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Nonreciprocal atomic scattering: A saturable, quantum Yagi-Uda antenna
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Recent theoretical studies of a pair of atoms in a one-dimensional waveguide find that the system responds
asymmetrically to incident fields from opposing directions at low powers. Since there are no explicit time-reversal
symmetry-breaking elements in the device, this has caused some debate. Here we show that the asymmetry arises
from the formation of a quasidark state of the two atoms, which saturates at extremely low power. In this case
the nonlinear saturability explicitly breaks the assumptions of the Lorentz reciprocity theorem. Moreover, we
show that the statistics of the output field from the driven system can be explained by a very simple stochastic
mirror model and that at steady state, the two atoms and the local field are driven to an entangled, tripartite |W 〉
state. Because of this, we argue that the device is better understood as a saturable Yagi-Uda antenna, a distributed
system of differentially tuned dipoles that couples asymmetrically to external fields.
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I. INTRODUCTION

Nonreciprocal devices, such as isolators, circulators, and
gyrators, are important components for optical and microwave
technologies. They are typically used to route or isolate signals
propagating in different directions. Recently, a unidirectional,
two-atom device has been identified as potentially useful in
quantum electronics [1–7], building on earlier analyses of
distributed atomic systems [8–12]. Transmission through this
device depends asymmetrically on the direction of the input
field, hence it has been dubbed a quantum diode.

The quantum diode consists of a pair of spatially separated,
nondegenerate atoms in a one-dimensional (1D) waveguide,
shown in Fig. 1(a), tuned to discriminate between a coherent
field α incident from the left, and a coherent field β

incident from the right. Prima facie, this appears to violate
reciprocity: the transmission coefficients of a passive, linear,
time-reversal-symmetric scatterer should satisfy T← = T→,
so there is an interesting question as to the origin of the
transmission asymmetry.

Here, we derive a master equation for the driven two-atom
system shown in Fig. 1(a). We show that the two-atom dark
state [7] responsible for the asymmetry arises from entangle-
ment between the matter and the field [10]. This leads to non-
reciprocal [13] and incoherent [7] scattering matrices, and we
establish the maximum possible “diode efficiency” [2] of 2/3,
for which the steady state is inverted. Finally, we show that a
toy model of a randomly fluctuating mirror replicates the statis-
tics of the scattered field and corresponds exactly to the rate
equation model when adiabatically eliminating all coherences.

The picture that emerges is that in the steady state, under cw
driving from one direction, the two atoms become entangled
with the local electromagnetic field in a tripartite |W 〉 state. In
the atomic Hilbert space, this corresponds to a long-lived,
probabilistic mixture of the ground and dark states. Since
scattering arises from coherence between the ground and
bright states, the dark-state population effectively decouples
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the scatterer from the field, resulting in nonzero transmission.
In contrast, driving from the opposite direction does not couple
to the dark state at all. Based on these observations, we argue
that the device should be understood as a saturable Yagi-Uda
antenna (a directional dipole array) [11,14], and we speculate
that nonreciprocity may be enhanced in an n > 2 atom
device.

This paper is organized as follows: We introduce the master
equation describing the two atoms and the coherent drive
via the waveguides in Sec. II and then start the analysis in
Sec. III by calculating the steady state of the two atoms under
driving in the parameter regime relevant for rectification. These
results then motivate the division of the two-atom Hilbert space
into a fast and slow subspace and we derive the dynamical
equations for the scattering when adiabatically eliminating
the fast subspace in the following Sec. IV and discuss the
scattering characteristics of this system in Sec. V. Another step
of adiabatically eliminating the remaining coherences in the
slow subspace then leads to a toy model of a “flapping” mirror,
which we explore in Sec. VI before discussing the rectification
properties of this device in Sec. VII. The Appendices contain
details of the calculations and derivations.

II. SYSTEM

We model the system of two two-level atoms depicted in
Fig. 1(b), bidirectionally cascaded in a 1D waveguide [15,16]
(also see Appendix A). The atoms are driven by a coherent
field at frequency ωc, and separated by a distance d (with
corresponding phase shift φ = ωcd/cs = 2πd/λc [17], where
cs is the speed of light in the medium). The device operates
near the first resonance, for which the interatomic spacing is
half a wavelength, i.e., φ ≈ π . The evolution of the system
in the local atomic basis {|gg〉,|ge〉,|eg〉,|ee〉} is described by
Hamiltonian terms and dissipators

Hk = −ωk σ (k)
z /2, Lk =

√
γk/2 σ

(k)
− , (1)

with k = 1,2 for the two atoms in the waveguide, and σ− =
|g〉〈e|. The master equation for the two-atom density matrix is

ρ̇ = Lρ ≡ −i[HT ,ρ] + D[L→]ρ + D[L←]ρ, (2)
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FIG. 1. (a) Schematic illustration of two atoms in a waveguide,
driven by a field incident from the left with amplitude 〈ain〉 = α, or
from the right with 〈bin〉 = β. (b) Hybridized model, in which an
incident field scatters strongly (i.e., reflects) off the |G〉 = |gg〉 ↔
|B〉 ∼ |eg〉 − |ge〉 transition. For a field incident from the left,
interference between direct and indirect excitation channels couple
weakly to the dark state |D〉 ∼ |eg〉 + |ge〉. Driving from the right
does not couple to |D〉. (c) Reflectance R and phase shift ϕ versus
dimensionless detuning, δ = δω1/γ , for a field reflected off a single
atom.

where D[X]ρ = XρX† − 1
2 (X†Xρ + ρX†X), and

HT = H1 + H2 − i(αL
†
1 − α∗L1)/2 − i(βL

†
2 − β∗L2)/2

− i[eiφL
†
2(L1 + α) − e−iφ(L†

1 + α∗)L2]/2

− i[eiφL
†
1(L2 + β) − e−iφ(L†

2 + β∗)L1]/2, (3)

L→ = L2 + eiφL1 + eiφα, (4)

L← = L1 + eiφL2 + eiφβ. (5)

Terms like L
†
2L1 in HT represent effective interatomic cou-

pling, induced by their mutual coupling to the waveguide.
The left-moving output field amplitude and photon flux are,

respectively,

αout(t) = 〈aout(t)〉 = Tr{L←ρ(t)},
Aout(t) = 〈a†

outaout(t)〉 = Tr{L†
←L←ρ(t)}. (6)

The right-moving amplitude, βout, and flux, Bout, depend
similarly on L→. Without loss of generality, we consider the
two atoms to be coupled symmetrically to the waveguide, so
that γ1 = γ2 = γ .

