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1. Introduction 

1.1. Selective attention 

 

In a world filled with an abundant amount of visual, tactile, auditory and other sensory 

information, it seems logical that only a part of this information reaches our awareness 

and that only fractions of this input, perceived or not, influences our behaviour. 

(Broadbent, 1958; Neisser, 1967). Being able to respond to multiple sensory units of 

information (i.e. objects) and to differentiate between important, behaviourally relevant 

objects and unwanted, irrelevant objects, is essential for our lives and daily decision-

making. The presence of multiple relevant objects at any given time is the norm and this 

presents a particular challenge to the human brain (Duncan, 1980). It leads to the 

question of how the brain copes with the simultaneous presence of multiple stimuli, and 

whether there are circumscribed areas in the brain that critically underlie the capability 

to attend to multiple objects at the same time. 

Since this study focus is on visual information, the following paragraphs will give a 

short summary about the visual pathway and about the integrated-competition 

hypothesis. This hypothesis aims to explain the mechanisms that underlie selective 

attention in response to visual sensory input. 

 

1.2. Physiology of vision and visual pathway 

 

Of the four sensory modalities, vision is the most used perceptional modality in our 

daily life (Sternberg and Sternberg, 2009). Physiologically, vision emerges from the eye 

receiving a light stimulus. This stimulus is received and processed by different cells in 

the retina. Axons of ganglion cells form the optic nerve. The optic nerve runs towards 

the optic chiasm where fibres from the nasal halves of the retina cross to the opposite 

side. Fibres carrying information of the contralateral visual field continue as the optic 

tract to the lateral geniculate nucleus. From the lateral geniculate nucleus, fibres 

continue as the optic radiation carrying its information to the primary visual cortex (or 
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striate cortex). In summary, from the optic chiasm onwards, fibres of the visual pathway 

carry information of the opposite visual field. Therefore, lesions behind this crossing 

(i.e. in the Thalamus or visual cortex) result in visual field defects contralesionally. 

Throughout the visual pathway, information is carried in a retinotopic organization. 

This means that information from neighbouring fields of the retina is carried in 

neighbouring neurons. The visual pathway and visual field defects are shown in Figure 

1.  

 

 
 
Figure 1: visual pathway and its defect in the visual field dependent on the location of the 
lesion. 
 
 

1.3. The integrated competition hypothesis 

 
The integrated-competition hypothesis is a theory that specifically tries to explain the 

mechanism of how selective attention is implemented in the human brain (Desimone & 

Duncan, 1995). It rests on three key principles. 

1. The first principle is that multiple objects in a visual field activate multiple functional 

brain systems and areas of the brain at the same time. As resources are limited, the 
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neural activations associated with different object processing, face competition with 

each other, denoting that an increase of neural activation associated with one object 

goes along with a decrease of neural activation associated with other object processing 

in the same brain area or system.  

2. Secondly, when an object causes strong enough activations in one of the brain 

systems, the same object becomes dominant throughout several systems, causing an 

integration of the different properties of the object. The goal of the brain integrating 

different activated systems is that the “winning” visual object can from this point on be 

processed as a whole and thus can be adequately responded to. If, for example, a teacup 

catches attention, all properties of this item (e.g. colour, location, shape) need to 

become processed in order to make an interaction, like reaching or grasping for the cup, 

possible. Behavioural studies, in fact, have demonstrated that detecting properties of 

two different objects shows greater interference than detecting multiple properties of the 

same object. (Duncan, 1984; Duncan, 1993).  

3. Thirdly, it is proposed that the competition between the neural activations associated 

with different object processing is biased by top-down and by bottom-up attentional 

factors.  

 

1.3.1. Top-down 

On a behavioural level, the principle of top-down factors denotes one’s ability to 

voluntarily direct attention towards task relevant information by using cognitive 

functions. For example, using the knowledge about a target feature or the expectation of 

a certain event. (Posner et al., 1980; Dosher & Lu, 2000). This form of selective 

attention is, from a neurophysiological view, believed to work through neural top-down 

priming (Walley & Weiden, 1973). An example could be the task to find the only 

yellow flower in a field of red flowers. The brain will actively increase neuronal 

sensitivity for the colour “yellow” meanwhile decreasing neuronal sensitivity for other 

colours. Since a number of neurons are, through task relevance, primed on the colour 

“yellow”, once this particular flower is found,  it will gain competitive advantage in one 

system and thus become dominant throughout the whole. Whilst in this example, 

attention is biased by colour, it can generally be biased by any target feature as well as 
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by expectations of a certain event. In many study set-ups concerning spatial attention 

(e.g. Posner’s Cuing Paradigm 1980), selective attention or top-down priming is 

achieved by presenting spatial cues to direct attention to a potentially relevant area in 

the visual field. 

 

1.3.2. Bottom-up 

As mentioned, bottom-up style of attention can also influence attentional competition. 

Bottom-up factors denote object attributes like saliency, novelty or brightness, that 

‘draw’ ones attention to the object, especially when the object is behaviourally relevant 

(e.g. a flashing ambulance car). This kind of attentional mechanism, which is influenced 

by sensory information rather than through cognitive priming is in literature referred to 

as ‘bottom-up’ or ‘stimulus-driven’- control of attention.  (Jonides & Yantis, 1988; 

Corbetta & Shulman, 2002; Treisman & Gormican, 1988). 

 

1.4. Neural correlates of top-down and bottom-up attentional factors 

 

Regarding anatomical correlates, Corbetta and colleagues have proposed an influential 

model in which top-down and bottom-up attentional factors activate two adjacent but 

distinct neural networks in the brain (Corbetta et al., 2000, 2008; Corbetta and Shulman, 

2002; Shulman et al., 2003; Kincade et al., 2005). Several imaging studies could show 

that voluntary shiftings of attention toward a location in the visual field through spatial 

cueing (in a top-down fashion) activated a dorsal frontoparietal network, including the 

dorsoparietal cortex along the intraparietal sulcus (IPS) and the frontal cortex around 

the frontal eye fields (FEF) (see also Kastner et al., 1999; Hopfinger et al., 2000; 

Shulman et al., 1999). Bottom-up attention, and target detection on the other hand, were 

associated with increased activations in a more ventroparietal network including the 

temporoparietal junction (TPJ) and the ventral frontal cortex (VFC) (see also Hahn et 

al., 2006; Shulman et al., 2010). 

 

 



 5 

 
Figure 2: Dorsal frontoparietal network (blue) including IPS/SPL (superior parietal lobule) and 
frontal eye fields and ventroparietal network (orange) including TPJ and ventral frontal cortex 

 

1.5. Visual extinction 

In healthy individuals, processing of visual input is naturally limited and causes 

competition between different objects, as only a subset of these objects can be fully 

processed at any one time. Typically, healthy subjects can fully process and attend to 

approximately 3-4 objects at a time (Cowan, 2001). Interestingly, some neurological 

disorders are characterized by distinct deficits in visuospatial attention in general and 

particularly in the ability to fully process and attend to multiple behaviourally relevant 

objects simultaneously. Studying these disorders can help to understand basic 

physiological functions of the brain. 

One of these disorders is the phenomenon of visual extinction. Visual extinction usually 

occurs in patients with unilateral brain lesions, most commonly when having suffered 

from a stroke. It describes a condition in which, alongside a general limitation in 

attentional capacities, (Driver et al., 1997; de Haan et al., 2012), the patient shows a 

distinct difficulty to detect contralesionally (= in the visual field opposite to the brain 

lesion) presented objects when an ipsilesional (= in the same visual field as the brain 

lesion) object is presented simultaneously. Patients suffering from this disorder can still 

perceive and react to single stimuli presented to him or her in the right or left visual 

field and therefore other impairments like e.g. a visual field deficit as in Hemianopsia 

can be ruled out as pathomechanisms. When two stimuli are presented in the 

ipsilesional field, extinction occurs for the more contralesionally presented stimulus. 

(Bender & Furlow, 1945). Different kinds of extinction are known for the modalities 
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visual, auditory, tactile and olfactory. (De Renzi et al., 1984; Gainotti et al., 1989; 

Bellas et al., 1988).  

Clinically, the disorder is assessed by presenting finger movements in either one or both 

visual fields of the patient. During this assessment, the patient is instructed to report 

which finger(s) moved. Extinction is then diagnosed when the patient can correctly 

detect an isolated finger movement on his/her left or right visual field, but cannot 

correctly detect contralesional finger movements when an ipsilesional finger movement 

is presented simultaneously (Chatterjee, 2003). 

In consideration of the integrated-competition hypothesis, the underlying mechanism of 

extinction can be described as follows: in the case of bilateral simultaneous presentation 

of two relevant stimuli, the lesion in one of the brain hemispheres weakens the 

processing of the stimulus in the contralesional visual field, while the stimulus in the 

ipsilesional visual field can still be processed normally. As a consequence, the stronger 

ipsilesional stimulus wins the competition and becomes dominant throughout several 

systems and thus gains access to limited attentional resources (Duncan et al., 1997). 

When a stimulus in the contralesional field is presented alone, the activation in response 

to the contralesional stimulus does not need to compete with another stimulus 

representation, hence this activation, whilst weakened, still results in the patient 

perceiving the stimulus. In support of the integrated-competition hypothesis, some 

studies suggest that even extinguished stimuli still undergo unconscious processing, 

enabling them to influence behaviour. Reaction times, for example, are slower for 

bilaterally presented targets than for single ipsilesionally presented targets, although in 

both conditions only the ipsilesional presented target is consciously perceived. 

(Vuilleumier & Rafal, 2000). 

 

 

1.5.1. Underlying anatomy of extinction 

 

Extinction occurs more frequently after right hemispheric brain damage than after left 

hemispheric brain damage (Barbieri & De Renzi, 1989; Vallar et al., 1994; Becker & 

Karnath, 2007; Chechlacz et al., 2014). This is in accordance with Kinsbourne (1970, 
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1973), who proposed that each hemisphere directs spatial attention to the opposite side 

of space, with the distinctive feature that the left hemisphere directs attention to the 

right but the right hemisphere directs attention to both sides of space (see also Heilman 

& Van Den Abell, 1980). Thus, the right hemisphere can compensate damage to the left 

hemisphere while damage to the right hemisphere stays mostly uncompensated.  

Evidence from lesion studies suggest that extinction occurs mainly when there is 

anatomical (Karnath et al., 2003; Grandjean et al., 2008; Chechlacz et al., 2013) or 

functional (Ticini et al., 2010) damage in the right hemispheric TPJ (the intersection of 

the temporal and parietal lobe and the top end of the sylvian/lateral fissure), suggesting 

that this area is important for the ability to detect competing stimuli. Moreover, a study 

using transcranial magnetic stimulation (TMS: a non-invasive technique to disturb 

localized brain areas in healthy individuals), has also demonstrated that a temporary 

disruption of neural activity of the TPJ can elicit extinction-like behaviour (Meister et 

al., 2006). 

Other TMS-studies, however, described to have induced extinction-like behaviour by 

disturbing the right hemispheric IPS (Hung et al., 2005; Koch et al., 2005) or the left 

and right hemispheric IPS. (Pascual-Leone et al., 1994; Battelli et al., 2009). Findings 

of previous brain imaging studies using fMRI (functional magnetic resonance imaging) 

have also highlighted the important role of the IPS in global attention, showing the 

selective involvement of the IPS when attending to bilateral presented stimuli. (Ciçek et 

al., 2007; Geng et al., 2006). 

 

In summary, both the IPS and the TPJ have been associated with visual extinction. The 

precise contribution of these two areas to the ability to attend and respond to 

competing stimuli still needs to be determined. 

 

 

1.6. Hypothesis and goal of this study 

 

The goal of this study is to localize regions in the brain responsible for visuospatial 

attention in the case of attending to two competing stimuli simultaneously. Furthermore, 
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it is of particular interest to differentiate between brain areas that are activated by 

directing attention to two competing stimuli and areas that are activated by the actual 

detection of the two competing stimuli. 

Lesion-, TMS- and functional imaging studies point out the importance of the right 

hemispheric parietal lobe of the brain, particularly regions described as the IPS and TPJ. 

