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Abstract 
 

Pharmaceuticals could potentially pose detrimental effects on aquatic ecosystems and 

human health, with wastewater treatment being one of the major pathways for 

pharmaceuticals to enter into the environment. Enhanced removal of pharmaceuticals has 

been widely observed by ammonia oxidizing bacteria (AOB). However, the degradation 

mechanisms involved in pharmaceutical biotransformation were still ambiguous. In addition, 

pharmaceutical biotransformation models have not yet considered transformation products 

associated with the metabolic type of microorganisms. The overall objective of this thesis is 

to understand the contribution of different metabolisms by relevant microorganisms to the 

biotransformation of selected pharmaceuticals (i.e., atenolol and acyclovir) accompanied 

with the formation of their transformation products in an enriched nitrifying sludge, in terms 

of product identification, influencing factor assessment and mathematical modeling. 

 

Biodegradation of atenolol in an enriched nitrifying sludge was studied under different 

metabolic conditions. The positive link was observed between atenolol biodegradation and 

the cometabolic activity of AOB in the presence of ammonium, likely due to a broad 

substrate spectrum of ammonia monooxygenase (AMO). In the presence of ammonium, 

atenolol was transformed into P267 (atenolol acid) and three new products including P117 

(1-isopropylamino-2-propanol), P167 (1-amino-3-phenoxy-2-propanol), and an unknown 

product P227. However, atenolol was only transformed to P267 and P227 in the absence of 

ammonium. The formation of P117, P167 and P227 was further confirmed from follow-up 

atenolol acid biodegradation experiments in the presence of ammonium. Therefore, a 

tentative biodegradation pathway of atenolol is proposed in the enriched nitrifying sludge, 

consisting of two steps regardless of the presence of ammonium: i) microbial amide-bond 

hydrolysis to carboxyl group, producing P267 and ii) a possible formation of P227 and other 

two cometabolically induced reactions: iii) breakage of ether bond in the alkyl side chain to 

produce P117 and iv) a minor pathway through N-dealkylation and loss of acetamide moiety 

from the aromatic ring, yielding P167. An important insight was herein provided regarding 

the biotransformation pathways of pharmaceuticals under different metabolic conditions.  

 

To further assess the influence of the growth substrate on atenolol biotransformation in 

enriched nitrifying culture, different ammonium concentrations were applied constantly to 

study atenolol degradation kinetics and the biotransformation product formation dynamics. 

Higher ammonium concentrations led to the lower atenolol removal efficiencies probably 
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due to the substrate competition between ammonium and atenolol. The formation of 

biotransformation product atenolol acid was positively related to the ammonium oxidation 

activity, resulting in a higher amount of atenolol acid at the end of experiments at higher 

ammonium concentrations. Positive correlations between ammonia oxidation rate and 

atenolol degradation rate at ammonium levels of both 25 and 50 mg-N L-1, suggested the 

cometabolism of atenolol by AOB in the presence of ammonium. The revealed 

biotransformation reaction, i.e., hydroxylation on amide group to carboxylic group, could be 

catalyzed by the non-specific enzyme AMO. It was also demonstrated the formation of 

atenolol acid was independent on the ammonium availability. 

 

Biotransformation of acyclovir by the enriched nitrifying culture was evaluated under 

different metabolic conditions at different initial levels of acyclovir (15 mg L-1 and 15 μg L-1). 

Higher degradation rates of acyclovir were observed under higher ammonia oxidation rates 

in the presence of ammonium than those constant degradation rates in the absence of 

ammonium. The positive correlation between acyclovir degradation rate and ammonia 

oxidation rate further confirmed the cometabolic biodegradation of acyclovir by AOB in the 

presence of ammonium. Carboxy-acyclovir (P239) was produced from acyclovir 

biodegradation. The main biotransformation pathway was aerobic oxidation of the terminal 

hydroxyl group, which was independent on the metabolic type (i.e. cometabolism or 

metabolism). This enzyme-linked reaction might be catalyzed by monooxygenase from AOB 

or heterotrophs (HET). The formation of carboxy-acyclovir was irrelevant to the acyclovir 

concentrations applied, indicating the revealed biotransformation pathway might be 

dominant in acyclovir removal during wastewater treatment processes. 

 

A comprehensive mathematical model was developed therein to describe and evaluate the 

biodegradation of pharmaceuticals accompanied with the formation of biotransformation 

products by enriched nitrifying culture. Microbial processes including cometabolism induced 

by AOB growth, metabolism by AOB, cometabolism by HET growth and metabolism by HET 

were involved. Model calibration and validation were accomplished using pharmaceutical 

biodegradation experimental data at environmentally-relevant initial concentrations, 

demonstrating a good prediction performance of the developed model under different 

metabolic conditions and the reliability of the established model in predicting different 

pharmaceuticals biotransformation. The linear positive relationship between ammonia 

oxidation rate and pharmaceutical degradation rate confirmed the potential role of 

cometabolism induced by AOB in pharmaceutical removal. Dissolved oxygen (DO) was able 
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to regulate the pharmaceutical biotransformation cometabolically and the substrate 

competition between ammonium and pharmaceuticals existed especially at higher 

ammonium concentrations.  

 

The outcomes of this thesis improve our understanding of the microbially induced metabolic 

types involved in the pharmaceutical biotransformation in enriched nitrifying sludge. 

Potential application of these insights into the fate of pharmaceuticals in engineered systems 

could help optimize their removal during wastewater treatment processes. 
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Chapter 1 Introduction 
 

1.1 Background 
During last decades, the ubiquitous occurrence of micropollutants such as pharmaceutical residues in 

the environment has attracted concerns due to their potential hazardous effects on ecosystems and 

public health (Daughton and Ternes, 1999; Luo et al., 2014; Petrie et al., 2015). Wastewater treatment 

plants (WWTPs) were deemed as the major pathway for these emerging contaminants entering into 

the environment, as the incomplete removal efficiencies were reported in extensive studies (Pomiès 

et al., 2013; Rivera-Utrilla et al., 2013; Ternes, 1998). Regarding the contribution from different 

sources to the occurrence of pharmaceuticals in the environment, human excretion and hospital 

discharge accounted for over 90% of pharmaceuticals entering the domestic wastewater while 

improper disposal and manufacturer discharge constituted less than 5-10 % (Caldwell, 2016). Other 

minor sources include animal feeding operations, land-applied bio-solids, row-crop production, on-

site wastewater disposal systems, recreational activities, transportations or wash-off from roadways 

and atmospheric deposition (Tijani et al., 2013). Although the wastewater treatment processes were 

not designed originally for pharmaceutical removal, it is still of great importance to understand the 

fate and transformation of pharmaceuticals in the biological treatment stage. 

 

Removal efficiencies of pharmaceuticals were reported to be dependent on the physico-chemical 

properties of the compounds and on the operating parameters of the WWTPs (Rivera-Utrilla et al., 

2013). A significant association between pharmaceutical biotransformation rates and nitrification 

activities of nitrifying activated sludge during biological treatment processes was extensively 

reported in previous literature (Batt et al., 2006; Clara et al., 2005a; Helbling et al., 2012). Ammonia 

oxidizing bacteria (AOB) in the nitrifyign activated sludge might be responsible to cometabolically 

degrade pharmcauticals, due to its non-specific enzyme ammonia monooxygenase (AMO) with a 

broad substrate spectrum ranging from alimatic to aliphatic compounds (Skotnicka-Pitak et al., 2009; 

Tran et al., 2009; Yi and Harper Jr, 2007). The presence of growth substrate ammonium was 

necessary for AOB to induce cometabolic biodegradation (Tran et al., 2013). Heterotrophs (HET) 

were also recognized to be able to degrade pharmaceuticals alone or together with AOB (Gaulke et 

al., 2008; Khunjar et al., 2011), mainly via metabolism (Tran et al., 2013). However, little information 

is available in understanding the relative contributions of metabolism and cometabolism from 

responsible microorganisms in the nitrifying activated sludge to pharmaceutical biotransformation. 

Furthermore, the biotransformation products yielded from pharmaceuticals during biological 

treatment might be more toxic and persistent than the parent compounds (Miao and Metcalfe, 2003; 
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Quintana et al., 2005). Therefore, a better understanding of the fate of pharmaceuticals in the 

treatment processes should consider their biotransformation products. 

 

Mathematical modeling offers a useful tool and is adopted widely to analyse complicated metabolic 

pathways. Cometabolic biotransformation was previously modeled through first-order kinetics and 

mixed order kinetics such as Monod expression (Fernandez-Fontaina et al., 2014; Liu et al., 2015; 

Oldenhuis et al., 1989), which have evolved from only considering the cometabolic substrates to 

incorporating the relationships between cometabolic substrates and growth substrates, such as 

competitive interaction and toxicity inhibition (Liu et al., 2015). However, the previous literature has 

rarely considered the formation of biotransformation products in the cometabolic biotransformation 

models for pharmaceuticals. An accurate and more comprehensive model was indeed required to 

provide regulators to fully understand the fate of pharmaceuticals, to evaluate the release of these 

compounds to the environment and thus to optimize or modify the existing wastewater treatment 

technologies for more efficient mitigation. 

 

1.2 Thesis objectives 
The aim of this PhD thesis is to investigate the biotransformation of typical pharmaceuticals by an 

enriched nitrifying culture under different metabolic conditions, in terms of the biotransformation 

products and pathways as well as process modeling. In particular, two compounds atenolol and 

acyclovir were selected as the model compound in this thesis, which were frequently found in the 

wastewater with the highest concentrations of 25 and 1.8 µg L-1, respectively and reported to be 

increasingly removed under nitrification (Prasse et al., 2010; Sathyamoorthy et al., 2013; Verlicchi 

et al., 2012), to investigate the effect of metabolic type (i.e., metabolism or cometabolism) on the 

formation of biotransformation products. The impact of growth substrate ammonium was also studied 

on atenolol biodegradation and the formation of its transformation product. Furthermore, a 

comprehensive model was developed as part of the work to describe and predict the fate of the 

pharmaceutical and its biotransformation product in the enriched nitrifying sludge. 

 

1.3 Thesis organization 
This thesis is organised into four chapters and four appendices. Chapter 1 gives a general introduction 

to the background, objectives and organization of this thesis. Chapter 2 presents a comprehensive 

literature review. Firstly, the occurrence and removal of pharmaceuticals in the wastewater treatment 

processes were briefly introduced. Secondly, the effect of nitrification and the role of AOB on 

pharmaceutical removal was summarised. Thirdly, the possible biodegradation mechanisms of 

pharmaceutical by respective microorganisms were presented. This is then followed by the review on 
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the current proceedings on the formation of biotransformation products of pharmaceuticals. Lastly, 

the mathematical modeling of the fate of pharmaceuticals was reviewed. Chapter 3 consists of three 

sections, namely Research Objectives, Research Methods and Results and Discussion. Sections 

within this chapter are summaries and descriptions of the detailed investigations described in the 

papers/manuscripts presented as Appendix A to D. It provides an overview of the research undertaken 

as part of this thesis. Chapter 4 summarises the significant conclusions and promising prospects 

achieved from this work and the recommendations for further research. 

 

The four appendices are papers and manuscripts containing the detailed experimental studies for the 

research objectives outlined and summarised in Chapter 3. Appendix A describes the enhanced 

biodegradation of atenolol by the enriched nitrifying sludge focusing on its biotransformation 

products and pathways under different metabolic conditions. Appendix B presents the investigation 

on the effect of ammonium concentrations on the biodegradation of atenolol at relatively realistic 

concentration and the formation of its biotransformation product, atenolol acid. Appendix C reports 

the effect of initial concentration and the role of microorganisms on the biotransformation of 

acyclovir by the enriched nitrifying culture. Appendix D shows the development of a comprehensive 

model to predict the fate of selected pharmaceuticals (i.e., atenolol and acyclovir) and their 

transformation products during nitrification processes. 

  



 10 

Chapter 2 Literature review 
 

For recent decades, one of the key issues in the aquatic environment is the emerging problem of 

micropollutants such as pharmaceuticals, personal care products, hormones, detergents and 

disinfectants due to their potential risk on the ecosystem (Daughton and Ternes, 1999; Heberer and 

Feldmann, 2005). Pharmaceutically active compounds are complex chemicals with different 

physicochemical and biological properties designed for different purposes. According to their 

therapeutical class, pharmaceuticals could be classified into several groups including antibiotics, anti-

inflammatories, lipid regulators, psychiatric drugs, X-ray contrast media, β-blockers and etc. As the 

ubiquitous, persistent and biologically active substances, pharmaceuticals have provoked increasing 

concerns among other micropollutants although the directives and legal frameworks are not set-up 

yet. The occurrence of pharmaceuticals could affect water quality and potentially harm ecosystem 

and human health (Rivera-Utrilla et al., 2013; Sirés and Brillas, 2012; Yuan et al., 2009), especially 

for those pharmaceutical compounds with concentrations higher than predicted no effect 

concentrations (PNECs) (Verlicchi et al., 2012). Pharmaceuticals had the highest risk quotient 

compared to other micropollutants based on Lake Geneva investigations (Hoerger et al., 2014). 

 

Reports indicated that the consumption of pharmaceuticals could vary considerably from country to 

country and over time (Goossens et al., 2007). The excretion by humans and animals are main sources 

for pharmaceuticals in the environment. After administration into the human body, the 

pharmaceuticals could be metabolized in the liver to different degrees and excreted as changed or 

unchanged forms in urine and faeces (Jones et al., 2005). Veterinary medicine and their metabolites 

are excreted with manure used to fertilize fields. Other sources of pharmaceuticals may come from 

the manufacturers, hospitals and illicit uses (Heberer and Feldmann, 2005; Li et al., 2008; Mackuľak 

et al., 2014). 

 

Pharmaceuticals were ubiquitously present in wastewater, surface water and groundwater with 

concentrations ranging from a few nano-gram per litre to several hundred micro-gram per litre (Alder 

et al., 2010; Phillips et al., 2015; Verlicchi et al., 2012). As pharmaceuticals are persistent and 

biologically active compounds, they could pose a potential threat to wildlife. In the recent years, the 

effects on aquatic organisms have been studied extensively. Some pharmaceuticals were found at 

higher concentrations in river biota than their PNECs (Santos et al., 2009). Endocrine disrupting 

effects of pharmaceuticals and estrogens have been reported in the effluent and surface water at 

concentrations as low as nano-gram per litre (Desbrow et al., 1998).  
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2.1 Occurrence and removal of pharmaceuticals in wastewater treatment 
WWTPs were one of the main routes for pharmaceuticals to enter into the environment due to the 

incomplete removal in treatment processes (Ternes, 1998). Pharmaceuticals were detected in the raw 

wastewater at concentrations from ng L-1 to µg L-1 according to their usage and properties. Table 1 

lists the reported concentrations of selected pharmaceuticals in the WWTP influents in the literature. 

 

Table 1. Occurrence of pharmaceuticals in the influents of WWTPs 

Pharmaceuticals Reported concentration range and mean value (µg L-1) 

Analgesics and anti-inflammatories 

Acetaminophen 0.13-26.09, 10.19a; 29-246, 134b 

Diclofenac 0.05-0.54, 0.25a; 3.02c; 0.204d 

Ibuprofen 53.48-373.11, 150.73e; 34-168, 84b; 8.45d; 23.4f 

Ketoprofen 0.108-0.369, 0.208g; 0.146d; 2.9f; 0.16-0.97, 0.451a 

Naproxen 0.038-0.23, 0.1g; 1.8-4.6h; 8.6f; 5.58d 

Antibiotics 

Sulfamethoxazole ND-0.87, 0.59a; 0.58h 

Trimethoprim ND-4.22, 1.17a 

β-blockers 

Atenolol ND-0.74, 0.395a; 0.971i; 0.03j 

Metoprolol 0.411i; 0.16j 

Propranolol 0.08-0.29, 0.168a; 0.01i; 0.05j 

Sotalol 0.12-0.2, 0.167a; 0.529i 

Lipid regulators 

Bezafibrate 1.55-7.60k; 2.2f; 1.2l 

Clofiric acid ND-0.11, 0.072a; 1.0l; 10-170m 

Gemfibrozil 0.453d; ND-0.36, 0.155a, 0.71j 

Psychiatric drugs 

Caffeine 52-192, 118b 

Carbamazepine 0.015-0.27, 0.054g; ND-0.95, 0.42a; 0.12-0.31, 0.15b; 1.68j 

X-ray contrast media 

Iopromide 6.0-7.0, 6.6h; 0.026-3.84k; 7.5n 

Antiviral drugs  

Acyclovir 1.78o; 0.10-1.81p 
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a(Gros et al., 2006), b(Gómez et al., 2007), c(Pham and Proulx, 1997), d(Lishman et al., 2006), e(Santos et al., 2007), 
f(Vieno et al., 2005), g(Nakada et al., 2006), h(Carballa et al., 2004), i(MacLeod et al., 2007), j(Bendz et al., 2005), k(Clara 

et al., 2005b), l(Stumpf et al., 1999), m(Soulet et al., 2002), n(Ternes and Hirsch, 2000), o(Prasse et al., 2010), p(Yu et al., 

2012). ND, not detected. 

 

The occurrence of pharmaceuticals in the influent is related to the specific areas in each country. The 

highest influent loads from seven WWTPs in Spain were found for non-steroidal anti-inflammatory 

drugs (NSAIDs), lipid regulators, β-blockers and histamine H1- and H2- receptor antagonists (Gros 

et al., 2007). The results of a study in Italy indicated high inputs of antibiotics, atenolol, ranitidine, 

diuretics and ibuprofen (Castiglioni et al., 2006). A review by Verlicchi et al (Verlicchi et al., 2012) 

was conducted on the occurrence of 118 pharmaceuticals belonging to 17 different classes in 78 peer-

reviewed papers worldwide. The most abundant pharmaceuticals were NSAIDs including the most 

commonly investigated compounds ibuprofen (37 µg L-1), acetaminophen (38 µg L-1), naproxen (6 

µg L-1), carbamazepine (1.2 µg L-1), sulfamethoxazole (0.96 µg L-1) and diclofenac (0.8 µg L-1) in the 

WWTP influent.  

 

While WWTPs are not designed for the removal of pharmaceuticals, these compounds could be 

mainly removed by biological treatment processes at an insufficient rate ranging from insignificant 

(e.g., <10%, carbamazepine) to >90% (e.g., ibuprofen) (Joss et al., 2005). Figure 1 shows the removal 

efficiencies of the most studied pharmaceuticals in 14 countries/regions (Luo et al., 2014). The varied 

removal efficiencies were likely due to the different physical-chemical properties and the variable 

operating parameters of wastewater treatment processes. A simple classification scheme for 

pharmaceuticals was proposed according to the degradation constant kbio (Joss et al., 2006): (i) 

compounds with kbio <0.1 L g VSS-1 d-1 are not removed to a significant extent (20%); (ii) compounds 

with kbio >10 L g VSS-1 d-1 can be transformed by >90%; and (iii) compounds with a moderate 

biodegradability (0.1< kbio <10) showed a partial removal. The degradation rate was assumed to 

follow pseudo-first order kinetics based on a series of batch experiments using activated sludge from 

nutrient eliminating municipal wastewater treatment plants. These intervals may be variable amongst 

different sludge types and reactor configurators. 

 

According to therapeutic classes and usage of pharmaceuticals, the average removal efficiencies of 

anti-inflammatories were between 23% (e.g., tramadol) and 99% (e.g., acetaminophen) and the 

antibiotics could be removed between 0% (e.g., spiramycin) and 98% (e.g., cefachlor) during the 

typical wastewater treatment processes (Verlicchi et al., 2012). Bezafibrate, gemfibrozil and clofibric 

acid were most frequently reported lipid regulators with the removal efficiencies of 11-100%, 57-79% 

and 0-80%, respectively (Castiglioni et al., 2006; Jelić et al., 2012; Kasprzyk-Hordern et al., 2009; 
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Kosma et al., 2014; Miège et al., 2008). The psychiatric drug carbamazepine exhibited lower average 

removal efficiencies during wastewater treatment processes (Petrie et al., 2015). The negative values 

were also found due to enzymatic cleavage of its conjugated forms (Radjenovic et al., 2007; Vieno 

et al., 2007). For β-blockers, it was found that the removal efficiencies were ranging from 45 to 92% 

for atenolol, 59 to 75% for sotalol and 0 to 26% for metoprolol (Vieno et al., 2006).  

 

 
Figure 1. Removal efficiencies of the typical pharmaceuticals in wastewater treatment processes 

(based on (Luo et al., 2014)). 

 

2.2 Pharmaceutical removal by AOB during nitrification 
Nitrification is an important process in the wastewater treatment designed for nitrogen removal. 

Wastewater treatment plant influents always contain nitrogen in the forms of organic nitrogen and 

ammonia (Total Kjedahl Nitrogen, TKN). TKN can be converted into inorganic nitrogen (nitrite and 

nitrate) and nitrogen gas through a combination of aerobic and anaerobic treatment processes. In 

WWTPs, the processes commonly used for nitrogen removal include nitrification and denitrification. 

Nitrification is the biological oxidation of ammonium to nitrite and nitrate occurring in two steps, 

which initiate the removal of nitrogen compounds in the nitrogen cycle. In the first step, AOB and 

ammonia oxidizing archaea (AOA) take up the role of converting NH4
+ to NO2

-. The ammonia 

oxidizing microorganisms are generally dominated by AOB in municipal WWTPs while AOA have 

been found in some municipal and industrial WWTPs (Gao et al., 2013; Limpiyakorn et al., 2013; 
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Men et al., 2017). It was reported that some HET, fungi and autotrophic anammox bacteria could also 

oxidize ammonia (Suneethi and Joseph, 2011; Zhang et al., 2012). In the second step, nitrite oxidizing 

bacteria (NOB) is the key microorganism to oxidize NO2
- to NO3

- (Gao et al., 2013). In the conversion 

of ammonia to nitrite, two key enzymes are involved. AMO catalyzes the oxidation of ammonia to 

hydroxylamine (NH2OH) and hydroxylamine oxidoreductase (HAO) is for the oxidation of 

hydroxylamine to nitrite. Complete conversion of ammonia into nitrate in one organism was recently 

found within two Nitrospira species, containing different AMO enzymes from the currently identified 

ones (van Kessel et al., 2015). Nitrosomonas and Nitrosospira were mostly considered as the 

dominant species of the AOB b-proteobacteria in different activated sludge (Baek et al., 2010) 

whereas the abundance of AOA was much lower than AOB based on analysis of amoA gene copy 

number (Zhang et al., 2011). Limited studies of AOA species in activated sludge indicated a 

composition difference from those in soil, water column and sediment (Park et al., 2006). 

 

Nitrification could enhance pharmaceutical removal during treatment processes. Table 2 showed that 

the wastewater treatment processes with significant nitrification tend to have higher removal rates of 

pharmaceuticals than those without nitrification (Miège et al., 2008; Servos et al., 2005), especially 

for 17α-ethinylestradiol (EE2) (Layton et al., 2000; Vader et al., 2000). A positive linear relationship 

was found between the nitrifying activity and the removal of ibuprofen, erythromycin and 

roxithromycin, while no correlation was found with the heterotrophic rate (Alvarino et al., 2014). It 

was also demonstrated that the effluent concentration and removal of ammonium showed significant 

associations with overall target pharmaceuticals removal (Helbling et al., 2012). 

 

With regard to the microorganism level, the relationship between AOB and pharmaceutical removal 

has been studied in both pure cultures and mixed communities such as activated sludge. The role of 

AOB could be suggested by the higher removal rates with nitrification as well as the significant 

decrease with the addition of allylthiourea (ATU) to inhibit AOB activity (Figure 2). The removal of 

EE2 corresponded well with ammonia oxidizing activity when AMO was enriched in the pure AOB 

culture (Nitrosomonas europaea) (Khunjar et al., 2008). Higher rates obtained in the enriched 

nitrifying cultures compared with those in the presence of ATU also proved the contribution of AOB 

on removal of fenoprofen, indomethacin, diclofenac, carbamazepine and propyphenazone (Tran et 

al., 2009). Similarly, null removal was observed for sulfamethoxazole, ibuprofen in the presence of 

ATU (Kassotaki et al., 2016; Roh et al., 2009). 

 

 

 



 15 

Table 2. The removal efficiencies of pharmaceuticals with and without nitrification during 

wastewater treatment processes 

Pharmaceuticals 
With nitrification 

(%) 

Without nitrification 

(%) 
Reference 

Iopromide 61 - (Batt et al., 2006) 

Trimethoprim 50 1 (Batt et al., 2006) 

Naproxen 60 35 (Margot et al., 2016) 

Gemfibrozil 41 9 (Maeng et al., 2013) 

Diclofenac 21 1 (Maeng et al., 2013) 

Bezafibrate 92 56 (Maeng et al., 2013) 

Ketoprofen 63 10 (Maeng et al., 2013) 

Clofibric acid 6 2 (Maeng et al., 2013) 

Carbamazepine 6 - (Maeng et al., 2013) 

Pentoxifylline 88 69 (Maeng et al., 2013) 

Ibuprofen 100 75 (Tran et al., 2009) 

Fenoprofen 93.7 36 (Tran et al., 2009) 

Indomethacin 89 14 (Tran et al., 2009) 

Ketoprofen 90 38 (Tran et al., 2009) 

Gemfibrozil 87 37 (Tran et al., 2009) 

Naproxen 73 30 (Tran et al., 2009) 

Diclofenac 76 25 (Tran et al., 2009) 

Carbamazepine 38 12 (Tran et al., 2009) 

Propyphenazone 39 5 (Tran et al., 2009) 

Clofibric acid 15 6.2 (Tran et al., 2009) 

Sulfamethoxazole 86 0 (Kassotaki et al., 2016) 
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Figure 2. The comparison of pharmaceutical biodegradation by AOB (ammonia oxidizing bacteria) 

with and without ATU (allylthiourea) addition. 

 

2.3 Biodegradation mechanisms of pharmaceuticals 
Microorganisms in the treatment processes could utilize pharmaceuticals either in metabolic way 

(metabolism) or in cometabolic way (cometabolism) as shown in Figure 3. The mechanism that 

pharmaceuticals are used as primary substrates to support cell growth and energy consumption is 

called metabolism. HET are the main responsible microorganisms involved in metabolism pathway. 

Ketoprofen, acetaminophen, 17β-estradiol and ibuprofen were previously reported to be degraded by 

the corresponding microorganisms such as Delftia tsuruhatensis, Pseudomonas aeruginosa, and 

Sphingomonas Ibu-2 (De Gusseme et al., 2011; Iasur-Kruh et al., 2011; Murdoch and Hay, 2005; 

Quintana et al., 2005; Zeng et al., 2009). On the other hand, pharmaceuticals are usually present in 

the level of µg L-1 or ng L-1 in wastewater systems, with some of them being toxic to the 

microorganisms. Thus these pharmaceutically active compounds could rarely be utilized as the sole 

carbon source through metabolic biodegradation by microorganisms. The key pathway for their 

removal is via cometabolic biodegradation. Pharmaceuticals could be biodegraded by the 

corresponding microorganisms in the presence of growth substrate like easily degradable compounds 

or nutrients. Bezafibrate, naproxen and ibuprofen showed different degrees of transformation and 
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mineralization at the presence of external carbon source while they were not degraded metabolically 

(Quintana et al., 2005).  

 

 
Figure 3. Metabolic and cometabolic pathways of pharmaceuticals biodegradation. AOB, ammonia 

oxidizing bacteria; and AMO, ammonia monooxygenase. 

 

The biodegradation of pharmaceuticals by AOB was reported to follow the cometabolic pathway with 

ammonium being used as the primary substrate and energy source for microbial growth and enzyme 

induction (Figure 3). During the nitrification process, AOB take the role of converting NH4
+ to NO2

-, 

which is able to degrade a broad range of aromatic compounds through cometabolic biodegradation 

likely due to its non-specific enzyme AMO (Keener and Arp, 1994; Skotnicka-Pitak et al., 2009), 

such as hydrocarbons, phenol and aromatic compounds (Keener and Arp, 1993; Keener and Arp, 

1994; Lauchnor and Semprini, 2013; Rasche et al., 1990). A significant association was found among 

archaeal amoA and ammonia oxidation rate as well as oxidative micropollutant biotransformation 

reaction rates (Helbling et al., 2012). AOB were also reported to transform pharmaceuticals under 

ammonium starvation conditions (Dawas-Massalha et al., 2014; Forrez et al., 2009). This seems to 

be a general catabolic repression mechanism for cometabolism when the high concentration of 

ammonium competitively inhibited cometabolic biotransformation until ammonia was depleted 

(Dawas-Massalha et al., 2014). Therefore, in order to obtain maximum cometabolic degradation rate 

of pharmaceuticals, the concentration ratio between pharmaceuticals and ammonia should be 

maintained within a certain range. 
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The important role of AOB in pharmaceutical biodegradation has been revealed by several pure 

cultures studies. The biotransformation of some micropollutants has been observed to be positively 

associated with ammonia oxidation activities and the transcript abundance of the archaeal 

ammonia monooxygenase gene (amoA) in nitrifying culture (Men et al., 2016). Nitrosomonas 

europaea has been used as the pure AOB culture to study its ability to degrade typical micropollutants 

including triclosan, bisphenol, ibuprofen, EE2, and trimethoprim (Khunjar et al., 2011; Roh et al., 

2009). Although the responsible enzyme AMO was not substrate-specific, the pure AOB culture 

showed different degradation performance on different compounds. More recently, the capabilities 

of AOA pure cultures (Nitrososphaera gargensis) to biotransform micropollutants has also been 

assessed. Nitrososphaera gargensis was showed to be able to biotransform mianserin and ranitidine, 

exhibiting similar compound specificity as two AOB strains that were tested for comparison. The 

same biotransformation reactions were carried out by both the AOA and AOB strains (Men et al., 

2016) and the biotransformation only occurred when ammonia oxidation was active, strongly 

indicated the key role of AMO in cometabolic transformations of pharmaceuticals. In addition, the 

mixed culture nitrifying sludge also showed the strong abilities to transform these compounds 

(Khunjar et al., 2011; Tran et al., 2009; Yu et al., 2007).  

 

Biodegradation of pharmaceuticals generally follows the first-order kinetics (Helbling et al., 2012) 

or pseudo first-order kinetics (Joss et al., 2006; Suarez et al., 2010). Figure 4 shows the biodegradation 

of pharmaceuticals by the activated sludge from ten different wastewater treatment plants, with five 

of them applying nitrification. According to the parameter estimations based on the first-order 

kinetics, the calculated biodegradation rates of most pharmaceuticals with nitrification were clearly 

higher than those without nitrification (100 times at most for trinexepac over the rate without 

nitrification) (Helbling et al., 2012). The higher kinetic rates observed in enriched nitrifying cultures 

for atenolol, trimethoprim and sulfamazoxale compared to the kinetics in the presence of ATU further 

confirmed the important role of AOB in pharmaceuticals biotransformation mainly due to the 

cometabolic biodegradation (Batt et al., 2006; Kassotaki et al., 2016; Sathyamoorthy et al., 2013). 
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Figure 4. The biodegradation rates of selected pharmaceuticals in the investigated wastewater 

treatment processes. The red cross and the blue line indicate the average value of the biodegradation 

rate during nitrification and conventional treatment processes, respectively (based on (Helbling et al., 

2012)). 

 

Table 3 lists the biodegradation rate constants obtained and/or calculated from the literature to 

highlight the effect of cometabolism by AOB. Although the inoculum/activated sludge and the 

experimental conditions were various among these literature, it could be roughly concluded that the 

cometabolic biodegradation rate constants were significantly higher than the metabolic 

biodegradation rate constants for majority of the pharmaceuticals studied. The cometabolic 

biodegradation rates of ibuprofen, naproxen and trimethoprim were increased with the increasing 

nitrogen loading rate, which increased the biological activity of AOB producing more AMO 

(Fernandez-Fontaina et al., 2012). The cometabolic biodegradation rate constants were also 

dependent on the consumption rate of growing substrate (e.g. ammonium), which is the energy source 

for AOB. 

