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Abstract 

Multivariate pattern analysis (MVPA) has come into widespread use for analysis of 

neuroimaging data in recent years and is gaining further momentum. Given the task 

of detecting a generalizable pattern in neural activity, MVPA allows to detect fine 

multidimensional spatiotemporal contrasts between two or more conditions and is 

thus able to take the full advantage of multivariate information encoded in the data. 

In particular, MVPA based approaches lend themselves very well to the analysis of 

electroencephalogram (EEG) data because, unlike the widely-used averaging 

methods, they consider the signal in its entirety and are thus less susceptible to the 

confounding effects of single points with abnormal amplitudes. 

However, using MVPA for hypothesis testing purposes in high-density EEG data has 

remained a challenging issue. Although MVPA is getting more and more mainstream 

to detect information in neural activity, its behavior is not well understood, yet. EEG 

data are high dimensional, yet sample size is usually low in comparison. Moreover, 

due to the low signal-to-noise ratio, the effect size is small and differences between 

classes are hard to detect. In such cases, MVPA behaves unexpectedly which makes 

the overall accuracy of the classifier difficult to interpret. In addition, because MVPA 

is sensitive to any kind of structure in the data, confounding factors or additional 

variance within data can bias accuracy. Such complexities warrant extra caution when 

interpreting classification results, thereby requiring further investigation and 

guidelines. On the other hand, MVPA literature is mainly dominated by methods 

suited for fMRI data and most of the dedicated EEG methodology is developed for 

brain computer interfaces (BCI) or single trial analysis of event-related potentials. 

Specifically, decoding continuous EEG increasingly suffers from the curse of 

dimensionality because of the lack of clear prior knowledge on which frequency bands 

and time points carry relevant information, or an onset where the effect of stimulation 

can be expected.  



 

 

In this thesis, we addressed the aforementioned challenges involved in using MVPA 

for decoding EEG data. Chapter 2 describes the statistical properties of MVPA in 

realistic neuroimaging data and provides important guidelines to interpret 

classification results. We show that the probability distribution of classification 

accuracies does not follow any known parametric distribution and can be strongly 

biased and skewed. We describe unexpected properties of the distribution of 

classification rates which forbid their use as estimates of the size of experimental 

effects. Importantly, we scrutinize the finding of below chance level classification 

rates, which often occur in low sample size, low effect size data and their implications 

on the shape of classification rates distribution.  

Next, in chapter 3, we investigate neuroimaging data that, next to a main effect of class, 

additionally contains a nested subclass structure. We show that in these data sets, 

correct classification ratios are systematically biased from chance even in absence of 

class effect. We propose a nonparametric permutation algorithm which can detect the 

subclass bias and account for its effect by adjusting permutation tests to consider the 

subclass structure of the data, using subclass-level randomization.  

Finally, in chapter 4, we used MVPA to decode continuous high-density EEG across 

subjects. We developed a classification framework along with a specific preprocessing 

procedure that is optimized for three purposes: 1) to increase signal-to-noise ratio, 2) 

to reduce the dimensionality of the data, and 3) to adapt the signal better to between-

subject classification. Our algorithm uses a two-step classification procedure based 

on ensemble of linear support vector machines (SVM) which learns the spatial and 

temporal components of neural activity separately and then aggregates the two 

components of information to build a classification hyperplane using another linear 

SVM. We then use this method to see whether human sleep EEG contains any 

information about what has been learned before sleep.  
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Introduction 

Multivariate pattern analysis for hypothesis testing in neuroimaging 

Multivariate pattern analysis (MVPA) has come into widespread use in recent 

years for classification, decoding and hypothesis testing (Haxby, et al., 2014; 

Haynes and Rees, 2006; Kamitani and Tong, 2005; Norman, et al., 2006; Tong 

and Pratte, 2012). Given the task of detecting a generalizable pattern in the 

neural activity, MVPA is often used as a replacement of parametric statistics and 

has been successfully applied in various neuroimaging studies in the field of 

cognitive neuroscience (Cox and Savoy, 2003; Horikawa, et al., 2013; Kay, et al., 

2008; Mitchell, et al., 2008; Rissman, et al., 2010; Schaefer, et al., 2011; 

Schwarzlose, et al., 2008). These methods allow analyzing multivariate data in a 

way that takes into account the statistical power residing in the broad patterns 

of the data, instead of only searching for one or more features that individually 

allow to significantly distinguish between conditions. This enhances the 

sensitivity of the test in two important ways (Haxby, et al., 2014; Haynes, 2015; 

Norman, et al., 2006). First, variables with weak but reliable information which 

might not survive significance test will become discriminative due to the 

accumulation of information across all features. Second, variables which do not 

carry information might contribute to discrimination when they are jointly 

analyzed with another subset of features. In addition, because MVPA provides 

the possibility of analysis of data on a single trial basis, they often reduce the 

sample size required (Norman, et al., 2006). Taken together, pattern-based 

classification techniques provide a competent alternative with increased 

sensitivity compared to classical mass univariate techniques.  

Importantly, MVPA represents an information-based instead of an activation-

based approach (Kriegeskorte, et al., 2006). Accordingly, when employed on 

recorded data, results do not show which brain areas are most active during 

performance of a certain task, but rather point to the brain areas or patterns of 
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activity that contain the highest information about processing of the task. This 

can often answer the actual research question more precisely, because the 

interest mainly lies in the question whether a specific brain region participates 

in a cognitive process, rather than in knowing the actual strength of the activity 

within a certain region which is measured by the classical multiple comparison 

tests. 

When using multivariate pattern analysis (see Figure 1), brain activity is 

analyzed at the level of patterns which are evoked by different stimuli or 

experimental conditions. Each pattern of activity is associated with a mental 

state (e.g. those elicited by viewing different images in Figure 1a) and can be 

expressed as a pattern vector which is represented by a group of variables in 

multidimensional feature space (e.g. voxels in fMRI, or channel-time points in 

EEG/MEG). The task of the classifier is to find a generalizable decision rule 

which can distinguish patterns of activity belonging to each experimental 

condition. For that, the classifier is trained on a subset of data and subsequently 

tested on an independent test set to predict the condition labels for new unseen 

data (see Figure 1e). If the classifier can successfully decode the stimuli (or 

experimental conditions) solely based on the patterns of brain activity, it can be 

concluded that some information relevant to the experimental manipulation 

exists in the data.  
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Figure 1: Patterns of brain activity can be analyzed using multivariate pattern analysis 

approach. (a) Brain responses to different stimuli (e.g. Image 1 and Image 2) are 

measured in different brain areas across time. Patterns of activations are represented in 

multiple dimensions (channels in different time instances for EEG/MEG, or voxels in 

fMRI) and can be expressed as pattern vectors. In b-e, only two dimensions are illustrated 

for simplicity (red and blue indicate the two dimensions). (b-c) Pattern vectors are 

distinguishable in single voxels if the marginal distributions are not overlapping (b). 

However, in many cases, the discrimination based on single voxels is impossible (due to 

largely overlapping distributions) while considering them together provides a perfect 

classification (c). (d) An example of a case where a nonlinear decision boundary 

(corresponding to a nonlinear classifier) is preferred to a linear one. (e) The performance 

of the classifier is evaluated by testing its predictions on an independent test set (not used 

in the training). Figure adapted and reprinted with permission from (Haynes & Rees 

2006). 
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Multivariate pattern analysis as a supervised classification problem 

MVPA involves finding a generalizable pattern in neural activity which allows 

discrimination of data across experimental conditions while at the same time 

avoiding overfitting (Duda, et al., 2000). The general idea is to find a ‘rule’ which 

correctly distinguishes the neural activity associated to different cognitive tasks 

based on the labels that indicate the corresponding experimental condition. 

Since the class structure is provided by the experimenter in this case, this 

problem is therefore a straightforward application of supervised pattern 

classification (Bishop, 1995; Duda, et al., 2000; Lemm, et al., 2011). In this 

terminology, a pattern classifier is a function that gets the values of different 

features (variables or predictors) in different samples (independent values for 

variables) as an input, and predicts the class label that a new data sample 

belongs to as an output.  There are four essential steps in employing a pattern 

classifier for neuroimaging data, starting with feature extraction and preparing 

sets of data samples, proceeding through choice of classifier and accuracy 

estimation and ending up in evaluating and interpretation of the results. 

Although it is the interaction of these components which determine the overall 

performance of MVPA, it is practically more convenient to focus on each step 

separately. 

Feature extraction and creating data samples 

The first step concerns the choice of features which are used in the classification. 

Features are any set of variables or attributes that quantify the neural activity. 

These features define the representational space in which the classifier search 

for generalizable spatiotemporal patterns of brain activity (Haxby, et al., 2014). 

For example, in fMRI, single voxel activity or the average activity of several 

voxels in one or multiple region of interests can be considered as a feature 

(Mitchell, et al., 2004).  In a hypothetical EEG/MEG experiment, features could 

be the amplitude of electrical brain activity recorded by one or a cluster of 

electrodes at different time points in a certain time interval. Other common 
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examples are EEG/MEG power spectral density as frequency domain features 

(Fuentemilla, et al., 2010; Newman and Norman, 2010), time-frequency 

representation (LaRocque, et al., 2013; Schulz, et al., 2012), and variance of EEG 

signal extracted from common spatial filters (Noh, et al., 2014). Most often, the 

features are selected based on the domain expert knowledge about which 

attributes of the signal might contain information or the a priori hypothesis 

about the experiment. For instance, it is common to use time domain 

information for classification of event-related potentials (ERPs) whereas the 

frequency domain measures might be more beneficial for analyzing continuous 

EEG/MEG data where there is no stimulus onset. In addition, it is principally 

possible to improve the performance of MVPA by applying a feature 

transformation (e.g. Principal Component Analysis or Independent Component 

Analysis) or feature selection (e.g. forward selection, backward elimination, etc.) 

technique. However, to ensure circular analysis is avoided, one should be careful 

not to use any algorithm that uses the label information before separating the 

training and test samples (Kriegeskorte, et al., 2009).  

Classification framework 

The second step is the choice of classifier and the proper training algorithm. The 

sensitivity and type of information which can be detected largely depend on the 

particular classifier used. Concerning the choice of classifier type, research in 

the machine learning field has put forward an enormous range of classification 

algorithms that can potentially be used in MVPA (Duda, et al., 2000). Classifiers 

that learn a mapping function are divided into two major categories based on 

the shape of their decision boundary; linear classifiers that decide class 

membership based on a hyperplane which is a linear combination of features, 

and nonlinear classifiers which classify data based on more complex nonplanar 

boundaries (see Figure 2). Some examples of linear classifiers are correlation-

based classifiers (Haxby, et al., 2001), Linear Discriminant Analysis (LDA; Fisher, 

1936) and linear Support Vector Machines (SVMs; for details see Duda, et al., 

2000; Pereira, et al., 2009). All linear classifiers determine the class membership 
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by comparing a linear weighted sum of features to a threshold. LDA identifies 

these projection weights by maximizing the between-class to within-class 

variance while linear SVM identifies weights based on the maximum margin 

hyperplane (see Duda, et al., 2000 for details). If linear decision boundaries 

cannot partition the data sufficiently well, nonlinear classifiers like k-nearest 

neighbor (KNN), Gaussian Naïve Base (GNB) or SVMs with nonlinear kernels can 

be used. For comparing the relative performance of different classifiers on fMRI 

data, see (Misaki, et al., 2010).  

 

 

Figure 2: The main difference between linear and nonlinear classifiers is their shape of 

decision boundary. All linear classifiers compute a weighted sum of features which 

geometrically represents a hyperplane and separates trials belonging to two 

experimental conditions. Nonlinear classifiers define a nonplanar boundary which is 

more flexible and more complex than a hyperplane. However, because of more number 

of parameters that should be learned, they can be simply overfitted when sample size is 

low, a condition which is common in neuroimaging. Figure adapted and reprinted with 

permission from (Misaki, et al., 2010). 
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One key difference between nonlinear and linear classifiers is that nonlinear 

classifiers can, in principle, respond to high-level feature combinations in a way 

that differs from their response to individual features. In addition, they allow 

interactions between features to drive prediction. Therefore, the interpretation 

of the relation between features and the prediction outcome can become 

complicated when nonlinear classifiers are used (Pereira, et al., 2009). 

Moreover, nonlinear classifiers provide a more flexible decision boundary 

compared to linear ones. However, because of the low number of samples 

compared to the number of features available, which is common in 

neuroimaging, the boundary can become adapted to the noise which can 

obscure the classifier performance in generalizing to new data sets.  An example 

of overfitting to training data with a higher-order polynomial classifier is shown 

in Figure 3. Although the tenth-order polynomial has a higher classification 

accuracy on the training set, the second-order polynomial generalizes better to 

the test set. This is because the tenth-order polynomial is more flexible than the 

second-order one due to the higher number of parameters and, therefore, can 

better adjust to the noise in the training data.  

In practice, so far, linear classifiers have been the most successful. Particularly, 

linear SVMs which are developed based on the structural risk minimization 

principle have been used successfully in many neuroimaging studies and have 

often outperformed other classifiers (Haynes, 2015; Jamalabadi, et al., 2016; 

Misaki, et al., 2010; Mur, et al., 2009), including nonlinear SVMs (Cox and Savoy, 

2003; LaConte, et al., 2005). Specifically, in two-category classification 

problems, the regularization technique embedded in SVM training holds down 

the effect of noisy and correlated features when sample size is low relative to 

the dimensionality of the feature vector, a condition which is common in 

neuroimaging data. Taken together, in low sample size data, linear SVM shows 

the strongest generalizability across linear and nonlinear classifiers (Attoor and 

Dougherty, 2004; Pereira, et al., 2009). 
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Figure 3: An example of overfitting to training data. (A, B) Nonlinear classification 

boundaries from two nonlinear classifiers, one second-order (dashed line) and one tenth-

order (solid line) polynomial, are applied to test data. (C) The tenth-order polynomial 

performs better on the training set, but worse on the test set. The difference between 

classification accuracy of training versus test set is a measure of how well the neural 

pattern found by MVPA is generalizable to new unseen samples. Ideally, a classifier 

should be as good in classifying new samples as in classifying the samples which are used 

to train it. However, because of random variances in data, classifier may indeed overfit to 

the noise inherited in the training data. Figure adapted and reprinted with permission 

from (Haynes, 2015). 

Accuracy estimation and cross-validation 

The third step is to test the generalizability of the classification. The accuracy of 

classifier is the probability that a random instance is classified correctly. That is, 

given a set of training samples and a classification training algorithm, how well 

the classification results can be extended to similar but new samples. This is 

often done by estimating correct classification rates (CCRs), which are defined 

as the percentage of correctly classified new items (trials, subjects, etc.) 

(Jamalabadi, et al., 2016). For a two-class classification problem with balanced 

number of items, the theoretical chance level is 50% (100/n for n classes) and 

any classification equal or below chance level shows lack of evidence to support 

existing information about the variables of interests either because classes do 
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not differ or the measure used to train the classifier was insensitive to a 

potential difference (Jamalabadi, et al., 2016).  

In order to estimate the true accuracy of a classifier, training and test data sets 

should be ideally as large as possible (which assures minimal variance of 

estimation) and be mutually exclusive (which guarantees zero bias) (Braga-

Neto and Dougherty, 2004; Kohavi, 1995; Rodriguez, et al., 2010). However, 

because of the low number of sample size in neuroimaging data sets, this often 

cannot be the case. Today, the most widely used technique for CCR estimation, 

which provides a tradeoff between bias and variance of error estimation 

(compared to e.g. hold-out and bootstrap) is K-fold cross-validation (Hastie, 

2001; Kohavi, 1995). In this method, the data is randomly divided into K disjoint 

subsets of approximately equal size. The classifier is then trained on the union 

of K-1 partitions and tested on the remaining left-out subset. The K-fold CCR is 

then the average of K classification accuracies, where each of them is obtained 

by testing the corresponding classifier on the left-out test set. This procedure is 

usually repeated several times to reduce the variance of the estimation. Notably, 

K-fold cross-validation is simple to implement and has been used to estimate 

classification performance in many applications (Braga-Neto and Dougherty, 

2004; Lemm, et al., 2011; Mur, et al., 2009; Noirhomme, et al., 2014; Pereira, et 

al., 2009). 

Evaluating significance of the results 

CCRs - like any other statistic - are subject to random estimation error and with 

low number of samples higher variations is expected. Therefore, values above 

chance level should be compared to the distribution expected from chance, often 

referred to as null distribution, to test whether the classifier has indeed 

extracted generalizable information from the data (Haynes, 2015). Only if CCR 

lies significantly above the level expected by chance, the classifier was able to 

detect generalizable class-related information in the data. There are two 

common ways to determine the significance threshold in the literature: 

parametric tests and permutation tests. In the framework of parametric tests, 
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classification accuracies are assumed to follow a known distribution (e.g. 

binomial or t-student distribution) while permutation tests are nonparametric 

tests that estimate the distribution of null hypothesis directly from the data 

(Nichols and Holmes, 2002).  The null distribution is computed by resampling 

the data a large number of times (several hundreds or thousands of times) with 

randomly assigned group labels.  As the new labels are permuted randomly, the 

class-related information is cancelled out.  Therefore, the resulting classification 

accuracies from data with shuffled labels are expected to constitute the null 

distribution. The p-value in this case is the fraction of samples which is greater 

or equal to the accuracy actually observed when using the correct labels.  

Importantly, permutation tests are computationally more engaging to 

implement but provide more accurate estimation of the null distribution 

compared to binomial tests or t-tests (Nichols and Holmes, 2002; Pereira and 

Botvinick, 2011; Stelzer, et al., 2013). It is shown recently that parametric tests 

can result in strongly biased p-values and should be avoided (Jamalabadi, et al., 

2016; Noirhomme, et al., 2014).  

Challenges and potentials of using MVPA for hypothesis 

testing in EEG 

EEG is the oldest brain imaging technique and at the same time one of the most 

methodologically expanding tools in cognitive neuroscience. EEG has some 

evident advantages over other neuroimaging tools which make it a method of 

choice to study cognitive brain functions: it has a high temporal resolution, is 

rather simple to use and has relatively modest price.  Besides, EEG provides an 

excellent window to the brain because it measures electrical brain activity 

which is the main representative of brain dynamics. In fact, EEG can provide 

valuable insights into dynamic processes underlying a cognitive brain function 

because it can capture the rhythmic property of neuronal activity which reflects 

the actual mechanisms of the brain information processing (Lopes da Silva, 
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2013).  It is shown that oscillatory fluctuations of electrical brain activity contain 

information about different cognitive functions, including perception 

(Doesburg, et al., 2009; Rodriguez, et al., 1999), memory consolidation (Duzel, 

et al., 2010; Rasch and Born, 2013), memory maintenance of events (Jafarpour, 

et al., 2013; Newman and Norman, 2010), and neuronal plasticity (Takeuchi, et 

al., 2014; Walker and Stickgold, 2006). These neuronal fluctuations can be well 

studied using EEG because it offers excellent temporal resolution (in 

millisecond) with high practical flexibility (e.g. long time uninterrupted 

recording during sleep or wakefulness), which provides the possibility to 

investigate human brain activity while performing complex cognitive tasks. 

Therefore, the extent of questions which can be addressed using EEG spans 

almost all aspects of brain information processing.  

However, the amount of information which can be extracted from EEG is often 

limited by several methodological challenges. One of the main challenges 

imposed by EEG signal is its low signal-to-noise ratio. The analysis of EEG suffers 

from the abundance of irrelevant brain activity as well as multiple sources of 

noise and distortions which make generalization of signals over subjects a 

difficult task. In the context of cognitive neuroscience, EEG analysis often heavily 

depends on the widely-used averaging of event-related potentials. In fact, 

because of the low signal-to-noise ratio in each single trial, the small signal is 

often not enough for trial-based analysis, which forces the experimenter to 

further average over trials. However, these spatiotemporal averaging methods 

can potentially cancel the useful information encoded in the distributed patterns 

of activity.  Here especially, information based approaches lend themselves very 

well to the analysis of EEG data. MVPA methods consider the signal in its entirety 

and discover those parts that are relevant for a specific cognitive activity. 

Whereas averaging methods can be easily influenced by single data points with 

abnormal amplitudes, which often occur in EEG signals, machine learning 

algorithms, which were designed to detect consistent differences between 

classes of stimuli, allow the detection of fine multidimensional spatiotemporal 
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contrasts between two or more number of conditions and are thus able to take 

the full advantage of multivariate information encoded in EEG. MVPA methods 

consider only informative signals which can be transferred to new data, and are 

thus less vulnerable to outliers. This allows investigating EEG on a single trials-

basis. Furthermore, due to the large amount of variability across subjects, it is 

rather challenging to directly compare EEG from different subjects. The 

electrical brain activities recorded from different subjects often show varying 

signal amplitudes and frequency spectrum structure (e.g. shifted or suppressed 

alpha peak (Haegens, et al., 2014)). Therefore, averaging-based methods can be 

strongly influenced and skewed by those cases having higher amplitudes. Here, 

between-subject classification, where data from different subjects are cross 

validated to estimate the performance, is a powerful method to detect the 

underlying general principles and reassures that the findings can be generalized 

to new subjects.  

Importantly however, most of the dedicated MVPA based EEG methodology is 

developed for motor imagery, brain computer interfaces (BCI), and single trial 

analysis of EEG event related potential (ERPs). Because hypothesis testing in 

continuous EEG data has different requirements than individual item 

identification in BCI, methods optimized for the latter purpose are not 

necessarily the best for the former. Unlike ERP analysis, for many research 

questions, the lack of precisely defined time onsets or the length of the planned 

EEG recording make the usage of advanced MVPA methods mandatory. In high-

density EEG, signals are recorded from 128 electrodes with a high temporal 

resolution (500Hz or more). In lack of a clear prior knowledge on which 

frequency bands and time points carry relevant information, all the above-

mentioned challenges become even trickier to address. More specifically, 

extracting information from continuous EEG across multiple subjects and 

sessions is more difficult when data does not show a clear event related 

potential (ERP) or an onset where the effect of stimulation can be expected. 

