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We propose and analyze a nonlinear optical apparatus in which the direction of asymmetric steering
is controllable within the apparatus, rather than by adding noise to measurements. Using a nondegenerate
parametric oscillator with an injected signal field, we show how the directionality and extent of the steering
can be readily controlled for output modes that can be up to one octave apart. The two down-converted
modes, which exhibit the greater violations of the steering inequalities, can also be controlled to exhibit
asymmetric steering in some regimes.
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The existence of the phenomenon of steering was recog-
nized by Schrödinger in 1935 [1,2] as an extension of the
Einstein-Podolsky-Rosen paradox (EPR) [3], and put on a
firmmathematical footing byWiseman et al. in 2007 [4]. The
importance of EPR steering was reflected in a special journal
issue on the topic [5], and it has been shown to be necessary
for secure continuous-variable teleportation [6], with control
being possible by feedback [7].Wiseman et al. also raised the
question of whether asymmetric steering was possible, i.e.,
whether bipartite states shared betweenAlice andBob existed
where Alice could steer Bob, but not vice versa. For the case
of Gaussian measurements, this was soon answered, both
theoretically [8,9] and experimentally [10], using the Reid-
EPR criteria for the products of inferred variances [11]. It has
since been established that asymmetric steering is a general
property, not being dependent on Gaussian measurements
[12]. Continuous variable asymmetric steering has been
predicted in intracavity second harmonic generation [13]
and atomic Bose-Hubbard chains [14,15], and measured
experimentally in a four-mode cluster state [16].
The optical parametric oscillator (OPO) along with

homodyne measurements of phase-sensitive correlations
are mature technologies, found in many quantum optics
laboratories [17]. The first experimental demonstration of
EPR steering was by Ou et al. [18], using the two down-
converted fields of a nondegenerate OPO. An injected
signal at one of the low frequency modes can be used to
increase conversion efficiency as well as create a coherent
component of the modes, in both the degenerate [19] and
nondegenerate cases [20]. Yu et al. have shown how the
nondegenerate OPO can be used to produce three-color
entanglement [21], with two of the same authors analyzing
the bichromatic entanglement properties with an injected
signal [22]. These bichromatic entanglement properties
were experimentally investigated by Gu et al. [23].
Bichromatic entanglement was also analyzed theoretically

and experimentally with injected fields at both the signal
and idler by Wang and Li [24]. In this work we show how
controlling the amplitude of an injected signal can also
control the asymmetry of EPR steering in the system. We
examine EPR steering in all three possible output biparti-
tions and show that the effects are intrinsic to the scheme,
not requiring added noise to achieve control of the quantum
correlations as in previous work [10,25].
The nondegenerate OPO consists of a nonlinear χð2Þ

material inside a pumped Fabry-Perot cavity. Three optical
fields interact inside the material: an externally pumped
mode at frequency ω0, and two down-converted modes at
ω1 and ω2, where ω0 ¼ ω1 þ ω2. The important aspect of
the nondegeneracy is that the two down-converted modes
be distinguishable, so that they need not have different
frequencies if they can be separated due to different
polarizations, for example. In the system we examine here,
we will consider the effects of an injected coherent signal at
frequency ω1. Since the pump laser is often a high
frequency mode from an up-conversion process, a field
at one of the lower frequencies should be readily available.
The rotating wave interaction Hamiltonian for the

system is

Hint ¼ iℏκðâ0â†1â†2 − â†0â1â2Þ; ð1Þ
where âj is the bosonic annihilation operator for the mode
at ωj and κ represents the effective χð2Þ nonlinearity. The
cavity pumping Hamiltonian is

Hpump ¼ iℏðϵ0â†0 þ ϵ1â
†
1Þ þ H:c:; ð2Þ

where the ϵj represent coherent input fields at frequency ωj.
Note that we are considering that all fields are resonant with
the cavity. The damping of the cavity fields into a zero
temperature Markovian reservoir is described by the
Lindblad superoperator
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Lρ ¼
X2

i¼0

γið2âiρâ†i − â†i âiρ − ρâ†i âiÞ; ð3Þ

where ρ is the system density matrix and γi is the cavity loss
rate at ωi.
Starting with the Hamiltonian, we proceed via the von