 

Table 3. The cometabolic and metabolic biodegradation rate constants of typical pharmaceuticals in 

literature 

Pharmaceuticals Cometabolism Metabolism 

Ibuprofen 36 L g VSS-1 d-1 (10 d-1)  

(Fernandez-Fontaina et al., 2012) 

1.22 d-1  

(Murdoch and Hay, 2005) 
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2.43-3.01 L g VSS-1 d-1 (1.82-2.26 d-1) 

(Tran et al., 2009) 

0.53 d-1  

(Urase and Kikuta, 2005) 

Naproxen 
19 L g VSS-1 d-1 (5.32 d-1)  

(Fernandez-Fontaina et al., 2012) 

0.084 L g VSS-1 d-1 (0.063 d-1) 

(Tran et al., 2009) 

0.012 d-1  

(Urase and Kikuta, 2005) 

Trimethoprim 
6.5 L g VSS-1 d-1 (1.82 d-1)  

(Fernandez-Fontaina et al., 2012) 

0.073 d-1  

(Khunjar et al., 2011) 

Acetaminophen 
1.3 L g VSS-1 d-1 (1 d-1)  

(De Gusseme et al., 2011) 

0.81 L g VSS-1 d-1 (0.61 d-1)  

(De Gusseme et al., 2011) 

Clofibric acid 
0.04-0.09 L g VSS-1 d-1 (0.03-0.07 d-1) 

(Tran et al., 2009) 

0.009 L g VSS-1 d-1 (0.036 d-1) 

(Urase and Kikuta, 2005) 

Indomethacin 
1.52-2.16 L g VSS-1 d-1 (1.14-1.62 d-1) 

(Tran et al., 2009) 

0.022 L g VSS-1 d-1 (0.017 d-1)  

(Tran et al., 2009) 

Gemfibrozil 
1.35-2.45 L g VSS-1 d-1 (1.01-1.84 d-1) 

(Tran et al., 2009) 

0.099 L g VSS-1 d-1 (0.074 d-1) 

(Tran et al., 2009) 

Fenoprofen 
1.57-2.23 L g VSS-1 d-1 (1.18-1.67 d-1) 

(Tran et al., 2009) 

0.083 L g VSS-1 d-1 (0.062 d-1) 

(Tran et al., 2009) 

Ketoprofen 
0.91-2.12 L g VSS-1 d-1 (0.68-1.59 d-1) 

(Tran et al., 2009) 

0.10 L g VSS-1 d-1 (0.078 d-1) (Tran 

et al., 2009) 

Diclofenac 
0.41-0.69 L g VSS-1 d-1 (0.31-0.52 d-1) 

(Tran et al., 2009) 

0.064 L g VSS-1 d-1 (0.048 d-1) 

(Tran et al., 2009) 

Propyphenazone 
0.11-0.23 L g VSS-1 d-1 (0.08-0.17 d-1) 

(Tran et al., 2009) 

0.014 L g VSS-1 d-1 (0.010 d-1) 

(Tran et al., 2009) 

Carbamazepine 
0.09-0.19 L g VSS-1 d-1 (0.07-0.14 d-1) 

(Tran et al., 2009) 

0.028 L g VSS-1 d-1 (0.021 d-1) 

(Tran et al., 2009) 

Experimental conditions: 

• Nitrifier enrichment culture inoculated in an membrane bioreactor (MBR) with 100 µg L-1 acetaminophen in the 

influent. Batch experimens were conducted using the MBR biomass to study the degradation of acetaminophen under 

nitrification or without nitrification (De Gusseme et al., 2011). 

• Biomass from nitrification/denitrification tanks of a sewage treatment plant as inoculum. Synthetic feeding in order 

to develop autotrophic nitrifying biomass with pharmaceuticals (80-320 µg L-1) introduced (Fernandez-Fontaina et 

al., 2012). 

• Biodegradation of trimethoprim was evaluated with pure AOB culture, enriched heterotrophic cultures without 

nitrifier activity and nitrifying activated sludge (Khunjar et al., 2011). 

• Ibuprofen was used as a sole carbon and energy source by one isolated environmental bacteria from a wastewater 
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treatment plant (Murdoch and Hay, 2005). 

• Batch degradation experiments were conducted with enriched nitrifying cultures under various initial conditions such 

as in the presence of different growth substrates and the inhibitors (Tran et al., 2009). 

• A laboratory scale activated sludge reactor with initial pharmaceuticals of 100 µg L-1 (Urase and Kikuta, 2005). 

 

 
Figure 5. A mechanistic model for AMO role in cometabolic transformation of pharmaceuticals 

(based on (Yi and Harper Jr, 2007)): the active site of AMO contains copper ions. Oxygen will react 

to convert Cu+-Cu+ into Cu2+-Cu2+ under aerobic condition while the oxygen remains bound as O2
-. 

The oxygenated form of AMO will react with pharmaceuticals to produce Cu2+-Cu2+ and the 

biotransformation products. 

 

A mechanistic model was proposed for AMO role in cometabolic transformation of EE2 as shown in 

Figure 5 (Yi and Harper Jr, 2007). The active site of AMO contains metal ions such as copper ions. 

Oxygen will react to convert Cu+-Cu+ into Cu2+-Cu2+ under aerobic condition while the oxygen 

remains bound as an electrophilic radical. The oxygenated form of AMO will react with EE2 to 

produce Cu2+-Cu2+ and the biotransformation products. However, this conceptual model was 

proposed solely based on monooxygenase. The dioxygenase may also need to be considered in 

pharmaceuticals biodegradation mechanism as this enzyme is also functional in the cometabolic or 

metabolic biodegradation, particularly in mixed cultures consisting of different bacterial species 

and/or archaeal. In fact, the involvement of monooxygenase and dioxygenase can be distinguished 

by determining the ratio of NADH/EE2. For example, the obtained ratio of 2.2 demonstrated that 

monooxygenase-mediated biotransformation would be the dominant mechanism as this ratio is in 

accordance with that of monooxygenase (i.e., 2.0). 

 

Nevertheless, the information on the underlying biodegradation mechanisms of pharmaceuticals in 
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the enriched nitrifying sludge is still ambiguous and the relative contribution of AOB and HET to 

pharmaceutical biotransformation needs to be elucidated further. 

 

2.4 Biotransformation products and pathways of pharmaceuticals by AOB 
Incomplete biotransformation of pharmaceuticals in wastewater treatment processes could result in 

more toxic products into the receiving water (Agüera et al., 2013; Kosjek et al., 2009). The formation 

of metabolites or biotransformation products of pharmaceuticals is related to the specific operating 

conditions. The cometabolism by AOB might induce different biodegradation pathways of 

pharmaceuticals. For example, iopromide could be transformed into different products with and 

without nitrification (Batt et al., 2006). As shown in Figure 6, oxidation of the primary alcohols 

(forming carboxylates) on the side chains of iopromide were identified in the conventional activated 

sludge while dehydroxylation at the two side chains occurred in the nitrifying activated sludge, which 

was likely a result of cometabolism (Pérez et al., 2006). 

 

 
Figure 6. Biodegradation products and pathways of iopromide by conventional activated sludge and 

nitrifying activate sludge. The structural groups in the dash squares were not changed (based on 

(Pérez et al., 2006)). 
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During the biotransformation of trimethoprim by nitrifying activated sludge, it was oxidized to α-

hydroxytrimethoprim (Eichhorn et al., 2005), whereas trimethoprim was reported to be persistent 

during the activated sludge treatment (Pérez et al., 2005). Oxidation of the primary hydroxyl group 

in acyclovir by nitrifying activated sludge led to the formation of carboxy-acyclovir with the guanine 

group unchanged. The biodegradation products of penciclovir were confirmed as the result of enzyme 

reactions such as the oxidation of terminal hydroxyl groups and β-oxidation followed by acetate 

cleavage (Prasse et al., 2011). 

 

Hydroxylation is another biodegradation pathway of AOB for pharmaceuticals including ibuprofen 

(Dawas-Massalha et al., 2014; Zwiener et al., 2002), trimethoprim (Eichhorn et al., 2005), atenolol 

(Radjenović et al., 2008) and bezafibrate (Quintana et al., 2005). The enzyme AMO might be able to 

hydroxylate the pharmaceuticals just as it does with ammonia in AOB (Fernandez-Fontaina et al., 

2012). In addition, abiotic nitration could be one minor transformation mechanism for EE2 (Gaulke 

et al., 2008), diclofenac and acetaminophen (Chiron et al., 2009). Acetaminophen was confirmed to 

be removed through nitration in real wastewater treatment plant with nitrogen removal as well as 

batch experiments with nitrifying activated sludge (Chiron et al., 2009). It was also confirmed that 

EE2 could be degraded via cometabolism and nitration by AOB (Gaulke et al., 2008; Skotnicka-Pitak 

et al., 2009). However, the involved carboxylation of EE2 was still unclear (Skotnicka-Pitak et al., 

2009). 

 

The biodegradation products and pathways for several pharmaceuticals are also affected by their 

respective structures. A rule-based biotransformation pathway prediction system was developed for 

amide-containing compounds (Helbling et al., 2010a). Observed biotransformation reactions of 

amide-containing compounds include amide hydrolysis and N-dealkylation, hydroxylation, oxidation, 

ester hydrolysis, dehalogenation, nitro reduction and glutathione conjugation. Primary amides like 

atenolol hydrolyzed rapidly while secondary amides hydrolyzed at rates influenced by steric effects. 

For tertiary amides, they were mostly N-dealkylated. 

 

Overall, AOB-induced cometabolism could lead to different biotransformation products and 

pathways compared to those in the presence of inhibitor (ATU) for some pharmaceuticals (Kassotaki 

et al., 2016), probably due to the specific reactions via AMO or the involvement of formed 

intermediates from growth substrates. Nevertheless, the biotransformation products and pathways 

under metabolic and cometabolic conditions have not been fully identified for many pharmaceuticals 

so far due to the limited analytical techniques. Further efforts should be dedicated to understanding 

the underlying pathways in future work. 



 24 

 

2.5 Mathematical modeling of pharmaceuticals biotransformation 
Mathematical models for predicting the fate of pharmaceuticals in wastewater treatment have been 

developed for better understanding and optimization of their removal in recent years. The models 

described the involving physical-chemical processes, sorption, photolysis, volatilization and 

biotransformation processes (Pomiès et al., 2013). This section mainly focused on the models related 

to biotransformation or biodegradation processes of AOB. 

 

The cometabolic models have been evolved from only considering the cometabolic substrate 

(Oldenhuis et al., 1989) to incorporating both cometabolic substrate and primary substrate 

(Boonchayaanant et al., 2008; Chang and Criddle, 1997; Criddle, 1993; Delgadillo-Mirquez et al., 

2011; Liu et al., 2015; Verce et al., 2002). More reaction mechanisms have been integrated in the 

models, including competition between the cometabolic substrates (Kim et al., 2002; Verce et al., 

2002) or from the primary substrates (Chang and Alvarez-Cohen, 1995; Maestre et al., 2013; 

Wahman et al., 2007), and the toxicity inhibition from biotransformation products (Alvarez-Cohen 

and McCarty, 1991; Semprini et al., 2007; Yu et al., 2005). The typical existing cometabolic models 

considering the competitive inhibition, reductant depletion, product toxicity, and/or primary 

substrates were summarized in Table 4 with the respective model components listed in Table 5. 

 

The reductant model (M1) was developed assuming that there was no competition between ammonia 

(primary substrate) and cometabolic substrates (Maestre et al., 2013; Wahman et al., 2007). Oxygen 

was kept at non-limiting levels and there was no toxicity from products. The predicted concentration 

of cometabolic substrates would be significantly affected by both the primary and cometabolic rate 

constants. This model showed advantages in kinetic studies with Nitrosomonas europaea and good 

fits for some mixed culture nitrifiers. 

 

The competition model (M2) included the primary substrate as the competitive substrate, which could 

inhibit the biodegradation of cometabolic substrates. There was only one limiting reactant 

(cometabolic substrates) in the model expression. As the affinity to the active sites in enzyme for the 

cometabolic substrate concentration was typically lower than for the growth substrate concentration, 

competition of cometabolic substrates on the primary substrate was not considered in this model. 

 

The combined model (M3) integrated the reductant model with the competition model. They differed 

based on the assumptions about the presence of the competition between the primary substrate and 

the cometabolic substrates and whether the primary substrate should be regarded as the second 
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limiting reactant. Taking trihalomethanes biotransformation as example, in this model, ammonia 

(primary substrate) could compete with trihalomethanes (cometabolic substrate) while no 

competition was performed from trihalomethanes on ammonia and on each other. Both ammonia and 

trihalomethanes were the limiting reactants. 

 

The fourth cometabolic model (M4) was proposed based on the biomass growth rate and yield and 

the uptake of primary substrate, which was applied to study the biotransformation of pharmaceuticals 

in nitrifying reactors (Fernandez-Fontaina et al., 2014). Two key parameters were introduced in the 

model development including the micropollutant transformation capacity (TC) and the half-saturation 

constant (KSC), which should be fairly stable for the same biomass under same conditions. The 

primary substrate (ammonium) biodegradation rate was expressed by applying the mass balance 

under steady state conditions. 

 

The fifth cometabolic process based model (M5) was developed to describe biotransformation of 

three β-blockers during and after ammonia oxidation for specific enriched nitrifying cultures 

(Sathyamoorthy et al., 2013). This model linked the pharmaceutical biodegradation rate to the specific 

AOB growth as a cometabolic process. The atenolol may competitively inhibit the ammonia oxidation 

process, confirming the cometabolic biodegradation by AMO. The performance of this cometabolic 

process model was shown to be much better than the pseudo-first-order kinetic approach. 

 

Finally, the parent compound concept was proposed aiming at producing micropollutants in the 

activated sludge treatment system (Plósz et al., 2012). For example, the dissolved micropollutants 

could come from the conjugated forms or sorbed contents on the suspended solids. Besides, the 

formation of biodegradation products was also important in predicting pharmaceuticals 

biotransformation. Hence the further development of cometabolic models should take into account 

the parent compound and biotransformation products or metabolites toward a comprehensive 

modeling of pharmaceuticals biotransformation by AOB. 
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Table 4. The existing cometabolic models with kinetic expressions for primary substrate, cometabolic substrate and biomass 

Models Primary substrate ( ) Cometabolic substrate ( ) Biomass (X) Ref 

M1: 

Reductant 

model 
   

(Maestre et 

al., 2013; 

Wahman et 

al., 2007) 

M2: 

Competition 

model 
 

  

(Verce et 

al., 2002; 

Wahman et 

al., 2005) 

M3: 

Combined 

model 

 
  (Wahman et 

al., 2005) 

M4: 

Cometabolic-

Monod 

model 

   

(Fernandez-

Fontaina et 

al., 2014) 

M5: 

Cometabolic 

Process-

Based model 

 
 

 

 

(Sathyamoo

rthy et al., 

2013) 
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Table 5. The definition of all model components in Table 4 as well as the model parameter values 

Model Variable Description Unit 
Typical 

values 
Source 

M1 

M2 

M3 

 Primary substrate concentration mg L-1 - 

(Ely et al., 

1997; Maestre 

et al., 2013; 

Verce et al., 

2002; Wahman 

et al., 2005; 

Wahman et al., 

2007) 

 
Maximum specific utilization rate of primary 

substrate 
mg growth substrate (mg cell)-1 d-1 2.9a 

 Primary substrate half-saturation coefficient mg L-1 0.13-0.16a 

X Microbial biomass concentration g VSS L-1 - 

 Cometabolic substrate concentration mg L-1 - 

 
Maximum specific utilization rate of cometabolic 

substrate  
mg nongrowth substrate (mg cell)-1 d-1 20.3b 

 Cometabolic substrate half-saturation coefficient mg L-1 31.87b 

T 
Transformation capacity for biomass for the 

cometabolic substrate 

mg cometabolic substrate (mg primary 

substrate)-1  
0.0092c 

Y Biomass yield on primary substrate mg VSS (mg primary substrate)-1 0.34d 

b First order decay coefficient d-1 0.02d 

M4 

 Ammonium nitrogen concentration in the inlet g NH4
+-N L-1 - 

(Fernandez-

Fontaina et al., 

2014; Henze et 

al., 1987) 

 Ammonium nitrogen concentration in the outlet g NH4
+-N L-1 - 

HRT Hydraulic retention time d - 

µ Specific biomass growth rate d-1 - 

Y Biomass yield g VSS g NH4
+-N-1  0.07-0.28 

X Biomass concentration g VSS L-1 - 

Sp

kp

Ksp

Sc

kc

Ksc

SNH ,in

SNH ,out
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 Micropollutant transformation capacity µg g NH4
+-N-1 480e 

 Micropollutant half-saturation constant µg L-1 3.2e 

 
Micropollutant soluble concentration in the mixed 

liquor 
µg L-1 - 

µmax Maximum growth rate d-1 0.34-0.65 

 Ammonium nitrogen concentration g NH4
+-N L-1 - 

 Dissolved oxygen concentration mg L-1 - 

 Ammonium nitrogen half-saturation constant g NH4
+-N L-1 

0.0006-

0.0036 

 Dissolved oxygen half-saturation constant mg L-1 0.5-2.0 

M5 

 Nitrogen fraction of biomass mg N mg COD-1 0.07 

(Sathyamoorthy 

et al., 2013) 

 Ammonia-N yield mg COD mg N-1 0.11-0.21 

µmax,AOB Maximum AOB growth rate d-1 0.2-1.6 

 AOB concentration mg COD L-1 - 

µmax,NOB Maximum NOB growth rate d-1 0.2-2.6 

 Nitrite concentration mg N L-1 - 

 Nitrite half-saturation constant mg L-1 0.05-3 

 NOB concentration mg COD L-1 - 

 Pharmaceutical concentration µg L-1 - 

TPhAC-AOB AOB transformation coefficient of pharmaceuticals L g COD-1 71.5 

µAOB AOB growth rate d-1  

TC

KSC

SC

SNH

SO2

KS ,NH

KS ,O2

iNBM

YAOB

XAOB

SNO2

KNO2

XNOB

SPhAC
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kPhAC-AOB 
AOB endogenous transformation coefficient of 

pharmaceuticals 
L g COD-1 d-1 16.1 

 AOB decay rate d-1 0.06-0.4 
a (Maestre et al., 2013) 
b these parameters were related to chloroform (Ely et al., 1997)  
c this value was related to trichloromethane (Wahman et al., 2005)  
d (Wahman et al., 2007) 

e the parameters were assigned to ibuprofen (Fernandez-Fontaina et al., 2014)  

bAOB
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2.6 Summary 

Based on the previous findings in the literature review above, it is obvious that pharmaceutical 

removal efficiencies could be enhanced during nitrification, mainly due to the cometabolism by AOB. 

However, limited information was available on biotransformation products and pathways of 

pharmaceuticals under different metabolisms (i.e., cometabolism or metabolism) and it was 

ambiguous as to the contribution of the involved microorganisms (e.g., AOB or heterotrophs) to 

pharmaceutical biotransformation. In addition, as the growth substrate for AOB, the ammonium 

concentration is an important factor influencing pharmaceutical biodegradation and transformation 

products formation that requires further clarification. Furthermore, an integrated mathematical model 

is needed incorporating the biodegradation of parent compounds and the formation of transformation 

products simultaneously. 
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Chapter 3 Thesis overview 

 

This chapter provides an overview of the research work undertaken in this thesis. First, the research 

objectives are presented. Then the key research methods and analytical techniques are described. 

Finally, the major outcomes and key results are outlined and discussed. 

 

3.1 Research objectives 

3.1.1 Enhanced biodegradation of atenolol by an enriched nitrifying sludge: products and 

pathways 

Atenolol is one of the most commonly prescribed β-blockers, used in antihypertensive, antianginal 

and antiarrhythmic treatment. After human consumption, it is excreted mainly as an unchanged form. 

Atenolol was detected in the influent of WWTPs at the highest concentration of microgram per litre 

level (Radjenovic et al., 2007). Although the toxicity of atenolol as the individual compound is 

negligible, it shows a synergistic effect when atenolol is mixed with other β-blockers in the 

environment (Cleuvers, 2005). The removal efficiencies of pharmaceuticals are enhanced in 

nitrifying activated sludge. The responsible bacteria AOB are reported to be able to cometabolically 

degrade a range of aromatic compounds due to its non-specific enzyme, AMO. On the other hand, 

the formation of biodegradation products needs to be considered when studying the fate of the 

pharmaceuticals. The metabolites of atenolol have been investigated in the activated sludge and 

membrane bioreactor sludge (Radjenović et al., 2008), notwithstanding that it was not indicated 

clearly whether nitrification was involved. It was also confirmed that different metabolites could be 

formed under different environment conditions, i.e., with nitrification and with nitrification inhibited 

(Batt et al., 2006). However, the biodegradation products of atenolol are not yet studied during 

nitrification. Elucidating the underlying mechanisms and determining the relative roles of 

cometabolism and metabolism are important for better understanding biodegradation of 

pharmaceuticals during nitrification. 

 

The main objectives of this study are to investigate the biodegradation mechanisms of atenolol by 

nitrifying sludge, to identify its biodegradation products and to propose possible biodegradation 

pathways under different metabolic conditions. Batch experiments were conducted at controlled 

ammonium concentration and without ammonium addition to investigate cometabolic and metabolic 

biodegradation of atenolol. Structural identification of the biodegradation products was performed to 

help elucidate the biodegradation pathways of atenolol. 
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3.1.2 Effect of ammonium availability on atenolol biodegradation in an enriched nitrifying 

sludge 

Pharmaceuticals could be transformed cometabolically by AOB in the enriched nitrifying sludge in 

the presence of growth substrate ammonium (Arp et al., 2001). It is necessary to investigate the 

relationship between growth substrate and cometabolic substrate. The influence of initial ammonium 

concentration on biotransformation of ibuprofen and artificial sweetening agents has been 

investigated in previous reports (Dawas-Massalha et al., 2014; Tran et al., 2014), indicating that pulse 

feeding of growth substrate could enhance pharmaceutical removal efficiencies. The real wastewater 

contains the ammonium constantly, which would provide the condition for cometabolism for AOB 

involved and might induce the competition with the pharmaceuticals for AMO active sites as well. 

However, the effect of constant presence of ammonium on pharmaceutical biodegradation and on 

transformation product formation has not been studied yet for AOB induced cometabolism in 

enriched nitrifying cultures. 

 

The objective of this study was to investigate the impact of the ammonium availability on atenolol 

biodegradation at relatively realistic level of 15 µg L-1 by an enriched nitrifying sludge. Batch 

experiments were conducted with different concentrations of growth substrate ammonium being 

constantly applied during the time course (0, 25, and 50 mg-N L-1) to evaluate the atenolol 

degradation kinetics and the biotransformation product formation. 

 

3.1.3 Biotransformation of acyclovir by the enriched nitrifying sludge 

As an important antiviral drug, acyclovir has been consumed largely especially for influenza 

epidemics. Due to their potential ecosystem alterations and the development of viral resistances, 

antiviral drugs have recently attracted the interest of research. For example, a substantial removal 

(98%) of acyclovir was found in the wastewater treatment with the concentration decreasing from 

1780 ng L-1 to 27 ng L-1 (Prasse et al., 2010). Although lab-scale biodegradation of acyclovir was 

previously studied by the activated sludge from the nitrification zone of a real wastewater treatment 

plant (Prasse et al., 2011), the effect of metabolic conditions on the formation of biotransformation 

products and the specific contributions of AOB and heterotrophs to acyclovir removal has not been 

clearly defined so far. 

 

This study aims to investigate the biodegradation kinetics, products and pathways of acyclovir by an 

enriched nitrifying culture through batch biodegradation experiments under different metabolic 

conditions, i.e., with and without the addition of growth substrate, ammonium. The kinetic analysis 

was accompanied with the structural elucidation of biotransformation products. The initial acyclovir 
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concentration at 15 mg L-1 and 15 µg L-1 were applied to verify if the biotransformation products and 

pathways formed under high concentration would occur at relatively realistic levels. 

 

3.1.4 Modeling of pharmaceutical biotransformation by enriched nitrifying culture under 

different metabolic conditions 

Mathematical models of pharmaceutical biotransformation by the enriched nitrifying sludge can 

improve our understanding of the relevant microbially induced processes, help to assess the influence 

of operating conditions on removal efficiencies and allow us to design or optimize the bioremediation 

processes. In previously reported models, first-order kinetics and mixed order kinetics such as Monod 

expression were employed to describe the involved cometabolic biotransformation (Fernandez-

Fontaina et al., 2014; Liu et al., 2015; Oldenhuis et al., 1989). More recent mathematical models 

considered the growth substrate and the cometabolic substrate, focusing on the relationships between 

substrates such as direct competitive interaction, indirect interaction by growth substrate and toxicity 

inhibition exerted by transformation products (Liu et al., 2015). On the other hand, the formation of 

transformation products should be considered in the fate of pharmaceuticals as transformation 

products might be more toxic and persistent than the parent compound. However, the previous 

literature has rarely considered the formation of biotransformation products into the cometabolic 

biotransformation models for pharmaceuticals. 

 

The objective of this study is to develop a comprehensive biotransformation model to describe the 

fate of pharmaceuticals and transformation products at initial environmentally levels by the enriched 

nitrifying sludge. Different metabolic conditions were modeled through different sets of batch 

experiments. Model calibration and validation were carried out using atenolol biodegradation 

experimental data with key parameters estimated at best-fit values. Model evaluation with acyclovir 

biodegradation experiments in different experiments was also carried out. Simulation studies were 

performed to investigate the effects of dissolved oxygen (DO) and growth substrate ammonium on 

pharmaceutical biotransformation. 

 

3.2 Research methods 

3.2.1 Chemicals 

Atenolol (≥98%) and atenolol acid were purchased from Sigma-Aldrich, Australia. Acyclovir (>98%) 

was obtained from Thermo Fisher, Australia. Carboxy-acyclovir was provided by Toronto Research 

Chemicals. Isotope labelled internal standard atenolol-d7 (≥97%) was obtained from Sigma-Aldrich, 

Australia and acyclovir-d4 from Santa Cruz Biotechnology. ATU (98%) and all the other HPLC grade 
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organic solvents (methanol, acetonitrile, hexane and acetone) were supplied by Sigma-Aldrich, 

Australia. Reference standards 1-isopropylamino-2-propanol (95%) and 1-amino-3-phenoxy-2-

propanol (94%) were obtained from Enamine Ltd.  

 

The individual standard stock solution for each compound (i.e., atenolol or acyclovir) was prepared 

in methanol at 1 g L-1 and stored at -20 °C. The individual calibration curve including the internal 

standard was obtained using a series working standards (1-200 µg L-1), diluted from the stock solution 

appropriately in methanol/water (25:75, v/v). In order to provide initial 15 mg L-1 of pharmaceuticals 

in the batch experiments, the individual feed solution was prepared at 1 g L-1 in Milli-Q water 

(Millipore, Inc.) for atenolol or acyclovir. With the aim of providing initial 15 µg L-1 of 

pharmaceuticals for the batch biodegradation experiments, the individual feed solution for each 

compound was prepared at concentration of 1 mg L-1 in Milli-Q water. 

 

3.2.2 Culture enrichment and reactor operation 

Given the major aim of fundamental investigations on the biotransformation products and pathways 

of pharmaceuticals during nitrification, a highly enriched nitrifying sludge is needed instead of the 

real activated sludge in order to fully understand pharmaceutical biotransformation. 

 

The sequencing batch reactor (SBR) inoculated with the seed biomass from a domestic wastewater 

treatment plant in Brisbane, Australia was set up at a total volume of 8 L at the room temperature in 

the laboratory in order to obtain an enriched nitrifying culture, containing AOB and NOB. A 6-h 

cycle strategy was employed for SBR running consisting of aerobic feeding (260 min), aeration (30 

min), waste (1 min), settling (60 min) and decanting (9 min). 2 L synthetic wastewater consisting of 

1 g L-1 NH4
+-N was fed into the reactor during each cycle, resulting in the volumetric and sludge 

specific loading rates of 1 g NH4
+-N L-1 d-1 and 700 mg NH4

+-N g-1VSS d-1, respectively. The 

hydraulic retention time (HRT) and the solid retention time (SRT) were controlled at 24 h and 

approximately 15 d, respectively. The compressed air was supplied to the reactor during the feeding 

and aeration periods. DO and pH were continuously monitored through miniCHEM meters and 

controlled between 2.5-3.0 mg L-1 and in the range of 7.5-8.0, respectively using programmed logic 

controllers (PLC).  

 

The feeding synthetic wastewater for the enriched nitrifying culture consisted of per liter (Kuai and 

Verstraete, 1998): 5.63 g of NH4HCO3 (1 g NH4
+-N), 5.99 g of NaHCO3, 0.064 g of each of KH2PO4 

and K2HPO4 and 2 mL of a trace element solution. The trace element stock solution comprised: 1.25 

g L-1 EDTA, 0.55 g L-1 ZnSO4·7H2O, 0.40 g L-1 CoCl2·6H2O, 1.275 g L-1 MnCl2·4H2O, 0.40 g L-1 
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CuSO4·5H2O, 0.05 g L-1 Na2MoO4·2H2O, 1.375 g L-1 CaCl2·2H2O, 1.25 g L-1 FeCl3·6H2O and 44.4 

g L-1 MgSO4·7H2O. 

 

The SBR has been operated in the steady state with almost 100% conversion of NH4
+ to NO3

- for 

more than 1 year when the enriched nitrifying sludge was used as the inoculum for the batch 

experiments described in the following sections. The mixed liquor volatile suspended solids 

(MLVSS) concentration was stable at 1437.6 ± 112.9 mg L-1 (mean and standard errors, respectively, 

n=10). According to the microbial community analysis with fluorescence in-situ hybridization (FISH) 

(Law et al., 2011), AOB and NOB population accounted for over 80% of the microbial community. 

Specifically, ammonia-oxidizing beta-proteobacteria accounted for 46 ± 6% (n=20) of the bacterial 

populations and the Nitrospira genera (nitrite oxidizers) constituted 38 ± 5% (n=20) of the bacterial 

populations. 

 

3.2.3 Batch experiments to assess the biodegradation of atenolol in terms of biotransformation 

products and pathways 

In order to identify any possible transformation products, a high concentration (15 mg L-1) was 

employed as the initial concentration of atenolol to conduct the biodegradation experiments due to 

the fact that the products may not be fully identified under low concentration condition (Radjenović 

et al., 2008). The 4-L beakers were used as the batch reactors wrapped in aluminium foil, in which 

2.5 L freshly enriched nitrifying culture taken from the lab-scale SBR was used to achieve a MLVSS 

concentration of 1000 mg L-1. Different experimental conditions were conducted in duplicates and 

the detailed experimental designs are provided in Table 6. Experimental protocol A1 was to assess 

atenolol biodegradation in the constant presence of ammonium at 50 mg-N L-1 through automatic 

dosing of a mixture of ammonium bicarbonate and sodium bicarbonate, which was also used to adjust 

the pH. The ammonium level was chosen to ensure the nitrifying conditions during batch experiments 

given the high ammonia oxidizing activities of enriched nitrifying sludge (Batt et al., 2006; Li et al., 

2015) and high ammonium concentration (1000 mg N/L) for the parent SBR. Experimental protocol 

A2 was to assess atenolol biodegradation in the absence of ammonium. In this case, no initial 

ammonium pulse was fed at the beginning and no ammonium bicarbonate was supplied during the 

whole experimental period. Other operational conditions were same as those in the Experimental 

protocol A1. In Experimental protocol A3, the contribution of heterotrophs to atenolol biodegradation 

was studied with an initial addition of ATU at 30 mg L-1. ATU probably chelated the copper of AMO 

active site as a strong and selective inhibitor of ammonia oxidation (Ali et al., 2013; Ginestet et al., 

1998). Therefore, it was widely applied as a common method to inhibit AOB activity although 

whether ATU would affect all copper-containing enzymes was still ambiguous (Sathyamoorthy et al., 
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2013). Batch controls to assess the contribution of abiotic and hydrolytic degradation were carried 

out in Experimental protocols A4 and A5, respectively. For protocol A4, the biomass was autoclaved 

at 121 °C and 103 kPa for 30 minutes to ensure entire inactivation of the microbial activity (Kassotaki 

et al., 2016). For protocol A5, hydrolysis of atenolol was studied in Milli-Q water without biomass. 

DO and pH were maintained at the same levels as in the parent SBR, i,e, 2.5-3.0 mg L-1 and 7.5-8.0, 

respectively, which would not affect the dynamics of the microbial community structure in the batch 

experiment. Aeration was provided during the experiments and the mixed liquor was mixed using a 

magnetic stirrer at 250 rpm. Samples were collected periodically for atenolol and the transformation 

products analysis.  

 

Table 6. The protocols applied for atenolol biodegradation experiments 

Experimental 

protocol 
A1 A2 A3 A4 A5 

Initial ammonium 

(mg L-1) 
50 0 50 - 50 

Ammonium control Constant 0 Constant - Constant 

Approximate VSS (g 

VSS L-1) 
1 1 1 1 0 

Volume (L) 4 4 4 4 4 

ATU (mg L-1) 0 0 30 0 0 

Autoclave - - - yes - 

 

3.2.4 Batch experiments to investigate the effect of ammonium availability on atenolol 

biodegradation 

To achieve this objective, the target pharmaceutical atenolol was provided at an initial relatively 

realistic concentration (15 µg L-1) to conduct the batch biodegradation experiments in 4-L beakers, 

covered by the aluminium foil. The enriched nitrifying culture from the SBR were provided at 

MLVSS concentration of approximately 1000 mg L-1 at the beginning of the experiments. Different 

ammonium concentrations (0, 25 and 50 mg L-1) were controlled constantly for each biodegradation 

experiment with different ammonia oxidation levels in duplicates, namely as Experimental protocols 

A6, A7 and A8, respectively. Ammonium bicarbonate was supplied as the growth substrate at the 

beginning of the experiments with ammonium addition and was further frequently dosed into the 

beakers with sodium bicarbonate as a pH adjustment method as well as maintaining a constant level 

of ammonium. The experiments without ammonia oxidation were conducted in duplicates where 

ammonium concentration was zero during the whole time period. Experimental protocol A9 was 
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carried out to assess the contribution of heterotrophs on atenolol biodegradation by adding ATU at 

the beginning of the experiments. The control experiments were carried out to study the abiotic and 

hydrolytic degradation of atenolol with autoclaved biomass (121 °C and 103 kPa for 30 min) 

(Kassotaki et al., 2016) and without any biomass, respectively. For all batch experiments, pH was 

controlled between 7.5 and 8.0 and DO was supplied by aeration in the range of 2.5 and 3.0. After 

mixing well, the samples were taken periodically each day until 240 h for chemical analysis of 

atenolol and its products.  

