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Nano- and Micro-materials in the Treatment of Internal Bleeding and 

Uncontrolled Haemorrhage 

 

Abstract 

Internal bleeding is defined as the loss of blood that occurs inside of a body cavity. After a traumatic 

injury, haemorrhage accounts for over 35% of pre-hospital deaths and 40% of deaths within the first 

24 hours. Coagulopathy, a disorder in which the blood is not able to properly form clots, typically 

develops after traumatic injury and results in a higher rate of mortality. The current methods to treat 

internal bleeding and coagulopathy are inadequate due to the requirement of extensive medical 

equipment that is typically not available at the site of injury. To discover a potential route for future 

research, several current and novel treatment methods have been reviewed and analysed. The aim of 

investigating different potential treatment options is to expand available knowledge, while also call 

attention to the importance of research in the field of treatment for internal bleeding and 

haemorrhage due to trauma.  

Keywords: nanomaterials, internal bleeding, haemorrhage, coagulopathy, trauma 

Introduction 

 Severe bleeding accounts for approximately one third of total deaths in hospitals that occur 

due to trauma events [1]. Haemorrhage is the primary cause of preventable military death and the 

second cause of civilian trauma deaths [2]. Studies indicate that the majority of injury mortality 

during civilian and military trauma occurs in the prehospital period, defined as the time between 

injury and admission to the hospital [3]. Current protocol for the treatment of internal bleeding relies 

on the usage of extensive medical equipment such as computed tomography scanners, tests to 

monitor coagulation, and in some cases, surgical tools [4]. The absence of an effective, safe, and 

quick treatment method results in preventable deaths during the pre-hospital and clinical phases. 

While on the battlefield, there is little to no standard protocol established for the treatment of internal 

bleeding and haemorrhage. Unlike external injuries, internal injuries cannot be treated by 
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compression and thus intravenously administered treatment to induce coagulation and halt bleeding 

would be ideal. In areas where medical equipment is not readily available, quick and effective drugs 

are necessarily administered intravenously on the site of injury. There are many complications to 

consider when developing a solution which induces coagulation due to the harmful side effects to 

excessive blood clotting, such as pulmonary embolism and deep vein thrombosis [5]. In order to 

design a safe and effective means of treatment for internal bleeding and haemorrhage, it is necessary 

to summarise and understand current innovations and options available. This review article aims to 

provide an overview of current and potential treatment options of internal bleeding and haemorrhage 

in both clinical and pre-hospital phases. Many studies on the use of nano/micro-materials as 

hemostatic agents have been conducted [6-21] and several researchers in this field have come to the 

conclusion that nano/micro-materials would be useful in the detection and maintenance of internal 

bleeding and haemorrhage.  

 

Coagulation 

 Thrombohemorrhagic balance is maintained in the body by interactions between coagulation 

and the fibrinolytic system [22]. Primary haemostasis is defined as the process where platelets 

interact with parts of a damaged vessel wall, which leads to the formation of a platelet plug [23]. To 

initiate platelet adhesion, fibrinogen and Von Willebrand factor must be present. Once platelets 

adhere to the injury site, they are activated due to their exposure to the damaged endothelium and 

vessel wall [23]. Thrombin plays a role in the activation of platelets, regulation of factors important 

for coagulation, and the cleavage of proteins necessary to form blood clots [24]. Upon activation, 

blood platelets aggregate, leading to the formation of a platelet plug, which temporarily seals off the 

vascular injury [23]. Thrombin cleaves fibrinogen to fibrin, which forms the mesh of the clot, and 

also activates factor XIII which regulates the cross-linking of fibrin and thus can improve the 

strength of a clot [24]. The coagulation cascade has been illustrated in Figure 1 shown below. 
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Maintaining haemostasis is one of the most important aspects to consider during the treatment of 

internal bleeding and haemorrhage.  

Diagnosis 

 Symptoms of shock include tachycardia, hypotension and evidence of end organ hypo-

perfusion [25]. Focused abdominal sonography for trauma (FAST), Computed tomography (CT) 

scanners, and angiography are typically used to find the source of the bleed [4]. CT scanning has 

been an established method of the detection and location of internal bleeds and gives information 

necessary to determine whether surgical intervention or angiographic intervention is needed [26]. CT 

scans are quick and highly accurate but pose several major problems such as steep costs, high doses 

of radiation, and the chance for data misinterpretation [27]. Recently, there has been much 

enthusiasm toward the use of focused abdominal sonography for trauma due to the ability to scan in 

the emergency/ICU department, its efficacy and immediate result [28].  

 Along with the detection and location of an internal bleed, it is important for tests to be 

performed to ensure blood products remain at equilibrium [29].  Prothrombin time and activated 

partial thromboplastin time are typical factors to be evaluated in effort to monitor haemostasis, the 

physiological process that stops bleeding at the site of an injury [30]. In order to evaluate these 

factors, viscoelastical haemostatic assays (VHAs) such as thromboelastography (TEG) and rotational 

thromboelastometry (ROTEM) are used in standard protocol [31]. VHAs measure the changes in 

elastic properties of whole blood during the process of clot formation and breakdown [30]. The 

factors measured are defined in Table 1 [32]. TEG and ROTEM are similar in that they measure 

physical properties of blood clot strength, such as maximal amplitude and shear elastic modulus, to 

determine haemostatic status of patients, but differ in hardware used to hold the blood sample [33]. It 

is important to note that TEG and ROTEM cannot be used to measure platelet inhibition in patients 

who use aspirin and adenosine 5’-diphosphate receptor inhibitors such as clopidogrel, effient, or 
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ticagrelor. In this case, TEG platelet mapping assays or the multiple electrode impedance 

aggregometer multiplate must be used [34].  

