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Abstract 

Continuous electroencephalogram (EEG) provides an excellent possibility to 

track memory traces from brain rhythmic activity and to study the underlying 

neural signatures of memory processes. To do so, a promising approach is to 

employ multivariate pattern classification (MVPC). These methods lend 

themselves very well to decode the information that resides within the whole 

distributed spatiotemporal patterns of activity. Using these methods, it is 

possible to detect traces of memory during sleep or wakefulness, which will 

reveal valuable insights about the memory function in these brain states. 

However, there are several methodological problems to decode memory traces 

from brain activity in paradigm-free (offline) periods. Continuous EEG is prone 

to elevated levels of noise and distortions and has much higher dimension than 

single-trial EEG, because of the longer recording time and lack of prior 

information about relevant time points that are informative for classification. In 

this case, detecting traces of memory involves searching the whole 

spatiotemporal feature space to find where memory representations reside. 

Such high-dimensional data, especially when signal-to-noise ratio and sample 

size are low, pose problems for classification and interpretation of MVPC result. 

To address these problems, in this thesis we aim: 1) to develop a proper 

classification algorithm that enables decoding of continuous EEG to detect 

memory traces in paradigm-free periods 2) to find EEG correlates of material-

specific memory representations during offline periods of sleep and 

wakefulness, and 3) to provide a systematic method to interpret and validate 

the specificity of the MVPC results. 

In chapter 2, we used our MVPC method to detect the ‘when’ and ‘where’ of 

sleep-dependent reprocessing of memory traces in humans. Although replay of 

neuronal activity during sleep has been shown in animal experiments, its 



 

 

dynamics and underlying mechanism is still poorly understood in humans. We 

applied MVPC to human sleep EEG to see if the brain reprocesses previously 

learned information during sleep and looked for dynamics, neural signatures 

and relevance of different sleep stages to such process. Here, we developed a 

two-step classification algorithm that incorporates channel-based feature 

weighting as well as a tailored preprocessing scheme that is optimized to decode 

continuous EEG data for between-subject classification. With this method, we 

demonstrate that the specific content of previous learning episodes is 

reprocessed during post-learning sleep. We find that memory reprocessing 

peaks during two distinct periods in the night and both Rapid Eye Movement 

(REM) and non-REM sleep are involved in this process.   

To detect traces of short-term memory representations, we employed MVPC in 

chapter 3 to test whether electrical brain activity during short-term memory 

maintenance satisfies the necessary conditions for mnemonic representations; 

i.e. coding for memory content as well as retrieval success. We found that it is 

possible to decode the content maintained in memory during delay period and 

if it is subsequently recalled mainly from temporal, parietal, and frontal areas. 

Importantly, the only overlap between electrodes coding for retrieval success 

and memory content was found in parietal electrodes, indicating that a 

dedicated short-term memory representation resides in parietal cortex. 

Finally, chapter 4 aims at providing a systematic approach to validate the 

specificity of MVPC result. We investigate the consequences of the high 

sensitivity of MVPC for stimulus-related differences, which may confound 

estimation of class differences during decoding of cognitive concepts. We 

propose a method, which we call concept-response curve, to determine how 

much decoding performance is specific to the higher-order category processing 

and to lower-order stimulus processing. We show that this method can be used 

to quantify the relative contribution of concept- and stimulus-related 

components and to investigate the spatiotemporal dynamics of conceptual and 

perceptual processing. 
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Introduction 

Memory processes  

Memory formation and retrieval is one of the fundamental capabilities of 

humans, as well as other living organisms. It provides the ability to adapt 

behavior based on experience and is therefore essential for survival. It allows 

for a goal-directed behavior and has the capacity to integrate new experiences 

with the long-term knowledge network and make it accessible upon recall. 

 Memory functions comprise three essential processes: encoding, consolidation, 

and retrieval. Encoding is the process of getting information from perceived 

items into the memory, which results in formation of a new memory trace into 

the brain network. New memories are however labile and are susceptible to 

interference and forgetting. Later, a neuronal mechanism called consolidation 

stabilizes the new memory traces and integrates them into the pre-existing 

knowledge network. During consolidation, the newly encoded fresh memories 

are actively reprocessed and transformed into a stable state which is long-

lasting and resistant to interference. During retrieval, the previously encoded 

memories are recalled and re-accessed by the brain. It is postulated that 

memory consolidation occurs most effectively during offline period of sleep 

while encoding and memory retrieval take place during wakefulness 

(Diekelmann and Born, 2010; Rasch and Born, 2013) 

Today, it is evident that traces of memory, also known as engram, emerge from 

co-activation of one or multiple distributed brain networks which are 

manifested in the rhythmic electrical brain activities. Such neural oscillations 

are considered to promote communication of memory systems and are held to 

play a mechanistic role in all three aspects of memory processes (Duzel et al., 

2010; Headley and Paré, 2017). Although the biological existence of engrams is 

accepted, the search for memory traces in the brain is still an ongoing research 
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and a consensus about the actual mechanism, locations of the process, and 

certain oscillations that code for specific aspects of memory is yet to emerge 

(Chadwick et al., 2010). In doing so, a major difficulty is that multiple brain areas 

are involved in encoding, maintaining and consolidation of memories and 

therefore, identifying the precise location and mechanisms involved in memory 

processes requires computational models that integrate information from 

multiple scales of temporal and spatial activities.  

A promising approach to investigate memory traces, is when they are actively 

maintained after learning (e.g. working memory maintenance period) or when 

they are reactivated to be stabilized (e.g. during sleep). These offline periods of 

time appear to constitute critical windows during which memory traces are 

reprocessed, strengthened and transformed into the long-term memory 

representations. In this thesis, we investigate memory-related processes during 

post-learning offline periods of sleep and short-term memory maintenance to 

identify how brain reprocesses previously learned information. 

Sleep and Memory reprocessing  

Human sleep consists of two main stages; namely rapid-eye-movement (REM) 

and Non-REM sleep; which alternate and span the sleep period in a cyclic 

manner (see Figure 1). Both types of sleep are characterized by distinct and 

typical electroencephalogram (EEG) and physiologic patterns (see Figure 1B). 

Non-REM sleep is dominant in the first half of typical night sleep, whereas REM 

sleep becomes more prevalent and extensive towards the ends of sleep period. 

Today, it has become clear that sleep is not a simple period of rest for the brain, 

but that it performs an important function for brain maintenance (Hobson, 

2005). In particular, memory has been shown to benefit from sleep (Diekelmann 

and Born, 2010; Gais and Born, 2004; Rasch and Born, 2013). Memory recall is 

better after sleep than after wakefulness, and memories are more resistant to 

interference (Benson and Feinberg, 1975; Ekstrand et al., 1977; Plihal and Born, 

1997). It has been proposed that during sleep, previously learned information is 
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reactivated, i.e. those neuronal circuits involved in learning/storing a certain 

memory become active again. Patterns of neuronal activity, similar to those 

during learning, occur repeatedly during the night, leading to a strengthening of 

the synaptic pathways involved and thus to a consolidation of the memory itself 

(Schwindel and McNaughton, 2011; Stickgold and Walker, 2007).  

Figure 1: Typical human sleep structure (A) From electroencephalographic brain activity, 

sleep is characterized by the periodic patterns of rapid eye movement (REM) sleep and 

non-REM sleep. N-REM sleep includes slow-wave sleep (SWS, stages 3 and 4) and lighter 

sleep stages 1 and 2. SWS occurs predominantly in the first half of the night (early sleep), 

whereas REM sleep prevails in the second half of the night (late sleep) (B) Both types of 

sleep are determined by their specific patterns of electrical field potential. In particular, 

Non-REM sleep is characterized by the presence of slow oscillations, spindles and sharp 

wave ripples. On the other hand, REM sleep features ponto-geniculo-occipital (PGO) 

waves and theta activity. Figure adapted and reprinted with permission from Diekelmann 

and Born (2010). 
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Support for the idea of memory reactivation during sleep comes mostly from 

animal studies, which could show using single-cell recordings of neuronal 

activity in rats that individual neurons fire during sleep with the same 

correlational pattern and order as they did during previous learning (Ji and 

Wilson, 2007; Lee and Wilson, 2002; Wilson and Mcnaughton, 1994). This first 

evidence for reactivation of learning-related information in post-learning sleep 

was further investigated and extended by many more recent studies (Euston et 

al., 2007; Peyrache et al., 2009; Ribeiro et al., 2004). While these animal studies 

show highly specific reactivation patterns of neuronal activity, they did not show 

a relationship with behavioral memory performance that would indicate the 

functional significance of these reactivated patterns. On the other hand, human 

behavioral studies exist which show that an external reactivation of memories 

during sleep by presenting auditory or olfactory cues that were associated with 

learning task can lead to memory enhancement (Oudiette and Paller, 2013; 

Rasch et al., 2007; Rudoy et al., 2009). Moreover, some neuroimaging studies in 

humans using PET and fMRI have found learning-dependent off-line activity on 

the level of brain regions associated with learning during subsequent sleep 

(Peigneux et al., 2004), but also during wakefulness (Peigneux et al., 2006). 

These studies, however, can only determine if a certain brain area responsible 

for learning is active during post-learning sleep, and they neither can show if 

this activity is actually reflecting the content of previous learning experiences, 

nor whether it is actually replaying previous activity patterns (Duyn, 2012). In 

chapter 2, we investigated if human electrical brain activity during sleep 

contains information about previous learning episodes. We used 

electroencephalogram (EEG) to examine if material-specific memory 

reprocessing happens during sleep and when and how it preferentially occurs. 

Short-term memory maintenance 

Short-term memory is considered as a temporary buffer for holding a limited 

amount of information in an active and readily-available state in the absence of 

sensory input (Eriksson et al., 2015; Larocque et al., 2014). When we retain 
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information, multiple cognitive systems and brain areas are involved in active 

maintenance of information, in relating the information to the integrated 

knowledge coded in the brain, and in successfully retrieving the information 

from those activities.  A large body of evidence from recent models propose that 

short-term memory maintenance results from an interaction between long-

term memory representations, perceptual representations and basic processes, 

such as attention (D'Esposito and Postle, 2015; Eriksson et al., 2015; Jonides et 

al., 2008; Larocque et al., 2014). Based on this view, short-memory memory 

representations are linked to many distributed brain areas because those 

component processes that implement short-term memory involve distributed 

brain networks. This includes prefrontal cortex, parietal cortex, and the regions 

responsible for coding item-specific memory representations such as sensory 

areas which interact during maintenance period (Eriksson et al., 2015).  

Recent studies show that persistent stimulus-related neural activation during 

offline periods underlie the capacity to maintain attended items (LaRocque et 

al., 2013; LaRocque et al., 2016; Lewis-Peacock et al., 2012), and may foster the 

encoding of new long-term memory representations (Olsson and Poom, 2005). 

However, it is still unclear if there are certain processes or brain structures 

unique and specific to short-term memory or whether its function emerges from 

combination of processes that can be explained by other terms than short-term 

memory. More importantly, if such a dedicated store for short-term memory 

existed, which brain region or processes would code such information? In 

chapter 3, we examined if electrical brain activity during short-term memory 

maintenance satisfies the mnemonic criteria, i.e. coding for memory content and 

retrieval success, and investigated where identified short-term memory 

representations reside. 
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Decoding memory traces from electrical brain activity 

using multivariate pattern classification 

Oscillatory fluctuations of brain activity are held to play a mechanistic role in 

different aspects of memory, including encoding and maintenance of 

information, as well as consolidation and retrieval of stored memories (for a 

review see Duzel et al., 2010). Hence, electroencephalogram (EEG) which 

measures electrical brain activity with a high temporal resolution provides an 

excellent possibility to study the underlying mechanism of various memory 

processes. A promising approach to do so is to use multivariate pattern 

classification (MVPC). These methods lend themselves very well to decode the 

information represented within distributed activity patterns. They take into 

account the information that reside in the whole spatiotemporal pattern of 

activity, instead of looking for features that individually allow distinction 

between conditions. By taking the interdependencies between features into 

account, MVPC approaches provide increased sensitivity compared to their 

classical mass-univariate counterparts (for reviews see Haxby et al., 2014; 

Haynes, 2015; Norman et al., 2006). Moreover, for MVPC-based approaches, the 

problem of multiple comparison is bypassed and the generalizability of their 

findings does not depend on arbitrary significance thresholds and assumptions 

of statistical normality.   