 

3.2.5 Batch experiments to study the biotransformation of acyclovir under different initial 

concentration 

With the aim to study acyclovir biotransformation under different initial concentrations, a high 

concentration (15 mg L-1) was selected to identify any possible biotransformation products and 

elucidate the biotransformation pathways whereas a low concentration (15 µg L-1) was applied to 

study its degradation profile and verify the biotransformation products under relatively realistic 

concentration. All the batch experiments were divided into two series according to the initial 

acyclovir concentration. For each concentration level, different sets of experiments were performed 

(in duplicates for each experiment) (Table 7).  

 

Table 7. Conditions of conducted batch experiments with acyclovir (same design of key experimental 

conditions for experiments at initial acyclovir of 15 mg L-1 and 15 µg L-1) 

Experiment protocol B1 B2 B3 B4 B5 

Initial ammonium 

(mg L-1) 
50 0 50 50 50 

Ammonium control Constant 0 Constant Constant Constant 

Approximate VSS 

(mg L-1) 
1000 1000 1000 1000 0 

Volume (L) 4 4 4 4 4 

ATU (mg L-1) 0 0 30 0 0 

NaN3 (mg L-1) 0 0 0 500 0 

 

4-L beakers coupled with PLC controllers were used as the batch reactors seeded with enriched 

nitrifying biomass from the SBR. The MLVSS concentration was achieved at approximately 1000 

mg L-1 at the beginning of the batch tests. Briefly, Experimental protocol B1 was conducted to assess 

biodegradation of acyclovir in the presence of ammonium. The constant ammonium concentration 

(50 mg L-1) was provided by automatically adding a mixture of ammonium bicarbonate and sodium 
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bicarbonate, which was controlled by PLC as a pH adjustment process. The adding volume was 

controlled to be minor, which would not change the total volume significantly. Experimental protocol 

B2 was performed in the absence of ammonium during the overall time course when no initial and 

external ammonium were provided. Experimental protocol B3 was carried out with the initial addition 

of ATU, which could inhibit ammonia oxidation probably by chelating the copper of AMO active 

site (Ginestet et al., 1998). The control experimental protocols B4 and B5, were used to assess the 

contribution of abiotic degradation and hydrolytic degradation to acyclovir losses using NaN3 and 

pure water (without biomass), respectively. NaN3 was a chemical inhibitor used for the inactivation 

of microbial activities (Rattier et al., 2014). DO concentration was maintained between 2.5 and 3.0 

mg L-1 through controlled air supply by PLC system. At the same time pH was maintained in the 

range of 7.5-8.0 during the time course. Mixed liquor samples were taken periodically and 

immediately frozen until analysis. 

 

3.2.6 Sample preparation 

The sample preparation procedures are divided into two groups according to the initial concentration 

of the pharmaceuticals. For batch experiments conducted at the higher initial concentration of the 

pharmaceutical (i.e., 15 mg L-1 in sections 3.2.3 and 3.2.5), the samples need to be diluted 100 times 

to ensure that the concentrations of the target compounds could fall within the range of the calibration 

curve (1-200 µg L-1). Briefly, the samples were centrifuged at 12,000 g for 5 min without previous 

filtration in order to retain any possible biotransformation products. After centrifugation, 1 mL 

supernatant was obtained for further direct structural elucidation of the biotransformation products. 

Furthermore, a mixture of methanol/Milli-Q water (25:75, v/v) was used to dilute the supernatant 100 

times for quantification. 

 

For batch experiments carried out at the lower initial concentration for the pharmaceutical (i.e., 15 

µg L-1 in sections 3.2.4 and 3.2.5), samples were concentrated through solid phase extraction (SPE) 

with the vacuum manifold (J. T. Baker, The Netherlands) prior to further quantification and structural 

identification of the target pharmaceuticals and the possible biotransformation products. The detailed 

SPE procedures were as follows. 50 mL non-filtrated samples were first centrifuged at 14,000 rpm 

for 5 min to avoid the unnecessary loss of the transformation products on the filter membrane. 

Conditioned with 10 mL methanol and 10 mL Milli-Q water, the Oasis HLB cartridges (6 mL, 200 

mg, Waters, USA) was applied as the sorbent to conduct the SPE of the previous supernatant at a 

controlled flow rate of approximately 5 mL min-1. The cartridges were rinsed with 5 mL Milli-Q 

water (for atenolol only) and then dried under vacuum for 30 min following by the elution with 10 

mL methanol and 10 mL hexane/acetone (50/50, v/v) at a slow flow rate. The extracted elutes were 
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evaporated to dryness under a gentle stream of nitrogen. The residues were reconstituted in 250 µL 

methanol and 750 µL Milli-Q water. 20 µL internal standard  (atenolol-d7 or acyclovir-d4) was added 

into each sample residue to achieve a concentration of 50 µg L-1 prior to further analysis. 

 

The recovery test was carried out as a quality control to assess the efficiency of the SPE procedure. 

The samples were spiked with individual standards (i.e., atenolol or acyclovir) at different levels of 

1, 5 and 20 µg L-1 in triplicates for each. Relative recoveries were calculated in the range between 

99-110% for atenolol and acyclovir, indicating the high efficiency of sample preparation procedures. 

 

3.2.7 Chemical analyses 

Mixed liquor suspended solids (MLSS) and the volatile fraction (MLVSS) were measured at the 

beginning, middle and end of the batch biodegradation experiments according to the standard 

methods (APHA, 1998). NH4
+-N concentrations were measured using a Lachat QuikChem8000 Flow 

Injection Analyzer (Lachat Instrument, Milwaukee). It was demonstrated in Figure 7 that the 

ammonium concentrations were controlled nearly constant during the entire experimental period for 

batch biodegradation experiments in the presence of ammonium. In addition, nitrite did not 

accumulate for all the batch experiments (less than 1 mg NH4
+-N L-1) and the nitrate concentration 

was similar to that in the SBR effluent (up to 1000 mg NH4
+-N L-1). 
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Figure 7. Ammonium concentrations in the biodegradation experiments of atenolol and acyclovir at 

initial concentration of 15 mg L-1 and 15 µg L-1 in the presence of ammonium. 

 

Quantitative and qualitative analysis of the samples from batch experiments were realized by the 

ultra-fast liquid chromatography (UFLC) (Shimadzu, Japan) coupled with a 4000 QTRAP hybrid 
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triple quadruple-linear ion trap mass spectrometer (QqLIT-MS) equipped with a Turbo Ion Spray 

source (Applied Biosystems-Sciex, USA). Chromatographic separation was carried out using an 

Alltima C18 column (Alltech Associates Inc., USA) at 40 °C. The injection volume was 20 µL. The 

mobile phase contained (A) H2O and (B) CH3CN at a flow rate of 1 mL min-1. The gradient of (B) 

was conducted as follows: it was linearly increased to 5% B after 0.5 min, further increased to 20% 

B for 12.5 min, increased to 50% B within 5 min, increased to 100% B for 2 min, kept constant for 4 

min and finally was decreased to 5% B for 1 min. The total running time including the conditioning 

of the column to the initial conditions was 27 min. Positive electrospray ionization (ESI+) mode was 

applied with the corresponding parameters: drying gas temperature of 500 °C, drying gas 50 psi, 

curtain gas 30 psi, spraying gas 50 psi. The possible biodegradation products were identified through 

careful screening in the full scan chromatogram at a declustering potential of 80 V and mass range of 

50-500 amu followed by spectrum analysis based on nitrogen rule and the existence of the peak 

[m+Na], etc. Tentative structures of biotransformation products were elucidated using product ion 

scan mode (MS2) and sequential fragmentation using the ion trap. Concentrations of the target 

pharmaceuticals and their biotransformation products were analyzed in the multiple reaction 

monitoring (MRM) mode with two transition ions for confirmation and quantification, respectively. 

More detailed information related to parameters settings could be obtained in Table 8.  

 

Table 8. Mass parameters applied for LC-MS/MS analysis 

Compounds 
Precursor ion 

(m/z) 

DP 

(V) 

Q1, m/z 

(quantification) 

CE (eV) 

/CXP (V) 

Q2, m/z 

(confirmation) 

CE (eV) 

/CXP (V) 

Atenolol 267 71 145 37/12 190 29/16 

Atenolol 

acid 
268 71 145 37/12 191 29/16 

Atenolol-d7 274 71 145 37/12 79 33/6 

Acyclovir 226 71 152 17/12 135 43/14 

Carboxy-

acyclovir 
240 46 152 19/12 135 43/12 

Acyclovir-d4 230 46 152 19/12 135 41/10 

 

3.2.8 Model development 

A comprehensive mathematical model involving multi-species and multi-substrates was developed 

herein to describe the pharmaceutical biotransformation processes by the enriched nitrifying sludge. 

In the proposed model system, the consumption of the pharmaceuticals and production of 
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biotransformation products were considered simultaneously accompanied with the ammonia 

oxidation in the enriched nitrifying sludge. As defined in Table 9, the model framework includes six 

soluble substrates, i.e., ammonium (SNH4 ), readily biodegradable substrates (SS ), oxygen (SO2 ), 

pharmaceutical (parent compound, PC, SPC), primary biotransformation product (BP, SBP) and other 

biotransformation products (OP, SOP), and four particulate species, i.e., AOB (XAOB), HET (XHET), 

slowly biodegradable substrates (XS) and inert biomass (XI). For AOB and HET, both growth and 

endogenous respiration processes are included in the model. Seven microbially induced biochemical 

processes are considered in the developed model and the corresponding kinetic expressions are listed 

in  Table 10: (1) AOB induced metabolic transformation of PC; (2) AOB growth linked cometabolic 

transformation of PC; (3) endogenous decay of AOB; (4) hydrolysis; (5) HET metabolic 

transformation of PC; (6) HET growth linked cometabolic transformation of PC; (7) endogenous 

decay of HET. The stoichiometric matrix of the proposed biotransformation model is summarized in 

Table 11. The definitions, values, units and sources of all parameters used in the biotransformation 

model are listed in Table 12.  

 

Table 9. The definition of all model components 

Variable Description Unit 

SNH4 Ammonium concentration g N m-3 

SS Readily biodegradable COD concentration g COD m-3 

SO2 Dissolved oxygen concentration g O2 m-3 

XAOB Ammonia oxidizing bacteria (AOB) biomass concentration g COD m-3 

XHET Heterotrophs (HET) biomass concentration g COD m-3 

XS Slowly biodegradable COD concentration g COD m-3 

XI Inert biomass concentration g COD m-3 

SPC Parent compound (PC) concentration mol m-3 

SBP Primary biotransformation product (BP) concentration mol m-3 

SOP Other biotransformation product (OP) concentration mol m-3 

 

In the model framework, Processes 2 and 6 (see  Table 10) describe the microbial growth-linked 

kinetic expressions associated with cometabolic biotransformation of pharmaceuticals 

(Sathyamoorthy et al., 2013). These processes are described by the Monod equations, in which the 

concentrations of growth substrates SNH4 and SS are involved. For the cometabolic biotransformation 

expressions, key parameters are transformation coefficients such as AOB growth-linked TPC-AOB
c  and 

HET growth-linked TPC-HET
c . Processes 1 and 5 (see Table 10) indicate the pharmaceutical 
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biotransformation reactions directly conducted via metabolism by AOB and HET. These processes 

are described by pseudo-first order kinetic expressions, i.e., an explicit function of the concentrations 

of relevant pharmaceuticals. For microbial metabolic biodegradation of PC, the key parameters are 

biomass normalized PC degradation rate coefficients in the absence of AOB and HET growth, i.e. 

kPC-AOB and kPC-HET. Processes 1, 2, 5 and 6 together contribute to pharmaceutical biotransformation 

in the enriched nitrifying sludge.  

 

In addition, the proposed model framework considers the formation of biotransformation products 

employing the specific stoichiometry coefficients in relevant processes 1, 2, 5 and 6. The coefficients 

αBP
m  and αBP

c  indicate the transformation of PC to BP under metabolism and cometabolism by AOB, 

respectively. Similarly, the coefficients βBP
m  and βBP

c  mean the transformation of PC to BP under 

metabolism and cometabolism by HET, respectively.  

 

 Table 10. Process kinetic rate equations for the biotransformation model 

 Process Rate expression 

1 

Biotransformation of parent compound 

(PC) by ammonia oxidizing bacteria 

(AOB) under metabolism 

kPC-AOBXAOBSPC 

2 
Biotransformation of PC by AOB 

under cometabolism 
µmax,AOB

SNH4

SNH4+KNH4

SO2

SO2+KO2,AOB
XAOB 

3 Decay of AOB !"#$%"#$ 

4 Hydrolysis khyd
XS/XHET

XS/XHET+KX
XHET 

5 
Biotransformation of PC by 

heterotrophs (HET) under metabolism 
kPC-HETXHETSPC 

6 
Biotransformation of PC by HET under 

cometabolism 
µmax,HET

SS

SS+KS

SO2

SO2+KO2,HET
XHET 

7 Decay of HET bHETXHET 
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Table 11. The stoichiometric matrix for the biotransformation model (AOB, ammonia oxidizing bacteria; HET, heterotrophs) 

Component (i) 
Substance Biomass Substrate 

1 2 3 4 5 6 7 8 9 10 

Process 

(j) 
SNH4 Ss SO2 XAOB XHET XS XI SPC  SBP  SOP 

AOB 

1        -1 αBP
m  1-αBP

m  

2 -iNBM-
1

YAOB
  -

3.43-YAOB

YAOB
 1  

  -TPC-AOB
c SPC αBP

c TPC-AOB
c SPC (1-αBP

c )TPC-AOB
c SPC 

3    -1  1-fI fI    

HET 

4  1    -1     

5        -1 βBP
m  1-βBP

m  

6 -iNBM -
1

YHET
 -

1-YHET

YHET
  1 

  -TPC-HET
c SPC βBP

c T
PC-HET
c SPC (1-βBP

c )T
PC-HET
c SPC 

7     -1 1-fI 1-fI    
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Table 12. Stoichiometric and kinetic parameters of the developed model 

Parameter Definition Unit Value  Source 

Stoichiometric parameters 

YAOB Yield coefficient for AOB g COD g N-1 0.15 
(Sathyamoorthy et al., 

2013) 

YHET Yield coefficient for HET g COD g COD-1 0.67 (Henze et al., 2000) 

iNBM Nitrogen fraction of biomass g N g COD-1 0.086 (Henze et al., 2000) 

fI 
Fraction of XI  in biomass 

decay 
g COD g COD-1 0.1 (Henze et al., 2000) 

αBP
m  

Stoichiometry coefficient for 

primary biotransformation 

product (BP) by AOB under 

metabolism 

- 

0.29 

(atenolol) 

0.43 

(acyclovir) 

Calculated from 

experimental data 

αBP
c  

Stoichiometry coefficient for 

BP by AOB under 

cometabolism 

- 

0.87 

(atenolol) 

0.29 

(acyclovir) 

Calculated from 

experimental data 

βBP
m  

Stoichiometry coefficient for 

BP by HET under 

metabolism 

- 

0.63 

(atenolol) 

0.84 

(acyclovir) 

Calculated from 

experimental data 

βBP
c  

Stoichiometry coefficient for 

BP by HET under 

cometabolism 

- 

0.63 

(atenolol) 

0.84 

(acyclovir) 

Calculated from 

experimental data 

Ammonia oxidizing bacteria (AOB) 

µmax,AOB 
Maximum specific growth 

rate of AOB 
h-1 

Estimated in 

this study 
- 

bAOB AOB decay rate h-1 0.00625 
(Sathyamoorthy et al., 

2013) 

KO2,AOB 
Half saturation value for SO2 

of AOB 
g O2 m-3 1.1 (Ghimire, 2012) 

KNH4 
Half saturation value for 

SNH4 
g N m-3 1.31 (25°C) (Wiesmann, 1994) 
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kPC-AOB 
AOB transformation 

coefficient 
m3 g COD-1 h-1 

Estimated in 

this study 
- 

TPC-AOB
c  

Parent compound (PC) 

biotransformation 

coefficient rate linked to 

AOB growth 

(cometabolism) 

m3 g COD-1 
Estimated in 

this study 
- 

Heterotrophs (HET) 

khyd 
Maximum hydrolysis rate of 

HET 
h-1 0.125 (Henze et al., 2000) 

µmax,HET 
Maximum specific growth 

rate of HET 
h-1 0.25 (Henze et al., 2000) 

bHET HET decay rate h-1 0.026 (Henze et al., 2000) 

KO2,HET 
Half saturation value for SO2 

of HET 
g O2 m-3 0.2 (Henze et al., 2000) 

KS 
Half saturation value for 

SCOD 
g COD m-3 20 (Henze et al., 2000) 

KX 
Half saturation value for 

hydrolysis 
g COD g COD-1 1.0 (Henze et al., 2000) 

kPC-HET 
HET transformation 

coefficient 
m3 g COD-1 h-1 

Estimated in 

this study 
- 

TPC-HET
c  

PC biotransformation 

coefficient rate linked to 

HET growth (cometabolism) 

m3 g COD-1 0 
(Sathyamoorthy et al., 

2013) 

 

3.2.9 Model calibration and validation  

Experimental data from biodegradation of atenolol (Case I as described in section 3.2.4) and acyclovir 

(Case II as described in section 3.2.5) at an initial concentration of 15 µg L-1 by an enriched nitrifying 

sludge were used for model evaluation. A brief summary of the experimental conditions applied under 

different metabolic types is provided in Table 13 and detailed experimental procedures could be found 

in previous sections. For example, EXP 1 in Case I for model evaluation is linked to experimental 

protocol A9 in section 3.2.4. All the batch experiments were conducted in duplicates. The designs for 

EXP1, EXP2 and EXP3 were same for atenolol (Case I) and acyclovir (Case II). EXP4 was 

exclusively designed for atenolol biotransformation, where constant ammonium concentrations of 25 

mg-N L-1 were provided using the dosing method in EXP3 during the experimental period. 
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Table 13. Experimental conditions and designs for model calibration and validation 

Purpose 

Model calibration 
Model 

validation 
Model evaluation 

Atenolol (Case I) Acyclovir (Case II) 

EXP1 EXP2 EXP3 EXP4 EXP1 EXP2 EXP3 

Linked to 

experimental 

protocols in 

previous 

sections 

A9 A6 A8 A7 B3 B2 B1 

Parameters 

calibrated 
kPC-HET kPC-AOB 

TPC-AOB, 

µmax, AOB 
N/A kPC-HET kPC-AOB 

TPC-AOB, 

µmax, AOB 

Initial parent 

compound 

concentration 

15 µg L-1 

Experimental 

conditions 

NH4
+-N: 50 

mg L-1 

(initial) 

ATU: 30 mg 

L-1 

MLVSS: 1 g 

VSS L-1 

Volume: 4 L 

DO: 2.5-3.0 

pH: 7.55-7.60 

NH4
+-N: 0 

mg L-1 

MLVSS: 1 

g VSS L-1 

Volume: 4 

L 

DO: 2.5-3.0 

pH: 7.55-

7.60 

NH4
+-N: 

50 mg L-1 

(constant) 

MLVSS: 1 

g VSS L-1 

Volume: 4 

L 

DO: 2.5-

3.0 

pH: 7.55-

7.60 

NH4
+-N: 

25 mg L-1 

(constant) 

MLVSS: 

1 g VSS L-

1 

Volume: 4 

L 

DO: 2.5-

3.0 

pH: 7.55-

7.60 

NH4
+-N: 

50 mg L-1 

(initial) 

ATU: 30 

mg L-1 

MLVSS: 

1 g VSS L-

1 

Volume: 4 

L 

DO: 2.5-

3.0 

pH: 7.55-

7.60 

NH4
+-N: 0 

mg L-1 

MLVSS: 

1 g VSS L-

1 

Volume: 4 

L 

DO: 2.5-

3.0 

pH: 7.55-

7.60 

NH4
+-N: 

50 mg L-1 

(constant) 

MLVSS: 

1 g VSS L-

1 

Volume: 4 

L 

DO: 2.5-

3.0 

pH: 7.55-

7.60 

Experimental 

period 
240 h 

Chemical 

analysis 

NH4
+, NO2

-, NO3
-, atenolol, atenolol acid, MLVSS NH4

+, NO2
-, NO3

-, acyclovir, 

carboxy-acyclovir, MLVSS 
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The contribution of sorption to removal of atenolol and acyclovir was insignificant based on our 

previous studies (Xu et al., 2017a; Xu et al., 2017b). This is in consistency with low sorption 

coefficient KD (0.04) and low octanol-water partition coefficient Log KOW (0.16) of atenolol and Log 

KOW (-1.59) of acyclovir (Kasim et al., 2004; Maurer et al., 2007; Mohsen-Nia et al., 2012). 

Volatilization was considered negligible given the low values of Henry’s law constants for atenolol 

(1.37×10-18 atm m3 mol-1) and acyclovir (3.2×10-22 atm m3 mol-1) (Küster et al., 2010). 

Photodegradation was also insignificant considering the turbidity of the sludge and the aluminium 

foil covering the reactor. Therefore, microbially induced biodegradation should be the main 

mechanism for pharmaceutical removal. 

 

The developed model system consists of 7 biochemical processes and 22 stoichiometric and kinetic 

parameters (Table 10 and Table 12). For most of these parameters, the reported values were well 

established in previous literature and therefore directly used in this proposed model. However, the 

information on biomass growth-linked PC transformation coefficients TPC-AOB
c  and TPC-HET

c  and 

microbial endogenous transformation coefficients kPC-AOB and kPC-HET was limited (Sathyamoorthy 

et al., 2013). Considering the key role of cometabolism induced by AOB growth, the maximum 

specific growth rate of AOB µmax, AOB was of significance to the developed model. Model calibration 

was therefore conducted to estimate the values for kPC-AOB, kPC-HET, TPC-AOB
c  and µmax, AOB based on 

experimental measurements through minimizing the sum of squares of the deviations between the 

measured and modeled values for the concentrations of parent compounds and biotransformation 

products under different metabolic conditions. In addition, the four stoichiometric coefficients, i.e., 

αBP
m , αBP

c , βBP
m  and βBP

c , indicating the transformation of PC to BP under metabolism and cometabolism 

conditions could be determined based on the concentrations of BP and PC measured in the 

experiments. 

 

Model calibration was firstly conducted using experimental data from atenolol biotransformation 

(Case I) of EXP 1-3. The predicted results were fitted with measured concentrations of atenolol and 

atenolol acid from EXP1 and EXP2 to estimate kPC-HET  and 	kPC-AOB , respectively, whilst the 

corresponding experimental data from EXP3 were fitted to estimate µmax, AOB and TPC-AOB
c , using the 

kPC-HET and kPC-AOB values obtained in previous experiments (EXP1 and EXP2). Model validation 

was then carried out with the calibrated parameters using the independent experimental data sets from 

EXP4, which was not used for model calibration. To further verify the validity and applicability of 

the model, the model was also applied to evaluating the acyclovir biotransformation from Case II of 
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EXP 1-3. The key model parameters were recalibrated for acyclovir biotransformation using the three 

sets of batch experimental data (Table 13).  

 

3.3 Results and Discussion 

3.3.1 Different metabolic conditions on atenolol biodegradation could lead to the formation 

of different biotransformation products 

 

This section summarises the findings of the work described in Appendix A which is published in 

Chemical Engineering Journal. 

 

Atenolol biodegradation by the enriched nitrifying sludge was assessed under different metabolic 

conditions, i.e., in the presence of constant ammonium, in the absence of ammonium and with 

addition of ATU. Abiotic and hydrolytic control experimental results demonstrated the stability of 

atenolol without any biotransformation products during the 240 h experimental period as shown in 

Figure 8d and Supplement information in Appendix A. The degradation efficiencies for atenolol were 

observed to be 50%, 40% and 39% in the experiments in the presence of ammonium, in the absence 

of ammonium and with addition of ATU, respectively (Figure 8).  

 

 
Figure 8. Qualitative profiles of atenolol and its biodegradation products in biodegradation 
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experiments: (a) in the presence of ammonium, (b) without ammonium addition, (c) with the addition 

of ATU and (d) with autoclaved biomass. Y-axis indicates the peak areas of the extracted ion 

chromatograms of atenolol or its biodegradation products (A) normalized to the initial peak area of 

atenolol (A0). 

 

Non-linear regression analysis was performed on atenolol degradation in the presence of ammonium 

with a highest degradation rate of 0.088 mg atenolol g VSS-1 h-1, whereas atenolol degradation rates 

were 0.023 and 0.028 mg atenolol g VSS-1 h-1 in the absence of ammonium and with addition of ATU, 

respectively, confirming the potential role of cometabolism by the enriched nitrifying culture on 

atenolol biodegradation.   

 

In the presence of growth substrate ammonium, atenolol biodegradation was associated with the 

nitrifying activity, which was confirmed from a linear positive relationship between ammonia 

oxidation rate and atenolol degradation rate as shown in Figure 9b. Ammonia oxidation rate was 

calculated based on the amounts of ammonium added and the measured NH4
+-N concentration at 

each sampling time. As demonstrated in Figure 9a, ammonia oxidation rate experienced a decrease 

trend during the experimental period accompanied with a decrease in atenolol degradation rate, which 

could be due to substrate competition between growth substrate and cometabolic substrate or 

inhibition from atenolol or its biotransformation products (Arp et al., 2001; Radniecki et al., 2008; 

Sathyamoorthy et al., 2013). 
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Figure 9. (a) The calculated ammonia oxidation rate during biodegradation experiments in the 

presence of ammonium and (b) Relationship between ammonia oxidation rate and atenolol 

biodegradation rate (orange dots indicated the modeled values). 
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The experimental results revealed that four biotransformation products (namely with their nominal 

mass, P117, P167, P227 and P267) were identified in the presence of ammonium whereas only P267 

and P227 were formed in the absence of ammonium (see Figure 8a and b). Atenolol was transformed 

into the sole product P267 with addition of ATU (Figure 8c). The structures of these products were 

identified through full-scan mode analysis, product ion mode analysis, structural proposal based on 

the mass spectrum and mass spectrum comparison with the available reference standards. Briefly, 

their structures were proposed based on these fragment ions and the structural information of atenolol 

followed by confirmation with the standards. The detailed structural identification procedures could 

be found in Appendix A. P267, P117 and P167 were confirmed as atenolol acid, 1-isopropylamino-

2-propanol and 1-amino-3-phenoxy-2-propanol, respectively. The structure of P227 could not be 

accurately identified due to the very low signal intensity notwithstanding the evidence that it might 

contain one nitrogen atom and have been formed through amide-bond hydrolysis to carboxylic acid, 

similar to the product P267. Atenolol acid was previously identified as the main product during 

atenolol biodegradation by conventional activated sludge, membrane bioreactor sludge or activated 

sludge from a full-scale aerobic nitrification reactor (Radjenović et al., 2008; Rubirola et al., 2014). 

Nevertheless, other three products P117, P167 and P227 were first reported in this study, probably 

due to the cometabolism given the constant ammonium feeding condition. This was in accordance 

with the observation that bezafibrate, naproxen, ibuprofen and diclofenac were transformed only by 

cometabolism (Quintana et al., 2005). 

 

Different metabolic conditions could lead to different biotransformation pathways of atenolol by the 

enriched nitrifying sludge. As presented in Figure 10, the first step of atenolol biotransformation 

pathways was same regardless of the presence of ammonium: hydrolysis of the amide group to its 

carboxylic moiety, producing atenolol acid (P267). The transformation pathway to P227 was not sure 

due to its unidentified structure. In the presence of ammonium, AOB induced cometabolim might 

lead to a further transformation of P267, resulting in the formation of P117 and P167 through the 

cleavage of ether bond in the alkyl side chain and N-dealkylation and loss of acetamide moiety from 

the aromatic ring, respectively. These pathways were further confirmed in the experiments with 

atenolol acid as the parent compound. Results indicated that P117, P167 and P227 were produced 

from the beginning of the experiments with increasing trends.  Microbial-induced hydrolysis was a 

typical reaction for most amide-containing compounds (Helbling et al., 2010b; Quintana et al., 2005), 

catalysed by amidases and proteolytic enzymes and two genes found in Nitrosomonas eutropha 

including N-acetylmuramoyl-L-alanine amidase (Neut_1623) and amidohydrolase-2 (Neut_1622) 

(Fournand and Arnaud, 2001; Sharma et al., 2009; Stein et al., 2007). Although information was 

limited on cleavage of ether bond in the alkyl side (Hyman et al., 1994; Pieper et al., 1988), it could 
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be speculated that there might exist some intermediates formed from the typical ether bond cleavage 

or that the reported bond cleavage in this study was due to cometabolism by AOB. N-dealkylation 

was a common reported biochemical reaction for most amine-containing compounds in either the 

nitrifying sludge system or the mammalian system (Gulde et al., 2016). Notwithstanding the absence 

of previous direct evidence of AMO on dealkylation, it was suspected that the monooxygenase from 

AOB likely catalyze this biochemical reaction. As for the loss of acetamide group from aromatic ring, 

it also requires more efforts on identifying this reaction in the future. 

 

 
Figure 10. Proposed biodegradation pathways of atenolol by the enriched nitrifying culture in the 

presence of ammonium as well as in the absence of ammonium. 

 

3.3.2 Impact of ammonium availability on atenolol biodegradation and atenolol acid 

formation by an enriched nitrifying sludge 

 

This section summarises the findings of the work described in Appendix B which is published in ACS 

Sustainable Chemistry & Engineering. 

 

As the presence of growth substrate was necessary for cometabolic biodegradation, the impact of 

ammonium availability was investigated on atenolol biodegradation at relatively realistic level (15 

µg L-1) together with the formation of its transformation product by the enriched nitrifying sludge in 

this work. As shown in Figure 11, three levels of ammonium concentrations were applied at 0, 25 and 
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50 mg-N L-1 with atenolol degradation and atenolol acid formation profiles plotted respectively. It 

was obvious that atenolol removal efficiencies were decreased with increasing ammonium 

concentration while atenolol acid formation was increased with the increase of ammonium 

availability. Contrast to previous reports where the pharmaceutical degradation was enhanced at 

higher initial ammonium concentration (Tran et al., 2009), the different trending in this work could 

be due to the growth substrate providing strategy. Constant ammonium concentrations were supplied 

during the entire experimental period whereas only initial pulse feeding of ammonium was provided 

at the beginning of batch experiments in the previous study. On the other hand, the formation of 

biotransformation products was positively related to ammonia oxidizing rate (details presented in 

Appendix B), further confirming the importance of cometabolism. Although AOB could degrade 

pharmaceuticals under starvation conditions (Forrez et al., 2009; Khunjar et al., 2011), its contribution 

to the transformation was less than AOB with the adequate growth substrates, indicating the 

formation of transformation products could be positively linked to the nitrifying activity.  

 

 
Figure 11. The effect of ammonium (NH4

+-N) concentration on the degradation of atenolol at an 

initial concentration of 15 µg L-1 (A) and on the formation of its biotransformation product atenolol 

acid (B). C is the concentration of atenolol or atenolol acid and C0 is the initial concentration of 

atenolol. 

 

The fact that atenolol biodegradation was adversely linked to the ammonium concentration (see 

Figure 11A) might attribute to the competition between the growth substrate (ammonium) and the 

cometabolic substrate (atenolol), especially in case where the concentration of growth substrate was 

several magnitudes higher than the cometabolic substrate (Fernandez-Fontaina et al., 2012). This 

substrate competition was previously reported for biodegradation of cis-1,2-dichloroethene and 

tetrachloroethylene (Schäfer and Bouwer, 2000; Tsien et al., 1989). As shown in Figure 11B, the 

formation of atenolol acid experienced a slow increase after 96 h for experiments in the presence of 
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25 and 50 mg-N L-1 ammonium, probably due to a decreasing ammonia oxidation rate influenced by 

the competitive inhibition by atenolol (Sathyamoorthy et al., 2013). 

 

Positive relationships were observed between atenolol biodegradation rate and ammonia oxidation 

rate as well as atenolol acid formation rate and ammonia oxidation rate as shown in Figure 12, further 

confirmed the cometabolism in the presence of ammonium. The valid molar ratios of atenolol to 

ammonia for this positive relationship were calculated as 2.4´10-6-2.1´10-5 and 2.8´10-6-3.6´10-5 

with ammonium concentrations of 50 and 25 mg-N L-1, respectively. Different fitted slopes were 

obtained with a higher value at constant 25 mg-N L-1 than that at constant 50 mg-N L-1. Higher 

atenolol biodegradation rate would be achieved at the lower ammonium concentration given the same 

ammonia oxidation rate, further supporting the proposed substrate competition for AMO active sites 

between growth substrate and cometabolic substrate (Arp et al., 2001; Tran et al., 2013). With regard 

to the relationship between ammonia oxidation rate and atenolol acid formation rate, a critical value 

of ammonia oxidation rate was observed. When ammonia oxidation rate was lower than 14.5 mg 

NH4
+-N g VSS-1 h-1, the higher formation rate of atenolol acid would be achieved at the higher 

ammonium concentrations provided that the same ammonia oxidation rate was obtained for both 

constant ammonium concentrations conditions (25 or 50 mg-N L-1) (Figure 12B). However, the 

higher formation rate of atenolol acid was found for 25 mg-N L-1 conditions at the assumed same 

ammonia oxidation rate when it was higher than 14.5 mg NH4
+-N g VSS-1 h-1. Both cometabolism 

and substrate competition might involve in the mechanisms contributing to atenolol biodegradation 

in this study with the competition being the limiting step in formation of atenolol acid when ammonia 

oxidizing rate was higher than the critical value (Fischer and Majewsky, 2014), which requires further 

confirmation. 
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Figure 12. The relationships between ammonia oxidation rate and atenolol degradation rate (A); 
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between ammonia oxidation rate and atenolol acid formation rate (B). 