 

Pathophysiology 

Coagulopathy, or a condition where the blood is unable to properly form clots, commonly 

develops in trauma situations due to acidosis, hypothermia, and loss of coagulation factors, and is 

typically associated with poor outcomes and an increase in mortality rate [35]. The disruption of 

equilibrium of blood clotting factors caused by trauma is associated with the development of acute 

traumatic coagulopathy (ATC), and in some cases can result in a 4-fold increase in mortality [36]. 

Fibrinogen, which is cleaved into fibrin to produce blood clots, proves to be one of the most 

important factors to consider during treatment of ATC and is usually the first factor to drop below 

reference values during bleeding and trauma [37]. Haemorrhage and coagulopathy can lead to direct 

tissue injury, shock, and hypoperfusion, which can cause systemic anticoagulation and 

hyperfibrinolysis, a condition where the breakdown of fibrin is potentially greater than fibrin 

formation and therefore threatens the integrity of a blood clot [35, 38]. Haemophilia, anticoagulation, 

hyperfibrinolysis, hyperfibrinogenemia, or low levels of fibrinogen, and compromised thrombin 

generation are associated with worse outcomes and an increase in mortality rate [35, 36, 38].  

 

Current Treatments of Internal Bleeding and Coagulopathy  

Compression and the use of a tourniquet prove to be effective means to control haemorrhage 

due to external injuries and open extremity injuries, but internal bleeding requires more extensive 

treatment [39]. Current standard of protocol for the treatment of haemorrhage and internal injury, 

with availability of proper medical equipment, starts with maintaining tissue oxygenation by 

aggressive fluid administration to restore blood volume. It is much debated whether this aggressive 

approach should be used due to an increase in pressure on the wound, which can cause movement of 
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blood clots, dilution of coagulation factors, and unwanted cooling of the patient [40]. Permissive 

hypotension, or aiming to achieve a lower blood pressure than normal, such as a systolic blood 

pressure of 80-90 mmHg, reduces the chances of the unwanted effects of aggressive resuscitation 

using high doses of fluids [40]. After fluid administration, it is recommended to reduce heat loss and 

warm up the body in order to diminish the effects of hypothermia, which include altered platelet 

function, impaired coagulation factor function, enzyme inhibition, and fibrinolysis [41, 42]. For 

patients with severe haemorrhagic shock, ongoing bleeding and coagulopathy, damage control 

surgery is recommended [40]. Damage control surgeries work to achieve control of haemorrhage, 

exploration, control of contamination, definitive packing and rapid abdominal closure [43].  

During the pre-hospital period, such as while on the battlefield, non-compressible bleeding 

treatment options are extremely limited and haemorrhage control in most of these cases requires 

surgical approach [44]. Current standard procedure for the treatment of catastrophic abdominal 

haemorrhage is to immediately evacuate to allow rapid surgical intervention [45]. Massive 

transfusion protocol is sometimes used, but often achieving this sort of haemorrhage control early on 

is difficult due to circumstances such as on-going gunfire, remoteness, and skill level of care 

providers [46]. After referring to current protocol for the treatment of internal bleeding and 

haemorrhage in pre-hospital and clinical phases, it is evident that alternative treatment methods are 

necessary.  

Patients in clinical settings suffering from coagulopathy may also get means of treatment by 

blood transfusion or the use of drugs that inhibit the breakdown of clot formation [47]. It is clear that 

transfusions improve survival rates, but there is much debate on the ideal transfusion ratio of blood 

to blood products [48]. To treat hyperfibrinolysis, some physicians will use antifibrinolytic drugs to 

prevent the breakdown of fibrin in the mesh of blood clots [47]. The mostly studied antifibrinolytic, 

transexamic acid (TXA), inhibits plasminogen activation and therefore prevents fibrin clot lysis [47]. 

Research studies show that upon usage on trauma injuries within 8 hours, TXA significantly reduces 
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mortality and deaths resulting from bleeding without significantly increasing thrombotic 

complications [47]. The Clinical Randomization of an Antifibrinolytic in Significant Haemorrhage 

trial (CRASH-2) was a large, randomized controlled trial which was the first to show a reduction in 

mortality and recommend the use of TXA in bleeding trauma patients [49]. It is proposed by several 

researchers that TXA should become a standard protocol in trauma management. 

In order to treat patients with hyperfibrinogenemia, fibrinogen supplementation can be 

provided by fibrinogen concentrate, cryoprecipitate, or frozen plasma [50, 51]. The fibrinogen 

content of these supplements is much debated and requires more research to test the efficacy and 

safety of this treatment [52]. Recombinant activated factor VII (rFVIIa) is used in some cases for the 

management for preoperative haemorrhage due to the inducing effect on haemostasis, especially with 

patients with haemophilia, a disorder in which blood does not clot due to the lack of proper blood-

clotting proteins [53]. Research studies show that rFVIIa proved to be an effective method to induce 

blood clotting. However, an Australian study found that 11% of patients treated with rFVIIa suffered 

from thromboembolic adverse events, and it was not effective on patients suffering from acidosis 

[54]. Current approaches used to stop the breakdown of clots are useful, but could increase the risk 

of thromboembolism and therefore other approaches should be studied.  