Atom 2 (depicted in Fig. 1) is resonant with the carrier
frequency, ωc, and to break inversion symmetry, we detune
atom 1 by an amount ω1 − ωc = δω1 ≡ −δ γ . In linear
response, the reflectance of each atom is a Lorentzian in the
dimensionless detuning, δ, as shown in Fig. 1(c), and there
is a corresponding phase shift, ϕ, in transmission. For small
detuning, this phase shift is ϕ ≈ −δ. We perturb the geometric
interatomic separation to compensate for this phase shift,
so that φ = π − δ. This choice of δω1 and φ is consistent
with Ref. [2] and, as shown in Appendix C, optimizes the
asymmetry in the response of the system. In what follows, we
adopt units where γ = 1.

III. STEADY STATE

As we are interested in the scattering properties of the two-
atom system, we start our analysis by calculating the steady
state of the atoms under driving from either left or right. The
results of this section will guide the subsequent analysis and
allow us to identify a reduced slow subspace relevant for the
scattering dynamics, and which will enable us to adiabatically
eliminate fast degrees of freedom from the cascaded master
equation in Sec. IV.

We solve for the steady state of the master equation,
Lρ

(α,β,δ)
ss = 0, perturbatively in δ, using the expansions

ρ(α,β,δ)
ss = ρ̄0 + iδρ̄1 + δ2ρ̄2 + · · · ,

L = L0 + iδL1 + δ2L2 + · · · . (7)

This expansion assumes that δ is the smallest quantity in the
problem, consistent with earlier treatment of this problem
[2,7]. Further, we assume that driving is far below the
saturation power for each individual atom, so that δ � |α| +
|β| � γ = 1. This allows us to make analytic progress, and,
as we show, is the regime in which interesting physics occurs.

The solution to the zeroth-order equation, 0 = L0ρ̄0 is
the null space of the superoperator L0, which is twofold
degenerate,

ρ̄0 = pG(α,β,δ) ρ̄
(1)
0 + pD(α,β,δ) ρ̄

(2)
0 , (8)

where ρ̄
(1)
0 = |G〉〈G| + O(α2,β2) and ρ̄

(2)
0 = |D〉〈D|, |G〉 =

|gg〉, |D〉 = (|ge〉 + |eg〉)/√2 is the “dark” state, and pG/D are
as-yet-undetermined coefficients. As shown in Appendix B,
the system thus hybridizes into the symmetric (|D〉) and
antisymmetric (|B〉) states shown in Fig. 1(b), in which the
steady state is well approximated by a probabilisitic mixture
of the ground state and the dark state.

We calculate the higher-order corrections, ρ̄j , by a gen-
eralized nullspace analysis of the higher-order expansions of
Lρ̄ = 0 (see Appendix D). At second order we find that pG

and pD are related by

pD/pG =
{

2 + α2 + 2α4 for α driving (βin = 0)

β2 + 2β4 for β driving (αin = 0.)
(9)

Together with normalization, Tr{ρ̄0} = pG + pD = 1, we find

ρ(α,0,δ)
ss = 1

3

∣∣G〉〈
G

∣∣ + 2
3

∣∣D〉〈D| + O(α2),

ρ(0,β,δ)
ss = |G〉〈G| + O(β2). (10)

Thus, for α driving (i.e., from the left), the steady state of the
system is dominated by the dark state, whereas β driving (i.e.,
from the right) is decoupled from the dark state, and leaves
the atoms in the ground state. These results are apparently
independent of the driving amplitudes. For α driving, this
arises because the dark-state transition becomes saturated at
surprisingly low powers.

We make several observations about this result. Firstly,
the steady state depends on the driving direction, which
accounts for the asymmetric response to driving fields that
has been discussed elsewhere. Secondly, the atomic steady
state, ρ(α)

ss , is mixed, but retains some entanglement (with
respect to any local atomic basis) between the atoms due to
the dark-state component: the concurrence of ρ̄0 is Cρ̄0 = p2

D ,
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so that C
ρ

(α)
ss

≈ 4/9 > 0. Lastly, ρ(α)
ss exhibits steady-state

population inversion, since the ground-state population is
pG ≈ 1/3 < 1/2.

For a symmetric system (δ = 0), the dark state is completely
decoupled from the field and thus, in principle, infinitely
long-lived. Conversely, for small |δ| > 0, the dark state is
very weakly coupled to the waveguide, so that it has an
anomalously long lifetime. As we show in Appendix B,
there is a fast time scale associated with the bright state
|B〉 = (|ge〉 − |eg〉)/√2, given by τ−1

B = γB = 2γ + O(δ2),
and a slow time scale associated with the dark state, given by
τ−1
D = γD = δ2γ + O(δ3) [7,18]. It is this slow time scale that

leads to a saturation of the ground-state to dark-state transition
at very low incident power.