With the knowledge of behavioural studies assigning the IPS a role in top-down goal-

driven attention and the TPJ a role in bottom-up stimulus-driven attention and target 

detection, it can be hypothesized that in the case of processing competing stimuli, both 

of these functions still apply. This would suggest that the region described as IPS plays 

an important role while directing attention towards the expected concurrent stimuli 

while the region named TPJ is important for the final detection of the target. If this 

suggestion holds true, a functional imaging technique such as fMRI should detect 

activations in both of the described areas depending on the condition “directing 

attention” and “target detection”. Thus, this study aims to use fMRI to locate brain 

regions where neural activity is increased for both of these global conditions in 

comparison with directing attention towards and target detection of single unilateral 

stimuli. 

 

 

1.7. MRI (Magnetic resonance imaging) 

 

MRI is a non-invasive imaging technique which, when compared to other imaging 

techniques (i.e. computer tomography (CT)), has the advantage of showing a good soft 

tissue contrast without using ionizing radiation. Provided that safety guidelines are 

followed (Kanal et al., 2013), MRI plays a safe and important role in neuroscience and 

in the diagnostics of neurological diseases. 

An MR image is generated by measuring the response of hydrogen nuclei after being 

influenced by a radiofrequency pulse (RF) (Buxton, 2002; Hashemi et al., 2004; 

Horowitz, 1995; Jezzard et al., 2001).  

Like other nuclei in the brain, hydrogen nuclei spin around their axis and thus produce a 

magnetic field, known as the magnetic dipole moment (MDM). Usually, the MDMs of 
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the different hydrogen nuclei are oriented in random directions. When applying a strong 

external magnetic field, some MDMs align in the same direction (longitudinal to the 

magnetic field) and the nuclei begin to precess at a nucleus-specific frequency.  

Precession describes the circular motion of each MDM in a magnetic field.  

 

 
Figure 3: Precession of a MDM. With its stationary base and its moving top, a precessing 
MDM has similarities with a spinning dreidel. 
 

Whilst each MDM spins or precesses at a nucleus specific frequency, MDM’s do not 

necessarily precess in the same phase, meaning that their vectors point in different 

directions of the circle. When a strong RF-pulse is applied, MDM’s not only align 

transversally to the magnetic field but they also start to precess in the same phase.  

The next step is to apply a short and strong RF- pulse perpendicular to the direction of 

the magnetic field, which influences the MDMs by tipping them in a higher energy level 

in a now transversal alignment. After termination of the RF-pulse, the MDMs return to 

their original orientation, which is described by the term “relaxation”. During 

relaxation, energy is released which can be measured by a head coil. This measurement 

of released energy during the return of the MDMs to their previous lower-energy state is 

used to create an MR-image. The process of relaxation includes two parts and therefore, 

two sets of information can be obtained. Specifically it can be differentiated between: 

(i) T1-relaxation (longitudinal relaxation), which describes the regrowth along the 

longitudinal (z-) axis 

(ii) T2-relaxation (transversal relaxation), describing the decay in the transversal (xy-) 

plane. 
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Figure 4: a) Alignment of MDM’s along the longitudinal (z-) axis after applying a strong 
external magnetic field (green). b) When applying a short RF-pulse perpendicular to the 
magnetic field, MDM’s align transversally to the magnetic field (in the xy-plane). c) After 
termination of the RF-pulse, MDMs return to their original orientation meanwhile releasing 
energy used to create an MR image. 
 

 

By modulating the time to repetition (TR) between two RFs and the time between the 

pulse and the reception of the RF- signal, known as the time to echo (TE), one can 

obtain either a T1- weighted image (which has a short TR and TE) or a T2- weighted 

image (which has a long TR and TE). Since relaxation times differ from tissue to tissue, 

a contrast is produced. In general, T1-weighted images are often referred to as 

anatomical scans because of their clear contrast between cortical white and grey matter, 

whereas T2-weighted images have the benefit of contrasting lesions (such as ischemia) 

better, hence often referred to as lesion scans. 

By applying three magnetic gradients, namely the slice select gradient, the frequency 

encoding gradient and the phase-encoding gradient, it is possible to create a three-

dimensional image and to selectively measure contributions from each spatial unit in the 

brain, referred to as voxel.  

 

 

1.8. fMRI (functional magnetic resonance imaging) 

 

In this study, blood oxygenation level dependent (BOLD) fMRI was used as a tool to 

indirectly measure cortical brain activation. Its mechanism was discovered in the early 
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nineties (Kwong et al., 1992; Ogawa and Lee, 1990; Turner et al., 1991) and bases on 

the theory that neuronal activity is associated with changes in local blood flow (Heeger 

and Ress, 2002; Roy and Sherrington, 1980). In order for a neuron to be active, it 

requires a certain amount of glucose and oxygen. Since a neuron is not able to store this 

energy itself, it is dependent on blood flow for energy supply. Whenever a neuronal cell 

population is active, it first uses the available oxygen, which results in a decrease of the 

local oxygenated haemoglobin level (Hb, a protein in red blood cells) and thus in an 

increase in the relative level of deoxygenated Hb. As a compensational mechanism, 

local vessels start to oversupply the region with blood, leading to an increase of the 

oxygenated Hb level and to a decrease of the relative deoxygenated Hb level. 

Importantly, oxygenated and deoxygenated Hb have different magnetic characteristics 

(Pauling and Coryell, 1936; Thulborn et al., 1982). Oxygenated Hb has virtually no 

magnetic properties while deoxygenated Hb is paramagnetic. A high level of 

deoxygenated Hb results in a decrease of the BOLD signal. Thus, after an increase in 

neuronal activity, the BOLD signal initially decreases, as the relative level of 

deoxygenated Hb increases. Subsequently, the oversupply of oxygen-rich blood results 

in a massive decrease of the relative level of deoxygenated Hb and a concordant 

increase in the BOLD signal. This change in the BOLD fMRI signal as a function of 

time after an increase in neuronal activity is known as the haemodynamic response 

function (HRF). 

 

 

 
Figure 5: The hemodynamic response function (HRF) shows the MRI-signal change relative to 
the time course after applying a brief stimulus. An initial dip of the signal due to an increase of 
deoxygenated Hb is followed by an increase of signal with a maximum after around 6 seconds 
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(Logothetis, 2002) due to an increase of oxygenated blood and associated decrease in the 
relative level of deoxygenated Hb. After 12 seconds an undershoot of the signal takes place. The 
BOLD response terminates after approximately 24 seconds. 
 

 

As mentioned earlier, fMRI is an indirect measurement because it detects metabolic 

processes happening in close proximity to activated neurons rather than measuring 

neuronal activation itself. However, several studies, e.g. Logothetis et al. (2001) could 

show convincing correlation between neural activity and the BOLD-signal. 
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2. Methods and Materials 

 

2.1. Participants 

 

In this study, 24 participants (19 females, 5 males) performed the following experiment. 

One participant had to be excluded due to a technical failure during the experimental 

data collection. Data of the remaining 23 subjects was analysed. All participants were 

right handed, had no history of neurological or psychiatrical illnesses and had normal or 

corrected to normal vision. The age of the participants ranged from 21 to 37 years, 

(mean age 24.8 years). All participants volunteered for the study and gave their written 

informed consent approved by the ethics committee of the Medical Faculty of 

Tübingen. Subjects were paid for participation. 

 

 

2.2. Task design 

 

The description of the following task is that of a modified cued target detection task 

based on an experiment by Ciçek et al. (2007). While lying in a MRI-scanner, 

participants were given the instruction to attend and react to stimuli that were presented 

visually via a mirror system mounted on a head coil as a projection of a beamer display. 

Stimuli were presented with a PC using the software package E-Prime (Psychology 

Software Tools Inc.) 

Stimuli shown to the participants were defined as ‘cues’, ‘targets’ and ‘distractors’. 

Participants were asked to respond to targets as quickly as possible by pressing a non-

magnetic button. Throughout the entire experiment, subjects were instructed to fixate a 

continuously visible central fixation point presented as a central fixation cross, 

surrounded by a diamond-shaped box outline (see Figure 6). 
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During the experiment, eye movements were monitored using an MR-compatible eye 

tracker system (Senso-Motoric Instruments) to ensure that participants maintained 

fixation on the central fixation point. 

 

 

2.2.1. Targets and distractors 

Targets were defined as a ‘X’ and appeared in squared boxes (1.5°) displayed at an 

eccentricity of 7.5°degrees along the horizontal meridian bilateral from the central 

fixation point (see Figure 6). The boxes stayed visible throughout the whole trial. 

Targets could appear either on the left, the right or simultaneously in both boxes. To 

ensure that participants actively processed the stimuli presented in the boxes instead of 

simply responding to stimulus onset, distractors were included, which were defined as 

‘+’. Like the targets, distractors could appear either on the right, the left or on both 

sides. Targets and distractors could also appear simultaneously. Given the different 

possibilities, participants were instructed to respond at appearance of either a single 

target when displayed in the left or in the right box or at the bilateral/global appearance 

of the targets. Distractors, on the other hand, were asked to be ignored and not to be 

reacted to in any given case. This also included the concurrent appearance of a target- 

and distractor-stimuli.  

 

 

2.2.2. Cues 

Each target and/or distractor was preceded by either an informative or an 

uninformative/neutral cue. In 75% of the trials, targets or distractors followed 

informative cues, the remaining 25% of trials were initiated by uninformative cues. As 

informative cues, thickening lines on one or both sides of the diamond-shaped box 

outline surrounding the central fixation cross formed an arrow pointing either to the left, 

to the right or both boxes, indicating where a target could be expected (see Figure 6). In 

case of a trial with an uninformative cue, the diamond-shaped box outline did not 

change. In total there were four types of cues and thus four types of trials:  
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1. A cue indicating to the left followed by either a target or a distractor 

appearance on the left (unilateral left trial) 

2. A cue indicating to the right followed by a target or a distractor appearance 

on the right (unilateral right trial) 

3. A global/bilateral cue followed by targets or distractors in both boxes or 

appearance of a target and a distractor (global/bilateral trial) 

4. An uninformative/neutral cue followed by unilateral or bilateral targets or 

distractors (neutral trial) 

Since participants were firmly instructed to use the cue as a help to shift attention 

towards the cued boxes, targets and distractors were always presented in the cued 

location. Response times between cued and uncued targets were later compared to 

determine whether participants complied with this instruction and shifted their attention 

to the cued location.  

The interval between cue and target presentation varied between 1991, 2491 and 2991 

ms. Importantly, 33.3% of the trials were so-called “catch-trials” or “partial trials” 

where a cue was not followed by a target- or distractor- stimuli, hence the trial ended 

after presentation of the cue. Catch trials were included to enable the separation 

between the event-related BOLD response of cues and targets (Ollinger et al.2001a, 

2001b). Each cue, target and distractor presentation lasted 200 ms in each trial.  

In total, subjects performed 5 fMRI sessions, one session consisting of 400 randomly 

intermixed trials. 

Before the start of the experiment, participants practised the task outside the scanner. 
 

 

 
 

Figure 6: Firstly, informative cues formed an arrow pointing either to the left, to the right or to 
both boxes. After an interval of 1991, 2491 or 2991 ms targets appeared as ‘X’ at the cued 
locations 
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2.3. Neuroimaging 

 

Imaging was done at the university hospital in Tübingen, Germany on a 3 Tesla 

Siemens Magnetom Trio Scanner (Erlangen, Germany). Functional imaging data was 

acquired with a continuous collection of volumes throughout the sessions, using a T2* 

echo planar imaging (EPI) sequence. Each volume consisted of 33 slices (sequential, in 

ascending order) with a slice thickness of 3mm (no gap between slices) and in plane 

resolution of 3x3 mm. fMRI data was collected at an flip angle of 90˚, a TE of 40 ms 

and a TR of 2691ms. Additionally, a T1-weighted anatomical volume was acquired for 

each subject, consisting of 176 slices with a voxel size of 1 x 1 x 1 mm. For this 

purpose a GRAPPA (Generalized Autocalibrating Partial Parallel Acquisition) sequence 

was used at an flip angle of 8˚, a TE of 2.92ms and a TR- time of 2300ms.  

 

 

2.4. Image Processing 

Image processing and analysis was done using the Statistical Parametric Mapping 

software package (SPM8, Wellcome Department of Imaging Neuroscience, London, 

UK, http://www.fil.ion.ucl.ac.uk/spm/), running under Matlab R2010b (Mathworks). 

 

 

2.5. Image preprocessing 

The goal of the image preprocessing was to prepare the „raw“ data for further analysis. 

The different steps with its purposes are shortly explained in the following paragraphs.  