Therefore, in studies with continues EEG data, the application of MVPA which 
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can analyze the data in its entirety is particularly invaluable to further our 

understanding of the underlying neural mechanism of brain responses. 

 Aside from the methodological difficulties involved in decoding spontaneous 

brain activity across subjects, the interpretation of classification accuracies, 

when MVPA is used for hypothesis testing, poses another challenge for effective 

integration of MVPA methodology into EEG analysis. Typical EEG data sets, 

which are recorded with the purpose of hypothesis testing, are high 

dimensional, yet sample size is usually low in comparison. This often leads into 

incomplete training of the classifiers and also a large variance of their 

classification accuracies. Moreover, due to the low signal-to-noise ratio, the 

effect size is small and differences between classes are hard to detect. In such 

cases, where the data is low sample size, low effect size and high dimensional, 

cross-validated classification behaves unexpectedly, which makes the overall 

accuracy of the classifier difficult to interpret.  Furthermore, because MVPA is 

sensitive to any kind of structure in the data, any confounding factor or variance 

within data can affect classification accuracy. Such variations are common in 

EEG data sets and are mainly introduced if stimuli or types of stimuli are 

presented repeatedly, if multiple subjects or experimental sessions are included 

into one analysis, or if some secondary attributes (e.g. physical properties, 

familiarity, task difficulty etc.)  are shared among subclasses of trials. 

Importantly, these confounding factors can bias classification accuracies but are 

not related to the effect under investigation. Thus, their effect should be 

discarded from the analysis. Such complexities concerning interpretation of 

classification accuracies and their relation to the size of effect under study 

require further investigation and guidelines.  

Aims of this thesis 

Following the aforementioned challenges of using MVPA for decoding EEG data, 

the main aim of this thesis is twofold. Firstly, to further investigate the behavior 
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and statistical properties of cross-validated MVPA in realistic life-science data 

and to develop methods and provide important guidelines that can be used to 

interpret classification results when MVPA is employed for the purpose of 

hypothesis testing in neuroimaging data. Secondly, to develop an effective 

classification framework to decode continuous high-density EEG data across 

subjects. To address these issues, the current thesis is divided into three 

chapters: 

Chapter 2 deals with the overlooked statistical properties of MVPA when it is 

used for detection of information and generally, for hypothesis testing purposes 

in neuroimaging data.  When MVPA is used as a replacement of parametric 

statistics, it is used to decode stimuli or experimental conditions to test if the 

neural activity contains information about them. However, despite the 

widespread use of MVPA, its behavior is still not fully understood. Often, higher 

classification accuracies are necessarily interpreted as larger effects, without 

taking the properties of data (e.g. sample size, number of features), cross-

validation or the classifier type into account. This is particularly important 

because, with respect to these parameters, life-science data sets usually stand in 

one specific corner of the parameter space. The number of independent 

observations are in orders of ten (constrained by the number of subjects and 

trials) and in many cases less than the number of features under study (e.g. 

number of channels times number of frequency bins or time points in EEG 

recordings) (Button, et al., 2013; Jamalabadi, et al., 2016). Also, in many data sets 

that are recorded with the purpose of hypothesis testing, the effect size is low 

which naturally leads to low classification accuracy. In such low sample size/low 

effect size settings, understanding the behavior of MVPA by investigating the 

cumulative effects of cross-validation properties, classifier type, and data 

specifications (e.g. sample size, dimensionality) on the classification results 

could provide more information about reliability of the MVPA results. Here, we 

provide a set of guidelines that should be observed when MVPA is used for 
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hypothesis testing. We used a combination of simulations with synthetic data, 

mathematical modeling, and classification of EEG data in this chapter. 

In chapter 3, we explore the consequences of high sensitivity of MVPA for 

differences found between subgroups of trials in data with nested subclasses. 

MVPA methods are more susceptible to confounding factors due to their 

increased sensitivity compared to conventional mass univariate methods.   In 

particular, MVPA algorithms can use any variations within data including 

subject level differences or random variabilities in an effect (Haynes, 2015; 

Todd, et al., 2013). Here, we investigate the behavior of MVPA for neuroimaging 

data which, next to a main effect of class, additionally contain a nested subclass 

structure. In such setting, we show that classification accuracies are 

systematically biased and parametric testing fails critically to determine 

significance of classification outcomes, and that trial-wise permutation gives too 

liberal estimates. In order to control for the confounding contribution of 

subclass variance, we propose a nonparametric permutation algorithm which 

can account for the subclass bias by adjusting permutation tests to consider the 

subclass structure of the data, using subclass-level randomization. We give 

practical EEG examples of how to modify permutation testing for a range of 

common experimental designs. We further use simulations with synthetic data 

to study MVPA behavior and provide analytical description of bias and its 

relation to variances in the data.  

Finally, in chapter 4, we develop a classification framework which can exploit 

the multidimensional pattern of brain activity in continuous EEG to find 

generalizable information across multiple subjects. There are mainly two major 

difficulties in designing a classifier for continuous EEG. First, in lack of a clear 

prior knowledge on which frequency bands and time points carry relevant 

information, or an onset where the effect of stimulation can be expected, 

applying MVPA becomes increasingly tricky because of the curse of 

dimensionality. This leads into incomplete training of the classifiers and 

inaccurate testing of their accuracies. This might leave important but small to 
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medium effect sizes undiscovered. Second, electrical brain activity recorded by 

EEG from different subjects show marked differences. Such variabilities are 

often larger than the size of effects which are under investigation. Therefore, 

generalizing the neural pattern using a cross-validation across subjects often 

becomes impractical. Here, we directly address these problems associated with 

analysis of high density continuous EEG when used to classify data across 

multiple subjects. We then use this method to see whether human sleep EEG 

contains any information about what has been learned before sleep. 

Conclusions and general discussion 

Classification accuracy estimated by cross-validation is a random variable and 

is affected by the data properties (e.g. sample size and number of features), 

classifier properties (e.g. linear or nonlinear), and the number of folds. Although 

errors estimated by cross-validation are unbiased, they demonstrate large 

variability when sample size is low (Braga-Neto and Dougherty, 2004; Isaksson, 

et al., 2008). More importantly, the distribution of classification accuracies 

estimated by cross-validation do not follow well known parametric 

distributions which makes interpretation of cross-validation by means 

symmetric confidence intervals obsolete (Jamalabadi, et al., 2016). Here, we 

investigated the properties of accuracy distributions which are expected from 

cross-validation in common experimental setting, i.e. low sample size (LSS) – 

Low effect size (LES) data sets. We report a number of intriguing observations 

regarding the safety of employing cross-validation for data sets in 

neuroimaging. We propose a few guidelines which simplify use of MVPA and 

provide lower false positive rate and higher statistical power. 

Below chance classification accuracy 

When using k-fold cross-validation to estimate CCR, data are divided into 

training and test data sets � times. Therefore, training and test data sets used to 
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estimate accuracy are not exclusive. The dependency between training and test 

data induces a number of counterintuitive properties, especially when the effect 

size and sample size is low. Particularly, in chapter 2, we reported a prominent 

anomaly of cross-validated classification. We showed that in any linear 

classification problem using cross-validation, even in one-dimensional data sets, 

classification results below random guessing levels can occur and that expected 

values of the classification rates for LSS-LES data are below chance levels for all 

values of �. We analytically proved and found evidence in simulations that 

systematic below chance predictions occur when the effect size is low. More 

specifically, our analytical results state that the probability of correct 

classification for data sets with no effect, will always be below the chance level 

regardless of the data distribution. This can be explained by anticorrelation of 

means of training and test sets in cross-validation when the effect size is low, 

which makes any linear classifier to decide wrong. 

Moreover, we showed that in addition to CCR, area under the curve (AUC) is 

similarly affected by the dependence of the sub-sample means. Using 

classification thresholds as it is done in AUC does not prohibit negative 

correlations between test and training means. Since every point on the receiver 

operating characteristics (ROC) curve corresponds to one CCR, below chance 

CCRs represent ROC curves mostly below the chance level division of true 

positive rate (TPR) = false positive rate (FPR). Therefore, the corresponding 

AUC will be below chance level.  

The frequency and depth of below chance classification rates changes as a 

function of number of folds (�) in cross-validation. Generally, increasing � 

results in fewer, but more extreme below chance classifications. In particular, 

the below chance classification accuracies are less likely to happen when using 

LOO, however, if they do, they are often much lower than for 2-fold procedure. 
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Skewed accuracy distributions   

Our results in chapter 2 indicate that when classifiers are used for decoding LSS-

LES data sets, the classification outcome does not follow a binomial or 

symmetric distribution, but rather has a skewed probability distribution whose 

properties depend mainly on the sample size, the number of folds in cross-

validation, and the choice of classifier. The variance of the distribution increases 

with decreasing sample size and effect size, and thus distorting the CCR 

distribution even further. The size of skewness depends on the choice of 

classifier. It is more prominent for linear classifiers compared to nonlinear ones. 

The sign of skewness changes disproportionally from positive with low number 

of folds (e.g. 2-fold) to negative with increasing number of folds (e.g. LOO).  

Because of the skewness of the CCR distribution, the peak and the mean of the 

distribution are different. In other words, the mode of the distribution is shifted 

to above or below its expected value. For example, the mode of the CCR 

distribution for LOO which shows a strong skewness to the left is above 50%, 

resulting in spuriously high CCRs even if there is no effect in the data.  As a result 

of the skewness, the majority of classification accuracies from data sets with the 

same true effect size will systematically either overestimate or underestimate 

the expected CCR. The deviation from the expected value depend on many 

properties and cannot be directly estimated from parametric tests. In fact, any 

significance test that does not take the skewed distribution of CCRs into account 

has a high risk to result in a false positive finding. Therefore, it is crucial not to 

interpret CCRs in absolute terms, but to compare them to a suitable null 

distribution which is based on nonparametric resampling approaches 

(Jamalabadi, et al., 2016). 

Accuracy and sensitivity depend on the number of folds 

Number of folds in cross-validation affects classification accuracy, most strongly 

in LES-LSS data. For small to medium effect sizes, classification accuracies based 

on cross-validation with lower number of folds (e.g. 2-fold) are on average lower 
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compared to when higher number of folds (e.g. LOO) is used. Although this is 

desirable in a context of single item classification, when the presence of a class 

difference is known, when MVPA is used for the purpose of hypothesis testing 

and therefore, the presence of a class difference is yet to be tested, higher 

accuracies do not necessarily support more robust or more statistically 

powerful finding. In fact, because CCRs have lower variance in 2-fold cross-

validation, especially in null-distribution, they are often more sensitive and 

reach significance threshold with smaller effect sizes compared to when LOO is 

used. In addition, although CCRs from higher number of folds are higher on 

average when they are above chance, they can be much lower than 2-fold if they 

are below chance which strongly biases group averaging over a set of subjects, 

session, or data sets. Taken together, cross-validated classification with lower 

number of folds shows higher sensitivity in detecting an effect and is therefore, 

preferable for hypothesis testing purposes (Jamalabadi, et al., 2016). 

Biased accuracies in data with nested subclasses 

In the context of decoding neural activity, when data are recorded from two or 

more experimental conditions, the main interest is to detect class-related effect 

which generalizes well over trials, sessions, and subjects. In other words, only 

the contribution of those class-related information which are not specific to a 

subclass of data should be considered to reject the null hypothesis. However, 

when data are analyzed using MVPA, the classification algorithm leverages all 

the information contained in the data to maximize CCR. Any systematic 

differences between subclasses of trials (e.g. shared physical properties among 

a subgroup of stimuli, shared experimental settings, trials specific to the same 

session or subject, etc.) form distinct subclasses within each class, particularly 

in high dimensional feature space. MVPA algorithms which are sensitive to any 

kind of structure in the data use such groupings to increase classification 

accuracies even if there is no difference between the classes on a group level 

(Jamalabadi, et al., in prep; Alizadeh, et al., 2017). This can be specifically 

problematic for studies where MVPA is used for hypothesis testing. Importantly, 



CHAPTER 1: SYNOPSIS  

 

22 

 

because the increased classification accuracy in such data sets is not based on 

class differences, the null distribution should be adjusted to account for 

accuracy biases. Notably, the biased accuracy is specific to nested subclasses of 

trials, i.e., when subclasses in two experimental conditions are class specific.  

The CCR bias in data sets with nested subclasses is directly related to the 

number of subclasses and the intraclass correlation (ICC) which is defined as the 

ratio of subclass-to-trial variance. According to our simulations and the 

analytical solution, CCRs are most biased when the number of subclasses in each 

class is low and ICC is high. This bias is more prominent when the effect size is 

low. We proposed a method that can account for subclass bias by adjusting 

permutation tests to consider the subclass structure of the data, using subclass-

level randomization. Our proposed nonparametric resampling algorithm 

provides exact p-values when the number of subclasses are more than 5. We 

noticed that for data sets with 5 or less number of subclasses, an exact p-value 

can only be estimated on a group level. All in all, our results suggest that subclass 

effects should be a general concern for all neuroimaging studies. Even in cases 

where the nuisance effect is balanced across conditions, they can drive the 

classification accuracy to significantly higher than chance. Therefore, we 

propose that studies which use data with subclasses and employ MVPA to 

decode brain activity, should be evaluated with an adjusted null distribution 

which addresses concerns about specificity and invariance of the findings. 

Hypothesis testing based on classification accuracy 

Often, correct classification rates (CCRs) are interpreted as a measure of how 

well the classifier performs or of how strong the effect under investigation is. 

However, the question of what it means if an experimental condition can be 

successfully decoded from the control should be approached with care (Haynes, 

2015; Jamalabadi, et al., 2016; Jamalabadi, et al., in prep). Here, we propose a 

few important guidelines that should be observed when MVPA is used for 

hypothesis testing. Most importantly, we propose that the existence of an effect 
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should not be determined by the classification rate, but rather by statistical 

significance (quantified by p-value), and significance should not be based on 

parametric tests, but on Monte Carlo methods which are fully customized to 

accommodate not only the structure of the data (Jamalabadi, et al., 2016), but 

also the experimental design (Jamalabadi, et al., in prep). We find out that CCRs 

systematically deviate from their expected value, making the interpretation of 

CCRs in terms of absolute values impossible. In fact, when classification is used 

for hypothesis testing, the absolute height of CCRs can be misleading about the 

existence of class-related effect in two ways. First, null-distributions from linear 

classification which are combined with cross-validation are skewed and have 

their peak accuracy (mode) different from their mean. The skewness depends 

on the number of folds and also on the covariance structure of the data which 

often cannot be correctly estimated in the context of low sample size data set 

(Jamalabadi, et al., 2016). Second, CCRs in nested experimental designs, which 

are common in neuroscience, largely overestimate the true size of effect 

(Jamalabadi, et al., in prep). Subclasses of any kind (e.g. classes of stimuli, trials 

belonging to different subjects or sessions, etc) inject systematic dependencies 

in the data structure that leads to spuriously high CCRs. It can happen that a 

lower CCR represents a more robust result, showing a higher significance level 

when estimated from the unbiased null-distribution (Jamalabadi, et al., in prep). 

In principle, we agree that under exact identical conditions, a higher CCR on 

average represents a larger difference between classes. However, because 

conditions (number of features, number of trials, sample size, covariance 

matrices, type of cross-validation, etc.) are in practice rarely identical, there are 

very few cases where interpretation or comparison of study results should be 

based on CCR. Therefore, comparing classifier performance between two 

experiments based on CCR will most likely lead to incorrect conclusions. 

Moreover, because of the skewness of the distribution, intuitive interpretations 

of CCRs will often be misleading, even if identical experimental designs and 

analyses are compared. 
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In summary, our analyses warrant the conclusion that CCRs do not reflect the 

size of the effect under investigation nor the classifier’s sensitivity. We conclude 

that for the hypothesis testing purposes, the height of CCR is irrelevant and 

existence of an effect should only be determined by the statistical significance 

based on permutation test. 

Decoding continuous sleep EEG across subjects 

In chapter 4, we employed MVPA to investigate the neural signatures of 

material-specific memory reprocessing in human sleep EEG data (Schonauer, et 

al., 2017). Here, the aim of the study was to test whether EEG activity during 

sleep contains information about the kind of previously learned visual stimuli. 

We hypothesized that if the type of visual stimuli can be decoded only based on 

sleep EEG data, then EEG contains information about the materials learned prior 

to sleep.  

One of the challenges of sleep data analysis is the high dimensionality of the data 

and the difficulty to record large sample sizes. As a result, while the data was 

extremely high dimensional (128 channels, recorded with 1 KHz sampling rate 

during 8 hours of sleep), the sample size was confined to 32 subjects. Another 

challenge was to generalize information across subjects. Because EEG activity 

differs greatly between different sleep stages and even more so between two 

nights of one subject, activity cannot be compared directly between these states. 

We therefore used between subject analyses to compare recordings from the 

same sleep stage by applying cross-validation on the subject level. This type of 

analysis ensures us that the pattern detected by MVPA, is only related to the 

conditions under study and is not driven by the confounding factors. However, 

since variabilities between subjects are much larger than the variabilities across 

conditions, finding a generalizable pattern of activity across subjects becomes 

increasingly difficult using the conventional MVPA methods. To address these 

problems, we developed a classification framework along with a specific 

preprocessing procedure that is optimized for three purposes: 1) to increase 
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signal-to-noise ratio, 2) to reduce the dimensionality of the data, and 3) to adapt 

the signal better to between-subject classification. More specifically, we 

proposed a two-step classification algorithm based on an ensemble of linear 

support vector machines (SVM) classifiers which learns the spatial and temporal 

components of neural activity separately and then aggregates the two 

components of information to build a classification hyperplane using a linear 

SVM. In fact, instead of training one linear SVM on the high dimensional 

spatiotemporal feature space which lead to overfitting, we used the spatial and 

temporal features in two successive stages that could serve as a feature 

reduction method and at the same time increases the signal-to-noise ratio. In 

addition, we devised a preprocessing technique which reduces the between-

subject variabilities and therefore allows for a better comparison of EEG across 

subjects. The pipeline of data preprocessing involved down sampling EEG 

channels from 128 to 32, averaging over EEG trials from each subject/condition, 

and removing amplitude differences between channels and subjects. The latter 

was done by applying a spectral sharpening filter to remove the baseline 

spectrum and emphasize differences between neighboring frequencies. 

Importantly, both the preprocessing and two-step classification are vital for 

optimal performance and removing any of these steps results in a deteriorated 

classification accuracy. 

We used this method to see whether human sleep EEG contains any information 

about what has been learned before sleep. We find significant and generalizable 

learning-related processing in the EEG in all sleep stages, which occurs during 

specific time windows (2 and 5 hours after sleep onset) and which also 

correlates with later recall performance. We track the reprocessing in both rapid 

eye movement (REM) and non-REM (NREM) sleep but its spatial distribution 

over the scalp and its frequency composition differ between NREM and REM 

sleep. Interestingly, reprocessing in both sleep stages is cyclic in nature, and may 

be timed to windows of maximal synaptic efficacy. We showed that it is possible 

to classify long continuous EEG data recorded from sleep. In addition, we have 
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further used our method in a number of data sets dealing with short terms 

memory and our results show applying this method significantly improves 

classification accuracy (Schonauer, et al., 2017; Schonauer, et al., in prep). 

Limitations and outlook 

In this thesis, we studied the use of MVPA in high-density EEG data for the 

purpose of hypothesis testing. We put forward a new algorithm for decoding low 

sample size continuous EEG data and proposed a few guidelines to better 

interpret classification results. However, there are two related questions whose 

answers go beyond the scope of this thesis and can considered as interesting 

follow ups for the present research. 

Interpretation of accuracy maps  

MVPA is repeatedly criticized for being a poor tool to localize information 

(Anderson and Oates, 2010). Although we have a convincing answer to the 

question of “is there information in the neural activity about the experimental 

conditions”, but we lack a proper procedure to answer questions like “where is 

the main components of the information encoded”. That is, in case of successful 

decoding (significant above chance CCR) on the whole set of available features, 

it remains an open question to pinpoint which subset of features are most 

strongly indicative of the quality and quantity of decoded information (Haynes, 

2015). At the moment, there are three main procedures in MVPA literature for 

this purpose: First is to use a searchlight on the spatiotemporal feature space 

(Kriegeskorte, et al., 2006), second is to use classification weights (Haufe, et al., 

2014; Lee, et al., 2010), and the third is to employ permutation statistics on a 

subset of features (Ojala and Garriga, 2010).  However, the results of these tools 

depend on the choice of classifier or the size of feature input and often their 

outputs show marked differences.  
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I think a convincing approach should explicitly address two main issues: First, 

given that the rationale behind MVPA is that information is necessarily encoded 

in a multivariate pattern, to what extend does it make sense to distinctively 

localize information? Second, any proper method for information localization 

should provide a procedure to properly discriminate noise from information. 

That is, assuming that adding a certain feature improves overall classification 

accuracy, how to determine if this feature is informative per se or it contributes 

to the classification by reducing the noise? 

Effects of correlation   

EEG time series and features are often correlated because of the intrinsic 

correlation in brain activity and because of correlated noise (Averbeck, et al., 

2006). Due to this correlation, the covariance structure is of the data would not 

be diagonal and the features should not be analyzed independently. However, 

when decoding experimental conditions, correlations between features and 

trials are often neglected. In this thesis (chapters 2-3), we showed that these 

correlations affect the distribution of classification accuracies and therefore 

should be accounted accordingly when the results are interpreted (Jamalabadi, 

et al., 2016; Jamalabadi, et al., in prep.).  

In principle, these correlations are part of the information encoded in the brain 

activity and therefore carry independent information (Averbeck, et al., 2006) 

which can be exploited by the classifier. Although the performance of 

classification algorithms in data with uncorrelated features asymptotically 

approaches chance level when the number of features increase (Bickel and 

Levina, 2004; Clarke, et al., 2008; Fan and Fan, 2008; Hall, et al., 2005), adding 

more correlated features may actually improve decoding performance 

(Averbeck, et al., 2006). However, the exact effects of correlation on the amount 

of information is case specific and depends on the structure of noise and class 

related effect (see Figure 4). Therefore, aside from correlation effects on the 

statistical interpretation of MVPA results, it is a crucial step to investigate the 
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boundary conditions of when and how the correlations should be used for 

decoding. 
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Figure 4: Correlation affects the amount of information which is encoded in the data. 