 

Biodegradation pathway of atenolol at relatively realistic level was proved to be irrelevant to the 

presence/availability of the growth substrate ammonium. Either metabolic biodegradation or 

cometabolic biodegradation could lead to the hydroxylation on the amide group of atenolol to its 

carboxylic form. In contrast, four products including atenolol acid, P117, P167 and P227 were formed 

as the result of cometabolic biodegradation in our previous work probably due to the applied high 

initial concentration of atenolol (Xu et al., 2017b), which requires further efforts. Microbially induced 

hydroxylation was also reported for mianserin, catalyzed by monooxygenase (Lauchnor and Semprini, 

2013; Men et al., 2016). The responsible enzyme in the enriched nitrifying culture for cometabolic 

biodegradation, AMO, could degrade a broad range of substrates due to its non-specific property 

(Keener and Arp, 1993; Lauchnor and Semprini, 2013). As it does with ammonia, AMO could also 

catalyze the hydroxylation reaction of atenolol to yield atenolol acid in this work. 

  

3.3.3 Effect of initial concentration and role of microorganisms in biotransformation of 

acyclovir 

 

This section summarises the findings of the work described in Appendix C which is published in 

Chemosphere. 

 

Acyclovir biodegradation by the enriched nitrifying sludge was assessed in this study with the aim to 

investigate the effect of the metabolic type, the initial concentration and the role of microorganisms 

in biotransformation pathways. Control experiments indicated the negative contributions from 

sorption, abiotic degradation and hydrolytic degradation on acyclovir transformation as detailed in 

Appendix C. 

 

It was noted that the biotransformation pathway of acyclovir by the enriched nitrifying culture was 

independent on the metabolic type. The availability of growth substrate ammonium became a critical 

condition for enriched nitrifying biomass to carry out the cometabolic or metabolic biodegradation 

on acyclovir. As shown in Figure 13 and Figure 14, only one product P239, namely as its nominal 

mass, was identified during the experiments in the presence of ammonium and in the absence of 

ammonium. P239 was identified as carboxy-acyclovir according to the structural identification 

procedures detailed in Appendix C. Carboxy-acyclovir was a reported transformation product of 

acyclovir in previous literature (Prasse et al., 2011). Regardless of the presence of ammonium, alcohol 

oxidation occurred on the terminal hydroxyl group of acyclovir to its carboxy moiety, carboxy-
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acyclovir. This observation was contradictory to the previous report that the production of 4-

chlorobenzoic acid was only related to the cometabolic transformation on bezafibrate (Quintana et 

al., 2005). This might be due to structural discrepancies among studied pharmaceuticals, leading to 

different responses to the metabolic type. On the other hand, alcohol oxidation was not observed in 

biodegradation of ibuprofen and no carboxy-ibuprofen was formed (Quintana et al., 2005). In 

comparison, the primary hydroxyl group of acyclovir was probably vulnerable to endure alcohol 

oxidation as the guanine group showed no significant changes during biodegradation.  

 

 
Figure 13. Concentration profiles of acyclovir and its product normalized to the initial acyclovir of 

(A) 15 mg L-1 and (B) 15 µg L-1 in the experiments with ammonia oxidation. 

 

 
Figure 14. Concentration profiles of acyclovir and its product normalized to the initial (A) 15 mg L-

1 and (B) 15 µg L-1 in the experiments without ammonia addition. 

 

Acyclovir could be transformed into carboxy-acyclovir through catalysis by AOB or HET. By 

comparison of the experimental results in the presence of ammonium and with addition of ATU, only 
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carboxy-acyclovir was identified as the transformation product in both cases as shown in Figure 13 

and Figure 15. This biochemical reaction was typically catalyzed by AMO from AOB or ammonia 

oxidizing archaea (AOA) for most pharmaceuticals including other antiviral drugs (abacavir, 

emtricitabine, ganciclovir, lamivudine and zidovudine), amide-containing compounds (e.g. 

propachlor) and tertiary amines such as mianserin (Funke et al., 2016; Helbling et al., 2010a; Men et 

al., 2016). On the other hand, the experimental evidence on the role of heterotrophs on enzyme-

induced alcohol oxidation is limited in previous literature. The formation of carboxy-acyclovir with 

ATU addition in this work indicated that the monooxygenase from heterotrophs could also catalyze 

the alcohol oxidation, which was also proposed in previous research (Men et al., 2016). The fact that 

the same biotransformation products for 17b-ethinylestradiol were formed by AOB or heterotrophs 

(Khunjar et al., 2011) was in consistency with our observations in this study. Furthermore, the nearly 

closed mass balance results demonstrated that no other products were formed during acyclovir 

biodegradation with ATU addition (see Figure 15). 

 

In this work, different initial acyclovir levels in terms of 15 mg L-1 and 15 µg L-1 were applied to 

study acyclovir biodegradation by the enriched nitrifying culture. Observed from the concentration 

profiles of acyclovir and its transformation products as shown in Figure 13, Figure 14 and Figure 15, 

carboxy-acyclovir was formed with the alcohol oxidation reaction being irrelevant to the initial 

concentration. However, previous reports on the effect of initial concentrations on biotransformation 

pathways of pharmaceuticals were contradictory. The same degradation route was reported on 

trimethoprim by nitrifying activated sludge with two metabolites produced at initial concentrations 

of 20 mg L-1 and 20 µg L-1 whereas different biotransformation products were found under different 

spiked concentration (500 µg L-1 and 5 µg L-1) in another study (Eichhorn et al., 2005; Jewell et al., 

2016). This discrepancy might be due to the properties of the activated sludge and the dominant 

microorganisms in different studies, which deserve further research. 
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Figure 15. Concentration profiles of acyclovir and its product normalized to the initial (A) 15 mg L-

1 and (B) 15 µg L-1 in the experiments with inhibition of ammonia oxidation of AOB by allythiourea 

(ATU) addition. 

 

It should be noted that there might be other transformation products which were not identified in this 

study as the mass balance results indicated a decreasing trend in the presence of ammonium as shown 

in Figure 13. Compared with the closed mass balance with the addition of ATU (see Figure 15), 

biodegradation catalyzed by heterotrophs led to the unique transformation of acyclovir while 

cometabolic biodegradation by the enriched nitrifying culture might result in other pathways, 

requiring more effort in the future. 

 

3.3.4 Modeling of biotransformation of atenolol and acyclovir by enriched nitrifying culture 

under different metabolic conditions 

 

This section summarises the findings of the work described in Appendix D which is submitted. 

 

In this work, the formation of biotransformation products was incorporated into the modeling 

framework to describe the fate of selected pharmaceuticals in the enriched nitrifying culture. 

Microbially induced metabolic types contributing to pharmaceutical biodegradation were considered 

as follows: cometabolism linked to AOB growth, metabolism by AOB, cometabolism linked to HET 

growth and metabolism by HET. 

 

The proposed model framework was calibrated to estimate four key parameters including kPC-HET, 

kPC-AOB , TPC-AOB
c  and µmax, AOB  using atenolol biodegradation experimental data under different 

metabolic conditions. As shown in Figure 16, the developed biotransformation model could 
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satisfactorily capture all dynamics associated with atenolol and atenolol acid in all batch 

biodegradation experiments under different metabolic conditions. The best-fit parameters were listed 

in the Appendix D. Briefly, the parameter kPC-HET associated with HET-induced metabolism was 

estimated as 0.000180 ± 0.000017 m3 g COD-1 h-1 in EXP1 when atenolol biotransformation was 

exclusively attributed to metabolism by HET. The parameter kPC-AOB was estimated as 0.000140 ± 

0.000012 m3 g COD-1 h-1 in EXP2 when only the metabolic biotransformation by AOB and HET were 

involved in the biotransformation of atenolol. Parameters TPC-AOB
c  and µmax, AOB were estimated at 

0.012 ± 0.000036 m3 g COD-1 and 0.012 ± 0.0023 h-1 in EXP3, incorporating with the cometabolic 

biodegradation by AOB. Furthermore, the good agreement observed between model predictions and 

independent experimental data (EXP4) which were not used for model calibration could confirm the 

validity and reliability of the developed model as demonstrated in Figure 17. Compared to the 

previously limited reported values (kPC-HET, kPC-AOB and  TPC-AOB
c  of 0.00093 ± 0.00018 m3 g COD-1 

h-1, 0.00067 ± 0.00023 m3 g COD-1 h-1 and 0.0715 ± 0.0227 m3 g COD-1) (Sathyamoorthy et al., 

2013), the discrepancy in these parameters could be probably due to the difference in the community 

structure in the adopted nitrifying cultures or different operating conditions. The model could be 

potentially applied to a widespread extent despite that the parameter values would vary according to 

the experimental conditions. Observed higher value of TPC-AOB
c  than kPC-HET  and kPC-AOB  could 

support the major role of cometabolism by AOB in atenolol biodegradation (Xu et al., 2017b). It was 

also reported that atenolol degradation was linked to AOB growth instead of HET and NOB 

(Sathyamoorthy et al., 2013).  
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Figure 16. Model calibration with experimental data from atenolol biodegradation: (A) EXP1, with 

addition of allylthiourea (ATU); (B) EXP2, in the absence of ammonium; and (C) EXP3, in the 

presence of ammonium (50 mg NH4
+-N L-1). 
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Figure 17. Model validation results of atenolol biotransformation by the enriched nitrifying culture 

in the presence of ammonium of 25 mg-N L-1 (EXP4). 

 

Model evaluation using acyclovir biotransformation data under different conditions further 

demonstrated the validity of the developed model. As shown in Figure 18, model simulations and 

experimental data matched very well after recalibrating the parameters related to the target parent 

compound (kPC-HET, kPC-AOB and  TPC-AOB
c ). The parameter µmax, AOB was set to be the same as in case 

of atenolol due to the same nitrifying culture. These values were also listed in the Appendix D with 

kPC-HET, kPC-AOB and  TPC-AOB
c  of 0.00035 ± 0.00002 m3 g COD-1 h-1, 0.00005 ± 0.00003 m3 g COD-1 

h-1 and 0.00093 ± 0.00049 m3 g COD-1, respectively. The highest biotransformation conversion 

efficiency of acyclovir in EXP1 (with addition of ATU) compared to those values in EXP2 and WXP3 

indicated the importance of metabolism by HET on acyclovir biotransformation. Oxidation of 

acyclovir to carboxy-acyclovir might be dominated by unspecific monooxygenase from HET (Men 

et al., 2016), which needs to be confirmed in the further work. Considering the molecular differences 

between atenolol and acyclovir, obvious differences in kPC-AOB and  TPC-AOB
c  values may imply an 

affinity property of AOB for different compounds probably due to a preferential substrate selection 

to AMO active sites (Fernandez-Fontaina et al., 2012).   

 



 61 

 Acyclovir modeled
 Acyclovir measured
 Carboxy-acyclovir modeled
 Carboxy-acyclovir measured

0 24 48 72 96 120 144 168 192 216 240
0.0

2.5

5.0

7.5

10.0

12.5

15.0

 Acyclovir modeled
 Acyclovir measured
 Carboxy-acyclovir modeled
 Carboxy-acyclovir measured

0 24 48 72 96 120 144 168 192 216 240
0

5

10

15

20

25

30

 Acyclovir modeled
 Acyclovir measured
 Carboxy-acyclovir modeled
 Carboxy-acyclovir measured

0 24 48 72 96 120 144 168 192 216 240
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

(A)

 

 

C
on

ce
nt

ra
tio

n 
(µ

g 
L-1

)

Time (h)

(B)

 

 

C
on

ce
nt

ra
tio

n 
(µ

g 
L-1

)

Time (h)

(C)

 
 

C
on

ce
nt

ra
tio

n 
(µ

g 
L-1

)

Time (h)  
Figure 18. Model evaluation with experimental data from acyclovir biodegradation: (A) EXP1, with 

addition of allylthiourea (ATU), (B) EXP2, in the absence of ammonium and (C) EXP3, in the 

presence of ammonium (50 mg NH4
+-N L-1). 

 

Positive relationships were observed between ammonia oxidation rate and pharmaceutical 

biodegradation rates in terms of atenolol and acyclovir based on the established model (see Figure 

19), supporting the notion of cometabolic biodegradation by the enriched nitrifying culture (Yi and 

Harper Jr, 2007). By simulating the concentration profiles of pharmaceuticals after 240 h, the valid 
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molar ratio of the pharmaceutical to ammonia was assessed at 8.42´10-7 to 1.91 ´10-5 and 1.62´10-

11 to 2.26´10-5 for atenolol and acyclovir, respectively. The same slope was found for atenolol 

biodegradation within 240 h and after 240 h (Figure 19A) while a different slope was found for the 

relationship between ammonia oxidation rate and the acyclovir degradation rate after 240 h (Figure 

19B). In case of higher ammonia oxidation rate than the critical value (2.3 mg NH4
+-N g VSS-1 h-1 in 

this study), the lower slope might indicate a slower increasing trend in acyclovir degradation rate with 

an increasing ammonia oxidation rate. On the other hand, a higher increasing trend in acyclovir 

degradation rate would arise at higher slope when ammonia oxidation rate was lower than 2.3 mg 

NH4
+-N g VSS-1 h-1. The observation that pharmaceutical would not be degraded until the ammonia 

was depleted (Dawas-Massalha et al., 2014) revealed a higher pharmaceutical degradation rate at 

lower ammonia oxidation rate, which could also support the finding in this study. 
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Figure 19. (A) The relationship between ammonia oxidizing rate and the pharmaceutical degradation 

rates in terms of atenolol and acyclovir (black solid squares indicate the atenolol degradation rates 

after 240 h); and (B) The relationship between ammonia oxidizing rate and the acyclovir degradation 

rate after 240 h at a different linear fit slope. 

 

The effects of DO and ammonium concentrations on pharmaceutical biotransformation were 

investigated by performing model simulations under varying conditions. Different DO concentrations 

were applied ranging from 0 to 4 mg L-1 with ammonium concentration of 50 mg-N L-1. The final 

concentrations of atenolol and acyclovir decreased rapidly with a prompt increase of atenolol acid 

and carboxy-acyclovir as DO increased to 1 mg L-1. When DO further increased to 4 mg L-1, a gradual 

decrease of pharmaceutical concentrations was observed accompanied with a slight increase of their 

biotransformation products. Therefore, DO concentration would play an important role in 
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pharmaceutical biotransformation. Contrarily, DO in the WWTP had no influence on oxidative 

biotransformation of selected micropollutants in the previous report (Helbling et al., 2012). Such 

contradiction might ascribe to the enriched nitrifying culture utilised in this study instead of the 

regular activated sludge in WWTP, suggesting that DO might regulate the pharmaceutical 

biotransformation cometabolically. With regards to growth substrate ammonium, substrate 

competition might be the limiting mechanism when assessing its influence on pharmaceutical 

biotransformation under different ammonium concentrations from 0 to 100 mg-N L-1. Rapid increase 

in pharmaceutical biotransformation was observed with increasing ammonium concentration from 0 

to 20 mg-N L-1 whereas no significant enhancement was exhibited with the increase of ammonium 

concentration from 20 to 100 mg-N L-1. Previously, initial pulse of ammonium was applied resulting 

in the contrary conclusion that pharmaceutical removal efficiencies were enhanced at higher initial 

ammonium concentrations (Tran et al., 2009). Therefore, it was proposed that substrate competition 

might exist between ammonium and atenolol or acyclovir, leading to a decreasing degradation rates 

at higher ammonium concentrations (Dawas-Massalha et al., 2014; Fernandez-Fontaina et al., 2012). 
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Chapter 4 Conclusions and Future Work 

 

4.1 Main conclusions of the thesis 

This thesis describes the biodegradation of selected pharmaceuticals (i.e., atenolol and acyclovir) by 

the enriched nitrifying culture in terms of identification of their biotransformation products, 

elucidation of transformation pathways under different metabolisms, understanding the role of 

involved microorganisms, investigating the effect of key factors on pharmaceutical biotransformation 

and mathematical modeling of the biotransformation processes. The key conclusions are: 

 

• Positive relationships were observed between ammonia oxidation rate and pharmaceutical 

biodegradation rate with the valid range of the ratio of ammonia to pharmaceutical (i.e., 

atenolol or acyclovir) identified, indicating the cometabolism in the presence of growth 

substrate ammonium. 

 

• Different biotransformation products were found for atenolol at high initial concentrations 

under different metabolic conditions while the same metabolite was obtained when low initial 

concentration was applied. AOB induced cometabolism contributed to the formation of P117 

and P167, confirmed from biodegradation experiments of atenolol acid. Lower initial 

concentration of atenolol might lead to formation of transformation products unable to be 

identified under current conditions, which require further efforts. 

 

• Only one biotransformation product, carboxy-acyclovir was formed during acyclovir 

biodegradation experiments regardless of the initial concentrations. 

 

• Metabolic condition had different influences on the formation of transformation products 

from pharmaceuticals (i.e., atenolol or acyclovir), probably due to the specific chemical 

structures of the investigated parent compounds. 

 

• Both AOB and heterotrophs could contribute to the hydroxylation of the amide group of 

atenolol to carboxylic moiety, producing atenolol acid or contribute to alcohol oxidation of 

acyclovir to carboxy-acyclovir. 

 

• Substrate competition between ammonia and atenolol for AMO sites might lead to decreasing 

rates of atenolol biodegradation and ammonia oxidation. An adverse effect on atenolol 
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biodegradation was also observed with the increasing ammonium concentration. However, 

atenolol acid formation was positively related to the increasing ammonia oxidation rate. 

 

• A mathematical model that describes pharmaceutical biotransformation by enriched nitrifying 

biomass was developed considering parent compound degradation and transformation 

products formation simultaneously. The developed model was validated and further evaluated 

with independent experimental data. Good prediction performance was obtained with the 

proposed model. It was found that DO might play an important role in pharmaceutical 

biotransformation whereas a further increase in ammonium concentration would not enhance 

biotransformation, probably due to substrate competition especially under higher ammonium 

concentration. 

 

• The further biodegradation of atenolol acid into small molecular compounds with simpler 

structures gives insights that enriched nitrifying biomass could be applied in the wastewater 

treatment process to break down micropollutants or even achieve complete mineralization. 

With the aid of the proposed model, DO in the wastewater treatment plays an important role 

in regulating the removal of studied atenolol and acyclovir. An optimum DO concentration 

was obtained at 1 mg L-1 in this thesis, which may require further validation in the real 

environment.  

 

4.2 Recommendations for future research 

During the whole period of my PhD, many research challenges, in addition to the research objectives 

investigated so far, have been identified that entail further research. Some of these are summarized 

below: 

 

• In this thesis, atenolol and acyclovir were selected as the model compounds to study their 

biodegradation by the enriched nitrifying culture. Our study demonstrated that different 

products and pathways were found for atenolol biodegradation under different metabolic 

types. The further work should be conducted on the structurally similar compound to validate 

the metabolism-dependent pathways and undermine the transformation reaction induced by 

corresponding microorganisms. 

 

• Although the chemical structures of biotransformation products of atenolol were mostly 

identified such as P267, P117 and P167, structural information of P227 was not available in 



 66 

this thesis. Further work should be done in order to understand the basic information of P227 

and quantify its concentration profiles if possible. 

 

• As the enriched nitrifying sludge used in this thesis was not adapted to the pharmaceuticals 

during enrichment processes, the biodegradation potential on pharmaceuticals might exhibit 

different performance in the long-term operation. This could be achieved by designing a 

continuous feed strategy with the selected pharmaceuticals at relatively realistic level to study 

their biotransformation under different scenarios. 

 

• Two structure-identified transformation products P117 (1-isopropylamino-2-propanol), P167 

(1-amino-3-phenoxy-2-propanol) from atenolol biodegradation were firstly reported in this 

thesis. However, their presence has not been confirmed in the real wastewater, which provided 

an insight for further research. As the references standards for P117 and P167 are available, 

their concentration could be determined and therefore an understanding of the mass balance 

of atenolol and its transformation products during the treatment processes could be achieved. 

 

• The biotransformation of pharmaceuticals at realistic concentrations reported in the 

environment should be further verified in order to investigate the presence of similar 

transformation products and pathways.   

 

• The proposed model framework only considers the biotransformation of one single 

pharmaceutical by the enriched nitrifying sludge. However, a variety of pharmaceuticals were 

present in the environment concurrently. The competition might exist among the 

pharmaceuticals with similar structures or those with different structures, which require 

further work to develop a more comprehensive model to describe the fate of pharmaceuticals 

in the real environment or treatment processes. 

 

• Substrate competition was proposed as the mechanism that might explain the decreasing 

pharmaceutical degradation rates at higher ammonium concentrations. However, the 

underlying mechanism was unclear. Pure AOB cultures might be applied to elucidate the 

competition for AMO active sites between cometabolic substrates and growth substrates 

through a series of batch experiments using different ammonium concentrations. 
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• In terms of the effect of pharmaceuticals on microorganisms, the long-term response in 

microbial communities and the gene expression to the continuous exposure to the relatively 

realistic concentrations of pharmaceuticals should be investigated in the further work. 
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Abstract 

Biodegradation of β-blocker atenolol was investigated using an enriched nitrifying culture at 

controlled ammonium concentration and without ammonium addition. Analysis of the kinetics and 

structural elucidation of biodegradation products showed that atenolol biodegradation was found to 

be linked to the activity of nitrifying bacteria in the presence of ammonium. Atenolol was degraded 

cometabolically by ammonia-oxidizing bacteria (AOB), likely due to a broad substrate range of 

ammonia monooxyenase (AMO). Four products were formed during atenolol biodegradation with 

ammonia oxidation, including P267 (atenolol acid) and three new products P117 (1-isopropylamino-

2-propanol), P167 (1-amino-3-phenoxy-2-propanol), and an unknown product P227 with a nominal 

molecular mass of 227. In comparison, only P267 and P227 were identified during atenolol 

biodegradation without ammonia oxidation. Follow-up experiments using atenolol acid as the parent 

compound indicated the formation of products P117, P167 and P227 in the presence of ammonium. 

Based on the products identified, a tentative biodegradation pathway of atenolol is suggested, which 

involves two steps independent of the presence of ammonium: i) microbial amide-bond hydrolysis to 

carboxyl group and formation of P267 (atenolol acid) and ii) a possible formation of P227 with its 

unidentified structure and other two cometabolically induced reactions: iii) breakage of ether bond in 

the alkyl side chain and formation of P117 and iv) a minor pathway through N-dealkylation and loss 
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of acetamide moiety from the aromatic ring, yielding P167. This study provided an important insight 

regarding the biotransformation pathways under different metabolic conditions.  

 

Keywords: Biodegradation; Ammonia oxidizing bacteria (AOB); Atenolol; Cometabolism; 

Transformation products; Pathways 

 

1. Introduction 

The occurrence of pharmaceutical residues in wastewater treatment plant (WWTP) effluents has 

attracted growing scientific and regulatory concerns during the last decade due to their potential 

detrimental effects on the ecosystem (Daughton and Ternes, 1999; Kolpin et al., 2002; Ternes, 1998). 

Conventional WWTPs are primarily designed to remove easily and moderately biodegradable carbon, 

nitrogen and phosphorus compounds and microbiological organisms, while pharmaceuticals and 

other trace organic contaminants are only partially transformed (Carballa et al., 2004; Evgenidou et 

al., 2015; Rivera-Utrilla et al., 2013; Ternes, 1998). 

 

Enhanced removal of pharmaceuticals was observed in nitrifying activated sludge system (Batt et al., 

2006; Clara et al., 2005). Another study showed that the oxidative removal of trace organic 

contaminants correlated with the removal of ammonium (NH4
+-N) (Helbling et al., 2012). Ammonia 

oxidizing bacteria (AOB) in the nitrifying activated sludge are able to degrade a range of aromatic 

compounds due to its non-specific enzyme ammonium monooxygenase (AMO) (Keener and Arp, 

1994; Skotnicka-Pitak et al., 2009), following cometabolism in the presence of a growth substrate 

such as ammonium (Tran et al., 2014). AMO was capable of oxidizing a broad range of aromatic 

substrates (Keener and Arp, 1994; Hooper et al., 1997), probably due to the mechanism of reaction 

with oxygenated form of AMO (Yi and Harper, 2007). On the other hand, heterotrophs also showed 

the ability to degrade some pharmaceuticals (ketoprofen, acetaminophen) following metabolic 

biodegradation pathways (De Gusseme et al., 2011; Quintana et al., 2005). However, the underlying 

biodegradation mechanisms of pharmaceuticals in nitrifying sludge are still ambiguous and need to 

be elucidated. Given that biodegradation products formed could be more persistent and toxic than 

their parent compound and related to the operating conditions (Pérez et al., 2006; Zwiener et al., 

2002), it is important to study the biotransformation pathways of pharmaceuticals under different 

metabolic conditions and identify the microbial communities involved. 

 

Atenolol is one of the most commonly prescribed β-blockers, used in antihypertensive, antianginal 

and antiarrhythmic treatment (Delamoye et al., 2004). After human consumption it is excreted mainly 

unchanged, leading to its frequent detection in raw wastewater and effluents of the WWTPs 
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(Verlicchi et al., 2012). Although the toxicity of atenolol is negligible, it may have a synergistic effect 

in the presence of other β-blockers in the environment (Cleuvers, 2005). Previously, amide-bond 

hydrolysis and formation of atenolol acid was reported as the main biodegradation pathway of 

atenolol in conventional activated sludge and membrane bioreactor sludge (Radjenović et al., 2008). 

Biodegradation of atenolol by nitrifying sludge was linked to the presence of AOB and heterotrophs 

(Sathyamoorthy et al., 2013). However, biodegradation products and pathways of atenolol in the 

nitrifying activated sludge remain unclear. 

 

The main objectives of this study are to investigate the biodegradation mechanisms of atenolol by 

nitrifying sludge, to identify its biodegradation products and to propose possible biodegradation 

pathways under different metabolic conditions. Batch experiments were conducted at controlled 

ammonium concentration and without ammonium addition to investigate cometabolic and metabolic 

biodegradation of atenolol. Structural identification of the biodegradation products was performed to 

help elucidate the biodegradation pathways of atenolol. 

 

2. Materials and methods 

2.1 Chemicals 

Atenolol (≥98%), atenolol acid, allylthiourea (ATU, 98%) and all the other organic solvents (LC 

grade) were purchased from Sigma-Aldrich, Australia. 1-isopropylamino-2-propanol (95%) and 1-

amino-3-phenoxy-2-propanol (94%) were obtained from Enamine Ltd. The individual standard stock 

solution of atenolol was prepared in methanol at 1 g L-1 and stored at -20 °C. Working standards were 

obtained through dilution of the standard stock solution with purified water, obtained from a Milli-Q 

system (Millipore, Inc.). Atenolol feed solution for batch biodegradation experiments was prepared 

at 1 g L-1 in Milli-Q water.  

 

2.2 Culture enrichment 

A lab-scale sequencing batch reactor (SBR) seeded with activated sludge from a domestic wastewater 

treatment plant in Brisbane was used to enrich the nitrifying cultures, consisting of AOB and nitrite 

oxidizing bacteria (NOB). It was operated on a 6-h cycle consisting of 260 min aerobic feeding, 30 

min aerobic reacting, 1 min wasting, 60 min settling and 9 min decanting periods. During each cycle, 

2 L synthetic wastewater was fed into the reactor resulting in a hydraulic retention time (HRT) of 24 

h. The solid retention time (SRT) was kept at 15 days. Reactor pH and dissolved oxygen (DO) were 

monitored using miniCHEM meters and controlled in the range of 7.5-8.0 and 2.5-3.0 mg L-1, 

respectively, with programmed logic controllers (PLC). The synthetic wastewater for the AOB+NOB 

culture contained per liter (Kuai and Verstraete, 1998): 5.63 g of NH4HCO3 (1 g NH4
+-N), 5.99 g of 
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NaHCO3, 0.064 g of each of KH2PO4 and K2HPO4 and 2 mL of a trace element solution. The trace 

element stock solution contained: 1.25 g L-1 EDTA, 0.55 g L-1 ZnSO4·7H2O, 0.40 g L-1 CoCl2·6H2O, 

1.275 g L-1 MnCl2·4H2O, 0.40 g L-1 CuSO4·5H2O, 0.05 g L-1 Na2MoO4·2H2O, 1.375 g L-1 

CaCl2·2H2O, 1.25 g L-1 FeCl3·6H2O and 44.4 g L-1 MgSO4·7H2O. 

 

The reactor was operated in steady state for more than 10 months, with 98.6 ± 3.5% conversion of 

NH4
+ to NO3

-, at the time of the batch tests. The mixed liquor volatile suspended solids (MLVSS) 

concentration was stable at 1437.6 ± 112.9 mg L-1 (mean and standard errors, respectively, n=10). 

Characterization of the biomass composition using fluorescence in-situ hybridization (FISH) 

indicated that 46 ± 6% (n=20) of the bacterial populations were ammonia-oxidizing beta-

proteobacteria and 38 ± 5% (n=20) of the bacterial populations belonged to the Nitrospira genera 

(nitrite oxidizers). We also conducted 16S rRNA gene sequencing to identify the predominant AOB 

species of the enriched nitrifying culture. The result revealed that the AOB in the sludge were 

dominated by Nitrosomonadaceae (~80%). 

 

2.3 Atenolol biodegradation experiments 

Biodegradation experiments were conducted in 4 L beakers, wrapped in aluminum foil. 2.5 L freshly 

enriched nitrifying culture taken from the lab-scale SBR was used as the inoculum. To provide 

fundamental understanding of atenolol biodegradation and identify possible biodegradation products, 

they were amended with a relatively high concentration of atenolol, i.e., 15 mg L-1, due to the fact 

that the products may not be fully identified under low concentration condition (Radjenović et al., 

2008). The detailed batch experimental designs are provided in Table S1 in Supporting information 

(SI), consisting of five types of experimental protocols in duplicates for each. Experimental protocol 

1 was to assess biodegradation of atenolol in the presence of ammonium with the addition of 

ammonium at 50 mg-N L-1. This concentration was kept constant during the experiment through 

automatic addition of a mixture of ammonium bicarbonate and sodium bicarbonate with the purposes 

to provide ammonium and to adjust the pH. Experimental protocol 2 was to assess biodegradation of 

atenolol in absence of ammonium. The operational conditions were same as those in the experimental 

protocol 1, except that the culture did not contain any ammonium initially and no ammonium 

bicarbonate was supplied. Experimental protocol 3 was to study the contribution of heterotrophs on 

atenolol biodegradation with the addition of AMO inhibitor. ATU was reported to be a strong and 

selective inhibitor of ammonia oxidation (Ali et al., 2013), probably by chelating the copper of AMO 

active site (Ginestet et al., 1998). It was widely applied as a common method to inhibit AOB activity 

although it was not confirmed whether ATU would affect all copper-containing enzymes 

(Sathyamoorthy et al., 2013). 30 mg L-1 ATU was added before starting the experiment. Experimental 
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protocols 4 and 5 were used as control to assess the contribution of abiotic and hydrolytic degradation, 

respectively. For protocol 4, the biomass was autoclaved at 121 °C and 103 kPa for 30 minutes to 

ensure entire inactivation of the microbial activity (Kassotaki et al., 2016). For protocol 5, hydrolysis 

of atenolol was studied in Milli-Q water. DO and pH were maintained at the same levels as in the 

parent SBR, i,e, 2.5-3.0 mg L-1 and 7.5-8.0, respectively, which would not affect the dynamics of the 

microbial community structure in the batch experiment. The MLVSS concentration was kept at 

approximately 1 g L-1 in all experiments except the hydrolytic control. The batch experimental 

reactors were mixed using a magnetic stirrer at 250 rpm, and aerated during the entire experimental 

period. Samples were collected periodically for atenolol and the biodegradation products analysis.  

 

2.4 Analytical methods 

Samples from the biodegradation experiments were centrifuged at 12000 g for 5 min and 1 mL 

supernatant was used for structural elucidation of the biodegradation products. All samples were 

diluted 100 times for accurate quantification due to the limitation of the sensitivity and the range of 

the calibration curve (1-200 µg L-1). Samples were analyzed with an ultra-fast liquid chromatography 

(UFLC) (Shimadzu, Japan) coupled with a 4000 QTRAP hybrid triple quadruple-linear ion trap mass 

spectrometer (QqLIT-MS) equipped with a Turbo Ion Spray source (Applied Biosystems-Sciex, 

USA). LC separation was performed using an Alltima C18 column at 40 °C, supplied by Alltech 

Associates Inc (USA). The injection volume was 20 µL. Atenolol and its biodegradation products 

were analyzed in positive electrospray ionization (ESI+) mode with a mobile phase containing (A) 

H2O and (B) CH3CN at 1 mL min-1. The gradient elution procedure was conducted as follows: it was 

linearly increased to 5% B after 0.5 min, further increased to 20% B for 12.5 min, increased to 50% 

B within 5 min, increased to 100% B for 2 min, kept constant for 4 min and finally was decreased to 

5% B for 1 min. The total running time including the conditioning of the column to the initial 

conditions was 27 min. The turbo ion spray source was operated in ESI+ mode using the following 

settings for the ion source and mass spectrometer: curtain gas 30 psi, spraying gas 50 psi, drying gas 

50 psi, drying gas temperature of 500 °C. The declustering potential was 80 V under full scan mode. 