Finally, the purification [19] of ρ(α)
ss is the tripartite |W 〉

state

|W 〉 = (|eg0〉 + |ge0〉 + |gg1〉)/
√

3,

where we have introduced a purifying system labeled by the
states |0〉 and |1〉. In this picture, |0〉 corresponds to the incident
field being transmitted, and |1〉 corresponds to the incident
field being reflected [10]. The evolution of the field-plus-atom
is unitary, so that the purifying system has support on the field
modes a

†
out and b

†
out [10,18], corresponding to the “recently

scattered” field. That is, the slow subspace of the atoms is
entangled with the field out to a distance ∼ τDcs .

IV. ADIABATIC ELIMINATION

In light of the steady-state analysis above and the separation
of time scales discussed there, we adiabatically eliminate the
fast subspace spanned by F = {|B〉,|E〉}, where |E〉 = |ee〉,
to yield dynamics in the slow subspace, spanned by S =
{|G〉,|D〉}. We apply the adiabatic elimination procedure from
Refs. [16,20,21], to get the SLH triple for the system restricted
to the slow subspace. As described in Appendix E, to lowest
nontrivial order in α, β, and δ we derive the adiabatically
eliminated operators

H̃T = αδ σ̃x/2, (11)

L̃→ = 1
2 [(α − β)σ̃z − (α + β)1],

L̃← = iδσ̃− − 1
2 [(α − β)σ̃z + (α + β)1], (12)

where σ̃z = |G〉〈G| − |D〉〈D|, σ̃x = σ̃− + σ̃+, and σ̃− =
|G〉〈D|. We note that this adiabatic elimination does not rely
on the earlier perturbative assumption that δ � α,β, rather it
merely requires δ,α,β � γ = 1.

The coherent part of the master equation generated by H̃T

accounts for the asymmetry observed in the steady state: the
effective Hamiltonian, H̃T , vanishes for β driving (i.e., from
the right), so that the dynamics within the slow subspace is
completely decoupled from β.

The effective Lindblad operator L̃← is a coherent com-
bination of dephasing and relaxation. Together with the α-
dependent driving in H̃T , the system evolves to an inverted
steady state: without the interplay between driving and
dissipation, the maximum population of the dark state would
be bounded by pD < 1/2 [22–26].

The steady state in the slow subspace, S, is then

ρ̃(α,β,δ)
ss = 1

6α2 + 2β2 + δ2

[
2α2 + 2β2 + δ2 2iαδ

−2iαδ 4α2

]
. (13)

This result does not require δ � |α| + |β| as in Eqs. (9) and
(10), however, naturally, it agrees with those results in the
limits α → 0 or β → 0. Together with L̃� in Eq. (12), Eq. (13)
enables us to find analytical expressions for the field fluxes.

V. SCATTERING

Using the adiabatically eliminated operators, we calculate
the scattering matrices for field amplitudes, S, and fluxes, T .
Writing [

αout

βout

]
= S

[
α

β

]
,

[Aout

Bout

]
= T

[Ain

Bin

]
,

where Ain = |α|2, Bin = |β|2, we find

S = −
[

2α2−δ2

6α2+δ2 0
4α2

6α2+δ2 1

]
≈ −

[
1/3 0

2/3 1

]
, (14)

T =
[Rα Tβ

Tα Rβ

]
=

[
p

(α,0,δ)
G p

(0,β,δ)
D

p
(α,0,δ)
D p

(0,β,δ)
G

]
≈

[
1/3 0

2/3 1

]
,

(15)

where p
(α,β,δ)
K = 〈K|ρ̃(α,β,δ)

ss |K〉, and the approximations hold
for δ � |α| + |β|. Up to an overall sign, the scattering matrices
in Eqs. (14) and (15) are identical.

We see that S = ST , consistent with the definition of an
(imperfect) isolator. For this system, the Lorentz reciprocity
theorem is broken by the nonlinear saturation of the atoms
[13].

Further, S is not unitary, indicating that the scattered field
is not fully coherent for α driving. One way to see this is to
note that for α = 0 we find Aout = |αout|2, i.e., the output field
flux is not equal to the square of the output field amplitude, as
it would be for a coherent state. Conversely, for β driving, the
dark state remains unpopulated, and if |βin|2 � γ , the bright
state will be unsaturated, so that the atoms will reflect the
incident field [27]. In this case, the output field is coherent as
it is simply the reflected input field.

While these observations imply the field is incoherent,
there are many different ways in which incoherence may be
manifest. To quantify the incoherent scattering for α driving,
we calculate the steady-state output field correlation functions,

g
(1)
ref (τ ) = 〈a†

out(t + τ )aout(t)〉/Aout,

g
(2)
ref (τ ) = 〈a†

out(t)a
†
out(t + τ )aout(t + τ )aout(t)〉/A2

out,

and similar for the transmitted field correlations, g
(1,2)
trans (τ )

[7] (see also Appendix F). Further, the spectrum of the
scattered field can be computed directly from g

(2)
ref (τ ), so this

may be useful for experimental comparison. We will later
compare these correlation functions to the result of a simple
“flapping-mirror” model, and show that they are essentially
indistinguishable.

For α driving (from the dark-state coupling direction),
the two-time field-field correlation functions, g(1)(τ ), for the
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FIG. 2. Correlation functions, g(1)(τ ) and g(2)(τ ), for reflection
and transmission, under α driving. We can calculate these correlation
functions using the full four-dimensional Hilbert space, the adiabat-
ically eliminated two-dimensional space, and the “flapping-mirror”
toy model. The differences between these calculation methods are
∼ (δ/α)2 = 10−6, so are not visible on this scale.

reflected and transmitted fields satisfy g
(1)
ref (0) = g

(1)
trans(0) = 1,

and

lim
τ→∞ g

(1)
ref (τ ) = (2α2 − δ2)2

(4α2 + δ2)2 − 4α4
= 1

3
+ O

(
δ2

α2

)
,

lim
τ→∞ g

(1)
trans(τ ) = 4α2

6α2 + δ2
= 2

3
+ O

(
δ2

α2

)
.