 

2.5.1. Realignment 

A step called realignment was performed to correct for any real small head movements 

that unavoidably occurred while participants were lying in the MRI-scanner and to 

correct for any apparent head movements caused by heating of the scanner. This step 

was important because the further statistical analysis assumes that a given voxel 
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represents the same point in the subject’s brain throughout the entire fMRI time course. 

It was was done by reorienting each EPI-Image of a single subject to a reference image 

(Friston, Ashburner et al. 1995), which for this particular study was the first image of 

the first session.  

 

2.5.2. Coregistration 

In this preprocessing step, the anatomical T1-image was coregistered with the mean 

realigned functional EPI-image of each subject resulting from the first preprocessing 

step. Coregistering the high resolution T1-scan to the low resolution EPI-image helped 

to later localize activations anatomically. Furthermore, it is an important preparation for 

the following preprocessing step of normalization.  

 

2.5.3. Normalization 

So far, the preprocessing steps have focused on preparing the images of each subject for 

a single-subject analysis. In order to be able to include the different images in a group 

based analysis, the normalization step was performed. The goal of this procedure was to 

correct for the interindividual differences in the brains such as size, shape and 

morphology of gyri and sulci. The goal of normalizing is that a given voxel corresponds 

to roughly the same location in the brain in each participant, allowing comparisons over 

participants. This was done by matching each individual co-registered T1-image to a 

standard brain and then applying these transformations to the realigned EPI-images of 

the same subjects. All brain images were matched to the Montréal Neurological Institute 

(MNI) template brain based on the coordinate system by Talairach & Tournoux (1988)  

 

2.5.4. Spatial smoothing 

The last step of preprocessing was spatial smoothing. In this step, each grayscale of 

each voxel is averaged with the neighbouring voxel grayscales. By functioning as a 

high-pass filter, it improves the so-called signal to noise ratio (SNR). It also satisfies the 
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normality assumption of the statistical tests. For this study, a Gaussian filter with a 

FWHM (Full With at Half Maximum) of 8mm was used. 

 

 

2.6. Image Data Analysis 

After preprocessing of the data, SPM8 was used to create models for changes in blood 

oxygenation (Friston, Holmes et al. 1995; Worsley 2001; Kiebel and Holmes 2003) for 

the following events: left cue, right cue, bilateral cue, left target, right target, bilateral 

target, left distractor, right distractor, bilateral distractor (which could be distractor + 

distractor, target + distractor or distractor + target).  

The resulting models were used to create single subject contrasts for a second-level 

random effects analysis (Holmes and Friston 1998). In particular contrasts were 

modelled as: 

a) unilateral left cue vs. bilateral cue 

b) unilateral right cue vs. bilateral cue 

c) unilateral left target vs. bilateral target 

d) unilateral right target vs. bilateral target 

 

For the second-level random effects analyses, first an ANOVA (analysis of variance) 

was carried out for both the cue and the target conditions (comparing cue/target left, 

cue/target right, and bilateral cue/target). Subsequently, the main effect of each 

ANOVA was used to define a mask image to isolate voxels sensitive to cue or target 

conditions. Within the resulting mask image highlighting cue presentation responsive 

voxels, one-sample t-tests were carried out using the single subject contrasts unilateral 

left cue vs. bilateral cue and unilateral right cue vs. bilateral cue. Likewise, within the 

resulting mask image highlighting target presentation responsive voxels, one-sample t-

tests were carried out using the single subject contrasts unilateral left target vs. bilateral 

target and unilateral right target vs. bilateral target. Finally, the resulting images were 

used to produce two conjunction maps: 
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A) [bilateral cue > left cue] AND [bilateral cue > right cue] 

B) [bilateral target > left target] AND [bilateral target > right target] 

 

In these conjunction maps, overlaps of activated voxels therefore showed brain areas 

that were more strongly engaged by presentation of global or bilateral stimuli than 

either unilateral left or unilateral right stimuli.  

 

 

2.7. Eye movement analysis 

Eye movements were analyzed using the program iLab (Gitelman 2002) under Matlab 

2010b (Mathworks). After removal of eye blinks the overall percentage of experimental 

time that participants point of gaze was within a 1˚ radius along the horizontal meridian 

and a 10˚ radius along the vertical meridian for both central fixation point and target 

boxes was calculated. Different radius sizes were chosen to allow for technical ‘scanner 

drift’ which can result in apparent shift of fixations along the vertical midline. 

 

2.8. Behavioural data analysis 

To analyse the response accuracies to both target and distractor displays, a 2 (cue type: 

neutral or informative) by 3 (presentation type: left, right or bilateral) repeated measures 

ANOVA was used for both target and distractor displays. Additionally, reaction times 

to the target displays were analyzed with a 2 (cue type: neutral or informative) x 3 

(presentation type: left, right or bilateral) repeated measures ANOVA. Incorrect trials 

and trials with reaction times exceeding 1500ms were excluded from this ANOVA. 

 

 

 

 

 

 

 



 20 

3. Results 

 

3.1. Eye movement data 

 

Of the 23 subjects investigated, 20 subjects had eye-signal of sufficient quality to allow 

offline analysis. The remaining 3 subjects did not have eye-signal of sufficient quality 

to allow offline analysis (due to lightning and size of eye). In these subjects, eye-

movements were monitored online during the experiment to ensure wakefulness and 

absence of eye-movements. 

Eye movements were analysed using the program iLab (Gitelman 2002). In 97.48% 

(with a standard deviation [SD] of 2.5%) of experimental time, subjects point of gaze 

was within a 1° radius of the central fixation point along the horizontal meridian. 

Participants spent 0.12% (with a SD of 0.35%) of experimental time fixating the left 

target box and 0.17% (with a SD of 0.19%) fixating the right target box. The remaining 

1.23% (SD of 1.87%) of experimental time, participants were fixating other locations in 

their visual field. 

 

 

3.2. Behavioural data 

3.2.1. Detection of targets 

3.2.1.1. Accuracy of target detection 
 

Overall accuracy of correct button presses upon detecting a target was very high. The 

mean accuracy and the normalized standard error (nSE, Loftus & Masson 1994) for 

each combination of cue and target type are shown in table 1 and figure 7.  Data from 

one subject had to be excluded due to technical failure of the button.  

 



 21 

 Cued   

 left right bilateral 

ACC in %/nSE 99.58 (0.52) 98.44 (0.50) 97.19 (0.84) 

 Uncued   

ACC in %/nSE 98.04 (0.78) 96.89 (1.14) 94.99 (1.26) 

 

Table 1: mean percentage accuracy of target detection and nSE (in brackets) for each possible 
cue and target combination. 
 

 

 

 
Figure 7: mean percentage accuracy of target detection and nSE (in error bars) for each possible 
cue and target combination. 
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A 2 (cue type: cued/uncued) by 3 (target display: left/right/bilateral) repeated measures 

ANOVA revealed a significant main effect of the cue (F1,18 = 5.63, P = 0.029) 

confirming that accuracy of button presses for the target condition was generally higher 

for cued than for uncued targets. Neither the main effect of the type of target, nor the 

interaction between cue type and target display type were significant (F2,36 = 0.15, P = 

0.09  and F2,36 = 0.15, P = 0.85). 

 

3.2.1.2. Reaction times (RT) upon target detection 
 

Mean reaction times (RT) and the nSE upon target detection are listed in table 2 and 

figure 8. 

 

 Cued   

 left right bilateral 

RT in ms/nSE 364.33 (6.43) 363.59 (7.25) 413.24 (8.46) 

 Uncued   

RT in ms/nSE 431.54 (6.09) 420.97 (9.07) 464.39 (13.09) 

 

Table 2: mean percentage RT upon target detection and nSE (in brackets) for each possible cue 
and target combination. 
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Figure 8: mean percentage RT upon target detection and nSE (in error bars) for each possible 
cue and target combination. 
 

A two (type of cue) by three (type of target) repeated measures ANOVA demonstrated a 

significant main effect of the type of cue (F1,21 = 59.7, P = 0.000001) and hence 

significantly faster RTs for targets following informative cues. It also showed a 

significant main effect of the target type. (F2,42 = 9.92, P = 0.00029). Post-hoc 

comparisons revealed that bilateral target detection resulted in significantly longer RTs 

than detection of either left or right single targets ([left vs right]: t(21) = 1.09, P = 0.84, 

[left vs bilateral]: t(21) = 3.20, P = 0.0129, [right vs bilateral]: t(21) = 3.29, P = 

0.0105, respectively after Bonferroni correction.  Overall, there was no significant 

interaction between type of cue and target detection (F2,42 = 0.59, P = 0.55) 
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3.2.2. Correct rejection of distractors 

 

Overall accuracy of correct rejection of distractors was 92,6% (with a SD of 2,8% for 

the different combinations of cue and distractor presentations). The mean percentage 

accuracy for each possible combination of cue and distractor (cued/uncued left 

distractor, cued/uncued right distractor, cued/uncued bilateral distractor) are shown in 

table 3 and figure 9. 

 

 Cued   

 left right bilateral 

ACC in %/nSE 90.48 (1.90) 94.41 (1.44) 92.76 (1.14) 

 Uncued   

ACC in %/nSE 97.89 (1.53) 95.53 (1.85) 93.68 (2.45) 

 

Table 3: mean percentage accuracy and nSE (in brackets) for each possible cue and distractor 
display presentation. 
 

 

As demonstrated in the figure below, accuracy upon detection of distractors following 

an uninformative cue was higher than detection of distractors following an informative 

cue.  

A 2 (cue type: cued/uncued) by 3 (distractor type: left/right/bilateral) repeated measures 

ANOVA hence demonstrated a significant main effect of type of cue (F1,18 = 4.34, P = 

0.05). Neither the main effect of distractor display type nor the interaction between cue 

type and distractor display type were significant. (F2.36 = 0.67, P = 0.51 and F 2,36 = 

1.26, P = 0.29). 
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Figure 9: mean percentage accuracy and nSE (in error bars) for each possible cue and distractor 
display presentation. 
 

 

3.3. Results from fMRI data 

3.3.1. Cuing condition 

 

To determine the cue presentation responsive areas of the brain, an ANOVA was 

performed. The main effect of this ANOVA showed no voxels where activation differed 

significantly between left, right and bilateral conditions after correcting for multiple 

comparisons. Thus, to create the mask image, the main effect of the cue was thresholded 

at p <0.001 uncorrected for multiple comparisons. Brain areas involved in the main 

effect of cue are shown in table 4 and figure 10. 
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Main effect cue: 

Brain area Cluster size Z-score Hemisphere MNI (x,y,z) 

middle frontal gyrus 678 4.08 R 29 -3 55 

precentral gyrus 
 

3.92 
    

middle frontal gyrus   3.88     

middle frontal gyrus 52 3.44 L -29 45 17 

inferior frontal gyrus 16 3.82 L -37 19 11 

insula  4.43     

inferior temporal gyrus 19 3.67 L -51 -47 -9 

superior parietal lobe 799 4.55 R 19 -63 57 

inferior parietal lobe  4.44     

precentral gyrus 951 4.36 L -33 -5 43 

precentral gyrus  4.31     

postcentral gyrus   3.36     

supplementary motor area 291 3.89 L -3 7 53 

supplementary motor area  3.39     

supplementary motor area  3.19     

supplementary motor area 37 3.72 L -5 11 71 

middle occipital gyrus 3344 5.95 R 41 -79 -3 

inferior temporal gyrus  5.37     

inferior temporal gyrus  5.08     

inferior occipital gyrus 4828 5.76 L -37 -63 -7 

inferior occipital gyrus  5.49     

middle occipital gyrus  4.88     

caudate 478 4.18 L -17 11 13 

insula  4.09     

putamen  3.89     

putamen 477 4.53 R 23 5 17 

caudate  4.34     

putamen 
 

3.93 
    

subcortical 22 4.29 L -15 25 33 
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Table 4: peaks (in bold) with subpeaks more than 8.0 mm apart. Only peaks with clusters sized 
> 19 voxels are reported. Corresponding brain areas are based on the AAL- (Automated 
Anatomical Labeling) Atlas (Tzourio-Mazoyer et al. 2002). 
 

 
 

Figure 10: brain areas activated during the general cueing condition. Areas highlighted include 
bilateral frontal eye fields (FEF), bilateral temporoparietal junction (TPJ), left intraparietal 
sulcus and bilateral occipital visual areas (occipital). 
 