Aside from enhanced sensitivity and multivariate nature of MVPC which makes 

it a good fit for analyzing high-dimensional data, more arguments favor 

employing MVPC particularly for memory research. Importantly, MVPC assumes 

that neural activity is distributed over multiple brain areas, time, and frequency 

bands (Haynes, 2015; Pouget et al., 2000) and looks for multivariate patterns of 

activity that code a certain cognitive property. This complies well with the idea 

that neural representations of memory traces are distributed and it is the co-

activation of all the sub-processes that code for a specific memory trace, in 

contrast to the mass-univariate approaches that rely on a local difference 
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between experimental conditions and try to find specific regions or time points 

that encode a memory.  

Over the last decade, MVPC has been successfully applied to decode traces of 

memory from continuous brain activity in different states of consciousness.  For 

example, it has been shown that using MVPC methods on brain activity 

measured by functional magnetic resonance imaging (fMRI), traces of individual 

episodic memories (Chadwick et al., 2010), as well as spatial memories 

(Hassabis et al., 2009) can be decoded from human hippocampus. Moreover, a 

recent study has shown that it is possible to decode the content of visual imagery 

occurring at sleep onset using fMRI data (Horikawa et al., 2013). Since MVPC has 

evolved into a quite well-established method in fMRI research, it has been 

employed by many studies in different ways to investigate memory function (for 

a comprehensive review seeRissman and Wagner, 2012). Nonetheless, these 

methods have recently begun to get momentum in the field of 

electrophysiological data as well (for example see Fuentemilla et al., 2010; 

Jafarpour et al., 2013; Newman and Norman, 2010).  

Technically speaking, MVPC methods are a type of machine learning techniques 

where a classifier is trained to find a separation between neural activities 

belonging to different experimental conditions (see Figure 2). These methods 

can be understood as a four-step supervised pattern classification problem 

(Duda et al., 2000; Lemm et al., 2011). The first step is to extract features or 

attributes that quantify the neural activity with respect to experimental 

conditions (see Figure 2A-B). These features could be the activity of the selected 

voxels in fMRI data, or the amplitude of selected electrodes in certain time points 

or frequency power values in EEG data. After that, a classifier is selected to find 

a ‘rule’ that can correctly distinguish between conditions. In the simplest form, 

the decision boundary is a linear hyperplane which partitions the feature space 

into regions with different labels (see Figure 2E).  To test the generalizability of 

the classifier to new unknown samples, only a part of data is used for training 

the classifier and the left-out part is used to test the accuracy (see Figure 2G). 
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Accuracy is defined by the proportion of correctly classified items and is 

typically estimated using cross-validation (Hastie et al., 2001).  Finally, to test if 

the classifier can indeed extract information from the data, the resulting 

classification accuracy is compared to a distribution which is expected by 

chance. To estimate the chance distribution, the class labels are randomly 

relabeled and classification is repeated with the random labels, a procedure 

called permutation test (Nichols and Holmes, 2002). 

Figure 2: Basic principles of multivariate pattern classification approach. (A-B) Brain 

activity at different voxels when presenting different stimuli (e.g. cat or dog) can be used 

as features for classification. (C) When features are independent, the class effect can be 

detected with both univariate and multivariate methods. (D) When features are 

dependent, the class difference can only be detected with multivariate methods that 

assess both features simultaneously. (E) In this case, a linear classifier can find a linear 

decision boundary to distinguish two classes. Two common linear classifiers are linear 
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discriminant analysis (LDA; Fisher, 1936) and linear support vector machines (SVM; 

Duda et al., 2000; Pereira et al., 2009). (F) If linear decision boundaries cannot partition 

the data sufficiently well, nonlinear classifiers like k-nearest neighbor (KNN), Gaussian 

Naïve Base (GNB) or SVMs with nonlinear kernels can be used. (G) To test the 

generalizability of the classifier to new samples, cross-validation is typically done, where 

the data is randomly divided into multiple disjoint subsets of approximately equal size. 

The classifier is then trained repeatedly on the all except one partitions and tested on the 

remaining left-out subset. This results in predicted labels which can be compared with 

the true label to get the accuracy of classification. If there was enough information in the 

training set to make a proper class distinction, the resulting accuracy will be above 

chance level.  Figure adapted and reprinted with permission from Haynes (2015).  

Challenges of using MVPC for decoding memory traces  

Technical challenges for decoding offline periods 

Next to the many theoretical advantages of MVPC, there are a number of 

practical problems when using MVPC-based approaches for decoding memory 

traces from continuous electrical brain activity in offline periods.  

First problem concerns the choice of the MVPC algorithm and the preprocessing 

steps necessary for decoding continuous EEG time series. There are currently 

only a few studies that used multivariate pattern classification on EEG data to 

analyze ongoing brain activity in offline periods. In EEG community, MVPC has 

been mainly applied to brain computer interfaces (BCI), motor imagery, or 

analysis of event related potentials (ERPs). However, because decoding 

continuous EEG in paradigm-free periods has different prerequisites compared 

to decoding trials with a clear onset of events, those approaches are often not 

helpful to decode spontaneous brain activity that is not induced by external 

stimuli. Importantly, continuous EEG has potentially much higher dimension 

than single-trial EEG, because of the longer recording time and lack of prior 

information about relevant time points that are informative for classification. 

Therefore, detecting traces of memory involves searching the whole 
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spatiotemporal feature space to find where memory representations reside. 

Such high-dimensional data, especially when sample size is small, pose specific 

problems for MVPC (Fan and Fan, 2008; Jamalabadi et al., 2016), which should 

be accommodated using proper preprocessing and classification algorithms.   

In addition, EEG signals are prone to elevated levels of noise, missing data, and 

outliers that make the effective usage of EEG data difficult, especially in 

paradigm-free periods when the search space is huge and there is no clear onset 

of events in the signal. The analysis of EEG suffers from the abundance of 

irrelevant brain activities as well as multiple sources of noise and distortions 

which make generalization of signals over subjects a challenging task.  

Furthermore, since EEG signals recorded from different subjects show marked 

differences, the MVPC algorithm needs to deal with additional subject 

variabilities that are not related to the experimental conditions. Such variations, 

especially in low sample size and low effect size data, can explain most of the 

variance in the data and therefore, their effect should be carefully 

accommodated.   

Challenges regarding interpretation of the MVPC results 

Another critical issue is that when there are many features to be fitted and only 

a small number of samples are available (a case which is common in 

neuroimaging datasets), it is often possible to find a good fit for a certain sample 

of data, which, however, cannot be generalized to unknown new samples. 

Therefore, it is a widespread practice to validate the classifier using a test set 

which is statistically independent from training data and compare the accuracy 

to the distribution which is expected from chance. To estimate the chance 

distribution, permutation tests are often done, where the assignments between 

samples and class labels are randomly permuted and classification is repeated 

with random labels (Nichols and Holmes, 2002; Winkler et al., 2014). However, 

such permutation tests are designed only to test if decoding accuracy is indeed 

beyond chance level and cannot assess the source of information that classifier 
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has used to discriminate between experimental conditions. Importantly, when 

decoding traces of semantic memories or cognitive concepts, we are interested 

in identifying category-related memory representations that can generalize 

over items belonging to a category, rather than exemplar-specific 

representations. Therefore, it is important to determine which source of 

information, i.e. category-specific or stimulus-related differences, gives rise to 

decoding performance. Although MVPC-based approaches can resolve if there is 

information in the data about the experimental condition, they are inherently 

limited in their ability to specify the source of information that made the 

distinction possible. At the moment, it still remains an ongoing endeavor to 

provide guidelines and new methods that enable a more thorough 

interpretation concerning the specificity of MVPC results (Schreiber and 

Krekelberg, 2013). 

Aims of this thesis 

Following the challenges and motivated by the potentials of using MVPC for 

decoding memory traces, the main aim of this thesis is threefold: 1) to develop 

a proper classification algorithm that enables decoding of continuous EEG to 

detect memory traces in paradigm-free periods 2) to find EEG correlates of 

material-specific memory representations during sleep and wakefulness, and 3) 

to provide a systematic method to interpret and validate the specificity of the 

MVPC results. 

In the last two decades, a vast amount of research has been conducted to 

investigate various aspects of memory reactivation during sleep and its role for 

consolidation of memories. Although sleep-dependent memory reactivation has 

been well studied in animals (Ji and Wilson, 2007; Louie and Wilson, 2001; 

Peyrache et al., 2009; Wilson and Mcnaughton, 1994), due to the restrictions of 

invasive imaging techniques, its mechanism is still poorly understood in 

humans. In particular, there is no systematic study yet that shows the dynamics 
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of learning-related memory reprocessing during sleep and if this re-expression 

of learning-related activity during sleep contains information about the specific 

content of a previous learning task. In chapter 2, we address these questions by 

applying multivariate pattern classification on human sleep EEG, to see whether 

electrical brain activity during sleep contains information about previously 

learned material. We hypothesized that if memory content is 

reactivated/reprocessed during sleep, it must be possible to determine, solely 

based on sleep EEG, which kind of material was learned before sleep. We used 

MVPC to test this hypothesis and to study the EEG correlates and dynamics of 

memory reprocessing during sleep and the relevance of different sleep stages to 

this process. 

In chapter 3, we applied MVPC to EEG recordings during offline short-term 

memory maintenance period to see if a dedicated storage for short-term 

memory exists and where the corresponding memory representations reside. 

For that, we used MVPC to test whether electrical brain activity recorded during 

maintenance interval satisfies the necessary conditions of a mnemonic 

representation; namely coding for the specific memory content and the retrieval 

success upon recall. If activity in a brain region predicted subsequent memory 

performance and additionally carried information about the content kept in 

memory, it would be compelling evidence for a dedicated short-term memory 

storage. We employed MVPC to investigate brain areas and oscillations that 

separately code for retrieval success or memory content during maintenance 

period and identified those overlapping regions which would be potentially 

suited to harbor short-term memory representations.  

Chapter 4 mainly aims at providing a systematic approach to validate the 

specificity of the MVPC results. Although MVPC is a statistically powerful and 

robust technique to study cognitive mental states (Kamitani and Tong, 2005; 

Tong and Pratte, 2012), its complexity can lead to important methodological and 

conceptual issues. Since these methods are designed to leverage all the 

information contained in the brain activity, any stimulus-related differences 
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between individual elements of the categories (e.g. orientation, shape, color, 

etc.) can drive the decoding performance to higher than chance, even if there is 

no overall difference between categories. In fact, MVPC is sensitive to both the 

effect of interest and to any other confounding factors that drive a difference 

between conditions. In chapter 4, we explore the consequences of the high 

sensitivity of MVPC for stimulus-related differences, which may confound 

estimation of class differences during decoding of cognitive concepts. We 

propose a systematic approach to determine the degree to which decoding 

performance is specific to the higher order category processing or lower order 

stimulus processing. We used this method to quantify the relative contribution 

of these two components and to investigate the spatiotemporal dynamics of 

conceptual and perceptual processing. 