The flux-flux correlation function g(2) satisfies
limτ→∞ g

(2)
ref (τ ) = limτ→∞ g

(1)
trans(τ ) = 1, and

g
(2)
ref (0) = 6α2 + δ2

2α2 + δ2
= 3 + O

(
δ2

α2

)
,

g
(2)
trans(0) = 3

2
+ δ2

4α2
.

At long times, g(1)(τ ) is subunity, indicating incoherent
statistics, while g(2)(τ ) > 1, indicating thermal or bunched
light. At intermediate times, the correlation functions decay
exponentially between the above limits, as shown in Fig. 2.

The correlation functions for β driving (from the decoupled
direction) are unity for all time (up to corrections of order
δ2/α2).

The incoherence of the outgoing field under α driving arises
from two competing effects: firstly, the drive couples weakly
to the dark state, so that when δ2γ � α2 � γ = 1, the dark
state becomes ultrasaturated (i.e., inverted) over a time ∼ τD .
Secondly, the input field reflects off the strongly coupled dipole
transition |G〉 ↔ |B〉, so that when the system is shelved in
the dark state, |D〉, it becomes transparent. At steady state,
the system thus fluctuates between the ground state, which
coherently reflects the incoming field as would a single-atom
mirror [27,28], and the dark state, which is transparent to the
driving field. The normalized output flux is thus equal to the
dark-state probability, pD = 2/3.

VI. POISSON RATE EQUATIONS AND
FLAPPING-MIRROR MODEL

The correlation functions can be understood from a simple
rate model in which we eliminate the off-diagonal elements
ρDG and ρGD in Eq. (1), assuming the reduced Hamiltonian
and Lindblad operators given in Eq. (12). As described in
Appendix G, for α driving, we find[

ṖD

ṖG

]
≈

[−δ2 2δ2

δ2 −2δ2

][
PD

PG

]
. (16)

Since the dark state |D〉 is transparent to the incident field
(so the reflectivity of the system is R = 0), and the ground
state |G〉 reflects the field (so the reflectivity is R = 1), this
expression motivates a simple flapping-mirror classical rate
model, which replicates the outputfield correlation functions.

Suppose a black-box optical circuit consists of a mirror
which flips in and out of the optical path, controlled by a
two-state random variable R ∈ {0,1} ↔ {D,G}, where the
arrow indicates a precise correspondence between the notional
reflectivity of the mirror, and the state of the two-atom system
in the reduced slow subspace. For R = 1, the optical circuit
is fully reflective (i.e., reflectance R1 = 1), and when R = 0
the circuit is fully transparent, (i.e., reflectance R0 = 0). We
assume the black box responds asymmetrically to light incident
from different directions [29]: for light incident from the right,
we fix R = 1 so thatR1 = 1; for light incident from the left we
drive the state of the mirror with a Poisson process following
a simple two-state rate model with transition rates �RR , from
state R to R, given by the matrix elements in Eq. (16). Starting
in state R, the flapping mirror will be found in that state after
time τ with probability

PR,R(τ ) = pR − (1 − pR)e−�tott , (17)

where p0 = pD = 2/3 and p1 = pG = 1/3 are the steady-
state probabilities of state R, i.e., pR = �RR/�tot, �01 =
�D = δ2γ = �10/2, and �tot = �01 + �10 = 3δ2γ .

In Appendix H we discuss in detail the statistics of a
coherent state of amplitude αin passing through this flapping-
mirror device. The reflected and transmitted field amplitudes
are {αout,βout} = {p1α,p0α}, the fluxes are {Aout,Bout} =
{p1|α|2,p0|α|2}, and the correlation functions are

g
(1)
ref (τ ) = P1,1(τ ), (18)

g
(1)
trans(τ ) = P0,0(τ ), (19)

g
(2)
ref (τ ) = P1,1(τ )/p1, (20)

g
(2)
trans(τ ) = P0,0(τ )/p0. (21)

We see that the output field amplitudes and fluxes of the
flapping-mirror model agree with the two-atom scattering
results in Eqs. (14) and (15) (up to overall phase). The
correlation functions of the flapping-mirror model completely
replicate the corresponding correlation functions of the α-
driven, two-atom system, and are visually indistinguishable
from the traces plotted in Fig. 2.
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FIG. 3. Transmittance versus incident power, |αin|2/γ or |βin|2/γ .
The dark state becomes saturated for |α|2 � δ2, so that Tα has
a dark-state saturation plateau for δ2 � |α|2/γ � 1 wherein Tα ≈
2/3 = pD . Tβ is independent of δ. The bright state also becomes
saturated when |α|2,|β|2 � γ , so that Tα and Tβ both asymptote to
unity when |α|2,|β|2 � γ . Solid curves are calculated using the full
four-dimensional Hilbert space. Dashed curves are calculated for
the two-dimensional slow subspace (adiabatic elimination) which
are valid for |α|2,|β|2 � γ , and are plotted with a small offset
for visibility. Also shown is the “diode efficiency” E (dotted) for
δ = 10−3, as defined in Ref. [2].

VII. RECTIFICATION

The asymmetry of the flux through the device has attracted
some interest due to an analogy with a diode: the system
appears to “rectify” flux from one side. This is manifest in
the transmission coefficients, in Fig. 3, which shows Tα for
several different values of δ, and Tβ , which is essentially
independent of δ. There is a clear plateau where Tα ≈ 2/3, for
δ2γ � αin � γ = 1. This is consistent with the flux scattering
matrix elements in Eq. (15), which shows that the transmission
coefficient TK is just the dark-state probability. The low-power
roll-off of Tα corresponds to the saturation intensity of the dark
state, which is small due to the extremely weak dark-state
coupling at small δ.