Neumannequation for thedensitymatrix,mapping this onto a
Fokker-Planck equation (FPE) for the chosen pseudoprob-
ability distribution, and then onto stochastic differential
equations [26]. Since it is well known that the FPE for the
Glauber-Sudarshan P function [27,28] has a negative dif-
fusionmatrix and therefore cannot bemapped onto stochastic
differential equations, we decide to use the positive-P
distribution [29], which is exact for this system. This
distribution requires a doubled phase space and the FPE
can be simply found from the equation for the Glauber-
Sudarshan P distribution by setting variables and their
complex conjugates as independent [30]. This entails chang-
ing α�j to α

þ
j , so that αj and α

þ
j are now independent variables

and allows for a positive-definite diffusion matrix in the
resulting FPE.
The resulting FPE is found as

dP
dt

¼
�
−
� ∂
∂α0 ðϵ0−γ0α0−κα1α2Þþ
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where ~α is the vector of amplitude variables. This FPEmaps
onto six coupled stochastic differential equations

dα0
dt

¼ ϵ0 − γ0α0 − κα1α2;

dαþ0
dt

¼ ϵ�0 − γ0αþ0 − καþ1 α
þ
2 ;

dα1
dt

¼ ϵ1 − γ1α1 þ κα0αþ2 þ
ffiffiffiffiffiffiffi
κα0
2

r
ðη1 þ iη2Þ;

dαþ1
dt

¼ ϵ�1 − γ1αþ1 þ καþ0 α2 þ
ffiffiffiffiffiffiffiffi
καþ0
2

r
ðη3 þ iη4Þ;

dα2
dt

¼ −γ2α2 þ κα0αþ1 þ
ffiffiffiffiffiffiffi
κα0
2

r
ðη1 − iη2Þ;

dαþ2
dt

¼ −γ2αþ2 þ καþ0 α1 þ
ffiffiffiffiffiffiffiffi
καþ0
2

r
ðη3 − iη4Þ; ð5Þ

where the complex variable pairs ðαi;αþj Þ correspond to the

operator pairs ðâi; â†jÞ in the sense that stochastic averages of

products converge to normally ordered operator expectation

values, e.g., αþm
i αnj → hâ†mi ânj i. The ηj are Gaussian noise

terms with the properties η̄i ¼ 0 and ηjðtÞηkðt0Þ ¼
δjkδðt − t0Þ. We note that these equations have the same
form in either Itô or Stratonovich calculus [31] and that they
describe the process inside the optical cavity.
When nonlinear optical media are held inside a pumped

optical cavity, the measured observables are usually the
output spectral correlations, which are accessible using
homodyne measurement techniques [32]. These are readily
calculated in the steady state by treating the system as an
Ornstein-Uhlenbeck process [31]. In order to do this, we
begin by expanding the positive-P variables into their
steady-state expectation values plus delta-correlated
Gaussian fluctuation terms, e.g.,

αss → hâiss þ δα: ð6Þ
Given that we can calculate the hâiss, we may then write the
equations of motion for the fluctuation terms. The resulting
equations are written for the vector of fluctuation terms as

dδα⃗ ¼ −Aδα⃗dtþ BdW⃗; ð7Þ
where A is the steady-state drift matrix, B is found from the
factorization of the diffusion matrix of the original Fokker-
Planck equation, D ¼ BBT , with the steady-state values
substituted in, and dW⃗ is a vector of Wiener increments. As
long as the matrix A has no eigenvalues with negative real
parts, this method may be used to calculate the intracavity
spectra via

SðωÞ ¼ ðAþ iω1Þ−1DðAT − iω1Þ−1; ð8Þ
from which the output spectra are calculated using the
standard input-output relations [32] and 1 is the 6 × 6
identity matrix. Note that the procedure for obtaining the
matrix SðωÞ by the Fourier transform of the two-time
covariance matrix is fully covered in Ref. [31], having been
originally developed for stochastic analysis of chemical
reactions by Chaturvedi et al. [33].
In this case the semiclassical equations found by

removing the noise terms from Eq. (5) are difficult to
solve analytically, requiring the solution of a fifth-order
polynomial. For this reason, we will proceed numerically in
what follows. A is found as