 

Within the mask image containing brain areas involved in the main effect of cue, two 

one-sample t-tests (contrasts: unilateral left cue vs. bilateral cue/unilateral right cue vs. 

bilateral cue) were performed. The resulting images of these two t-tests were then build 

into a conjunction image. Only overlaps can be considered regions specifically 

associated with directing attention bilaterally in space. As there were no relevant 

significant results from the one-sample t-tests after correcting for multiple comparisons, 

all following results  are reported at an uncorrected threshold of p <0.001. 

 

As visually shown in figure 11 and with more detailed information in table 5, the 

‘bilateral cue > unilateral left cue’ contrast shows activation mainly in the left occipital 

regions and the striate area and a small cluster of activation at the rightsided intersection 

of medial and inferior frontal lobe (IFS= inferior frontal sulcus). 

The ‘bilateral cue > unilateral right cue’ contrast shows activation in the right occipital 

regions as well as bilateral activation in the IPS and in the right IFS. A small overlap of 

the two contrasts is found in the right IFS. 

 

right left back top

FEFTPJ occipital
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Figure 11: display of the ‘bilateral cue > unilateral left cue’-contrast (red), highlighting the left 
occipital gyrus (OcG), the left striate area and the inferior frontal sulcus (IFS). The ‘bilateral > 
unilateral right’-contrast (blue) shows activation in left and right intraparietal sulcus (IPS) and 
right occipital gyrus/striate area. The small overlap (violet) is displayed in a white circle and is 
located in right hemispheric inferior frontal sulcus (IFS).  
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Bilateral cue > unilateral left cue 

Brain area Cluster size Hemisphere Z-score MNI-coordinates 

fusiform gyrus 

fusiform gyrus 

lingual gyrus 

99 L 

 

 

4.39 

4.25 

3.81 

-30, -58, -11 

 

 

middle occipital gyrus  109 L 4.03 -24, -82, 22 

superior occipital gyrus  

middle occipital gyrus 

inferior frontal operculum  

 

50 

6 

 

 

L 

R 

3.79 

3.99 

3.44 

 

-42, -79, 10 

51, 14, 34 

Table 5  

 

Bilateral cue > unilateral right cue 

Brain area cluster size Hemisphere Z-score MNI 

Inferior parietal sulcus 

Inferior parietal sulcus 

Middle occipital gyrus 

Fusiform gyrus 

Angular gyrus 

inferior frontal operculum 

14 

 

24 

35 

55 

35 

L 

 

L 

R 

R 

R 

4.49 

3.87 

4.46 

4.25 

4.23 

3.66 

 

-54, -34, 52 

 

-30, -70, 40 

24, -70, -8 

33, -67, 46 

48, 17, 34 

Table 5 and 6:  peaks (in bold) with subpeaks more than 8.0 mm apart. Only cluster sizes ≧ 5 
voxels are reported. Corresponding brain areas are based on the AAL- (Automated Anatomical 
Labeling) Atlas (Tzourio-Mazoyer et al. 2002)  
 

 

3.3.2. Target condition 

 

Similar to the cueing condition, to determine the target presentation responsive areas of 

the brain, an ANOVA was performed. To create the mask image, the main effect of the 

cue was thresholded at a family wise error corrected threshold of p <0.05. The results of 

the main effect target are shown in figure 12 and table 7. 
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Figure 12: main effect target contrast (red), highlighting regions of both occipital lobes and 
mainly bilateral subcortical inferior parietal lobe (IPL). 
 

 

 

Main effect target 

Brain area cluster size Z-score Hemisphere MNI (x,y,z) 

superior medial frontal 

gyrus 

11 5.00 R 11 27 51 

middle frontal gyrus 44 5.27 L -33 25 45 

middle frontal gyrus  5.13     

anterior cingulum  4.98     

middle temporal gyrus 96 4.99 R 47 -61 13 

middle temporal gyrus  4.96     

supra marginal gyrus 78 4.82 R 51 -29 25 

supra marginal gyrus  4.79     

supra marginal gyrus  4.75     

postcentral gyrus 1676 5.52 L -33 -31 49 

x: 65 y= -66

occipital

z=105

IPS/IPL

IPS/IPL
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postcentral gyrus  5.51     

superior parietal gyrus  5.42     

postcentral gyrus 33 5.07 L 61 -17 41 

middle occipital gyrus 486 5.62 L -41 -63 3 

middle occipital gyrus  5.35     

inferior occipital gyrus  5.50     

calcarine 64 5.28 R 13 -85 3 

cuneus 26 5.02 R 15 -81 29 

cuneus 32 4.90 L -3 -85 29 

insula 412 5.32 R 37 15 5 

rolandic operculum  5.15     

insula  5.00     

lingual 9 4.82 L -23 -53 -5 

lingual 5 4.76 R 21 -71 -3 

middle cingulum  107 4.97 R 3 -27 35 

middle cingulum  4.81     

middle cingulum  7 4.79 L -9 -27 49 

rolandic operculum 23 4.88 R 61 11 13 

subcortical 2070 5.69 L -33 -3 9 

putamen  5.69     

rolandic operculum  5.55     

subcortical 311 5.49 L -17 14 41 

middle cingulum   5.06     

anterior cingulum  4.98     

subcortical 20 4.99 L -25 -77 -3 

subcortical 20 4.84 R 31 -23 -3 

calcarine 29 4.84 R 7 -71 13 

Table 7: Main effect target. Table shows peaks (in bold) with subpeaks more than 8.0 mm 
apart. Only cluster sizes ≧ 5 voxels are reported. Corresponding brain areas are based on the 
AAL- (Automated Anatomical Labeling) Atlas (Tzourio-Mazoyer et al. 2002) 
 

 

Within the mask image containing brain areas significantly involved in the main effect 

of target, two one-sample t-tests (contrasts: unilateral left target vs. bilateral 

target/unilateral right target vs. bilateral target) were performed. The resulting images of 
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these two t-tests were then build into a conjunction image to mark any overlaps. As 

there were no relevant significant results from the one-sample t-tests after correcting for 

multiple comparisons, all following results are reported at an uncorrected threshold of p 

<0.001. Detailed information is demonstrated in Table 8 and 9 and figure 13. Brain 

areas activated in the ‘bilateral > unilateral left target’-condition are: left occipital lobe, 

bilateral subcortical areas in the parietal lobe and a small cluster in the left intersection 

of the superior frontal gyrus (SFG) and cingulate gyrus (CG). 

The condition ‘bilateral > unilateral right target’ shows activation in the right occipital 

lobe, right subcortical areas in the parietal lobe and the left intersection of the superior 

frontal gyrus and the cingulate gyrus. Overlaps are found in right subcortical areas 

adjacent to the right IPS and IPL and in the left SFG/CG. 

 

 

Bilateral target > unilateral left target 

Brain area cluster size Hemisphere Z-score MNI 

Inf. occipital gyrus 

fusiform gyrus 

middle occipital gyrus 

subcortical 

subcortical 

inferior frontal operculum 

subcortical 

frontal superior medial 

gyrus 

642 

 

 

19 

 

9 

 

5 

L 

 

 

R 

 

R 

 

R 

5.92 

5.74 

4.75 

3.75 

 

3.54 

3.12 

3.30 

-45, -73, -8 

 

 

30, -61, 34 

 

45, 8, 28 

 

3, 26, 43 

Table 8 

 

 

Bilateral target > unilateral right target 

Brain area  cluster size Hemisphere Z-score MNI 

Inferior temporal gyrus 

fusiform gyrus 

middle occipital gyrus 

middle cingulate gyrus 

493 

 

 

15 

R 

 

 

R 

5.21 

4.96 

4.94 

4.12 

45, -67, -8 

 

 

6, 29, 37 
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Table 8 and 9 show peaks (in bold) with subpeaks more than 8.0 mm apart. Only cluster sizes 
≧ 5 voxels are reported. Corresponding brain areas are based on the AAL- (Automated 
Anatomical Labeling) Atlas (Tzourio-Mazoyer et al. 2002)  
 

 

 
Figure 13: the contrast ‘bilateral > unilateral left target’ (red), shows activation in left occipital 
lobe, subcortical left and right parietal lobe and at the intersection of the superior frontal gyrus 
and cingulate gyrus. The contrast ‘bilateral >unilateral right’ (blue) highlights areas in the right 
occipital lobe, left subcortical regions and also in SFG/cingulate gyrus. Overlaps (violet) are 
displayed in white circles and located in right SFG/CG. 
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4. Discussion 

 

The goal of this study was to further investigate the underlying anatomical functions of 

a clinical symptom usually occurring after right hemispheric stroke called visual 

extinction. By performing an fMRI-experiment with healthy participants, we tried to 

identify brain regions that were particularly involved when directing attention 

bilaterally in space and brain regions that were involved in detecting and responding to 

multiple targets in space.  

In consideration of a model by Corbetta and colleagues (Corbetta and Shulman, 2002; 

Corbetta et al. 2008) which describes the existence of a dorsal fronto-parietal network 

involved in voluntary shiftings of attentions (“top-down”) and a ventroparietal network 

involved in stimulus-driven attention (“bottom-up”), we differentiated between a ‘top-

down’-attentional condition by using and focusing part of the analyses on the cuing 

conditions and a ‘bottom-up’-attentional condition by focusing on brain activation 

during target presentation conditions.  

Based on this model and based on previous behavioural-, lesion-, fMRI- and TMS 

studies (Karnath et al., 2003; Grandjean et al., 2008; Chechlacz et al., 2013; Meister et 

al., 2006; Hung et al., 2005; Koch et al., 2005; Pascual-Leone et al., 1994; Battelli et al., 

2009), we hypothesized that the right IPS is particularly involved in directing attention 

to multiple objects in space and that the TPJ plays an important role in detecting 

multiple targets in this space. 

 

4.1. Behavioural data 

As accuracy of button presses upon detection of targets was very high, it can be 

assumed that participants stayed attentive throughout the experiment and that the task 

was achievable.  

RTs for targets following informative cues were significantly faster than RTs for targets 

following uninformative cues. It therefore can be argued that, as intended, participants 
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used the cues to shift their attention to the relevant field of space in a top-down 

attentional fashion.  

Calculating the response times also revealed that the detection of bilateral targets 

resulted in longer RTs. These results were independent of the type of cue (informative 

cue, neutral cue). These results are somewhat surprising since numerous previous 

behavioural studies have demonstrated an advantage for the detection of bilateral or 

multiple identical targets, resulting in faster RTs for bilateral than for unilateral targets. 

This phenomenon is in literature commonly referred to as the ‘redundant target effect’ 

(RTE) (Marzi et al., 1995; Forster et al., 2002; Iacoboni & Zaidel, 2003; Ridgway et al., 

2008). Two models have been proposed to explain the redundant target effect. The first 

model, also referred to as the “race model”, suggests that the bilateral or multiple 

stimuli are processed through several different channels and that the fastest channel 

triggers the response. A different model, the “coactivation model” suggests an 

integration of the sensory information at some level of processing (Gondan et al., 2005). 

An important difference between this current study and the mentioned behavioural 

studies is that our participants were given the instruction to only respond to targets and 

to ignore distractors. Participants therefore did not only have to detect stimuli as quickly 

as possible, they also had to decide whether the stimuli presented were targets or 

distractors. It can be hypothesized that making this decision and differentiation between 

targets and distracters for two objects presents a bigger challenge for the brain than 

making this decision for only one object. Furthermore, considering that the RTE occurs 

at the stage of early visual detection, it can be argued that the study-set-up for this 

study, in which participants had to perform a conscious decision, goes beyond early 

visual detection and that this explains the comparatively longer RTs for bilateral target 

detection. 

 

 

4.2. fMRI-Data 

 

As none of the contrasts comparing bilateral and unilateral conditions showed 

significant activations after applying a family wise error correction for multiple 
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comparisons, the following results have been written out at a lower treshold of p<0.001 

uncorrected for multiple comparisons. Therefore, each of the following described 

activations is and should only be considered as a tendency towards a possible true 

result. 