Mass range was set as 50-300 amu. Atenolol was analyzed in the multiple reaction monitoring (MRM) 

mode at transition ions of m/z 267→190 for confirmation and m/z 267→145 for quantification. The 

possible biodegradation products were identified through careful screening in the full scan 

chromatogram followed by spectrum analysis based on nitrogen rule and the existence of the peak 

[m+Na], etc. Tentative structures of biodegradation products were elucidated using the product ion 

scan mode (MS2) and sequential fragmentation using the ion trap.  
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The ammonium concentrations were analyzed using a Lachat QuikChem8000 Flow Injection 

Analyzer (Lachat Instrument, Milwaukee) with the concentration profiles provided in Figure S1 in 

SI. No significant nitrite accumulation was observed (less than 1 mg L-1) during experiments, which 

suggests nitration reactions were not relevant (Gaulke et al., 2008). Nitrate concentration was at 

similar level with the SBR effluent (up to 1000 mg L-1). The mixed liquid suspended solid (MLSS) 

concentration and its volatile fraction (MLVSS) were analyzed in triplicate according to the standard 

methods (APHA, 1998). 

 

3. Results and Discussion 

3.1 Control experiments 

The abiotic control experiment demonstrated a nearly constant trend of atenolol without formation of 

any transformation products during the 240 h experimental period (Figure 1d). Although autoclave 

might alter the structure of the sludge and affect the sorption capacity of the biomass, it could 

completely inactivate the biomass compared with the method using NaN3 (Helbling et al., 2010a). 

The contribution of sorption to removal of atenolol was negligible in accordance with the previously 

reported low sorption coefficient KD (0.04) and low octanol-water partition coefficient Log KOW (0.16) 

of atenolol (Maurer et al., 2007; Mohsen-Nia et al., 2012). Hydrolytic control showed that the atenolol 

concentration remained nearly constant, which was also supported by the fact that no products were 

detected (Figure S2 in SI). Given the low value of Henry’s Law coefficient of atenolol (1.37×10-18 

atm m3 mol-1) (Küster et al., 2010), pH control and the exclusion of light in batch experiments, 

microbial biodegradation of atenolol was the major removal pathway in batch experiments. 

 

3.2 Atenolol biodegradation with ammonia oxidation 

Figure 1a illustrates the decrease of atenolol from an initial concentration of 15 mg L-1 and formation 

of its biodegradation products in the presence of ammonium. The concentration of atenolol decreased 

continuously with approximately 50% transformed by the end of the 240 h experiments. The observed 

trend did not follow a typical first order process and there was no linear correlation relationship 

between ln(C/C0) (C, atenolol concentration; C0, initial atenolol concentration) and t (time) for 240 

h, probably influenced by ammonia oxidizing activity and inhibition from atenolol or its products. 

Therefore, non-linear regression analysis of atenolol concentration profile was performed as shown 

in Figure S3a in SI. At time 0, 24, 48 and 72 h, the atenolol biodegradation rates were calculated as 

0.088, 0.061, 0.043 and 0.03 mg atenolol g VSS-1 h-1, respectively. The pseudo-first order kinetics 

analysis for first 96 h indicated a degradation constant of 0.07 L gSS
-1 d-1. It is lower than the reported 

values (1.1-1.9 L gSS
-1 d-1) in the literature (Pomiès et al., 2013), likely due to the unaccustomed 

sludge to atenolol in this study. It is expected that the long-term adaption of the nitrifying culture to 
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atenolol presence will significantly enhance its degradation capacity, as confirmed in previous study 

regarding pharmaceutical degradation using nitrifying sludge (Fernandez-Fontaina et al., 2012). 

Ammonia oxidation rate was calculated based on the amounts of ammonium added and the measured 

NH4
+-N concentration at each sampling time. The fact that atenolol biodegradation rate decreased 

with the decreasing ammonia oxidation rate (data shown in Figure 2a) was likely due to the substrate 

competition with ammonium (Sathyamoorthy et al., 2013) or inhibition by the more toxic 

biodegradation products (Arp et al., 2001). The competition for active AMO sites could result in 

decreasing degradation rates of both substrates. Atenolol inhibition on nitrification rate was 

associated with a lower inhibition constant (~4-33 nM), suggesting a greater affinity of AMO for 

atenolol (Sathyamoorthy et al., 2013). The biotransformation products (for example phenol, 

transformed from benzene) might also inhibit AOB activity (Radniecki et al., 2008). 

 

Figure 2b illustrates a positive linear relationship between ammonia oxidation rate and atenolol 

biodegradation rate. Such a positive correlation was also reported for 17α-ethinylestradiol (Yi and 

Harper, 2007). This supported the cometabolic biodegradation of atenolol in the presence of 

ammonium (Tran et al., 2014), likely mediated by the enriched nitrifying culture through the non-

specific enzyme AMO (Keener and Arp, 1993; Keener and Arp, 1994; Lauchnor and Semprini, 2013; 

Rasche et al., 1990). As the ammonium concentration was controlled nearly constant in the 

experiments with ammonia oxidation, the ratio of atenolol to ammonia was decreasing due to the 

decreased atenolol concentration during the time course. The positive relationship between atenolol 

degradation rate and ammonia oxidation rate would thus be valid as the ratio of atenolol to ammonia 

was between 0.006 and 0.017 in our experiments. The positive correlation between modeled atenolol 

degradation rate and ammonia oxidation rate after 240 h (orange dots in Figure 2b, based on the 

calculation using the model in Figure S3a) further confirmed the possible wide range of application 

for such relationship at different atenolol to ammonia ratios. However, the ratio range for the positive 

relationship in Figure 2b was confirmed to reside in the studied experimental conditions, with the 

further verification being required for lower atenolol concentration or different atenolol to ammonia 

ratios. On the other hand, the correlation might be present at the different slope if applying the modest 

concentration of atenolol, given the inhibition from studied high concentration of atenolol on 

ammonia oxidation rate. 

 

Simultaneously with the decrease in atenolol concentration (Figure 1a), four new peaks appeared, at 

retention times of 11.12 (P267), 2.92 (P117), 5.25 (P167) and 3.89 min (P227) (Figure S4 in SI). The 

structural elucidation process is described in the following section 3.5. The formation of 

biodegradation products of atenolol was firstly determined qualitatively, using the peak areas of the 
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extracted ion chromatograms (A), normalized to the initial peak area of atenolol (A0). As shown in 

Figure 1a, the product P267 was formed continuously until the end of the experiment (240 h). As the 

reference standard for this compound (atenolol acid) is available, its concentration was then 

quantified, which was determined to increase up to 1.3 mg L-1 (8.6% of conversion from initial 

atenolol concentration) at the end of the experiment. The products P117 (molecular ion at m/z 118) 

and P167 (molecular ion at m/z 168) were quantified to increase to 37.4 µg L-1 and 97.6 µg L-1 at the 

end of the experiment (based on the purchased standards after structural identification). In the 

presence of ammonium another product P227 was also observed. Its molecular ion m/z 228 had very 

low signal intensity, with a normalized peak area of only 2% relative to the initial peak area of atenolol. 

 

3.3 Atenolol biodegradation without ammonia oxidation 

Figure 1b represents a decrease in atenolol concentration with 40% removal at the end of the 

experiment (240 h) in the absence of ammonium, which was lower than the removal obtained in the 

batch experiments with ammonia oxidation (50%). The atenolol biodegradation rate (0.023 mg 

atenolol g VSS-1 h-1, Figure S3b in SI) was also lower than the values in the presence of ammonium 

during higher ammonia oxidation rate, confirming the potential role of cometabolism in atenolol 

biodegradation by the enriched nitrifying culture.  

 

Without the presence of ammonium, AOB lacked an important growth substrate to support their 

growth and energy consumption and enzyme synthesis, therefore leading to non-cometabolic 

biodegradation of atenolol. Under such conditions, some pharmaceuticals could be utilized as sole 

substrates for carbon and energy source following various metabolic biodegradation pathways, 

mostly conducted by heterotrophs (De Gusseme et al., 2011; Quintana et al., 2005).  

 

During atenolol biodegradation in the absence of ammonium, two new peaks were detected at m/z 

268 (P267, atenolol acid) and a low intensity peak at m/z 228 (P227). Atenolol acid seemed to be 

formed in higher amounts than during biodegradation in the presence of ammonium, which could be 

probably due to the formation of P117 and P167 in the latter case. The concentration of P267 reached 

2.9 mg L-1 at the end of the experiment. On the other hand, the signal intensity of the molecular ion 

at m/z 228 was very low (<2%) (Figure 1b). 

 

3.4 Role of heterotrophs in atenolol biodegradation 

Figure 1c illustrates a decrease in atenolol concentration (at the degradation rate of -0.024 mg atenolol 

g VSS-1 h-1, Figure S3c) and formation of product P267 (atenolol acid), which was the only product 

identified in the presence of ATU. The removal efficiency of atenolol over the 240 h experimental 
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period was 39%, similar to the removal obtained in the absence of ammonium. As the ammonium 

released from cell lysis process during bacterial decay was minor, cometabolic biodegradation by 

AOB without addition of ammonium would not contribute to atenolol biodegradation significantly. 

Therefore, non-cometabolism by AOB was negligible and biodegradation by heterotrophs mainly 

contributed to the removal of atenolol in the absence of ammonium, which can be confirmed from 

the similar atenolol removal efficiencies when AOB activity was inhibited by ATU (Figures 1b and 

1c). In the presence of ATU, ammonia oxidation was inhibited and atenolol biodegradation rate was 

calculated as 0.028 mg atenolol g VSS-1 h-1, which was constant during the time course. Therefore, 

the contribution of heterotrophs would not change significantly during atenolol biodegradation and 

thus would not affect the linear relationship between atenolol biodegradation rate and ammonia 

oxidation rate in the presence of ammonium (Figure 2b), which could also be confirmed from the 

approximately same slope in the corresponding relationship subtracting the contribution by 

heterotrophs (Figure S5). 

 

However, the accumulation of P267 reached 1.7 mg L-1 at the end of the experiment in the presence 

of ATU, which was lower than the value of 2.9 mg L-1 in the absence of ammonium. Based on these 

observations (Figures 1b and 1c), P267 could be possibly formed through atenolol biodegradation by 

both AOB and heterotrophs. 

 

The atenolol biodegradation with ammonia oxidation and with the addition of ATU further proved 

the role of AOB and heterotrophs in pharmaceutical biodegradation (Khunjar et al., 2011). Previously, 

same biotransformation products of EE2 were formed in the biodegradation experiments by either 

AOB or heterotrophs (Khunjar et al., 2011), whereas the metabolic type had a significant influence 

in the biotransformation products and pathways of atenolol in this study (detailed in the following 

sections). 

 

3.5 Structural elucidation of biodegradation products 

Based on the analysis of their full scan spectra, no biotransformation products were detected in the 

atenolol standard solution without biodegradation as well as in the enriched nitrifying biomass sample 

without the addition of atenolol, respectively (Figure S6). Furthermore, the qualitative profiles of 

P117, P167, P227 and P267 showed a gradual increase trend during the time course (Figure 1). 

Therefore, the formation of products P117, P167, P227 and P267 should be solely produced from 

atenolol biodegradation. 
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The chemical structures of these products were elucidated through analysis of their product ion scan 

mass spectrum and comparison with the available standard. Briefly, their structures were proposed 

based on these fragment ions and the structural information of atenolol followed by confirmation with 

the standards. 

 

The most abundant fragment ions detected in the MS2 spectrum of atenolol (molecular ion m/z 267) 

were m/z 190 and 145 (Figure S7a). Fragment ion m/z 190 was formed by the loss of 77 Da from the 

molecular ion, characteristic for β-blockers bearing the –NH-CH(CH3)2 side chain (Escher et al., 

2006). Further loss of ammonia and CO followed by an intramolecular cyclization yielded fragment 

ion m/z 145. A similar fragmentation pattern was observed for the biodegradation product P267, with 

a molecular ion m/z 268 (Figure S7b). Comparing with the MS2 spectrum of the standard solution of 

atenolol acid (Figure S8a), it could be confirmed based on the same fragment ions and fragmentation 

pattern that the product P267 was atenolol acid in this work. Product ion spectra of atenolol and 

atenolol acid have been described in previous studies as well as the structural identification process 

of the transformation products (Kern et al., 2010; Radjenović et al., 2008). However, to date only one 

biodegradation product, i.e., atenolol acid (P267), has been identified in the biodegradation of 

atenolol by conventional activated sludge, membrane bioreactor sludge or activated sludge from a 

full-scale aerobic nitrification reactor (Radjenović et al., 2008; Rubirola et al., 2014). In this study, 

P267 formation was likely due to the contribution by both AOB and heterotrophs. This joint 

contribution was also previously confirmed from the formation of the biodegradation products of 

17α-ethinylestradiol in enriched nitrifying cultures (Khunjar et al., 2011). As heterotrophs in the 

enriched nitrifying sludge might live on more complex carbon source such as decaying cells, the 

products formed by heterotrophs in other cultures (e.g. WWTP sludge) may be different, which 

deserves further research. 

 

MS2 spectrum of molecular ion m/z 118 (product P117) is shown in Figure 3a. Two fragment ions 

were detected at m/z 58 and m/z 59, presumably formed by the loss of isopropylamine and isopropanol, 

respectively. Further fragmentation of fragment ions m/z 58 and m/z 59 did not show any new signals 

in the mass spectrum of P117. In comparison with the standard spectrum in Figure S8b, product P117 

could be identified as 1-isopropylamino-2-propanol. Collision induced dissociation of the molecular 

ion at m/z 168 (P167) resulted in fragment ions m/z 151, m/z 133 and m/z 107 (Figure 3b). Formation 

of fragment ion m/z 151 was assigned to the loss of ammonia from the molecular ion m/z 168. Further 

fragmentation of m/z 151 led to a loss of water to form m/z 133, and further cleavage of acetylene 

(C2H2) to yield a signal at m/z 107. Based on the obtained information and the spectrum of the 

standard in Figure S8c, P167 was assigned to 1-amino-3-phenoxy-2-propanol. The structure of P227 
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could not be accurately identified using the MS2 experiments due to the very low signal intensity of 

the molecular ion m/z 228. Based on its MS2 spectrum presented in Figure 3c, molecular ion m/z 228 

underwent two consecutive losses of 18 Da to form fragment ions m/z 210 and m/z 192. According 

to the nitrogen rule, P227 contained one nitrogen atom and may have been formed through amide-

bond hydrolysis to carboxylic acid, similar to the product P267. Additional analytical methods 

including accurate mass measurements are required for accurate identification of P227. 

 

The formation of additional products P117, P167 and P227 was firstly reported in this study, which 

could be explained by the constant ammonium feed favoring cometabolic biodegradation by 

nitrifying cultures. AOB-induced cometabolic biodegradation led to the production of P117 and P167 

compared with the biodegradation in absence of ammonium, indicating the cometabolism could affect 

the formation of biodegradation products of pharmaceuticals. As previously reported, bezafibrate, 

naproxen, ibuprofen and diclofenac were biotransformed only by the cometabolic biodegradation 

(Quintana et al., 2005). Given that P227 was not found when ATU was added to inhibit AOB growth, 

this biodegradation product may be assigned to AOB instead of heterotrophs.  

 

3.6 Biodegradation of atenolol acid in the presence of ammonium 

In order to further confirm the formation of biotransformation products, the follow-up experiments 

were conducted on atenolol acid as the parent compound to study its biodegradation pathway in the 

presence of ammonium. The batch experimental designs were same as those for atenolol. Figure 4 

shows the qualitative profiles of atenolol acid and its biotransformation products during 240 h. After 

a short period of lag phase, atenolol acid dissipated to the final concentration of 9.95 mg L-1 with the 

removal up to 28%. Three products P117, P167 and P227 were found from the beginning of the 

experiments with the increasing trends. As the reference standards for P117 and P167 were available, 

their final concentrations were quantified as 450.5 and 96.6 µg L-1, respectively. 

 

3.7 Biodegradation pathways by enriched nitrifying sludge 

Based on the identified products, the possible biodegradation pathway by the enriched nitrifying 

sludge was proposed in Figure 5. It indicated that cometabolic biodegradation by AOB would lead to 

different biotransformation pathways of atenolol (forming P267, P227, P117 and P167) compared to 

its metabolic biodegradation (producing P267 and P227). The main biodegradation pathway of 

atenolol was the hydrolysis of the amide group to its carboxylic moiety (P267, atenolol acid) 

regardless of the presence of ammonium. Microbial-induced hydrolysis of atenolol has previously 

been observed in conventional activated sludge and membrane bioreactor as well as activated sludge 

receiving sanitary sewage (Helbling et al., 2010b, Radjenović et al., 2008). Hydrolysis was typical 
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for most amide-containing compounds such as bezafibrate and levetiracetam (Helbling et al., 2010b, 

Quintana et al., 2005). It can be catalyzed by amidases and proteolytic enzymes (Fournand and 

Arnaud, 2001; Sharma et al., 2009). While these enzymes were not found in Nitrosomonas eutropaea 

(Chain et al., 2003), two genes found in Nitrosomonas eutropha including N-acetylmuramoyl-L-

alanine amidase (Neut_1623) and amidohydrolase-2 (Neut_1622) could favor the hydrolysis of the 

C-N bond of amide groups (Stein et al., 2007).  

 

Formation of P227 likely involved the hydrolysis of amide bond. One human metabolite of atenolol 

is a hydroxylated compound (Escher et al., 2006; Reeves et al., 1978). Although it was not detected 

in this study, the similar hydroxylation at the carbon atom neighboring ether oxygen atom may be 

part of the reactions producing P227. 

 

P267 likely underwent further transformation through the cleavage of ether bond in the alkyl side 

chain (i.e., formation of P117), and N-dealkylation (loss of isopropyl group) and loss of acetamide 

moiety from the aromatic ring, yielding the product P167 under cometabolic conditions. These 

pathways were related to AOB activity, which was also confirmed through the experiments using 

P267 (atenolol acid) as the parent compound. The cleavage of ether bond in 2,4-

dichlorophenoxyacetic acid, 4-chloro-2-methylphenoxyacetic acid and 2-methylphenoxyacetic acid 

was reported by Alcaligenes eutrophus JMP 134 (Pieper et al., 1988). Dimethyl ether could be 

cooxidized to form methanol and formaldehyde by an ammonia monooxygenase of Nitrosomonas 

europaea (Hyman et al., 1994). Although there was not much direct work confirming the same bond 

cleavage as this study (P267 was transformed to P117), it could be speculated that there might exist 

some intermediates formed from the typical ether bond cleavage or that the reported bond cleavage 

in this study was due to cometabolism by AOB. Further research would be required to confirm this 

biochemical reaction. Another β-blocker propranolol also underwent dealkylation reaction to produce 

desisopropylpropranolol in rat, dog and man (Chen and Nelson, 1982; Nelson and Bartels, 1984). 

Few reports were documented for dealkylation on amine group of atenolol by nitrifying bacteria. 

Dealkylation reaction was reported as an important pathway for a variety of amine-containing 

compounds in either the biotransformation system by nitrifying sludge or the mammalian system 

(Gulde et al., 2016). Previously reported dealkylation of secondary amine occurs in catalysis by 

monooxygenase from Pseudomonas aminovorans, which had the same function as cytochrome P450 

or by monoamine oxidase-w-Transaminase cascade (Alberta et al., 1989; O'Reilly et al., 2014). 

Notwithstanding the absence of previous direct evidence of AMO on dealkylation, it was suspected 

that the monooxygenase from AOB likely catalyze this biochemical reaction. As for the loss of 

acetamide group from aromatic ring, it also requires more efforts on identifying this reaction in the 
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future. On the other hand, atenolol biodegradation at relatively realistic concentrations also needs to 

be conducted in order to verify the formation of the biodegradation products and the proposed 

biodegradation pathways, which was confirmed in Appendix B. 

 

4. Conclusions 

In this work, the biodegradation of β-blocker atenolol was investigated using an enriched nitrifying 

culture at controlled ammonium concentration and without ammonium addition. The key conclusions 

are: 

 

• Atenolol biodegradation was found to be related to ammonia oxidation rate, indicating the 

cometabolism by AOB in the enriched nitrifying sludge. 

• Four compounds including P117, P167, P227 and P267 (atenolol acid) were produced under 

cometabolic condition in the presence of ammonium while only two products P267 and P227 

were formed in the absence of ammonium. 

• P117, P167 and P227 were not reported previously. The chemical structures of P117 and P167 

were identified as 1-isopropylamino-2-propanol and 1-amino-3-phenoxy-2-propanol. 

• Atenolol was hydroxylated to P267 (atenolol acid) and was converted to P227 regardless of the 

presence of ammonium. Under cometabolic conditions, the biodegradation product P117 and 

P167 could be further formed through the cleavage of ether bond in the alkyl side chain and N-

dealkylation and loss of acetamide moiety, respectively. 
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Figure Legends 

 

Figure 1. Qualitative profiles of atenolol at an initial concentration of 15 mg L-1 and its 

biodegradation products in biodegradation experiments: (a) in the presence of ammonium, (b) without 

ammonium addition, (c) with the addition of ATU and (d) with autoclaved biomass. Y-axis indicates 

the peak areas of the extracted ion chromatograms of atenolol or its biodegradation products (A) 

normalized to the initial peak area of atenolol (A0). 

 

Figure 2. (a) The calculated ammonia oxidation rate during biodegradation experiments in the 

presence of ammonium and (b) Relationship between ammonia oxidation rate and atenolol 

biodegradation rate (orange dots indicated the modeled values). 

 

Figure 3. Proposed fragmentation pathways of biodegradation products under ESI+ conditions 

derived from MS2 experiments in the QqLIT mass spectrometer: (a) P117, (b) P167 and (c) P227. 

 

Figure 4. Qualitative profiles of atenolol acid (P267) at an initial concentration of 15 mg L-1 and its 

biotransformation products in biodegradation experiments in the presence of ammonium. Y-axis 

indicates the peak areas of the extracted ion chromatograms of atenolol acid or its biotransformation 

products (A) normalized to the initial peak area of atenolol acid (A0). 

 

Figure 5. Proposed biodegradation pathways of atenolol by the enriched nitrifying culture in the 

presence of ammonium as well as in the absence of ammonium. 
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Figure 1. Qualitative profiles of atenolol at an initial concentration of 15 mg L-1 and its 

biodegradation products in biodegradation experiments: (a) in the presence of ammonium, (b) without 

ammonium addition, (c) with the addition of ATU and (d) with autoclaved biomass. Y-axis indicates 

the peak areas of the extracted ion chromatograms of atenolol or its biodegradation products (A) 

normalized to the initial peak area of atenolol (A0). 

  

0 24 48 72 96 120 144 168 192 216 240
0

20

40

60

80

100

120
 Atenolol
 P267
 P227

0 24 48 72 96 120 144 168 192 216 240
0

20

40

60

80

100

120

0 24 48 72 96 120 144 168 192 216 240
0

20

40

60

80

100

120

0 24 48 72 96 120 144 168 192 216 240
0

20

40

60

80

100

120

 

 

 Atenolol
 P267
 P117
 P167
 P227

A
/A

0 
(%

)

Time (h)

 

 

A
/A

0 
(%

)

Time (h)

(d)(c)

(b)(a)
 

A
/A

0 
(%

)

 

 

 Atenolol
 P267

Time (h)

 Atenolol

 

 

A
/A

0 
(%

)

Time (h)



 101 

 
Figure 2. (a) The calculated ammonia oxidation rate during biodegradation experiments in the 

presence of ammonium and (b) Relationship between ammonia oxidation rate and atenolol 

biodegradation rate (orange dots indicated the modeled values). 
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Figure 3. Proposed fragmentation pathways of biodegradation products under ESI+ conditions 

derived from MS2 experiments in the QqLIT mass spectrometer: (a) P117, (b) P167 and (c) P227. 
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Figure 4. Qualitative profiles of atenolol acid (P267) at an initial concentration of 15 mg L-1 and its 

biotransformation products in biodegradation experiments in the presence of ammonium. Y-axis 

indicates the peak areas of the extracted ion chromatograms of atenolol acid or its biotransformation 

products (A) normalized to the initial peak area of atenolol acid (A0). 
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Figure 5. Proposed biodegradation pathways of atenolol by the enriched nitrifying culture in the 

presence of ammonium as well as in the absence of ammonium. 
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Supporting Information 

 

Table S1. The protocols applied for atenolol biodegradation experiments 

Protocol 1 2 3 4 5 

Initial ammonium 

(mg L-1) 
50 0 50 - 50 

Ammonium control Constant 0 Constant - Constant 

Approximate VSS 

(g VSS L-1) 
1 1 1 1 0 

Volume (L) 4 4 4 4 4 

ATU (mg L-1) 0 0 30 0 0 

Autoclave - - - yes - 
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Figure S1. The NH4

+-N concentration profiles in different batch experiments: (a) batch with 

ammonia oxidation (in the presence of ammonium) and (b) batch in the presence of ATU, with 

autoclaved biomass and without biomass or no ammonium addition (in the absence of ammonium).  
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Figure S2. The qualitative profile of atenolol at an initial concentration of 15 mg L-1 in control 

experiments without biomass. Y-axis indicates the peak areas of the extracted ion chromatograms (A) 

normalized to the initial peak area of atenolol (A0). 
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Figure S3. Concentration profiles of atenolol in biodegradation experiments: (a) in the presence of 

ammonium, (b) without ammonium addition, (c) with the addition of ATU and (d) with autoclaved 

biomass accompanied with the respective regression curves (black solid lines).  
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Figure S4. Extracted ion chromatograms (XIC) of (a) atenolol, (b) P267, (c) P117, (d) P167 and (e) 

P227, recorded in full scan mode analysis of the samples from the biodegradation experiments in the 

presence of ammonium and at initial atenolol concentration of 15 mg L-1.  
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Figure S5. Relationship between ammonia oxidation rate and atenolol biodegradation rate 

(subtracting the contribution from heterotrophs). 
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Figure S6. The full scan chromatograms (TIC) of the enriched nitrifying biomass sample without 

addition of atenolol (a) and atenolol standard solution without biodegradation (b).  
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Figure S7. ESI+ MS2 spectrum of: (a) atenolol and (b) P267, recorded for samples from the 

biodegradation experiments in the presence of ammonium and at initial atenolol concentration of 15 

mg L-1. 
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Figure S8. ESI+ MS2 spectrum of the individual standards: (a) 4-(2-Hydroxy-3-

isopropylaminopropoxy)phenylacetic acid (atenolol acid, MW 267), (b) 1-isopropylamino-2-

propanol (MW 117) and (c) 1-amino-3-phenoxy-2-propanol (MW167) with their structures. 
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Abstract 

In this work, the impact of the ammonium availability on atenolol biodegradation at relatively 

realistic level of 15 µg L-1 by an enriched nitrifying sludge was investigated in terms of the atenolol 

degradation kinetics and the biotransformation product formation. Batch experiments were conducted 

with different concentrations of growth substrate ammonium (0, 25, and 50 mg-N L-1) being 

constantly applied during the time course. The results suggested the higher ammonium concentrations 

led to the lower atenolol removal efficiencies probably due to the substrate competition between 

ammonium and atenolol. The formation of biotransformation product atenolol acid was observed to 

be positively related to the ammonium oxidation activity, resulting in a higher amount of atenolol 

acid formed at the end of experiments at higher ammonium concentrations. The pseudo-first order 

kinetics analysis indicated linear correlations between ammonia oxidation rate and atenolol 

degradation rate at ammonium levels of both 25 and 50 mg-N L-1, suggested the cometabolism of 

atenolol by ammonia oxidizing bacteria (AOB) in the presence of ammonium. The revealed 

biotransformation reaction, i.e., hydroxylation on amide group to carboxylic group, could be 
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catalyzed by the non-specific enzyme ammonia monooxygenase (AMO) of AOB. The comparison 

between the atenolol degradation at ammonium levels of 0 and 50 mg-N L-1 demonstrated the 

formation of product atenolol acid was independent on the ammonium availability. 

 

Keywords: Ammonia oxidizing bacteria; ammonium; atenolol; biotransformation product; 

cometabolism; biodegradation 

 

1. Introduction 

For recent decades emerging organic micropollutants including pesticides, pharmaceuticals and 

personal care products have attracted increasing public and research concerns due to their potential 

adverse effects on human and ecosystems (Fenner et al., 2013; Luo et al., 2014; Ternes et al., 2015). 

Their ubiquitous occurrence has been reported ranging from a few nano-gram per litre to several 

hundred micro-gram per litre in wastewater, surface water and groundwater (Petrie et al., 2015). 

Wastewater treatment processes have been identified as the main point of discharge of 

pharmaceuticals into the environment as they were originally designed for bulk nutrients removal 

such as nitrogen and phosphorus (Joss et al., 2006; Sengupta et al., 2014). In addition, biodegradation 

of pharmaceuticals in wastewater treatment processes might form the transformation products that 

might be more toxic and persistent (Ternes et al., 2007). Thus, an in-depth understanding of the fate 

of pharmaceuticals in wastewater treatment is needed to assess the removal of these compounds and 

their biotransformation products. 

 

The positive relationships between pharmaceutical biotransformation and nitrification rates have 

been reported in previous studies (Batt et al., 2006; Margot et al., 2016). Enhanced pharmaceutical 

removal were found to be attributed to the non-specific enzyme ammonia monooxygenase (AMO) 

from ammonia oxidizing bacteria (AOB), with a broad substrate range including aromatic and 

aliphatic compounds (Fernandez-Fontaina et al., 2012; Fischer and Majewsky, 2014; Tran et al., 

2009). It was hypothesized that some pharmaceuticals could be biotransformed cometabolically by 

AOB in nitrifying cultures (Roh et al., 2009; Tran et al., 2013). In particular, higher biodegradation 

efficiencies of the emerging micropollutants were obtained at higher nitrogen loading rates that could 

promote the development of biomass with high nitrification activities (Tran et al., 2009). However, 

the impact of the ammonium availability as a constant growth substrate of AOB on pharmaceutical 

transformation has not been well documented at relatively realistic level for AOB induced 

cometabolism in enriched nitrifying cultures. 
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Atenolol was among the most frequently reported pharmaceuticals in the wastewater with the highest 

concentration being up to 25 µg L-1 (Verlicchi et al., 2012). Biodegradation of atenolol was linked to 

the activity of AOB and heterotrophs in the enriched nitrifying cultures (Sathyamoorthy et al., 2013). 

The objective of this study was to investigate the impact of the ammonium availability on atenolol 

biodegradation at relatively realistic level of 15 µg L-1 by an enriched nitrifying sludge. Batch 

experiments were conducted with different concentrations of growth substrate ammonium being 

constantly applied during the time course (0, 25, and 50 mg-N L-1) to evaluate the atenolol 

degradation kinetics and the biotransformation product formation. 

 

2. Materials and Methods 

2.1 Chemicals 

Atenolol (≥98%), atenolol acid, allylthiourea (ATU, 98%) and all the other organic solvents (LC 

grade) were purchased from Sigma-Aldrich, Australia. The internal standard atenolol-d7 (≥97%) was 

also provided by Sigma-Aldrich, Australia. The standard stock solution of atenolol was prepared in 

methanol at 1 g L-1 and stored at -20 °C. Working standards used for calibration curves were obtained 

through dilution of the standard stock solution with purified water, obtained from a Milli-Q system 

(Millipore, Inc.). Atenolol feed solution for all the batch biodegradation experiments was prepared at 

1 mg L-1 in Milli-Q water.  

 

2.2 Nitrifying culture enrichment 

Seed biomass for nitrifying enrichment was collected from a domestic wastewater treatment plant in 

Brisbane, Australia. The enriched nitrifying sequencing batch reactor (SBR) was operated on a 6-h 

cycle (260 min fill, 30 min aerobic react, 1 min waste, 60 min settle, 9 min decant) during the time 

period when biomass was collected for batch experiments with atenolol. The feed solution consisted 

of 5.63 g of NH4HCO3 (1 g NH4
+-N), 5.99 g of NaHCO3, 0.064 g of each of KH2PO4 and K2HPO4 

and 2 mL of a trace element solution per litre (Kuai and Verstraete, 1998). The trace element stock 

solution contained: 1.25 g L-1 EDTA, 0.55 g L-1 ZnSO4·7H2O, 0.40 g L-1 CoCl2·6H2O, 1.275 g L-1 

MnCl2·4H2O, 0.40 g L-1 CuSO4·5H2O, 0.05 g L-1 Na2MoO4·2H2O, 1.375 g L-1 CaCl2·2H2O, 1.25 g 

L-1 FeCl3·6H2O and 44.4 g L-1 MgSO4·7H2O. Reactor pH and dissolved oxygen (DO) were 

continuously monitored using miniCHEM meters and controlled in the range of 7.5-8.0 and 2.5-3.0 

mg L-1, respectively, with programmed logic controllers (PLC). HRT and SRT were 24 h and 15 d, 

respectively. 

 

After operation in the steady state for more than one year, the enriched nitrifying culture was utilized 

as the inoculum for batch biodegradation experiments. The bacterial community analysis was 
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conducted to obtain the fractions of enrolled bacteria using fluorescence in-situ hybridization (FISH) 

(Law et al., 2011). AOB and nitrite oxidizing bacteria (NOB) together would contribute more than 

80% of the enriched nitrifying biomass with their corresponding percentages of 46 ± 6% (n=20) and 

38 ± 5% (n=20), respectively.  

