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tinez, Maximiliano Figueroa, Mónica Salas, Vasthi López, Peter R. Dodd,
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Abstract 

Agmatine (1-amino-4-guanidinobutane), a precursor for polyamine biosynthesis, 

has been identified as an important neuromodulator with anticonvulsant, antineurotoxic and 

antidepressant actions in the brain. In this context it has emerged as an important mediator 

of addiction/satiety pathways associated with alcohol misuse. Consequently, the regulation 

of the activity of key enzymes in agmatine metabolism is an attractive strategy to combat 

alcoholism and related addiction disorders. 

Agmatine results from the decarboxylation of L-arginine in a reaction catalyzed by 

arginine decarboxylase (ADC), and can be converted to either guanidine butyraldehyde by 

diamine oxidase (DAO) or putrescine and urea by the enzyme agmatinase (AGM) or the 

more recently identified AGM-like protein (ALP).  In rat brain, agmatine, AGM and ALP 

are predominantly localised in areas associated with roles in appetitive and craving (drug-

reinstatement) behaviors. Thus, inhibitors of AGM or ALP are promising agents for the 

treatment of addictions. In this review, the properties of DAO, AGM and ALP are 

discussed with a view to their role in the agmatine metabolism in mammals. 
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Introduction 

Agmatine (1-amino-4-guanidinobutane) is a primary amine that is generated from 

the decarboxylation of L-arginine by arginine decarboxylase (ADC; EC 4.1.1.19: Fig. 1). In 

mammals, agmatine has been directly associated with many important cellular functions, 

including the modulation of insulin release from pancreatic cells [1-3], renal sodium 

excretion [4,5] and neuroprotective effects [6-9]; furthermore, agmatine inhibits all known 

isoforms of nitric oxide synthase (NOS) in the brain [10] and increases the tolerance to 

morphine [11]. Agmatine also plays an essential role in the regulation of the expression of 

ornithine decarboxylase (ODC) [12] (Fig.1) and spermidine/spermine acetyl transferase 

[13], two enzymes that are involved in polyamine biosynthesis [14]. In the central nervous 

system (CNS), agmatine is considered to be a neurotransmitter/neuromodulator, because it 

is synthesized in the brain, stored in synaptic vesicles, accumulated by uptake and released 

by depolarization [15,16]. In addition, agmatine activates several membrane receptors, 

including nicotinic, imidazoline, α2-adrenergic, 5-HT2A, and 5HT3 [16], while it 

antagonizes N-methyl-D-aspartate (NMDA) receptors [16-19]. It also regulates the release 

of catecholamines and potentiates opioid analgesia [20]. However, a receptor specific for 

agmatine has not yet been described. 

Agmatine administration to laboratory rodents modulates ethanol-induced 

anxiolysis and withdrawal anxiety [21], nicotine sensitization, and compulsive behaviors 

[21-23]. Injection of agmatine also produces anticonvulsant, antineurotoxic, and 

antidepressant-like actions in animals [24-27]. In recent years the number of studies with 

animal models has increased; these have demonstrated beneficial effects of agmatine 

administration for the following disorders: anxiety, hypoxic ischemia, nociception, 
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morphine tolerance, memory loss, Parkinson’s disease, Alzheimer’s disease, traumatic 

brain injury-related disorders, and epilepsy [17,28-32]. Furthermore, an increase in 

intracellular agmatine concentration has been associated with a decrease in the number of 

neoplastic cells. RNA interference targeting ADC resulted in a significant increase in 

proliferation of the human intestinal tumor cell line SW480, which was paralleled by a 

distinct decrease of the intracellular agmatine content [33]. On the other hand, addition of 

ADC to the culture medium of HeLa cells caused the arrest of cell growth [34]. These 

observations may be linked to the inhibitory effect of agmatine on ODC [35,36] and 

polyamine uptake [37-39], because ODC is the rate-limiting enzyme in polyamine synthesis 

and polyamines are required for a cell to enter into the cell cycle and to proliferate. 

The cellular and regional distributions of agmatine were mapped in rat brain with 

the aid of a polyclonal anti-agmatine antibody [40]. The highest numbers of neurons 

displaying agmatine immunoreactivity were in hippocampus, hypothalamus, and the rostral 

midbrain, as well as in periventricular areas that included the dorsolateral nucleus, locus 

cœruleus, nucleus raphe dorsalis and the periaqueductal gray matter [40]. Notably, 

agmatine-containing neurons were concentrated in regions of the brain that regulate 

visceral and neuroendocrine control, the processing of emotions, pain perception, and 

cognition [15,16]. 