4.2.1. Cue 

 

The contrasts for analysis of the cue condition focused on brain regions in which the 

bilateral or global cue presentation resulted in more activation than cues pointing 

unilaterally left (bilateral > unilateral left cue condition) and in which the 

bilateral/global cue resulted in more activation than cues pointing unilaterally right 

(bilateral > unilateral right condition). Looking at this data, it is essential to understand 

that by definition, each of these contrasts displays brain activation that excludes 

activation caused by the unilaterally pointing cues of its investigation (in the bilateral > 

unilateral left-contrast, activation caused be the unilaterally left pointing cue is filtered 

out and vice versa). Each contrast, however, does not exclude commonalities in 

activation between bilateral cues and the non-investigated unilaterally pointing cues (the 

bilateral > unilateral left contrast can show common activation caused by bilateral 

pointing cues and unilaterally right pointing cues). Therefore it can be assumed that 

some or all of the activations displayed in each of the resulting images are due to 

common activation between cues pointing unilaterally right (or left, depending on the 

contrast) and bilaterally pointing cues. 

 

4.2.1.1. Bilateral > unilateral left cue 

For the bilateral > unilateral left- condition, activation was found in the primary visual 

areas of the left occipital lobe.  Since the cue was always positioned around a central 

fixation point, this finding cannot be explained with the known retinotopic pattern when 

confronted with lateralized stimuli. It seems more likely, that voluntary attention 

towards expected stimuli in the right visual field triggered this response. Existing 

literature supports this hypothesis. Huk & Heeger (2000) for example, describe that the 

primary visual cortex is modulated by top-down control such as the deployment of 
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attention to locations in space. Furthermore, neural activity in primary visual cortex 

occurs cue- or expectation-driven (Murray, 2008; Chawla et al. 1999; McMains et al., 

2007; Sylvester et al., 2009).  

A second, smaller cluster appeared in the right IFG, which will be referred to later.  

 

4.2.1.2. Bilateral > unilateral right cue 

Similar to the previous contrast, this contrast showed activation reflecting the condition 

in which the bilateral cue resulted in different brain activation than the right pointing 

cue. Any common activation provoked by bilateral and the unilateral left pointing cues 

are not filtered out. Analogously to the ‘bilateral > unilateral left cue’ contrast, 

activation in right hemispheric primary visual cortex could be observed. This activation 

most likely resulted from a cue-driven neural increase in activity as described above.  

Unlike the first contrast however, this contrast showed generally more activations 

throughout the brain, including bilateral IPS and right IFG/IFS activation.   

One possible explanation for these notably increased activations could be an attentional 

bias towards the left spatial hemifield in neurologically healthy adults. This 

phenomenon is referred to as ‘pseudoneglect’ (Bowers and Heilman, 1980,; Orr & 

Nicholls, 2005; Loftus & Nicholls, 2012) and has been demonstrated in multiple 

behavioural studies (Butter et al., 1988; Halligan and Marshall, 1994; Nicholls and 

Roberts, 2002; Jewell & McCourt, 2000). Siman-Tov and colleagues (2007) have 

addressed this particular question and demonstrated an fMRI study which, similar to 

this current study, showed more robust activations in both hemispheres for left sided 

stimuli than for right sided stimuli. In detail, they showed bilateral IPS activation, which 

is congruent with these current findings of bilateral IPS activation. This same study 

claims that pseudoneglect and the bilateral involvement of IPS activation might result 

from an interhemispheric transfer of information with an advantageous connectivity 

within the right hemisphere and from the right hemisphere to the left hemisphere. 
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4.2.2. [bilateral > unilateral left cue] AND [bilateral > unilateral right cue] 

 

The overall aim was to find regions that showed activations specific to the bilateral 

cuing condition. This was done by overlapping the resulting images of the contrasts 

‘bilateral > unilateral left’ and ‘bilateral > unilateral right’.  

The only overlap of the two contrasts and hence the only area, which was more 

activated by the bilateral cue than either unilateral cue, was located in the right frontal 

lobe, namely the inferior frontal gyrus [IFG].  

Since the right IFG has been associated as part of the ventroparietal network for 

stimulus driven attention (Corbetta & Shulman, 2002; Corbetta et al., 2008), this finding 

was somewhat unexpected for the cuing condition. Yet it is in in accordance with the 

findings of the predecessor study done by Ciçek et al. (2007) also showing IFG 

activation specific to the bilateral cuing condition and findings of a study done by Geng 

and colleagues (Geng et al., 2006) describing IFG activation in the combined process of 

attending and detecting multiple targets. Unlike these current findings however, Ciçek 

and colleagues reported bilateral IFG activation. The right IFG has also been reported to 

play a role for updating cue related information (Pessoa et al., 2009).  

Unexpectedly, these current results in the cuing conditions did not show activation 

specific to bilateral cues in the IPS.  

 

4.2.3. Target 

 

The target condition was focused on brain areas that were activated during target 

presentation and target detection, which were marked by participants pressing a button. 

Since the overall aim was to find regions that showed specific activation in a bilateral 

target condition, first two contrasts were created in which either bilateral targets showed 

more activation than the single left targets and single right targets. In a second step, the 

resulting images were overlapped (analogously to the approach taken for the cues). Any 

overlaps of activation resulting from the two contrasts were considered specific areas 

involved in processing bilateral targets. 
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As described for the bilateral > unilateral left cue and bilateral > right cue contrasts 

above, any displayed signal in the single contrasts could possibly be due to common 

activation between the presentation of bilateral targets and the presentation of either 

single right sided targets for the condition ‘bilateral > unilateral left target’ or due to the 

presentation of bilateral targets and left sided targets for the condition ‘bilateral > 

unilateral right target’.  

4.2.3.1. Bilateral > unilateral left target 
 

Due to the remaining visual input from right sided targets in the contrast bilateral > 

unilateral left targets, activations in primary visual areas like the left occipital gyri were 

observed. This finding is in accordance with the known retinotopic pattern when 

confronted with stimuli in the right or left sided visual field (Kastner et al., 1999). 

Further clusters were located in the right SFG, in both left and right hemispheric IPS 

and in the right IFG. 

 

4.2.3.2. Bilateral  > unilateral right target 
 

Consistent with the described visual pathways, the most robust activation in this 

contrast was found in right occipital areas. More patterns of activation were found in the 

right hemispheric IPS, in the right hemispheric IFG and in the right hemispheric SFG 

 

4.2.4. [bilateral > unilateral left target] AND [bilateral > unilateral right 

target] 

 

When overlapping the resulting images of bilateral > unilateral left target and bilateral > 

unilateral right target, two overlaps and hence, two areas that are uniquely activated by 

bilaterally presented targets were found. The first one was located in a right subcortical 

area adjacent to the IPS/inferior IPS. The second overlap was found in the right anterior 

cingulate gyrus (aCG)/SFG. 
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4.3. Inferior IPS 

Previous fMRI studies investigating brain areas involved in processing bilateral visual 

stimuli also reported right hemispheric IPS activation. However, previous fMRI studies 

did either not differentiate between an attentional and a detectional state or only 

reported activation that was found in the state of directing attention towards bilateral 

stimuli (Ciçek et al., 2007; Geng et al., 2006). Hence the finding of IPS-activation in an 

fMRI experiment in the period of detecting bilateral targets has not yet been reported. 

The reported right hemispheric IPS activation is, however, consistent with the findings 

of previous TMS studies in which extinction-like behaviour, i.e. the failure of detecting 

bilateral targets, was provoked by disturbing the right hemispheric IPS (Pascual-Leone 

et al., 1994; Battelli et al., 2009; Hung et al., 2005; Koch et al., 2005). 

 

4.4. CG/SFG 

The area of the anterior cingulate gyrus has been profoundly studied and is hitherto 

mainly associated with psychiatrical disorders. In a review by Devinsky et al. (1995), 

this part of the brain has been primarily attributed an important role in the behaviourally 

relevant aspects of initiation and motivation. Additionally it has also been attributed a 

role in goal-directed behaviours and in focusing attention on behaviourally relevant 

stimuli (Devinsky et al., 1995; Weissman et al., 2005; Hopfinger et al., 2000; Weissman 

et al., 2002; Woldorff et al., 2004). Single-case studies have also reported a loss of goal-

oriented responses in patients suffering from unilateral or bilateral strokes with resulting 

lesions in the aCG (Degos et al., 1993; Laplane et al., 1981). Regarding this current 

study and its condition, participants had to perform a goal-directed response and 

therefore activation in this area seems plausible. Yet, goal-directed responses were not 

only required in the bilateral target condition but also in the single target conditions, 

hence, it’s reason for appearance specific to the bilateral target condition stays unclear. 

The SFG in general seems to play a role in the cognitive control, cognitive execution 

and motor control network (Li et al., 2013). Also, an involvement in spatial working 

memory has been reported (Boisgueheneuc et al., 2006). 
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4.5. Conclusion and Limitations 

 

From the behavioural data it can be concluded that participants performing the 

experiment stayed attentive throughout the trial and that the study set-up succeeded in 

helping participants shift their attention to a relevant field of space.  

As the results from the imaging data did not reach significance following family wise 

error correction for multiple comparisons, they can only be treated as a tendency of a 

possible actual result. Reasons for this lack of significant results after correction for 

multiple comparisons are likely manifold. Statistical significance might, however, be 

improved by increasing the number of participants and/or further optimizing the 

experimental conditions and data analysis. 
The imaging data resulting from the cuing condition was highly suggestive of a bias in 

healthy participants towards the left spatial hemifield, which has been in previous 

literature described as a “pseudoneglect”. 

The imaging data does not report any IPS-activation specific to situations where 

subjects directed their attention bilaterally, the results fail to verify the hypothesis that 

the IPS is essential for directing attention towards multiple targets in space. Yet, this 

current data, but also data presented by Ciçek (Ciçek et al., 2007) and Geng (Geng et 

al., 2006) suggest that the right IFG plays an important role in a state of attending 

towards multiple spatial locations.  

This study also failed to demonstrate that the TPJ plays an important role for the 

detection of bilaterally presented targets. Yet in the bilateral target condition, activation 

in the right IPS can be reported, hence confirming the hypothesis based on previous 

MRI- and TMS-studies that the right IPS nevertheless plays a crucial role in processing 

bilaterally presented targets. Also, the imaging data showed right hemispheric CG/SFG 

activation when detecting bilateral targets. The importance of this brain region in 

context of spatial attention needs yet to be further evaluated. 

Overall and in confirmation of the right hemispheric dominance for visual space and the 

ability to process multiple objects in space, both attention towards and detection of 

bilateral targets elicited greater right hemispheric activation than the single cuing or 

target conditions.  
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Whilst this study failed to report TPJ activation during detection of bilateral targets, 

evidence from lesion studies (Karnath et al., 2003; Grandjean et al., 2008; Chechlacz et 

al., 2013) make it highly likely that the TPJ nevertheless does play an important role in 

the detection of bilateral targets. Hence the question why the data failed to report 

activation in the TPJ emerges. One could argue that the targets presented in this 

experiment were not salient or unexpected enough. As described in the model of top-

down and bottom-up detection of targets (Corbetta & Shulman, 2002), the TPJ was 

primarily associated with the detection of highly salient targets (e.g. a flashing 

ambulance car, bright and colourful targets). Also, previous studies have shown TPJ-

activation in targets that were invalidly cued (Corbetta et al., 2008; Indovina & 

Macaluso, 2007; Astafiev et al., 2006; Vossel et al., 2006; Kincade et al., 2005; Thiel et 

al., 2004; Corbetta & Shulman, 2002; Downar et al., 2000). Since the targets in this 

experiment were neither very salient nor were they ever unexpected or invalidly cued, a 

different experiment set-up might be needed to elicit TPJ-activation.  
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5. Summary 

Background In healthy adults there is a natural limitation of visual information that can 

be processed and responded to. This limitation is exaggerated when suffering from 

visual extinction, a neurological deficit usually occurring after right hemispheric stroke. 

It results in patients perceiving single object presentation undisturbed but extinguishing 

contralesional presented objects when an ipsilesional stimulus is present. This study 

tried to identify brain regions responsible for the ability to direct attention and to detect 

multiple objects in a visual field. In consideration of a ‘top-down’- and a ‘bottom-up’- 

attentional model as well as in consideration of previous transcranial magnetic 

stimulation (TMS)- and imaging studies, it was hypothesized that the right hemispheric 

intraparietal sulcus (IPS) plays an important role in directing attention towards 

bilaterally presented targets and that the right hemispheric temporoparietal junction 

(TPJ) is critical for the detection of two concurrently presented targets. 