Denoting the information in correlated data by I, and the information in uncorrelated 

data by Ishuffled, the difference (ΔIshuffled  = I - Ishuffled) demonstrates how correlation changes 

the amount of information. Importantly, ΔIshuffled can take any values (positive, zero, 

negative) depending on the structure of noise. Therefore, ignoring correlation might 

result in suboptimal decoding of the experimental conditions. Figure reprinted with 

permission from (Averbeck, et al., 2006). 
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Abstract  

Multivariate pattern analysis (MVPA) has recently become a popular tool for 

data analysis. Often, classification accuracy as quantified by correct 

classification rate (CCR) is used to illustrate the size of the effect under 

investigation. However, we show that in low sample size (LSS), low effect size 

(LES) data, which is typical in neuroscience, the distribution of CCRs from cross-

validation of linear MVPA is asymmetric and can show classification rates 

considerably below what would be expected from chance classification. 

Conversely, the mode of the distribution in these cases is above expected chance 

levels, leading to a spuriously high number of above chance CCRs. This 

unexpected distribution has strong implications when using MVPA for 

hypothesis testing. Our analyses warrant the conclusion that CCRs do not well 

reflect the size of the effect under investigation. Moreover, the skewness of the 

null-distribution precludes the use of many standard parametric tests to assess 

significance of CCRs. We propose that MVPA results should be reported in terms 

of p-values, which are estimated using randomization tests. Also, our results 

show that cross-validation procedures using a low number of folds, e.g. 2-fold, 

are generally more sensitive, even though the average CCRs are often 

considerably lower than those obtained using a higher number of folds. 
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Introduction 

Multivariate pattern analysis (MVPA) is becoming more and more mainstream 

for classification, decoding and hypothesis testing in neuroscientific data 

analysis (Damarla and Just, 2013; Deuker, et al., 2013; Duarte, et al., 2014; 

Haynes and Rees, 2006; Kamitani and Tong, 2005; Norman, et al., 2006; 

Staresina, et al., 2013), with linear classifiers being the most successful ones 

(Clarke, et al., 2008; Lemm, et al., 2011). Whereas classical statistical approaches 

search for one or more features in a data set that independently allow to 

distinguish between experimental conditions or groups, multivariate 

classification algorithms analyze data sets in a way that takes into account all 

the available information contained therein. Therefore, they provide increased 

sensitivity compared to classical methods, which are based on multiple 

univariate comparisons. Because a classifier is usually trained on one portion of 

the data and then validated on another, it provides an estimation of the 

generalizability of the learned classification rule and can thus be used for data-

driven exploratory analyses as well as for hypothesis-driven testing. These 

properties make multivariate pattern classification an attractive analysis tool 

for the neurosciences, where experiments often generate large amounts of 

multivariate data (Kriegeskorte, et al., 2009; Norman, et al., 2006).  

Performance of MVPA algorithms is frequently quantified in terms of correct 

classification rates (CCRs), which is defined as the percentage of correctly 

classified items. The most widely used algorithm for CCR estimation is cross-

validation (Hastie, 2001). It has a low bias, is simple to implement (Kohavi, 

1995) and has been used to estimate classification performance in many 

applications (Braga-Neto and Dougherty, 2004; Lemm, et al., 2011; Noirhomme, 

et al., 2014). Cross-validation makes efficient use of all the available data by 

repeatedly partitioning data into complementary training and test subsets. 

Thus, this method is especially suitable when there are only few available 
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samples. Because it strictly separates classifier training from error estimation, 

it avoids overfitting the classifier to the data set. It also precludes confirming in 

the same data the hypotheses generated by the classifier during training and 

thus prevents circularity (Kriegeskorte, et al., 2009). Although these 

characteristics in principle should guarantee the safe employment of 

classification with cross-validation for hypothesis testing purposes, it produces 

only a point estimate of classification accuracy, and its relation to the size of the 

effect in question is unclear.  

Beyond the CCR, we need the confidence interval or better still the distribution 

of this estimation. Variance of cross-validated CCRs depends on classifier type, 

on experimental design parameters like sample size and data dimensionality, 

and on signal-to-noise ratio inherent in the data (Azuaje, 2003; Clarke, et al., 

2008; Dougherty, 2001; Raudys and Jain, 1991; Rodriguez, et al., 2010). 

Neuroscience data usually has a number of properties that cause classification 

accuracies to have particularly large variances. First, they frequently contain 

hundreds or thousands of features (e.g. number of voxels in fMRI studies, 

number of channels times number of frequency bins or time points in EEG 

recordings, number of genes in cDNA microarray studies, etc.), which leads to a 

phenomenon known as noise accumulation. Noise accumulation is the 

increasing difficulty to determine the centroid of data in a space with increasing 

dimensionality. Second, features often contain only a small amount of 

information, i.e. the signal-to-noise ratio or effect size is small and differences 

between classes are hard to detect. Third, although data sets often consist of 

large numbers of features, the number of samples is often on the order of tens, 

because it is practically limited by the number of subjects that can participate in 

a study and by the number of trials each subject can complete within a 

reasonable time (see Button, et al., 2013 for a related discussion). This again 

makes accurate estimation of class centroids problematic.  

Although MVPA is getting more and more attention in neuroimaging, its 

intricacies are not yet completely understood. Often, higher CCRs are essentially 
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interpreted as representing larger effects, generally without further taking the 

properties of the data (e.g. sample size, number of features) or the classifier into 

account. To investigate the reliability of MVPA results in hypothesis testing 

applications, we explore the properties of cross-validated classification 

accuracies in typical neuroscientific data, which we model as low sample 

size/low effect size data (LSS-LES). We use simulations and an analytical 

approach to describe the distribution of classification results with 

systematically varying sample size, effect size, and number of cross-validation 

folds. From our findings we draw conclusions regarding the use of cross-

validation in MVPA with linear classifiers for hypothesis testing. Our findings 

show that cross-validation in LSS-LES data possesses some counterintuitive 

properties that can critically bias interpretation of findings. In particular, we 

show that CCRs should not be used to display or compare class differences, 

because a higher CCR does not necessarily represent a larger difference between 

classes if not all the properties of the data sets are comparable (sample size, 

number of features, number of trials, type of cross-validation, covariance 

matrices, etc.)  

Method and Results 

Case study: Classification of EEG data 

The main premise of classification is that expected CCR of a given classifier has 

a monotonic, albeit nonlinear relation with the amount of signal in the data, i.e. 

classification of a data set with more information results in higher CCR (Raudys 

and Pikelis, 1980). In particular, if the collected data from two experimental 

conditions represent identical distributions, i.e., the null hypothesis is true and 

thus the effect size is zero, one would expect CCRs near 50% (chance 

level). However, although this is true provided an asymptotically infinite 

number of samples, this does not seem to hold for low sample size data, which 

is usually available for hypothesis testing purposes. We noticed in the literature 
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and in our own preliminary experiments that classification rates are often much 

lower than what could be expected even from chance performance, sometimes 

even approaching 0% (Deuker, et al., 2013; Etzel, et al., 2013; Fuentemilla, et al., 

2010; Gisselbrecht, et al., 2013; Noirhomme, et al., 2014). These extreme below 

chance level CCRs are not generally matched by similarly high CCRs when an 

analysis is repeated multiple times within a series of analyses, which already 

hints at an asymmetry in the distribution of CCRs.  

First, we consider the analysis of a study that aimed at investigating event 

related potentials (ERP) elicited by two kinds of visual stimuli in a visual 

learning task (see Figure 1). In this experiment, EEG was recorded from 20 

healthy subjects while two types of stimuli, which were photographs belonging 

to different semantic categories, were presented. Presentation time was 100 ms, 

the EEG was recorded from 100 ms before to 900 ms after onset of stimulus 

presentation. EEG was recorded using an active 128 channel Ag/AgCl-electrode 

system (ActiCap, Brain products, Gilching, Germany) with 1 kHz sampling 

frequency and a high-pass filter of 0.1 Hz. Electrodes were placed according to 

the extended international 10–20 electrode system. Artefacts were rejected in a 

semiautomatic process using custom MATLAB scripts that made sure that only 

a minimal number of artefacts remained in the data. Epochs with artefacts were 

removed from the dataset, channels that contained too many epochs with 

artefacts were removed and then interpolated using routines provided by 

EEGLAB (Delorme and Makeig, 2004). We used 30 artefact-free trials of each 

stimulus category per subject for our within-subject classification procedure. 

The goal of this study was to investigate whether and which aspects of the ERP 

in terms of spatial locations and time windows have discriminating power 

between the two types of stimuli. To answer this question, we used a so-called 

searchlight approach (Kriegeskorte, et al., 2006), sweeping the spatiotemporal 

feature space with a window size of 3 cm on-scalp radius for spatial and 20 ms 

for temporal features, respectively, resulting in 1600 searchlights with 

approximately 100 features on average. We classified the data in each 
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searchlight with diagonal Linear Discriminant Analysis (LDA) using Leave-One-

Out (LOO) cross-validation. Figure 1b shows the histogram of CCRs for different 

searchlights for an exemplar subject. It becomes immediately obvious that this 

distribution has a heavy tail to the left, which is expected for neither zero nor 

positive effect sizes. To describe the distribution of CCRs quantitatively, we use 

three different measures: Below Chance Percentage (BCP) denotes the 

percentage of results that have less than the chance level of 50% correct 

classifications. If the null hypothesis is true and CCRs are symmetrically 

distributed, 50% of below chance findings can be expected. A deviation from 

50% indicates either a non-zero effect (BCP>50%) or a skewed distribution of 

CCRs (BCP<>50%). CCR0.05 and CCR0.95 represent the classification rates of the 

5th and 95th percentile of the distribution. Although the average CCR is 52.7%, 

only about a quarter of CCRs fall below the expected chance level (BCP = 27.5%). 

On the other hand, the distribution shows a heavier tail on its left than its right 

side, i.e. below chance values are more extreme than above chance values. 

Together with the peak of the distribution (mode), which lies to the right of the 

mean at 55%, these data clearly demonstrate the asymmetry of distributions of 

classification outcomes: a few extremely low values are weighed against a 

higher number of above average values.  
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Figure 1: Classification results in an EEG visual learning task. (A) A topo-plot showing the 

standard electrode locations in high-density EEG recording with four examples of average 

event-related potentials from 2 frontal and 2 occipital channels. (B) Histogram of correct 

classification rates for 1600 classifications using a searchlight procedure on 

spatiotemporal features of the EEG. The distribution shows a strong skewness with a 

heavy tail on the left. 

 

Classification rates below the level expected for chance 

Using synthetically generated data, we have the opportunity to manipulate 

various parameters, we studied the actual shape of classification rate 

distributions in 21 series of 10,000 synthetically generated, one dimensional, 

two-class experiments. Each simulated experiment consisted of � � 15 

observations per condition which were randomly sampled from two normally 

distributed populations. Populations had identical variances and a priori 

determined true effect sizes. The effect size is a measure of the amount of signal, 

here given as the mean difference between two classes in standard deviation 

units �� � �̅
��̅�
��
������/��. For the behavioral sciences, Cohen (1988) defined a 

value of � � 0.2 as a small effect. We classified the data from each experiment 

using cross-validation and LDA classification. For each particular true effect size, 

we repeated the whole sampling procedure 10,000 times. 
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We then pursued two complementary approaches to estimate the expected 

value of classification accuracies. In the first approach, we averaged over all the 

CCRs of those experiments that are generated from equal a priori, true effect size 

(Fig. 2a). In the second one, we averaged over CCRs of experiments with equal a 

posteriori, estimated effect sizes (Fig. 2b). Thus, we differentiate between the 

population-based true effect size (�) and the sample-based estimated effect size 

(��), which is observed in a specific finite sample. This is particularly relevant for 

any real data set, where we do not have access to the true effect size. Whereas 

intuitively, one may assume that expected CCRs are identical for true and 

estimated effect sizes, this turns out to be true only for large effect sizes. Our 

simulations on low sample size data exhibit large differences when effect sizes 

are small. We see in Fig. 2a that expected values of CCRs start from chance level 

(here 50%) for a true effect size of � � 0 and increase nonlinearly with 

increasing effect size. However, Figure 2b, which shows expected values of CCRs 

as a function of the observed, sample-based effect sizes, demonstrates that 

average CCRs in low sample size data can drop far below 50% when the 

estimated effect size is low, which could explain the unexpectedly high number 

of very low CCRs around 20% in the empirical data in Figure 1b. In other words, 

classification of data sets with small estimated effect sizes results on average in 

below chance level CCRs. For the experiments simulated in Figure 2b, an 

estimated effect size of �� � 0 results in CCRs between 0% and 65%, and CCRs 

below 50% occur up to an effect size of �� � 1. This effect size represents a mean 

difference between conditions of one standard deviation and is already 

interpreted as a large effect in some fields (Cohen, 1988). Only for even larger 

effects, expected CCRs for true and estimated effect sizes converge. We further 

investigated the distribution of estimated effect sizes and plot CCRs for all the 

experiments with an a priori true effect size of � � 0. As expected, estimated 

effect sizes ��  are symmetrically distributed around zero (Fig. 2c). However, 

CCRs follow another distribution which is neither normal nor binomial and not 

even symmetric (Fig. 2d). This observation shows that there is no simple 
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relation between estimated effect size and CCR and that CCR therefore does not 

well reflect the size of the effect under study.  

 

Figure 2: Below chance classification rates in LSS-LES data when classified using LDA with 

LOO cross-validation. (A) Expected CCRs as a function of true effect size � ∈ 

{0,0.04,0.08,0.12,0.16,0.20,0.24,0.32,0.44,0.50,0.6,0.7,0.8,1,1.2,1.5,2,2.5,3.5,4,5} 

provided infinite sample size. (B) The solid line shows the expected CCR as a function of 

the estimated effect size. Grey dots represent individual experiments. CCRs can only 

obtain discrete values. (C) Distribution of estimated effect sizes of experiments with a 

true effect size of zero. (D) Distribution of CCRs that result from experiments with a true 

effect size of zero. The grey area shows the experiments with classification rates below 

50%. 

The simulations in Figure 2 show that CCRs reach far below chance levels when 

sample size and estimated effect size is low. To further investigate the 

underlying causes of this observation, we develop an analytical description of 

cross-validated classification rates in a one-dimensional linear classification 
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paradigm. We assume a data set that consists of � observations for each of two 

classes � and � with empirical means	��� � !�", �$%&. During k-fold cross-

validation the data set is divided into a training and a test set, with means ' 	�!'", '$% for the training set and ( � !(", ($% for the test set.  Below chance 

classification rates can be understood from the dependence of the subsample 

means. For given sample mean ��� 	� 	 ��", �$�& , subsample means are mutually 

dependent. �",$ �	 �)�*�+,,-�.,,-)  yields a negative correlation between test and 

training means. Thus, if the test mean is a little above the sample mean, the 

training mean must be a little below and vice versa. If the means of both classes 

are very similar, the difference of the training means must necessarily have a 

different sign than the difference of the test means. This effect does not average 

out across folds, because accuracy in every fold is below 50% irrespective of the 

direction of shift in group mean. Figure 3 illustrates this effect in a simple one-

dimensional, two-class problem. (See Theorem 1 in Appendix A and B for further 

details and examples.) From this directly follows Corollary 1 (see Appendix C), 

which states that the probability of correct classification for data sets with no 

effect (�" � �$) will always be below the level expected for chance 

classification.  

Figure 3: An illustrative example showing how dependency between training and test sets 

in cross-validation in LSS-LES data results in below chance classification rates. Two 

experiments with small (A) and large (B) effect size. Each consists of 12 observations per 
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condition. They were generated by random sampling from two univariate normal 

distributions. In each experiment, two-thirds of the data is used for training the classifier. 

Below-chance classification rates are obvious for	/0 ≈ /2. This can be understood 

because during cross-validation, the means 30,2 and 40,2 of training and test set are 

anticorrelated for fixed	/0,2. If total sample means /0 ≈ /2 and training means	30 ≫ 32, 

then test means must obey 40 < 42. Thus, any classifier relying on linear averages would 

predict wrong.  

Spuriously high classification rates as side effect of below chance CCRs 

Theorem 1 implies that CCRs resulting from cross-validation on a given data set 

are a function of mean difference between classes, number of observations per 

condition (sample size), and number of folds in cross-validation. Dimensionality 

of data and classifier type are two additional factors influencing CCRs beyond 

our analytical derivation. In a series of Monte Carlo experiments with various 

sample sizes � ∈ 710,15,30,60: and 21 different effect sizes 0 ≤ � ≤ 5 (see 

above), we classified the data using cross-validation with five frequently used 

classifiers: LDA, linear SVM, Classification And Regression Tree (CART), and 1-

Nearest Neighbor classification (1NN). For each particular set of effect size, 

sample size and classifier type, we repeated the classification procedure 10,000 

times once using leave-one-out (LOO) and once using 2-fold cross-validation, 

which represent both extremes of k-fold cross-validation. Figure 4 summarizes 

results. 

Figures 4a and 4b demonstrate the relationship of BCP, CCR0.05 and CCR0.95 with 

true effect size and sample size for LOO and 2-fold cross-validation of LDA 

classification, respectively. In both cases, as either true effect size or sample size 

decreases, the probability of below chance classifications increases. In small 

samples, this value is already high for medium effect sizes (i.e. a mean difference 

of 0.7 standard deviation units following the conventions of Cohen, 1988). 

Moreover, the “depth” of below chance classification rates as denoted by CCR0.05 

and the range of CCRs increases with decreasing true effect size or sample size. 

Thus, skewness and width of the distribution changes as a function of true effect 
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size and sample size. Because of the asymmetry of the distribution (see Fig. 2d), 

some very low CCRs necessarily mean that there must be a larger number of 

moderately above chance results, even in the no effect case of � � 0. Because 

the expected average CCR over all experiments with � � 0 is 50%, each 

experiment with a CCR of 0% must be counterbalanced by 10 experiments with 

a CCR of 55%. This high number of positive results is obviously spurious and can 

be misleading if one is unaware of the skewness of the CCR distribution.  

Comparison of different classifiers 

Not all classifiers are susceptible to below chance classification rates (Fig. 4c). 

Only parametric linear classifiers (i.e. linear SVM and LDA) show expected 

values of their CCRs below the chance level when estimated effect sizes are low. 

The other two classifiers (Nearest Neighbor and CART), which do not depend on 

a linear metric, do not show average CCRs below chance level. The disadvantage 

of these nonlinear classifiers compared to the linear ones becomes obvious at 

larger effect sizes (here for 0.5 < �� < 3), where they have, on average, distinctly 

lower classification rates.  

Figure 4: The effect of sample size, effect size, and classifier type on cross-validated 

classification rates. (A) BCP, CCR0.05, and CCR0.95 as a function of true effect size and sample 

size for LDA with LOO cross-validation. BCP is indicated on the left vertical axis, CCR0.05 

and CCR0.95 on the right. (B) BCP, CCR0.05, and CCR0.95 as a function of true effect size and 

sample size for LDA with 2-fold cross-validation. (C) Classification results for 3 

parametric linear and 2 nonlinear classifiers using LOO cross-validation. Linear 

classifiers show classification rates considerably below the chance level for small effect 

sizes, whereas the other two classifiers do not exhibit this phenomenon. 
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Classification rate versus statistical significance 

Our results show that for 2-fold cross-validation and small to medium effect 

sizes, more than 50% of experiments result in below chance level classification 

(Figs. 4a and b). On the other hand, CCRs for LOO can be much lower than for 2-

fold cross-validation. In the next set of experiments we look at whether a higher 

or a lower number of cross-validation folds � should be recommended for the 

use in hypothesis testing, in particular in LSS-LES data. We studied the effect of � on classification performance (CCR) and on its statistical significance. For this 

purpose, we generated synthetic data sets with the same procedure as before 

with � � 15 observations per condition, which were drawn from two normally 

distributed populations. Population effect size varied from 0 to 1, estimated 

effect size was determined from the samples. The whole process was repeated 

10,000 times for each set of parameters. Statistical significance was determined 

comparing the estimated CCR to a null distribution obtained from the 10,000 

repetitions where population effect size was 0.  

Figures 5a-d show the null distributions for 2-fold, 5-fold, 10-fold, and LOO 

cross-validation, respectively. All cross-validations were stratified except for 

LOO where only one trial was removed. Generally, increasing � results in fewer, 

but more extreme below chance classifications. (LOO results in only 30.5% 

below chance classifications, 2-fold results in 62% BCP). In contrast, CCRs for 

LOO can reach 0%, whereas they remain above 40% for 2-fold. Because the 

expected values of these distributions, i.e. the mean CCRs over a large number 

of experiments, are fixed at 50%, most experiments using LOO cross-validation 

must result in CCRs above 50%. From this consideration, it becomes clear that 

for � � 0 LOO will result in more spuriously high CCRs than 2-fold cross-

validation.  
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Figure 5: Effect of < on CCRs of LDA with cross-validation. (A-D) Null distributions for 

different values of <. Data come from 10,000 simulated experiments with a priori true 

effect size of � � =. They are classified with LDA using 2-fold, 5-fold, 10-fold, and LOO 

cross-validation, respectively. The grey areas show the experiments with classification 

rates below 50%. Because these distributions represent true effect sizes of � � =, mean 

CCRs are exactly 50%. (E) CCRs as a function of estimated effect size for various values of <. Estimated effect sizes and CCRs where significance is reached are indicated by dashed 

lines. (F) Sensitivity shows the ability of different cross-validation procedures to 

correctly detect effects when true effect size is nonzero. For a given effect size �, the 

significance threshold of > ≤ =. =? will be reached for smaller estimated effect sizes for 2-

fold than for LOO cross-validation and therefore, 2-fold shows higher sensitivity. For LOO, 

sensitivity can fall below 0.05 because its null-distribution can only assume discrete 

values. 