Conclusions and general discussion 

A dedicated two-step classification algorithm to decode memory 

traces from continuous EEG 

When decoding continuous EEG, we identified three main problems that 

restrain MVPC performance: 1) low signal-to-noise ratio, 2) large variability of 

EEG signal between subjects, 3) high dimensionality of the recorded data. 

Together, these problems lead to overfitting and instability of classification 

accuracies. To overcome these challenges, we developed a two-step procedure 

that uses channel-based feature weighting and independent sample validation 

as well as a tailored preprocessing scheme that is optimized to decode 

continuous EEG data for a between-subject classification (Schönauer et al., 

2017; Schönauer et al., in prep).  

We used power spectral density as the representational feature space to track 

memory traces. Spectral features provide a concise data representation which 

directly relates to brain rhythmic activity and is more comparable between 

subjects than EEG time series. However, even in frequency domain, EEG signals 
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from different subjects show marked differences which are often larger than the 

size of effects induced by experimental conditions. If neglected, this subject 

variability significantly reduces signal-to-noise ratio and the performance of 

between-subject classification. Because subject-specific baseline of EEG spectra 

remains fairly constant regardless of experimental conditions, we used spectral 

sharpening filter to remove this baseline, thus emphasizing the between-

condition spectral differences. This significantly increases increased signal-to-

noise ratio and makes data belonging to different subjects more comparable.  

Aside from large subject variability, dimensionality is another factor that limits 

MVPC performance. When there are too many features compared to the number 

of subjects, like in continuous EEG, the classifier becomes instable (e.g. 

covariance estimation becomes systematically distorted in LDA Blankertz et al., 

2011), resulting in prediction accuracies approaching chance (see also Hall et 

al., 2005). In our method, the input signal to the classifier was spatially down-

sampled from 128 to 32 channels by averaging over neighboring electrodes 

which decreases the number of redundant features, increases signal-to-noise 

ratio, and further increases spatial similarity for the comparison between 

subjects.  

Even after down sampling electrodes, the number of features remain too high (> 

1000) compared to the number of subjects available (< 50). To circumvent this 

problem, we developed a stepwise classification procedure in which the spatial 

and spectral features are separated and used in two successive stages. 

Specifically, we first perform a channel-based classification and estimate the 

accuracy based on each channel. In the second step, we use the resulting 

accuracies of the first step to train another linear SVM based on a weighted 

average of data from all channels. Doing this, the parameters of the final 

hyperplane are essentially the product of two factors coding for the information 

either in time or in space. this procedure helps to avoid overfitting because the 

number of features in each step is effectively in the order of the number of 

subjects (samples).  
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With this method, only based on electrical brain activity, we could successfully 

decode 1) time course of memory reprocessing during sleep, 2) memory 

retrieval success, and 3) memory content in short-term maintenance interval. 

Importantly, in all three cases, the significant classification accuracy on 

validation data set was very close to the training accuracy which confirm lack of 

overfitting. In addition, the classification scores showed significant correlation 

with the behavioral performance in each case which further supports the 

relevance of the neural pattern found by our algorithm to the encoded 

memories. 

Decoding reprocessing of memory traces during sleep 

In chapter 2, we investigated human sleep EEG to see if the brain reprocesses 

previously learned information during sleep and looked for neural signatures of 

such process. To detect such reprocessing of material-specific memory traces, 

we employed an indirect approach using multivariate pattern classification. We 

hypothesized that if the content of memory is reprocessed during sleep, it 

should therefore be possible to distinguish between EEG recordings from nights 

that were preceded by different learning situations. If a classifier can detect such 

distinctive patterns in sleep recording to correctly predict the foregoing learned 

material, this can be taken as a sign of active reprocessing of learning-related 

information during sleep. 

We employed MVPC on sleep EEG data that was recorded after participants 

learned pictures of either faces or houses. We found that electrical brain activity 

during sleep contains information about the types of visual stimuli that was 

learned before sleep, indicating that material-specific traces of memory are 

reprocessed during sleep. Using MVPC, we showed for the first time that our 

unconscious brain’s activity directly reflects what we consciously learned before 

sleep.  With the help of pattern classification algorithms, we traced the dynamics 

and neural correlates of memory reprocessing during sleep and its relation to 

subsequent memory performance. By linking sleeping brain activity with the 
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content of previous learning experience, our findings bridge studies from 

multicell recordings in animals, showing learning related reactivation, and 

human imaging studies, showing reactivation of brain regions during sleep 

(Schönauer et al., 2017).  

Temporal dynamics of memory reprocessing during sleep 

The benefits of MVPC combined with temporal precision of EEG enabled us to 

have a more fine-grained look at the timing underlying reprocessing in sleep. 

Using a time-resolved analysis, we found that the classifier detects generalizable 

learning-related information during two distinct periods of the night, three and 

six hours after learning, during which memory processing exhibits peaks at all 

sleep stages (both REM and NREM sleep). These are periods of the night, during 

which brain processing seems to be more strongly related to previous learning, 

whereas during others, no learning-related information can be detected. 

Importantly, these windows are congruous with periods of synaptic plasticity 

and “memory consolidation windows” that have been shown previously in 

animals (Davis, 2011; Igaz et al., 2002). In particular, this finding is also 

consistent with the concept of sleep windows, specific periods during which 

sleep has to occur after learning to strengthen memory. If sleep is prevented 

during these periods, memory performance deteriorates (Smith, 1995, 2001). 

Whether this consolidation window depends on learning or sleep onset cannot 

be determined by our data, but previous experiments indicate a dependency on 

the time after learning (Smith, 1995). Reprocessing, however, is cyclic in nature, 

initiates selectively at specific time points during sleep, and its occurrence 

depends more on timing than on sleep stages.  

EEG correlates of memory reprocessing during sleep 

In addition to the time course of memory reprocessing, sleep EEG can be 

explored regarding the frequency and spatial features that are most predictive 

for reprocessing of the previous learned content. By looking at the classification 
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weights, we found that different frequency bands have a different relative 

contribution to classification in different sleep stages and that the relevance of 

each frequency band for memory reprocessing varies depending on the spatial 

location in each sleep stage.  

Slow frequencies (below 4 Hz) is relevant in both REM and NREM sleep. 

However, the topography of the related activities strongly differs in these sleep 

stages.  In NREM sleep, frontal slow-wave activity is predictive for classification, 

whereas central slow frequencies have higher discriminative power in REM 

sleep, speaking for a different slow-wave-related process in REM than in NREM 

sleep. Sleep spindles (12-16 Hz) can distinguish previous learning conditions 

only in NREM sleep and is localized in parieto-temporal electrodes. This 

complies well with the previous findings that show sleep spindles increase after 

learning (Scholz et al., 2009) and correlate with subsequent memory 

performance (Schabus et al., 2004). On the other hand, frontal and temporal 

theta-band activity (4-8 Hz) shows relatively higher importance in REM sleep 

than in the other sleep stages. This supports older hypotheses about the role of 

REM sleep theta in memory processing that have only recently again received 

renewed attention (Grosmark et al., 2012; Walker and van der Helm, 2009).  

Relation between classifier prediction and subsequent memory 

performance 

We tested the relation between overnight change in memory performance after 

sleep, and the classifier performance which shows the strength of memory 

reprocessing during sleep. Interestingly, behavioral performance, i.e. overnight 

memory retention, was positively correlated with the strength of memory 

reprocessing in slow-wave sleep (SWS), which was inferred from the 

classification probability estimates provided by the classifier. We did not find 

this association for memory reprocessing during light sleep (sleep stage 2) and 

REM sleep. This finding is in line with the previous studies which show no 

behavioral benefit of external memory reactivation during REM sleep (Rasch et 
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al., 2007). On the other hand, the differential significance of memory 

reprocessing for behavioral performance between REM and NREM sleep stages 

indicates different functions of reprocessing during REM sleep and during SWS 

for memory consolidation.  

Decoding memory traces during short-term memory maintenance 

interval 

To detect traces of short-term memory representations, we employed 

multivariate pattern classification in chapter 3 to test whether electrical brain 

activity during short-term memory maintenance interval satisfies the necessary 

conditions for mnemonic representations; i.e. coding for memory content 

(stimulus specificity) as well as retrieval success (relation to performance). 

More specifically, we used MVPC to test whether we can predict solely based on 

EEG during maintenance interval (1) what kind of stimulus is maintained during 

the delay period, and (2) if the content of memory will be successfully recalled 

afterwards. For that, we used two types of Sternberg task (i.e. a short-term 

memory task), once with faces and houses stimuli which recruits maintenance 

of visual information and once with digits and letters stimuli which involves 

verbal rehearsal of information during maintenance period. We showed that the 

subsequent retrieval success can be reliably predicted across subjects for both 

short-term memory tasks. In addition, we can successfully decode if participants 

maintained pictures of faces or houses during the delay period. Interestingly, the 

ability to decode memory content positively correlated with the retrieval 

success of the participants, speaking for a causal relationship between strong 

and faithful memory reprocessing during retention and the success of memory 

maintenance (Schönauer et al., in prep).  

EEG correlates of retrieval success 

Using spatial as well as frequency band-based searchlight analyses, we found 

that retrieval success was mainly coded in the frontal and parietal areas, 
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regardless of the type of the content held in memory (Schönauer et al., in prep). 

In frontal areas, higher frequency activity in the beta and gamma band was 

informative about whether a trial was subsequently remembered. Similarly, 

beta and gamma as well as alpha activity in the medial parietal areas were 

predictive for successful memory maintenance.  

Importantly, we found that frontal areas are involved in successful retention of 

both types of information, but are not predictive for memory content. This 

finding is consistent with previous studies that show frontal activity reflects 

memory-related control processes that are independent of the material content 

maintained in memory (deBettencourt et al., 2017; Sreenivasan et al., 2014). 

Based on this fact and our finding on the contribution of frontal beta for 

successful retrieval of both visuospatial and verbalizable materials, we 

therefore propose that frontal activity in beta band represents a domain-general 

mechanism which is functionally important for control of short-term memory 

processes.  

EEG correlates of memory content 

We could decode the type of visual stimuli (faces or houses) held in memory 

from temporal and medial parietal regions, with several informative channels 

also reaching into lateral occipital areas (Schönauer et al., in prep). In temporal 

cortex, only information in the beta band was predictive for short-term memory 

content, whereas oscillatory activity in theta as well as beta and gamma over 

medial parietal cortex held information about the material content kept in short-

term memory.  

Temporal and lateral occipital regions have been shown to be associated with 

the processing of category-specific visual information from images of faces and 

houses (Han et al., 2013; Jacques et al., 2016; Vuilleumier et al., 2001). Since 

activity in these regions was not informative about retrieval success, we suggest 

that these sensory processing areas harbor the relevant content-related 

information and their activity reflects a reinstatement of the sensory 
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information associated with the content that is maintained in short-term 

memory. 

A dedicated storage for short-term memory representations 

We found that frontal and parietal areas are predictive for subsequent memory 

retrieval, whereas temporal and medial parietal regions contain information 

about the short-term memory content. The only overlap between those regions 

that code simultaneously for retrieval success and memory content was found 

over the medial parietal areas. Therefore, we propose that a dedicated short-

term memory representation resides in medial parietal cortex, where both 

mnemonic criteria are satisfied (Schönauer et al., in prep). This result is in-line 

with the recent literature that this region harbors item-specific memory 

representations (Brodt et al., 2016; Ester et al., 2015; Gilmore et al., 2015). 