 

Novel Potential Treatments of Internal Bleeding  

Polymeric nanoparticles 

Bertram et al have designed a synthetic platelet that is stable at room temperature, safely 

administered intravenously, non-immunogenic, and able to halt bleeding [6]. The design relies on the 

usage of polymer engineering to allow for rapid halting of bleeding by a self-assembling peptide 

[55]. The design is shown in Figure 2A and consists of polylactic-co-glycolic acid-poly-L-lysine 

(PLGA-PLL) block copolymers in conjunction with polyethylene glycol (PEG) arms with amino 

acid sequence Arg-Gly-Asp (RGD) ends to allow for activated platelets to attach and thus form a 
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blood clot [6]. A scanning electron microscope micrograph of the synthetic platelets is shown in 

Figure 2B. The platelet membrane glycoprotein IIb/IIIa complex serves as a receptor for fibrinogen, 

von Willebrand factor, fibronectin, and vetronectin, all of which contain the amino acid sequence 

RGD. The interaction of these proteins with the receptor site is mediated by RGD and therefore 

initiated to cause blood clotting [56]. Synthetic platelet interaction with clots via the fibrin mesh can 

be seen in Figure 2C [6]. Researchers discovered that the greatest adhesion occurred as amino acids 

were added to the side chains, thus making the GRGDS formulation more effective. This design was 

tested on rodents with severed arteries and proved to be effective by reducing bleeding time by 

approximately 23% when compared to no injection [6]. When compared to no injection and a saline 

injection, the synthetic platelets resulted in a significant reduction in bleeding time (Figure 2D) [6]. 

Although the synthetic platelets have yet been tested for biocompability and cytoxicity, it is 

hypothesized that the platelets will be safe to use in the body due to the lack of platelet activation 

exhibited during in vivo analysis on rats [6]. Comparable research was done by Lashof-Sullivan et al. 

using haemostatic nanoparticles, and results proved that the nanoparticles were effective [8]. When 

tested on animals suffering from blast trauma and multi-organ haemorrhage, the study showed that 

the haemostatic nanoparticles improved survival to 90% compared to 60% with no treatment [8].  In 

both studies, no side effects were noted. More research is necessary before potentially facing human 

trials, although platelet mimicking nanoparticles prove to be a very promising route for researchers 

[6, 8]. 

 Similarly, researchers at Case Western Reserve University studied the usage of nanoparticles 

to reduce bleeding, and aimed to improve the efficiency of activated platelet targeting [8]. Prior to 

this study, intravenously injectable nanoparticles that augment haemostasis after injury were 

prepared using biodegradable block copolymers PLGA and PLL with PEG arms terminated with the 

amino acid sequence arginine-glycine-aspartic acid (GRGDS) [8].  Nanoparticle targeting of active 

platelets takes advantage of ligand-receptor, antigen-antibody, and other forms of molecular 
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recognition to deliver a drug to a specific location [57]. To optimize the usage of these nanoparticles, 

researchers noted that ligand density is a critical component in the targeting of nanoparticles [58, 59]. 

Work in this study demonstrates the importance of optimizing the ligand density and thus lays a 

model for other researchers to determine optimal ligand concentration parameters [7]. Fakhari et al 

studied the effects of varying the ligand density on nanoparticles made of PLGA with the peptide 

cLABL and discovered that the optimal ligand density was near 50/50 [60].  In the previous study at 

Case Western Reserve University focusing on the development of nanoparticles that could induce 

coagulation, survival rate of animals with liver injury that received the nanoparticles was around 

80% [7]. In the same study, researchers optimized the ligand density and found that after a 100-fold 

increase in targeting ligand concentration, a 92% survival rate was achieved using the GRGDS 

nanoparticles [7]. Studies on the ligand density and concentration are significant to optimize the 

efficacy of the targeting properties of ligands, in order to better form blood clots.  

Hubbard et al also used the peptide sequence, GRGDS, in conjugation with nanoparticles 

made of PLGA, PLL, and PEG to combat the effects of blast trauma [9]. Primary blast lung injury is 

a common cause of death resulting from internal haemorrhage caused by the detonation of 

improvised explosive devices (IEDs) [61]. PLGA is a polymer typically used for drug delivery due to 

its biodegradability, drug biocompatibility, suitable biodegradation kinetics and mechanical 

properties, and ease of processing [62-64]. Since the nanoparticles are based on PLGA, the 

researchers took advantage of drug delivery capabilities and used the nanoparticles to carry a steroid, 

dexamethasone (Figure 3A) [9]. Dexamethasone has been shown to reduce programmed cellular 

death that results from haemorrhage in the brain while also reducing inflammation after injury [65]. 

Dexamethasone proved to be a suitable and biocompatible steroid-link due to its anti-inflammatory 

properties and non-effect on coagulation [9]. A scanning electron microscope image of the particles 

loaded with dexamethasone can be seen in Figure 3B. Particles were tested for treatment of primary 

blast lung injury in rodent models, and it was found that the dexamethasone-loaded haemostatic 
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nanoparticles (hDNP) resulted in an increase in oxygen saturation and lower percent injury (Figure 

3C & D) [9]. Steroid loaded nanoparticles prove to be an optimistic agent for therapeutic treatment in 

traumatic injuries, but require more testing to evaluate their toxicity and determine if they are safe to 

use in the body.  

