which has to be done carefully.
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B.2 Counterterms to Yukawa couplings

The coupling counterterms of the neutral CP-even and pseudoscalar Higgs fields to the

fermions factorize from the corresponding LO structure, while the couplings to the charged

Higgs bosons obtain additional terms. Setting the CKM matrix to the unit matrix, the

corresponding terms in the Lagrangian read

δLf̄f,mass = −mf f̄f

(
1

2
δZf,R +

1

2
δZf,L +

δmf

mf

)
,

δLf̄fh

Lffh
= δZe −

δM2
W

2M2
W

− δsW
sW

+
δmf

mf
+

1

2
δZf,R +

1

2
δZf,L +

1

2
δZh +

δξfh

ξfh
+
δZHhξ

f
H

2ξfh
,

δLf̄fH

LffH
= δZe −

δM2
W

2M2
W

− δsW
sW

+
δmf

mf
+

1

2
δZf,R +

1

2
δZf,L +

1

2
δZH +

δξfH

ξfH
+
δZhHξ

f
h

2ξfH
,

δLf̄fA0

LffA0

= δZe −
δM2

W

2M2
W

− δsW
sW

+
δmf

mf
+

1

2
δZf,R +

1

2
δZf,L +

1

2
δZA0 +

δξfA0

ξfA0

+
δZG0A0

2ξfA0

,

δLf̄fG0

LffG0

= δZe −
δM2

W

2M2
W

− δsW
sW

+
δmf

mf
+

1

2
δZf,R +

1

2
δZf,L + δξfG0

,

δLf̄fH+ =

(
δZe −

δM2
W

2M2
W

− δsW
sW

+
1

2
δZH+

)
Lf̄fH+ +

1

2
δZGH+ Lf̄fG+

∣∣
G+→H+

− e√
2MWsW

H+ū

[
−muξ

u
A0
ω−

(
δmu

mu
+

1

2
δZd,L +

1

2
δZu,R +

δξuH+

ξuA0

)
+mdξ

d
A0
ω+

(
δmd

md
+

1

2
δZu,L +

1

2
δZd,R +

δξdH+

ξdA0

)]
d,

δLf̄fH− = δL†
f̄fH+ ,

δLf̄fG+ =

(
δZe −

δM2
W

2M2
W

− δsW
sW

+ δξG+

)
Lf̄fG+

− e√
2MWsW

G+ū

[
−mu ω−

(
δmu

mu
+

1

2
δZd,L +

1

2
δZu,R

)
+md ω+

(
δmd

md
+

1

2
δZu,L +

1

2
δZd,R

)]
d,

δLf̄fG− = δL†
f̄fG+ , (B.3)

where the suffixes in the Lagrangian contributions δL... indicate the vertex which is repre-

sented. The generation indices and the flavour summations are suppressed in the notation

and the renormalization constants δZG0 , δZA0G0 , δZG+ , δZHG+ are set to zero. In contrast

to the SM case, the counterterms in the Higgs-fermion interaction involve also the renor-

malization constants δβ (as vevs appear in the coupling constants), δβn,c, and δα (through

the general renormalization of the mixing angles) which are hidden in the δξ factors. The

values of the counterterms for the different types of THDM are summarized in table 5.
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Type I Type II Lepton-specific Flipped

δξlH
cα
sβ
δα− sαcβ

s2β
δβ − sα

cβ
δα+

cαsβ
c2β

δβ − sα
cβ
δα+

cαsβ
c2β

δβ cα
sβ
δα− sαcβ

s2β
δβ

δξuH
cα
sβ
δα− sαcβ

s2β
δβ cα

sβ
δα− sαcβ

s2β
δβ cα

sβ
δα− sαcβ

s2β
δβ cα

sβ
δα− sαcβ

s2β
δβ

δξdH
cα
sβ
δα− sαcβ

s2β
δβ − sα

cβ
δα+

cαsβ
c2β

δβ cα
sβ
δα− sαcβ

s2β
δβ − sα

cβ
δα+

cαsβ
c2β

δβ

δξlh − sα
sβ
δα− cαcβ

s2β
δβ − cα

cβ
δα− sαsβ

c2β
δβ − cα

cβ
δα− sαsβ

c2β
δβ − sα

sβ
δα− cαcβ

s2β
δβ

δξuh − sα
sβ
δα− cαcβ

s2β
δβ − sα

sβ
δα− cαcβ

s2β
δβ − sα

sβ
δα− cαcβ

s2β
δβ − sα

sβ
δα− cαcβ

s2β
δβ

δξdh − sα
sβ
δα− cαcβ

s2β
δβ − cα

cβ
δα− sαsβ

c2β
δβ − sα

sβ
δα− cαcβ

s2β
δβ − cα

cβ
δα− sαsβ

c2β
δβ

δξlA0,H+ −δβn,c −
c2β
s2β
δβ −δβn,c −

s2β
c2β
δβ −δβn,c −

s2β
c2β
δβ −δβn,c −

c2β
s2β
δβ

δξuA0,H+ −δβn,c −
c2β
s2β
δβ −δβn,c −

c2β
s2β
δβ −δβn,c −

c2β
s2β
δβ −δβn,c −

c2β
s2β
δβ

δξdA0,H+ −δβn,c −
c2β
s2β
δβ −δβn,c −

s2β
c2β
δβ −δβn,c −

c2β
s2β
δβ −δβn,c −

s2β
c2β
δβ

δξlG0,G+

cβ
sβ

(δβn,c − δβ) − sβ
cβ

(δβn,c − δβ) − sβ
cβ

(δβn,c − δβ)
cβ
sβ

(δβn,c − δβ)