A ¼

2
6666666664

γ0 0 κα2 0 κα1 0

0 γ0 0 κα�2 0 κα�1
−κα�2 0 γ1 0 0 −κα0
0 −κα2 0 γ1 −κα�0 0

−κα�1 0 0 −κα0 γ2 0

0 −κα1 −κα�0 0 0 γ2

3
7777777775

; ð9Þ
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and D is a 6 × 6 matrix with

Dð3; 5Þ ¼ Dð5; 3Þ ¼ κα0;

Dð4; 6Þ ¼ Dð6; 4Þ ¼ κα�0; ð10Þ

and all other elements are zero. In the above two equations,
the αj should be read as the steady-state mean values, so

that α�j ¼ αþj . These are now complex numbers that are the
averages of the positive-P stochastic variables. Because we
have parametrized our system using γ1 ¼ 1, the frequency
ω is in units of γ1. SðωÞ is now in terms of quadratic
products of the fluctuation operators. To express it in terms
of the canonical quadratures, we calculate

SqðωÞ ¼ QSQT; ð11Þ

where Q is the block diagonal 6 × 6 matrix constructed
from

q ¼
�
1 1

−i i

�
: ð12Þ

SqðωÞ then gives us the products we require to construct the
output spectral variances and covariances for modes i and j
as, for example,

VðXi; XjÞ ¼ δij þ ffiffiffiffiffiffiffiffi
γiγj

p ðSq2i−1;2j−1 þ Sq2j−1;2i−1Þ: ð13Þ

It is important to note here that this process is not valid if
the eigenvalues of A have any negative real parts, which is
not the case for any of the results presented.
In order to show EPR steering, we use the Reid criterion

[11], for which the product of two inferred quadrature
variances being less than 1 proves the existence of the
EPR paradox for that particular bipartition. The inferred
variances are found as

V infðX̂ijÞ ¼ VðX̂iÞ −
½VðX̂i; X̂jÞ�2

VðX̂jÞ
;

V infðŶijÞ ¼ VðŶiÞ −
½VðŶi; ŶjÞ�2

VðŶjÞ
; ð14Þ

where VðABÞ ¼ hABi − hAihBi and V infðAijÞ denotes the
variance of Ai as inferred by measurements made of Aj.
When the product of these two inferred variances is less
than 1, mode i can be steered by measurements made at
mode j, and the EPR paradox is demonstrated for these two
modes. We will use EPRjk as the product of the X̂jk and Ŷjk

inferred variances. The directionality of the paradox is
recognized in the fact that EPRjk, where mode j is steered
by measurements of mode k, is not always equal to EPRkj.
The situation where one of these is less than 1 while the
other is more than 1 is known as Gaussian asymmetric

steering. We note that our quadrature definitions are
X̂j ¼ âj þ â†j and Ŷj ¼ −iðâj − â†jÞ. Because the EPR
steerable states are a strict subset of the entangled states,
both symmetric and asymmetric steering demonstrate that
the two modes concerned are fully bipartite entangled.
We find that the presence or otherwise of asymmetric

steering between the three output modes can be controlled
by the simple mechanism of altering the amplitude of ϵ1,
the injected signal. This can be seen in Fig. 1, where EPR01

is less than 1 across the whole range shown, while EPR10

only drops below 1 for ϵ1 ≳ 1.28ϵ0. For this result the
mirror loss rates at all frequencies are equal. Controlling the
signal amplitude is perhaps the simplest change that can be
made to a nondegenerate parametric oscillator, and should
be easier than dynamically changing mirror reflectivities or
detunings. A large degree of symmetric violation of the
Reid inequalities for the two down-converted modes is
available across much of the range for these parameters,
with asymmetric steering only appearing when the actual
steering is negligible. We did not find any steering
involving the pair of fields at ω0 and ω2, for the whole
parameter range investigated.
It is also worthwhile to investigate the effects of different