Controlling for nuisance variance when decoding cognitive concepts  

Although MVPC is a sensitive and successful method to study cognitive mental 

states, its increased sensitivity makes it susceptible to any confounding factors 

that drives a difference between conditions (Todd et al., 2013; Woolgar et al., 

2014). In contrast to classical statistical analyses where random effects average 

out in the group mean, the multivariate nature of MVPC allows differences to 

accumulate over dimensions (Fan and Fan, 2008; Jamalabadi et al., 2016). 

Therefore, any differences between individual items of categories (e.g. physical 

properties, familiarity, emotionality, etc.) can contribute to the discrimination 

power of the classifier, even if the categories themselves are not different. This 

susceptibility to nuisance effects is a major concern for MVPC, because it can 

lead to significant bias and higher than chance classification accuracy, even 

when the effect of interest is nonexistent (Alizadeh et al., 2017; Jamalabadi et al., 

in prep).  

The high sensitivity of MVPC for nuisance effects has the important consequence 

that it is not clear which source of information, i.e. concept-related or stimulus-
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specific feature, gives rise to decoding performance. Therefore, the specificity of 

the results to the concept under investigation remains unclear.  To make sure 

that decoding results do not reflect nuisance effects, we proposed a method that 

can separate the actual concept-related effect form other nuisance factors, thus 

allowing for a correct interpretation of the source of MVPC results (Alizadeh et 

al., 2017). Inspired by dose-response curves, our method systematically 

manipulates the amount of concept-related information in the data using 

blocked permutation test while the stimulus-related concept-irrelevant factors 

are held constant. This results in a concept-response curve which shows how 

the performance of the classifier changes with varying levels of conceptual 

information. The shape of concept-response curve determines if significant 

nuisance effects are present in the data and if the primary effect of interest goes 

significantly beyond these effects.  

Our results suggest that nuisance effects should be a general concern for all 

neuroimaging studies where there are differences between subgroups of trials 

that lead to existence of subclasses nested within each category. Nested 

subclasses can exist e.g. if several groups of trials are combined into one class, if 

stimuli or types of stimuli are presented repeatedly, or if multiple subjects or 

experimental sessions are included in one analysis. Importantly, it is usually 

difficult to account for confounds induced by nested subclasses because these 

nuisance effects are not systematic and cannot be avoided experimentally. Here, 

concept-response curves can help to quantify the contribution of nuisance 

variance induced by subclasses, by taking the structure of data into account. In 

addition, by introducing different experimental factors as subclasses, concept-

response curves can be used to distinguish the effect of several factors of 

interest to classification.  

In addition to the benefit of concept-response curves for correct interpretation 

of experimental results, our method makes it possible to separate the neural 

correlates of higher-level cognitive processing of concepts from lower-level 

stimulus processing. Providing such information is a challenging task because it 
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requires to fully disentangle, based on neural activity, which spatiotemporal 

aspects of data involve concept-related or stimulus-specific processes. Even if 

classification is possible with high accuracy, it will be questionable whether 

decoding of the concept was achieved on a purely conceptual or perceptual level 

(Murphy et al., 2011; Simanova et al., 2010; Wurm et al., 2015). Our method 

provides a solution for this question. By considering time-resolved windows of 

neural activity, concept-response curves can characterize the temporal 

dynamics of conceptual and perceptual information processing. This is 

particularly important because such effects often cannot be separated 

experimentally.  In addition, our method can provide fine grained details about 

timing and spatial sites of information specific to each process.  

Limitations and outlook 

In this thesis, we developed a multivariate pattern classification algorithm to 

decode traces of memory from offline continuous EEG. We tracked temporal 

dynamics of material-specific memory reprocessing during sleep and found EEG 

correlates of retrieval success as well as content of short-term memory during 

memory maintenance interval. In addition, we investigated specificity of MVPC 

results, and provided a systematic approach to separate higher-level cognitive 

processing from lower-level stimulus processing and tracked the time course of 

the corresponding conceptual and perceptual processes. In relation to the 

current endeavor, we recognize two related open questions which still need to 

be investigated. However, they go beyond the scope of this thesis and can be 

considered interesting follow ups for this research. 

Looking for reactivation: decoding from wakefulness to sleep EEG 

The observation that spatiotemporal patterns of neural activity in hippocampus 

during exploration of a novel environment is re-activated during post-learning 

sleep is concretely shown in animals (Ji and Wilson, 2007; Lee and Wilson, 2002; 
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Wilson and Mcnaughton, 1994). However, given the lack of flexible intracranial 

recordings in humans, it is more difficult to demonstrate sleep-dependent 

memory reactivation directly in humans. In this thesis, we showed that using an 

indirect between-subject classification approach we can detect information 

pertaining to a previous learning experience in sleep data. Using an approach 

that trains and tests the classifier in the same state of consciousness enabled us 

to detect material-specific memory reprocessing (but not reactivation) during 

sleep and study its dynamics and relation to later behavioral performance.  

Nonetheless, it remains an important problem to classify data from wakeful 

encoding to sleep EEG which would directly show memory reactivation in 

humans. For that, one would need to search for actual learning-related 

similarities between wake and sleep EEG to find replay of those patterns of 

activity that are specific to encoding. This is a tedious task because EEG activity 

differs fundamentally between wakefulness and sleep regarding amplitudes and 

frequencies. More importantly, replay of neuronal firing patterns may be 

compressed in time or otherwise transformed in time or space compared to the 

actual learning trials (Diekelmann and Born, 2010; Ji and Wilson, 2007). Thus, a 

direct search to find memory trace reactivation by comparing the changes in the 

power spectral density or amplitude of learning trials to other states of the mind 

becomes practically impossible. It would therefore be necessary to develop a set 

of invariant features that can be used in sleep as well as in wakefulness.  

From decoding accuracy to accuracy maps 

Next to the decoding accuracy which identifies whether two sets of data contain 

systematic differences, we are often more interested to know which subset of 

brain activity contains the most relevant information about experimental 

conditions. It is sensible to expect that machine learning algorithms can be used 

not only to decide whether a particular set of data contains information about a 

specific question, but also to provide insights about which part of the data was 

used to reach that decision. However, it is becoming clearer that multivariate 
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methods are not optimal to answer such univariate questions. That is, MVPC at 

the moment is not better than univariate methods in pinpointing which single 

feature of the two sets actually differs.  

Unfortunately, it is difficult to relate classification accuracy to a subset of 

features (e.g. specific frequency at specific location), which would be more in 

line with the nature of typical univariate methods.  While the pattern of MVPC 

result as a whole is significant, it is challenging to name individual data features 

that contribute to successful classification. At the moment, there are mainly 

three approaches in the MVPC literature to investigate the relevant aspects of 

data; namely searchlight analyses (Kriegeskorte et al., 2006), classifier weights 

(Haufe et al., 2014), and permutation based approaches (Ojala and Garriga, 

2010). However, each of these methods has its own pros and cons and their 

result is often different from each other which causes confusion and difficulties 

regarding interpretation. The main problem is that when MVPC is used, it is not 

even necessary that a single feature contains class-related information to be an 

asset to increase classification accuracy. That is, a feature might not be even 

informative on its own but contributes to classification simply because it 

contains information about the structure of the noise and hence can de-noise 

other class-related features (Blankertz et al., 2011). Such problems make further 

complications in interpreting accuracy maps, especially in the presence of 

thousands of features as in our EEG data. Therefore, I think it is very important 

to conduct new studies to systematically investigate different approaches for 

estimating accuracy maps and to provide a robust algorithm to do so.  
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Abstract  

Neuronal learning activity is reactivated during sleep but the dynamics of this 

reactivation in humans are still poorly understood. Here we use multivariate 

pattern classification to decode electrical brain activity during sleep, and 

determine what type of images participants had viewed in a preceding learning 

session. We find significant patterns of learning-related processing during rapid 

eye movement (REM) and non-REM (NREM) sleep, which are generalizable 

across subjects. This processing occurs in a cyclic fashion during time windows 

congruous to critical periods of synaptic plasticity. Its spatial distribution over 

the scalp and relevant frequencies differ between NREM and REM sleep. 

Moreover, only the strength of reprocessing in slow-wave sleep influenced later 

memory performance, speaking for at least two distinct underlying mechanisms 

between these states. We thus show that memory reprocessing occurs in both 

NREM and REM sleep in humans, and that it pertains to different aspects of the 

consolidation process. 
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Introduction 

Sleep helps us retain new memories 1,2. A reactivation of newly encoded memory 

traces in the sleeping brain is thought to underlie this effect. Replay of learning-

related neuronal firing patterns has been observed in single cell recordings of 

the hippocampus and neocortex in animals 3-6. Importantly, this sleep-

dependent activation of neurons has recently been shown to promote synaptic 

plasticity 7. Reactivation of neuronal ensembles involved in motor learning is 

associated with changes in the task-related spiking behavior of these neurons in 

the rodent brain 8. Furthermore, oscillation related to memory replay during 

sleep have been linked to greater memory strength and precision in rats 9. The 

dynamics of this memory trace reactivation in humans, however, are still poorly 

understood. When memory content was associated with auditory or olfactory 

cues during learning, a re-exposure to these cues during sleep can improve later 

recall performance 10,11. Moreover, activity on the level of brain areas suggests 

reactivation during sleep 12,13. It is unclear whether this re-expression of 

learning related activity reflects the specific content of a previous learning task. 

Recent advances in multivariate pattern classification (MVPC) methods have 

made it possible to investigate covert cognitive processes in continuous brain 

activity. Using such methods on brain activity measured with fMRI, Horikawa et 

al. 14 have recently shown that it is possible to decode the content of visual 

imagery occurring at sleep onset. In the present study, we used MVPC to test 

whether the human sleep electroencephalogram (EEG) contains information 

about what has previously been learned, and thus indicates reprocessing of 

memory content.  

In our experiment, participants learned pictures of either faces or houses before 

sleeping in the laboratory for a whole night. During this time, brain activity was 

recorded using high-density EEG. We then employed MVPC methods to detect 

information about the previously learned material in electrical brain activity 
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during sleep (Fig. 1, also see Materials and Methods). We investigated 

continuous sleep EEG instead of evoked activity, because we were specifically 

interested in spontaneous information processing in sleep. Cued reactivation, 

which has already been demonstrated in humans with functional MRI, shows 

that stimulus processing in sleep can lead to memory improvement. Previous 

studies, however, have not shown that such activity actually occurs 

spontaneously in humans. After demonstrating the existence of such an activity, 

we were also interested in the time course of memory reprocessing across the 

night and in sleep-stage specific activity. It has been discussed previously 

whether such reactivation occurs during NREM or REM sleep, and both have 

been implicated in memory reactivation and consolidation 12,13,15,16. 

Furthermore, activity that is present only at specific times during the night 

indicates that the underlying process is related to discrete periods of 

reprocessing rather than prolonged ongoing activity.  

Figure 1: Data preprocessing and MVPC analysis. (a) After artefact rejection, data from 

the remaining 4-s trials of 128-channel sleep EEG data was frequency transformed. To 

reduce the dimensionality of the data and to increase the signal-to-noise ratio, spectra 

were averaged over trials and neighboring channels. Next, spectra of all channels were 
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normalized separately to make them comparable, and a spectral sharpening filter was 

applied to remove the baseline spectrum and enhance differences between neighboring 

frequency bins. (b) Training data was strictly separated from validation data in all MVPC 

analyses. Dimensionality of the data was further reduced in a two-step training 

procedure. Individual channel performance was determined using separate single-

channel classifiers. An average of data from all channels weighted by their standalone 

performance was then used to train a classifier to distinguish between face and house 

stimulus conditions. Finally, classification was tested on independent validation data.  