 

Silica and Iron Oxide Nanoparticles 

 Meddahi-Pellé et al. took a different route to achieve haemostasis by demonstrating that iron 

oxide nanoparticles and silica nanoparticle aqueous solutions could be used for wound closure and 

repair in skin and liver injuries in rat models [10]. Iron oxide nanoparticles are metabolizable, and 

could potentially be used for magnetic resonance imaging [66]. Meddahi-Pellé et al. found that 

bleeding control and tissue repair can be both achieved through the process of nanobridging [10]. 

The concept of nanobridging starts with the droplet of a nanoparticle solution being spread over the 

wound surface of a tissue. The wound edges are then brought together by gentle manual pressure and 

then the nanoparticles absorbed onto the tissue will begin linking the wound edges together [10]. In 

order to test the nanoparticles, they were deposited into the bleeding injury area with a pipette, and 

proved to bring edges of the wound together and induce haemostasis after just one minute [10]. By 

demonstrating strong adhesion and permanent haemostasis, this study proves the usage of 

nanoparticles and could lead to a future-generation of tissue adhesives. Before clinical testing, the 

nanoparticles must be tested for safety and toxicity to ensure biocompatibility and 

haemocompatability.  

Liposomes 

 Modery-Pawlowski et al. studied the usage of liposomes with surfaces covered with collagen- 

and VWF-binding peptides (CBP: TRYLRIHPQSWVHQI and VBP ([Glycine-Proline-

Hydroxyproline]7) to mimic platelet adhesion, and fibrinogen-mimetic peptide (FMP) with sequence 

of cyclo-CNPRGDY(OEt)RC to promote platelet aggregation (Figure 4A, B, C) [11]. This research 
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focused on the design of nanoparticles that could mimic both platelet adhesion and platelet 

aggregation, considering both are functions required for effective haemostasis [11]. A study by 

Okamura et al. supported this hypothesis and found that co-administering latex particles with 

functions of platelet-mimetic aggregation and platelet-mimetic adhesion resulted in higher 

haemostatic potential [21]. In this study, latex beads were functionalized with fibrinogen gamma-

chain carboxy-terminal sequence HHLGGAKQAGDV (H12), which recognizes activated platelets at 

low shear rates, and a recombinant water-soluble moiety of the platelet glycoprotein (rGPIbalpha), 

which recognizes von Willebrand factor at high shear rates. These platelet substitutes have shown 

hemostatic properties over a wide range of shear rates. Results from Modery-Pawlowski et al. found 

that liposomes decorated with both VBP and CBP had higher adhesion compared to liposomes with 

only VBP or CBP [11]. The study also demonstrated that nanoparticles that combine both platelet 

adhesion and aggregation mimetic peptides more effectively caused coagulation and treated bleeding 

and haemorrhage (Figure 4D).  

Okamura et al. studied platelet substitutes using phospholipid vesicles that bear on their 

surface a dodecapeptide, HHLGGAKQAGDV (H12) [12]. This peptide recognizes the active form of 

glycoprotein IIb/IIIa (GPIIb/IIIa) on the surface of activated platelets. When the peptide adheres, the 

formation of GPIIb/IIIa changes from a silent form to an activated form [67-69]. When activated, 

GPIIb/IIIa acts as a receptor for fibrinogen and provides three platelet interaction sites: a tetrapeptide 

containing RGD sequences such as RGDF and RGDS and a dodecapeptide, H12 [70]. The study by 

Okamura et al. focused on the usage of the dodecapeptide, H12, instead of fibrinogen [12]. In 

combination with PEG, the H12 vesicles proved to be effective as they did not interact with 

nonactivated platelets but with activated platelets via their GPIIb/IIIa receptors, thus facilitating 

platelet accumulation [12]. This research suggests that the usage of dodecapeptide H12 could be a 

potential alternative to human platelet concentrates for the treatment of internal bleeding.  

Calcium carbonate-based microparticles 
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Baylis et al developed simple gas-generating microparticles consisting of calcium carbonate (CaCO3) 

as potential hemostatic materials [13]. CaCO3 is commonly used in antacid tablets and drug 

formulations. CaCO3 rapidly produces carbon dioxide (CO2) in acidic solutions, and can form porous 

microparticles that are able to adsorb protein, making it an ideal substance for self-fuelled drug-

carrier particles. When CaCO3 particles were mixed with a solid organic acid such as protonated 

tranexamic acid (TXA-NH3
+
) and injected into buffered saline solution or whole blood, the particles 

reacted vigorously and self-travelled through the solutions at velocities of up to 1.5 cm/s. The 

transport of the particles was contributed by a combination of lateral propulsion, buoyant rise, and 

convection generated by the rapid production of gas bubbles (Figure 5A) [13]. When loaded with 

active thrombin, the microparticles were able to delivered therapeutics millimetres into the 

vasculature of wounds and worked effectively as a hemostatic agent. They were proved to halt severe 

haemorrhage in multiple mouse models of intraoperative and traumatic bleeding (Figure 5B-I). No 

signs of pain or distress were observed and the histological analysis of lung tissues showed no 

difference from controls, and therefore suggest that major embolism or severe toxicity did not occur. 

However, additional work is required to systemically evaluate safety and toxicity. 