The capacity of rat brain to synthesize agmatine has been also investigated. The 

highest levels of ADC activity were detected in hypothalamus and cerebral cortex, while 

the lowest levels were found in the locus cœruleus and medulla [41,42]. ADC is also 

present in various other tissues and/or organs, with the highest levels recorded in the aorta 

and the lowest in testis [43]. ADC, extracted from rat brain mitochondrial preparations, is 
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thermally unstable but able to catalyze the decarboxylation of both arginine (Km ~0.75 mM) 

and ornithine (Km ~0.25 mM), in a reaction that is not inhibited by the specific ODC 

inhibitor difluoromethylornithine [43]. Agmatine is thus synthesized in proximity to 

mitochondria, and to a class of imidazoline receptors (I2) to which agmatine binds with 

high affinity [16,44]; indeed, while there is evidence for the localization of I2 on synaptic 

membranes, a higher proportion of I2 is found on mitochodrial membranes [45]. In rat 

liver, ADC is also associated with the mitochondrium; its Km value for arginine is 28-40 

mM [46]. The importance of ADC in agmatine biosynthesis has been demonstrated with 

various cell models, in which agmatine could be detected upon transfection with the ADC-

encoding gene [47-49]. However, since no data on the kinetic properties of isolated ADC 

are currently available, further studies are necessary to develop a better understanding of 

the role of this enzyme in the agmatine metabolism. 

While only one enzyme appears to be involved in the formation of agmatine, several 

contribute to its degradation (Fig. 1). In one route agmatine is converted to 

guanidinobutyraldehyde by diamine oxidase (DAO), while in another path it is hydrolyzed 

to putrescine and urea by either agmatinase (AGM) or the more-recently described AGM-

like protein (ALP).  Guanidinobutyraldehyde is a precursor for the neurotransmitter 4-

aminobutyrate (GABA) [50], whereas putrescine is a precursor for polyamines, which are 

essential for proliferation, differentiation and migration of mammalian cells and also act as 

positive modulators of glutamate-NMDA receptors. In addition, putrescine in the brain can 

also be converted via aminobutanal to GABA by the combined action of monoamine 

oxidases (MAOs) or DAOs and aldehyde dehydrogenase, respectively [51]. Aldehyde 

dehydrogenase 1A1 mediates a GABA synthesis pathway in midbrain dopaminergic 
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neurons; glial GABA, synthesized by MAO B, mediates tonic inhibition [52,53]. These 

pathways and those outlined in the next section may allow agmatine to participate 

indirectly in GABA-mediated inhibition in the brain, and thus augment its direct action as 

an inhibitor neurotransmitter. GABA is metabolized to succinate and thereby enters the 

citric acid cycle via succinate semialdehyde and its dehydrogenase, which is a target of the 

target of the antiepileptic valproate. Hence, augmentation of GABA concentration may 

contribute to agmatine’s anticonvulsant activity (as mentioned above). 

Diamine oxidase (DAO) 

DAO (EC 1.4.3.6) catalyzes the conversion of agmatine to guanidinobutyraldehyde 

(Fig. 1), which is subsequently (i) oxidized to guanidinobutyrate by an aldehyde 

dehydrogenase, and (ii) then hydrolyzed to 4-amino butyrate (GABA) by a ureohydrolase; 

such an enzyme was initially identified in liver, kidney and intestinal mucosa samples from 

rabbit, and more recently in human brain samples [50,54,55]. DAO has been identified in 

various mammalian tissues, including the basal level of the skin epidermis, glomeruli, the 

decidua of the placenta, epithelial cells in the small intestine, blood and tissue eosinophils, 

macrophages, as well as smooth muscle cells of veins, arteries, bronchioles, stomach wall 

and skin [56]. Its distribution, detected by immunohistochemistry, is identical in human and 

mouse tissues [56]. Enzymatic activity assays and Northern blot analysis of guinea pig 

tissues indicate that the relative abundance of the enzyme is liver > small intestine > lung, 

kidney > stomach [57]. Only small but detectable amounts of DAO mRNA were observed 

in cerebellum, thalamus-hypothalamus and cerebral cortex [57]. As these distribution data 

suggest, the role of DAO is not specific for agmatine metabolism in the brain. Indeed, DAO 