Methods 24 participants took part in a functional magnetic response imaging (fMRI)-

experiment, performing five experimental sessions, each consisting of 400 intermixed 

trials. Per trial, participants were presented with either an uninformative or an 

informative cue pointing to a left, a right or bilateral target boxes. After a variable 

interval, targets or distractors appeared in the validly cued target boxes. Participants 

were to respond to target presentation and ignore distractor presentations. Eye 

movements and response times were monitored. Image data analysis was done using 

SPM8. Contrasts were modelled as a) unilateral left cue vs. bilateral cue, b) unilateral 

right cue vs. bilateral cue, c) unilateral left target vs. bilateral target and d) right target 

vs. bilateral target.  Conjunction maps of both cue and target conditions resulting from 

these contrasts displayed overlaps of activated voxels (P<.001 uncorr.) that were more 

strongly engaged by presentation of bilateral cues or bilateral targets than either 

unilateral right or unilateral left stimuli. 

Results Participants spent 97,6% (±2.5%) of experimental time fixating the central 

fixation point. Response times (RTs) upon target detection were significantly faster for 

targets following informative cues. Bilateral target detection resulted in significantly 

longer RTs than single target detection. The conjunction image for the cuing condition 

showed only one overlap in the right inferior frontal gyrus (IFG). The conjunction 
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image of the target condition revealed overlaps in right hemispheric IPS and right 

hemispheric cingulate gyrus (CG)/ superior frontal gyrus (SFG). 

Discussion The significant differences in response times upon target detection of cued 

and uncued targets suggest that participants stayed attentive and used the cues for shifts 

of attention. Longer RTs for bilateral targets were most likely due to a bigger challenge 

of processing. Imaging data in the bilateral vs. unilateral cue and target conditions 

showed occipital activations resulting from left- and rightward visual stimulation 

corresponding to the known visual pathways in the target condition and as a result of 

increased cue-modulated activation in primary visual cortices in the cuing condition. 

FMRI-results of the conjunction maps [bilateral vs left cue AND bilateral vs right cue] 

and [bilateral vs left target AND bilateral vs right target] revealed more brain areas 

engaged by bilaterally presented cues or targets in the right hemisphere of the brain. 

These results are in accordance with lesion studies and support the assumption of right 

hemispheric dominance for bilateral attention in space. Bilaterally pointing cues elicited 

right hemispheric IFG activation. As the IFG is part of a ventroparietal network, this 

activation was unexpected, yet has been demonstrated in previous studies using a 

similar study set-up. Unexpectedly, activation in IPS could not be demonstrated in the 

cuing condition but only in the target condition. This study is the first to demonstrate 

right hemispheric IPS activation when detecting bilateral presented targets but is in 

accordance with findings of previous TMS-studies. The role of right hemispheric 

CG/SFG for detection of bilaterally presented targets is yet unclear and needs to be 

further investigated. CG/SFG has been mostly associated with psychiatrical disorders 

but also with goal-directed behaviours. 

Conclusion In consideration of the fact that the results of the imaging data did not reach 

significance following a family wise error correction for multiple comparisons, and that 

thus the imaging results can only be treated as a tendency of a possible actual result, the 

data failed to demonstrate IPS activation in the cuing condition and TPJ activation in 

the target condition. Instead, IPS activation was demonstrated in the target condition 

suggesting to nevertheless play an important role in the detection of multiple objects. 

The importance of right CG/SFG for the detection of bilateral targets needs further 

investigation. These results, in support of existing literature, suggest that the right IFG 
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may be critical for shifting attention towards expected bilateral targets. Missing TPJ-

activation might have been due to the study set-up. 
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Deutsche Zusammenfassung 

 

Hintergrund Gesunde Erwachsene können nur eine begrenzte Menge an Informationen 

verarbeiten. Bei Patienten mit visueller Extinktion, einer Erkrankung die nach 

rechtshemisphärischen Schlaganfällen auftreten kann, ist diese natürliche Limitierung 

gesteigert und resultiert darin, dass Patienten bei Präsentation beidseitiger Stimuli den 

kontraläsionellen Reiz auslöschen. Ziel dieser Studie war es, Bereiche des Gehirns zu 

identifizieren, die die Verarbeitung multipler visueller Reize ermöglichen. Unter 

Berücksichtigung zweier Aufmerksamkeitsmodelle (“top-down” und “bottom-up”) 

sowie der Ergebnisse von TMS- (transcranielle Magnetstimulation) und fMRT- 

(funktionelle Magnetresonanztomographie) Studien, wurde die Hypothese aufgestellt, 

dass dem rechtshemisphärischen intraparietalen Sulcus (IPS) eine wichtige Rolle bei der 

Aufmerksamkeitslenkung, und der  temporoparietalen Junction (TPJ) eine wichtige 

Rolle bei der Erkennung bilateraler Reize zukommt. 

Methoden 24 Probanden nahmen an einem fMRT-Experiment teil welches in fünf 

Einheiten mit je 400 Versuchsdurchgängen gegliedert war. Ein Versuchsdurchgang 

bestand aus einem neutralen oder informativen Hinweisreiz (HR) welcher in Richtung 

eines rechtsseitigen, linksseitigen oder beidseitigen Zielkastens wies. Nach einem 

variablen Zeitintervall erschienen im jeweils angekündigtem Zielkasten ein Zielreiz 

(ZR), oder ein Ablenkreiz (AR). Augenbewegungen und Reaktionszeiten wurden 

aufgezeichnet. Statistische Auswertung der Bildgebungsdaten und die Erstellung der 

Kontraste erfolgte mittels SPM8 (Statistical parametric mapping). Folgende 

Kontrastmodelle wurden unter Verwendung einer unkorrigierten Schwelle von p<0.001 

ausgeschrieben: a) unilateraler HR links vs. bilateraler HR, b) unilateraler HR rechts vs. 

bilateraler HR, c) unilateraler ZR links vs. bilateraler ZR, d) unilateraler HR rechts vs. 

bilateraler HR. Durch Überlappung der einzelnen Kontraste (Konjunktionsbilder) 

wurden Voxel sichtbar, welche stärker auf Präsentation bilateraler HRs und ZRs 

reagiert haben als auf die jeweiligen unilateralen Reize.  

Ergebnisse In 97,6 ± 2,5% der Versuchszeit fixierten die Probanden den zentralen 

Fixationspunkt. Reaktionszeiten (RZ) für ZR die einem informativen HR folgten, waren 

signifikant schneller. Die Detektion bilateraler ZR resultierte in längeren RZ als die 

Detektion einzelner ZR. Das Konjunktionsbild der HR-Bedingung zeigte eine 
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Überlappung im rechtshemisphärischem inferiorem frontalen Gyrus (IFG) und das der 

ZR-Bedingung im rechtshemisphärischem IPS und Gyrus cinguli (CG)/ superiorem 

frontalen Gyrus (SFG). 

Diskussion Die schnelleren RZ für erwartete ZR deuten darauf hin, dass die Probanden 

die HR als Informationsquelle nutzten.  Die langsameren RZ bei der Detektion 

bilateraler ZR könnten durch eine größere kognitive Herausforderung bedingt sein. Die 

Bildgebungsdaten für die Bedingungen HR und ZR zeigten Aktivierungen in den 

okzipitalen Regionen korrespondierend zu den bekannten Arealen der Sehbahn nach 

rechts- und linksseitiger Stimulation und resultierend aus einer durch den HR 

modulierten Aktivierung in den entsprechenden  visuellen Cortices. Die fMRT 

Ergebnisse der Konjunktionsbilder [bilateral vs unilateraler HR links + bilateraler vs 

unilateraler HR rechts] und [bilateraler vs ZR links + bilateraler vs ZR rechts] zeigten 

insgesamt mehr Aktivierungen in der rechten Gehirnhemisphäre. Diese Ergebnisse 

stimmen mit bekannten Läsionsstudien überein und unterstützen die Annahme einer 

rechtshemisphärischen Dominanz für räumliche Aufmerksamkeit. Bilaterale HRs 

erzeugten Aktivierungen im  rechtshemisphärischen IFG. Als Teil des ventroparietalen 

Netzwerkes war diese Aktivierung unerwartet, jedoch in  Studien mit ähnlichem 

Versuchsaufbau bereits vorbeschrieben. Anders als erwartet, kam es im Bereich des IPS 

nur in der ZR-Bedingung zu Aktivierungen. Diese Studie ist die erste 

Bildgebungsstudie welche IPS-Aktivierungen während dem Erkennen beidseitiger ZR 

zeigt. Diese Ergebnisse stehen im Einklang  mit Ergebnissen von früheren TMS-

Studien. Die Rolle des CG/SFG beim Erkennen beidseitiger ZR ist bis dato unklar und 

bedarf weiteren Untersuchungen. Bislang waren diese Hirnareale v.a. mit 

psychiatrischen Funktionsstörungen aber auch mit zielorientiertem Verhalten assoziiert.  

Schlussfolgerung Unter Berücksichtigung der Tatsache, dass sämtliche Resultate der 

Bildgebungsdaten keine signifikanten Ergebnisse erzielten, und somit nur als 

deskriptive Ergebnisse betrachtet werden können, konnten zudem keine Aktivierungen 

im IPS in der HR-Bedingung und keine TPJ-Aktivierung in der ZR-Bedingung 

nachgewiesen werden. Stattdessen konnten Aktivierungen im IPS in der ZR-Bedingung 

demonstriert werden, sodass dennoch von einer wichtigen Rolle des IPS beim Erkennen 

multipler Reize auszugehen ist. Unsere Ergebnisse weisen daraufhin, dass der 

rechtshemisphärische IFG eine wichtige Aufgabe bei der Lenkung von Aufmerksamkeit 
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auf beidseitige und erwartete ZR übernimmt. Die fehlende TPJ-Aktivierung  ist 

möglicherweise durch den Versuchsaufbau erklärt.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 49 

6. Literaturverzeichnis 

Astafiev SV, Shulman GL, Corbetta M (2006) Visuospatial reorienting signals in the human 
temporo-parietal junction are independent of response selection. Eur J Neurosci. 23(2):591-6. 
 
Barbieri C, De Renzi E (1989) Patterns of neglect dissociation. Behav Neurol 2:13-24. 
 
Battelli L, Alvarez GA, Carlson T, Pascual-Leone A (2009) The Role of the Parietal Lobe in 
Visual Extinction Studied with Transcranial Magnetic Stimulation. J Cogn Neurosci 10: 1946–
1955. 
 
Becker E, Karnath H-O. (2007) Incidence of visual extinction after left versus right hemisphere 
stroke. Stroke. 38:3172–3174. 
 
Bellas DN, Novelly RA, Eskenazi B, Wasserstein J. (1988) Unilateral displacement in the 
olfactory sense: a manifestation oft he unilateral neglect syndrome. Cortex. 24:267-75. 
 
Bender MB and Furlow CT (1945) Phenomenon of visual extinction and homonomous fields 
and psycho-logical principles involved. Archives of Neurology and Psychiatry 53:29–33. 
 
Boisgueheneuc F, Levy R, Volle E, Seassau M, Duffau H, Kinkingnehun S, Samson Y, Zhang 
S, Dubois B (2006) Functions of the left superior frontal gyrus in humans: a lesion study. Brain. 
129(Pt 12):3315-28.  
 
Bowers D, Heilman KM (1980) Pseudoneglect: effects of hemispace on a tactile line bisection 
task. Neuropsychologia. 18(4-5):491-8. 
 
Broadbent DE (1956) Perception and Communication. Pergamon. London, England. 
 
Butter CM, Rapcsak S, Watson RT, Heilman KM (1988) Changes in sensory inattention, 
directional motor neglect and "release" of the fixation reflex following a unilateral frontal 
lesion: a case report. Neuropsychologia 26(4):533-45. 
 
Buxton, R. B. (2002) Introduction to functional magnetic resonance imaging: Principles and 
techniques. Cambridge: Cambridge University Press. 
 
Chatterjee A (2003) Neglect: A Disorder of Spatial Attention, 1-26, Mark D’Esposito, 
Neurological Foundations of Cognitive Neuroscience. A Bradford Book. The MIT Press. 
Cambridge, Massachusetts. London, England. 
 
Chawla D, Rees G, Friston KJ (1999) The physiological basis of attentional modulation in 
extrastriate visual areas. Nat Neurosci. 2(7):671-6. 
 