 

2.3 Batch experiments with different ammonium availability 

4 L beakers were filled with enriched nitrifying culture from the SBR. Covered by the aluminum foil, 

the beakers were used as the inoculum to carry out the biodegradation experiments. The Mixed liquor 

volatile suspended solids (MLVSS) was achieved at approximately 1000 mg L-1 at the beginning of 

the experiments. The target pharmaceutical, atenolol, was then added into the beakers to obtain an 

initial relatively realistic concentration (15 µg L-1). Different ammonium concentrations (0, 25 and 

50 mg L-1) were controlled constantly for each biodegradation experiment with different ammonia 

oxidation levels in duplicates. Ammonium bicarbonate was supplied as the growth substrate at the 

beginning of the experiments with ammonium addition and was further frequently added into the 

beakers with sodium bicarbonate as a pH adjustment method as well as maintaining a constant level 

of ammonium. The experiments without ammonia oxidation were conducted in duplicates where 

ammonium concentration was zero during the whole time period. The control experiments were 

carried out to study the abiotic and hydrolytic degradation of atenolol with autoclaved biomass (121 

°C and 103 kPa for 30 min) (Kassotaki et al., 2016) and without any biomass, respectively. For all 

batch experiments, pH was controlled between 7.5 and 8.0 and DO was supplied by aeration in the 

range of 2.5 and 3.0. After mixing well, the samples were taken periodically each day until 240 h for 

chemical analysis of atenolol and its products.  

 

2.4 Chemical analysis 

Mixed liquor suspended solids (MLSS) and the volatile fraction (MLVSS) were measured at the 

beginning, middle and end of the batch biodegradation experiments according to the standard 

methods (APHA, 1998). NH4
+-N concentrations were measured using a Lachat QuikChem8000 Flow 

Injection Analyzer (Lachat Instrument, Milwaukee). Figure S1 in Supporting Information (SI) 

demonstrated that the ammonium concentrations were controlled nearly constant during the entire 

experimental period for batch biodegradation experiments in the presence of ammonium. In addition, 

nitrite was not accumulated for all the batch experiments (less than 1 mg L-1) and the nitrate 

concentration was similar to that in the SBR effluent (up to 1000 mg L-1). 

 

For sample preparation, solid phase extraction (SPE) with vacuum manifold (J. T. Baker, The 

Netherlands) was carried out first in order to achieve the pre-concentration of atenolol and its products 
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at lower levels. Oasis HLB cartridges (6 mL, 200 mg, Waters, USA) were conditioned using 10 mL 

methanol and 10 mL Milli-Q water. After centrifugation of 50 mL samples at 14000 rpm for 5 min, 

the supernatants were passed through the conditioned cartridges with a flow rate of approximately 5 

mL min-1. Following sample pre-concentration, cartridges were rinsed with 5 mL Milli-Q water and 

were dried under vacuum for 30 min. The analytes were eluted with 10 mL methanol and 10 mL of 

hexane/acetone (50:50, v/v) at a slower flow rate. Sample extracts were evaporated to dryness using 

a gentle stream of nitrogen and were reconstituted to 250 µL methanol and 750 µL Milli-Q water. 20 

µL atenolol-d7 was added into each sample as an internal standard to achieve a concentration of 50 

µg L-1 before further analysis. 

 

The liquid chromatograph used in this study was an ultra-fast liquid chromatography (UFLC) 

(Shimadzu, Japan). An Alltima C18 column (Alltech Associates Inc., USA) was used for 

chromatographic separation using Milli-Q (A) and acetonitrile (B) as mobile phases at a flow rate of 

1 mL min-1. The gradient elution program was set as follows: initial, 0% B; 0-0.5 min, 0-5% B; 0.5-

13 min, 5-20% B; 13-18 min, 20-50% B; 18-20 min, 50-100% B; 20-24 min, 100% B; 24-25 min, 

100-5% B. The total running time including the conditioning of the column to the initial conditions 

was 27 min. The column oven was set to 40 °C. The injection volume was 20 µL. The mass 

spectrometric analysis was performed on a 4000 QTRAP hybrid triple quadruple-linear ion trap mass 

spectrometer (QqLIT-MS) equipped with a Turbo Ion Spray source (Applied Biosystems-Sciex, USA) 

under positive ionization mode (ESI+) for all acquisitions. The drying gas (50 psi) was used at 500 °C 

with curtain gas 30 psi and spraying gas 50 psi applied. For qualitative purposes, full scan mode was 

performed on the samples at the declustering potential of 80 V and mass range of 50-500 amu 

followed by product ion scan mode and sequential fragmentation. For quantitative purposes, multiple 

reaction monitoring (MRM) mode was conducted with two MRM transition ions for each compound 

(Table 1), the first one for quantification and the second one for confirmation of the compound. 

 

3. Results 

3.1 Nitrification performance and control experiments 

Prior to the beginning of the batch biodegradation experiments with atenolol, the MLVSS 

concentration of SBR was stable at 1437.6±112.9 mg L-1 (mean and standard errors, respectively, 

n=10) and the stable nitrification performance was achieved in the SBR, which was assessed through 

a series of cycle studies in duplicates. An initial pulse of 20 mg L-1 ammonium was added into the 

batch reactor with the enriched nitrifying sludge at the MLVSS concentration of 95 mg L-1. The 

concentration profiles of different nitrogen species were shown in Figure 1A as NH4
+-N, NO2

--N and 

NO3
--N, respectively. Ammonium was completely consumed by the enriched nitrifying sludge within 
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5 h, leading to a sharp increase of NO3
--N to approximately same concentration of the initial NH4

+-

N level. The concentration of nitrite was increased at first 4 h and then decreased to zero until the end 

of experiments, which indicated its consumption by NOB. Overall, a good nitrification performance 

of the enriched nitrifying sludge was achieved with a highest ammonia oxidizing rate (approximately 

52 mg NH4
+-N g VSS-1 h-1).  

 

The abiotic control and hydrolytic control experiments demonstrated a rather stable atenolol 

concentration over 240 h without the formation of any transformation products (Figure S2). Given 

the lower adsorption ability and the aluminum cover avoiding photodegradation, biodegradation by 

the enriched nitrifying biomass was therefore the main removal mechanism in the investigated batch 

experiments. 

 

3.2 Impact of ammonium availability on atenolol biodegradation 

To determine the effect of the growth substrate (ammonium) availability on the cometabolic activity 

on atenolol by the enriched nitrifying culture, a series of ammonium concentrations among 0, 25 and 

50 mg L-1 were applied in different batch biodegradation experiments with initial 15 µg L-1 atenolol. 

It can be concluded from Figure 2A that the removal efficiencies of atenolol decreased with the 

increase of the availability ammonium at constant levels during the experimental period. Such 

observation is different from the previous studies where the degradation of selected pharmaceuticals 

(e.g., clofibric acid, diclofenac, carbamazepine, propyphenazone) was enhanced at higher initial 

ammonium concentration (Tran et al., 2009). In comparison, the ammonium concentration was 

provided with pulse feeding at the beginning of the experiments in previous studies, leading to 

completely different ammonium availability (constant concentrations in this study) during the time 

course. Enriched nitrifying sludge responsible for the cometabolic biodegradation was reported to 

have a different affinity for each pharmaceutical compounds, probably due to a preferential substrate 

selection to AMO active sites (Fernandez-Fontaina et al., 2012). Ammonia oxidation rate was 

calculated based on the measured ammonium concentration and the adding volume of ammonium 

bicarbonate for each time. Based on Figure 1B, the ammonium availability at constant level had a 

positive effect on ammonia oxidation rate, whereas atenolol removal efficiency was adversely related 

to the constant ammonium concentration.  

 

3.3 Impact of ammonium availability on formation of atenolol acid 

In this study, the influence of ammonium availability on the formation of biotransformation products 

of atenolol was also investigated (Figure 2B). Accompanied with the decrease of atenolol (Figure 

2A), only one biotransformation product was found in all the experiments and was confirmed as 
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atenolol acid. The structural elucidation of atenolol acid was detailed in previous studies (Radjenović 

et al., 2008). It can be clearly concluded that atenolol acid was produced more in the presence of 

ammonium than that in the absence of ammonium, and was formed increasingly with the increase of 

ammonium availability. Although AOB were able to degrade pharmaceuticals during ammonium 

starvation (Forrez et al., 2009; Khunjar et al., 2011), its contribution to the formation of atenolol acid 

was yet less than AOB with the adequate growth substrates. It was also confirmed that the formation 

of biotransformation products was due to cometabolic biodegradation by AOB, as ammonia oxidation 

rate showed a positive correlation with the formation of atenolol acid. The biotransformation of 

atenolol to atenolol acid was via hydrolysis on the primary amide group to the carboxylic acids 

catalyzed by AMO, which was dependent on the nitrifying activities (Helbling et al., 2012; 

Radjenović et al., 2008).  

 

3.4 Comparison between atenolol biodegradation with and without ammonium 

As shown in Figure 3A, a gradual decrease of atenolol at an initial concentration of 15 µg L-1 was 

found during the entire experimental period in the presence of ammonium (at 50 mg L-1). The overall 

removal rate of atenolol could reach 88.0% with the final concentration of 2.2 µg L-1 in the batch 

reactor. The formation of atenolol acid was correlated to the decrease of atenolol. Atenolol acid 

experienced a sharp increase for first 120 h when ammonia oxidation rate was higher. With the 

available reference standard, atenolol acid was quantified to increase to 15.4 µg L-1. Furthermore, 

atenolol acid was proved to be the only biotransformation product through the nearly closed mass 

balance analysis. Figure 3B plotted the concentration profiles of atenolol and atenolol acid in the 

absence of ammonium (at 0 mg L-1). Dropping from the initial 15 µg L-1 concentration, atenolol 

experienced a sharp decrease to 51.5% in the first 24 h. The degradation of atenolol became slower 

with the decreasing ammonia oxidation rate until the atenolol concentration became 0.6 µg L-1. The 

concentration of atenolol acid was increased to 6.8 µg L-1 at 240 h with an approximate conversion 

rate of 29.1% from atenolol biodegradation. The removal efficiency of atenolol was higher in the 

absence of ammonium (97.4%) than that in the presence of ammonium, which was contradictory to 

the results reported previously (Tran et al., 2013). The cometbolic biodegradation induced by AOB 

in the enriched nitrifying culture showed the lower contribution to atenolol removal at the relatively 

realistic concentration compared to the metabolic biodegradation by nitrifying culture, which could 

be caused by the substrate competition especially in the case when growth substrate concentration 

was higher (Dawas-Massalha et al., 2014).  

 

3.5 Kinetic analysis of atenolol biodegradation 
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An exponential decrease of atenolol concentration was observed for each experiment without the 

presence of ammonium, and in the presence of 25 mg L-1 or 50 mg L-1 ammonium (NH4
+-N) (Figure 

2A), indicating a pseudo first order degradation kinetics for atenolol removal by the enriched 

nitrifying sludge (Figure S3). The biodegradation rate constants kbio could be calculated using: 

                                      kbiol=-
ln Ct

C0
t·XVSS

;				t1/2= ln 2
kbiol·XVSS

                                                                       (1) 

where C is the total compound concentration (µg L-1), t is time (h), kbiol is the biodegradation rate 

constant (L g VSS-1 h-1), XVSS is the VSS concentration in the batch beakers (g VSS L-1) and t1/2 is the 

biodegradation half-life (h).  

 

For the batch experiments without the presence of ammonium, the biodegradation rate constant of 

atenolol was calculated as 0.018 L g VSS-1 h-1 with the degradation half-life of 40.2 h. For atenolol 

biodegradation in the presence of ammonium, the half-lives were 63.1 h and 77.3 h at the constant 

ammonium concentrations of 25 and 50 mg L-1, respectively. The degradation constants of 0.0078 

and 0.0072 L g VSS-1 h-1 indicated a slower degradation of atenolol in the presence of ammonium 

compared to the batch experiments without the presence of ammonium. This further supported that 

atenolol could be degraded during ammonium starvation like other pharmaceuticals (Dawas-

Massalha et al., 2014) and the substrate competition existed between ammonium and atenolol 

(Fischer and Majewsky, 2014), leading to a decreasing degradation rate under high concentrations of 

ammonium. These degradation constants were lower than the reported values for atenolol (1.1-1.9 L 

gSS
-1 d-1) (Pomiès et al., 2013), likely due to the unaccustomed sludge to atenolol in this work. 

 

4. Discussion 

 

4.1 Competitive inhibition of ammonium on atenolol biodegradation 

As shown in Figure 2A, the removal efficiency of atenolol was adversely linked to the ammonium 

concentration. The higher removal of atenolol was observed under the lower ammonium 

concentration at constant level. Such observations suggested there might exist a competition between 

the growth substrate (ammonium) and cometabolic substrate (atenolol), in particular when the 

concentration of growth substrate was much higher than that of the non-growth substrate (Fernandez-

Fontaina et al., 2012), which was previously confirmed in the biodegradation study on cis-1,2-

dichloroethene and tetrachloroethylene (Schäfer and Bouwer, 2000; Tsien et al., 1989). As the 

ammonia oxidation and hydroxylation of atenolol were both catalyzed by AMO, it could be 

hypothesized that the competition for AMO active sites between two substrates would be the crucial 

mechanism in this study and ammonia oxidation might be the limiting step, leading to the lower 
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removal rate of atenolol under higher constant ammonium concentrations. When ammonium 

concentrations were maintained zero in the batch experiments, metabolism induced by enriched 

nitrifying sludge might be the main degradation mechanism. There were evidences that AOB can 

transform pharmaceuticals during ammonium starvation (Dawas-Massalha et al., 2014; Forrez et al., 

2009). For example, ibuprofen would not be degraded unless ammonia was depleted completely, 

therefore showing a decreased biodegradation rate at high ammonium concentration (100 mg L-1) 

(Dawas-Massalha et al., 2014). 

 

However, the formation of atenolol acid was enhanced with increasing ammonium concentration 

(Figure 2B), specifically with increasing ammonium oxidizing rates shown in Figure 1B. AMO 

activities might be the dominant factor determining the formation of atenolol acid as AMO could 

catalyze hydroxylation and oxidation (Keener and Arp, 1993; Men et al., 2016). Therefore, the final 

concentrations of atenolol acid were increased from 8.6 to 15.4 µg L-1 with the increasing ammonium 

concentrations from 25 to 50 mg L-1. Due to the competitive inhibition by atenolol (Sathyamoorthy 

et al., 2013), ammonia oxidation rates also showed a decreasing trend along with the time course thus 

leading to a slow increase of atenolol acid in both cases. The formation efficiency of atenolol acid 

was the lowest without the presence of ammonium amongst these experiments, probably due to the 

lowest AMO activities lacking of growth substrates. 

 

4.2 Relationship between ammonia oxidation and atenolol degradation 

The cometabolic biodegradation by AOB was also confirmed from the linear positive relationship 

between ammonia oxidation rate and atenolol biodegradation rate as shown in Figure 4A, which was 

also reported in previous literature (Yi and Harper Jr, 2007). This linear relationship was valid at the 

investigated mole ratio of atenolol to ammonium from 2.4´10-6 to 2.1´10-5 in the biodegradation 

experiment with 50 mg L-1 ammonium while the corresponding ratio was from 2.8´10-6 to 3.6´10-5 

in the biodegradation experiments with 25 mg L-1 ammonium. The atenolol biodegradation rate 

decreased from 7.6´10-4 to 3.3´10-5 µmol g VSS-1 h-1 whereas the ammonia oxidation rate decreased 

from 2.8 to 0.02 mmol NH4
+-N g VSS-1 h-1 along with the experimental time at the constant 25 mg 

L-1 ammonium. For batch experiments at the constant 50 mg L-1 ammonium, the atenolol degradation 

rate decreased from 7.8´10-4 to 5.6´10-5 µmol g VSS-1 h-1 with a decreasing ammonia oxidation rate 

from 4.2 to 0.2 mmol NH4
+-N g VSS-1 h-1. Comparing the fitted slopes between the experiments at 

constant 25 mg L-1 and 50 mg L-1 ammonium, it could be clearly concluded that a higher atenolol 

degradation rate would be achieved at the lower concentration of growth substrate with the same 

ammonia oxidation rate, further supporting the substrate competition for AMO active sites between 

ammonium and atenolol (Arp et al., 2001; Tran et al., 2013). 
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The observed relationship between ammonia oxidation rate and atenolol acid formation rate in Figure 

4B indicated that the formation of biotransformation product of atenolol was consistent with the 

monooxygenase activity (Fernandez-Fontaina et al., 2016). This suggested the involvement of AMO 

in the biotransformation reaction (Men et al., 2016). When ammonia oxidation rate was lower than 

14.5 mg NH4
+-N g VSS-1 h-1, the higher formation rate of atenolol acid would be achieved at the 

higher ammonium concentrations provided that the same ammonia oxidation rate was obtained for 

both constant ammonium concentrations conditions (25 or 50 mg L-1) (Figure 4B). The relationship 

implied that the batch experiments at 25 mg L-1 ammonium would show a higher formation rate of 

atenolol acid at the assumed same ammonia oxidation rate when it was higher than 14.5 mg NH4
+-N 

g VSS-1 h-1. This might be due to the involvement of cometabolism and substrate competition together 

(Fischer and Majewsky, 2014; Tran et al., 2013). The competition might play an important role in 

formation of biotransformation products when ammonia oxidizing rate was higher than a critical 

value (e.g. 14.5 mg NH4
+-N g VSS-1 h-1 in this study), which requires further confirmation. 

 

With regards to the corresponding concentration profiles of atenolol acid in Figure 2B, it 

demonstrated a relatively rapid increasing trend under the lower ammonium concentration (25 mg L-

1) for the first 48 h. However, ammonia oxidation rates under the higher ammonium concentration 

(50 mg L-1) were still higher than those under the lower ammonium concentration (25 mg L-1) for 

each sampling time until 240 h, thus leading to a higher atenolol acid formation rate correspondingly 

and a higher final concentration of atenolol acid.  

 

4.3 Atenolol biodegradation pathway with different ammonium availability 

Different metabolic conditions with regards to the presence or the absence of ammonium were applied 

in this study to investigate the degradation of atenolol and the formation of its biotransformation 

product atenolol acid by the enriched nitrifying culture. It was shown that atenolol could be 

hydroxylated to its carboxylic form, i.e., atenolol acid, regardless of the presence/availability of the 

growth substrate ammonium. Atenolol acid was also a biotransformation product observed in the 

conventional activated sludge and membrane bioreactor as well as activated sludge receiving sanitary 

sewage (Helbling et al., 2010; Radjenović et al., 2008). This biotransformation reaction was 

previously reported to be catalyzed by amidohydrolase produced from bacteria (Golan-Rozen et al., 

2015). The hydroxylation step of mianserin was also reported to be catalyzed by monooxygenase 

(Men et al., 2016; Silverman, 2002). AMO was a non-specific enzyme with a broad substrate range 

(Keener and Arp, 1993; Lauchnor and Semprini, 2013). This cometabolism-induced 
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biotransformation reaction was catalyzed by AMO, which was mostly produced by AOB in the 

presence of ammonium in this work.  

 

5. Conclusion 

The impact of ammonium availability on the biodegradation of atenolol and the formation of its 

biotransformation product by an enriched nitrifying culture was investigated using batch experiments 

with relatively realistic levels of atenolol. The key conclusions are:  

 

• The ammonium availability had an adverse effect on atenolol removal efficiency in the enriched 

nitrifying sludge likely due to the substrate competition. 

• Higher concentration of atenolol acid was formed at the end of experiments with higher ammonia 

oxidation rate of AOB. 

• A linear relationship between ammonia oxidation rate and atenolol degradation rate as well as 

atenolol formation rate confirmed the cometabolic biodegradation by enriched nitrifying biomass. 

• Atenolol could be transformed to atenolol acid through the hydroxylation reaction catalyzed by 

AMO as a cometabolism induced by AOB. 
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Table and figure legends 

 

Table 1. Mass parameters for LC-MS/MS analysis. 

 

Figure 1. Nitrification performance of the enriched nitrifying sludge based on the initial NH4
+-N 

concentration of 20 mg L-1 and initial MLVSS concentration of 95 mg L-1 and (B) The calculated 

ammonia oxidation rate during the experimental period under different ammonium concentrations. 

 

Figure 2. The effect of ammonium (NH4
+-N) concentration on the degradation of atenolol (A) and 

on the formation of its biotransformation product atenolol acid (B). 

 

Figure 3. The concentration profiles of atenolol and atenolol acid normalized to the initial 

concentration of atenolol during the time course in the experiments (A) with ammonia oxidation and 

(B) without ammonia oxidation. 

 

Figure 4. The relationships between ammonia oxidation rate and atenolol degradation rate (A); 

between ammonia oxidation rate and atenolol acid formation rate (B). 
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Table 1. Mass parameters for LC-MS/MS analysis 

Compounds 
Precursor ion 

(m/z) 

DP 

(V) 

Q1 

(quantification) 

CE (eV) 

/CXP (V) 

Q2 

(confirmation) 

CE (eV) 

/CXP (V) 

Atenolol 267.2 71 145.3 37/12 190.2 29/16 

Atenolol 

acid 
268.2 71 145.3 37/12 191.2 29/16 

Atenolol-d7 274.2 71 145.1 37/12 79.1 33/6 
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Figure 1. Nitrification performance of the enriched nitrifying sludge based on the initial NH4
+-N 

concentration of 20 mg L-1 and initial MLVSS concentration of 95 mg L-1 and (B) The calculated 

ammonia oxidation rate during the experimental period under different ammonium concentrations. 
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Figure 2. The effect of ammonium (NH4
+-N) concentration on the degradation of atenolol (A) and 

on the formation of its biotransformation product atenolol acid (B). 
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Figure 3. The concentration profiles of atenolol and atenolol acid normalized to the initial 

concentration of atenolol during the time course in the experiments (A) with ammonia oxidation and 

(B) without ammonia oxidation. 
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Figure 4. The relationships between ammonia oxidation rate and atenolol degradation rate (A); 

between ammonia oxidation rate and atenolol acid formation rate (B). 
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Supporting Information 

 

 
 

Figure S1. Controlled ammonium concentrations during the entire experimental period in the 

presence of ammonium. 
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Figure S2. Concentration profiles of atenolol in the control experiments (A) with autoclaved biomass 

and (B) without biomass. 
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Figure S3. Degradation of atenolol in enriched nitrifying sludge at different concentrations of 

ammonium (0, 25 and 50 mg L-1). Linear regressions are given assuming a pseudo first order kinetic. 
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Abstract 

This work evaluates the biodegradation of the antiviral drug acyclovir by an enriched nitrifying 

culture during ammonia oxidation and without the addition of ammonium. The study on kinetics was 

accompanied with the structural elucidation of biotransformation products through batch 

biodegradation experiments at two different initial levels of acyclovir (15 mg L-1 and 15 µg L-1). The 

pseudo first order kinetic studies of acyclovir in the presence of ammonium indicated the higher 

degradation rates under higher ammonia oxidation rates than those constant degradation rates in the 

absence of ammonium. The positive correlation was found between acyclovir degradation rate and 

ammonia oxidation rate, confirming the cometabolism of acyclovir by the enriched nitrifying culture 

in the presence of ammonium. Formation of the product carboxy-acyclovir (P239) indicated the main 

biotransformation pathway was aerobic oxidation of the terminal hydroxyl group, which was 

independent on the metabolic type (i.e. cometabolism or metabolism). This enzyme-linked reaction 

might be catalyzed by monooxygenase from ammonia oxidizing bacteria or heterotrophs. The 

formation of carboxy-acyclovir was demonstrated to be irrelevant to the acyclovir concentrations 
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applied, indicating the revealed biotransformation pathway might be the dominant removal pathway 

of acyclovir in wastewater treatment. 

 

Keywords: Biotransformation; nitrification; cometabolism; ammonia oxidizing bacteria; acyclovir; 

wastewater treatment. 

 

1. Introduction 

In recent years, the increasing concerns have been focused on the emerging pharmaceuticals in 

aquatic environment due to their potential hazardous effects on living organisms (Daughton and 

Ternes, 1999; Kümmerer, 2009; Sirés and Brillas, 2012). Large amounts of pharmaceuticals were 

used by human beings or manufactured for veterinary drugs, leading to their widespread occurrence 

in the wastewater, surface water and ground water (Luo et al., 2014). Wastewater treatment plant 

(WWTP) was an important pathway for pharmaceuticals entering into the environment (Kosma et al., 

2010; Tijani et al., 2013). Inefficient removal efficiencies of these compounds were observed during 

treatment processes because WWTPs were mainly designed for bulk nutrient removal (Joss et al., 

2006; Kosma et al., 2014; Ternes, 1998). 

 

Nitrification process was observed to be able to enhance the removal of pharmaceuticals (Batt et al., 

2006; Fernandez-Fontaina et al., 2012). The involved ammonia oxidizing bacteria (AOB) were 

probably responsible for cometabolic biodegradation of pharmaceuticals due to its non-specific 

enzyme ammonia monooxygenase (AMO), which was confirmed to degrade a broad range of organic 

substrates including aliphatic and aromatic compounds (Keener and Arp, 1994; Lauchnor and 

Semprini, 2013; Rasche et al., 1990; Skotnicka-Pitak et al., 2009). Furthermore, biotransformation 

products formed during treatment processes may be more persistent and could probably contribute to 

the overall toxicity (Miao and Metcalfe, 2003; Pérez et al., 2006; Quintana et al., 2005; Ternes et al., 

2007). Therefore, the biotransformation products should also be considered in order to get a 

comprehensive understanding of the behavior and fate of pharmaceuticals in the environment and 

engineered systems. 

 

As an important antiviral drug, acyclovir has been consumed largely especially for influenza 

epidemics. Due to their potential ecosystem alterations and the development of viral resistances, 

antiviral drugs have recently attracted the interest of research. For example, a substantial removal 

(98%) of acyclovir was found in the wastewater treatment with the concentration decreasing from 

1780 ng L-1 to 27 ng L-1 (Prasse et al., 2010). Although lab-scale biodegradation of acyclovir was 

previously studied by the activated sludge from the nitrification zone of a real wastewater treatment 



 139 

plant (Prasse et al., 2011), the effect of metabolic conditions on the formation of biotransformation 

products and the specific contributions of AOB and heterotrophs to acyclovir removal has not been 

clearly defined so far. 

 

This study aims to investigate the biodegradation kinetics, products and pathways of acyclovir by an 

enriched nitrifying culture through batch biodegradation experiments under different metabolic 

conditions, i.e., with and without the addition of growth substrate, ammonium. The kinetic analysis 

was accompanied with the structural elucidation of biotransformation products. The initial acyclovir 

concentration at 15 mg L-1 and 15 µg L-1 were applied to verify if the biotransformation products and 

pathways formed under high concentration would occur at relatively realistic levels. 

 

2. Materials and Methods 

2.1 Chemicals 

Acyclovir (>98%) was purchased from Thermo Fisher, Australia. Carboxy-acyclovir was provided 

by Toronto Research Chemicals. Isotope labeled compound acyclovir-d4 was obtained from Santa 

Cruz Biotechnology. HPLC grade organic solvents (methanol, acetonitrile, hexane and acetone) were 

supplied by Sigma-Aldrich, Australia. The individual standard stock solution of acyclovir was 

prepared on a weight basis in methanol at 1 mg mL-1 and stored at -20 °C. The calibration curve was 

obtained by diluting the stock solution appropriately in methanol/water (25:75, v/v). Acyclovir feed 

solution used in the batch experiments was prepared in Milli-Q water (Millipore, Inc.) at initial 

concentration of 1 g L-1. 

 

2.2 Enriched nitrifying culture 

An 8-L lab-scale sequencing batch reactor (SBR) was inoculated with the activated sludge from a 

domestic wastewater treatment plant in Brisbane, Australia. It was operated with the aim for the 

enrichment of nitrifying culture (containing AOB and nitrite oxidizing bacteria (NOB) to perform 

full nitrification) in cycles of 6 h. For each cycle, it consisted of aerobic feeding (260 min), aeration 

(30 min), waste (1 min), settling (60 min) and decanting (9 min). 2 L synthetic wastewater consisting 

of 1 g L-1 NH4
+-N was fed into the reactor during each feeding period, resulting in a hydraulic 

retention time (HRT) of 24 h. The solid retention time (SRT) was controlled at around 15 d. Dissolved 

oxygen (DO) was controlled between 2.5-3.0 mg L-1 using programmed logic controllers (PLC) and 

pH was maintained at the range of 7.5-8.0.  

 

The synthetic wastewater for the enriching the nitrifying culture contained per liter (Kuai and 

Verstraete, 1998): 5.63 g of NH4HCO3 (1 g NH4
+-N), 5.99 g of NaHCO3, 0.064 g of each of KH2PO4 
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and K2HPO4 and 2 mL of a trace element solution. The trace element stock solution contained: 1.25 

g L-1 EDTA, 0.55 g L-1 ZnSO4·7H2O, 0.40 g L-1 CoCl2·6H2O, 1.275 g L-1 MnCl2·4H2O, 0.40 g L-1 

CuSO4·5H2O, 0.05 g L-1 Na2MoO4·2H2O, 1.375 g L-1 CaCl2·2H2O, 1.25 g L-1 FeCl3·6H2O and 44.4 

g L-1 MgSO4·7H2O. 

 

The biodegradation experiments in this study were conducted after more than 1 year of stable reactor 

operation with the AOB and NOB population accounting for over 80% of the microbial community 

with almost 100% conversion of NH4
+ to NO3

-. The mixed liquor volatile suspended solids (MLVSS) 

concentration was stable at 1437.6 ± 112.9 mg L-1 (mean and standard errors, respectively, n=10). 

According to the microbial community analysis with fluorescence in-situ hybridization (FISH) (Law 

et al., 2011), ammonia-oxidizing beta-proteobacteria accounted for 46 ± 6% (n=20) of the bacterial 

populations and the Nitrospira genera (nitrite oxidizers) constituted 38 ± 5% (n=20) of the bacterial 

populations.  

 

2.3 Batch experiments 

All batch experiments were conducted in 4 L beakers coupled with PLC controllers. Enriched 

nitrifying biomass was withdrawn from the SBR during aeration phase when ammonium was almost 

depleted. The biomass was added into the beaker to obtain the MLVSS concentration of 

approximately 1000 mg L-1 at the beginning of the batch tests. All the batch experiments were divided 

into two series according to the initial acyclovir concentration. High concentration (15 mg L-1) was 

selected to identify any possible biotransformation products and elucidate the biotransformation 

pathways while low concentration (15 µg L-1) was used to study its degradation profile and verify the 

biotransformation products under relatively realistic concentration. For each concentration level, 

different sets of experiments were performed (in duplicates for each experiment) (Table 1). EXP1 

was conducted to assess biodegradation of acyclovir in the presence of ammonium. The constant 

ammonium concentration (50 mg L-1) was provided by automatically adding a mixture of ammonium 

bicarbonate and sodium bicarbonate, which was controlled by PLC as a pH adjustment process. The 

adding volume was controlled to be minor, which would not change the total volume significantly. 

EXP2 was performed in the absence of ammonium during the overall time course. EXP3 was carried 

out with the initial addition of allylthiourea (ATU), which could inhibit ammonia oxidation probably 

by chelating the copper of AMO active site (Ginestet et al., 1998). The control experiments, EXP4 

and EXP5, were used to assess the contribution of abiotic degradation and hydrolytic degradation to 

acyclovir losses using NaN3 and pure water (without biomass), respectively. NaN3 was a chemical 

inhibitor used for the inactivation of microbial activities (Rattier et al., 2014). Aerobic conditions 

were achieved with controlled air supply to obtain DO concentration of 2.5-3.0 mg L-1. The pH was 
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maintained in the range of 7.5-8.0 during the time course in all tests. Mixed liquor samples were taken 

periodically and immediately frozen until analysis. 

 

2.4 Sample preparation and chemical analysis 

For experiments at initial acyclovir concentration of 15 mg L-1, samples were centrifuged at 12000 g 

for 5 min without filtration to obtain 1 mL supernatant for further direct structural elucidation of the 

biotransformation products and quantification. For experiments at initial acyclovir concentration of 

15 µg L-1, the samples were concentrated through solid phase extraction (SPE) with vacuum manifold 

(J. T. Baker, The Netherlands) with the recovery for acyclovir of 87.2 ± 6.4% (n=3, 10 µg L-1 added). 

50 mL samples were first centrifuged at 14000 rpm for 5 min. The supernatant was flowing through 

Oasis HLB cartridges (6 mL, 200 mg, Waters, USA) at a rate of 5 mL min-1 after conditioned with 

10 mL methanol and 10 mL Milli-Q water. Then cartridges were dried under vacuum for 30 min 

before they were eluted with 10 mL methanol and 10 mL of hexane/acetone (50:50, v/v). The 

extracted elutes were evaporated to dryness under gentle nitrogen stream. The residue was 

reconstituted in 250 µL methanol and 750 µL Mmilli-Q water with 20 µL acyclovir-d4 (internal 

standard) added before further analysis. 