Albumin microcapsules 

 Levi et al. investigated the effect of fibrinogen-coated albumin microcapsules on 

thrombocytopenic bleeding using models of immune thrombocytopenia and chemotherapy-induced 

thrombocytopenia in rabbits [14]. Albumin microspheres are useful in the delivery of drugs due to 

their physical and chemical stability and their capability of accommodating a large amount of drug 

molecules [71]. Fibrinogen plays a critical role in secondary haemostasis due to its involvement in 

platelet aggregation, and therefore was chosen for the potential development of a platelet substitute 

[72]. This study proved that the administration of fibrinogen-coated albumin microcapsules results in 

a reduction of bleeding in rabbits with thrombocytopenic [14]. Toxicity studies were completed 

using histological analysis of the organs and showed that there were no adverse effects of the 
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administration of fibrinogen-coated albumin microcapsules [14]. In efforts to create fibrinogen-

conjugated albumin polymers to be as effective as Levi’s platelet substitutes, Shinji et al. 

investigated the interaction of the fibrinogen-albumin polymers with Glycoprotein II/IIIa 

(GPIIb/IIIa) expressed on the activated platelets and the recruiting of circulating platelets [73]. Upon 

platelet activation, GPIIb/IIIa changes conformation, which increases the affinity of the receptor for 

fibrinogen and aids in the aggregation process [74]. The interaction of the fibrinogen-coated albumin 

microcapsules and platelets is shown in Figure 6A, while the presence of microspheres at the site of 

the haemostatic plug can be shown in Figure 6B [14]. Results showed that the number of platelets 

attached increased as the amount of fibrinogen-albumin polymers increased, indicating that the 

platelets were recruited by the attached fibrinogen-albumin polymers [73]. These studies indicate 

that fibrinogen-coated albumin microcapsules and polymers can be beneficial in the process of 

primary haemostasis and could lead to further treatments of internal bleeding and haemorrhage [14, 

73].  

Hydrogel Microparticles 

Cationic hydrogel particles as a hemostatic agent have been developed and tested by Behrens et al 

and proved to induce blood aggregate formation as well as bulk blood coagulation inhibition [15]. 

Hydrogel particles are relatively inexpensive and prove to be a promising route for the treatment of 

internal bleeding and haemorrhage. N-(3-aminopropyl)methacrylamide hydrochloride (APM) 

hydrogel particles were synthesized by inverse suspension polymerization. The hydrogel particles 

have an average diameter ranging from 450 µm to 1250 µm [15]. In order for the particles to quickly 

block blood flow, they are capable of rapidly swelling to over 1000% in size through their high 

positive charge and low crosslink density [15]. The hydrogel particles were tested on rat injury and 

ovine liver laceration models, and proved to be an effective means to block blood flow, evidenced by 

the creation of significant haemostatic plugs [15]. The study by Behren et al. proves that hydrogel 

particles are a potential means of treatment, but require removal from the body after treatment, and 
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thus more research is required to potentially add a degradable property. Toxicity and 

biocompatibility tests of the material were not reported, but with future research and testing, 

hydrogel particles could be a useful haemostatic agent.  

Synthetic Polymers 

 An engineered homeostatic polymer (PolySTAT – Figure 7A) that circulates in the blood, 

identifies sites of injury, and promotes blood clot formation to stop bleeding has been developed 

using poly-hydroxyethyl methacrylate (PolyHEMA) grafted with fibrin-binding peptide to induce 

haemostasis [16]. PolySTAT stabilizes the blood clots via fibrin crosslinking. Researchers drew 

inspiration for the synthetic haemostatic polymer from tranglutaminase Factor XIIIa (FXIIIa), the 

factor that stabilizes blood clots by crosslinking the fibrin matrix [16]. FXIIIa supplementation was 

found to produce fibrin networks with thinner fiber diameters, greater fiber density, and smaller 

pores, which are all factors that contribute to clot stiffness and resistance to fibrinolysis [75, 76]. 

PolySTAT-modified fibrin had smaller pores interspersed throughout a dense fibrin mesh compared 

to PBS and PolySCRAM controls and hFXIIIa-crosslinked fibrin, which all had distinct, loosely 

interwoven fibers and larger pore sizes (Figure 7B). The in vitro evaluation revealed that PolySTAT 

increased clotting kinetics, increased clot strength, and delayed clot breakdown [16]. While 

administered intravenously in rats, PolySTAT reduced blood loss, improved tissue perfusion, and 

enhanced survival rate (Figure 7C & D) [16]. From these results, PolySTAT proved to be an 

effective agent to induce coagulation, and could be potentially used to treat acute bleeding with 

patients suffering from clotting disorders such as FXIII deficiency and haemophilia [16].  

To create a means of pre-surgical intervention for non-compressible abdominal haemorrhage, 

a self-expanding polyurethane foam was developed and studied [17-19]. In order for the foam to 

expand, the system involves mixing and injecting two liquid phases, a polyol phase and an 

isocyanate phase [77, 78]. When the reaction occurs, the material volume expands 30 times of its 

initial volume and then a gelling reaction transforms the material from the liquid phase to the solid 
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polymer foam [17]. Research by Duggan et al. found that there was a significant increase in survival 

rate following administration of the polymer 10 minutes after liver injury [17]. The polyurethane 

polymer was developed to spread throughout the abdominal cavity in the presence of haemorrhage 

and create conformal contact with sites of injury and thus stop bleeding [17]. Studies found that this 

method is effective and has many potential benefits, but requires a midline laparotomy for extraction, 

so its usage is limited [17, 18].  Mesar et al researched this method and determined the optimal 

dosage to allow for acceptable intra-abdominal pressure to eliminate some side effects, such as focal 

bowel lesions [19]. More research, such as biocompatibility and toxicity tests, are necessary for this 

to become a treatment protocol [17, 19].  