Previous work has quantified this asymmetry using the
“diode efficiency” [2], defined as

E = Tα(Tα − Tβ)/(Tα + Tβ).

Clearly, in the regime where the asymmetry is greatest, Tβ �
Tα , so that E ≈ Tα = pD(α,0,δ). The diode efficiency E is
shown as a dotted curve in Fig. 3, and tracks Tα until the bright
state starts to become saturated at high power. As discussed in
Appendix C we numerically optimize E over δφ and δω, and
we find the maximum value, E = pD ≈ 2/3, at the settings
δφ = −δω = δ that we have adopted throughout.

The underlying asymmetry in absorption is manifest from
the asymmetric field coupling in the effective Hamiltonian,
Eq. (11), and this also gives rise to asymmetric emission from
atomic excited states. Figure 4 shows the time-dependent,
left-going flux, Aout, and right-going flux, Bout, from the dark
state [10]. It is evident that the dark state emits asymmetrically,
with the vast majority of energy radiating to the left over a long
time γ t ∼ δ−2. This asymmetric emission is reminiscent of a

FIG. 4. Radiated flux from the dark state, |D〉, moving left, Aout,
and right, Bout, showing strong asymmetry in the emission profile,
analogous to a Yagi-Uda directional transmitter. The main panel
shows flux over long time scales γ t ∼ δ−2 � 1; inset shows flux
over short time scales, γ t ∼ 1.

two-element Yagi-Uda antenna (of the kind used for direc-
tional radio transceivers), in which detuned dipole elements
behave as “reflectors” and “directors” to produce a directional
radiation pattern [11,14].

For n = 2 atoms, the peak “diode efficiency” E = 2/3 =
n/(n + 1) is equal to the dark-state population in the entangled
tripartite |W 〉 state of the atoms and field. By analogy, we
speculate that if n > 2 atoms are suitably tuned (e.g., as in
Refs. [30–32]), then the diode efficiency E could be improved
for larger n, albeit with a narrow bandwidth.

VIII. CONCLUSIONS

To conclude, we have analyzed a two-atom system in a
1D waveguide. Consistent with previous results, we find that
this system responds asymmetrically to external driving fields
when one of the atoms is detuned from the driving field
and their separation is close to a half-integer multiple of the
wavelength, and we establish the regime where the response
is maximally asymmetric.

In addition, we have shown that the onset time for the
asymmetry is not instantaneous. Rather, it is established
over a time scale set by the dark-state lifetime, which sets
a modulation bandwidth for any time-varying signals. The
asymmetry in the field coupling leads to an inverted, entangled
mixture of the ground and dark states, which is ultimately
responsible for nonreciprocal scattering. The scattered field
statistics are replicated by a simple stochastic flapping-mirror
model, which physically corresponds to fluctuations between
the dark and ground states of the atoms.
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APPENDIX A: SLH MODELING

We start from the SLH triple in Eq. (1) for each atomic
system, which is cascaded with two coherent state source
models [16], leading to Eqs. (3)–(5) in the main text. [See
also Eq. (132) and Eqs. (174)–(176) of [16], for additional
discussion.]

We may refactor the SLH master equation to obtain a more
accessible form of the operators

ρ̇ =Lρ = −i[H,ρ] + D[L̄1]ρ + D[L̄2]ρ, (A1)

H =H0 + HC + HD, (A2)

with the operators

H0 = H1 + H2, (A3)

HC = 1

2
√

γ1γ2 sin φ(σ (1)
− σ

(2)
+ + σ

(1)
+ σ

(2)
− ), (A4)

HD = i

√
γ1

2
[(α∗ + e−iφβ∗)σ (1)

− − (α + eiφβ)σ (1)
+ ]

+ i

√
γ2

2
[(β∗ + e−iφα∗)σ (2)

− − (β + eiφα)σ (2)
+ ], (A5)

L̄1 = L1 + eiφL2, (A6)

L̄2 = L2 + eiφL1, (A7)

where HC describes coupling between the two atoms, mediated
by the field and HD is the coherent drive acting on each atom.
The modified Lindblad operators L̄1/2 now describe purely the
decay of the atoms into the field. Note that in order to correctly
calculate output field amplitudes and fluxes, we still need to
keep in mind the original Lindblad operators, Eqs. (4) and
(5). However, the above description correctly reproduces the
dynamics of the atomic degrees of freedom, i.e., the master
equation is equivalent to Eq. (2).

APPENDIX B: HAMILTONIAN IN DARK-
AND BRIGHT-STATE BASIS

Defining the bright and dark states as the symmetric and
antisymmetric superposition of the states with a single atomic
excitation

|B〉 = 1√
2

(|ge〉 − |eg〉), |D〉 = 1√
2

(|ge〉 + |eg〉), (B1)

we can define new ladder operators as

σ
(B)
− = 1√

2
(σ (2)

− − σ
(1)
− ), σ

(D)
− = 1√

2
(σ (2)

− + σ
(1)
− ), (B2)

with σ
(B)
+ |gg〉 = |B〉 and σ

(D)
+ |gg〉 = |D〉. In the basis

{|gg〉,|D〉,|B〉,|ee〉}, we can then write the Hamiltonian of
the atoms and their effective coupling as

H0 + HC ≈ 1

2

⎛
⎜⎜⎜⎝

−ω1 − ω2 0 0 0

0 −g0 sin φ ω2 − ω1 0

0 ω2 − ω1 g0 sin φ 0

0 0 0 ω1 + ω2

⎞
⎟⎟⎟⎠,

(B3)

where g0 = √
γ1γ2. This expression makes evident that in the

dark- and bright-state basis, a detuning between the two atoms,
δω = ω1 − ω2 = 0, leads to an effective coupling between the
symmetric and the antisymmetric state. Conversely, a coupling
term between the atoms will lead to a splitting between the dark
and bright states. Assuming equal coupling of the two atoms
to the waveguide, γ1 = γ2 = γ , we find for the driving terms
and dissipative operators