purified from porcine kidney, not only acts on agmatine (Km ~5 µM), but also on histamine 
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(Km ~15 µM), putrescine (Km ~0.2 mM) and spermidine (Km ~1 mM) [50], and because it 

was originally identified for its ability to remove exogenous histamine from lung and liver 

samples it is also designated as histaminase [56]. Reduced levels of DAO are directly 

correlated with histamine intolerance [58], and inhibitors such as berenil and pentamidine 

are diamine derivatives used as drugs to treat Trypanosomiasis and Pneumocystis 

pneumoniæ [59,60]. The low prevalence of DAO in brain, together with its function as 

target for chemotherapeutics to treat infectious diseases, reduce the suitability of this 

enzyme as target for inhibitors that are geared towards treating addiction-related disorders. 

Agmatinase (AGM) 

AGM (EC 3.5.3.1.1) catalyzes the hydrolytic breakdown of agmatine to putrescine 

and urea (Fig. 1). In mammals, agmatine hydrolysis has been directly determined only in 

rat brain [61,62] and murine macrophages [63]. In subcellular fractions of rat brain, AGM 

activity has been associated principally to mitochondrial fractions. Distributed in the 

hypothalamus, medulla oblongata and hippocampus, and significantly lower levels in the 

striatum and the cerebral cortex of rat brain [61]. Generally, the reported values of AGM 

activity in the rat brain are extremely low (7.6–11.8 nmol urea/mg of protein/h), almost at 

the limit of sensitivity of the methods used [61,62] and the enzyme has not been purified.  

The cloning and partial characterization of human AGM was reported almost 

simultaneously by two different groups [64, 65]. The protein shares 35% sequence identity 

with Escherichia coli AGM, requires Mn
2+

 for activity and, importantly, all the side chains 

essential for metal ion and substrate binding  in members of the ureohydrolases 

superfamily, which include all known bacterial AGMs, arginases, ureases and some 
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organophosphate-degrading hydrolases [66-70], are conserved (Fig. 2). Interestingly, AGM 

has an N-terminal mitochondrial import sequence, and the enzyme’s mitochondrial 

localization has indeed been confirmed in kidney cells [71]. Due to the extremely low 

catalytic activity of isolated, recombinant mammalian AGMs, little is currently known 

about their enzymatic properties [64,65]. The strongest demonstration of their AGM 

activity has come from a functional complementation test, not from a direct in vitro 

enzymatic assay. The test is based on the polyamine-requiring yeast strain yASG1–8 that 

contains a disruption in the spe1 gene encoding ODC, which makes the cells fully 

dependent on exogenous polyamines for growth [65,72]. Transformants of yASG1–8, 

expressing either E. coli ADC (encoded by the gene speA) or E. coli AGM (speB) also 

require exogenous polyamines, but the simultaneous expression of both genes, speA and 

speB, allows the yeast strain to grow on minimal medium without exogenous polyamines. 

Yeast strain transfected with mouse AGM or human AGM grew in minimal medium, 

compared with the non-transfected strain (Fig. 3). Using the structure of rat arginase I as 

template, a homology model for human AGM was generated (the sequence identity 

between the two proteins is 20%) [64].  The modelled structure reveals significant 

structural homology, in particular in domains that are conserved in most ureahydrolases; 

these include an active site that can accommodate two closely spaced divalent metal ions 

(i.e. a di-managanese cluster) [64] . It is intriguing, however, that although preliminary 

crystallographic data of human AGM were reported, its structure has not yet been resolved 

[73]. Furthermore, isolated recombinant mammalian AGMs appear to lack metal ions [72]. 

These observations may indicate that mammalian AGMs adopt a fold different from that of 

their bacterial counterparts or the distantly related arginases. Indeed, while a sequence 
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comparison indicates that human AGM may have active site residues (i.e. manganese-

coordinating residues) identical to those of other ureahydrolases, four out of these six 

residues are different in mouse AGM [72]. Indeed, if the predicted fold of mammalian 

AGMs were correct at least the mouse enzyme would not be expected to bind metal ions in 

its active site with high affinity since the four substitutions involve the replacement of side 

chains that form strong interactions with metal ions with residues that form either weak or 

no coordination bonds at all [72]. It has been speculated that mammalian AGMs require 

cofactors or chaperones similar to the Ni
2+

-dependent urease to form an active, Mn
2+

-

containing form [72]. The identification of such cofactors will be essential to understand 

the regulation of mammalian AGMs and thus their role(s) in controlling the agmatine 

metabolism. 