But, are the higher CCRs in LOO than in 2-fold cross-validation a sign of a more 

sensitive test procedure in cases of � @ 0? Classification algorithms are typically 

optimized to reach high CCRs. This makes sense if classes are known to be 

distinct (� ≫ 0), and the focus is on correctly identifying novel items. For 

hypothesis testing purposes, however, the existence and size of a possible effect 

are unknown. Algorithms should therefore be optimized for highest sensitivity 

regarding the distinction between � � 0 and � @ 0. Let us therefore assert that 
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a reliable distinction is possible if a given CCR is higher than the CCR0.95 of its 

null distribution. Figure 5e shows CCRs as a function of the estimated effect size ��  for different values of � (see also Appendix D for comparison in terms of AUC). 

For very large estimated effect sizes, the influence of � can be neglected. For 0.1 < �� < 1, in this example, LOO shows higher CCRs than 2-fold cross-

validation. However, when testing for significance against the null distribution 

(Figs. 5a-d), the 2-fold procedure, although it needs on average larger effect sizes 

to attain the same CCR, reaches the threshold for significance (CCR0.95) earlier 

than LOO (2-fold: ��ABCD� � 0.8, LOO: ��ABCD� � 1.1). Together, LOO not only 

produces more spuriously high CCRs in the no effect case, it is also less sensitive 

than 2-fold cross-validation when �� @ 0. We can conclude that 2-fold cross-

validation should be preferred over LOO for hypothesis testing. CCRs should 

only be interpreted in relation to a suitable null distribution.  

Figure 6: Searchlight classification of EEG data. (A) CCRs from LOO versus CCRs from a 2-

fold procedure. Each dot represents the classification result of a single searchlight. 

Dashed lines indicate the average 5% significance threshold based on randomization 

tests. LOO results generally in higher CCRs, but 2-fold reaches significance for lower CCR 

values thus having a higher sensitivity. Percentages represent the proportion of tests that 

are below p<0.05 for 2-fold and LOO, respectively. (B, C) Average null distribution of EEG 

searchlight classification obtained by random shuffling of class labels when classified 

using LOO and 2-fold. LOO results in more spuriously high CCRs, higher significance 

thresholds, and below chance classification rates close to 0%. 2-fold produces more CCRs 

slightly below 50% under the null distribution and has a lower significance threshold and 

thus higher sensitivity.  
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Generalization to high-dimensional data 

Finally, we studied how dimensionality of data affects classification 

performance. For this purpose, we analyzed the real EEG data set described 

above and compared it with synthetically generated data. We designed two 

series of 100 dimensional Monte Carlo experiments containing 30 observations 

per condition, which is comparable to the EEG data set. Simulations had a true 

effect size of zero to simulate the null distribution. In the first series, we assumed 

independent features; in the second series, features were correlated, as it is 

typically the case in neuroscience, e.g. in electrophysiological and imaging data. 

To obtain multivariate normal, correlated data, we generated 10,000 normally 

distributed, uncorrelated data sets, which were then multiplied by the Cholesky 

decomposition of a randomly generated covariance matrix. To derive the null 

distribution of our real EEG data, we used randomly shuffled class labels 

(Nichols and Holmes, 2002). The three data sets were then classified with 3 

popular linear classifiers, once using LOO and once using 2-fold cross-validation. 

Figure 6a shows the CCR distribution of real EEG data classified using LOO 

versus 2-fold (data for diagonal LDA, results for other classifiers are 

summarized in Table 1). CCRs for LOO are generally higher than for 2-fold, but 

in the below chance range LOO is also more extreme (CCRmin = 15%) than 2-fold 

(CCRmin = 39%). In spite of the lower CCRs, 2-fold cross-validation reaches 

significance sooner (59% in 2-fold vs. 63% in LOO) and shows higher sensitivity 

(13% of classifications significant with 2-fold, 9% of classifications significant 

with LOO). Looking at the null distribution obtained by shuffling EEG data labels 

shows that LOO and 2-fold procedures result in different distributions. LOO 

shows a strong skewness to the left giving CCRs as low as 0%, and a large 

number of spuriously high CCRs, with only 36.3% of classification rates below 

chance. 2-fold on the other hand shows a strong skewness to the right with a 

BCP of 59.6%. Together, these findings emphasize that 2-fold cross-validation 

results less often in CCRs above 50%, but at the same time shows higher 

sensitivity than LOO cross-validation (Figs. 6b-c). 
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Comparing different linear classifiers (nearest centroid classifier [NCC], 

diagonal LDA, and linear SVM) shows that all of the linear classifiers tested here 

show asymmetric distributions for synthetic correlated data and real EEG data, 

i.e., higher than expected BCP for 2-fold, lower than expected BCP for LOO with 

asymmetric range (see Table 1). Both confirm the findings described in the 

previous sections.  

 

Table 1: BCP and range of null distribution for different classifiers based on real and 

synthetic EEG data when classified using LOO and 2-fold. 

 Real EEG data Correlated data 

(synthetic) 

Uncorrelated data 

(synthetic) 

 2-fold LOO 2-fold LOO 2-fold LOO 

 BCP Range BCP Range BCP Range BCP Range BCP Range BCP Range 

NCC 59.1 43.4–59.6 36.4 26.7–63.3 62.0 44.7–60.2 28.5 16.7–65.0 50.4 41.3–58.9 49.5 33.3–65.0 

DLDA 59.6 43.4–59.6 36.3 26.7–63.3 62.0 44.7–60.2 28.6 16.7–65.0 50.4 41.5–58.9 49.8 33.3–65.0 

SVM 61.5 41.9–57.2 48.6 30.0–66.7 56.0 43.8–58.5 42.8 33.3–63.3 51.0 42.3–58.3 51.7 35.0–65.0 

NCC: nearest centroid classifier, DLDA: diagonal LDA, SVM: support vector machine, BCP: below-

chance percentage, Range: [CCR0.05 – CCR0.95]. 

 

Unlike correlated data, the null distributions of uncorrelated data show an 

almost symmetric structure, i.e. BCP of approximately 50% with nearly 

symmetric range. The effect of correlation can be understood by looking at 

multivariate effect sizes. In multidimensional data, the Mahalanobis distance 

F � √�&H�*� between two classes can be taken as the multivariate effect size. � represents the vector of univariate effect sizes in each dimension, and H is the 

correlation matrix of the data. When features are independent (H � I), the 

Mahalanobis distance reduces to FJ � K��*� + ���� + ⋯+ ��N�, with the empirical 

effects ��  consisting of any true effect � plus the measurement error O. Thus, the 
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distance FJ increases with increasing dimensionality even when no true effect is 

present at all. Therefore, inversions between training and test classification like 

we described in Figure 3a become unlikely and less asymmetry in below chance 

classification rates occurs. A larger distance FJ between conditions also allows 

the classifier to separate classes more easily, but, because no actual effect exists 

between conditions, this leads to overfitting the training data and no 

generalization to test data. Thus, CCRs for uncorrelated high-dimensional data 

follow a symmetric distribution with BCP of 50%. 

Discussion 

When we draw random samples from two normal distributions that do not differ 

in their means, the estimated differences of these means will be normally 

distributed around zero. When using MVPA on these data, one could assume that 

the distribution of classification rates is also distributed symmetrically around 

the chance level of 50%, following an approximately normal distribution. 

However, we show that our intuitive evaluation of results, based on assumptions 

of symmetry and normality, is misleading for classification outcomes. For 

classification with cross-validation in typical life-science data, i.e., small sample 

size data holding small effects, the distribution of classification rates is neither 

normal nor binomial (Noirhomme, et al., 2014). It can be strongly asymmetric 

and in some cases even bimodal. Its mode can lie either below or above the level 

expected by chance. Particularly for small effect sizes, we notice that the 

distribution of results can be strongly skewed and CCRs can sometimes fall far 

below chance level. Moreover, variance of CCR changes with effect size, 

disproportionally increasing for decreasing effect sizes and thus distorting CCR 

distribution further. This irregular distribution of CCRs implies that 

interpretation of CCRs as an indicator of presence or size of an effect is not 

advisable.  
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The aim of using MVPA for hypothesis testing is to detect the presence of 

differences between two or more conditions. CCR itself cannot be used for this 

purpose without a suitable critical value to compare it to. The level of this critical 

value can differ greatly depending on classifier, cross validation, number of 

features, sample size, and effect size in the data. Therefore, CCRs cannot be 

compared between different analyses in most cases. Instead, p-values must be 

provided, which determine whether a certain CCR indicates a significant 

difference between classes. Significance testing always relies on an accurate 

estimation of the distribution of data under the null hypothesis. Importantly, the 

irregular shape of the CCR distribution forbids the use of parametric tests, which 

rely on normal or binomial null distributions. Instead, the null distribution 

should be established from surrogate data using Monte Carlo or randomization 

methods (Manly, 2007). Furthermore, an maximization of CCR, which is 

perfectly reasonable when (infinite) novel stimuli must be identified, should 

never be done when cross-validation is used in MVPA for hypothesis testing. 

This can be easily understood when looking at the comparison of 2-fold and LOO 

cross validation. Although the LOO procedure results in more above chance 

classifications, it is less sensitive, i.e., it requires a higher effect size to reach 

significance.  

CCRs are unbiased, i.e. on average they are a good measure of classifiability. 

However, a problem occurs because of the skewness of the distribution, which 

shifts the mode of the distribution above or below its expected value. One 

particular danger when interpreting CCRs is that the presence of a few very 

strong below chance level CCRs must necessarily lead to a larger number of 

moderately above chance CCRs, even in data that do not contain any effect. This 

leads to several complications. First, although two methods (e.g. 2-fold and LOO) 

may have the same expected value for a certain true effect size, one will result 

in most cases in a higher CCR than the other (see Fig. 5). Any interpretation of 

this finding based on a small number of experiments will be misleading. Even if 

a large number of independent experiments is performed, the number of 
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positive results will be similarly misleading. Only averaging CCRs over this 

larger number of experiments would generate a result close to the correct 

expected value. What is even worse, if those rare experiments or subjects 

resulting in very low CCRs are discarded as outliers or experimental failures and 

findings are not published, the average CCR of published studies will be clearly 

above 50%. Very few unpublished studies can then disproportionally distort 

conclusions of meta analyses. Similarly, if a number of identical analyses are 

carried out on a number of voxels, electrodes, genes etc., the number of above 

50% findings can be much higher than the number of below 50% findings 

although the null hypothesis is valid. If results (class differences, classifiability) 

are presented in terms of CCR, this can lead to the erroneous assumption that 

most dimensions (voxels, electrodes or genes) carry class information. Any 

significance test that does not take the skewed distribution of CCRs into account 

has a high risk to result in a false positive finding. 

Instead of using CCR to display classification results, we propose the use of p-

values for this purpose. While CCR behaves in a rather unintuitive fashion 

because of the skewness of its distribution when effect sizes are small, the 

distribution of p-values is simple and most readers are familiar with their 

interpretation. This proposal follows the same logic that is used with fMRI 

analyses, which also usually present statistical maps rather than actual 

measures of hemodynamic responses. P-values are a combined measure of 

central tendency, variability and sample size, and represent the strength of 

evidence against the null hypothesis. Given identical sample size, they provide a 

standardized way to compare results of different experiments, conditions and 

analyses. In addition, when using first and second level models, statistical values 

can be used to aggregate data over groups of subjects or compare data coming 

from different experimental conditions. If a suitable measure of multivariate 

effect size is available (see e.g. Allefeld and Haynes, 2014), then this should be 

presented and significances indicated. When no suitable measure of 

multivariate effect size is available, p-values seem clearly preferable over CCRs 

to represent classification results. 
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The occurrence of classification rates far below the chance level in classification 

with cross-validation has been observed in a number of studies before. It has 

been reported that LOO cross-validation will in specific cases (e.g. linear SVM 

with a dimensionality approaching infinity) result in zero percent classification 

accuracy in finite data sets (Hall, et al., 2005; Verleysen, 2003). The same 

observation was reported for majority inducers irrespective of dimensionality 

(Kohavi, 1995). We present analysis and simulations that help understand the 

causes underlying below chance classification. Occurrence of below chance 

classification is a direct result of the dependence of test and training means and 

thus in essence denotes that an effect is too small to be detected by the classifier. 

This strength of the dependence between training and test means depends on 

sample size and is also governed by � in k-fold cross validation.  

The number of folds � in cross-validation affects the variance of classification 

accuracy and its significance, in particular, when sample size and estimated 

effect size are low. CCRs obtained by LOO are less likely to be below the chance 

level, but if they are, they are usually lower than for a 2-fold procedure. For 

medium estimated effect sizes LOO gives higher CCRs than 2-fold cross-

validation on average. This is desirable in a context of single item classification, 

when the presence of a class difference is known and the focus is on accurately 

classifying individual items. Previous studies therefore concluded that LOO 

should be preferred over 2-fold cross-validation because of the latter’s 

conservative bias (Kohavi, 1995; Rodriguez, et al., 2010). However, in a 

hypothesis testing context, when the presence of an effect is uncertain, 2-fold 

cross-validation has a smaller variance, especially in the null-distribution, and is 

therefore more reliable and reaches significance already with much smaller 

effect sizes than LOO. Using a 2-fold procedure is therefore preferable for 

hypothesis testing, because of its higher sensitivity, especially in LSS-LES data.  

Dimensionality of data is another important factor which affects the behavior of 

classification algorithms. Increasing the number of features impairs 

performance of classification algorithms, a fact also known as the “curse of 
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dimensionality” (Bickel and Levina, 2004; Clarke, et al., 2008; Fan and Fan, 

2008). Hall et al. showed that when the size of the feature vector increases with 

a fixed number of samples, linear SVM will asymptotically approach chance 

performance (Hall, et al., 2005). Jin et al. demonstrated that in data sets with few 

and weak relevant features classification can be impossible if feature selection 

is not done prior to classification (Donoho and Jin, 2008; Jin, 2009). We showed 

in simulations and real EEG data that asymmetric distributions of CCRs with 

strong below chance classification rates and many spuriously high classification 

rates occur in high-dimensional data as well as in low-dimensional data, 

especially if features are correlated.  

In this paper, we have investigated the behavior of cross-validation and MVPA 

in realistic life-science data. This kind of data is often characterized by small 

effect sizes, small sample sizes, but a large number of features. We show that 

there are a few important guidelines that should be observed. Most importantly, 

the existence of an effect should not be determined by the classification rate, but 

rather by statistical significance, and significance should not be based on 

parametric tests, but on Monte Carlo methods. Furthermore, because hypothesis 

testing has different requirements than individual item identification, methods 

optimized for the latter purpose are not necessarily the best for the former. 

Therefore, although LOO cross-validation results in higher classification rates, 

2-fold cross-validation is more suitable for hypothesis testing because its 

smaller variance makes it more sensitive. If these guidelines are observed, we 

believe that MVPA is an excellent method that allows dealing with the problems 

of multivariate data in the life-sciences.  
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Appendix A: Theorem 1 

We assume a data set that consists of � observations for each of two classes � 

and � with empirical means	��� � !�", �$%&. The means �",$	themselves are 

determined by the probability distributions P"�Q"� and P$�Q$� for the individual 

observations	Q",$. We fix �" and �$, thereby assuming the data set to be one 

specific realization of the random processes governed by P"	and	P$. During k-

fold cross-validation the data set is divided into a training and a test set, with 

means ' 	� !'", '$% for the training set and ( � !(", ($% for the test set.  

Under the definitions and assumptions above, the probability R���� � of a correct 

classification, conditional to the sample means ��� � !�", �$%&, is given by 

R���� � � *� − *� �∏ U�'V Pr�'V|�V�VZ",$ ��[" − [$�\]^_�'" − '$�   

in which [" is defined as	[" �: Pr aQ" ≤ +,�	+-� b'" < '$, ' ,��� c and [$ is defined 

analogously. 

Proof 

For given sample means	�",$, subsample means '",$ and (",$ are statistically 

dependent stochastic variables, since 

�",$ �	+,,-�)�*��.,,-)  (1) 

LDA in 1-d is expressed by the two threshold conditions for correct classification 

of test observations Q"and Q$from the two classes  

�'" −	'$��Q" − d� ≥ 0, �'" −	'$��Q$ − d� < 0 (2) 

Here, the discrimination threshold is the training mean: 

d � 	 +,�	+-�  (3) 

For given sample means ��� 	� 	 ��", �$�& the probability R" of a correct 

classification of a test observation from class A (Q") is thus obtained as 



 CHAPTER 2: CLASSIFICATION BASED HYPOTHESIS TESTING 

65 

 

R"���� � � U�' !Pr�Q" ≥ d, '" ≥ '$, ' ,��� � + Pr	�Q" ≤ d, '" ≤ '$, ' ,��� �% (4) 

which can be further transformed as follows: 

R"���� � � U�' !Pr�Q" ≥ d|'" ≥ '$, ' ,��� � Pr�'" ≥ '$, ' |��� � +	Pr�Q" ≤ d|'" < '$, ' ,��� � Pr�'" < '$, ' |��� �% (5) 

 

The two factors implementing the threshold connection are probabilities of 

complementary events and thus we can write: 

Pr�Q" ≥ d|'" ≥ '$, ' ,��� � �: 1 − [" (6) 

Pr�Q" ≤ d|'" < '$, ' ,��� � �: [" (7) 

Using equations (1) and (2), the probability [" can be expressed as the 

cumulative distribution: 

[" � U �Q" Pr�Q"|f"�g,hg-��i � U �Q" jklf"mQ"nN,��,�jk�o,�
g,hg-��i �

U �Q" jkl∑ �,qrs
qt
 Z&o,��,nN,��,�jk�o,�
g,hg-��i  (8) 

in which u � �/� is the number of test observations. 

 

The two remaining factors in equation (5) can again be evaluated using 

conditional probabilities: 

Pr�'" ≥ '$, ' |��� � � Pr�'" ≥ '$|' ,��� �	Pr�' |��� � � 	Θ�'" ≥'$�	Pr�'"|�"�Pr�'$|�$� (9) 

Here Θ denotes the Heavyside step function (indicator), and factorization of Pr�' |��� � accounts for the independence of the classes.  

In analogy, one obtains 

Pr�'" < '$, ' |��� � � Θ�'" < '$�Pr	�'"|�"�Pr	�'$|�$� (10) 

 

The probability R" of correct classification of a class A observation equals 
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R"���� � � l∏ U�'VPr	�'V|�V�VZ",$ n!�1 − ["�Θ�'" ≥ '$� + ["Θ�'" < '$�% (11) 

Correspondingly, for class B: 

R$���� � � l∏ U�'VPr	�'V|�V�VZ",$ n!�1 − [$�Θ�'" < '$� + [$Θ�'" ≥ '$�% (12) 

Thus the probability of correct classification is 

R���� � � 	w,�x��� ��w-�x��� �� � *� − *� �∏ U�'V Pr�'V|�V�VZ",$ ��[" − [$�\]^_�'" − '$�
 (13) 

Which completes the proof. 
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Appendix B: Simplification for normal distributions 

Example for the case with no effect 

As an extreme example, we use Gaussian distributed data with no signal, i.e. 

P"�Q� � P$�Q� � y�Q� � *√�w OQP a− ��
� c (14) 

Applying equation (8) for the Gaussian distributions	P",$, the cumulative 

distribution is that of a Gaussian with variance �u − 1�/u and mean 

f" � ��" − �� − 1�'"  (15) 

 

This yields 

[" − [$ � Φa��'" − �"� + +-�+,� c − Φa��'$ − �$� + +,�+-� c  (16) 

with Φ�{� � *� !1 + erf	�{/
2�u − 1�/u�%.  
 

The conditional probabilities Pr	�'V|�V� are inferred from Bayes’ law as 

Pr�'V|�V� ∝ Pr��V|'V� Pr�'V� � Pr!fV � ��V − �� − 1�'V% Pr	�'V� (17) 

The means being sums of Gaussian variables, their distributions Pr	�'V� and Pr	�fV� are also Gaussians with variance �/!�� − 1��% and�/�, respectively, and 

thus 

Pr�'V|�V� � K��)�*��w exp	���)�*�� �'V − �V���  (18) 

Finally, we calculated the distributions of R for ���  sampled from a Gaussian 

distribution 

Pr��V� � K ��w exp	!−�V���/2�%  (19) 
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Example for the case with an effect of � @ = 

The previous Gaussian example can be easily generalized to finite signal 

strength � by letting 

P"�Q� � y aQ + ��c , P$�Q� � y aQ − ��c (20) 

In this case both the difference [" − [$  from equation (16) and Pr�'V|�V� from 

equation (18) are unchanged, since they only depend on differences of means. 

Thus equation (13) for R���� � still holds in this case. The only difference between 

the case with and without effect therefore derives from the sampling of	����� . As a 

result of � ≠ 0 the part of the function R���� � that is sampled is further away from 

the valley of below-chance classification rates and therefore the distribution of R is less skewed than in the no effect case.  

To validate our analytical results, we generated a series of simulations with 

different effect sizes and calculated CCRs once using k-fold cross-validation and 

once with equation (13). As Figure B1 shows, the results are fairly similar. 

 

 

Figure B1: Cumulative distribution function of CCRs for LDA (� � �?) using different 

values of < calculated from equation 13 (grey lines) and determined using simulation 

results (black lines). The results show that both equation 13 and simulations produce 

very similar results. 
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Appendix C: Corollary 1  

Corollary 1: The probability of correct classification in LDA with cross-validation 

for no effect data sets (�" � �$) must always be below the level expected for 

chance classification. This result is independent of the data distribution and the 

number of cross-validation folds	�. 

 

Proof 

From Theorem 1 we know: 

R���� � � 	w,�x��� ��w-�x��� �� � *� − *� l∏ U�'V Pr�'V|�V�VZ",$ n�[" − [$�\]^_�'" − '$�
 (21) 

The integral on the right side represents the deviation from chance level, i.e., 0.5. 

Here we show that for data with an estimated effect size of zero, the integrand 

will be always positive thus leading to below chance values of R���� �. To prove 

this it suffices to show that �[" − [$�\]^_�'" − '$� @ 0 because Pr�'V|�V� @ 0 

by definition. 