Chitosan Nanofiber Mat 

Gu et al. studied electrospinning of pure chitosan to synthesize potential nanofibrous 

haemostatic material [20]. Chitosan is a natural polymer with very advantageous biological 

properties such as negligible immune response following implantation, injection, topical application, 

and ingestion [79]. Electrospinning is used to produce nanoscale fibers from polymers and produces 

nanofibers with desirable characteristics such as a high area to volume ratio [80]. The density of 

nanofibers restricts cell growth and mass transport of nutrients and metabolic waste, and also causes 

slow absorbance of water or blood due to the nanofiber structures [20]. Chitosan nanofiber mat with 

enlarged porosity was achieved by Gu et al using ultra-sonication, which significantly decreased 

water absorption time. The nanofiber mat was tested on the blood of rabbits and its blood clotting 

efficiency was 1.35- and 3.41-fold better than the efficiencies of other materials such as Surgicel 

(Johnson & Johnson Medical, USA) and chitosan sponge, respectively. Although no tests were 

completed on the cytoxicity of the material, the nanofiber mat can be hypothesized to be safe to use 

in the body due to Chitosan’s strong biocompatibility and biodegradability. The results found 

indicate that sonicated chitosan nanofiber mat has a strong potential to be used as a haemostatic 

agent [20].  
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Biocompatibility of Potentially Treatment Materials 

 The development of novel biomaterials, biomedical devices, or tissue-engineered objects 

requires an understanding of the biological responses to implanted materials, including the 

inflammatory response and macrophage foreign body reaction [81]. A review of the biocompatibility 

of implanted device concluded that the foreign body reaction depends on properties such as shape, 

size, surface chemistry and roughness, design, morphology and porosity, composition, sterility 

issues, contact duration, and degradation [82]. Whether a biomaterial shows favorable responses 

when implanted depends on corrosion resistance and toxicity [83]. Common polymers used in 

biomedical devices include Polyglycolide (PGA), Polylactide (PLA), and Polylactide-co-glycolide 

(PLGA) due to their degradation rates and erosion mechanisms [84]. Potential treatment materials for 

the treatment of internal bleeding and haemorrhage must also be evaluated for haemocompability 

due to their direct contact with blood. Platelet function, inflammatory response, coagulation, and 

hemolysis are important variables to consider when evaluating a material’s haemocompatability [85]. 

Many of the research studies completed had yet to complete any in vivo or in vitro testing of the 

biocompatibility, toxicity, and safety in the body. It can be assumed that this is due to the research 

being in the preliminary stages. Before any of the novel treatments studied can be allowed for 

clinical trials and further testing, analysis on the features discussed is imperative.  

 

Perspectives 

  After reviewing the current and novel methods of treatments for internal bleeding and 

haemorrhage, it is evident that there is much research left to be done in this field. Current treatments 

are effective, but pose many high risks and complications to the patients. New methods are 

promising, but are in the preliminary stages where possible complications are not clear. In pre-

hospital phases, specifically while on the battle field, there is no solution available and thus many 
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potentially preventable deaths occur. In a study by Kelly et al, 85% of deaths studied while on the 

battlefield were due to haemorrhage [86]. Haemorrhage is considered a main cause of death due to 

trauma caused by motor vehicle crashes and accidental injury [87]. In civilian settings, a study 

showed that haemorrhage is likely the cause of 20-40% of death following trauma [88]. The statistics 

previously discussed prove why research in the treatment of internal bleeding and haemorrhage is 

pertinent to the advancement of emergency and trauma medicine. 

 Current treatments available are quite limited and mainly rely on the usage of imaging and 

surgical equipment. Of the less invasive treatments currently available for internal bleeding and 

haemorrhage, such as transfusion, there are still many debates on proper protocol and standard 

procedure. As for treatments for coagulopathy, there is a severe lack in protocol and thus treatment 

varies worldwide. Of the methods studied, immediate surgical intervention proves to be the most 

effective means to stop internal bleeding, but forces patients to undergo extremely invasive 

procedures. For intravenously delivered drugs, it is difficult to determine which method is the most 

appropriate due to the large amount of questions unanswered about side effects and complications.  

 Novel methods of treatment for internal bleeding and haemorrhage prove to be effective in 

stopping blood clotting, but do not have research available on complications and solutions to 

complications that may arise. A summary of the studies reviewed is shown in Table 2. The use of 

peptides in order to give nanoparticles clotting capability proves to be a very promising route for 

researchers, but platelet targeting may not be as effective as proposed, so complications could arise 

from potential blood clotting in places outside of injury. Tissue plasminogen activator (tPA) is 

currently one of the only methods approved to treat stroke and to induce thrombolysis, or blood clot 

breakdown [89]. Tissue plasminogen activator is a naturally occurring enzyme that binds with fibrin 

and cleaves plasminogen into plasmin, and thus breaks down blood clots [90]. Administration of tPA 

proves to be an effective means of dissolving blood clots, but poses unacceptably high risks of 

bleeding in the brain and other tissues [91]. Due to the side effects of the formation of excess blood 
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clots and the lack of a safe method to treat this, it is important to research alternatives to induce 

blood clotting that can also treat side effects if they occur. 