HD = −i

√
γ

2
{σ (D)

+ (α + β)(1 + eiφ)

− σ
(B)
+ (α − β)(1 − eiφ)} + H.c., (B4)

L̄1 =
√

γ

2
{σ (D)

− (1 + eiφ) − σ
(B)
− (1 − eiφ)},

L̄2 =
√

γ

2
{σ (D)

− (1 + eiφ) + σ
(B)
− (1 − eiφ)}. (B5)

As discussed below and in the main text, in the following we
adopt optimal parameters ω1 = −δ γ , ω2 = 0, and φ = π − δ,
with δ � γ = 1, and we will only write the results to lowest
nontrivial order in δ.

Then we find for the Hamiltonian of the atoms plus their
coupling

H0 + HC ≈ 1

2
γ

⎛
⎜⎜⎜⎝

δ 0 0 0

0 δ δ 0

0 δ −δ 0

0 0 0 −δ

⎞
⎟⎟⎟⎠. (B6)

Defining the small parameter ε = 1
2 iδ, we can write the driving

Hamiltonian as

HD ≈ i
√

γα{(1 − ε)σ (B)
+ − εσ

(D)
+ }

− i
√

γ β{(1 − ε)σ (B)
+ + εσ

(D)
+ } + H.c., (B7)

while for the sum of the two dissipators we find

D[L̄1]ρ + D[L̄2]ρ

= 2γ |1 − ε|2D[σ (B)
− ]ρ + 2γ |ε|2D[σ (D)

− ]ρ. (B8)

To second order in δ we thus find the decay rates of the bright
and dark states

γB = 2|1 − ε|2γ ≈ 2γ, γD = 2|ε|2γ ≈ δ2γ /2. (B9)

Thus the antisymmetric state has a fast decay rate, so that can
be identified as the bright state, and the symmetric state has a
slow decay rate, making it the dark state.

APPENDIX C: OPTIMIZED EFFICIENCY

Throughout the preceding analysis, we considered δφ =
−δω1 ≡ δ and δω2 = 0. This choice of parameters optimizes
the “diode efficiency” E = Tα(Tα − Tβ)/(Tα + Tβ), which is
a measure of the left-right asymmetry in the flux transmission.
To demonstrate this, we numerically tabulate E over atomic
detunings δω1 and δω2 for each value of δφ. We find
the optimal left-right asymmetry when δω2 = 0 and δφ =
−δω1 ≡ δ. Part of this numerical calculation is shown in Fig. 5
in which we fix δω2 = 0, and find that Emax ≈ 2/3 along the
optimal parameter choices above. The following analytical
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FIG. 5. Top: Contour plot of the “diode efficiency” E as a function
of interatom path length δφ, and the detuning of one atom δω1,
assuming δω2 = 0. Bottom: Line cut through contour plot along
dashed line. The peak efficiency, E = 2/3, occurs along the line
δφ = −δω1 ≡ δ. Allowing δω2 to vary does not yield a higher value
for E .

calculations, which adopt this parameter choice, confirm this
as the maximum diode efficiency.

APPENDIX D: ANALYTICS ALONG OPTIMAL
PARAMETERS

We solve for the steady state of the master equation, Lρss =
0, perturbatively in δ, using the expansion

ρss = ρ̄0 + iδρ̄1 + δ2ρ̄2 + · · · ,

L = L0 + iδL1 + δ2L2 + · · · , (D1)

requiring that the steady-state equation Lρss = 0 is fullfilled
at all orders of δ independently. This then leads to a hierarchy
of equations for the components of the steady-state density
matrix

0 = L0ρ̄0,

0 = L0ρ̄1 + L1ρ̄0,

0 = L0ρ̄2 − L1ρ̄1 + L2ρ̄0

· · · . (D2)

Technically we always solve for the null space of a linear
system of equations. We find that the null space ofL0 is twofold
degenerate, so that we can write

ρ̄0 = a1ρ̄
(1)
0 + a2ρ̄

(2)
0 , (D3)

where we leave the coefficients ai arbitrary for the moment.
We could fix one of the two coefficients by, e.g., requiring the
unit trace condition for a valid physical density matrix, but
we will only do that later for clarity. The second parameter
remains always undetermined at lowest order δ.

Plugging the zeroth-order solution into the first-order equa-
tion above, Eq. (D2), we find a fourfold degenerate null space
of the first-order equations. Two of the solutions correspond
to the choice a1 = a2 = 0 for ρ̄0, in which case the first-order
equation reduces to finding the null space of L0 again.

The other two solutions are nontrivial and together this
leads again to a parametrization of the first-order steady
state as

ρ̄1 = b1ρ̄
(1)
1 + b2ρ̄

(2)
1 + b3ρ̄

(1)
0 + b4ρ̄

(2)
0 , (D4)

where the coefficients are initially completely free. Fixing
the trace at first order as Trρ̄1 = 0 (to guarantee a valid
density matrix for all δ), allows us to fix one of the four
parameters in ρ̄1. Two of the remaining three parameters can
be determined by requiring that the above ansatz actually is a
steady-state solution of the master equation to first order in δ,
i.e.,

(L0 + iδL1)(ρ̄0 + iδρ̄1) = 0 (D5)

to first order in δ. At this point we are thus left with the free
parameters a1,a2 and one of the bi , where one of the ai can
be determined from the unit trace condition.