 

According to equation (8), for � � �" � �$ we can write  

[" − [$ � U�Q !���Q|�� − �� − 1�μ"� − ���Q|�� − �� − 1�μ$�%.  
If μ" @ μ$the left summand under the integral is a left-shifted version of the 

right summand. Since being probabilities, both summands are positive and 

normalized, the difference [" − [$  is positive. Conversely, for μ" < μ$ the 

difference [" − [$ is negative. Thus, in both cases �[" − [$�\]^_�'" − '$� @ 0 

and the corollary is proved. 
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Appendix D: Area Under the Curve (AUC)  

AUC is similarly affected by the dependence of the sub-sample means. Using 

classification thresholds as it is done in AUC does not prohibit negative 

correlations between test and training means. Appendix Figure 2 replicates 

Figure 5e for AUC. 

 

 

Figure D1: The dependence of the sub-sample means affects performance of an LDA 

classifier largely independently of performance measure. Using a signal detection 

approach and replacing CCR with the area under the curve (AUC) from receiver operating 

characteristics (ROC) curves results in AUCs below 0.5. 
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Abstract  

Multivariate pattern analysis (MVPA) is considered a powerful method for 

detecting systematic effects in large datasets. When used for hypothesis testing, 

a classifier is trained on one part of the data and performance is tested on 

separate data. Significance of such cross-validated classification is determined 

using permutation testing, estimating the distribution of classification results 

when systematic information about class assignment is removed by randomly 

reshuffling class labels. Traditionally, this relabeling occurs on a trial-by-trial 

basis. We show here that in data which, next to a main effect of class (e.g. visual 

presentation of letter vs. number), additionally contains a nested subclass 

structure (individual digits and letters), trial-level-randomization gives too 

liberal estimates of significance because subclasses introduce systematic 

information that generally improves separability of the classification problem. 

We analytically prove that this subclass bias systematically affects correct 

classification rates (CCRs), even in the absence of a main effect. In simulations, 

we demonstrate that subclass bias is highest for low between-class effect size 

and high subclass variance, but can be reduced by increasing the total number 

of subclasses. Moreover, we can account for the subclass bias by adjusting 

permutation tests to consider the subclass structure of the data, using subclass-

level randomization. In several experiments recording human brain electrical 

activity, we demonstrate that parametric testing fails critically to determine 

significance of classification outcomes, and that trial-wise permutation gives too 

liberal estimates. To avoid false positive results due to subclass biases, we give 

practical examples of how to modify permutation testing for a range of common 

experimental designs with subclasses. 

 



 

 



 CHAPTER 3: ADJUSTNG PERMUTATION TESTS 

79 

 

Introduction 

Multivariate pattern analysis (MVPA) combined with cross-validation and 

permutation testing allows the use of machine learning algorithms to detect 

differences between classes of data for statistical hypothesis testing (Haxby, et 

al., 2014; Jamalabadi, et al., 2016; Stelzer, et al., 2013). Whereas classical 

statistical approaches search for individual features in a data set that allow to 

distinguish two experimental conditions, MVPA analyzes data sets as a whole, 

searching for distinguishing multi-dimensional patterns. Therefore, it can 

provide increased sensitivity compared to classical multiple-univariate testing 

methods in high-dimensional data sets (Haynes, 2015; Norman, et al., 2006; 

Woolgar, et al., 2014; Alizadeh, et al., 2017). 

When MVPA is used for hypothesis testing an algorithm (a classifier, e.g. a 

support vector machine [SVM]) is trained on a portion of a data set to separate 

data belonging to different classes (e.g. different experimental conditions, 

different groups of patients, etc.). Then, the ability to classify new data is tested 

on the remaining part of the data. This results in a percentage of accurate 

classifications (correct classification rate [CCR]). To improve estimation 

accuracy of this percentage, CCRs are usually determined using a cross-

validation procedure, which assures that all parts of the data are used for 

training as well as testing on repeated iterations of the analysis (Efron, 1993). If 

accuracy of classification lies significantly above the level expected by chance 

(e.g. 50% for a two-class problem), it can be concluded that there is class-related 

information in the data, and classes can be concluded to differ significantly. To 

determine the significance threshold non-parametric permutation statistics 

should be used, because CCRs often do not follow any known distribution 

(Jamalabadi, et al., 2016). These tests determine the null distribution by 

resampling the data a large number of times with randomly assigned group 

labels (Nichols and Holmes, 2002).  
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Here, we will present evidence that there are even cases where parametric tests 

fail critically, and trial-based randomization tests are systematically biased 

towards false positive results. The problem arises because classification 

accuracy is sensitive to any kind of structure in the data. In particular, when the 

data contain distinct subclasses, the obtained classification accuracies can be 

systematically higher than the expected chance level, even when data from both 

conditions are sampled from the same distribution, i.e. the null hypothesis is 

true. A simplified example is illustrated in Figure 1. Here, classes A and B are 

each comprised of four distinguishable subclasses. The average CCR will be 

above 50% (here 70.9%, Fig. 1a) even if no systematic differences between 

classes A and B exist, e.g. centroids of class A and B are identical, and all 

differences pertain to random differences between subclasses. In our example 

separability of eight subclasses along two feature dimensions leads to an 

average CCR of 71.1% over all possible random attributions of subclasses to 

classes A and B (Fig. 1b). As we will work out below, this behavior can be 

observed to a varying degree in every data set in which classes consist of distinct 

subclasses (e.g. types of stimuli, groups of subjects, multiple recording sessions, 

blocks of fMRI recording, etc.).  

There are three sources of variance that are of interest in the present 

considerations (Galbraith, et al., 2010) as can be described in the following 

model: �V�) � �V + �V� + �V�). �V�) are individual measurements, e.g. 

physiological brain responses to certain stimuli. �V∈!*,�% represents the class 

centroids, e.g. the influence of an experimental manipulation, the difference 

between patient and control group, or the responses to different conditions. �V� 

are the centroids of the �AB subclass within class ]. The variance ���of the set of 

centroids reflect differences that are unrelated to the studied categories and in 

univariate analysis represent classical confounds. �V�) reflects the deviation 

from the subclass mean arising from the variance ���  of the data in each subclass. 

It represents measurement noise. The ratio of subclass-to-trial-variance, 

defined as the intraclass correlation (I��	 � 	 �������	��� ), determines the extent to 
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which subclass variation affects statistical conclusions (Aarts, et al., 2014). 

Because the influence of subclasses often cannot be distinguished from the main 

effects (see for example (Malone, et al., 2016; Todd, et al., 2013), experiments 

and statistical analyses must be designed to avoid these confounds.  

In classical statistics, it has been demonstrated that failing to accommodate for 

the effect of non-zero subclass variance can produce large false positive rates 

(Aarts, et al., 2014). In multivariate analyses, however, error variances do not 

average out but accumulate over features (Fan and Fan, 2008). Because 

multivariate linear classifiers take the differences over all features into account, 

subclasses will critically affect the result of an MVPA. In special cases, it is 

possible that both classes have identical means on all feature dimensions 

independently, but still CCRs systematically diverge from theoretical chance 

level because of random subclass differences (Fig. 1a). It is the common practice 

to ignore subclasses (Aarts, et al., 2014; Galbraith, et al., 2010; Lazic, 2010). We 

will show using real EEG data as well as synthetic data sets that subclass 

variance spuriously increases classification accuracy. In the present paper, we 

will investigate the boundary conditions and consequences of this phenomenon 

and describe a method to circumvent false positive results.  
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Figure 1: Classification accuracy in data with subclasses can exceed chance level even if 

data are randomly attributed to two conditions. (a) Center: An exemplary data set with 4 

subclasses per class (blue and red). Although classes have almost identical means in both 

dimensions (represented by two filled circles in the center), LDA with 2-fold cross 

validation leads to 70.9% classification accuracy. Surrounding plots represent other 

random subclass-class relations (open vs. closed symbols). Note that only few of these 

random assignments show close to chance level CCRs. (b) The 8 subclasses can be 

randomly divided into two classes of four subclasses in 18 ways. The table here shows all 

18 possible configurations with their respective CCRs. The average CCR is 71.1%. (c) 

Simulating 1000 data sets with the same structure as in A (8 subclasses randomly 

assigned to 2 classes, no overall difference between classes), results in a null distribution 

with a mean CCR of 68.7%. 
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Experimental and theoretical work 

Practical example 1: Biased classification results in two-way designs with 

nested subclasses 

The following example illustrates how a nested factor can influence the expected 

chance level in an experiment that investigates the EEG responses to the 

presentation of digits and letters (Alizadeh, et al., 2017). 20 stimuli (10 digits 

[class A], 10 letters [class B]) were presented in a working memory task to 19 

subjects for 100 ms with an interstimulus interval of 900 ms. 128-channel EEG 

was recorded during the task using an active 128-channel Ag/AgCl-electrode 

system (ActiCap, Brain products, Gilching, Germany) with 1 kHz sampling 

frequency and a high-pass filter of 0.1 Hz. Electrodes were placed according to 

the extended international 10-20 electrode system. Continuously recorded EEG 

data was low-pass filtered offline at 40 Hz and divided into epochs of one second, 

starting 50 ms before stimulus onset. Artefact rejection was done in a 

semiautomatic process using custom MATLAB scripts. Epochs containing 

artefacts were removed from the data set, channels that contained too many 

epochs with artefacts were removed and interpolated using routines provided 

by EEGLAB (Delorme and Makeig, 2004). Single trial classification of digits and 

letters resulted in a significant mean classification accuracy of 54.1% over all 19 

subjects in two sessions (trial-wise permutation test per subject, Fisher’s 

method for aggregation over subjects: P < 8 × 10�*� and P < 10�*� for two 

sessions respectively). However, as suggested in Fig. 1, because the 

experimental stimuli split the data set into 2×10 subclasses (digits and letters) 

and the existence of subclasses can induce detectable differences between 

conditions, it cannot be assumed that the chance level CCR is 50%.  

To adjust for this possible bias, the null distribution for data with intact subclass 

structure, but without information about the actual classes must be determined. 

To do so, data can be permuted in a way that keeps subclasses together but still 

assigns random class labels, thus effectively removing any class-related 
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information. This procedure uses randomization at the subclass level instead of 

the usual trial-level randomization. Trial-level randomization treats every trial 

as an independent observation and will remove any systematic information 

from the data. This will result in the null distribution of the data assuming that 

no systematic relation between trials exists. If the data contains subclasses, 

trials within these subclasses are, by definition, systematically related. Because 

here we want to control for the influence of this structure at the subclass level, 

the dependencies at the subclass level must be kept intact while removing class-

level information. To achieve this, we assign 5 digits and 5 letters to one class 

and the other 5 digits and 5 letters to the other class. We can draw randomly 

from 
*� l*�� n� � 31752 possible permutations of these random assignments if 

labels of subclasses are permuted between classes in a balanced fashion. If 

classification results are on average above 50%, this must be related to the 

subclass structure of the data. Here, such classification over 1000 random 

permutations results in an average CCR of 50.9% (95% CI: [50.2%, 51.6%]. Note 

that the shift from 50% is statistically significant. To obtain an adjusted 

significance of the CCR with classes intact, we compared it with the distribution 

of results with the subclass structure intact, by randomly replacing class labels 

for half the digit and letter stimuli such that all instances of an exemplary digit 

Ai were assigned letter class labels (subclass-level randomization, Fig. 2A). The 

adjusted probability of the actual CCR occurring by chance in the presence of 

subclasses turns out to be p = P < 5 × 10��  and P < 10��(subclass-wise 

permutation test per subject, Fisher’s method for aggregation over subjects) 

compared with unadjusted P < 8 × 10�*� and P < 10�*� (see above). 
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Figure 2: Subclasses can be either crossed or nested. The key difference between these 

cases in permutation tests is the way in which labels should be shuffled. (a) If subclasses 

are nested, blocked relabeling on the subclass level should be used. The histogram shows 

the null distribution and p-value for a subject of Experiment 1. (b) For crossed subclasses, 

labels should be shuffled within each level of the crossed factor. The histogram shows the 

null distribution and p-value for a subject of Experiment 3A. (c) Crossed and nested 

factors can be both present simultaneously. In such cases, the permutation principle 

remains the same as before. That is, the trials within nested subclasses must be kept 

together during permutation and shuffling should occur on the levels of the crossed 

factor. The histogram shows the null distribution and p-value for data of Experiment 4. 
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Simulating biased classification results in data with nested subclasses 

To investigate the effect of nested subclasses on classification accuracies 

systematically, we used synthetically generated data with varying relations 

between subclass and class variance. Nested subclasses are subclasses that do 

not overlap between the two classes (e.g. 10 letters and 10 digits as in 

Experiment 1 above). As we will show, in this kind of experimental design, 

subclasses biases classification results most strongly. We studied the 

distribution of CCRs in two series of 100-dimensional, two-class experiments 

where each class contained either 2 or 10 subclasses per class. Each data set 

consisted of 120 observations per class in a nested two-way design. Data was 

sampled from normally distributed populations with identical trial variance 

(��� � I) and varying subclass variance (��� � � × I, � ∈ !0, 1%). In addition, we 

varied the size of the main effect. We classified data from each simulated 

experiment with linear SVM (with cost parameter � � 1) using 2-fold cross-

validation. For each set of parameters, we repeated the whole sampling and 

classification procedure 5000 times to achieve a stable estimate of CCRs (Fig. 3). 

Figure 3: Expected CCRs when data contains subclasses (a, b) Expected CCRs for data sets 

with a constant trial variance (�� � �) and varying class and subclass variance (�  and �¡) with ¢ � £ and ¢ � �= subclasses per class. (c) Expected CCRs and standard 

deviations for data sets with zero effect size (�  � =). 

If the classes are indistinguishable (i.e. main effect is zero, class centroids �* ���), subclass-effects contribute most strongly to classification accuracy. With 

increasing between-class variance, the relative influence of subclass variance 
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diminishes (Fig. 3a). A higher number of subclasses also mitigates the influence 

of the subclass effect (Fig. 3b). From these graphs, it is obvious that a high CCR 

per se does not indicate the presence of class-related information in the data, 

and that a significance test cannot assume a chance level of 50% when nested 

subclasses are present in the data. To test for significance, the actual CCR 

obtained from the data must be compared to a null distribution that removes 

the class-level information, but retains subclass-level structure. For our 

simulations, Fig. 3c depicts the mean of these null distributions for varying 

levels of subclass variance and different numbers of subclasses. It becomes 

apparent that subclasses bias the expected CCR, and that the bias is higher for 

data with fewer subclasses per class.  

The simulations in Fig. 3 show that CCRs depend on subclass variance and on 

the number of subclasses. To investigate the implications of this observation 

further, we develop an analytical description of classification rates when data 

with subclasses are analyzed using linear classifications. We assume our data 

set consists of two sets of �	 × 	¤ independent random vectors Q ¥�)�, � ¥�)�
where �, �′	 ∈ 	 71, . . . , ¤: labels the subclasses and _, _′	 ∈ 	 71, . . . , �: identifies the 

sample index in each of the subclasses. The task of the linear classifier is to 

separate Q and � into two categories. As a model for the linear classifier, we use 

Linear Discriminant Analysis (LDA). Data distribution within the subclasses is 

assumed to be Gaussian with variance ��� , the distribution of the subclass means 

is also assumed to be Gaussian with variance ��� and expected values '̂, (̂. Under 

these conditions, we determine the expected CCR to be as described in Theorem 

1 (Appendix A). From this theorem directly follows corollary 1 (Appendix B), 

which states that the estimated CCR for data sets with no effect ('̂ � 	 (̂) is a 

decreasing function of the number of subclasses (¤) and an increasing function 

of subclass variance (��). It also shows that for zero effect size, CCR only depends 

on the intraclass correlation I�� and the number of subclasses ¤. In particular, 

CCR is 50% only when the intraclass correlation I��	 � 	0 and is a monotonically 

increasing function of I�� (and of ��� if ���  remains fixed). Note that in the case 
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when I�� � 0, by definition no subclasses exist in the data, an assumption that 

is mostly not tested in but typically could be present in experiments which a) 

compare different kinds of stimuli, b) test more than one subject, or c) collect 

data in multiple sessions. This in turn means that each subclass introduced to 

the experimental design will have a measurable impact on classification results. 

Adjusting permutation tests to correct for subclass bias 

Since subclass differences inflate classification accuracy, significance tests must 

take this subclass-related bias into account. Here, we propose a permutation 

strategy, which addresses this problem by adjusting the null distribution. The 

general idea of permutation tests is to shuffle data labels in such a way that all 

information related to the classes under investigation is removed. Typically, this 

is achieved by shuffling labels on the level of individual trials. However, this 

method also removes any subclass-related structure from the data, i.e. 

subclasses no longer have distinct centroids. Thus, the null-distribution 

obtained in this way has no bias, contrary to the actual data. We therefore have 

to remove the information pertaining to the classes while preserving subclass-

related information. To achieve this, we permute class association on the 

subclass-level instead of the trial level (see Fig. 2 for illustrated examples of such 

permutation procedures). In the case of our practical example above 

(Experiment 1: two-way design with nested subclasses) we would randomly 

replace class labels for digit and letter stimuli in such a way that all members of 

an individual subclass are consistently relabeled (see Fig. 2a). This method 

assumes that trials of a subclass are not independent and subclass centers are 

determined by random or systematic, class-unrelated influences. It retains the 

dependence between trials of a subclass while it removes the relation between 

subclass and class centroids. If classification accuracy for the real data is higher 

than that for permuted data, it can be concluded that there is a systematic 

difference between the classes.  
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To remove all class related information, we randomly switch class labels on the 

subclass level, with consistent relabeling of all items belonging to a subclass. The 

distribution of CCRs for these relabeled data represents the null distribution 

with which the actual CCR must be compared. The total number of possible 

permutations is	*� a ¨̈/�c�
, where ¤ represents the number of subclasses per class. 

Importantly, the number of possible resampling is only determined by the 

number of subclasses and is independent of the total number of trials. When ¤ 

is large, the null distribution of CCRs can be sampled sufficiently well. However, 

if ¤ is small, this is not possible. For instance, for ¤ � 4, the maximum number 

of permutations is 18. In particular, the number of possible permutations for ¤ < 6 does not allow to reach significances with ª < 	0.05, because too few 

points of the random distribution can be estimated. In these cases, when the 

same statistic is available for multiple subjects or sessions, we propose to use 

the group null distribution which can be obtained by the non-parametric 

method described in (Stelzer, et al., 2013). In this method, the mean CCR from 

real data over all the subjects is tested against a null distribution, which is 

obtained by repeatedly averaging randomly sampled CCRs from the subclass-

level permutations from each subject. 

Quantification of significance bias in data with nested subclasses 

To systematically study how subclasses variance affects significance tests, we 

used the simulated data sets described above and produced their respective null 

distributions once using adjusted subclass-wise and once using unadjusted trial-

wise permutation tests. We calculated the expected p-values for varying sizes of 

class and subclass effects (Figs. 4a-b). Whereas the false positive rate is defined 

as the percentage of falsely significant results when no class-related effect is 

present (�« � 0), Figure 4b illustrates that there are also more significant 

results than expected when there is an extant but small class effect. Here, for any 

given class- and subclass-variance, we define a measure of significance bias (SB) 

as the normalized difference between the number of data sets with significant 
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p-values and the number of data sets with significant p-values with the same 

amount of class-variance but subclass variance is not present. In contrast to false 

positive rates, this value can also be calculated when there is an actual effect. 

The intuition behind this measure is to quantify the contribution of nuisance 

effects (e.g. the effect of subclasses) on the performance of a significance test 

that should only be sensitive to the primary effect (e.g. the class effect). Figures 

4c-d show significance biases for adjusted subclass-wise and unadjusted trial-

wise permutation tests, respectively. It becomes obvious that trial-wise 

permutation does not correct for the confounding effects of subclass variance 

and results in liberally biased p-values when a subclass effect exists and the 

class-related effect is small or not present. On the other hand, the adjusted test 

successfully limits the false positive rate and is only slightly conservative 

(negative SB) when subclass variance is high compared to class variance.  

 

Figure 4: Randomization results for data with subclasses (¢ � �=). (a, b) The area 

delimited by the dashed rectangle shows the expected p-values for a main effect of zero. 

Importantly, even when CCRs are strongly biased because of nonzero subclass variance, 

p-values remain constant for the adjusted subclass-wise randomization test. The trial-

wise permutation test fails to remove the bias introduced by subclass variance. Note that 

even small subclass effects result in falsely positive significance tests (dark grey and 
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black squares for �  � =). In the ideal case, the presence of subclass variance should not 

affect the rate of significant findings, i.e. p-values should be identical within each column 

over � . Obviously, for increasing values of �¡, trial-wise randomization leads to too many 

significant results for �  � = whereas subclass-wise permutation leads to a reduced 

number of significant findings for small values of � . (c, d) To illustrate the difference 

between the number of significant results when subclass variance is not present (dashed 

rectangle) and when it is present, we calculate normalized difference between the 

number of data sets with significant p-values and the number of data sets with significant 

p-values with the same amount of class-variance but subclass variance is not present 

(significance bias, SB). This value shows that adjusted permutation is unbiased for small 

and sufficiently large class effects and shows only a small conservative bias (negative SB) 

when subclass variance is substantially larger than class variance. Testing with the 

unadjusted, trial-wise permutation, on the other hand, is too liberal when the class effect 

is small or null and even a subclass effect is present. This test is therefore leading to larger 

number of false positive results.  