In human tissues, AGM mRNA is most abundant in liver and kidney, with much 

lower expression levels observed in muscle, small intestine, and brain [64]. Similarly, 

Western blot analysis has demonstrated that AGM is most abundant in the liver, with lower 

amounts present in the thalamus, cerebellum and cerebral cortex of rat brain [74]. The use 

of immunocytochemical methods showed that in human and rat brain AGM is 

predominantly present in distinct populations of neurons, especially cortical interneurons. 

Principal neurons in limbic regions such as the habenula, and in cerebellum, also express 

AGM [74]. In contrast, a proteomics approach showed that human AGM is diminished in 

the clear-cell type of renal carcinoma, an observation that is consistent with a reduced 

amount of AGM mRNA in such tumor cells [71]. AGM levels vary in mood disorders: 

human subjects affected by depression show reduced blood levels of agmatine, which is 

consistent with post-mortem findings of increased AGM levels in brain tissues from 
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depressed subjects [75,76]. The correlation between AGM/agmatine levels and mood was 

also illustrated in a mouse model of depression. An AGM upregulation in the prefrontal 

cortex and hippocampus was demonstrated by confocal immunofluorescence microscopy, 

notably in parvalbumin- and somatostatin-positive interneurons [77]. 

In summary, AGM is a poorly understood, Mn
2+

-dependent ureohydrolase. Its 

inverse correlation with agmatine levels in brain tissue, together with its complex 

regulatory mechanism requiring as-yet unidentified cofactors or chaperones, make this 

enzyme an interesting target for the development of novel chemotherapeutics to treat 

neurological disorders. 

Agmatinase-like protein (ALP) 

Recently, a novel enzyme with AGM activity was cloned from a rat brain cDNA 

library, the AGM-Like Protein (ALP) [78-82]. However, its amino acid sequence bears no 

resemblance to known AGMs (from any source) nor to other ureohydrolases; no motif that 

may define the active site of this enzyme has yet been identified [69]. ALP is specific for 

the substrate agmatine, and is not active against arginine. Using a polyclonal antibody 

raised against ALP was shown to be localized mainly in astrocytes and neurons in rat 

hypothalamus and hippocampus [80]. Recombinant ALP expressed in E. coli and purified, 

is the first (and to date only) mammalian enzyme with in vitro AGM activity (kcat ~1.0 s
-1

; 

Km ~3.0 mM for agmatine [78,79]. The ability of ALP to generate putrescine (Fig. 1) for 

polyamine synthesis, has also been demonstrated using the same complementation assay 

that was employed to demonstrate biological activity of mammalian AGMs in a yeast strain 

(see above and compare Figs 3 and 4) [72,79,81].  
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In addition to being active in isolated form ALP is distinct from mammalian AGMs 

in the regulation of its catalytic activity. The C-terminal section of the protein (residues 

459–510) comprises the sequence motif C-X16-H-X2-C-X2-C-X2-C-X21-C-X2-C), 

characteristic of the LIM domain, a fold that plays important roles in protein-protein 

interactions [81]. Such domains are key components of the regulatory machinery of cells. 

Specifically, LIM domain-containing proteins have been implicated in cellular 

differentiation and the control of cell growth, and play crucial roles in cytoarchitecture, cell 

adhesion, cell motility and signal transduction, and as regulators of gene expression 

[83,84]. The LIM domain folds into two zinc fingers, each stabilized at its base by a Zn
2+

 

ion [81]; a homology model for the LIM domain of rat brain ALP is shown in Fig. 5 [82]. 

Notably, a deletion mutant of rat brain ALP that lacks the LIM domain is catalytically 

significantly more efficient than its wild-type counterpart; the truncated variant has a ten-

fold higher kcat and a three-fold lower Km value for agmatine [81]. The altered kinetic 

parameters of the truncated mutant are accompanied by significant alterations in tryptophan 

fluorescence, which indicate that a lack of the LIM domain also affects overall ALP 

structure [81]. These structural changes are unlikely to be irreversible because addition of 

the isolated LIM domain to the truncated rat brain ALP variant restores the catalytic 

properties of the wild-type enzyme [82]. Mutation of one of the Zn
2+

 binding sites 

(replacement of Cys453 by Ala) leads to a similar degree of activation of catalytic 

efficiency as the complete removal of the LIM domain [82]. A similar activation 

mechanism was observed in a LIM domain-containing kinase; complete removal of the 

LIM domain or introduction of a specific Cys mutation also enhanced this enzyme’s 

catalytic efficiency [85]. The LIM domain thus appears to act as an auto-inhibitory entity in 
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ALP; we speculate that the interaction of this domain with an as-yet unknown accessory 

protein may abolish this inhibition, thus providing an alternative avenue for the regulation 

of agmatine levels in the brain.  