δξuG0,G+

cβ
sβ

(δβn,c − δβ)
cβ
sβ

(δβn,c − δβ)
cβ
sβ

(δβn,c − δβ)
cβ
sβ

(δβn,c − δβ)

δξdG0,G+

cβ
sβ

(δβn,c − δβ) − sβ
cβ

(δβn,c − δβ)
cβ
sβ

(δβn,c − δβ) − sβ
cβ

(δβn,c − δβ)

Table 5. The dependence of the angular counterterms δξ for the different types of models.

C SM parameters

In this appendix we collect the remaining input parameters used in the numerics, which

are necessary to define the SM part of the THDM. As recommended by the LHC Higgs

Cross section Working Group [7], we use the parameter values

Gµ = 0.11663787 · 10−4 GeV−2, αs = 0.118,

MZ = 91.1876 GeV, MW = 80.385 GeV,

ΓZ = 2.4952 GeV, ΓW = 2.085 GeV,

me = 510.998928 keV, mµ = 105.6583715 MeV, mτ = 1.77682 GeV,

mu = 100 MeV, mc = 1.51 GeV, mt = 172.5 GeV,

md = 100 MeV, ms = 100 MeV, mb = 4.92 GeV, (C.1)

where Gµ is the Fermi constant, αs the strong coupling constant at the Z pole, ΓZ and ΓW

the total decay widths of the Z and W boson, respectively, and me, . . . ,mb the fermion

masses. The W/Z masses are “on-shell masses”, which are combined with the W/Z decay

widths to complex pole masses; all Higgs-boson and fermion masses are (real) pole masses.

The electromagnetic coupling is fixed in the Gµ scheme, i.e. calculated from the muon
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Figure 9. Renormalization scale dependence of the decay width for h → 4f in LO (dashed) and

NLO EW (solid) for the benchmark point Aa using a central renormalization scale of µ0 = Mh (in

contrast to figure 6). In (a) the input for β and α is defined in the MS(λ3) scheme and converted to

the other schemes at NLO (also for the LO curves). In (b) the input for β and α is taken without

conversion between the schemes, so that cβ−α(µ0) = 0.1 in all schemes.

decay constant according to

αem =

√
2

π
GµM

2
W

(
1− M2

W

M2
Z

)
, (C.2)

since this choice is appropriate in the NLO calculation for h → 4f . In the Gµ scheme, the

charge renormalization constant δZe of eq. (4.23) receives an additional contribution ∆r,

which quantifies the NLO corrections to muon decay (see, e.g., ref. [86]). The correction

∆r was calculated in the THDM, for instance, in ref. [87]. For the conversion of THDM

parameters between the different renormalization schemes and the calculation of the MS

parameter running choosing the Gµ scheme plays only a minor role.

D Results for the h → 4f decay width with central renormalization

scale Mh

Figure 9(a) shows the renormalization scale variation of the decay width for h → 4f in

scenario Aa (cos (β − α) = 0.1) for the central scale µ0 = Mh, in parallel to the results

shown in figure 6(a) for our default choice µ0 = 1
5(Mh +MH +MA0 + 2MH+). In contrast

to figure 6(a), we observe big discrepancies between the results in the different renormal-

ization schemes (with proper scheme conversion) at LO and NLO, with no tendency of

improvement in the transition from LO to NLO. The large differences in the LO predic-

tions at the central scale already signal huge scheme conversion effects due to unnaturally

large corrections that cannot be made up by NLO effects.
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Figure 9(b) shows the respective results without parameter scheme conversion, so that

the LO predictions coincide at the central scale and reflect the µr dependence of s2
β−α.

Lacking the parameter conversion, no reduction of scheme dependence can be expected

here. We rather include this figure to check whether and where the different schemes show

some reduction of the µr dependence in the transition from LO to NLO. Such stabilizations

are observed at scales about 300−400 GeV, but not near Mh = 125 GeV.

Choosing µ0 = 1
5(Mh +MH +MA0 + 2MH+) = 361 GeV, the conversion effects and the

NLO corrections, however, are nicely under perturbative control, as discussed in section 7.

Note that the results at µr = 361 GeV neither in figure 9(b), nor in figure 9(a) correspond

to µ0 = 361 GeV in figure 6(a), since the input parameters α, β, and λ5 are defined at

different renormalizations scales µ0.