Chechlacz M, Rotshtein P, Hansen PC, Deb S, Riddoch MJ, Humphreys GW. (2013) The 
central role of the temporo-parietal junction and the superior longitudinal fasciculus in 
supporting multi-item competition: evidence from lesion-symptom mapping of extinction. 
Cortex.49:487-506. 
 



 50 

Chechlacz M, Rotshtein P, Demeyere N, Bickerton WL, Humphreys GW. (2014) The frequency 
and severity of extinction after stroke affecting different vascular territories. Neuropsychologia. 
54:11-7. 
 
Ciçek M, Gitelman D, Hurley RS, Nobre A, Mesulam M. (2007) Anatom- ical physiology of 
spatial extinction. Cereb Cortex. 17:2892–2898. 
 
Corbetta M, Kincade JM, Ollinger JM, McAvoy MP, Shulman GL (2000) Voluntary orienting 
is dissociated from target detection in human posterior parietal cortex. Nature Neurosci 3:292–
297. 
 
Corbetta M, Shulman GL (2002)	 Control of Goal-Directed and Stimulus-Driven Attention in 
the Brain. Nature Rev Neurosci 3:201–215. 
 
Corbetta M, Patel G, Shulman GL. (2008) The reorienting system of the human brain: from 
environment to theory of mind. Neuron. 58:306–324. 
 
Cowan N (2001) Metatheory of storage capacity limits. Behavioral and Brain Sciences, 24, pp 
154-176 
 
de Haan B, Karnath H-O, Driver J. (2012) Mechanisms and anatomy of uni- lateral extinction 
after brain injury. Neuropsychologia. 50:1045–1053. 
 
Degos JD, da Fonseca N, Gray F, Cesaro P (1993) Severe frontal syndrome associated with 
infarcts of the left anterior cingulate gyrus and the head of the right caudate nucleus. A clinico-
pathological case. Brain. 116 ( Pt 6):1541-8. 
 
De Renzi E, Gentilini M, Pattacini F (1984) Auditory extinction following hemisphere damage. 
Neuropsychologia. 22:733-44. 
 
Desimone R, Duncan J (1995) Neural mechanisms of selective visual attention. Annu Rev 
Neurosci 18:193-222. 
 
Devinsky O, Morrel MJ, Vogt BA (1995) Contributions of anterior cingulate cortex to 
behaviour. Brain. 118 ( Pt 1):279-306. 
 
Dosher BA and Lu ZL (2000) Mechanisms of perceptual attention in precuing of location. 
Vision Res 40:1269–1292. 
 
Downar J, Crawley AP, Mikulis DJ, Davis KD (2000) A multimodal cortical network for the 
detection of changes in the sensory environment. Nat Neurosci. 3(3):277-83. 
 
Driver J, Mattingley JB, Rorden C, Davis G. (1997) Extinction as a para- digm measure of 
attentional bias and restricted capacity following brain injury. In: Thier P, Karnath H-O, editors. 
Parietal lobe contributions to orientation in 3D space. Heidelberg: Springer. p. 401–429. 
 
Driver J, Vuilleumier P (2001) Perceptual awareness and its loss in unilateral neglect and 
extinction. Cognition 79: 39–88. 
 
Duncan J (1980) The locus of interference in the perception of simultaneous stimuli. Psychol 
Rev. 87:272-300. 
 



 51 

Duncan J, Bundesen C, Olson A, Humphreys G, Chavda S, Shibuya H (1999) Systematic 
analysis of deficits in visual attention. J Exp Psychol Gen 128: 450–78. 
 
Duncan J (1993) Coordination of what and where in visual attention. Perception 22:1261-1270. 
 
Duncan J, Humphreys G, Ward R (1997) Competitive brain activity in visual attention. Current 
opinion in neurobiology 7:255-261. 
 
Duncan J (1983) Perceptual selection based on alphanumeric class: evidence from partial 
reports. Percept Psychophys  33:533-547. 
 
Duncan J (1984) Selective attention and the organization of visual information. J Exp Psycho/ 
[Gen] 113:501-517. 
 
Forster B, Cavina-Pratesi C, Aglioti SM, Berlucchi G (2002) Redundant target effect and 
intersensory facilitation from visual-tactile interactions in simple reaction time. Exp Brain Res. 
143(4):480-7. 
 
Friston KJ, Ashburner J, Frith CD, Poline JB, Heather JD, Frackowiak RSJ (1995) Spatial 
registration and normalization of images. Human brain mapping 3(3), 165-189 
 
Friston KJ, Holmes AP, Poline JB, Grasby PJ, Williams SCR, Frackowiak RSJ, Turner R 
(1995) Analysis of fMRI Time Series Revisited. NeuroImage 2:45-53, 1995. 
 
Gainotti G, De Bonis C, Daniele A, Caltagirone C. (1989) Contralateral and ipsilateral tactile 
extinction in patients with right and left focal brain damage. Int J Neurosci. 45:81-9. 
 
Geng JJ, Eger E, Ruff CC, Kristjánsson A, Rotshtein P, Driver J. (2006) On-line attentional 
selection from competing stimuli in opposite visual fields: effects on human visual cortex and 
control processes. J Neurophysiol. 96:2601–2612. 

Gilchrist ID, Humphreys GW, Riddoch MJ (1996) Grouping and extinction: Evidence for low-
level modulation of visual selection . Cogn Neuropsy 8:1223-1249. 
 
Gillebert CR, Mantini D, Thijs V, Sunaert S, Dupont P, Vandenberghe R (2011) Lesion 
evidence for the critical role of the intraparietal sulcus in spatial attention. Brain 134:1694–
1709. 
 
Gitelman DR (2002) ILAB: a program for postexperimental eye movement analysis. Behav Res 
Methods Instrum Comput. 2002 Nov;34(4):605-12. 
 
Grandjean D, Sander D, Lucas N, Scherer KR, Vuilleumier P. (2008) Effects of emotional 
prosody on auditory extinction for voices in patients with spatial neglect. 
Neuropsychologia. 46:487-96. 
 
Gondan M, Niederhaus B, Rösler F, Röder B (2005) Multisensory processing in the redundant-
target effect: a behavioral and event-related potential study. Percept Psychophys. 67(4):713-26. 
 
Goodrich SJ, Ward R (1997) Anti-extinction Following Unilateral Parietal Damage. Cognitive 
Neuropsychology 14: 595–612. 
 



 52 

Hahn B, Ross TJ, Stein EA (2006) Neuroanatomical dissociation between bottom-up and top-
down processes of visuospatial selective attention. Neuroimage 32:842-853. 
 
Halligan PW, Marshall JC (1994) Completion in visuo-spatial neglect: a case study. Cortex. 
30(4):685-94. 
 
Hashemi, R. H., Bradley, W. G., & Lisanti, C. J. (2004) MRI the basics. (2nd ed.) Philadelphia: 
Lippincott Williams & Wilkins. 
 
Heeger DJ, Ress D. (2002) What does fMRI tell us about neuronal activity? Nat Rev Neurosci. 
3(2):142-51. 
 
Heilman KM, Van Den Abell T. (1980) Right hemisphere dominance for attention: the 
mechanism underlying hemispheric asymmetries of inattention (neglect). Neurology. 30(3):327-
30. 
 
Hilgetag CC, Théoret H, Pascual-Leone A (2001) Enhanced visual spatial attention ipsilateral to 
rTMS-induced 'virtual lesions' of human parietal cortex. Nature Neurosci 4:953-957. 
 
Holmes AP, Friston KJ (1998) Generalisability, random effects & population inference. 
NeuroImage, Vol. 7 
 
Hopfinger JB, Buonocore MH, Mangun GR (2000) The neural mechanisms of top-down 
attentional control. Nature Neurosci 3:284–291  
 
Horowitz, A. L. (1995) MRI physics for radiologists. (3rd ed.) New York: Springer-Verlag. 
 
Huk AC, Heeger DJ (2000) Task-related modulation of visual cortex. J Neurophysiol. 2000 
83(6):3525-36. 
 
Hung J, Driver J, Walsh V. (2005) Visual selection and posterior parietal cortex: effects of 
repetitive transcranial magnetic stimulation on partial report analyzed by Bundesen’s theory of 
visual attention. J Neurosci. 25:9602-12. 
 
Iacoboni M, Zaidel E (2004) Interhemispheric visuo-motor integration in humans: the role of 
the superior parietal cortex. Neuropsychologia. 42(4):419-25. 
 
Indovina I, Macaluso E (2007) Dissociation of stimulus relevance and saliency factors during 
shifts of visuospatial attention. Cereb Cortex. (7):1701-11. 
 
Jewell G, McCourt ME (2000) Pseudoneglect: a review and meta-analysis of performance 
factors in line bisection tasks. Neuropsychologia. 38(1):93-110. 
 
Jezzard, P. & Clare, S. (2001) Principles of nuclear magnetic resonance and MRI. In P.Jezzard, 
P. M. Matthews, & S. M. Smith (Eds.), Functional MRI: an introduction to methods. (pp. 67-
92). New York: Oxford University Press Inc. 
 
Jonides J, Yantis S (1988) Uniqueness of abrupt visual onset in capturing attention. Percept 
Psychophys 43:346-354. 
 
Kanal E, Barkovich AJ, Bell C, Borgstede JP, Bradley WG Jr, Froelich JW, Gimbel JR, Gosbee 
JW, Kuhni-Kaminski E, Larson PA, Lester JW Jr, Nyenhuis J, Schaefer DJ, Sebek EA, Weinreb 



 53 

J, Wilkoff BL, Woods TO, Lucey L, Hernandez D. (2013) ACR guidance document on MR safe 
practices: 2013. J Magn Reson Imaging. 37:501-30. 
 
Kaplan RF, Cohen RA, Rosengart A, Elsner AE, Hedges TR III, Caplan LR. (1995) Extinction 
during time controlled direct retinal stimulation after recovery from right hemispheric stroke. J 
Neurol Neurosurg Psychiatr 59:534-536. 
 
Karnath HO, Himmelbach M, Küker W (2003) The cortical substrates of visual extinction. 
Cogn Neurosci and Neuropsychol 14:437-442. 
 
Kastner S, Pinsk MA, De Weerd P, Desimone R, Ungerleider LG (1999) Increased activity in 
human visual cortex during directed attention in the absence of visual stimulation. Neuron 
22:751–761. 
 
Kincade JM, Abrams RA, Astafiev SV, Shulman GL, Corbetta M (2005) An Event-Related 
Functional Magnetic Resonance Imaging Study of Voluntary and Stimulus-Driven Orienting of 
Attention. J Neurosci 18:4593– 4604. 
 
Kiebel K, Holmes AP (2003) The general linear model. human brain function II: SPM courses 
notes, chapter 7. 
 
Kinsbourne M (1970) The cerebral basis of lateral asymmetries in attention. Acta Psychologica 
33:193-201. 
 
Kinsbourne M (1973) The control of attention by interaction between the cerebral hemispheres. 
In S. Kornblum (Ed), Attention and Performance IV, pp. 239-256. New York: Academic Press. 
 
Koch G, Oliveri M, Torriero S, Caltagirone C. (2005) Modulation of excitatory and inhibitory 
circuits for visual awareness in the human right parietal cortex. Exp Brain Res. 160:510-6. 
 
Kwong KK, Belliveau JW, Chesler DA, Goldberg IE, Weisskoff RM, Poncelet BP, Kennedy 
DN, Hoppel BE, Cohen MS, Turner R, et al. (1992) Dynamic magnetic resonance imagining of 
human brain activity during primary sensory stimulation. Proc Natl Acad Sci U S A. 
15;89:5675-9. 
 
Laplane D, Degos JD, Baulac M, Gray F (1981) Bilateral infarction of the anterior cingulate 
gyri and of the fornices. Report of a case. J Neurol Sci. (2):289-300. 
 
Liu GT, Bolton AK, Price BH, Weintraub S (1992). Dissociated perceptual-sensory and 
exploratory-motor neglect. J Neurol Neurosurg Psychiatry 55:701-706. 
 
Li W, Qin W, Liu H, Fan L, Wang J, Jiang T, Yu C (2013) Subregions of the human superior 
frontal gyrus and their connections. Neuroimage. 78:46-58.  
 
Loftus GR, Masson ME (1994) Using confidence intervals in within-subject designs. 
Psychon Bull Rev. 1994 Dec;1(4):476-90.  
 