Results 

Detecting memory reprocessing using MVPC 

We tested whether MVPC can decode from the sleeping brain’s activity what has 

been learned beforehand. Instead of looking for a single feature that can 

distinguish between conditions, MVPC methods take into account and compare 

the whole temporospatial pattern of activity. Given their multivariate nature, 

they are more suitable to deal with this kind of high-dimensional problem than 

is classical statistics, which usually relies on multiple univariate testing. Because 

EEG activity differs greatly between sleep stages and even more so between 

sleep and wakefulness, activity cannot be compared directly between these 

states. We therefore used between subject analyses to compare recordings from 

the same sleep state, i.e. the classifier was trained and tested on sleep data. If 

MVPC can determine from the sleep recording which type of visual stimulus a 

subject has learned before sleep, this implies that stimulus-specific reprocessing 

of the learned material occurs during sleep.  

Our results show that human sleep EEG contains information about which kind 

of visual stimuli was learned before sleep (Fig. 2a). Classification accuracies for 

this distinction exceed classification rates expected from chance guessing of the 

classifier, as determined by randomization statistics, during two of the four 90-

min segments (Fig. 2b). Thus, the sleep EEG reflects previous learning during 
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these intervals. Moreover, both NREM and REM sleep contain relevant 

information (Fig. 2a, b and c).  

We used two different approaches to ensure that findings are significant and 

generalizable. First, we generated randomly labeled data, which, per se, cannot 

contain any information, and compared the performance of the classifier on 

these random data with its performance on the original observed data (see 

Supplementary Fig. 1). This test allows to determine the probability of an 

outcome by chance given that the data contain no actual information and thus 

provides exact significance values. Because this process, which repeats the 

whole analysis for each random iteration, is computationally intensive, we could 

complete only 1001 repetitions, which allows significance testing with a lower 

limit of precision of p=0.001. In the case of REM sleep of the 2nd 90-min sleep 

segment, none of these 1001 random iterations produced higher classification 

rates than the real data, thus allowing the conclusion of p<0.001. 

Figure 2: Classification results. (a) The content of a previous learning experience can be 

determined from sleep EEG during the second and fourth 90-min segment of the night. At 

these times, classification accuracy for all sleep stages is significant or approaches 
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significance. The hatched area shows the 95% confidence interval. Classification 

accuracies for S4 sleep as well as REM sleep in the second sleep segment remain 

significant after Bonferroni-Holm correction considering all tests (S4: p = 0.048, REM: p = 

0.014). (b) Significance was assessed using permutation tests to ensure that classification 

rates are higher than can be expected from data sets with random labeling of the data, i.e. 

not containing any information. To estimate the displayed null-distribution from which 

exact significance levels of classification results can be determined, the MVPC analysis 

was repeated 1001 times on the actual data with randomly shuffled condition labels. Dark 

grey areas show those randomizations during which classification accuracy on randomly 

labeled data exceeded accuracy obtained on correctly labeled data. (c) If classification 

accuracies are similar between the training and validation sets, generalizable 

information could be extracted and the classifier was not overfitted on the training data 

set. This was the case for all analyses that were significant, i.e. for data from the second 

(circles) and fourth (stars) 90-min segments of the night. Here, patterns detected in one 

set of subjects during classifier training can be generalized to data from a new set of 

subjects. Data from the first (triangles) and third (squares) 90-min segments show low 

training accuracy low accuracy on validation data, indicating that the classifier could not 

extract information about previous learning content from these periods of the night.  

The second approach to ensure generalizability was to compare classification 

accuracies of training and validation sets. If accuracy is higher during training 

than during validation testing, the classifier was overfitted to the training data 

set and uses random feature characteristics that allow separating classes only in 

the training data , which are not predictive for new data, and thus cannot be 

generalized. Ideally, classification rates for the validation data should resemble 

those for the training data. This shows that the classifier can extract meaningful 

information from the training set, and that the learned pattern can be 

generalized to new data. It can be seen in Fig. 2b that for data from the 1st 

(triangles) and 3rd (squares) 90-min sleep segment training accuracy was low 

(<0.625), but classification accuracy for the validation set was still worse. Thus, 

EEG from these periods does not seem to contain information pertaining to 

previous learning experience. On the other hand, EEG from the second (circles) 

and fourth (stars) 90-min sleep segment consistently shows higher training and 
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validation accuracies, and in some cases shows nearly perfect generalization 

between training and validation.  

Relating reprocessing to behavioral memory performance 

Participants showed good recognition performance in both the face and house 

learning conditions (see Supplementary Table 1). We did not observe forgetting 

across the night. This result is in line with other studies on declarative memory 

consolidation that have shown stable maintenance of memory performance 

over sleep but significant decline of memory performance after sleep-

deprivation or daytime wakefulness 17,18. Memory consolidation, i.e. the 

overnight change in performance, was positively correlated with time spent in 

sleep stage S4 (r64 = 0.254, p = 0.043; Supplementary Table 2), confirming that 

sleep was related to the consolidation of this task. We also tested the relation of 

memory consolidation with the strength of memory reprocessing, which was 

inferred from the classification probability estimates provided by the classifier. 

We find that memory reprocessing during SWS shows a positive relation with 

memory consolidation (r64 = 0.329, p = 0.008; Supplementary Table 3 and Fig. 

3). This correlation remained significant after removing the three most 

influential values determined by leverage statistics (r61 = 0.28, p = 0.030). 

Memory reprocessing during sleep stage S2 and REM sleep were not related to 

memory performance (S2: r64 = 0.099, p = 0.436; REM: r56 = -0.199, p = 0.142). 

A regression model including strength of reprocessing in S2, SWS and REM sleep 

as predictors for memory consolidation found that only reprocessing during 

SWS correlated significantly with memory consolidation (β = 0.339, p = 0.020, 

explaining 9.7% of the variance), reprocessing in S2 and REM sleep was no 

significant predictor (S2: β = -0.064, p = 0.656, explaining 0.3% of the variance; 

REM: β = -0.112, p = 0.436, explaining 1% of the variance). Slopes differed 

significantly between SWS and REM sleep (strength of reprocessing × sleep 

stage interaction: p = 0.008), indicating that memory reprocessing in these sleep 

stages is differentially related to memory consolidation and could thus have 

different functions.  
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Figure 3: Correlation between classification probability estimates and overnight memory 

consolidation during SWS sleep. The more confident the classifier was in placing each 

subject in the correct condition, the more positive the change in memory performance 

during later recall. Spearman’s rho is reported. 

 

We then controlled whether general sleep features such as time spent in deep 

sleep could possibly account for an increase in both behavioral performance as 

well as classifiability of the data. Entering strength of reprocessing in SWS and 

time spent in this sleep stage in a regression model, we found that only strength 

of reprocessing in SWS was a significant predictor of memory consolidation and 

explained a larger part of the variance (β = 0.335, p = 0.006, explaining 11.2% of 

the variance), whereas duration of SWS was only marginally significant 

(β = 0.214, p = 0.074, explaining 5.2% of the variance). Strength of reprocessing 

in SWS was independent of time spent in that sleep stage (r64 = -0.025, 

p = 0.423) and the partial correlations support the view that strength of 

reprocessing in SWS and duration of SWS are independent predictors of 

overnight memory consolidation (partial correlation with strength of 

reprocessing during SWS controlling for the duration: r64 = 0.342, p = 0.006; 

partial correlation with duration of SWS controlling for strength of 
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reprocessing: r64 = 0.226, p = 0.074). Analogous regression analyses for strength 

of reprocessing and time spent in S2 and REM sleep yielded no significant 

results, as could be expected from the general lack of association with overnight 

memory consolidation (all p > 0.143). 

While the proportion of variance in overnight memory consolidation that is 

explained by memory reprocessing during SWS is low in absolute terms, it 

should be noted that factors such as alertness or individual differences can 

introduce considerable variance in memory performance. Classifier 

performance similarly provides a measure of reprocessing strength that is 

affected by many sources of between-subject variance as it is estimated based 

on other participants’ sleep EEG characteristics. Despite these difficulties, we 

demonstrate that memory reprocessing during SWS is significantly related to 

overnight memory retention, suggesting a robust underlying effect.  

 

Temporal dynamics of reprocessing 

We detected processing of learning material during sleep in the second and 

fourth 90-min segment of the night (Fig. 2). To investigate this pattern on a more 

fine-grained scale, we split the night into smaller intervals and analyzed the time 

course of classification accuracy across the night with a resolution of 4.5 min, 

using the same procedure as above. Again, we find two periods of the night 

during which brain processing seems to be more strongly related to previous 

learning, congruent with the time windows reported above. During other 

periods, no learning-related information was detected (Fig. 4).  
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Figure 4: Time course of classification accuracy across the night. Separate analyses were 

performed for sleep stages S2, S4, and REM sleep. Classification performance follows an 

oscillatory pattern and peaks around three and six hours after learning in all stages. 

Timing therefore is more relevant to when memory reprocessing occurs than sleep stage 

 

Spatial characteristics of reprocessing and frequency contributions 

Brain activity in REM and NREM sleep is not alike. It is thus reasonable to 

assume that also information processing in these states will take different forms. 

To investigate this, the relative contribution of each frequency band to 

classification can be assessed in terms of classification weights and compared 

between sleep stages (Fig. 5). Our results show that the frequencies that are 

important for identifying previous learning content differ between sleep stages. 

Activity in the range of sleep spindles (11-16 Hz) can distinguish previous 
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learning conditions only in NREM sleep (Fig. 5a). Theta-band activity (4-8 Hz), 

on the other hand, has higher discriminative power in REM sleep. Slow 

frequencies below 4 Hz were informative in both NREM and REM sleep, but their 

topographies differ (Fig. 5b). Although there is some resemblance between the 

feature weight plots and power spectra of sleep, it has to be noted that the 

feature weights do not follow the typical 1/f logarithmic decrease of EEG power 

spectra, but remain essentially constant after a linear decrease in delta 

frequencies. Moreover, actual classifier input was not the power spectra but the 

preprocessed data seen in the lower panel of Fig. 1a.  

Figure 5: Frequency contributions to memory reprocessing in NREM and REM sleep. (a) 

Discrimination weights show that in NREM sleep stages S2 and S4 spindle activity in the 

frequency range between 11 and 16 Hz is predictive for learning content. In REM sleep, 

theta, alpha, and higher beta frequencies contributed more to correct classification. Slow 

frequencies below 4 Hz were informative in all sleep stages. (b) The topography of 

predictive channels clearly differs between NREM and REM sleep. In NREM sleep stage S2, 

mainly delta and spindle frequencies contributed to correct classification. Similarly, 

frontal delta power and right parieto-temporal spindle activity were most informative for 

classification during NREM sleep stage S4, together with posterior higher frequency 

activity. REM sleep shows a more complex pattern. Here, slow oscillations of central 

electrodes, frontal and temporal theta as well as occipital alpha contributed most to 

discrimination between learning conditions. 
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Discussion 

We show that memory processing of a single memory task occurs during all 

stages of sleep. Reprocessing in REM and NREM sleep, however, has different 

effects on later memory performance. Although a large number of studies in 

rodents have observed the occurrence of spontaneous memory reactivation 

during NREM sleep 4-6,19,20, linking this reactivation with improvements in 

behavioral performance has remained a challenge. Contrary to rodents, task 

difficulty and training time can be easily adjusted in studies on humans, giving 

greater power to analyses on behavioral effects. It has early been suggested that 

memory reactivation during sleep has functional significance for strengthening 

new memories 21. Indirect evidence for this assumption has accumulated over 

the last years 10,11,22-24. A recent study in rats found that sleep-dependent 

reactivation of neurons involved in a simple motor learning task is associated 

with changes in the task-related spiking behavior of the same neurons 8. In this 

way, reactivation may be related to later improvements in performance. We now 

show that content-related reprocessing of declarative learning material during 

NREM sleep influences later memory strength in humans. Conversely, memory 

reprocessing during REM sleep does not show this graded relation with 

overnight memory retention. 