In the section above the relevance of Zn
2+

 for the regulation of ALP activity was 

discussed. However, the enzyme also requires Mn
2+

 for catalytic activity, as evidenced by 

its complete inactivation when incubated with the metal ion chelator EDTA. The enzymatic 

activity can, however, easily be recovered by the addition of Mn
2+

 to the metal-ion-free 

apoenzyme [82,86]. In this respect ALP behaves like all well-characterized Mn
2+

-

dependent members of the ureohydrolase family, which include human and rat arginases 

[87,88] and bacterial AGMs [65,66]. In their fully active states the active sites of arginases 

and bacterial AGMs contain a binuclear Mn
2+

 center. Crystal structures of Deinococcus 

radiodurans AGM [89] and the two putative AGMs from Clostridium difficile and 

Burkholderia thailandensis [90] have been reported (Fig. 6). These structures provide 

detailed insight into the active site of bacterial AGMs, which is virtually identical to those 

of arginases (as expected from the sequence homology shared by these enzymes). The lack 

of sequence homology between these enzymes and ALP limits, in part, our current 

knowledge of the structure of the active site of the latter. Metal-ion measurements indicate 

that ALP is likely to contain a bimetallic manganese center in its catalytically optimal form 

[82,86]. Mutagenesis studies identified up to two Histidine residues that play important 

roles in Mn
2+

 binding in ALP, but the precise structure of the bimetallic metal center awaits 

further structural studies [86]. 

The form of ALP initially obtained is encoded by a 1569 bp cDNA, but two 

additional transcripts with extended 5'-regions have since been detected. These are denoted 
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LIMCH1 isoforms I (3918 bp) and II (2871 bp); their 3'-regions are identical to that of their 

shorter counterpart [79]. Interestingly, in isoform I the N-terminal region is characteristic of 

a calponin homology (CH) domain. CH domains occur in three highly divergent groups: 

CH1 and CH2 bind actin, while CH3, present in LIMCH1 isoform I, binds to microtubules 

[91]. Despite their N-terminal extensions both LIMCH1 isoforms I and II catalyze the 

hydrolysis of agmatine and support polyamine biosynthesis in vivo (Fig. 4). In addition, 

removal of the C-terminal LIM-domain in these isoforms produces a moderate activation, 

albeit to an extent less significant than observed for their shorter counterpart [79]. Splicing 

mechanisms that may lead to different ALP variants in rat brain have not yet been 

investigated but it is likely that isoform I is the initial functional enzyme produced there, 

while isoform II and the shorter homolog represent proteolytically modified forms. 

Understanding the mechanism of protein processing of ALP will be essential to fully 

comprehend the role of this enzyme in brain metabolism, and to target it for the 

development of novel treatments for neurological disorders such as alcoholism. In the 

human genome there is a single sequence (accession code: Q9UPQO) that encodes a 

putative enzyme which is 85% identical to rat brain LIMCH1 isoform I; their C-terminal 

LIM domains share 98% identity. Preliminary data by our group indeed demonstrate that 

this human homolog of ALP indeed possesses AGM activity (unpublished data). 

Conclusions 

In 2004, Morris stated that in mammals the “agmatine metabolism is still largely a 

mystery” [92]. At present, the cloning and partial characterization of ADC and the enzymes 

involved in agmatine degradation (Fig. 1) have significantly enhanced our knowledge of 

the agmatine metabolism in particular in mammals. However, questions remain. For 
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instance, it is not known why mammalian AGMs are virtually inactive under in vitro 

conditions. It is speculated that the enzymes may adopt a fold different from that of their 

bacterial counterparts and other members of the ureohydrolase family, and that they are 

activated by protein-protein interactions in the cell as occurs with the Ni
2+

-dependent 

urease [93]. This mechanism could provide the practical base for an efficient strategy to 

control AGM activity, and in turn agmatine concentrations. However, since AGM is not 

highly abundant in brain tissues it appears that this enzyme is unlikely to play a major role 

in this organ. In contrast, ALP is mostly found in the brain. Not only is this unusual enzyme 

an efficient AGM under in vitro and biological conditions, but its activity can be modulated 

via a C-terminal zinc finger (LIM) domain. Currently, only ALP from rat brain tissue has 