 In conclusion, much research is urgently needed in order to obtain a safe and effective means 

of treatments for internal bleeding and haemorrhage. Current available treatments only allow for that 

accessible to extensive medical equipment. In instances where patients are not able to reach a 

hospital, such as on the battlefield or in an emergency situation, a treatment method that can be 

delivered onsite is necessary. Current studies show that nanomaterials have potential in the treatment 

of internal bleeding and haemorrhage. Researchers currently are learning to optimize the usage of 

nanoparticles in order to target the source of bleeding and stop it, but lack the knowledge of 

potentially harmful side effects and complications. Due to the risks associated with the formation of 

excess blood clots, researchers should aim their studies to develop a treatment method that reduces 

the chances of costly side effects, while also find a means to treat complications if they should arise.   
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Figure Legends 

Figure 1: Coagulation cascade. Following injury to the blood vessel, platelets are activated, 

aggregated and form platelet plug on top of the injury. Activated platelets then trigger the release of 

clotting factors that activate prothrombin to thrombin. Thrombin converts soluble fibrinogens to non-

soluble fibrins that form fibrin meshwork on top of the platelet plug. Factor XIII is activated by 

thrombin and stabilizes the fibrin meshwork. The clot typically appears red due to the entrapment of 

red blood cells in the fibrin meshwork. 

Figure 2: (A) Schematic of synthetic platelet made of PLGA-PLL core with PEG arms terminated 

with RGD. (B) Scanning electron microscope of synthetic platelets. (C) Synthetic platelet interaction 

with clot via connecting fibrin mesh. (D) Bleeding time of synthetic platelets compared to control 

injections Reproduced with permission from reference [6]. 

Figure 3: (A) Schematic of the binding of dexamethasone-loaded nanoparticles (hDNP) to activated 

platelets. (B) Scanning electron microscope image of hDNP (C) Minimum oxygen saturation in 

treatment groups after injury. (D) Treatment with hDNP resulted in a significantly lower percent 

injury Reproduced with permission from reference [9]. 

Figure 4: Physical models of possible hemostatic mechanisms of the peptide-decorated liposomes 

and hemostatic effect of constructs. (A) VBP-CBP-decorated liposomal constructs adhere to the 

vascular injury site and then promote further binding and multimerization of soluble VWF to the 

available exofacial VBP decorations on the liposome, which in turn can promote further binding of 

platelets at the site. (B) FMP-decorated liposomal constructs can result in clustering of active 

platelets onto the liposomes via FMP-to-GPIIb–IIIa interactions and attachment of these clusters at 

the injury site can be mediated via direct adhesion of the platelets. (C) Functionally integrated 

constructs show significantly higher hemostatic efficacy possibly because of their capability to 

undergo enhanced adhesion at the injury site and then promote enhanced platelet recruitment and 
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aggregation at that site by both FMP-mediated and VBP-mediated mechanisms. (D) Mice tail 

bleeding time post-transection show that pre-injection of ‘only adhesive’ or ‘only aggregation-

promoting’ liposomes resulted in approximately ∼50% decrease in the time for bleeding to stop, and 

pre-injection with the integrated constructs resulted in ∼70% reduction of bleeding time compared to 

saline or unmodified liposome injection. Reproduced with permission from reference [11]. 

 

Figure 5: Self-propelled calcium carbonate micronanoparticles as hemostatic agents. (A) 

Schematic showing CaCO3 particles releasing CO2 and propelling themselves and their cargo when 

placed in water. (B)  Bleeding times in vivo after the tails of mice were amputated. (C) Schematic 

showing a mouse liver punctured and treated with propelled thrombin. (D) Volume of blood loss in a 

separate cohort of mice after their livers were punctured and treated. (E and F) Histological sections 

of livers treated with propelled thrombin (E) or nonpropelled thrombin (F). Fluorescence staining 

shows actin (red), nuclei (blue), and CaCO3 particles (green). Scale bar, 200 μm. (G) Mass of CaCO3 

delivered to sites of liver puncture. (H) Schematic showing a pig’s punctured femoral artery being 

treated with gauze impregnated with propelled thrombin. (I) Survival of pigs after treatment. n = 5. 

*P < 0.05, **P < 0.01. Error bars indicate SEM. Reproduced with permission from reference [13]. 

Figure 6: (A) Scanning electron microscope photograph showing interaction of microcapsules and 

platelet aggregates through connecting fibrin fibers. (B) Micrograph of biopsy from a wound 15 

minutes after administration of microcapsules, which shows the presence of microspheres at the site 

of haemostatic plug. Reproduced with permission from reference [14]. 

Figure 7: PolySTAT and in vitro characterization of polySTAT-modified fibrin architecture. (A) 

The polySTAT polymer backbone, a linear statistical copolymer of HEMA and NHSMA synthesized 

via RAFT polymerization, was grafted with the modified cyclic fibrin-binding peptide Ac-

Y(DGl)C(HPr)YGLCYIQGK-Am through NHS ester reaction with lysine ɛ-amine. DGl, D-g;utamic 

acid; HPr, hydroxyproline; Ac, acetylated N-terminus; Am, amidated C-terminus. (B) Fully formed 
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fibrin clots imaged by scanning electron microscopy to visualize fibrin architecture. hFXIIIa was 

included for a crosslinking control. Scale bars, 250 nm. Schematics above the SEM images depict the 

exclusion of non-binding PolySCRAM from fibrin, PolySTAT-induced fibrin crosslinking via 

binding of fibrin-binding peptides, and enzymatic crosslinking by hFXIIIa. (C) Survival of animals 

over the 75-min protocol (n = 5 per treatment). (D) Cumulative blood loss normalized to survival 

time, including blood lost during catheter hemorrhage, the free bleeding period, and fluid 

resuscitation. Reproduced with permission from reference [16]. 
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Figure 5 
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Figure 6 
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Figure 7 
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Table 1: Data values and interpretation for TEG [32] 