A number of animal studies detected reactivation of learning activity also in REM 

sleep 25,26, yet empirical evidence for this has remained ambiguous. We find that 

memory content is reprocessed during both NREM and REM sleep. The 

differential significance of memory reprocessing for behavioral performance 

between these states points towards at least two different mechanisms 

underlying memory reprocessing during sleep.  

Already early on, it has been suggested that memory is formed in a two-stage 

process. Labile memory traces are formed during exploratory behavior, when 

theta power is high. Later, during rest or sleep, long-lasting traces are formed 

9,21. Similarly, it has been proposed that during sleep, slow-wave-related NREM 
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activity and theta-related REM activity have complementary, mutually 

dependent functions 27. We find that reprocessing occurs in both NREM and REM 

sleep. Interestingly, we can demonstrate a correlation between reprocessing 

and later memory performance only for NREM sleep. This supports the view that 

reprocessing during REM sleep and NREM sleep serves distinct functions. Our 

finding is in line with previous studies, which show no behavioral benefit of 

reactivating memories by cueing during REM sleep 10. Interestingly, memory 

replay observed during REM sleep has also been shown to have different 

characteristics than that in NREM sleep, including a smaller time-compression 

factor, which is less suited for the induction of long-term potentiation 20,25. 

A number of recent studies stress the importance of either light NREM sleep, 

SWS or REM sleep for memory consolidation, respectively 2,27,28. Based on these 

findings, theoretical accounts have suggested that NREM and REM sleep may 

interact during memory consolidation, emphasizing different aspects of this 

process. The sequential hypothesis of sleep stresses that different sleep stages 

have to occur in succession to effectively influence memory function. It assigns 

specific and substantially different, but interdependent roles to NREM and REM 

sleep regarding the processing of memories 29. Other accounts suggest the 

different processes contributing to memory processing during NREM and REM 

sleep are separate and independent. Thus, the function of NREM and REM sleep 

in consolidation is assumed to pertain to different aspects or forms of memory 

30. We find that relevant activity occurs in close temporal proximity over 

different stages, and that a single memory task triggers learning-related activity 

in both NREM and REM sleep EEG. It therefore seems possible that both sleep 

stages cooperate in the processing of memories. The differential function of 

NREM and REM sleep stages is still controversial 7,16,31. One recent hypothesis is 

that cortical activity and long-range connectivity differs between sleep stages, 

allowing local memory reactivation and potentiation in SWS, and network-wide 

information integration in REM sleep 32,33. This view fits with our findings.  
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Our data indicate that memory processing in sleep is cyclic in nature and its 

occurrence might depend more strongly on timing than on the stage of sleep. 

Instead of occurring in SWS throughout the whole night, reprocessing was 

detected in S2, S4 as well as REM sleep in the 2nd 90-min period, but not in the 

1st or 3rd. Whether this consolidation window depends on time after learning, 

time after sleep onset, or circadian rhythm cannot be determined in the present 

study, because these were not varied independently. 

Because reprocessing peaks during distinct times of the night, it is unlikely that 

the detected activity simply reflects ongoing reverberation of learning-related 

activity or selective fatigue in the involved brain areas. Instead, it must reveal a 

process that is selectively initiated at specific points during sleep. The finding 

that reprocessing is strongest around three and around six hours after learning 

fits well with experiments that found critical periods during memory 

consolidation, during which memory is particularly sensitive to disruption 34. 

Thus, inhibiting protein synthesis 15 min and 3 h after learning, but not 1 h after 

learning impairs hippocampal one-trial avoidance learning 35. Similarly, in 

drosophila, different behavioral memories and corresponding neuronal traces 

develop during different time windows over several hours after conditioning 36, 

a process that has been linked to systems memory consolidation in humans 37.  

Moreover, our finding of discrete periods for memory reprocessing is 

reminiscent of previously reported ‘sleep windows’, i.e. times during which 

sleep has to occur after learning to strengthen memory 38,39. Along the same 

lines, Stickgold et al. have found that, for consolidation of a visual discrimination 

task, mainly duration of SWS and REM sleep in the first and the last quartile of 

the night, respectively, are most critical parts of the night 40. Although that task 

presumably does not rely on hippocampal memory reactivation and might 

therefore follow a different temporal trajectory, the similarities suggest the 

possibility of a common mechanism. Further behavioral, electrophysiological 

and molecular investigations are required to elucidate this underlying 

mechanism. Moreover, it has still to be ascertained whether the other periods of 
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the night have memory-related functions that cannot be detected by our 

method.  

Because the amount of signal related to memory reprocessing across the whole 

night is very small compared to the unrelated noise, we used MVPA, which is a 

very sensitive method to detect systematic differences between large sets of 

data. However, multivariate approaches are not better suited to supply 

information about univariate hypotheses than classical tests. Using feature 

weights and individual channel accuracies (Fig. 5) can to some extent illustrate 

the features that are carrying relevant information. However, these features 

must be seen within the entire pattern. The following discussion of individual 

physiologic features should therefore be seen as a starting point for studies 

focusing on a smaller feature search space.  

When looking at the frequencies contributing to correct classification, we find 

that spindle activity during NREM sleep contributes to the distinction of 

previous learning conditions. This is consistent with the fact that sleep spindles 

increases after learning 41 and correlate with performance 42. Parietal sleep 

spindles accompany task specific reactivation seen in fMRI 43. Moreover, frontal 

slow-waves, as they appear in our analysis for NREM sleep, have previously 

been shown to correlate with performance gains observed after memory 

reactivation induced by cueing during sleep 44.  

Apart from confirming that learning-related information resides in frequency 

bands that have previously been implicated in memory consolidation, such as 

NREM spindles and slow oscillations, our results hint at promising objects for 

future study. We suggest that particular attention should be given to the function 

of REM sleep theta. Frontal theta power increases during successful memory 

encoding and retrieval, and theta is also involved in memory processing during 

wakefulness, such as in controlling, maintaining and storing memory content 45. 

Theta has been linked to memory and sleep for a long time, but has only recently 

received renewed attention 16,46. For instance, theta band activity during sleep 

has been shown to support formation of imprinting memory in chicks 47. In 
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humans, another recent study found increased frontal theta power after 

presentation of cues related to a verbal learning task during sleep 44,48. 

Moreover, frontal theta in REM sleep is predictive of successful dream recall 49. 

These findings stress the active role of theta activity in memory reprocessing 

during sleep. 

It is difficult to demonstrate reactivation directly in humans. 

Electroencephalographic activity during sleep differs greatly from that during 

wakefulness in both the time domain and the frequency domain. Thus, 

amplitude changes over time, as well as power spectral density cannot be 

compared between these states. This is owing to different modes of generation 

and transmission of electrical activity during sleep 50,51. Previous data have 

shown that reactivation can be both time-compressed as well as changing in 

location (e.g. neocortical replay following hippocampal activity) 19,52. Markers 

reflecting reactivation of neuronal firing patterns observed during learning can 

thus be altered by a large number of operations, which renders the search space 

virtually infinite. Because this makes wake-to-sleep classification problematic, 

and a within-subject design would have to rely on between-session classification 

that is confounded by various session differences (e.g. recording artefacts), we 

instead opted for a between-subject classification approach. This allowed us to 

detect information pertaining to a previous learning experience in data 

recorded in the same state of consciousness. Previous attempts to observe 

memory reactivation during off-line periods succeeded in showing memory 

reprocessing during wakefulness, but not during sleep 53-55. Using an approach 

that trains and tests the classifier in the same state of consciousness made it 

possible for us to observe material-specific memory reprocessing during sleep 

and study its dynamics and relation to later behavioral performance. 

We used multivariate pattern classification to decode the content of a previous 

learning experience from electrical brain activity during sleep. By linking brain 

activity during sleep with the content of previous learning, our findings bridge 

studies from multicell recordings in animals, which show learning-related 
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reactivation, to human imaging studies, which show reactivation of brain 

regions during sleep. Pattern classification methods are powerful tools for 

investigating the covert mechanisms that link electrical brain activity and 

behavior, and can thus contribute to our understanding of these complexities.  

Materials and Methods 

Subjects. In this study, we recorded EEG data from 32 healthy subjects with no 

history of neurological or psychiatric disorders. All participants were students, 

between 18 and 30 years old, native German speakers and non-smokers. They 

were right handed as measured by Edinburgh Handedness Inventory-test 56. 

Chronotype was assessed via the Munich Chronotype Questionnaire 57 and 

experimental timing was adjusted to participants’ usual sleep times (sleep 

midpoint 03:56h ± 01:33h [mean ± SD]). Subjects were regular sleepers with a 

habitual sleep duration of 6-9 h. They did not report any chronic or acute sleep-

related problems in an initial interview. Moreover, they did no shift work and 

did not change time zones in the six weeks leading up to the experiment. 

Participants were told to refrain from drinking alcohol, coffee and tea on the 

days of the experiment and did not take any drugs that affect the central nervous 

system. All experimental procedures were approved by the local ethics 

committee (Department of Psychology, Ludwig-Maximilians-Universität 

München). Informed consent was obtained from all subjects. 

Experimental Design. Participants slept in our laboratory on three different 

nights. The first of these served as an adaption night, to accustom subjects to the 

environment and to sleeping under the experimental conditions (e.g. wearing an 

EEG cap). In the subsequent two experimental nights, subjects completed an 

intensive image learning task, during which they studied pictures of either faces 

or houses. For an exemplary subject, learning took place from 8:30 p.m. to 

10 p.m. after the EEG electrodes had been attached, and memory was tested 

immediately afterwards. The subject then went to bed at 11 p.m. for an 8-h sleep 
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period. Memory was tested once more in the morning. The times of the 

experiment were advanced or delayed such that time to bed corresponded to 

the individual habitual bedtime of the participants. All subjects participated in 

two experimental nights, each time learning only one type of images, in a 

counterbalanced fashion. The two nights were spaced at least 5 days apart. 

Sleepiness was tested with a visual analog scale in the evening and after sleep in 

the morning (Supplementary Table 4).  

Learning Task. Subjects studied a set of 100 images of faces or houses in 30 

repetitions. Pictures were shown in random order and individual images were 

always presented in one of the four quadrants of the screen. Participants had to 

remember the individual pictures and learn to associate the images with the 

quadrant in which it was presented. Participants were tested once immediately 

after learning and again in the next morning after a full night of sleep. During 

both immediate and delayed testing, 100 learned images were presented 

together with a set of 50 new images in random order. Participants first had to 

indicate via keypress whether they had seen the image before (with left hand on 

main keyboard: 1-sure, 2-probably, 3-probably not, 4-surely not. Responses 1 

and 2 were counted as a “yes” response, responses 3 and 4 were counted as a 

“no” response). For “yes”-responses, also the quadrant in which the image had 

been presented was probed (with right hand on numerical pad: 1-lower left, 3-

lower right, 7-upper left, 9-upper right). Image material was derived from two 

different sources: 300 pictures of houses were taken from German online real 

estate sites, 300 pictures of neutral faces were taken from Minear & Park 58.  

This task was chosen because it is a declarative task that is supposed to involve 

the hippocampus, and sleep-related reactivation has mainly been shown in the 

hippocampus 10,19. Face and house processing are clearly different in event-

related EEG potentials and fMRI 59. Face processing activates the mid-fusiform 

gyrus (fusiform face area) and the occipital face area in the occipito-temporal 

cortex as well as other temporal areas 60, whereas processing of houses activates 

the parahippocampal place area and the lateral occipital gyrus 61,62. 
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EEG Recording. Sleep EEG was recorded using an active 128 channel Ag/AgCl-

electrode system (ActiCap, Brain products, Gilching, Germany) with 1 kHz 

sampling frequency and a high-pass filter of 0.1 Hz. Electrodes were positioned 

according to the extended international 10–20 electrode system. For sleep 

scoring, recordings were split into 30-s epochs and sleep stages were 

determined on electrodes C3/C4 according to standard rules by two 

independent raters 63. Average sleep durations are reported in Supplementary 

Table 5. 