Considerations for designs with crossed factors 

Factors in experimental designs can be nested or crossed. For nested factors the 

levels of the subordinate factor differ for each level of the superordinate factor 

(e.g. different subjects are tested for two experimental condition, different sets 

of stimuli are used in two experimental conditions, …). Crossed factors are 

formed when the second factor coexists in both classes, e.g. the same subjects 

are tested under two types of stimulation, the same set of stimuli is used in two 

experimental conditions, …). Unlike in nested designs, in data sets with crossed 

factors, the subclasses structure is the same within all classes (centroids of 

subclasses show the same distances and relations). Therefore, classification 

accuracy should remain unbiased as long as there is no interaction between the 

factors class × subclass, which can often be assumed. In the example described 

below, we would expect that the subclass manipulation well-known vs. 

unknown member exerts the same effect on brain activity for both members of 

the classes fruits and animals, or in other words: we would expect a main effect 

on brain activity of both the subclass factor well-known vs. unknown, as well as 

the class factor fruit vs. animal (see Fig. 2b). However, in crossed designs, 



CHAPTER 3: ADJUSTING PERMUTATION TESTS 

 

92 

 

subclass centroids within each class can still distribute in a way that e.g. masks 

differences between the classes of interest (Hohne, et al., 2016). Unwanted 

effects of subclass variance can be avoided if permutation is done on a trial-by-

trial basis within each subclass (see also (Anderson and Ter Braak, 2003; 

Gonzalez and Manly, 1998; Manly, 2006). Figure 2b shows the appropriate 

randomization strategies for crossed subclass factors.  

Practical example 2: Two-way designs with crossed factors  

As an example, we analyzed data from a two-factorial experiment that recorded 

ERP responses to the presentation of 60 pictures of fruits and 60 pictures of 

animals in Experiment 2. Half of the animals and fruits were common, well-

known objects, the other half were rare and unknown. 128-channel EEG was 

recorded during stimulus presentation from 19 healthy subjects as described in 

Experiment 1. Every picture was presented for 300 ms, followed by a black 

screen of 1.5 s. The subjects were then asked to decide if the presented picture 

was familiar or unfamiliar. Familiarity was defined as knowing the animal or 

fruit by name. Between trials, a fixation cross appeared for 400 ms. ERPs were 

calculated for epochs of 1 s starting at stimulus onset. Data was prepared as in 

Experiment 1. We classified data within each subject with linear SVM using 2-

fold cross-validation. The average CCR to classify animal and fruit trials over all 

subjects was 58.1%. To test for significance, we randomly relabeled trials for 

each subject within the ‘known’ and ‘unknown’ subclasses (Fig. 2b). This 

procedure results in null distributions that had a mean of 50.08%. Comparing 

the CCRs obtained from the actual data with these randomized distributions 

shows that classification is significant in 12 subjects. To test for population 

significance, we aggregated individual significances using Fisher’s method, 

resulting in a population P < 6 × 10�*�. Note that if permutation is not 

restricted within subclasses, subclass distribution between classes becomes 

uneven, and the null distribution becomes biased (here, this would lead to an 

average null distribution mean of 51.0%). 
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Effects of subject and session variability on classification accuracy 

Brain responses recorded from different subjects and different sessions show 

marked differences. Here, we show how these variabilities can be addressed 

within the framework of subclasses. If not treated properly, session and subject 

variability can result in biased CCRs. It is possible to use all data from multiple 

subjects or sessions simultaneously to train a classifier if the null distribution is 

adjusted properly for significance testing. If all classes are repeated in each 

subject/session, the subject/session variability is crossed over the main effect 

and the permutation can be performed as in Experiment 2, i.e. randomization 

must be done within each subject/session. It must be noted, however, that this 

method can be very insensitive if there are large subject/session differences. In 

this case, it might be more useful to analyze each session separately {paper from 

Berlin on crossed factors}. On the other hand, if each subject/session consists of 

data from only one class (nested design), then each subject/session has to be 

treated as an independent subclass analogous to Experiment 1, i.e. 

randomization must be done on the level of subclasses (subjects/sessions) 

consistently switching all labels of data belonging to one subclass (see Fig. 2a, Ai 

in this case referring to different subjects or sessions). In this way, variability 

between subjects/sessions will be properly considered as a source of unwanted 

positive classification bias.  

For the following Experiment 3, which explores the effect of subject and session 

variability on CCRs, we recorded 128-channel ERP responses during the 

presentation of pictures of faces and houses. EEG was recorded from 20 healthy 

subjects in two sessions with the same parameters as described in Experiment 

1. Presentation time was 100 ms, the ERP was calculated from 100 ms before to 

900 ms after onset of stimulus presentation. We classified the data with linear 

SVM using 2-fold cross-validation. 

Practical example 3A: Dealing with session variability as a crossed factor 
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To assess effects of session variability, we used 30 trials per class from each of 

the two sessions in Experiment 3A. We classified data within each subject, 

collapsing trials from both sessions. Average classification accuracy over all 

subjects was 64.6% (see Figure 5A). Since both classes are present in each 

session, we permuted data within each session (see Fig. 2b, L1 and L2 denoting 

the different sessions). The mean of null distributions averaged over all 20 

subjects is 50.0%. To calculate the p-value, we use a group significance test as 

described above (Stelzer, et al., 2013), which indicates the classification 

accuracy is significantly above chance (P < 10��).  

Practical example 3B: Dealing with subject variability as a nested factor 

In another analysis of the same data (Experiment 3B), we used 30 ‘face’ stimuli 

from 10 subjects and 30 ‘house’ stimuli from another set of 10 subjects, resulting 

in 300 trials per class. We classified the data with trials collapsed across 

subjects, resulting in a classification accuracy of 82.4% (see Figure 5B). To test 

for significance, we treated data from different subjects as subclasses and 

randomized the class assignment of the subjects, keeping all trials of a subject 

together. This results in a null distribution with a mean of 78.5% and a 95% 

confidence interval of [74.6 – 82.2%] and P	 < 	0.045. Note that although 

classification accuracy is much higher than in the within-subject analysis of 

Experiment 3A, the p-value is actually worse. This indicates that there are large 

differences between subjects, which strongly biases classification accuracy. In 

contrast, trail-wise randomization would underestimate the p-value by several 

orders of magnitude (95% confidence interval: [47.5 52.5]. 
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Figure 5: Permutation strategies for data sets that contain recordings from multiple 

subjects or sessions. (a) When both classes are present in each session (i.e. crossed 

design), CCR remains unbiased and the null distribution is unchanged. Permutation is 

done within each session separately. The histogram shows the null distribution and p-

value for one of the 20 subjects in Experiment 3A. (b) Data from different subjects form 

subclasses with non-zero subclass variance. Although the actual CCR is quite high 

(82.4%), the p-value is only barely significant (p = 0.045). Note that if trial-wise 

permutation is applied, the mean of the randomization distribution will be 50% and the 

p-value becomes misleadingly small. The histogram shows the adjusted null distribution 

and p-value for data in Experiment 3B. 

 

Adjusting permutations test in three-way designs with both nested and 

crossed factors 

Adjusted permutation testing can also be used in more complex experimental 

designs, e.g. when a data set has both nested and crossed subclasses (see Figure 

2c). In the following practical example (Experiment 4), we illustrate how to 

adjust permutation tests in an experiment that compared the effect of digit and 
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letter presentation in a group of subjects. We took data from three subjects of 

Experiment 1, selecting trials during which four digits (‘2’, ‘3’, ‘8’, and ‘0’) and 

four letters (‘B’, ‘D’, ‘W’, and ‘Y’) were presented. This data set has three factors: 

the primary factor is the two classes ‘letters’ and ‘numbers’, the second factor is 

the subjects, which is crossed over conditions, and the third factor is the 

individual digits and letters, which is nested within the second factor (see Figure 

2c). We classified data with linear SVM using 2-fold cross-validation, which 

resulted in a classification accuracy of 57.6%. To test for significance, we 

permuted the labels of the data in a way that the individual numbers and letters 

remained together as subclasses and data from different subjects were 

permuted separately. We shuffled the data 5000 times resulting in a null 

distribution with an average CCR of 51.3% and	P < 0.019. Importantly, simple 

permutation on the trial level would largely overestimate the significance level 

(P < 	0.003)  

Discussion 

Many neuroscience data sets comprise subclasses, either because of 

requirements of the experimental design (multiple subjects, sessions, recording 

sites, laboratories etc.) or because of the nature of experimental stimuli (Aarts, 

et al., 2014). We show that these subclasses can systematically bias classification 

accuracy and induce classifiability even when no actual class-related effect 

exists. This happens because subclasses have distinct centroids, particularly in 

high-dimensional space (Fan and Fan, 2008; Jamalabadi, et al., 2016). These 

differences can be detected by MVPA, even when they cancel out in the classes 

as a whole (see Figure 1). Therefore, when testing for significance, it is necessary 

to account for biased chance levels. We propose a ways of permutation testing 

that can provide the correct null distribution for classification rates.  

Subclasses are formed by groups of trials that have a common covariance that is 

not the class-related covariance under investigation (Lazic, 2010; Todd, et al., 
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2013). This occurs when data is gathered in distinct blocks or when there are 

clusters of trials with similar physical (e.g. color) or cognitive (e.g. concepts, 

emotions) properties. In univariate analyses, these subclasses represent 

classical confounds. Their effects usually cancel out and become irrelevant when 

subclasses are randomly distributed around the class means. In a higher 

dimensional space, noise introduced by subclasses accumulates over 

dimensions and contributes to the distinctness of the subclasses. This effect 

increases sharply with an increasing number of dimensions (due to the so-called 

“curse of dimensionality”). It is therefore vital to adjust for the bias in 

classification rates introduced by subclasses in multivariate analyses.  

The relation between trial-variance and subclass-variance determines the 

extent to which the within-subclass covariance affects conclusions from the 

data. This ratio of trial-to-subclass-variance can be quantified in terms of the 

intraclass correlation ICC. It can be shown that even a small ICC of 0.01 can 

increase the false positive rate to more than 20% when it is expected to be at 

α = 0.05 (Aarts, et al., 2014). When MVPA is employed, the deviation of CCRs 

from expected chance levels depends only on ICC (see Appendix B), and an ICC 

as small as 0.1 can spuriously increase CCR by 10% (see Figure 3c). When 

average ICCs in neuroscience have been found to average 0.19 with a range 

between 0.00 and 0.74 (Aarts, et al., 2014), it can be assumed that reported CCRs 

in data with subclasses can be biased by up to 50%. Because parametric tests 

cannot account for this bias, statistical significance has to be determined using a 

permutation procedure that does not eliminate the bias.  

Making subclasses less prominent reduces the bias. According to our 

simulations and the analytical solution in Appendix B, this can be achieved in 

two ways: either by decreasing the subclass variance or by increasing the 

number of subclasses. While decreasing the subclass variance might be difficult 

in real-world experiments, increasing the number of subclasses is often a 

possibility. Although a higher number of subclasses is preferable to a lower 

number (Aarts, et al., 2014; Anderson and Ter Braak, 2003; Lazic, 2010), 6 
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subclasses already allow reasonable permutation testing. However, for a 

number of subclasses of ¤ < 6, p-values better than p = 0.05 cannot be reached. 

Therefore, a proper significance test for such data sets cannot be conducted on 

a single subject level. In these cases, we propose to estimate the group level p-

value, which can be estimated by aggregating permutations over subjects 

(Stelzer, et al., 2013). 

The absolute height of CCRs is not informative about classification success when 

cross-validated classification is used for hypothesis testing. Next to the fact that 

null-distributions can be skewed (Jamalabadi, et al., 2016), the present 

simulations and experiments show that in nested experimental designs, which 

are common in the life sciences, subclasses inject systematic dependencies in 

the data structure that can lead to spuriously high CCRs. When permutation 

testing is adjusted to respect these dependencies, the null-distribution may no 

longer be centered around 50%, but can even deviate significantly from the 

estimated chance level if the same dependencies are ignored. In the practical 

example of Experiment 3B, we show that between-subject variance, when 

subjects are a nested factor, can dramatically increase CCR from 64.6% (within-

subject crossed factors design) to 82.4% (between-subject nested factors 

design), when the number of trials is kept constant. Still, the lower CCR 

represents a more robust result, showing a higher significance level when 

estimated from the unbiased null-distribution obtained by subclass-level 

randomization. 

In particular cases, including subclasses in the classification procedure can 

actually be used to improve classification accuracy (Hastie and Tibshirani, 1996; 

Hohne, et al., 2016; Zhu and Martinez, 2006). Thus, issues of subclass variance 

can be avoided by performing classification within subclasses. This method, 

however, can only be employed in data sets with crossed subclasses, i.e. when 

every subclass is repeated in all classes. In nested designs, which were the main 

focus of the present paper, randomization must always keep the subclass 

structure intact and classification must thus include all subclasses.  
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In this article, we explored the use of MVPA for data sets with subclasses. We 

show classification accuracies can be strongly biased even with small amounts 

of subclass-related variance. We therefore suggest that statistical significance 

should be tested with nonparametric permutation tests that accommodate for 

the bias in CCR induced by these subclasses. A more diverse range of stimuli can 

also be used to mitigate the bias and result in more reliable classification results.  
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Appendix A: Theorem 1 

We assume our data set consists of two sets of �	 × 	¤ independent random 

vectors Q ¥�)�, � ¥�)�
where �, �′	 ∈ 	 71, . . . , ¤: labels the subclasses and _, _′	 ∈	71, . . . , �: identifies the sample index in each of the subclasses. The task of the 

linear classifier is to separate Q and � into two categories. As a model for the 

linear classifier, we use LDA. We therefore can map the d-dimensional 

vectorsQ ¥�)�, � ¥­�)­�
 onto the coordinates ®¥�)�

and ¯¥­�)­�	w.r.t to the axis defined by 

the difference of the mean values of the two classes. Furthermore, we label the 

empirical means of the classes as: 

 

'�)� � ��* °®¥�)�
¥ , (�)� � ��* °¯¥­�)­�

¥  

The distributions of within the subclasses is assumed to be Gaussian with 

variance ���  , the distribution of the subclass means is also assumed to be 

Gaussian with variance ��� and generally different expected values '̂, (̂. In the 

case of the two categories are undistinguishable the two are identical (no 

signal), '̂ � (̂,. For every realization the means of '�)�, (�)­� will be different 

from '̂, (̂, and thus we also introduce the empirical means '̅, (̅, which underlie 

the estimated signal ± � '̅ − (̅.  

Besides, we can compute the whole variance of the data set as: 

�� � 12 !²���®� + ²���¯�% � ²���®� �< !® − '̂%� @	 
�	< ³l® − '�)�n + �'�)� − '̂�´� @	� 	�µ� +	��� 

 

Under these conditions, assuming that the whole data variance ��is constant, 

the expected CCR for such data can be estimated as: 
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��H	 � U �¶ �V·¥�a*�¹̧cº�»¼���i�i ��¶�!O�½ ¾º¹̧�¿¼�√�À Á + O�½�º�¿¼�√�À�%  
With ��¶� denoting the normal distribution,	Â � �Ã���,	±Ä � »� K1 + Å̈

, and Æ� �
Å�¨ �1 − Å̈�. 

 

Proof. 

For LDA, the Correct Classification Rate (CCR) can be computed as the 

probability that during testing, a data point of class Q is on the same side of the 

classification threshold  Ç � +È�.È�  as the empirical mean '̂, and a data point of 

class � is on the opposite side: 

��H � !P�® @ Ç, '̅ @ (̅� + P�® < Ç, '̅ < (̅�%P® + !P�¯ @ Ç, '̅ @ (̅� +P�¯ < Ç, '̅ < (̅�%P¯ (1) 

 

Under the assumption of symmetry between class labels, i.e., P® � 	P¯ � 	 *�, 

equally distributed subclass means, and equally within-class distributions 

equation (1) must be symmetrical with respect to exchanging Q and � and thus 

we can obtain the CCR from 

 

�H � P�® @ Ç, '̅ @ (̅� + P�® < Ç, '̅ < (̅�(2) 

Denoting μ� � lμ�*�, … , μ�¨�n&
and ( � l(�*�, … , (�¨�n&

, we thus can write 

��H �	Ê�μ� �( Pl® @ Ç, '̅ @ (|Èμ� , ( nP�μ� , ( � + 	Pl® < Ç, '̅ < (|Èμ� , ( nP�μ� , ( � 

�	U�μ� �( P�μ� , ( �!U �®P�®|μ� , ( �Ë�'̅ − (̅� +	U �®P�®|μ� , ( �Ë�(̅ − '̅�	Ì�iiÌ % (3) 

with Ë denoting the Heaviside step function. Substituing ® � Ç + d, the 

integrals of ®	can be transformed to 
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��H �	U �di� U�μ� �( P�μ� , ( � × !P�d + Ç|μ� , ( �Ë�'̅ − (̅� + P�−d + Ç|μ� , ( �Ë�(̅ −
'̅�% (4) 

The subsample means are independent	P�μ� , ( � � ∏ P�'�)��∏ P�(�)­��)­) . 

Moreover, (	�� only affects the integral with its mean '̅, and thus �( P�( � ��(̅P�(̅�. 

 

All distributions are assumed to be Gaussians. We therefore can express all 

probabilities by Gaussian distribution	Í. In particular 

P�®|μ� , ( � � 	 1¤ °Íl® − '�)�, �µn)  

P�(̅� � Í�(̅ − (̂, ��/√¤� 

Pl'�)�n � Í�'�)� − '̂, ��� (5) 

Inserting eqs. (5)  into eq. (4), we obtain: 

��H � 1¤ °Ê �d�Î�'�)�Í�'�)� − '̂, ���) �i
�) 	 

× !Ê �+È
�i (̅Í�(̅ − (̂, ��/√¤�Í�d + Ç − '�)�, �µ� 

+U �i+È (̅Í�(̅ − (̂, ��/√¤�Í�−d + Ç − '�)�, �µ�% (6) 

Substituting Ï � 	 (̅ − '̅	the integrals over (̅	can be combined such that 

��H � 1¤ °Ê �d Ê �Ïi
� �Î�'�)�Í�'�)� − '̂, ���) �i

�) 	 
× !Í�'̅ − (̂ − Ï, ��/√¤�Í�'̅ − '�)� + d − Ï/2, �µ� 

+Í�'̅ − (̂ − Ï, ��/√¤�Í�'̅ − '�)� − d + Ï/2, �µ�% (7) 

Completing squares in the last two Gaussian distributions and integrating over 

all '�)�with ϗ ≠ �, yields 
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��H � 1¤ °Ê �d Ê �Ïi
� Ê�'�)�Í� '�)� − '̂, ���i

�) 	 
× ¤!Í�'�)� �1 − ¤ a���∗c�� + �¤ − 1�'̂ + ��Ò�Ï, d�, Ʃ∗� × Í�'�)�

− ���Ï, d�, �∗/√¤� 

+¤!Í�'�)� �1 − ¤ a�Ã�∗c�� + �¤ − 1�'̂ + ��Ò�Ï, d�, Ʃ∗� × Í�'�)� − ���Ï, d�, �∗/
√¤�% (8) 

 

With ��∗�� � ¤�µ� + ���, �Ʃ∗�� � �¤ − 1���� + �¤�µ��/�∗��, �±�Ï, d� � (̂ ±�d + Ï/2�, 

And 

�±Ò�Ï, d� � �±¤ ad − Ï2c��� − ¤��(̂ ± Ï��µ��/��∗�� 

 

Again, completing squares of the first and third Gaussian distribution results in 

 

Íl'�)� − '̂, ��nÍ �'�)� − �±�Ï, d�, �∗
√¤�

� Í�'̂ − ���Ï, d�, �∗∗/√¤� × Í�'�)� − F±�Ï, d�, �∗���∗∗ � 

With ��∗∗�� � ¤��� + ��∗�� and 

F±�Ï, d� � 	 '̂ � �∗�∗∗�� + ¤�±�Ï, d� a ���∗∗c�
 

Solving the integral over '�)�in eq. (8) as a convolution of two Gaussians, we 

end up at 

��H � Ê �d Ê �Ïi
� !Í�'̂ − (̂ − �d + Ï/2�, �∗∗/√¤�i

� 	 
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× Í�ª�'̂ − (̂� − ÕÏ + Öd, Ʃ∗∗/√¤� 

+Í�'̂ − (̂ + �d + Ï/2�, �∗∗/√¤� × Í�ª�'̂ − (̂� + ÕÏ + Öd, Ʃ∗∗/√¤�% (9) 

 

With ª � 1 − 2 a �Ã�∗∗c�
,	Õ � 1 − a �Ã�∗∗c�

, Ö � 2 a �Ã�∗∗c�
, and  

�Ʃ∗∗�� �	 �Ʃ∗�� + ��1 − ¤ a���∗c�� �∗���∗∗ ��
 

 

Introducing the signal ± � '̂ − (̂	and substituting ( � d + Ï/2 ∓ ± yields 

��H � 2Ê �d Ê �(i
� Í�(, �∗∗/√¤�i

�i 	 
× !Ø�( − d + ±�Í�d − Õ( − ±/2, Ʃ∗∗/�2¤�� 

+Ø�( − d − ±�Í�d − Õ( + ±/2, Ʃ∗∗/�2¤��% 12 

� Ê �( \]^_�( + ±�2
�i

�i
Í�(, �∗∗/√¤�!O�½ ¾ Ö( + ±
2Ʃ∗∗/¤Á + O�½��2 − Ö�( + ±
2Ʃ∗∗/¤ �% 

� U �¶ �V·¥�a*�¹̧cº�»¼���i�i ��¶�!O�½ ¾º¹̧�¿¼�√�À Á + O�½ ¾º�¿¼�√�ÀÁ% (10) 

With ��¶� denoting the normal distribution,	Â � �Ã���,	±Ä � »� K1 + Å̈
, and Æ� �

Å�¨ �1 − Å̈�. 
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Appendix B: Corollary 1 

The expected correct classification using LDA for data sets with no effect ('̂ �(̂) is an increasing function of subclass variance ��, a decreasing function of 

number of subclasses ¤, and is 50% only when I��	 � 	0. 