cavity loss rates on these phenomena. In practice, mirror
losses can be either frequency dependent or polarization
dependent. When we double the loss rates for the down-
converted modes, while leaving that at ω0 unchanged, we
see no change from symmetric to asymmetric steering over
the range of signals investigated. As shown in Fig. 2, the
pair (1,2) exhibits symmetric steering across the whole
range, while (0,1) exhibits asymmetric steering.
A different example is the case where the injected field

experiences a lower damping rate, as shown in Fig. 3,
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FIG. 1. The minima of the spectral EPRij output correlations
between the modes 0 and 1, and 1 and 2, as a function of the ratio
of the injected signal to the pump amplitude at ω0. γ0 ¼ γ1 ¼
γ2 ¼ 1 for this result, κ ¼ 10−2, and ϵ0 ¼ 100. All quantities
plotted in this Letter are dimensionless.
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where γ0 ¼ γ2 ¼ 1 ¼ 2γ1. In this case we see a clear
crossover for both bipartitions, at ϵ1 ≈ 0.78ϵ0, with (0,1)
being asymmetric below this, and (1,2) asymmetric above.
We show the positive frequency spectra for this example in
Fig. 4, from which the symmetry and asymmetry of the
different bipartitions can be seen.
In the normal nondegenerate OPO below threshhold, the

down-converted fields have no coherent component and
no fixed phase. This is no longer the case with an injected
field at ω1, which sets a phase reference and thus gives a
coherent component to both low frequency fields. In our
case, we have treated both input fields as real and positive

so that the intracavity fields in the resonant case are also real
and positive. The fields have a bright coherent component, as
can be seen in Fig. 5, for γ2¼ γ0¼1¼2γ1. Although not
easily seen in the figure, α1 ¼ α2 ¼ 0 for ϵ1 ¼ 0 and in the
noninjected case would maintain this value up to the
oscillation threshold.
In the three parameter regimes presented here, there is

always at least one bipartition available that exhibits
symmetric steering across the whole range ϵ1=ϵc that has
been investigated. In Fig. 1 we find a region where only one
bipartition has symmetric steering, and one where both do,
although the degree of violation of the inequality by EPR12

is small for larger ϵ1. In Fig. 2, we see there is always
one symmetric pair and one asymmetric pair, with these
swapping roles at the same value of injected signal. The
ability to choose the mode of operation adds flexibility to
this scheme and may well have practical applications,
beyond being of fundamental interest.
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FIG. 2. The minima of the spectral EPRij output correlations
between the modes 0 and 1, and 1 and 2, as a function of the ratio
of the injected signal to the pump amplitude at ω0. γ1 ¼ γ2 ¼
2 ¼ 2γ0 for this result, κ ¼ 10−2, and ϵ0 ¼ 100.
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FIG. 3. The minima of the spectral EPRij output correlations
between the modes 0 and 1, and 1 and 2, as a function of the ratio
of the injected signal to the pump amplitude at ω0. γ2 ¼ γ0 ¼
1 ¼ 2γ1 for this result, κ ¼ 10−2, and ϵ0 ¼ 100.
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FIG. 5. The steady-state mode amplitudes as a function of the
ratio of the injected signal to the pump amplitude. γ2 ¼ γ0 ¼
1 ¼ 2γ1 for this result, κ ¼ 10−2, and ϵ0 ¼ 100.
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In conclusion, we have proposed a versatile and simple
to operate means of producing tuneable symmetric and
asymmetric steering between either modes of similar
frequencies, or modes that are up to one octave apart in
frequency. Optical parametric oscillators are a mature
technology, as is homodyne detection. The addition of a
controllable input signal to an operating OPO is simplified
by the fact that pumping lasers are often the result of
frequency doubling from another laser output, meaning
that a field at the appropriate frequency is already available.
The control of the steering direction in this scheme is
inherent to the apparatus itself, and does not depend on
noise being added after the nonlinear interaction, as in
previous proposals.
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