 

The samples were analyzed by the ultra-fast liquid chromatography (UFLC) (Shimadzu, Japan) 

coupled with a 4000 QTRAP hybrid triple quadruple-linear ion trap mass spectrometer (QqLIT-MS) 

equipped with a Turbo Ion Spray source (Applied Biosystems-Sciex, USA). Chromatographic 

separation was carried out with the injection volume of 20 µL using an Alltima C18 column (Alltech 

Associates Inc., USA) at 40 °C. The mobile phase contained (A) H2O and (B) CH3CN at a flow rate 

of 1 mL min-1. The gradient of (B) was conducted as follows: it was linearly increased to 5% B after 

0.5 min, further increased to 20% B for 12.5 min, increased to 50% B within 5 min, increased to 100% 

B for 2 min, kept constant for 4 min and finally was decreased to 5% B for 1 min. The total running 

time including the conditioning of the column to the initial conditions was 27 min. Positive 

electrospray ionization (ESI+) mode was applied with the corresponding parameters: drying gas 

temperature of 500 °C, drying gas 50 psi, curtain gas 30 psi, spraying gas 50 psi. Tentative structures 

of biotransformation products were identified using the full scan mode at a declustering potential of 

80 V and mass range of 50-300 amu followed by the product ion scan mode (MS2) and sequential 

fragmentation using the ion trap. Concentrations of acyclovir and its biotransformation product were 

analyzed in the multiple reaction monitoring (MRM) mode with two transition ions for confirmation 

and quantification, respectively. The samples from the experiments at initial 15 mg L-1 acyclovir need 

to be diluted 100 times in methanol/Milli-Q water (25:75, v/v) prior to quantification. More detailed 

information could be obtained in Table S1 in the supporting information (SI).  
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Ammonium (NH4
+-N) concentrations controlled in the batch biodegradation experiments were 

measured with a Lachat QuikChem8000 Flow Injection Analyzer (Lachat Instrument, Milwaukee) 

and were shown in Figure S1 in SI. Nitrite was not accumulated significantly with the concentration 

lower than 1 mg L-1 for the experimental period and same nitrate concentration was observed as the 

SBR effluent (up to 1000 mg L-1). 

 

3. Results 

3.1 Control experiments 

The sorption ability of acyclovir onto the biomass was considered negligible due to the low value of 

octanol-water partition coefficient (Log Kow, -1.59) (Kasim et al., 2004), which could also be 

observed from the control experimental results in this study. Regardless of the initial concentration 

of acyclovir, both abiotic control (EXP4) and hydrolytic control (EXP5) experiments demonstrated 

the stability of acyclovir over the time course without any transformation products (Figure S2). 

Sorption and hydrolysis would not contribute to acyclovir removal. Given that the reactors were 

covered with aluminum foil from photodegradation, biodegradation by nitrifying biomass was the 

major pathway for acyclovir removal in all the experiments.  

 

3.2 Acyclovir biodegradation in the presence of ammonium 

The removal efficiency, transformation efficiency and degradation constant of acyclovir in all the 

biodegradation experiments were summarized in Table 2. Figure 1 shows the results from the 

biodegradation experiments in the presence of ammonium. The decrease of acyclovir and formation 

of the product were plotted using their respective concentrations normalized to the initial acyclovir 

concentration. At initial concentration of 15 mg L-1, acyclovir underwent a gradual decrease with 

approximately 65.1% removal at the end of experiments (Figure 1A). After careful screening in the 

full scan chromatogram followed by spectrum analysis based on nitrogen rule and the existence of 

the peak [m+Na], etc, one major biotransformation product P239 was found at retention time of 4.88 

min (data not shown) with nominal mass of 239. Its structural elucidation was carried out in the 

following section 3.5. With the available reference standard (carboxy-acyclovir), it was increased 

gradually from the beginning of the experiments to 6.95 mg L-1 (58.6% of conversion rate) at 240 h. 

 

At initial 15 µg L-1 concentration, the removal efficiency for acyclovir (88.2%) was higher than that 

obtained at higher initial level (65.1%) (Figure 1B). The same major product P239 was continuously 

increased to 5.74 µg L-1. Only 33.0% of the removed parent compound was transformed to P239 

while the remaining might be transformed to other minor products or mineralized. 
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For both initial concentration levels, acyclovir biodegradation followed the pseudo first order 

degradation kinetics (Figure S3). Same as their concentration profiles, acyclovir also showed the 

higher degradation constant (0.0071 L g VSS-1 h-1) at initial 15 µg L-1 concentration than 0.0034 L g 

VSS-1 h-1 at 15 mg L-1 concentration. These degradation constants were lower than the reported value 

(4.9 L gSS
-1 d-1) (Prasse et al., 2011), probably due to unaccustomed sludge to acyclovir. Long-term 

adaption to pharmaceuticals would enhance the degradation ability of the activated sludge (Pomiès 

et al., 2015). The decreasing ammonia oxidation rate observed during the experimental period (Figure 

2A) might be due to the inhibition of acyclovir or its transformation product (Radniechi et al., 2008; 

Sathyamoorthy et al., 2013), which could lead to decreasing rates of both substrates. NOB has been 

proved to be not associated with pharmaceutical (e.g., atenolol) degradation in previous work, with 

AMO as the main responsible of the cometabolism (Fernandez-Fontaina et al., 2012; Sathyamoorthy 

et al., 2013; Xu et al., 2016). Regardless of initial acyclovir concentration, the positive relationship 

between acyclovir degradation rate and ammonia oxidation rate suggested the cometabolic 

biodegradation of acyclovir by AOB in the presence of ammonium (Figure 2B). The cometabolism 

also applies to higher concentration of non-growth substrate although it was in the range of the growth 

substrate concentration (Quintana et al., 2005). 

 

3.3 Acyclovir biodegradation in the absence of ammonium  

Without the presence of growth substrate, acyclovir was removed by enriched nitrifying biomass up 

to 40.9% with the final concentration being 8.5 mg L-1 for the higher initial acyclovir concentration 

experiments (Figure 3A). Simultaneously, the product P239 showed a rapid growing profile 

compared with the results from experiments with ammonia oxidation. Its concentration was 

quantified as 8.7 mg L-1 at 240 h. Nearly closed mass balance during the time course indicated that 

almost all the acyclovir removed in the absence of ammonium was transformed to P239. Furthermore, 

the mass balance did not show a decreasing trend even after 15 d. Thus, P239 might be the only 

biotransformation product. 

 

For the low initial acyclovir experiments, the removal rate of acyclovir only reached up to 47.8% 

without ammonia oxidation, which was significantly lower than that observed in the presence of 

ammonium (88.2%) (Figure 3B). Regardless of the initial acyclovir concentration, the cometabolism 

in the presence of growth substrate played a positive role in degrading acyclovir than the metabolic 

degradation without ammonia oxidation. The formation of P239 showed a slower increasing trend 

compared to that observed in the high initial acyclovir concentration experiments.  
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The linear regression on the concentration profiles of acyclovir in Figures S4A and B demonstrated 

the constant degradation rate of acyclovir in the biodegradation experiments without ammonia 

oxidation. Acyclovir degradation rates during the higher initial concentration and lower initial 

concentration experiments were 0.027 mg g VSS-1 h-1 and 0.043 µg g VSS-1 h-1, respectively, which 

were lower than their corresponding degradation rates (0.051, 0.046, 0.042, 0.038, 0.034, 0.031, 0.028 

mg g VSS-1 h-1 and 0.18, 0.15, 0.12, 0.090, 0.071, 0.056, 0.044 µg g VSS-1 h-1 at time 0, 24, 48, 72, 

96, 120, 144 h) under higher ammonia oxidation rates in the experiments in the presence of 

ammonium, further confirmed the important role of cometabolic biodegradation by AOB for 

acyclovir removal.  

 

3.4 Acyclovir biodegradation with ATU inhibition  

ATU was added at the beginning of the experiments in order to inhibit the nitrifying activities of 

AOB, thus likely leading to the exclusive degradation of acyclovir by heterotrophs. As no external 

organic source was provided in the experiments, acyclovir degradation might attribute to 

heterotrophic metabolic activity. Figure 4A illustrates that acyclovir experienced a slow gradual 

decrease with a removal rate of 36.2% over the experimental period at the higher initial concentration, 

which was slightly lower than 40.9% obtained in the absence of ammonium. P239 was still the only 

product formed with the concentration increasing to 6.4 mg L-1 when nitrifying activities were 

inhibited. Practically 94.1% of the consumed acyclovir was transformed to P239 and the mass balance 

leveled off for the overall time course. Therefore, no other major products might be formed by 

heterotrophs.  

 

As shown in Figure 4B, acyclovir at initial 15 µg L-1 also declined gradually with a removal efficiency 

of 50.3% accompanied by the continuous increase of its product P239 (4.9 µg L-1 at 240 h). The mass 

balance analysis also indicated the constant mass during the experimental period with only one 

product P239 formed.  

 

The linear regression in Figures S4C and D showed acyclovir degradation constants for experiments 

at the higher initial concentration and the lower initial concentration were calculated as 0.02 mg g 

VSS-1 h-1 and 0.018 µg g VSS-1 h-1, respectively. Compared to the values obtained in the absence of 

ammonium, heterotrophs played a major contribution to acyclovir degradation under the condition 

without ammonia oxidation by AOB. The role of AOB and heterotrophs has been investigated in 

previous studies on pharmaceutical biodegradation (Khunjar et al., 2011; Tran et al., 2013). The fact 

that the same biotransformation products for 17b-ethinylestradiol were formed by AOB or 

heterotrophs (Khunjar et al., 2011) was consistent to the observations in this study. The results 
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confirmed that P239 was the major biotransformation product of acyclovir by the enriched culture 

independent on its initial concentration. 

 

3.5 Structural elucidation of biotransformation product 

The full scan chromatogram of the samples indicated the formation of the product P239 during all 

biodegradation experiments. Its structure was then identified through the analysis and comparison of 

the product ion (MS2) spectrum of the biodegradation samples with that of the available standard 

carboxy-acyclovir. Figure 5 showed the MS2 spectrum of the molecular ion m/z 240, which was the 

protonated P239. The most abundant fragment ions were m/z 152 and 135. The molecular ion m/z 

240 underwent the loss of 88 Da to produce the fragment ion m/z 152. Further fragmentation of m/z 

152 led to a loss of NH3 molecule to form m/z 135. The similar fragmentation pattern was previously 

reported in the literature (Prasse et al., 2011). Another minor fragmentation pathway was to form m/z 

122 with a loss of 44 Da from m/z 164, following the loss of 76 Da from molecular ion m/z 240. 

Collision induced dissociation of the molecular ion m/z 240 could lead to the third route to obtain the 

fragment ion m/z 61, via the formation of the fragment ion 89. There were no further fragmentation 

pathways from the lowest m/z 61. The same fragment ions and fragment pattern observed in the 

standard solution further confirmed that P239 could be assigned to 9-carboxymethoxymethylguaine 

(carboxy-acyclovir) (Figure S5). 

 

The same fragment ions m/z 152 and 135 were also formed in the MS2 spectrums of the parent 

compound acyclovir, except m/z 164 and 122, which were also reported in previous literature (Prasse 

et al., 2011). The only difference between acyclovir and P239 was the third pathway forming m/z 75 

and m/z 89, respectively (Figure S6), which was attributed to the oxidation of the hydroxyl group to 

the carboxy group. This also supported the structural identification of P239 in this work. 

 

4. Discussion 

In this work, the biodegradation of the antiviral drug acyclovir by an enriched nitrifying culture was 

investigated during ammonia oxidation and without the addition of ammonium. Acyclovir 

degradation rates based on pseudo first order kinetics under higher ammonia oxidation rate in the 

presence of ammonium were higher than those constant values in the absence of ammonium. The 

positive correlation observed between acyclovir degradation rate and ammonia oxidation rate further 

confirmed the cometabolism of acyclovir by the enriched nitrifying culture in the presence of 

ammonium, which was also supported from the similar relationship for 17a-ethinylestradiol (Yi and 

Harper, 2007). 
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Based on the identified product, the main biotransformation pathway was proposed for acyclovir 

degradation: from acyclovir to carboxy-acyclovir (P239). This reaction was attributed to the oxidation 

of the terminal hydroxyl group to the carboxy group, which was typically catalyzed by AMO from 

AOB or ammonia oxidizing archaea (AOA) for most pharmaceuticals including other antiviral drugs 

(abacavir, emtricitabine, ganciclovir, lamivudine and zidovudine), amide-containing compounds (e.g. 

propachlor) and tertiary amines such as mianserin (Funke et al., 2016; Helbling et al., 2010; Men et 

al., 2016). Although it was also observed in mammalian metabolism of acyclovir (Prasse et al., 2011), 

the enzyme-induced alcohol oxidation has not been investigated solely for heterotrophs previously. 

However, the formation of carboxy-acyclovir in experiments with ATU addition in this work 

indicated that the monooxygenase from heterotrophs could also catalyze the alcohol oxidation of such 

compound. Although other possibly formed products were not identified in the presence of 

ammonium, the same biotransformation product carboxy-acyclovir found with ammonia oxidation 

and with nitrification inhibited in this study was different from previous report on iopromide, where 

dehydroxylated and carboxylated products were formed, respectively (Batt et al., 2006). It was 

proposed that oxidation of acyclovir to carboxy-acyclovir might be catalyzed by monooxygenase 

from either AOB or heterotrophs (Men et al., 2016). 

 

It was also noted that the formation of carboxy-acyclovir was independent on the metabolic type, i.e. 

regardless of the presence of ammonia oxidation by AOB. This was contradictory to the observation 

that the generation of 4-chlorobenzoic acid was related to the metabolic type and only produced by 

microbial hydrolysis of the amide bond of bezafibrate under cometabolism (Quintana et al., 2005). 

Comparing with acyclovir, the human metabolite carboxy-ibuprofen was not found in biodegradation 

of ibuprofen following alcohol oxidation (Quintana et al., 2005). The possible reason could be related 

to the specific structures of the studied pharmaceuticals. The guanine group of acyclovir showed no 

significant changes during biodegradation with the primary hydroxyl being the only vulnerable group. 

However, whether acyclovir could be biotransformed to other products is not confirmed in the 

product identification in this study although the mass balance analysis in the presence of ammonium 

demonstrated the possible formation of other products. Further work would be required to confirm 

the thorough biotransformation pathway of acyclovir. 

 

The biotransformation pathway to carboxy-acyclovir by the enriched nitrifying culture was 

independent of the initial concentration of acyclovir, i.e. 15 µg L-1 or 15 mg L-1. This was in 

consistency with the previous study on trimethoprim by nitrifying activated sludge (Eichhorn et al., 

2005). Two metabolites were formed and the degradation route was independent on the initial 

concentration of trimethoprim (20 mg L-1 or 20 µg L-1). However, biodegradation of trimethoprim 
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was also investigated by nitrifying activated sludge in another recent study (Jewell et al., 2016), 

resulting in different biotransformation products under different spiked concentration of trimethoprim 

(500 µg L-1 or 5 µg L-1). From the mass balance analysis, carboxy-acyclovir seems to be the only 

product by heterotrophs either in higher initial concentration or lower initial concentration of 

acyclovir. There might be other minor biotransformation products formed through cometabolism by 

the enriched nitrifying culture as carboxy-acyclovir had a low final percentage and the total mass 

showed a decreasing trend, which was vastly different from those under other conditions (in the 

absence of ammonium and with addition of ATU), which could not be confirmed yet currently and 

required future efforts. 

 

5. Conclusion 

Biodegradation of acyclovir by an enriched nitrifying culture was investigated during ammonia 

oxidation and without the presence of ammonium at different initial concentrations of acyclovir in 

this study. The key conclusions are: 

 

• Biodegradation of acyclovir was positively related to the ammonia oxidation rate, confirmed the 

key role of cometabolism by AOB in acyclovir removal. 

• Carboxy-acyclovir was produced from acyclovir regardless of the presence of ammonium and 

thus unaffected by metabolic type. 

• The same biotransformation pathway from acyclovir to carboxy-acyclovir was observed at 

different initial concentrations of acyclovir. 

• Alcohol oxidation was the biotransformation reaction catalyzed by non-specific enzyme 

monooxygenase, probably either from AOB or heterotrophs. 
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Table and figure legends 

 

Table 1. Conditions of conducted batch experiments with acyclovir (same design of key experimental 

conditions for experiments at initial acyclovir of 15 mg L-1 and 15 µg L-1) 

 

Table 2. The acyclovir removal efficiency, biotransformation efficiency and degradation constant in 

the conducted biodegradation experiments (high, initial acyclovir concentration of 15 mg L-1; low, 

initial acyclovir concentration of 15 µg L-1) with possible mechanisms involved 

 

Figure 1. Concentration profiles of acyclovir and its product normalized to the initial acyclovir of 

(A) 15 mg L-1 and (B) 15 µg L-1 in the experiments with ammonia oxidation. 

 

Figure 2. (A) Ammonia oxidation rate during the time course in the acyclovir biodegradation 

experiments with ammonia oxidation; (B) the relationship between acyclovir degradation rate and 

ammonia oxidation rate in the presence of ammonium. 

 

Figure 3. Concentration profiles of acyclovir and its product normalized to the initial (A) 15 mg L-1 

and (B) 15 µg L-1 in the experiments without ammonia addition. 

 

Figure 4. Concentration profiles of acyclovir and its product normalized to the initial (A) 15 mg L-1 

and (B) 15 µg L-1 in the experiments with inhibition of ammonia oxidation of AOB by allythiourea 

(ATU) addition. 

 

Figure 5. The fragmentation pathways of P239 under ESI+ conditions derived from MS2 experiments 

in the QqLIT mass spectrometer. 
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Table 1. Conditions of conducted batch experiments with acyclovir (same design of key experimental 

conditions for experiments at initial acyclovir of 15 mg L-1 and 15 µg L-1) 

Experiments EXP1 EXP2 EXP3 EXP4 EXP5 

Initial ammonium 

(mg L-1) 
50 0 50 50 50 

Ammonium control Constant 0 Constant Constant Constant 

Approximate VSS 

(mg L-1) 
1000 1000 1000 1000 0 

Volume (L) 4 4 4 4 4 

ATU (mg L-1) 0 0 30 0 0 

NaN3 (mg L-1) 0 0 0 500 0 
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Table 2. The acyclovir removal efficiency, biotransformation efficiency and degradation constant in 

the conducted biodegradation experiments (high, initial acyclovir concentration of 15 mg L-1; low, 

initial acyclovir concentration of 15 µg L-1) with possible mechanisms involved 

Experiments EXP1-high EXP1-low EXP2-high EXP2-low EXP3-high EXP3-low 

Removal 

efficiency (%) 
65.1 88.2 40.9 47.8 36.2 50.3 

Biotransformation 

efficiency (%) 
58.6 33.0 ~100 72.6 94.1 83.8 

Biodegradation 

constant 

0.0034 

L g VSS-1 h-

1 

0.0071 

L g VSS-1 h-

1 

0.027 

mg g VSS-1 h-

1 

0.043 

µg g VSS-1 h-

1 

0.02 

mg g VSS-1 

h-1 

0.018 

µg g VSS-1 

h-1 

Main mechanisms Cometabolism by AOB 
Metabolism by AOB and 

heterotrophs 
Metabolism by heterotrophs 
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Figure 1. Concentration profiles of acyclovir and its product normalized to the initial acyclovir of 

(A) 15 mg L-1 and (B) 15 µg L-1 in the experiments with ammonia oxidation. 
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Figure 2. (A) Ammonia oxidation rate during the time course in the acyclovir biodegradation 

experiments with ammonia oxidation; (B) the relationship between acyclovir degradation rate and 

ammonia oxidation rate in the presence of ammonium. 
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Figure 3. Concentration profiles of acyclovir and its product normalized to the initial (A) 15 mg L-1 

and (B) 15 µg L-1 in the experiments without ammonia addition. 
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Figure 4. Concentration profiles of acyclovir and its product normalized to the initial (A) 15 mg L-1 

and (B) 15 µg L-1 in the experiments with inhibition of ammonia oxidation of AOB by allythiourea 

(ATU) addition. 
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Figure 5. The fragmentation pathways of P239 under ESI+ conditions derived from MS2 experiments 

in the QqLIT mass spectrometer. 
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Supporting Information 

 

Table S1. Mass parameters applied for LC-MS/MS analysis 

Compounds 
Precursor ion 

(m/z) 

DP 

(V) 

Q1, m/z 

(quantification) 

CE (eV) 

/CXP (V) 

Q2, m/z 

(confirmation) 

CE (eV) 

/CXP (V) 

Acyclovir 226 71 152 17/12 135 43/14 

Carboxy-

acyclovir 
240 46 152 19/12 135 43/12 

Acyclovir-d4 230 46 152 19/12 135 41/10 
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Figure S1. Ammonium concentrations in the biodegradation experiments (A) with the presence of 

ammonium and (B) other batch experiments (without the presence of ammonium, with addition of 

allylthiourea (ATU) and with addition of NaN3). 
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Figure S2. Concentration profiles of acyclovir with addition of NaN3 (above panel) and without 

biomass (below panel): (A) and (C), at initial acyclovir of 15 mg L-1; (B) and (D), at initial acyclovir 

of 15 µg L-1. 
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Figure S3. Degradation of acyclovir by the enriched nitrifying culture at initial concentrations of 15 

mg L-1 and 15 µg L-1, respectively in the experiments with the presence of ammonium. Linear 

regressions are given assuming a pseudo first order kinetic. 
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Figure S4. Degradation of acyclovir by the enriched nitrifying culture at initial concentrations of (A) 

15 mg L-1 and (B) 15 µg L-1 in the experiments without the presence of ammonium (top panel) and 

(C) 15 mg L-1 and (D) 15 µg L-1 in the experiments with addition of allylthiourea (ATU, below panel). 
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Figure S5. MS2 spectrum of the standard solution of 9-carboxymethoxymethylguaine (carboxy-

acyclovir). 
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Figure S6. The fragmentation pathways of acyclovir under ESI+ conditions derived from MS2 

experiments in the QqLIT mass spectrometer (the pathways in the dash square were not identified in 

this study). 
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Abstract 

Pharmaceutical removal has been demonstrated to be significantly enhanced through cometabolism 

during nitrification processes. Mathematical model could be useful for understanding the fate and 

transformation of pharmaceuticals and optimizing the removal process. However, so far 

pharmaceutical biotransformation models have not considered the formation of transformation 

products associated with the metabolic type of microorganisms. Here we reported a comprehensive 

model to describe and evaluate the biodegradation of pharmaceuticals and the formation of their 

biotransformation products by the enriched nitrifying culture. The biotransformation of parent 

compounds was linked to the microbial processes via cometabolism induced by ammonium oxidizing 

bacteria (AOB) growth, metabolism by AOB, cometabolism by heterotrophs (HET) growth and 

metabolism by HET in the model framework. The model was calibrated and validated using 

experimental data from pharmaceuticals biodegradation experiments at environmentally-relevant 

levels, taking two different pharmaceuticals as examples, i.e., atenolol and acyclovir. The results 

demonstrated the good prediction performance of the established biotransformation model under 
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different metabolic conditions, as well as the reliability of the established model in predicting 

different pharmaceuticals biotransformations. The linear positive correlation between ammonia 

oxidation rate and pharmaceutical degradation rate confirmed the major role of cometabolism induced 

by AOB in the pharmaceutical removal. Dissolved oxygen (DO) was also revealed to be capable of 

regulating the pharmaceutical biotransformation cometabolically and the substrate competition 

between ammonium and pharmaceuticals existed especially at high ammonium concentrations. 

 

Keywords: Cometabolism, pharmaceutical, model, ammonia oxidizing bacteria, biotransformation 

product, substrate competition 

 

1. Introduction 

The ubiquitous occurrence and fate of pharmaceuticals in the environment and engineering systems 

have attracted the concerns of the scientists and the public for decades due to their potential ecotoxic 

impact on aquatic ecosystems (Benner et al., 2013; Ternes, 1998). These organic compounds were 

present in the wastewater at concentrations ranging from pg L-1 to µg L-1 (Evgenidou et al., 2015; 

Petrie et al., 2015). As the wastewater treatment plants (WWTPs) were originally designed for bulk 

nutrients, the incomplete removal was found for pharmaceuticals in the treatment processes, being a 

major pathway for pharmaceuticals to enter the environment (Carballa et al., 2004).  

 

Autotrophic biomass (e.g., enriched nitrifying sludge) was capable of transforming the 

pharmaceuticals cometabolically during the wastewater treatment process and thus the 

pharmaceutical removal was reported to be positively correlated to nitrification rate (Batt et al., 2006; 

Yi and Harper Jr, 2007). Ammonia oxidizing bacteria (AOB) in the nitrifying biomass could degrade 

a broad range of substrates including aromatic and aliphatic compounds due to the non-specific 

enzyme ammonia monooxygenase (AMO) (Keener and Arp, 1993; Keener and Arp, 1994; Xu et al., 

2016). The presence of the growth substrate (i.e. ammonium) was required for cometabolism which 

should be taken into account when predicting the fate of pharmaceuticals (Tran et al., 2013). In 

addition to cometabolism, pharmaceuticals could also be degraded as the energy and carbon source 

for microorganisms through metabolic biotransformation (Tran et al., 2013). Furthermore, the formed 

biotransformation products might be more toxic and persistent (Quintana et al., 2005). Hence the 

biotransformation products should be considered for a more comprehensive understanding of the fate 

of pharmaceuticals in the nitrifying activated sludge. 

 

Mathematical modeling offers a useful tool and is adopted widely to analyze complicated metabolic 

pathways. Cometabolic biotransformations were previously modeled through first-order kinetics and 
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mixed order kinetics like Monod expression (Fernandez-Fontaina et al., 2014; Liu et al., 2015; 

Oldenhuis et al., 1989) and have evolved from only considering the cometabolic substrates to 

incorporating the relationships between cometabolic substrates and growth substrates, such as 

competitive interaction and toxicity inhibition (Liu et al., 2015). However, the previous literature has 

rarely considered the formation of biotransformation products in the cometabolic biotransformaiton 

models for pharmaceuticals.  

 

In this work, a comprehensive modeling framework was developed to describe the fate of 

pharmaceuticals at environmentally-related levels accompanied with the formation of their 

biotransformation products during the treatment by the enriched nitrifying sludge. Microbial 

processes contributing to the pharmaceutical biotransformation were considered as follows: growth-

linked cometabolism by AOB, metabolic transformation by AOB, growth-linked cometabolism by 

heterotrophs (HET) and metabolic transformation by HET. To this end, atenolol and acyclovir were 

selected as the model compounds in this study as they were frequently found in the wastewater with 

the highest concentrations of 25 and 1.8 µg L-1, respectively (Prasse et al., 2010; Verlicchi et al., 

2012). It has been reported that they can be biotransformed into atenolol acid and carboxy-acyclovir 

(Prasse et al., 2011; Radjenović et al., 2008). Model calibration and validation were carried out with 

experimental data using atenolol as parent compounds under different metabolic conditions. Model 

evaluation was also conducted using the experimental data from acyclovir biotransformation. The 

effects of dissolved oxygen (DO) and ammonium concentrations on pharmaceutical 

biotransformation were investigated using the validated model to provide insights into the process 

dynamics. The reported model in this work is expected to be used as a tool to fully understand the 

fate of pharmaceuticals associated with different metabolisms by responsible microorganisms in the 

complicated activated sludge system. 

 

2. Materials and Methods 

2.1 Model development 

A multi-species and multi-substrate model was developed to describe the pharmaceutical 

biotransformation processes by the enriched nitrifying sludge. This biotransformation model 

comprehensively considered the consumption of the pharmaceuticals and the formation of 

transformation products accompanied with the simultaneous ammonia oxidation in the enriched 

nitrifying sludge. It describes the relationships among six soluble substrates as defined in Table S1 

in Supporting Information (SI), i.e., ammonium (SNH4), readily biodegradable substrates (SS), oxygen 

(SO2), pharmaceutical (parent compound, PC,	SPC), primary biotransformation product (BP, SBP) and 

other biotransformation products (OP, SOP), and four particulate species, i.e., AOB (XAOB), HET 
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(XHET), slowly biodegradable substrates (XS) and inert biomass (XI). Seven processes are considered: 

(1) metabolic transformation of PC by AOB; (2) growth of AOB coupled to cometabolic 

transformation of PC; (3) endogenous decay of AOB; (4) hydrolysis; (5) metabolic transformation of 

PC by HET; (6) growth of HET coupled to cometabolic transformation of PC; (7) endogenous decay 

of HET. The kinetic expressions and the stoichiometric matrix of the proposed biotransformation 

model are summarized in Tables S2 and S3 in SI, respectively. The definitions, values, units and 

sources of all parameters used in the biotransformation model are listed in Table S4 in SI. 

In this model, the microbial growth-linked kinetic expressions (processes 2 and 6 in Table S2 in SI) 

are described using the Monod equations, which are associated with cometabolic biotransformation 

of pharmaceuticals (Sathyamoorthy et al., 2013). The concentration of growth substrates SNH4 and SS 

is also involved in the Monod equations. The basis of the cometabolic biotransformation expressions 

is the concept of transformation coefficient parameters such as AOB growth-linked TPC-AOB
c  and HET 

growth-linked TPC-HET
c . The pharmaceutical biotransformation reactions directly conducted via 

metabolism by AOB and HET are described by pseudo-first order kinetic expressions (processes 1 

and 5 in Table S2 in SI). For each reaction, the rate is expressed by an explicit function of the 

concentrations of relevant pharmaceuticals in the process. For microbial metabolic biodegradation of 

PC, the key parameters are biomass normalized PC degradation rate coefficients in the absence of 

AOB and HET growth, i.e. kPC-AOB  and kPC-HET . Processes 1, 2, 5 and 6 together contribute to 

pharmaceutical biotransformation in the enriched nitrifying sludge. 

 

The formation of biotransformation products is modeled using the specific stoichiometry coefficients 

in processes 1, 2, 5 and 6. The coefficients αBP
m  and αBP

c  indicate the transformation of PC to BP under 

metabolism and cometabolism conditions by AOB, respectively. Similarly, the coefficients βBP
m  and 

βBP
c  present the transformation of PC to BP under metabolism and cometabolism conditions by HET, 

respectively.  

 

2.2 Atenolol and acyclovir biotransformation experiments 

Experimental data from our previous biodegradation experiments of atenolol (Case I) and acyclovir 

(Case II) under different conditions by an enriched nitrifying sludge were used for model evaluation 

in this work (Xu et al., 2017a; Xu et al., 2017b). The chemicals used in the batch experiments and the 

enrichment of nitrifying culture in the sequencing batch reactor (SBR) are described in Text S1 and 

S2 in SI. Details of the experimental conditions applied in different scenarios are provided in Table 

S5 in SI. Briefly, 4-L beaker was used as the batch reactor with enriched nitrifying culture inoculated 

to degrade parent compounds at an initial 15 µg L-1. The mixed liquid suspended solid (MLVSS) 
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concentration was kept at approximately 1 g L-1. All the batch experiments were conducted in 

duplicates. The designs for Experiments 1-3 were same for atenolol (Case I) and acyclovir (Case II). 

In Experiment 1, 30 mg L-1 allylthiourea (ATU) was added to inhibit nitrifying activities (Ali et al., 

2013; Ginestet et al., 1998; Sathyamoorthy et al., 2013), leading to the dominant contribution from 

HET to pharmaceutical biotransformation (Tran et al., 2013). Initial ammonium concentration was 

provided at 50 mg-N L-1. No external ammonium was supplied during the entire experimental period 

(240 h). In Experiment 2, no initial and external ammonium was provided during 240 h. In 

Experiment 3, constant ammonium concentration was maintained at 50 mg-N L-1 by dosing a mixture 

of ammonium bicarbonate and potassium bicarbonate as ammonium feeding solution and pH buffer 

at the same time, which could ensure the cometabolic biotransformation by AOB. The Experiment 4 

was exclusively designed for atenolol biotransformation, where constant ammonium concentrations 

of 25 mg-N L-1 were provided using the dosing method in Experiment 3 during the experimental 

period. Samples were collected periodically to analyse mixed liquid suspended solid (MLSS) 

concentration and its volatile fraction (i.e., MLVSS), NH4
+, NO2

-, NO3
-, atenolol, acyclovir and their 

biotransformation products atenolol acid and carboxy-acyclovir. The detailed chemical analysis 

procedures could be found in the previous work (Xu et al., 2017a; Xu et al., 2017b; Xu et al., 2017c). 

 

The contribution of sorption to removal of atenolol and acyclovir was insignificant based on our 

previous studies (Xu et al., 2017a; Xu et al., 2017c). This is in consistency with low sorption 

coefficient KD (0.04) and low octanol-water partition coefficient Log KOW (0.16) of atenolol and Log 

KOW (-1.59) of acyclovir (Kasim et al., 2004; Maurer et al., 2007; Mohsen-Nia et al., 2012). 

Volatilization was considered negligible given the low values of Henry’s law constants for atenolol 

(1.37×10-18 atm m3 mol-1) and acyclovir (3.2×10-22 atm m3 mol-1) (Küster et al., 2010). 

Photodegradation was also insignificant considering the turbidity of the sludge and the aluminum foil 

covering the reactor. Therefore, microbially induced biodegradation should be the main mechanism 

for pharmaceutical removal in both atenolol and acyclovir biotransformation experiments. 