 

Proof. Substituting for equation 10 with ± � 0 we have 

��H � 	 Ê �¶ \]^_ �a1 + Â¤c¶�2
�i

�i
��¶�!O�½ Ù¶ Â¤√2ÆÚ + O�½ � ¶√2Æ� 

� Ê �¶ \]^_�¶�2
�i

�i
��¶� ÛO�½ Ù¶ Â¤√2ÆÚ + O�½ � ¶√2Æ�Ü 

Noting that \]^_�¶�, O�½�¶� are odd functions and ��¶� is and even function of ¶, we have  

��H � 12Ê �¶�i
�

��¶� ÛO�½ Ù¶ Â¤√2ÆÚ + O�½ � ¶√2Æ�Ü 

� 12Ê �¶�i
�

��¶�O�½ Ù¶ Â¤√2ÆÚ + 12Ê �¶�i
�

��¶�O�½ � ¶√2Æ�	 
� 12 − 1R ��Ýd�_�Æ� + 12 − 1R ��Ýd�_ �Æ¤Â � 

� 1 − *w ���Ýd�_�Æ� + ��Ýd�_ aÀÅ̈ c� � 1 − *w ��Ýd�_ �K2�Å̈ − 1�� (11) 

 

Note that the closed form of CCR in data sets with no effect size depend only on 	I�� � 	Â and ¤. 
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To complete the proof, since arctan is a monotonic increasing function for 

positive elements, we have to show that K2�Å̈ − 1� is increasing function of ¤ 

and decreasing function of Â which is already evident. 

 

To validate our analytical results, we generated a series of simulations with 

totally 4, 8, or 16 subclasses and varied ICC. We classified these data sets with 

LDA and compared the CCRs with results of Equation 11. Figure Appendix B1 

shows that results of the analytical solution and simulations are almost identical. 

 

 

Figure appendix B1: Expected CCRs for data sets with nested subclasses when the size of 

main effect is zero using equation 11 (gray lines) and simulated (black lines). The figure 

confirms that the analytical solution and simulations produce very similar results. 
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Abstract 

Neuronal learning activity is reactivated during sleep but the dynamics of this 

reactivation in humans are still poorly understood. Here we use multivariate 

pattern classification to decode electrical brain activity during sleep, and 

determine what type of images participants had viewed in a preceding learning 

session. We find significant patterns of learning-related processing during rapid 

eye movement (REM) and non-REM (NREM) sleep, which are generalizable 

across subjects. This processing occurs in a cyclic fashion during time windows 

congruous to critical periods of synaptic plasticity. Its spatial distribution over 

the scalp and relevant frequencies differ between NREM and REM sleep. 

Moreover, only the strength of reprocessing in slow-wave sleep influenced later 

memory performance, speaking for at least two distinct underlying mechanisms 

between these states. We thus show that memory reprocessing occurs in both 

NREM and REM sleep in humans, and that it pertains to different aspects of the 

consolidation process. 
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Introduction 

Sleep helps us retain new memories 1,2. A reactivation of newly encoded memory 

traces in the sleeping brain is thought to underlie this effect. Replay of learning-

related neuronal firing patterns has been observed in single cell recordings of 

the hippocampus and neocortex in animals 3-6. Importantly, this sleep-

dependent activation of neurons has recently been shown to promote synaptic 

plasticity 7. Reactivation of neuronal ensembles involved in motor learning is 

associated with changes in the task-related spiking behavior of these neurons in 

the rodent brain 8. Furthermore, oscillation related to memory replay during 

sleep have been linked to greater memory strength and precision in rats 9. The 

dynamics of this memory trace reactivation in humans, however, are still poorly 

understood. When memory content was associated with auditory or olfactory 

cues during learning, a re-exposure to these cues during sleep can improve later 

recall performance 10,11. Moreover, activity on the level of brain areas suggests 

reactivation during sleep 12,13. It is unclear whether this re-expression of 

learning related activity reflects the specific content of a previous learning task. 

Recent advances in multivariate pattern classification (MVPC) methods have 

made it possible to investigate covert cognitive processes in continuous brain 

activity. Using such methods on brain activity measured with fMRI, Horikawa et 

al. 14 have recently shown that it is possible to decode the content of visual 

imagery occurring at sleep onset. In the present study, we used MVPC to test 

whether the human sleep electroencephalogram (EEG) contains information 

about what has previously been learned, and thus indicates reprocessing of 

memory content.  

In our experiment, participants learned pictures of either faces or houses before 

sleeping in the laboratory for a whole night. During this time, brain activity was 

recorded using high-density EEG. We then employed MVPC methods to detect 

information about the previously learned material in electrical brain activity 
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during sleep (Fig. 1, also see Materials and Methods). We investigated 

continuous sleep EEG instead of evoked activity, because we were specifically 

interested in spontaneous information processing in sleep. Cued reactivation, 

which has already been demonstrated in humans with functional MRI, shows 

that stimulus processing in sleep can lead to memory improvement. Previous 

studies, however, have not shown that such activity actually occurs 

spontaneously in humans. After demonstrating the existence of such an activity, 

we were also interested in the time course of memory reprocessing across the 

night and in sleep-stage specific activity. It has been discussed previously 

whether such reactivation occurs during NREM or REM sleep, and both have 

been implicated in memory reactivation and consolidation 12,13,15,16. 

Furthermore, activity that is present only at specific times during the night 

indicates that the underlying process is related to discrete periods of 

reprocessing rather than prolonged ongoing activity.  

Figure 1: Data preprocessing and MVPC analysis. (a) After artefact rejection, data from 

the remaining 4-s trials of 128-channel sleep EEG data was frequency transformed. To 

reduce the dimensionality of the data and to increase the signal-to-noise ratio, spectra 

were averaged over trials and neighboring channels. Next, spectra of all channels were 
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normalized separately to make them comparable, and a spectral sharpening filter was 

applied to remove the baseline spectrum and enhance differences between neighboring 

frequency bins. (b) Training data was strictly separated from validation data in all MVPC 

analyses. Dimensionality of the data was further reduced in a two-step training 

procedure. Individual channel performance was determined using separate single-

channel classifiers. An average of data from all channels weighted by their standalone 

performance was then used to train a classifier to distinguish between face and house 

stimulus conditions. Finally, classification was tested on independent validation data.  

Results 

Detecting memory reprocessing using MVPC 

We tested whether MVPC can decode from the sleeping brain’s activity what has 

been learned beforehand. Instead of looking for a single feature that can 

distinguish between conditions, MVPC methods take into account and compare 

the whole temporospatial pattern of activity. Given their multivariate nature, 

they are more suitable to deal with this kind of high-dimensional problem than 

is classical statistics, which usually relies on multiple univariate testing. Because 

EEG activity differs greatly between sleep stages and even more so between 

sleep and wakefulness, activity cannot be compared directly between these 

states. We therefore used between subject analyses to compare recordings from 

the same sleep state, i.e. the classifier was trained and tested on sleep data. If 

MVPC can determine from the sleep recording which type of visual stimulus a 

subject has learned before sleep, this implies that stimulus-specific reprocessing 

of the learned material occurs during sleep.  

Our results show that human sleep EEG contains information about which kind 

of visual stimuli was learned before sleep (Fig. 2a). Classification accuracies for 

this distinction exceed classification rates expected from chance guessing of the 

classifier, as determined by randomization statistics, during two of the four 90-

min segments (Fig. 2b). Thus, the sleep EEG reflects previous learning during 
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these intervals. Moreover, both NREM and REM sleep contain relevant 

information (Fig. 2a, b and c).  

We used two different approaches to ensure that findings are significant and 

generalizable. First, we generated randomly labeled data, which, per se, cannot 

contain any information, and compared the performance of the classifier on 

these random data with its performance on the original observed data (see 

Supplementary Fig. 1). This test allows to determine the probability of an 

outcome by chance given that the data contain no actual information and thus 

provides exact significance values. Because this process, which repeats the 

whole analysis for each random iteration, is computationally intensive, we could 

complete only 1001 repetitions, which allows significance testing with a lower 

limit of precision of p=0.001. In the case of REM sleep of the 2nd 90-min sleep 

segment, none of these 1001 random iterations produced higher classification 

rates than the real data, thus allowing the conclusion of p<0.001. 

Figure 2: Classification results. (a) The content of a previous learning experience can be 

determined from sleep EEG during the second and fourth 90-min segment of the night. At 

these times, classification accuracy for all sleep stages is significant or approaches 
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significance. The hatched area shows the 95% confidence interval. Classification 

accuracies for S4 sleep as well as REM sleep in the second sleep segment remain 

significant after Bonferroni-Holm correction considering all tests (S4: p = 0.048, REM: p = 

0.014). (b) Significance was assessed using permutation tests to ensure that classification 

rates are higher than can be expected from data sets with random labeling of the data, i.e. 

not containing any information. To estimate the displayed null-distribution from which 

exact significance levels of classification results can be determined, the MVPC analysis 

was repeated 1001 times on the actual data with randomly shuffled condition labels. Dark 

grey areas show those randomizations during which classification accuracy on randomly 

labeled data exceeded accuracy obtained on correctly labeled data. (c) If classification 

accuracies are similar between the training and validation sets, generalizable 

information could be extracted and the classifier was not overfitted on the training data 

set. This was the case for all analyses that were significant, i.e. for data from the second 

(circles) and fourth (stars) 90-min segments of the night. Here, patterns detected in one 

set of subjects during classifier training can be generalized to data from a new set of 

subjects. Data from the first (triangles) and third (squares) 90-min segments show low 

training accuracy low accuracy on validation data, indicating that the classifier could not 

extract information about previous learning content from these periods of the night.  

The second approach to ensure generalizability was to compare classification 

accuracies of training and validation sets. If accuracy is higher during training 

than during validation testing, the classifier was overfitted to the training data 

set and uses random feature characteristics that allow separating classes only in 

the training data , which are not predictive for new data, and thus cannot be 

generalized. Ideally, classification rates for the validation data should resemble 

those for the training data. This shows that the classifier can extract meaningful 

information from the training set, and that the learned pattern can be 

generalized to new data. It can be seen in Fig. 2b that for data from the 1st 

(triangles) and 3rd (squares) 90-min sleep segment training accuracy was low 

(<0.625), but classification accuracy for the validation set was still worse. Thus, 

EEG from these periods does not seem to contain information pertaining to 

previous learning experience. On the other hand, EEG from the second (circles) 

and fourth (stars) 90-min sleep segment consistently shows higher training and 
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validation accuracies, and in some cases shows nearly perfect generalization 

between training and validation.  

Relating reprocessing to behavioral memory performance 

Participants showed good recognition performance in both the face and house 

learning conditions (see Supplementary Table 1). We did not observe forgetting 

across the night. This result is in line with other studies on declarative memory 

consolidation that have shown stable maintenance of memory performance 

over sleep but significant decline of memory performance after sleep-

deprivation or daytime wakefulness 17,18. Memory consolidation, i.e. the 

overnight change in performance, was positively correlated with time spent in 

sleep stage S4 (r64 = 0.254, p = 0.043; Supplementary Table 2), confirming that 

sleep was related to the consolidation of this task. We also tested the relation of 

memory consolidation with the strength of memory reprocessing, which was 

inferred from the classification probability estimates provided by the classifier. 

We find that memory reprocessing during SWS shows a positive relation with 

memory consolidation (r64 = 0.329, p = 0.008; Supplementary Table 3 and Fig. 

3). This correlation remained significant after removing the three most 

influential values determined by leverage statistics (r61 = 0.28, p = 0.030). 

Memory reprocessing during sleep stage S2 and REM sleep were not related to 

memory performance (S2: r64 = 0.099, p = 0.436; REM: r56 = -0.199, p = 0.142). 

A regression model including strength of reprocessing in S2, SWS and REM sleep 

as predictors for memory consolidation found that only reprocessing during 

SWS correlated significantly with memory consolidation (β = 0.339, p = 0.020, 

explaining 9.7% of the variance), reprocessing in S2 and REM sleep was no 

significant predictor (S2: β = -0.064, p = 0.656, explaining 0.3% of the variance; 

REM: β = -0.112, p = 0.436, explaining 1% of the variance). Slopes differed 

significantly between SWS and REM sleep (strength of reprocessing × sleep 

stage interaction: p = 0.008), indicating that memory reprocessing in these sleep 

stages is differentially related to memory consolidation and could thus have 

different functions.  
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Figure 3: Correlation between classification probability estimates and overnight memory 

consolidation during SWS sleep. The more confident the classifier was in placing each 

subject in the correct condition, the more positive the change in memory performance 

during later recall. Spearman’s rho is reported. 

 

We then controlled whether general sleep features such as time spent in deep 

sleep could possibly account for an increase in both behavioral performance as 

well as classifiability of the data. Entering strength of reprocessing in SWS and 

time spent in this sleep stage in a regression model, we found that only strength 

of reprocessing in SWS was a significant predictor of memory consolidation and 

explained a larger part of the variance (β = 0.335, p = 0.006, explaining 11.2% of 

the variance), whereas duration of SWS was only marginally significant 

(β = 0.214, p = 0.074, explaining 5.2% of the variance). Strength of reprocessing 

in SWS was independent of time spent in that sleep stage (r64 = -0.025, 

p = 0.423) and the partial correlations support the view that strength of 

reprocessing in SWS and duration of SWS are independent predictors of 

overnight memory consolidation (partial correlation with strength of 

reprocessing during SWS controlling for the duration: r64 = 0.342, p = 0.006; 

partial correlation with duration of SWS controlling for strength of 
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reprocessing: r64 = 0.226, p = 0.074). Analogous regression analyses for strength 

of reprocessing and time spent in S2 and REM sleep yielded no significant 

results, as could be expected from the general lack of association with overnight 

memory consolidation (all p > 0.143). 

While the proportion of variance in overnight memory consolidation that is 

explained by memory reprocessing during SWS is low in absolute terms, it 

should be noted that factors such as alertness or individual differences can 

introduce considerable variance in memory performance. Classifier 

performance similarly provides a measure of reprocessing strength that is 

affected by many sources of between-subject variance as it is estimated based 

on other participants’ sleep EEG characteristics. Despite these difficulties, we 

demonstrate that memory reprocessing during SWS is significantly related to 

overnight memory retention, suggesting a robust underlying effect.  

 

Temporal dynamics of reprocessing 

We detected processing of learning material during sleep in the second and 

fourth 90-min segment of the night (Fig. 2). To investigate this pattern on a more 

fine-grained scale, we split the night into smaller intervals and analyzed the time 

course of classification accuracy across the night with a resolution of 4.5 min, 

using the same procedure as above. Again, we find two periods of the night 

during which brain processing seems to be more strongly related to previous 

learning, congruent with the time windows reported above. During other 

periods, no learning-related information was detected (Fig. 4).  
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Figure 4: Time course of classification accuracy across the night. Separate analyses were 

performed for sleep stages S2, S4, and REM sleep. Classification performance follows an 

oscillatory pattern and peaks around three and six hours after learning in all stages. 

Timing therefore is more relevant to when memory reprocessing occurs than sleep stage 

 

Spatial characteristics of reprocessing and frequency contributions 

Brain activity in REM and NREM sleep is not alike. It is thus reasonable to 

assume that also information processing in these states will take different forms. 

To investigate this, the relative contribution of each frequency band to 

classification can be assessed in terms of classification weights and compared 

between sleep stages (Fig. 5). Our results show that the frequencies that are 

important for identifying previous learning content differ between sleep stages. 

Activity in the range of sleep spindles (11-16 Hz) can distinguish previous 
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learning conditions only in NREM sleep (Fig. 5a). Theta-band activity (4-8 Hz), 

on the other hand, has higher discriminative power in REM sleep. Slow 

frequencies below 4 Hz were informative in both NREM and REM sleep, but their 

topographies differ (Fig. 5b). Although there is some resemblance between the 

feature weight plots and power spectra of sleep, it has to be noted that the 

feature weights do not follow the typical 1/f logarithmic decrease of EEG power 

spectra, but remain essentially constant after a linear decrease in delta 

frequencies. Moreover, actual classifier input was not the power spectra but the 

preprocessed data seen in the lower panel of Fig. 1a.  

Figure 5: Frequency contributions to memory reprocessing in NREM and REM sleep. (a) 

Discrimination weights show that in NREM sleep stages S2 and S4 spindle activity in the 

frequency range between 11 and 16 Hz is predictive for learning content. In REM sleep, 

theta, alpha, and higher beta frequencies contributed more to correct classification. Slow 

frequencies below 4 Hz were informative in all sleep stages. (b) The topography of 

predictive channels clearly differs between NREM and REM sleep. In NREM sleep stage S2, 

mainly delta and spindle frequencies contributed to correct classification. Similarly, 

frontal delta power and right parieto-temporal spindle activity were most informative for 

classification during NREM sleep stage S4, together with posterior higher frequency 

activity. REM sleep shows a more complex pattern. Here, slow oscillations of central 

electrodes, frontal and temporal theta as well as occipital alpha contributed most to 

discrimination between learning conditions. 
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Discussion 

We show that memory processing of a single memory task occurs during all 

stages of sleep. Reprocessing in REM and NREM sleep, however, has different 

effects on later memory performance. Although a large number of studies in 

rodents have observed the occurrence of spontaneous memory reactivation 

during NREM sleep 4-6,19,20, linking this reactivation with improvements in 

behavioral performance has remained a challenge. Contrary to rodents, task 

difficulty and training time can be easily adjusted in studies on humans, giving 

greater power to analyses on behavioral effects. It has early been suggested that 

memory reactivation during sleep has functional significance for strengthening 

new memories 21. Indirect evidence for this assumption has accumulated over 

the last years 10,11,22-24. A recent study in rats found that sleep-dependent 

reactivation of neurons involved in a simple motor learning task is associated 

with changes in the task-related spiking behavior of the same neurons 8. In this 

way, reactivation may be related to later improvements in performance. We now 

show that content-related reprocessing of declarative learning material during 

NREM sleep influences later memory strength in humans. Conversely, memory 

reprocessing during REM sleep does not show this graded relation with 

overnight memory retention. 

A number of animal studies detected reactivation of learning activity also in REM 

sleep 25,26, yet empirical evidence for this has remained ambiguous. We find that 

memory content is reprocessed during both NREM and REM sleep. The 

differential significance of memory reprocessing for behavioral performance 

between these states points towards at least two different mechanisms 

underlying memory reprocessing during sleep.  

Already early on, it has been suggested that memory is formed in a two-stage 

process. Labile memory traces are formed during exploratory behavior, when 

theta power is high. Later, during rest or sleep, long-lasting traces are formed 

9,21. Similarly, it has been proposed that during sleep, slow-wave-related NREM 
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activity and theta-related REM activity have complementary, mutually 

dependent functions 27. We find that reprocessing occurs in both NREM and REM 

sleep. Interestingly, we can demonstrate a correlation between reprocessing 

and later memory performance only for NREM sleep. This supports the view that 

reprocessing during REM sleep and NREM sleep serves distinct functions. Our 

finding is in line with previous studies, which show no behavioral benefit of 

reactivating memories by cueing during REM sleep 10. Interestingly, memory 

replay observed during REM sleep has also been shown to have different 

characteristics than that in NREM sleep, including a smaller time-compression 

factor, which is less suited for the induction of long-term potentiation 20,25. 

A number of recent studies stress the importance of either light NREM sleep, 

SWS or REM sleep for memory consolidation, respectively 2,27,28. Based on these 

findings, theoretical accounts have suggested that NREM and REM sleep may 

interact during memory consolidation, emphasizing different aspects of this 

process. The sequential hypothesis of sleep stresses that different sleep stages 

have to occur in succession to effectively influence memory function. It assigns 

specific and substantially different, but interdependent roles to NREM and REM 

sleep regarding the processing of memories 29. Other accounts suggest the 

different processes contributing to memory processing during NREM and REM 

sleep are separate and independent. Thus, the function of NREM and REM sleep 

in consolidation is assumed to pertain to different aspects or forms of memory 

30. We find that relevant activity occurs in close temporal proximity over 

different stages, and that a single memory task triggers learning-related activity 

in both NREM and REM sleep EEG. It therefore seems possible that both sleep 

stages cooperate in the processing of memories. The differential function of 

NREM and REM sleep stages is still controversial 7,16,31. One recent hypothesis is 

that cortical activity and long-range connectivity differs between sleep stages, 

allowing local memory reactivation and potentiation in SWS, and network-wide 

information integration in REM sleep 32,33. This view fits with our findings.  
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Our data indicate that memory processing in sleep is cyclic in nature and its 

occurrence might depend more strongly on timing than on the stage of sleep. 

Instead of occurring in SWS throughout the whole night, reprocessing was 

detected in S2, S4 as well as REM sleep in the 2nd 90-min period, but not in the 

1st or 3rd. Whether this consolidation window depends on time after learning, 

time after sleep onset, or circadian rhythm cannot be determined in the present 

study, because these were not varied independently. 

Because reprocessing peaks during distinct times of the night, it is unlikely that 

the detected activity simply reflects ongoing reverberation of learning-related 

activity or selective fatigue in the involved brain areas. Instead, it must reveal a 

process that is selectively initiated at specific points during sleep. The finding 

that reprocessing is strongest around three and around six hours after learning 

fits well with experiments that found critical periods during memory 

consolidation, during which memory is particularly sensitive to disruption 34. 

Thus, inhibiting protein synthesis 15 min and 3 h after learning, but not 1 h after 

learning impairs hippocampal one-trial avoidance learning 35. Similarly, in 

drosophila, different behavioral memories and corresponding neuronal traces 

develop during different time windows over several hours after conditioning 36, 

a process that has been linked to systems memory consolidation in humans 37.  

Moreover, our finding of discrete periods for memory reprocessing is 

reminiscent of previously reported ‘sleep windows’, i.e. times during which 

sleep has to occur after learning to strengthen memory 38,39. Along the same 

lines, Stickgold et al. have found that, for consolidation of a visual discrimination 

task, mainly duration of SWS and REM sleep in the first and the last quartile of 

the night, respectively, are most critical parts of the night 40. Although that task 

presumably does not rely on hippocampal memory reactivation and might 

therefore follow a different temporal trajectory, the similarities suggest the 

possibility of a common mechanism. Further behavioral, electrophysiological 

and molecular investigations are required to elucidate this underlying 

mechanism. Moreover, it has still to be ascertained whether the other periods of 
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the night have memory-related functions that cannot be detected by our 

method.  