TEG Value 

 

Normal  Description Measures 

TEG-ACT 

(rapid) 

80-140 sec “Activated clotting time” to initial 

fibrin formation 

clotting factors (extrinsic/intrinsic 

pathways) 

R time 

(conventional) 

5.0-10.0 min “Reaction time” to initial fibrin 

formation 

clotting factors (intrinsic pathway) 

K time  1.0-3.0 min “Kinetic time” for fibrin cross linkage 

to reach 29 mm clot strength 

fibrinogen, platelet number 

α angle 53.0-72.0 

degrees 

Angle from baseline to slope of tracing 

that represents clot formation  

fibrinogen, platelet number 

MA 50.0-70.0 mm Maximum amplitude of tracing platelet number and function 

G value 5.3-12.4 

dynes/cm
2 

Calculated value of clot strength entire coagulation cascade 

LY 30 0-3%  Clot lysis at 30 minutes following MA fibrinolysis 

 

  



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

39 
 

Table 2: Summary of materials studied for the treatment of internal bleeding and trauma 

haemorrhage 

Agent Material Size Surface Shape Clotting mechanism Ref. 

Synthetic 

Platelets 

PLGA-PLL-

PEG 

170 nm Ø Arg-Gly-Asp 

(RGD) 

Nanosphere Activated platelets bind to Arg-Gly-

Asp (RGD) sequence on 

nanosphere through specific ligand-

receptor interactions 

[6] 

Targeted 

Nanoparticles 

PLGA-PLL-

PEG 

500-600 nm 

Ø 

Arg-Gly-Asp 

(RGD) 

Nanosphere Optimizing targeting peptide 

(RGD) concentration in order to 

improve activated platelet binding 

[7] 

Steroid-Loaded 

Hemostatic 

Nanoparticles 

PLGA-PLL-

PEG 

500 nm Ø Arg-Gly-Asp 

(RGD) 

Nanosphere Activated platelet binding with 

RGD in conjugation with the usage 

of dexamethasone, a steroid shown 

to reduce apoptosis 

[9] 

Silica and Iron 

Oxide 

Nanoparticles 

Silica, Iron 

Oxide 

50 nm  Ø Silica aqueous 

solution 

Nanosphere Silica nanoparticle aqueous solution 

and iron oxide nanoparticles were 

directly applied to wound to close 

wounds and repair through 

nanobridging 

[10] 

Platelet-

mimetic 

liposomal 

nanoconstruct 

Liposomes 150 nm Ø CBP, VBP, 

FMP 

Nanosphere The usage of collagen-and-VWF 

binding peptides (CBP and VBP) 

and Fibrinogen-mimetic peptide 

(FMP) to mimic both platelet 

adhesion and aggregation 

[11] 

H12-PEG 

Vesicles 

PEG 220 nm Ø H12 Nanosphere The dodecapeptide 

HHLGGAKQAGDV (H12) 

recognizes the active form of 

GPIIb/IIIa on the surface of 

activated platelets 

[12] 

Platelet- 

substituted bead 

Latex bead 1 m Ø  H12, 

rGPIbalpha 

Microsphere The use of activated platelet 

binding peptide (H12) and vWF 

binding glycoprotein (rGPIbalpha) 

to mimic both platelet aggregation 

and adhesion. 

[21] 

Self-propelled 

miroparticles 

CaCO3 10 µm Ø NA Microsphere Reaction of mixture of CaCO3 

particles and protonated tranexamic 

acid in aqueous solutions leads to 

rapid production of gas bubbles, 

which propels the particles against 

blood flow to deliver active 

thrombin. 

[13] 

Fibrinogen-

coated albumin 

microcapsules 

Albumin 3.5-4.5 µm 

Ø 

Fibrinogen 

 

Microsphere The coated microcapsules facilitate 

platelet adhesion to endothelial cell 

matrix  

[14] 

Hydrogel 

Microparticles 

APM 450–1250 

µm  Ø 

APM Microsphere Hydrogel particles quickly halt 

bleeding by rapidly swelling to over 

1000% in size and forming a robust 

haemostatic plug 

[15] 

Synthetic 

Fibrin-

Crosslinking 

Polymer 

pHEMA-co-

NHSMA 

MW: 4.45 x 

10
4 
Da 

Cyclicfibrin-

specific 

peptide 

Linear 

statistical 

copolymer 

Synthetic hemostatic polymer 

(PolySTAT) were engineered after 

Factor XIIIa to stabilize blood clots 

through fibrin crosslinking 

[16] 
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Self-expanding 

foam 

Polyurethane NA Polyol phase, 

isocyanate 

phase 

NA Mixing of the polyol and isocyanate 

phase results in a foam that spreads 

throughout abdominal cavity 

creates contact with sites of injury  

[17-

19] 

Nanofiber Mat Chitosan NA Chitosan Nanofiber The structure of the nanofibers 

result in super-hydrophobicity and a 

density which slows the absorbance 

of blood 

[20] 

 

 

 