Methodological Considerations. One of the challenges in sleep research is the 

difficulty of recording large sample sizes and the large amount of data that is 

recorded. The goal of classical analyses, which use multiple univariate 

comparisons (e.g. classical fMRI analysis), is to find single features that are 

strong enough independently to distinguish between conditions. Such features 

are unlikely to exist in high-density all-night EEG recordings, which thus present 

a problem better addressed by a multivariate approach. In multivariate 

analyses, it is of interest whether the overall pattern of data contains 

information that is relevant to distinguish conditions. A prominent method that 

can deal with large numbers of data dimensions is MVPC. However, high 

dimensional, low sample size data, like EEG recordings, pose specific problems 

for classical statistical testing as well as for MVPC 64,65. For this kind of data, it is 

important to minimize the number of features. If the signal across features is 

highly correlated, as in EEG data, this can be achieved by averaging, which 

reduces dimensionality of the data and at the same time increases signal-to-

noise ratio. We developed a two-step procedure that uses spatial averaging and 

a channel-based weighted average to improve classifiability of our data (Fig. 1). 

These steps are described in detail in the sections Data Preparation and 

Multivariate Pattern Classification (MVPC) below. 

Data Preparation. For artefact rejection and further analysis, EEG data was 

split into 4-s trials. Artefact rejection was done in a semiautomatic process using 

custom MATLAB scripts. Based on the distributions of different parameters of 
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the raw data and power spectrum, rejection thresholds were chosen for each 

recording individually to make sure that only a minimal number of artefacts 

remained in the data. We tested for disconnected electrodes (outliers in overall 

spectral power), sudden jumps of the signal (outliers in amplitude changes) and 

muscle artefacts (outliers in spectral power between 110 and 140 Hz). Outlier 

thresholds were automatically suggested based on the variance of the data and 

manually confirmed upon visual inspection of parameter distributions and of 

the raw data. Trials containing artefacts were removed from the data set, 

channels that contained too many trials with artefacts were removed entirely 

and interpolated using routines provided by EEGLAB 66. Whether individual 

epochs or channels were to be removed was determined automatically so that 

data loss was kept minimal. Artefact-free trials were then transformed into the 

frequency domain using Fourier transformation. To obtain smooth spectra, 

Welch’s method was used for this, averaging over 10 Hamming windows of 2-s 

length with 95% overlap, resulting in a final data resolution of 0.5 Hz. Data was 

used up to a maximum frequency of 30 Hz.  

The subsequent steps for data preparation were implemented to 1) increase 

signal-to-noise ratio, 2) reduce dimensionality of the data, and 3) adapt the 

signal for between-subject classification. First, we averaged power spectra 

across electrodes within a radius of approximately 3 cm around the 32 evenly 

spread locations of the extended 10-20-system to decrease the number of 

redundant features and increase signal-to-noise ratio as well as spatial 

similarity between subjects. We then separately averaged over all artefact-free 

trials available for each 90-min segment and sleep stage, to obtain a reliable 

estimate of spectral properties. This also ensures that an equal number of 

epochs per subject enters analysis, which is important for classification to 

remain unbiased. To remove amplitude differences between channels, which 

are caused by the distance of each channel to the reference electrode, spectra of 

all channels were separately normalized between zero and one. This also 

removed between-subject variability in general spectral power.  
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Because baseline EEG power spectra are highly similar and differences between 

conditions can be expected to be of smaller magnitude, these differences need 

to be enhanced within the spectra. We thus applied a spectral sharpening filter, 

which removes the baseline spectrum and emphasizes differences between 

neighboring frequencies in a final preparation step. To achieve this, we 

subtracted a moving average of six neighboring frequency bins (window size: 

3 Hz) from the signal. This accentuates the smaller differences in power 

between frequencies within the spectrum. This is a valid procedure because 

neighboring data points in the power spectrum represent neighboring 

frequencies from the same signal and are therefore strongly correlated. 

Subjects were only included in the analysis if they had at least 40 artefact-free 

trials within the respective sleep stage and segment (i.e. 160 s of data). Only 

segments and stages with at least 11 subjects were analyzed. The number of 

subjects and trials available for each 90-min segment and sleep stage can be 

found in Supplementary Table 6. As can be seen from that table, the amount of 

data available was unrelated to classifier performance.  

Multivariate Pattern Classification (MVPC). In the present study, we tested 

whether electrical brain activity during sleep holds information about the 

content of previously learned visual stimuli. Instead of the typically used 

multiple univariate tests, we employed a multivariate classification approach, 

which can detect information contained in the overall pattern of brain activity, 

but is not distinguishable from single features.  

Sleep EEG recordings from 64 nights (32 subjects, two conditions each) were 

analyzed using a classification algorithm developed on the basis of linear 

support vector machines (SVM). The aim was to detect material-specific 

information in the data. Please note that whereas the experiment followed a 

within-subject design, classification was done between subjects, with both 

nights of each participant (face and house conditions) assigned either to the 

training, test, or validation set. All analyses were done with the Matlab 

implementation of libsvm 3.1 (http://www.csie.ntu.edu.tw/~cjlin/libsvm). EEG 
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recordings pose problems typical of high dimensional, low sample size data 

(potential feature space of 128 channels times 60 frequency bins). We thus 

preprocessed the data to reduce the number of features and increase signal-to-

noise ratio (see Fig. 1 and Data Preparation), averaging over neighboring 

channels to lower the number of channels to 32. To further enhance relevant 

features, we used a stepwise procedure for classification, which first regarded 

every channel as an independent classifier and then combined outcomes of this 

first step for the final analysis.  

We split data into independent training and validation sets. In a first step, one 

linear SVM was trained for each of the 32 averaged EEG channels on all but one 

subject of the training set to see how much each channel contributes to 

distinguishing the content of learning conditions (‘face’ learning or ‘house’ 

learning). This channel-based classification was cross-validated in a leave-one-

out procedure on each subject, and the obtained classification accuracies were 

averaged over all cross-validation runs. In the second step, this average 

classification accuracy from each channel was used as a weight to obtain a 

weighted average of the 32 channels. The main SVM was then trained on this 

weighted training set and classification accuracy tested on the independent 

validation set. The main reason for weighted averaging of channels was to 

reduce feature space dimensionality, because feature weights cannot be reliably 

determined if sample size is much smaller than the number of features 67. Apart 

from this, weighted averaging can amplify relevant information in the data. This 

two-step classification process was cross-validated on independent data using 

280 repetitions of a 5-fold procedure, which covers the whole data set with five 

independent validation sets.  

We used permutation tests to assess significance. These tests sample the 

distribution of the null hypothesis by random shuffling of the original data, 

which is repeated a large number of times. To obtain the correct null-

distribution for our data, we randomly shuffled condition labels, i.e. the two 

conditions of each subject were randomly labeled as ‘face’/‘house’ or as 
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‘house’/’face’, effectively removing all relevant data pertaining to the effect of 

interest, while keeping other dependencies in the data constant. We then 

calculated classification accuracies for the randomly labeled data to estimate the 

random distribution. This was repeated 1001 times. Significance was calculated 

by determining the percentage of times that classification on randomly labeled 

data produced accuracies that were equal to or higher than the classification 

accuracy obtained from the actual data. If randomly labeled data did not result 

in a classification accuracy equal to or higher than the actual data, then the p 

value was determined by the number of random repetitions that were calculated 

(see Supplementary Fig. 1). 

To assess whether reprocessing occurs uniformly across time, we split the night, 

starting from time to bed, into five 90-min segments, which are likely to include 

a whole sequence of sleep stages (S2, S3, S4, and REM sleep; see Supplementary 

Table 5 for details of sleep stage distribution). In this first analysis, we classified 

separately for all segments and sleep stages to assess the temporal dynamics of 

memory reprocessing. To determine a more fine-grained time course of 

classification accuracy, we moved a sliding window with a width of 22.5 min in 

steps of 4.5 min across the night. We then estimated classification accuracy 

within each window using the same two-step classification procedure as before. 

Analysis was done separately for each sleep stage and the same inclusion 

criteria were applied as in the main analysis. 

To assess which features of the sleep EEG are particularly predictive, we 

analyzed classification weights. To assess which features of the sleep EEG are 

particularly predictive, we analyzed classification weights. The absolute value of 

the weights are informative about how much each frequency band and channel 

contributes to successful distinction. We averaged the classification weights 

over all repetitions of the training procedure, resulting in an averaged 

32 (channels) × 60 (frequency bins) weight matrix. To examine frequency 

contributions to memory reprocessing, we further averaged the absolute values 

of these weights over all channels (see Fig. 5a). The topography of predictive 
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channels (see Fig. 5b) was obtained by averaging absolute values of 

classification weights for each channel over different frequency bands (delta: 

0.5-3.5 Hz, theta: 4-7.5 Hz, alpha: 8-10.5 Hz, spindle: 11-15.5 Hz, beta: 16-30 Hz). 

We chose to analyze classification weights for frequencies obtained in the inner 

train-test loop (Fig. 1) because they can give additional information on the 

topography of predictive channels. These frequency weights are confirmed by 

weights from the outer validation loop (Fig. 1). Frequency contributions to 

classification assessed from both loops show the same pattern (see 

Supplementary Fig. 2). 

Behavioral Performance. For assessment of memory performance, we 

calculated the memory sensitivity index d’ as the difference of z-values between 

correctly recognized old items vs. falsely recognized new items (z[hits] – z[false 

alarms]). Performance pre and post sleep, as well as memory consolidation 

across the nights is reported in Supplementary Table 1. We correlated overnight 

memory consolidation with time spent in different sleep stages (see 

Supplementary Table 2). To examine whether memory reprocessing during 

sleep is associated with better memory performance, we correlated the 

probability estimates for classification given by the classifier with overnight 

memory consolidation measured as the difference between post sleep and pre 

sleep d’ values. No such correlation was found for encoding or retrieval 

performance per se (see Supplementary Table 3). For each subject, results of all 

280 repetitions of the 5-fold cross-validation procedure were averaged. We 

conducted this analysis separately for different sleep stages. All correlations 

report Spearman’s rho. 

Data availability 

All data and codes are available from the corresponding authors upon request. 
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Supplementary Information 

 

 

Supplementary Figure 1: Randomization statistics for classification in all segments 

(rows) and sleep stages (columns). Dark grey areas indicate those randomizations where 

classification accuracy for randomly labeled data exceeded the classification accuracy 

obtained with correctly labeled data.  
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Supplementary Figure 2: Absolute classification weights for the outer loop SVM. Note that 

weights estimated in the outer loop closely resemble those obtained in the inner loop of 

the two-step classification procedure (Figure 5). 
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Supplementary Table 1. Memory sensitivity d’ in the face and house learning conditions 
 

pre post difference p-value 

Face pictures 3.72 ± 0.12 3.66 ± 0.12 -0.07 ± 0.04 0.116 

House pictures 3.42 ± 0.13 3.34 ± 0.14 -0.08 ± 0.05 0.167 

Values are given as mean ± SEM. Two sided t-test for dependent measures is reported. Note that 

no significant forgetting occurred across the night.  