 

2.3 Model calibration and validation 

The biotransformation model used in this work consists of 7 biochemical processes and 22 

stoichiometric and kinetic parameters (as shown in Tables S2 and S4 in SI). Most of these parameters 

were well established in previous literature, therefore the reported values were directly used in this 

developed model. However, the information on biomass growth-linked PC transformation 

coefficients TPC-AOB
c  and TPC-HET

c  and microbial endogenous transformation coefficients kPC-AOB and 

kPC-HET was limited (Sathyamoorthy et al., 2013). Considering the key role of cometabolism induced 

by AOB growth in biotransformation, the maximum specific growth rate of AOB µmax,AOB was of 
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significance to the developed model. Furthermore, the sensitivity analysis suggested the four key 

parameters kPC-AOB , kPC-HET , TPC-AOB
c  and µmax,AOB  are highly sensitive to the biotransformation 

processes in terms of the experimental measurements (examples shown in Figure S1 in SI). Model 

calibration was therefore conducted to estimate the values of kPC-AOB, kPC-HET, TPC-AOB
c  and µmax,AOB 

based on experimental measurements through minimizing the sum of squares of the deviations 

between the measured and modeled values for the concentrations of parent compounds and 

biotransformation products under different conditions. In addition, the four stoichiometric 

coefficients, i.e., αBP
m , αBP

c , βBP
m  and βBP

c , for the transformation of PC to BP under metabolism and 

cometabolism conditions could be determined based on the concentrations of BP and PC measured 

in the experiments.  

 

Experimental data from atenolol biotransformation (Case I) of Experiments 1-3 were firstly used for 

model calibration. Concentrations of atenolol and atenolol acid from Experiment 1 and Experiment 

2 were fitted by model simulations to estimate kPC-HET  and kPC-AOB , respectively, whereas 

concentrations of atenolol and atenolol acid from Experiment 3 were fitted to estimate µmax,AOB and 

TPC-AOB
c , using the kPC-HET and kPC-AOB values obtained in previous experiments (Experiment 1 and 

Experiment 2). Model validation was then carried out with the calibrated parameters using the 

independent experimental data sets from atenolol biotransformation of Experiment 4 (Xu et al., 

2017b): Batch experiments with atenolol as the parent compound were conducted at an initial 

concentration of 15 µg L-1 in the constant presence of ammonium of 25 mg-N L-1. The ammonium 

concentration applied was different from of Experiment 3 at 50 mg-N L-1 (Table S5 in SI). To further 

verify the validity and applicability of the model, the model was also applied to evaluating the 

acyclovir biotransformation data from Case II of Experiments 1-3. The key model parameters were 

recalibrated for Case II using the three sets of batch experimental data (Table S5 in SI).  

 

3. Results 

3.1 Model calibration with experimental data from atenolol biotransformation 

The model was first calibrated to illustrate the biotransformation of atenolol catalysed solely by HET 

in Experiment 1 (i.e. with addition of ATU to inhibit the nitrifying activity). Given that no exogenous 

organic carbon was supplied during culture enrichment and the only organic carbon in the batch 

experiments was pharmaceuticals, the growth of HET was considered extremely low and the 

cometabolism related coefficient TPC-HET
c  was set as zero (Sathyamoorthy et al., 2013). With AOB 

related parameters kPC-AOB and TPC-AOB
c  set to zero, only the parameter kPC-HET was estimated with its 

best-fit value shown in Table 1 for Experiment 1. The predicted atenolol and atenolol acid 
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concentration profiles with the established model were demonstrated in Figure 1A, along with the 

measured experimental values. Atenolol experienced continuous decreasing by 94.3% from the 

beginning to the end of experiments accompanied with a gradual increase of atenolol acid until 168 

h and a stable stage until 240 h at a conversion efficiency of 62.6% (Figure 1A), which was well 

captured by the model predictions. 

 

The experimental data obtained from Experiment 2 (i.e., in the absence of ammonium) were used to 

further calibrate the developed model in terms of atenolol and atenolol acid dynamics. Without the 

presence of the growth substrate, AOB growth-linked cometabolism would be considered to have 

negligible contribution to atenolol biotransformation. Therefore, only the metabolic 

biotransformation by AOB and HET were involved in the biotransformation of atenolol for 

Experiment 2. The parameter value of kPC-HET obtained in Experiment 1 was used directly without 

any modification. Another key model parameter kPC-AOB  related to AOB metabolism was thus 

reliably estimated during atenolol biotransformation (value as shown in Table 1). As shown in Figure 

1B, although atenolol demonstrated a sharp decrease by 97.4% over the whole experimental period, 

the production of atenolol acid indicated a lower transformation efficiency in the absence of 

ammonium (29.1%) compared with the experiments with addition of ATU (see Figure 1A), again 

well matching the model predictions.   

 

In Experiment 3, the presence of ammonium was provided constantly to ensure the cometabolic 

biodegradation of atenolol by AOB. Together with the rest of the parameters involved, the parameter 

values of kPC-HET  and kPC-AOB  estimated in the previous two experiments were applied in the 

biotransformation model. The key parameters related to AOB induced cometabolism, i.e., TPC-AOB
c  

and µmax,AOB, were then estimated with the optimum values listed in Table 1. As shown in Figure 1C, 

concomitant with the gradual decrease of atenolol at a removal efficiency of 88.0%, atenolol acid was 

formed at an increasing trend with 86.9% conversion efficiency. This was obviously higher than the 

experiments in the absence of ammonium and with the addition of ATU, indicating a positive role of 

AOB induced cometbaolism in atenolol transformation. The model described these observations 

reasonably well. 

 

Overall, the developed model could satisfactorily capture all dynamics associated with atenolol and 

atenolol acid in all batch biodegradation experiments under different metabolic conditions. The good 

agreement between model simulations and measured data in Figure 1 supports the capability of the 

developed model in describing the microbial growth related biotransformation of atenolol in the 

enriched nitrifying culture. The obtained parameter linked to AOB growth during ammonia oxidation, 
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i.e., AOB-induced cometabolic atenolol transformation coefficient TPC-AOB
c , was estimated at 0.026 ± 

0.000036 m3 g COD-1. It was lower than the reported value of 0.0715 ± 0.0227 m3 g COD-1 for 

atenolol biodegradation by an enriched nitrifying sludge (Sathyamoorthy et al., 2013). The non-

growth metabolism by HET and the non-growth metabolism by AOB on atenolol biodegradation also 

described the experimental data with the addition of ATU and in the absence of ammonium well. The 

estimated parameters of kPC-HET and kPC-AOB were 0.000180 ± 0.000017 and 0.000140 ± 0.000012 m3 

g COD-1 h-1, which were lower than but in the same order of magnitude as the literature reported 

values (0.00093 ± 0.00018 and 0.00067 ± 0.00023 m3 g COD-1 h-1, respectively) (Sathyamoorthy et 

al., 2013).The discrepancy in these parameters values could be probably ascribed to the difference in 

the community structure in the adopted nitrifying cultures or different operating conditions. The 

model could be potentially applied to a widespread extent despite that the parameter values would 

vary according to the experimental conditions. As suggested, it was difficult to compare these 

coefficients (kPC-HET, kPC-AOB and TPC-AOB
c ) with other pharmaceuticals as most existing models did 

not consider the specific biochemical processes (Sathyamoorthy et al., 2013). However, the observed 

high value of  "#$%&'()  compared to other two parameters kPC-HET and kPC-AOB supported the previous 

finding of the major role of cometabolism in atenolol biodegradation (Xu et al., 2017c). 

 

3.2 Model validation with atenolol biotransformation under different conditions 

In order to further confirm the validity and reliability of the developed model, model validation was 

carried out to compare the model simulations to the independent experimental data, which were not 

used for model calibration. Based on the measured concentrations of atenolol and atenolol acid, the 

stoichiometric coefficients αBP
c  and αBP

m  were calculated as 0.58 and 0.58, respectively. Applied with 

previously calibrated parameters in Table 1, the proposed biotransformation model was used to 

predict dynamics of atenolol and atenolol acid in the presence of ammonium at a constant 

concentration of 25 mg-N L-1 (significantly different from the 50 mg-N L-1 used for model 

calibration). The modeled and measured concentrations of atenolol and atenolol acid were plotted in 

Figure 2. Atenolol continuously dropped from initial 15 µg L-1 with a final degradation efficiency of 

92.9%. The conversion rate of atenolol acid transformed from atenolol was calculated as 57.9%. The 

model predictions could capture these trends of atenolol degradation and atenolol acid formation very 

well, which again supports the validity of the developed model.  

 

3.3 Model evaluation with experimental data from acyclovir biotransformation 

The experimental results obtained with Case II for biotransformation of acyclovir were used to further 

evaluate the developed model. The developed biotransformation model was recalibrated for acyclovir 

biodegradation and carboxy-acyclovir formation dynamics under different conditions. Most of the 
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literature reported model parameters were employed at same values as the case of atenolol except the 

stoichiometry coefficients (αBP
m , αBP

c , βBP
m  and βBP

c ) for formation of carboxy-acyclovir associated with 

specific biochemical processes (as shown in Table S4 in SI), which were calculated based on the 

experimental data. The values for the three key parameters kPC-HET , kPC-AOB  and TPC-AOB
c  were 

recalibrated, which were associated with the investigated parent compound. As the enriched nitrifying 

biomass utilized in the batch biodegradation experiments of acyclovir were same as those in case of 

atenolol, the maximum growth rate of AOB µmax,AOB was set to be the same as in case of atenolol 

during model calibration for acyclovir biotransformation in the presence of ammonium. The obtained 

parameter values for acyclovir biotransformation were 0.00035 ± 0.00002 m3 g COD-1 h-1 (kPC-HET), 

0.00005 ± 0.00003 m3 g COD-1 h-1 (kPC-AOB) and 0.00093 ± 0.00049 m3 g COD-1 (TPC-AOB
c ). 

 

The model predictions of acyclovir biotransformation matched the experimental results well under 

different conditions (Figure 3), further demonstrating the validity of the established model. 

Parameters values giving the optimum fits with the experimental data were difficult to compare 

reliably with literature values as this study firstly reported the AOB cometabolic acyclovir transform 

coefficient TPC-AOB
c . However, compared to other reported compounds, e.g. atenolol (Sathyamoorthy 

et al., 2013), it was obvious that parameters kPC-AOB and TPC-AOB
c  for acyclovir were lower than those 

values for atenolol (Table 1), indicating a stronger degradation ability of the AOB culture studied on 

atenolol than acyclovir. Considering the molecular differences between these two pharmaceuticals, 

this may imply an affinity property of AOB for different compounds probably due to a preferential 

substrate selection to AMO active sites (Fernandez-Fontaina et al., 2012). The parameter kPC-HET for 

acyclovir was 0.00035 ± 0.00002 m3 g COD-1 h-1, which was in the same order of magnitude of the 

value estimated in this study (0.000180 ± 0.000013 m3 g COD-1 h-1) for atenolol. The conversion 

efficiencies from acyclovir to carboxy-acyclovir were 83.9%, 43.0% and 29.9% in Experiments 1, 2 

and 3, respectively (see Figure 3). These results indicated the importance of metabolism of acyclovir 

by HET. Oxidation of acyclovir to carboxy-acyclovir might be dominated by unspecific 

monoxygenase from HET (Men et al., 2016), which needs to be confirmed in the further work.  

 

4. Discussion 

In this work, a comprehensive mathematical model is developed to describe the biotransformation of 

pharmaceuticals and the formation of their products by the enriched nitrifying culture. In the proposed 

model, processes 1 and 2 (Table S2 in SI) depict the AOB-induced cometabolic and metabolic 

biotransformation of pharmaceuticals, while processes 5 and 6 (Table S2 in SI) describe the HET-

induced cometabolic and metabolic biotransformation of pharmaceuticals, respectively. Sensitivity 
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analysis indicated that four key parameters kPC-HET, kPC-AOB, TPC-AOB
c  and µmax,AOB were critical to the 

model output and therefore estimated through model calibration. The validity of this 

biotransformation model is confirmed by independent atenolol biodegradation data and further 

evaluation by acyclovir biotransformation experiments. This microbial processes linked 

biotransformation model could enhance our ability to predict the fate of pharmaceuticals and their 

transformation products during wastewater treatment processes. Nevertheless, more model 

verification should be conducted in the future using other pharmaceuticals biotransformation data for 

this developed model to facilitate its application as a useful tool in prediction of pharmaceutical fate 

in different systems. 

 

The modeling results in this work suggested the cometabolism induced by AOB could play an 

important role in the pharmaceutical removal in the studied ratio ranges of pharmaceuticals to 

ammonia for cometabolism. Indeed a positive linear relationship was observed between ammonia 

oxidation rate and pharmaceutical degradation rates in terms of atenolol and acyclovir based on the 

validated model (Figure 4A). The atenolol degradation rate increased from 0.012 to 0.16 µg g VSS-1 

h-1 while the nitrification rate increased from 2.84 to 59.15 mg NH4
+-N g VSS-1 h-1. With respect to 

acyclovir, the degradation rate changed from 0.014 to 0.10 µg g VSS-1 h-1 whereas the ammonia 

oxidation rate showed an increase from 2.37 to 36.63 mg NH4
+-N g VSS-1 h-1. Such a positive 

correlation was also reported in previous literature under certain conditions (Xu et al., 2017a; Xu et 

al., 2017c; Yi and Harper Jr, 2007), supporting the notion that majority of atenolol and acyclovir 

could be cometabolically degraded in the enriched nitrifying cultures. A further assessment on the 

wide application of the relationship was carried out by simulating the concentration profiles of 

pharmaceuticals after 240 h. The molar ratio of atenolol to ammonia calculated based on their 

concentrations from 8.42´10-7 to 1.91 ´10-5 was observed to be a valid range for cometabolic 

biodegradation of atenolol by the enriched nitrifying culture used in this work, and the relationship 

maintained at a same slope (Black solid squares in Figure 4A demonstrated the predicted atenolol 

degradation rate after 240 h). However, a different slope was found for the relationship between 

ammonia oxidation rate and the acyclovir degradation rate after 240 h predicted using the developed 

model (Figure 4B). If the ammonia oxidation rate was higher than the critical value (2.3 mg NH4
+-N 

g VSS-1 h-1 in this study), the lower slope might indicate a slower increasing trend in acyclovir 

degradation rate with an increasing ammonia oxidation rate (Figure 4A). Compared with the situation 

at the lower ammonia oxidation rate, a higher increasing trend in acyclovir degradation rate would 

arise at higher slope (Figure 4B). The observation that pharmaceutical would not be degraded until 

the ammonia was depleted (Dawas-Massalha et al., 2014) revealed a higher pharmaceutical 

degradation rate at lower ammonia oxidation rate, which supported the findings in this study. 
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Regardless of the different slopes for the relationship, the molar ratios of acyclovir to ammonia 

ranging from 1.62´10-11 to 2.26´10-5 was obtained to be a valid application range for the cometabolic 

biodegradation of acyclovir by the enriched nitrifying culture used in this work. 

 

The proposed model framework was expected to be a useful tool to predict the biotransformation of 

pharmaceuticals and the formation of transformation products under varying conditions, therefore 

providing the guidance in designing, upgrading and optimizing of the biological reactor. The 

influence of DO on pharmaceutical biotransformation was investigated by performing model 

simulations in the enriched nitrifying systems. The pharmaceutical removal efficiencies at 240 h at 

different DO concentrations ranging from 0 to 4 mg L-1 with ammonium concentration of 50 mg-N 

L-1 are shown in Figure 5. Overall DO concentration had a positive effect on pharmaceutical removal 

efficiencies. The concentrations of atenolol and acyclovir decreased rapidly with a prompt increase 

of atenolol acid and carboxy-acyclovir as DO increased to 1 mg L-1. With DO further increased to 4 

mg L-1, a gradual decrease of pharmaceutical concentrations was observed accompanied with a slight 

increase of their biotransformation products. The degradation efficiencies for atenolol at DO 

concentrations of 0, 1 and 4 mg L-1 were 44.3%, 83.2% and 94.0%, respectively. With regard to 

acyclovir, its degradation efficiencies were observed to be 36.2%, 81.2% and 87.3%, respectively at 

DO of 0, 1 and 4 mg L-1. The simulation results revealed that the DO concentration would play an 

important role in pharmaceutical biotransformation. This was contrary to the previous report that DO 

in the WWTP had no influence on oxidative biotransformation of selected micropollutants (Helbling 

et al., 2012). The possible reason could be that the experiments conducted in this study were nitrifying 

culture based instead of the regular activated sludge in WWTP, suggesting that DO might regulate 

the pharmaceutical biotransformation cometabolically. 

 

The growth substrate might also have an impact on the pharmaceutical biotransformation. Different 

ammonium concentrations ranging from 0 to 100 mg L-1 were applied in the model simulations at 

different DO concentrations as shown in Figure 6. It was obvious that the degradation efficiencies of 

studied pharmaceuticals and the formation rates of their transformation products would increase 

dramatically when ammonium concentrations increase from 0 to 20 mg-N L-1, especially in case of 

atenolol suggesting the importance of cometabolism on its biotransformation. However, there was no 

significant enhancement with the increase of ammonium concentrations from 20 to 250 mg-N L-1 

(data of 100-250 mg-N L-1 were not shown). This was contrary to the previous report where the 

removal efficiencies of the selected pharmaceuticals were enhanced at higher initial ammonium 

concentrations (Tran et al., 2009). This could be probably due to the substrate competition between 

growth substrate (ammonium) and cometabolic substrates (e.g. atenolol or acyclovir). Pharmaceutical 
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levels applied in this study were several orders of magnitude lower than the investigated ammonium 

concentrations, leading to a competition for AMO active sites and therefore potential decreasing 

degradation rates at higher ammonium concentrations (Dawas-Massalha et al., 2014; Fernandez-

Fontaina et al., 2012).  

 

In summary, a comprehensive model that considers all microbial processes contributing to 

pharmaceutical biotransformation as well as the formation of biotransformation products by the 

enriched nitrifying culture is developed in this work. The proposed model was successfully calibrated 

and validated using the biotransformation experiments of atenolol and acyclovir under different 

metabolic conditions. The linear positive correlation between ammonia oxidation rate and 

pharmaceutical degradation rate confirmed the major role of cometabolism induced by AOB in the 

pharmaceutical removal. DO was revealed to be capable of regulating the pharmaceutical 

biotransformation cometabolically and the substrate competition between ammonium and 

pharmaceuticals existed at high ammonium concentrations. More verification should be conducted 

using other pharmaceuticals biotransformation data for this developed model to facilitate its 

application as a useful tool in prediction of pharmaceutical fate. 
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Table and Figure Legends 

 

Table 1. Estimated parameter values for the biotransformation model in this study 

 

Figure 1. Model calibration with experimental data from atenolol biodegradation: (A) Experiment 1, 

with addition of allylthiourea (ATU); (B) Experiment 2, in the absence of ammonium; and (C) 

Experiment 3, in the presence of ammonium (50 mg NH4
+-N L-1). 

 

Figure 2. Model validation results of atenolol biotransformation by the enriched nitrifying culture in 

the presence of ammonium of 25 mg-N L-1 (Experiment 4). 

 

Figure 3. Model evaluation with experimental data from acyclovir biodegradation: (A) Experiment 

1, with addition of allylthiourea (ATU), (B) Experiment 2, in the absence of ammonium and (C) 

Experiment 3, in the presence of ammonium (50 mg NH4
+-N L-1). 

 

Figure 4. (A) The relationship between ammonia oxidizing rate and the pharmaceutical degradation 

rates in terms of atenolol and acyclovir (black solid squares indicate the atenolol degradation rates 

after 240 h); and (B) The relationship between ammonia oxidizing rate and the acyclovir degradation 

rate after 240 h at a different linear fit slope. 

 

Figure 5. Predicted final concentrations of (A) atenolol and atenolol acid and (B) acyclovir and 

carboxy-acyclovir at time of 240 h at different concentrations of dissolved oxygen (DO) in the 

enriched nitrifying culture system. 

 

Figure 6. Predicted concentrations of pharmaceuticals and their transformation products at time of 

240 h at initial concentrations of 15 µg L-1 with different ammonium concentrations ranging from 0 

to 100 mg-N L-1 at different DO levels.  
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Table 1. Estimated parameter values for the biotransformation model in this study 

Parameters Definition Unit 
Estimated 

atenolol acyclovir 

kPC-HET 
Heterotrophs (HET) transformation 

coefficient 
m3 g COD-1 h-1 

0.000180 

± 

0.000017 

0.00035 ± 

0.00002 

kPC-AOB 
Ammonia oxidizing bacteria (AOB) 

transformation coefficient 
m3 g COD-1 h-1 

0.000140 

± 

0.000012 

0.00005 ± 

0.00003 

TPC-AOB
c  

Parent compound biotransformation 

coefficient rate linked to AOB 

growth (cometabolism) 

m3 g COD-1 
0.012 ± 

0.000036 

0.00093 ± 

0.00049 

µmax,AOB 
Maximum specific growth rate of 

AOB 
h-1 0.012 ± 0.0023 
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Figure 1. Model calibration with experimental data from atenolol biodegradation: (A) Experiment 1, 

with addition of allylthiourea (ATU); (B) Experiment 2, in the absence of ammonium; and (C) 

Experiment 3, in the presence of ammonium (50 mg NH4
+-N L-1).  
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Figure 2. Model validation results of atenolol biotransformation by the enriched nitrifying culture in 

the presence of ammonium of 25 mg-N L-1 (Experiment 4).  
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Figure 3. Model evaluation with experimental data from acyclovir biodegradation: (A) Experiment 

1, with addition of allylthiourea (ATU), (B) Experiment 2, in the absence of ammonium and (C) 

Experiment 3, in the presence of ammonium (50 mg NH4
+-N L-1).  
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Figure 4. (A) The relationship between ammonia oxidizing rate and the pharmaceutical degradation 

rates in terms of atenolol and acyclovir (black solid squares indicate the atenolol degradation rates 

after 240 h); and (B) The relationship between ammonia oxidizing rate and the acyclovir degradation 

rate after 240 h at a different linear fit slope.  
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Figure 5. Predicted final concentrations of (A) atenolol and atenolol acid and (B) acyclovir and 

carboxy-acyclovir at time of 240 h at different concentrations of dissolved oxygen (DO) in the 

enriched nitrifying culture system.  
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Figure 6. Predicted concentrations of pharmaceuticals and their transformation products at time of 

240 h at initial concentrations of 15 µg L-1 with different ammonium concentrations ranging from 0 

to 100 mg-N L-1 at different DO levels. 
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Supporting Information 

 

Text S1 Chemicals 

Atenolol (≥98%) and atenolol acid were purchased from Sigma-Aldrich, Australia. Acyclovir (>98%) 

was obtained from Thermo Fisher, Australia. Carboxy-acyclovir was provided by Toronto Research 

Chemicals. Isotope labeled internal standard atenolol-d7 was obtained from Sigma-Aldrich, Australia 

and acyclovir-d4 from Santa Cruz Biotechnology. Allylthiourea (ATU, 98%) and all the other HPLC 

grade organic solvents (methanol, acetonitrile, hexane and acetone) were supplied by Sigma-Aldrich, 

Australia.  

 

The individual standard stock solution for each compound was prepared in methanol at 1 g L-1 and 

stored at -20 °C. The calibration curve including the internal standard was obtained using a series 

working standards (1-200 µg L-1), diluted from the stock solution. With the aim of providing initial 

15 µg L-1 of pharmaceuticals for the batch biodegradation experiments, the feed solution for each 

compound was prepared at concentration of 1 mg L-1 in Milli-Q water. 

 

Text S2 Culture enrichment 

An 8-L lab-scale sequencing batch reactor (SBR) seeded with activated sludge from a municipal 

wastewater treatment plant in Brisbane, Australia was used to enrich the nitrifying cultures consisting 

of ammonia oxidizing bacteria (AOB) and nitrite oxidizing bacteria (NOB). A 6-h cycle was 

performed to run the SBR: 260 min aerobic feeding, 30 min aerobic reacting, 1 min wasting, 60 min 

settling and 9 min decanting. During each cycle, 2 L synthetic wastewater was fed into the reactor 

resulting in a hydraulic retention time (HRT) of 24 h. The solid retention time (SRT) was maintained 

at 15 d. Dissolved oxygen (DO) was controlled between 2.5-3.0 mg L-1 using programmed logic 

controllers (PLC) and pH was maintained at the range of 7.5-8.0. The synthetic wastewater for the 

enriching the nitrifying culture contained per liter (Kuai and Verstraete, 1998): 5.63 g of NH4HCO3 

(1 g NH4
+-N), 5.99 g of NaHCO3, 0.064 g of each of KH2PO4 and K2HPO4 and 2 mL of a trace 

element solution. The trace element stock solution contained: 1.25 g L-1 EDTA, 0.55 g L-1 

ZnSO4·7H2O, 0.40 g L-1 CoCl2·6H2O, 1.275 g L-1 MnCl2·4H2O, 0.40 g L-1 CuSO4·5H2O, 0.05 g L-1 

Na2MoO4·2H2O, 1.375 g L-1 CaCl2·2H2O, 1.25 g L-1 FeCl3·6H2O and 44.4 g L-1 MgSO4·7H2O. 

 

The SBR was operated in a steady state for more than 1 year with almost 100% conversion of NH4
+ 

to NO3
-, prior to using the enriched nitrifying sludge for batch biodegradation experiments. The mixed 

liquor volatile suspended solids (MLVSS) concentration was stable at 1437.6 ± 112.9 mg L-1 (mean 

and standard errors, respectively, n=10). According to the microbial community analysis with 
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fluorescence in-situ hybridization (FISH) (Law et al., 2011), ammonia-oxidizing beta-proteobacteria 

accounted for 46 ± 6% (n=20) of the bacterial populations and the Nitrospira genera (nitrite oxidizers) 

constituted 38 ± 5% (n=20) of the bacterial populations. 

 

  



 191 

Table S1. The definition of all model components 

Variable Description Unit 

SNH4 Ammonium concentration g N m-3 

SS Readily biodegradable COD concentration g COD m-3 

SO2 Dissolved oxygen concentration g O2 m-3 

XAOB Ammonia oxidizing bacteria (AOB) biomass concentration g COD m-3 

XHET Heterotrophs (HET) biomass concentration g COD m-3 

XS Slowly biodegradable COD concentration g COD m-3 

XI Inert biomass concentration g COD m-3 

SPC Parent compound (PC) concentration mol m-3 

SBP Primary biotransformation product (BP) concentration mol m-3 

SOP Other biotransformation product (OP) concentration mol m-3 
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Table S2. Process kinetic rate equations for the biotransformation model 

 Process Rate expression 

1 

Biotransformation of parent compound 

(PC) by ammonia oxidizing bacteria 

(AOB) under metabolism 

kPC-AOBXAOBSPC 

2 
Biotransformation of PC by AOB 

under cometabolism 
µmax,AOB

SNH4

SNH4+KNH4

SO2

SO2+KO2,AOB
XAOB 

3 Decay of AOB *&'(+&'( 

4 Hydrolysis khyd
XS/XHET

XS/XHET+KX
XHET 

5 
Biotransformation of PC by 

heterotrophs (HET) under metabolism 
kPC-HETXHETSPC 

6 
Biotransformation of PC by HET under 

cometabolism 
µmax,HET

SS

SS+KS

SO2

SO2+KO2,HET
XHET 

7 Decay of HET bHETXHET 
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Table S3. The stoichiometric matrix for the biotransformation model (AOB, ammonia oxidizing bacteria; HET, heterotrophs) 

Component (i) 
Substance Biomass Substrate 

1 2 3 4 5 6 7 8 9 10 

Process 

(j) 
SNH4 Ss SO2 XAOB XHET XS XI SPC  SBP  SOP 

AOB 

1        -1 αBP
m  1-αBP

m  

2 -iNBM-
1

YAOB
  -

3.43-YAOB

YAOB
 1  

  -TPC-AOB
c SPC αBP

c TPC-AOB
c SPC (1-αBP

c )TPC-AOB
c SPC 

3    -1  1-fI fI    

HET 

4  1    -1     

5        -1 βBP
m  1-βBP

m  

6 -iNBM -
1

YHET
 -

1-YHET

YHET
  1 

  -TPC-HET
c SPC βBP

c T
PC-HET
c SPC (1-βBP

c )T
PC-HET
c SPC 

7     -1 1-fI 1-fI    
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Table S4. Stoichiometric and kinetic parameters of the developed model 

Parameter Definition Unit Value  Source 

Stoichiometric parameters 

YAOB Yield coefficient for AOB g COD g N-1 0.15 
(Sathyamoorthy et al., 

2013) 

YHET Yield coefficient for HET g COD g COD-1 0.67 (Henze et al., 2000) 

iNBM Nitrogen fraction of biomass g N g COD-1 0.086 (Henze et al., 2000) 

fI 
Fraction of XI  in biomass 

decay 
g COD g COD-1 0.1 (Henze et al., 2000) 

αBP
m  

Stoichiometry coefficient for 

primary biotransformation 

product (BP) by AOB under 

metabolism 

- 

0.29 

(atenolol) 

0.43 

(acyclovir) 

Calculated from 

experimental data 

αBP
c  

Stoichiometry coefficient for 

BP by AOB under 

cometabolism 

- 

0.87 

(atenolol) 

0.29 

(acyclovir) 

Calculated from 

experimental data 

βBP
m  

Stoichiometry coefficient for 

BP by HET under 

metabolism 

- 

0.63 

(atenolol) 

0.84 

(acyclovir) 

Calculated from 

experimental data 

βBP
c  

Stoichiometry coefficient for 

BP by HET under 

cometabolism 

- 

0.63 

(atenolol) 

0.84 

(acyclovir) 

Calculated from 

experimental data 

Ammonia oxidizing bacteria (AOB) 

µmax,AOB 
Maximum specific growth 

rate of AOB 
h-1 

Estimated in 

this study 
- 

bAOB AOB decay rate h-1 0.00625 
(Sathyamoorthy et al., 

2013) 

KO2,AOB 
Half saturation value for SO2 

of AOB 
g O2 m-3 1.1 (Ghimire, 2012) 

KNH4 
Half saturation value for 

SNH4 
g N m-3 1.31 (25°C) (Wiesmann, 1994) 
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kPC-AOB 
AOB transformation 

coefficient 
m3 g COD-1 h-1 

Estimated in 

this study 
- 

TPC-AOB
c  

Parent compound (PC) 

biotransformation 

coefficient rate linked to 

AOB growth 

(cometabolism) 

m3 g COD-1 
Estimated in 

this study 
- 

Heterotrophs (HET) 

khyd 
Maximum hydrolysis rate of 

HET 
h-1 0.125 (Henze et al., 2000) 

µmax,HET 
Maximum specific growth 

rate of HET 
h-1 0.25 (Henze et al., 2000) 

bHET HET decay rate h-1 0.026 (Henze et al., 2000) 

KO2,HET 
Half saturation value for SO2 

of HET 
g O2 m-3 0.2 (Henze et al., 2000) 

KS 
Half saturation value for 

SCOD 
g COD m-3 20 (Henze et al., 2000) 

KX 
Half saturation value for 

hydrolysis 
g COD g COD-1 1.0 (Henze et al., 2000) 

kPC-HET 
HET transformation 

coefficient 
m3 g COD-1 h-1 

Estimated in 

this study 
- 

TPC-HET
c  

PC biotransformation 

coefficient rate linked to 

HET growth (cometabolism) 

m3 g COD-1 0 
(Sathyamoorthy et al., 

2013) 
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Table S5. Experimental conditions and designs for model calibration and validation 

Purpose 

Model calibration 
Model 

validation 
Model evaluation 

Atenolol (Case I) Acyclovir (Case II) 

EXP 1 EXP 2 EXP 3 EXP 4 EXP 1 EXP 2 EXP 3 

Parameters 

calibrated 
kPC-HET kPC-AOB 

TPC-AOB, 

µmax, AOB 
N/A kPC-HET kPC-AOB 

TPC-AOB, 

µmax, AOB 

Initial parent 

compound 

concentration 

15 µg L-1 

Experimental 

conditions 

NH4
+-N: 50 

mg L-1 

(initial) 

ATU: 30 mg 

L-1 

MLVSS: 1 g 

VSS L-1 

Volume: 4 L 

DO: 2.5-3.0 

pH: 7.55-7.60 

NH4
+-N: 0 

mg L-1 

MLVSS: 1 

g VSS L-1 

Volume: 4 

L 

DO: 2.5-3.0 

pH: 7.55-

7.60 

NH4
+-N: 

50 mg L-1 

(constant) 

MLVSS: 1 

g VSS L-1 

Volume: 4 

L 

DO: 2.5-

3.0 

pH: 7.55-

7.60 

NH4
+-N: 

25 mg L-1 

(constant) 

MLVSS: 

1 g VSS L-

1 

Volume: 4 

L 

DO: 2.5-

3.0 

pH: 7.55-

7.60 

NH4
+-N: 

50 mg L-1 

(initial) 

ATU: 30 

mg L-1 

MLVSS: 

1 g VSS L-

1 

Volume: 4 

L 

DO: 2.5-

3.0 

pH: 7.55-

7.60 

NH4
+-N: 0 

mg L-1 

MLVSS: 

1 g VSS L-

1 

Volume: 4 

L 

DO: 2.5-

3.0 

pH: 7.55-

7.60 

NH4
+-N: 

50 mg L-1 

(constant) 

MLVSS: 

1 g VSS L-

1 

Volume: 4 

L 

DO: 2.5-

3.0 

pH: 7.55-

7.60 

Experimental 

period 
240 h 

Chemical 

analysis 

NH4
+, NO2

-, NO3
-, atenolol, atenolol acid, MLVSS NH4

+, NO2
-, NO3

-, acyclovir, 

carboxy-acyclovir, MLVSS 
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Figure S1. Time course of the sensitivity functions of atenolol (A), acyclovir (B), atenolol acid (C) 

and carboxy-acyclovir (D) with respect to four parameters kPC-AOB , kPC-AOB , 	
TPC-AOB

c  and µmax, AOB. 
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