Because the amount of signal related to memory reprocessing across the whole 

night is very small compared to the unrelated noise, we used MVPA, which is a 

very sensitive method to detect systematic differences between large sets of 

data. However, multivariate approaches are not better suited to supply 

information about univariate hypotheses than classical tests. Using feature 

weights and individual channel accuracies (Fig. 5) can to some extent illustrate 

the features that are carrying relevant information. However, these features 

must be seen within the entire pattern. The following discussion of individual 

physiologic features should therefore be seen as a starting point for studies 

focusing on a smaller feature search space.  

When looking at the frequencies contributing to correct classification, we find 

that spindle activity during NREM sleep contributes to the distinction of 

previous learning conditions. This is consistent with the fact that sleep spindles 

increases after learning 41 and correlate with performance 42. Parietal sleep 

spindles accompany task specific reactivation seen in fMRI 43. Moreover, frontal 

slow-waves, as they appear in our analysis for NREM sleep, have previously 

been shown to correlate with performance gains observed after memory 

reactivation induced by cueing during sleep 44.  

Apart from confirming that learning-related information resides in frequency 

bands that have previously been implicated in memory consolidation, such as 

NREM spindles and slow oscillations, our results hint at promising objects for 

future study. We suggest that particular attention should be given to the function 

of REM sleep theta. Frontal theta power increases during successful memory 

encoding and retrieval, and theta is also involved in memory processing during 

wakefulness, such as in controlling, maintaining and storing memory content 45. 

Theta has been linked to memory and sleep for a long time, but has only recently 

received renewed attention 16,46. For instance, theta band activity during sleep 

has been shown to support formation of imprinting memory in chicks 47. In 
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humans, another recent study found increased frontal theta power after 

presentation of cues related to a verbal learning task during sleep 44,48. 

Moreover, frontal theta in REM sleep is predictive of successful dream recall 49. 

These findings stress the active role of theta activity in memory reprocessing 

during sleep. 

It is difficult to demonstrate reactivation directly in humans. 

Electroencephalographic activity during sleep differs greatly from that during 

wakefulness in both the time domain and the frequency domain. Thus, 

amplitude changes over time, as well as power spectral density cannot be 

compared between these states. This is owing to different modes of generation 

and transmission of electrical activity during sleep 50,51. Previous data have 

shown that reactivation can be both time-compressed as well as changing in 

location (e.g. neocortical replay following hippocampal activity) 19,52. Markers 

reflecting reactivation of neuronal firing patterns observed during learning can 

thus be altered by a large number of operations, which renders the search space 

virtually infinite. Because this makes wake-to-sleep classification problematic, 

and a within-subject design would have to rely on between-session classification 

that is confounded by various session differences (e.g. recording artefacts), we 

instead opted for a between-subject classification approach. This allowed us to 

detect information pertaining to a previous learning experience in data 

recorded in the same state of consciousness. Previous attempts to observe 

memory reactivation during off-line periods succeeded in showing memory 

reprocessing during wakefulness, but not during sleep 53-55. Using an approach 

that trains and tests the classifier in the same state of consciousness made it 

possible for us to observe material-specific memory reprocessing during sleep 

and study its dynamics and relation to later behavioral performance. 

We used multivariate pattern classification to decode the content of a previous 

learning experience from electrical brain activity during sleep. By linking brain 

activity during sleep with the content of previous learning, our findings bridge 

studies from multicell recordings in animals, which show learning-related 
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reactivation, to human imaging studies, which show reactivation of brain 

regions during sleep. Pattern classification methods are powerful tools for 

investigating the covert mechanisms that link electrical brain activity and 

behavior, and can thus contribute to our understanding of these complexities.  

Materials and Methods 

Subjects. In this study, we recorded EEG data from 32 healthy subjects with no 

history of neurological or psychiatric disorders. All participants were students, 

between 18 and 30 years old, native German speakers and non-smokers. They 

were right handed as measured by Edinburgh Handedness Inventory-test 56. 

Chronotype was assessed via the Munich Chronotype Questionnaire 57 and 

experimental timing was adjusted to participants’ usual sleep times (sleep 

midpoint 03:56h ± 01:33h [mean ± SD]). Subjects were regular sleepers with a 

habitual sleep duration of 6-9 h. They did not report any chronic or acute sleep-

related problems in an initial interview. Moreover, they did no shift work and 

did not change time zones in the six weeks leading up to the experiment. 

Participants were told to refrain from drinking alcohol, coffee and tea on the 

days of the experiment and did not take any drugs that affect the central nervous 

system. All experimental procedures were approved by the local ethics 

committee (Department of Psychology, Ludwig-Maximilians-Universität 

München). Informed consent was obtained from all subjects. 

Experimental Design. Participants slept in our laboratory on three different 

nights. The first of these served as an adaption night, to accustom subjects to the 

environment and to sleeping under the experimental conditions (e.g. wearing an 

EEG cap). In the subsequent two experimental nights, subjects completed an 

intensive image learning task, during which they studied pictures of either faces 

or houses. For an exemplary subject, learning took place from 8:30 p.m. to 

10 p.m. after the EEG electrodes had been attached, and memory was tested 

immediately afterwards. The subject then went to bed at 11 p.m. for an 8-h sleep 
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period. Memory was tested once more in the morning. The times of the 

experiment were advanced or delayed such that time to bed corresponded to 

the individual habitual bedtime of the participants. All subjects participated in 

two experimental nights, each time learning only one type of images, in a 

counterbalanced fashion. The two nights were spaced at least 5 days apart. 

Sleepiness was tested with a visual analog scale in the evening and after sleep in 

the morning (Supplementary Table 4).  

Learning Task. Subjects studied a set of 100 images of faces or houses in 30 

repetitions. Pictures were shown in random order and individual images were 

always presented in one of the four quadrants of the screen. Participants had to 

remember the individual pictures and learn to associate the images with the 

quadrant in which it was presented. Participants were tested once immediately 

after learning and again in the next morning after a full night of sleep. During 

both immediate and delayed testing, 100 learned images were presented 

together with a set of 50 new images in random order. Participants first had to 

indicate via keypress whether they had seen the image before (with left hand on 

main keyboard: 1-sure, 2-probably, 3-probably not, 4-surely not. Responses 1 

and 2 were counted as a “yes” response, responses 3 and 4 were counted as a 

“no” response). For “yes”-responses, also the quadrant in which the image had 

been presented was probed (with right hand on numerical pad: 1-lower left, 3-

lower right, 7-upper left, 9-upper right). Image material was derived from two 

different sources: 300 pictures of houses were taken from German online real 

estate sites, 300 pictures of neutral faces were taken from Minear & Park 58.  

This task was chosen because it is a declarative task that is supposed to involve 

the hippocampus, and sleep-related reactivation has mainly been shown in the 

hippocampus 10,19. Face and house processing are clearly different in event-

related EEG potentials and fMRI 59. Face processing activates the mid-fusiform 

gyrus (fusiform face area) and the occipital face area in the occipito-temporal 

cortex as well as other temporal areas 60, whereas processing of houses activates 

the parahippocampal place area and the lateral occipital gyrus 61,62. 
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EEG Recording. Sleep EEG was recorded using an active 128 channel Ag/AgCl-

electrode system (ActiCap, Brain products, Gilching, Germany) with 1 kHz 

sampling frequency and a high-pass filter of 0.1 Hz. Electrodes were positioned 

according to the extended international 10–20 electrode system. For sleep 

scoring, recordings were split into 30-s epochs and sleep stages were 

determined on electrodes C3/C4 according to standard rules by two 

independent raters 63. Average sleep durations are reported in Supplementary 

Table 5. 

Methodological Considerations. One of the challenges in sleep research is the 

difficulty of recording large sample sizes and the large amount of data that is 

recorded. The goal of classical analyses, which use multiple univariate 

comparisons (e.g. classical fMRI analysis), is to find single features that are 

strong enough independently to distinguish between conditions. Such features 

are unlikely to exist in high-density all-night EEG recordings, which thus present 

a problem better addressed by a multivariate approach. In multivariate 

analyses, it is of interest whether the overall pattern of data contains 

information that is relevant to distinguish conditions. A prominent method that 

can deal with large numbers of data dimensions is MVPC. However, high 

dimensional, low sample size data, like EEG recordings, pose specific problems 

for classical statistical testing as well as for MVPC 64,65. For this kind of data, it is 

important to minimize the number of features. If the signal across features is 

highly correlated, as in EEG data, this can be achieved by averaging, which 

reduces dimensionality of the data and at the same time increases signal-to-

noise ratio. We developed a two-step procedure that uses spatial averaging and 

a channel-based weighted average to improve classifiability of our data (Fig. 1). 

These steps are described in detail in the sections Data Preparation and 

Multivariate Pattern Classification (MVPC) below. 

Data Preparation. For artefact rejection and further analysis, EEG data was 

split into 4-s trials. Artefact rejection was done in a semiautomatic process using 

custom MATLAB scripts. Based on the distributions of different parameters of 
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the raw data and power spectrum, rejection thresholds were chosen for each 

recording individually to make sure that only a minimal number of artefacts 

remained in the data. We tested for disconnected electrodes (outliers in overall 

spectral power), sudden jumps of the signal (outliers in amplitude changes) and 

muscle artefacts (outliers in spectral power between 110 and 140 Hz). Outlier 

thresholds were automatically suggested based on the variance of the data and 

manually confirmed upon visual inspection of parameter distributions and of 

the raw data. Trials containing artefacts were removed from the data set, 

channels that contained too many trials with artefacts were removed entirely 

and interpolated using routines provided by EEGLAB 66. Whether individual 

epochs or channels were to be removed was determined automatically so that 

data loss was kept minimal. Artefact-free trials were then transformed into the 

frequency domain using Fourier transformation. To obtain smooth spectra, 

Welch’s method was used for this, averaging over 10 Hamming windows of 2-s 

length with 95% overlap, resulting in a final data resolution of 0.5 Hz. Data was 

used up to a maximum frequency of 30 Hz.  

The subsequent steps for data preparation were implemented to 1) increase 

signal-to-noise ratio, 2) reduce dimensionality of the data, and 3) adapt the 

signal for between-subject classification. First, we averaged power spectra 

across electrodes within a radius of approximately 3 cm around the 32 evenly 

spread locations of the extended 10-20-system to decrease the number of 

redundant features and increase signal-to-noise ratio as well as spatial 

similarity between subjects. We then separately averaged over all artefact-free 

trials available for each 90-min segment and sleep stage, to obtain a reliable 

estimate of spectral properties. This also ensures that an equal number of 

epochs per subject enters analysis, which is important for classification to 

remain unbiased. To remove amplitude differences between channels, which 

are caused by the distance of each channel to the reference electrode, spectra of 

all channels were separately normalized between zero and one. This also 

removed between-subject variability in general spectral power.  
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Because baseline EEG power spectra are highly similar and differences between 

conditions can be expected to be of smaller magnitude, these differences need 

to be enhanced within the spectra. We thus applied a spectral sharpening filter, 

which removes the baseline spectrum and emphasizes differences between 

neighboring frequencies in a final preparation step. To achieve this, we 

subtracted a moving average of six neighboring frequency bins (window size: 

3 Hz) from the signal. This accentuates the smaller differences in power 

between frequencies within the spectrum. This is a valid procedure because 

neighboring data points in the power spectrum represent neighboring 

frequencies from the same signal and are therefore strongly correlated. 

Subjects were only included in the analysis if they had at least 40 artefact-free 

trials within the respective sleep stage and segment (i.e. 160 s of data). Only 

segments and stages with at least 11 subjects were analyzed. The number of 

subjects and trials available for each 90-min segment and sleep stage can be 

found in Supplementary Table 6. As can be seen from that table, the amount of 

data available was unrelated to classifier performance.  

Multivariate Pattern Classification (MVPC). In the present study, we tested 

whether electrical brain activity during sleep holds information about the 

content of previously learned visual stimuli. Instead of the typically used 

multiple univariate tests, we employed a multivariate classification approach, 

which can detect information contained in the overall pattern of brain activity, 

but is not distinguishable from single features.  

Sleep EEG recordings from 64 nights (32 subjects, two conditions each) were 

analyzed using a classification algorithm developed on the basis of linear 

support vector machines (SVM). The aim was to detect material-specific 

information in the data. Please note that whereas the experiment followed a 

within-subject design, classification was done between subjects, with both 

nights of each participant (face and house conditions) assigned either to the 

training, test, or validation set. All analyses were done with the Matlab 

implementation of libsvm 3.1 (http://www.csie.ntu.edu.tw/~cjlin/libsvm). EEG 
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recordings pose problems typical of high dimensional, low sample size data 

(potential feature space of 128 channels times 60 frequency bins). We thus 

preprocessed the data to reduce the number of features and increase signal-to-

noise ratio (see Fig. 1 and Data Preparation), averaging over neighboring 

channels to lower the number of channels to 32. To further enhance relevant 

features, we used a stepwise procedure for classification, which first regarded 

every channel as an independent classifier and then combined outcomes of this 

first step for the final analysis.  

We split data into independent training and validation sets. In a first step, one 

linear SVM was trained for each of the 32 averaged EEG channels on all but one 

subject of the training set to see how much each channel contributes to 

distinguishing the content of learning conditions (‘face’ learning or ‘house’ 

learning). This channel-based classification was cross-validated in a leave-one-

out procedure on each subject, and the obtained classification accuracies were 

averaged over all cross-validation runs. In the second step, this average 

classification accuracy from each channel was used as a weight to obtain a 

weighted average of the 32 channels. The main SVM was then trained on this 

weighted training set and classification accuracy tested on the independent 

validation set. The main reason for weighted averaging of channels was to 

reduce feature space dimensionality, because feature weights cannot be reliably 

determined if sample size is much smaller than the number of features 67. Apart 

from this, weighted averaging can amplify relevant information in the data. This 

two-step classification process was cross-validated on independent data using 

280 repetitions of a 5-fold procedure, which covers the whole data set with five 

independent validation sets.  

We used permutation tests to assess significance. These tests sample the 

distribution of the null hypothesis by random shuffling of the original data, 

which is repeated a large number of times. To obtain the correct null-

distribution for our data, we randomly shuffled condition labels, i.e. the two 

conditions of each subject were randomly labeled as ‘face’/‘house’ or as 
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‘house’/’face’, effectively removing all relevant data pertaining to the effect of 

interest, while keeping other dependencies in the data constant. We then 

calculated classification accuracies for the randomly labeled data to estimate the 

random distribution. This was repeated 1001 times. Significance was calculated 

by determining the percentage of times that classification on randomly labeled 

data produced accuracies that were equal to or higher than the classification 

accuracy obtained from the actual data. If randomly labeled data did not result 

in a classification accuracy equal to or higher than the actual data, then the p 

value was determined by the number of random repetitions that were calculated 

(see Supplementary Fig. 1). 

To assess whether reprocessing occurs uniformly across time, we split the night, 

starting from time to bed, into five 90-min segments, which are likely to include 

a whole sequence of sleep stages (S2, S3, S4, and REM sleep; see Supplementary 

Table 5 for details of sleep stage distribution). In this first analysis, we classified 

separately for all segments and sleep stages to assess the temporal dynamics of 

memory reprocessing. To determine a more fine-grained time course of 

classification accuracy, we moved a sliding window with a width of 22.5 min in 

steps of 4.5 min across the night. We then estimated classification accuracy 

within each window using the same two-step classification procedure as before. 

Analysis was done separately for each sleep stage and the same inclusion 

criteria were applied as in the main analysis. 

To assess which features of the sleep EEG are particularly predictive, we 

analyzed classification weights. To assess which features of the sleep EEG are 

particularly predictive, we analyzed classification weights. The absolute value of 

the weights are informative about how much each frequency band and channel 

contributes to successful distinction. We averaged the classification weights 

over all repetitions of the training procedure, resulting in an averaged 

32 (channels) × 60 (frequency bins) weight matrix. To examine frequency 

contributions to memory reprocessing, we further averaged the absolute values 

of these weights over all channels (see Fig. 5a). The topography of predictive 
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channels (see Fig. 5b) was obtained by averaging absolute values of 

classification weights for each channel over different frequency bands (delta: 

0.5-3.5 Hz, theta: 4-7.5 Hz, alpha: 8-10.5 Hz, spindle: 11-15.5 Hz, beta: 16-30 Hz). 

We chose to analyze classification weights for frequencies obtained in the inner 

train-test loop (Fig. 1) because they can give additional information on the 

topography of predictive channels. These frequency weights are confirmed by 

weights from the outer validation loop (Fig. 1). Frequency contributions to 

classification assessed from both loops show the same pattern (see 

Supplementary Fig. 2). 

Behavioral Performance. For assessment of memory performance, we 

calculated the memory sensitivity index d’ as the difference of z-values between 

correctly recognized old items vs. falsely recognized new items (z[hits] – z[false 

alarms]). Performance pre and post sleep, as well as memory consolidation 

across the nights is reported in Supplementary Table 1. We correlated overnight 

memory consolidation with time spent in different sleep stages (see 

Supplementary Table 2). To examine whether memory reprocessing during 

sleep is associated with better memory performance, we correlated the 

probability estimates for classification given by the classifier with overnight 

memory consolidation measured as the difference between post sleep and pre 

sleep d’ values. No such correlation was found for encoding or retrieval 

performance per se (see Supplementary Table 3). For each subject, results of all 

280 repetitions of the 5-fold cross-validation procedure were averaged. We 

conducted this analysis separately for different sleep stages. All correlations 

report Spearman’s rho. 

Data availability 

All data and codes are available from the corresponding authors upon request. 
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Supplementary Information 

 

 

Supplementary Figure 1: Randomization statistics for classification in all segments 

(rows) and sleep stages (columns). Dark grey areas indicate those randomizations where 

classification accuracy for randomly labeled data exceeded the classification accuracy 

obtained with correctly labeled data.  
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Supplementary Figure 2: Absolute classification weights for the outer loop SVM. Note that 

weights estimated in the outer loop closely resemble those obtained in the inner loop of 

the two-step classification procedure (Figure 5). 
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Supplementary Table 1. Memory sensitivity d’ in the face and house learning conditions 
 

pre post difference p-value 

Face pictures 3.72 ± 0.12 3.66 ± 0.12 -0.07 ± 0.04 0.116 

House pictures 3.42 ± 0.13 3.34 ± 0.14 -0.08 ± 0.05 0.167 

Values are given as mean ± SEM. Two sided t-test for dependent measures is reported. Note that 

no significant forgetting occurred across the night.  

 

 

 
Supplementary Table 2. Correlations between total time spent in sleep stages and 

memory consolidation (difference in d’ post-pre) over sleep for all available nights 

 r p n 

S2 -0.139 0.272 64 

S3 0.106 0.405 64 

S4 0.254* 0.043 64 

REM -0.048 0.707 64 

*Significant two-sided test at threshold of α < 0.05; Spearman’s rho is reported. 

 

 

 
Supplementary Table 3. Correlations between classifier performance (probability 

estimates for classification) and memory consolidation (difference in d’ post-pre) over 

sleep for all available nights 

 difference pre post  

 r p r p r p n 

S2 sleep 0.099 0.436 0.023 0.859 0.044 0.733 64 

SWS sleep 0.329** 0.008 -0.055 0.667 0.065 0.608 64 

REM sleep -0.199 0.142 0.069 0.611 -0.036 0.791 56 

** Significant two-sided test at threshold of α < 0.01; Spearman’s rho is reported. 

 

 

 
Supplementary Table 4. Levels of fatigue in the face and house learning conditions  

 
Face night House night p-value 

evening 5.3 ± 2.0 5.5 ± 1.8 0.772 

morning 3.7 ± 1.9 3.6 ± 1.6 0.924 

Values are given as mean ± SD. Participants were asked to rate their sleepiness on a visual 

analogue scale with the end points 0 (not tired at all) and 10 (very tired). Two sided t-test for 

dependent measures is reported. 

 



CHAPTER 4: DECODING THE SLEEPING BRAIN’S ACTIVITY  

 

144 

 

 

Supplementary Table 5. Sleep data (mean ± SD) 
 

W S1 S2 S3 S4 REM 

1st 90-min segment 20.3 ± 11.8 4.8 ± 2.7 29.9 ± 11.8 14.2 ± 6.7 17.9 ± 13.8 2.4  ± 3.3 

2nd 90-min segment 3.5 ± 7.8 2.1 ± 1.9 50.9 ± 12.8 11.1 ± 6.6 10.0 ± 8.7 11.0 ± 6.3 

3rd 90-min segment 4.2 ± 10.9 2.2 ± 2.0 48.5 ± 10.9 8.0 ± 5.1 5.1 ± 5.7 20.3 ± 7.4 

4th 90-min segment 6.9 ± 12.8 2.7 ± 2.2 49.0 ± 13.4 5.6 ± 5.1 1.8 ± 3.8 21.0 ± 8.2 

5th 90-min segment 6.9 ± 11.4 4.9 ± 3.8 42.4 ± 12.0 3.3 ± 4.4 1.5 ± 4.1 26.4 ± 11.2 

total 48.2 ± 41.5 18.7 ± 8.9 237.7 ± 40.4 42.5 ± 15.0 36.4 ± 23.7 96.0 ± 23.8 

Average sleep latency was 20.1 ± 17.0 min (mean ± SD). Please note that total time does not 

correspond to the sum of 90-min segment values because participants slept slightly longer than 

five 90-min sleep segments. 

 

 

 

 
Supplementary Table 6. Number of participants and trials that entered classification in 

different segments and sleep stages. Only data points with N ≥ 11 and number of 

trials ≥ 40 for both the face and house learning conditions were entered into analysis in 

each segment and stage. 

 S2 S3 S4 REM 

 N trials N trials N trials N Trials 

1st 90-min segment 31 472 ± 47 30 355 ± 100 18 455 ± 84 3 279 ± 118 

2nd 90-min segment 32 494 ± 33 20 321 ± 102 12 375 ± 93 18 360 ± 74 

3rd 90-min segment 29 483 ± 46 16 300 ± 121 6 344 ± 111 24 417 ± 89 

4th 90-min segment 24 478 ± 53 9 252 ± 110 2 257 ± 148 19 443 ± 59 

5th 90-min segment 20 454 ± 94 0  0  18 415 ± 115 

Values for total number of trials collapsed over the face and house conditions that entered 

classification, given as mean ± SD.  
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