Open Access. This article is distributed under the terms of the Creative Commons
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[80] T. Hahn and M. Pérez-Victoria, Automatized one loop calculations in four-dimensions and

D-dimensions, Comput. Phys. Commun. 118 (1999) 153 [hep-ph/9807565] [INSPIRE].

[81] A. Bredenstein, A. Denner, S. Dittmaier and M.M. Weber, Precise predictions for the

Higgs-boson decay H →WW/ZZ → 4 leptons, Phys. Rev. D 74 (2006) 013004

[hep-ph/0604011] [INSPIRE].

[82] A. Bredenstein, A. Denner, S. Dittmaier and M.M. Weber, Precision calculations for the

Higgs decays H → ZZ/WW → 4 leptons, Nucl. Phys. Proc. Suppl. 160 (2006) 131

[hep-ph/0607060] [INSPIRE].

[83] A. Bredenstein, A. Denner, S. Dittmaier and M.M. Weber, Radiative corrections to the

semileptonic and hadronic Higgs-boson decays H →WW/ZZ → 4 fermions, JHEP 02

(2007) 080 [hep-ph/0611234] [INSPIRE].

[84] A. Denner, S. Dittmaier, M. Roth and L.H. Wieders, Electroweak corrections to

charged-current e+e− → 4 fermion processes: Technical details and further results, Nucl.

Phys. B 724 (2005) 247 [Erratum ibid. B 854 (2012) 504] [hep-ph/0505042] [INSPIRE].

[85] A. Denner, S. Dittmaier and L. Hofer, Collier: a fortran-based Complex One-Loop LIbrary in

Extended Regularizations, Comput. Phys. Commun. 212 (2017) 220 [arXiv:1604.06792]

[INSPIRE].

– 53 –

https://doi.org/10.1088/1126-6708/2007/02/047
https://arxiv.org/abs/hep-ph/0611326
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0611326
https://doi.org/10.1103/PhysRevD.78.115003
https://doi.org/10.1103/PhysRevD.78.115003
https://arxiv.org/abs/0807.4668
https://inspirehep.net/search?p=find+EPRINT+arXiv:0807.4668
https://arxiv.org/abs/hep-ph/9505240
https://inspirehep.net/search?p=find+EPRINT+hep-ph/9505240
https://doi.org/10.1140/epjc/s10052-015-3697-x
https://arxiv.org/abs/1507.04281
https://inspirehep.net/search?p=find+EPRINT+arXiv:1507.04281
https://doi.org/10.1103/PhysRevD.82.075010
https://arxiv.org/abs/1007.0689
https://inspirehep.net/search?p=find+EPRINT+arXiv:1007.0689
https://doi.org/10.1103/PhysRevD.85.075013
https://arxiv.org/abs/1107.5218
https://inspirehep.net/search?p=find+EPRINT+arXiv:1107.5218
https://doi.org/10.1142/S0217751X99000385
https://arxiv.org/abs/hep-ph/9706323
https://inspirehep.net/search?p=find+EPRINT+hep-ph/9706323
https://doi.org/10.1007/JHEP05(2012)118
https://arxiv.org/abs/1111.5760
https://inspirehep.net/search?p=find+EPRINT+arXiv:1111.5760
https://doi.org/10.1007/JHEP12(2014)166
https://arxiv.org/abs/1407.2145
https://inspirehep.net/search?p=find+EPRINT+arXiv:1407.2145
https://doi.org/10.1103/PhysRevD.92.033003
https://arxiv.org/abs/1505.04001
https://inspirehep.net/search?p=find+EPRINT+arXiv:1505.04001
https://doi.org/10.1016/j.cpc.2009.02.018
https://doi.org/10.1016/j.cpc.2009.02.018
https://arxiv.org/abs/0806.4194
https://inspirehep.net/search?p=find+EPRINT+arXiv:0806.4194
https://doi.org/10.1016/S0010-4655(98)00173-8
https://arxiv.org/abs/hep-ph/9807565
https://inspirehep.net/search?p=find+EPRINT+hep-ph/9807565
https://doi.org/10.1103/PhysRevD.74.013004
https://arxiv.org/abs/hep-ph/0604011
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0604011
https://doi.org/10.1016/j.nuclphysBPS.2006.09.104
https://arxiv.org/abs/hep-ph/0607060
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0607060
https://doi.org/10.1088/1126-6708/2007/02/080
https://doi.org/10.1088/1126-6708/2007/02/080
https://arxiv.org/abs/hep-ph/0611234
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0611234
https://doi.org/10.1016/j.nuclphysb.2011.09.001
https://doi.org/10.1016/j.nuclphysb.2011.09.001
https://arxiv.org/abs/hep-ph/0505042
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0505042
https://doi.org/10.1016/j.cpc.2016.10.013
https://arxiv.org/abs/1604.06792
https://inspirehep.net/search?p=find+EPRINT+arXiv:1604.06792


J
H
E
P
0
9
(
2
0
1
7
)
1
3
4
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