Loftus AM, Nicholls ME (2012) Testing the activation-orientation account of spatial attentional 
asymmetries using transcranial direct current stimulation. Neuropsychologia 50: 2573-2576. 
 
Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A (2001) Neurophysiological 
investigation of the basis of the fMRI signal. Nature, 412(6843):150-7. 



 54 

 
Logothetis, NK (2002) The neural basis of the blood-oxygen-level-dependent functional 
magnetic resonance imaging signal. Philosophical Transactions of the Royal Society B: 
Biological Sciences, 357(1424), 1003–1037. 
 
Marzi CA, Smania N, Martini MC, Gambina G, Tomelleri G, Palamara A, Alessandrini F, Prior 
M (1996) Implicit redundant-targets effect in visual extinction. Neuropsychologia. ;34(1):9-22. 
 
McMains SA, Fehd HM, Emmanouil TA, Kastner S (2007) Mechanisms of feature- and space-
based attention: response modulation and baseline increases. J Neurophysiol. 98(4):2110-21.  
 
Meister IG, Wienemann M, Buelte D, Grunewald C, Sparing R, Dambeck N, Boroojerdi B. 
(2006) Hemiextinction induced by tran- scranial magnetic stimulation over the right temporo-
parietal junction. Neuroscience. 142:119–123. 
 
Merikle PM (1980) Selection from visual persistence by perceptual groups and category 
membership. J. Exp. Psychol. Gen l09:279-295. 
 
Molenberghs P, Gillebert CR, Peeters R, Vandenberghe R (2008) Convergence between lesion-
symptom mapping and functional magnetic resonance imaging of spatially selective 
attention in the intact brain. J Neurosci 28:3359-3373. 
 
Murray SO (2008) The effects of spatial attention in early human visual cortex are stimulus 
independent. J Vis. 1;8(10):2.1-11.  
 
Neisser U (1967) Cognitive Psychology. Appleton-Century- Crofts. New York. USA. 
 
Nicholls ME, Roberts GR (2002) Can free-viewing perceptual asymmetries be explained by 
scanning, pre-motor or attentional biases? Cortex 38(2):113-36. 
 
Ogawa S, Lee TM, Nayak AS, Glynn P. (1990) Oxygenation-sensitive contrast in magnetic 
resonance image of rodent brain at high magnetic fields. Magn Reson Med. 14:68-78. 
 
Ollinger JM, Corbetta M, Shulman GL, (2001) Separating processes within a trial in event-
related functional MRI. Neuroimage 13(1):218-29. 
 
Orr CA, Nicholls ME (2005) The nature and contribution of space- and object-based attentional 
biases to free-viewing perceptual asymmetries. Exp Brain Res. 162(3):384-93.  
 
Pascual-Leone A, Gomez-Tortosa E, Grafman J, Alway D, Nichelli P, Hallett M (1994). 
Induction of visual extinction by rapid-rate transcranial magnetic stimulation of parietal lobe. 
Neurology 44:494–498. 
 
Pauling L. & Coryell C. D. (1936). The Magnetic Properties and Structure of Hemoglobin, 
Oxyhemoglobin and Carbonmonoxyhemoglobin. Proceedings of the National Academy of 
Sciences of the United States of America, 22(4), 210–216. 
 
Pessoa L, Kastner S, Ungerleider L (2003) Neuroimaging studies of attention: from modulation 
of sensory processing to top-down control. J Neurosci 23: 3990–3998. 
 
Pessoa L, Rossi A, Japee S, Desimone R, Ungerleider LG (2009) Attentional control during the 
transient updating of cue information. Brain Res. 1247:149-58.  



 55 

Posner MI (1980) Orienting of attention. Q. J. Exp. Psychol 32:3–25.\ 
 
Phan TG, Donnan GA, Wright PM, Reutens DC (2005) A Digital Map of Middle Cerebral 
Artery Infarcts Associated With Middle Cerebral Artery Trunk and Branch Occlusion. Stroke 
36:986-991. 
 
Posner MI, Snyder CRR, Davidson BJ (1980) Attention and the detection of signals. J. Exp. 
Psychol.109:160–174. 
 
Ridgway N, Milders M, Sahraie A (2008) Redundant target effect and the processing of colour 
and luminance. Exp Brain Res. 187(1):153-60.  
 
Roy CS, & Sherrington CS (1890) On the Regulation of the Blood-supply of the Brain. The 
Journal of Physiology, 11(1-2), 85–158.17. 
 
Shulman GL, Ollinger JM, Akbudak E, Conturo TE, Snyder AZ, Petersen SE, Corbetta M 
(1999) Areas involved in encoding and applying directional expectations to moving objects. J. 
Neurosci 19:9480–9496. 
 
Shulman GL, McAvoy MP, Cowan MC, Astafiev SV, Tansy AP, d’Avossa G, Corbetta M. 
(2003) Quantitative analysis of attention and detection signals during visual search. J 
Neurophysiol. 90: 3384–3397. 
 
Shulman GL, Pope DLW, Astafiev SV, McAvoy MP, Snyder AZ, Corbetta M (2010) Right 
Hemisphere Dominance during Spatial Selective Attention and Target Detection Occurs 
Outside the Dorsal Frontoparietal Network. J Neurosci 30:3640 –3651. 
 
Siman-Tov T, Mendelsohn A, Schonberg T, Avidan G, Podlipsky I, Pessoa L, Gadoth N, 
Ungerleider LG, Hendler T (2007) Bihemispheric leftward bias in a visuospatial attention-
related network. J Neurosci. 27(42):11271-8. 
 
Sternberg, R.J. and Sternberg K. (2009) Cognitive Psychology, Sixth Edition. Wadsworth. 
 
Stoeckel MC, Wittsack H-J, Meisel S, Seitz RJ (2007) Pattern of cortex and white matter 
involvement in severe middle cerebral artery ischemia. J Neuroimaging 17:131-140. 
 
Sylvester CM, Shulman GL, Jack AI, Corbetta M (2009) Anticipatory and stimulus-evoked 
BOLD modulations related to spatial attention reflect a common additive signal. The Journal of 
neuroscience : the official journal of the Society for Neuroscience. 29(34):10671-10682.  
 
Talairach J, Tournoux P (1988). Co-planar stereotaxic atlas of the human brain. Thieme, New 
York. 
 
Thiel CM, Zilles K, Fink GR (2004) Cerebral correlates of alerting, orienting and reorienting of 
visuospatial attention: an event-related fMRI study. Neuroimage. 21(1):318-28. 
 
Thulborn KR, Waterton JC, Matthews PM, Radda GK (1982) Oxygenation dependence of the 
transverse relaxation time of water protons in whole blood at high field. Biochim Biophys Acta. 
714(2):265-70. 
 
Ticini LF, de Haan B, Klose U, Nägele T, Karnath H-O. (2010) The role of temporo-parietal 
cortex in subcortical visual extinction. J Cogn Neurosci. 22:2141–2150. 



 56 

Treisman AM, Gormican S (1988) Feature analysis in early vision. Evidence from search 
asymmetries. Psychol. Rev 95:15-48. 
 
Turner R, Le Bihan D, Moonen CT, Despres D, Frank J. (1991) Echo-planar time course MRI 
of cat brain oxygenation changes. (1991) Magn Reson Med. 22:159-66. 
 
Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, Mazoyer 
B, Joliot M (2002) Automated anatomical labeling of activations in SPM using a macroscopic 
anatomical parcellation of the MNI MRI single-subject brain. Neuroimage Jan;15(1):273-89. 
 
Vallar G, Rusconi ML, Bignamini L, Geminiani G, Perani D (1994) Anatomical correlates of 
visual and tactile extinction in humans: a clinical CT study. J Neurol Neurosurg Psychiatry 
57:464-470 
 
Vossel S, Thiel CM, Fink GR (2006) Cue validity modulates the neural correlates of covert 
endogenous orienting of attention in parietal and frontal cortex. Neuroimage 32(3):1257-64.  
 
Vossel S, Eschenbeck P, Weiss PH, Weidner R, Saliger J, Karbe H, Fink GR (2011) Visual 
extinction in relation to visuospatial neglect after right-hemispheric stroke: quantitative 
assessment and statistical lesion-symptom-mapping. J Neurol Neurosurg Psychiatry doi: 
10.1136/jnnp.2010.224261. 
 
Vuilleumier P, Rafal R (2000) A systematic study of visual extinction. Between- and within- 
field deficits of attention in hemispatial neglect. Brain 123:1263-1279. 
 
Walley RE, Weiden TD (1973) Lataral inhibition and cognitive masking: a neuropsychological 
theory of attention. Psycho/ Rev 80:264-302. 
 
Wardak C, Olivier E, Duhamel JR. (2002) Saccadic target selection deficits after lateral 
intraparietal area inactivation in monkeys. J Neuro- sci. 22:9877–9884. 
 
Ward R, Goodrich SJ, Driver J (1994) Grouping reduces visual extinction: neuropsychological 
evidence for weight linkage in visual selection. Vis Cogn 1: l01- l29. 
 
Weissman DH, Gopalakrishnan A, Hazlett CJ, Woldorff MG (2005) Dorsal anterior cingulate 
cortex resolves conflict from distracting stimuli by boosting attention toward relevant events. 
Cereb Cortex. 15(2):229-37.  
 
Weissman DH, Mangun GR, Woldorff MG (2002) A role for top-down attentional orienting 
during interference between global and local aspects of hierarchical stimuli. Neuroimage. 
(3):1266-76. 
 
Wilke M, Kagan I, Andersen RA. (2012) Functional imaging reveals rapid reorganization of 
cortical activity after parietal inactivation in monkeys. Proc Natl Acad Sci USA. 109:8274–
8279. 

Woldorff MG, Hazlett CJ, Fichtenholtz HM, Weissman DH, Dale AM, Song AW (2004) 
Functional parcellation of attentional control regions of the brain. J Cogn Neurosci. 2004 
(1):149-65. 

Worsley, KJ (2001) Statistical analysis of activation images. Functional MRI: An introduction 
to methods, 14, 251-270 



 57 

7. Erklärung zum Eigenanteil 

Diese Arbeit wurde in der Klinik für Neurologie, Abteilung kognitive Neurologie, 

Sektion Neuropsychologie unter Betreuung von Herrn Prof. Dr. Dr. Karnath 

durchgeführt.  Die Konzeption der Studie erfolgte durch Dr. Bianca de Haan, Leiterin 

der Forschungsgruppe “Neuropsychology of Attention”. 

Die Versuche wurden nach Einarbeitung und in Zusammenarbeit mit Dr. Bianca de 

Haan durchgeführt. Die statistische Auswertung erfolgte eigenständig durch mich. 

Ich versichere, das Manuskript selbstständig verfasst zu haben und keine weiteren als 

die von mir angegebenen Quellen und Hilfsmittel verwendet zu haben. 

 

Berlin, den 14. November 2016 

 

 

 

Maria Bither  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 58 

8. Veröffentlichungen 

Teile der vorliegenden Dissertationsschrift wurden bereits in der folgenden Publikation 
veröffentlicht:  

 

de Haan, B., Bither, M., Brauer, A. & Karnath, H.-O. (2015). Neural correlates of 
spatial attention and target detection in a multi-target environment. Cerebral Cortex, 
25(8), 2321-2331. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 59 

DANKSAGUNG 

 

 

Mein Dank gilt all den Personen, die am Gelingen dieser Arbeit beteiligt waren. 

 

Herrn Professor Karnath danke ich für die Ermöglichung der wissenschaftlichen Arbeit 

in der Sektion Neuropsychologie und für die Betreuung dieser Arbeit. 

Größter Dank gilt Dr. Bianca de Haan für die Bereitstellung des Themas, für die 

insgesamt herausragende Betreuung und nicht zuletzt für die schöne Zusammenarbeit. 

Der gesamten Abteilung für Neuropsychologie danke ich für die hilfreiche und gute 

Zusammenarbeit. Meinen Probanden danke ich für die Zeit und Konzentration, die sie 

für die Durchführung der Experimente bereitstellten. 

Ich danke Dr. Jason Martin für die fachliche Hilfe und die wertvollen Diskussionen 

rund um das Thema der Dissertation. 

 

 

Weit über diese Arbeit hinaus gilt mein Dank meinen Geschwistern und meinen Eltern, 

die mir maßgeblich meinen persönlichen und beruflichen Werdegang ermöglichten.  

 

 

 

 