Repeating the procedure for the second-order equation in
the above hierarchy, Eq. (D2), then finally allows us to uniquely
determine the ai . We find

a
(α)
2 = 1

2α4
(2 + α2 + 2α4)a1, a

(β)
2 =

(
1 + 1

2β2

)
a1,

(D6)

with a1 fixed by the trace.
Going to third order in the above hierarchy then uniquely

fixes all parameters of the first-order parametrization, and we
can write

ρss ≈ ρ̄0 + iδρ̄1, (D7)

which is different for driving from either side and coincides
well with the numerical solutions for these parameters. For
driving from the left, β = 0, we have

ρ̄
(α)
0 = 1

a0

⎛
⎜⎜⎜⎜⎝

2 + 2α2 + 2α4
√

2α(1 + α2) −√
2α(1 + α2) −2α2

√
2α(1 + α2) 2 + α2 + 2α4 2 − α2 −√

2α3

−√
2α(1 + α2) 2 − α2 2 + α2 + 2α4

√
2α3

−2α2 −√
2α3

√
2α3 2α4

⎞
⎟⎟⎟⎟⎠,
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ρ̄
(α)
1 = 1

a0

⎛
⎜⎜⎜⎜⎝

0
√

2
α

(1 + α4)
√

2
α

(1 + α2 + 2α4) 2α2

−
√

2
α

(1 + α4) 0 α2
√

2α(1 + 2α2)

−
√

2
α

(1 + α4) −α2 0
√

2α(1 + 2α2)

−2α2 −√
2α(1 + 2α2) −√

2α(1 + 2α2) 0

⎞
⎟⎟⎟⎟⎠, (D8)

with a0 = 6 + 4α2 + 8α4. For driving from the right (α = 0), we find

ρ̄
(β)
0 = 1

b0

⎛
⎜⎜⎜⎜⎝

2(1 + β2 + β4) −√
2β(1 + β2)

√
2β(1 + β2) −2β2

−√
2β(1 + β2) β2 + 2β4 −β2

√
2β3

√
2β(1 + β2) −β2 β2 + 2β4 −√

2β3

−2β2
√

2β3 −√
2β3 2β4

⎞
⎟⎟⎟⎟⎠,

ρ̄
(β)
1 = 1

b0

⎛
⎜⎜⎜⎜⎝

0 0 −√
2β(1 + β2) 2β2

0 0 β2 −√
2β3

√
2β(1 + β2) −2β2 0 0

−β2
√

2β3 0 0

⎞
⎟⎟⎟⎟⎠, (D9)

with b0 = 2(1 + 2β2 + 4β4).
It is instructive to consider the limit of the above expression

for weak driving. To lowest order in α,β, we find

ρ̄(α) ≈ 1

9
√

2α

⎛
⎜⎜⎜⎝

1 a1 a2 0

a∗
1 1 1 i9α2δ

a∗
2 1 1 i9α2δ

0 −i9α2δ −i9α2δ 0

⎞
⎟⎟⎟⎠,

ρ̄β ≈

⎛
⎜⎜⎜⎝

1 − β√
2

β√
2
(1 − iδ) 0

− β√
2

0 0 0
β√
2
(1 + iδ) 0 0 0

0 0 0 0

⎞
⎟⎟⎟⎠, (D10)

with a1 = α2(3 − 2iδ) + 3iδ, a2 = −α2(3 − iδ) + 3iδ. Here
the steady state for driving from the left can be approximately
expressed as ρ̄(α) ≈ 1

3 |00〉〈00| + 2
3 |+〉〈+| and for driving from

the right we find ρ̄(β) ≈ |00〉〈00| as stated in the main text.
These solutions are strictly valid only for δ < α,β.

APPENDIX E: ADIABATIC ELIMINATION
IN SLH FORMALISM

Adapting the treatment in Ref. [16] (which elaborates on
Refs. [20,21]), we perform adiabatic elimination directly for
the SLH operator triplet. To this end we define a slow and fast
subspace via the projectors

�0 = |G〉〈G| + |D〉〈D|, �1 = |B〉〈B| + |E〉〈E|, (E1)

where our choice is motivated through the observation that the
steady state is limited to ground state |G〉 and dark state |D〉.

Using the operator

K = −
(

iH + 1

2

∑
k

L
†
kLk

)
= Y + A + B (E2)

we then define the fast, slow, and intermediate parts of K

through

Y = �1K�1,

A = �1K�0 + �0K�1,

B = �0K�0. (E3)

Performing a similar distinction for the Lindblad terms in the
SLH triple

Lk = Fk + Gk, (E4)

with

Fk = �1Lk�1 + �0Lk�1,

Gk = �1Lk�0 + �0Lk�0, (E5)

we then get the equations for the SLH quantities in the
adiabatically eliminated subspace defined by �0 as

K̃ = �0(B − AỸA)�0 = −
(

iH̃ + 1

2

∑
k

L̃
†
kL̃k

)
,

L̃k = (Gk − FkỸA)�0 (E6)

which allows us to extract the adiabatically eliminated Hamil-
tonian H̃ and Lindbladians L̃k , as given in the main text. Here
the operator Ỹ is defined as the (pseudo)inverse of Y with
respect to the fast subspace, through

Ỹ Y = Y Ỹ = �1. (E7)

Also, since the scattering matrix S in our case is not relevant for
any physical quantities of interest (since we already cascaded
the source term into our original SLH triple), we also do not
explicitly calculate the adiabatically eliminated S̃.