been partially characterized. While the enzyme requires manganese for its catalytic function 

its active-site geometry and metal-ion stoichiometry have not yet been determined.  Also, 

possible accessory proteins that may regulate the activity of the enzyme via interaction with 

its LIM domain have not yet been identified. Addressing these current gaps in knowledge 

will be crucial for establishing ALP as a drug target, a role that is supported by the 

predominant co-localization of agmatine and ALP in rat brain areas associated with 

appetitive and craving (drug-reinstatement) behaviors [79,80,94]. Agmatine is considered 

relatively safe when taken orally but has a range of actions outside the brain [95,96]. An 

inhibitor of ALP (and possibly AGM) is anticipated to have an effect similar to that of 

exogenous agmatine injection (which reduces ethanol-withdrawal anxiety in rodents), but 

by targeting a specific pathway a lower risk of side effects is expected (Fig. 7). 

Knowing where the agmatine receptor is localised in the brain is critical for 

understanding its function. This localisation is currently not known in either healthy 
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controls or individuals suffering from alcohol misuse. A PET ligand for the agmatine 

receptor IR2, [
11

C]BU99008, has recently been developed [97]. It has high specificity and 

behaves well in in vivo imaging in primates [98]. 

In summary, agmatine offers a much-needed new avenue to address disorders such 

as alcohol misuse and related addictions [99]. The human and financial costs associated 

with alcoholism alone are enormous and novel treatment strategies are urgently needed. 

Annually, several million people die of alcohol misuse [100]. Treatment options are 

limited; currently approved drugs for treating alcoholism have questionable efficacy and 

limited uptake in the community [101]. AGM, and in particular ALP, are promising targets 

for new strategies to address this global problem. 
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Figure legends 

Figure 1. Metabolic pathways for agmatine synthesis and conversion to polyamines or 

GABA. Agmatine, produced from L-arginine by ADC, may be hydrolyzed to putrescine, 

either by AGM or ALP in the polyamine biosynthetic pathway, or converted to 

guanidinobutyraldehyde by DAO, for the synthesis of GABA. ODC decarboxylates 

arginine and is also capable to produce putrescine. 

 

Figure 2. Multiple sequence alignment of human, E. coli, D. radiodurans agmatinases and 

human arginase. Sequences obtained from Uniprot were aligned by Clustal Omega and 

displayed using the GeneDoc. Locations of the three histidines and four  aspartate residues, 

required for metal ligand binding and enzymatic activity, which are conserved among 

members of the ureohydrolase superfamily, are indicated by stars below the alignment. 
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Figure 3. The cell growth of yeast strains unable to polyamine biosynthesis transfected 

with AGM mouse (i.e. clone 1 (□) and 2 (■)) and human AGM (▲), compared with the 

non-transfected strain (●). The yeast strain lacks the ODC gene, making it deficient in 

polyamine biosynthesis and necessitating the presence of exogenous polyamines for 

growth. The cultures were depleted of endogenous polyamines and then grown in minimal 

medium. All media contained 10 μg/mL agmatine and growth was estimated by 

nephelometry at 600 nm.  The data were previously published [72] and reproduced with 

permission from the Journal of Inorganic Biochemistry. 

 

Figure 4. Yeast strains unable to polyamine biosynthesis, transfected with isoform I of the 

Limch1 gene (o); Yeast transformed with isoform II of the Limch1 gene (o); yeast 

transformed with the ALP gene (□); untransformed control cells (●). After 30 h, spermidine 

was added to the control culture to verify the viability and dependence of polyamines for 

growth of this yeast strain. All other details are identical to those described for Fig. 3 (see 

for more details [79]). 

 

Figure 5.  Homology model of the LIM domain of ALP. Left, schematic representation of 

the LIM-domain of ALP. (A), structural model of the LIM-domain of ALP, constructed 

using MODELLER 9v10. (B) and (C), geometric environments of the Zn
2+

 ions in the two 

fingers of the LIM domain (see Cofré et al. for more details [82]). 
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Figure 6. Active site structure of AGM from D. radiodurans. A and B represent the two 

Mn
2+

 binding sites (adapted from Ahn et al.[89]). 

 

Figure 7. ALP and AGM as promising targets for novel addiction treatments. AGM and 

ALP hydrolyse agmatine to urea and putrescine. The latter is further metabolized to 

spermine. An inhibition of these two enzymes thus has the same effect as direct agmatine 

injection. 
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Figure 7 