The projection method above is chosen such as to automat-
ically satisfy the operator conditions that are necessary for the
validity of the elimination scheme, namely,

Y�0 = 0, Fk�0 = 0 ∀k, �0A�0 = 0. (E8)
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APPENDIX F: FIELD CORRELATION FUNCTIONS

Following Ref. [33] we can calculate the output field
correlation functions as

g(1)(t0,t1) = 〈a†(t0)a(t1)〉√
〈a†(t0)a(t0)〉〈a†(t1)a(t1)〉

,

g(2)(t0,t1) = 〈a†(t0)a†(t1)a(t1)a(t0)〉
〈a†(t0)a(t0)〉〈a†(t1)a(t1)〉 , (F1)

where we take the initial time t0 to be a time at which the system
is already in equilibrium, i.e., has reached steady state. Then
the equal-time correlation functions are simply the equilibrium
fluxes

〈a†(t0)a(t0)〉 = 〈a†(t1)a(t1)〉 = Tr{a†aρss}
= Tr{a†aeLt1ρss} = Tr{L†Lρss} (F2)

with the steady-state density matrix ρss, the Liouvillian
superoperator describing the dissipative time evolution L, and
where we used the fact that ρss is stationary under the action
of L. Note that we replaced field operators by system or atom
operators in the last line, in the usual input-output logic

aout = ain + √
γ σ− = L. (F3)

Two-time correlation functions we calculate according to [33]

〈A(t0)B(t1)〉 = Tr{BeL(t1−t0)ρ(t0)A},
〈A(t0)B(t1)C(t1)D(t0)〉 = Tr{BCeL(t1−t0)Dρ(t0)A}, (F4)

which translates into

〈a†(t0)a(t1)〉 = Tr{LeLt1ρssL
†},

〈a†(t0)a†(t1)a(t1)a(t0)〉 = Tr{L†LeLt1LρssL
†}. (F5)

APPENDIX G: ADIABATIC ELIMINATION TO OBTAIN
POPULATION RATE EQUATIONS

As a prelude to the flapping mirror model, we derive a rate
equation model for the dark- and ground-state populations,
by adiabatically eliminating the off-diagonal elements ρDG

and ρGD in Eq. (1), assuming the reduced Hamiltonian and
Lindblad operators given in Eq. (12). In practice, we set ρ̇DG =
ρ̇GD = 0, and solve the resulting algebraic equations for ρDG

and ρGD , in terms of the populations PG = ρGG and PD =
ρDD . Considering α driving (i.e., setting β = 0), we find

ρDG = ρ∗
GD = −2iαδ

2α2 + δ2
ρGG, (G1)

from which it follows that[
ṖD

ṖG

]
=

[
−δ2 4α2δ2

2α2+δ2

δ2 −4α2δ2

2α2+δ2

][
PD

PG

]
(G2)

=
[−δ2 2δ2

δ2 −2δ2

][
PD

PG

]
+ O(α2). (G3)

APPENDIX H: FLAPPING MIRROR MODEL

The rate equations in Eq. (G3) correspond to a Poisson
process in which the two-atom system fluctuates between
states |G〉 and |D〉, with transition rates given by the elements
of the matrix in Eq. (G3). For low driving powers, the state |G〉

is reflective, while the state |D〉 is decoupled from the field, so
is transparent.

Thus we consider a toy model of a field propagating through
a flapping mirror which either reflects the input field ain to aout,
if it is in state R = 1, or transmits ain to bout if it is in state
R = 0. If the two-state model is driven by a Poisson process
with transition rates �RR , then the probabilities for the two
states satisfy a rate equation[

Ṗ0

Ṗ1

]
=

[−�01 �10

�01 −�10

][
P0

P1

]
. (H1)

The steady-state probabilities are p0 = �10/�tot and p1 =
�01/�tot, where �tot = �01 + �10. The return probabilities
(i.e., the probability that if the system starts in state R, it
will be found in the same state after time τ ) is given by
PR,R(τ ) = pR − (1 − pR)e−�tott . Note that PR,R(0) = 1 and
limτ→∞ PR,R(τ ) = pR .

This generic population rate model coincides with the rate
model Eq. (G3) when P0 = PD , P1 = PG, �01 = δ2γ , �10 =
2δ2γ , and �tot = 3δ2γ , leading to p1 = pG = 1/3, and p0 =
pD = 2/3.

For a stationary process, and an incident coherent field,
〈ain(t)〉 = αin, it is straightforward to show that the reflected
and transmitted output field amplitudes and fluxes satisfy

{αout,βout} = {p1αin,p0αin},
{Aout,Bout} = {p1|αin|2,p0|αin|2}, (H2)

where βout = 〈bout(t)〉, Aout = 〈a†
out(t)aout(t)〉, and Bout =

〈b†out(t)bout(t)〉. These reproduce the output field amplitudes
and fluxes we have calculated for driving the two-atom system
from the coupled side (i.e., α driving) reported in Eqs. (14)
and (15).

g
(1)
ref (τ ) = 〈a†

out(t + τ )aout(t)〉
〈a†

out(t)aout(t)〉
= α∗

inP1,1(τ )αinp1

p1|αin|2 = P1,1(τ )

(H3)

and

g
(1)
trans(τ ) = 〈b†out(t + τ )bout(t)〉

〈b†out(t)bout(t)〉
= P0,0(τ ). (H4)

These both satisfy g
(1)
R (0) = 1 and decay exponentially to

g
(1)
R (0) = pR as τ increases. Similarly

g
(2)
ref (τ ) = 〈a†

out(t)a
†
out(t + τ )aout(t + τ )aout(t)〉

〈a†
out(t)aout(t)〉2

= P1,1(τ )/p1

(H5)

and

g
(2)
trans(τ )= 〈b†out(t)b

†
out(t + τ )bout(t + τ )bout(t)〉

〈b†out(t)bout(t)〉2
=P0,0(τ )/p0.

(H6)

These both satisfy g
(2)
R (0) = 1/pR and decay exponentially to

unity as τ increases.
Identifying the rates in the toy model with the rate equation

in Eq. (G3), we reproduce the correlation functions for the
α-driven cascaded atom system.
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