 

 

 
Supplementary Table 2. Correlations between total time spent in sleep stages and 

memory consolidation (difference in d’ post-pre) over sleep for all available nights 

 r p n 

S2 -0.139 0.272 64 

S3 0.106 0.405 64 

S4 0.254* 0.043 64 

REM -0.048 0.707 64 

*Significant two-sided test at threshold of α < 0.05; Spearman’s rho is reported. 

 

 

 
Supplementary Table 3. Correlations between classifier performance (probability 

estimates for classification) and memory consolidation (difference in d’ post-pre) over 

sleep for all available nights 

 difference pre post  

 r p r p r p n 

S2 sleep 0.099 0.436 0.023 0.859 0.044 0.733 64 

SWS sleep 0.329** 0.008 -0.055 0.667 0.065 0.608 64 

REM sleep -0.199 0.142 0.069 0.611 -0.036 0.791 56 

** Significant two-sided test at threshold of α < 0.01; Spearman’s rho is reported. 

 

 

 
Supplementary Table 4. Levels of fatigue in the face and house learning conditions  

 
Face night House night p-value 

evening 5.3 ± 2.0 5.5 ± 1.8 0.772 

morning 3.7 ± 1.9 3.6 ± 1.6 0.924 

Values are given as mean ± SD. Participants were asked to rate their sleepiness on a visual 

analogue scale with the end points 0 (not tired at all) and 10 (very tired). Two sided t-test for 

dependent measures is reported. 
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Supplementary Table 5. Sleep data (mean ± SD) 
 

W S1 S2 S3 S4 REM 

1st 90-min segment 20.3 ± 11.8 4.8 ± 2.7 29.9 ± 11.8 14.2 ± 6.7 17.9 ± 13.8 2.4  ± 3.3 

2nd 90-min segment 3.5 ± 7.8 2.1 ± 1.9 50.9 ± 12.8 11.1 ± 6.6 10.0 ± 8.7 11.0 ± 6.3 

3rd 90-min segment 4.2 ± 10.9 2.2 ± 2.0 48.5 ± 10.9 8.0 ± 5.1 5.1 ± 5.7 20.3 ± 7.4 

4th 90-min segment 6.9 ± 12.8 2.7 ± 2.2 49.0 ± 13.4 5.6 ± 5.1 1.8 ± 3.8 21.0 ± 8.2 

5th 90-min segment 6.9 ± 11.4 4.9 ± 3.8 42.4 ± 12.0 3.3 ± 4.4 1.5 ± 4.1 26.4 ± 11.2 

total 48.2 ± 41.5 18.7 ± 8.9 237.7 ± 40.4 42.5 ± 15.0 36.4 ± 23.7 96.0 ± 23.8 

Average sleep latency was 20.1 ± 17.0 min (mean ± SD). Please note that total time does not 

correspond to the sum of 90-min segment values because participants slept slightly longer than 

five 90-min sleep segments. 

 

 

 

 
Supplementary Table 6. Number of participants and trials that entered classification in 

different segments and sleep stages. Only data points with N ≥ 11 and number of 

trials ≥ 40 for both the face and house learning conditions were entered into analysis in 

each segment and stage. 

 S2 S3 S4 REM 

 N trials N trials N trials N Trials 

1st 90-min segment 31 472 ± 47 30 355 ± 100 18 455 ± 84 3 279 ± 118 

2nd 90-min segment 32 494 ± 33 20 321 ± 102 12 375 ± 93 18 360 ± 74 

3rd 90-min segment 29 483 ± 46 16 300 ± 121 6 344 ± 111 24 417 ± 89 

4th 90-min segment 24 478 ± 53 9 252 ± 110 2 257 ± 148 19 443 ± 59 

5th 90-min segment 20 454 ± 94 0  0  18 415 ± 115 

Values for total number of trials collapsed over the face and house conditions that entered 

classification, given as mean ± SD.  
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Abstract  

Apart from coding the particular content of a learning episode, a memory 

representation must permit successful memory retrieval. Using multivariate 

pattern classification, we tested whether electrical brain activity recorded 

during short-term memory maintenance satisfies these conditions, and where 

identified short-term memory representations reside. In our experiment, 

participants learned two short-term memory tasks, encoding either pictures of 

faces or houses, or sequences of digits or letters while brain activity was 

recorded with EEG. It was possible to decode retrieval success from electrical 

brain activity during the delay period of both short-term memory tasks. 

Moreover, we could distinguish whether participants kept pictures of faces or 

houses in memory, and classifier performance on this problem correlated with 

successful memory maintenance. Using spatial as well as frequency-based 

searchlight analyses, we found that distinct brain areas and frequency bands 

coded for the success versus the content of short-term memory. Frontal and 

parietal higher frequency bands and alpha activity predicted retrieval success, 

whereas memory content was represented in temporal and parietal higher 

frequency ranges, as well as theta activity. We propose that frontal cortex 

supports memory-related control processes, whereas temporal cortex shows a 

sensory reinstatement of material content and is part of the wider activated 

network during memory retention. Interestingly, the only overlap between 

electrodes coding for retrieval success and memory content was found over 

medial parietal regions, indicating that a dedicated short-term memory 

representation resides in medial posterior cortex. 
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Introduction 

The term “short-term memory” describes the temporary maintenance of 

information in the absence of sensory input (Eriksson et al., 2015). Working 

memory, as a closely related term, additionally involves processing and 

manipulating information, next to holding it in a memory buffer (Roux and 

Uhlhaas, 2014). Most models consent that short-term memory maintenance 

involves an interaction between long-term memory representations, perceptual 

representations, and basic processes - such as attention - that are instantiated 

as a persistent reverberation in neural circuits (Eriksson et al., 2015; Jonides et 

al., 2008; Larocque et al., 2014).  

In this way, short-term memory may be conceptualized as a state of temporarily 

enhanced accessibility of information that does not automatically entail the 

encoding of an independent memory trace (Cowan, 2008; D'Esposito and Postle, 

2015; Eriksson et al., 2015; Fuster, 2009; Jonides et al., 2008; Lewis-Peacock and 

Postle, 2008; McElree, 2006; Oberauer, 2005). Consequently, it is still unclear 

whether there are mechanisms or brain structures unique to short-term 

memory, or whether these functions emerge from a combination of different 

processes that can be described in other terms than short-term memory. When 

conceptualizing short-term memory as such a combination of component 

processes (Cowan, 2001; D'Esposito and Postle, 2015; Eriksson et al., 2015; 

Fuster, 2009; Jonides et al., 2008), it is no longer necessary to assume a 

dedicated short-term memory storage. Yet if such a store existed, what would 

its properties be and how could it be identified? 

In his search for the physical substrate of long-term memory in the brain, Semon 

proposed defining characteristics that such an engram must fulfill (Schacter, 

2001; Semon, 1921). Apart from coding the particular content of a learning 

episode (stimulus specificity), it should enable correct memory retrieval 

(relation to performance). These criteria likewise apply to short-term memory 
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representations. Whereas long-term memory traces require persistent changes 

in the brain that can endure in a dormant state, short-term memory, contrary to 

this “passive trace” of long-term memory, may emerge from a temporary 

activation of neural representations. In line with this view, newer evidence 

shows that attended items are maintained in short-term memory by persistent 

neural activity during offline intervals (LaRocque et al., 2013; LaRocque et al., 

2016; Lewis-Peacock et al., 2012). This persistent stimulus-related neural 

activity during short-term maintenance of such novel information may 

concurrently foster the encoding of new long-term memory representations 

(Olsson and Poom, 2005). Thus, it seems conceivable that regions related to 

long-term memory also harbor the specific trace currently kept in short-term 

memory. 

New multivariate pattern classification approaches (MVPC) can test whether 

brain activity recorded during short-term memory maintenance satisfies 

necessary mnemonic criteria. For instance, MVPC analysis of functional 

magnetic resonance imaging (fMRI) data allows decoding memory content from 

brain activity during the offline short-term memory maintenance period 

(LaRocque et al., 2013; LaRocque et al., 2016; Lewis-Peacock et al.; Postle, 2015). 

Similarly, it would be possible to assess whether activity in the same or different 

areas is related to later retrieval success. 

In our experiment, participants performed two types of short-term memory 

task, remembering different kinds of material. One task required encoding 

pictures of either faces or houses, recruiting visual short-term memory. During 

the other task, subjects encoded sequences of digits or letters, which involves 

verbal rehearsal during the maintenance period. Our main interest was to 

identify activity that reflects processes related to memory performance, as well 

as to detect item-specific persistent offline activity. We thus tested whether it is 

possible to predict retrieval success from electrical brain activity during the 

memory maintenance interval in both tasks, as well as whether we can decode 
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the content of the maintained information from brain electrical activity during 

this delay period.  

Brain activity that reflects top-down control processes, such as attention or 

focus, is likely to support successful memory retrieval, but does not necessarily 

contain information about the specific material that is kept in short-term 

memory. Activity that codes for the content kept in short-term memory may 

either reflect continuous activity in the perceptual circuits that processed the 

learning material or else the activation of related long-term memory 

representations. It should be clearly noted that this does not automatically entail 

behavioral relevance for the task, because a sensory instatement together with 

functionally and regionally distinct control processes might suffice to give rise 

to short-term memory functions. If, however, activity in a brain region predicted 

subsequent memory performance and additionally carried information about 

the content kept in memory, it would be strong evidence for a dedicated short-

term memory storage. Moreover, such a region would be optimally suited to 

harbor long-term memory representations arising from short-term memory 

processing. 

Results 

Retrieval Success (remembered vs. non-remembered) 

In a first step, we determined whether it is possible to decode retrieval success 

from human electrical brain activity. For both the face/house (F/H) task as well 

as the digit/letter (D/L) task we could predict with an accuracy significantly 

exceeding chance level whether participants would answer the subsequent 

probe trial correctly (see Table 1). 

 

 

 



CHAPTER 3: DECODING WORKING MEMORY 

 

80 

 

 

Table 1. Classifier performance when decoding retrieval success 

Condition Ntrial CCR p-value 

F/H 80 60.00 0.0464 

D/L 76 61.84 0.0200 

 

To explore which brain regions contributed most to successful short-term 

memory maintenance, we determined the topography of predictive channels in 

a spatial searchlight analysis, separately for the F/H as well as the D/L tasks (see 

Methods). During maintenance of face and house pictures, right frontal as well 

as parietal electrodes contributed most to successful retention (Fig. 1a). Based 

on these results we chose right frontal, left frontal and left, medial, and right 

parietal regions of interest (ROIs) and tested whether data from these 

electrodes alone carries sufficient information for successful classification (Fig 

1b, also see Methods). Indeed, it was possible to decode only from activity over 

right frontal or medial parietal regions, whether short-term memory would be 

correctly retrieved. 

We then proceeded to investigate which frequency bands contributed to short-

term memory maintenance in the F/H task in the defined ROIs. For this, we 

removed class-related information from individual parts of the power spectrum 

by randomly shuffling the data between conditions. A frequency band 

contributes to memory maintenance if classification accuracy drops 

significantly after removing class-related information (see Methods). We found 

that frontal and parietal beta as well as parietal gamma, but also lower 

frequency activity and oscillations in the alpha band predicted successful short-

term memory retrieval in medial parietal cortex (Fig. 1c). 

 

 

 



 CHAPTER 3: DECODING WORKING MEMORY 

81 

 

 

Figure 1. Decoding retrieval success in the F/H task (a) Topography of predictive 

channels based on a spatial searchlight. A searchlight with a window size of 

approximately 3.5 cm was moved across all 128 channels that covered the scalp. Topoplot 

shows smoothed average classification accuracy for the 128 spatial searchlights. Heat bar 

denotes classification accuracy. (b) When keeping pictures of faces or houses in working 

memory, right frontal and medial parietal areas contribute to successful maintenance. (c) 

To assess importance of individual frequency bands for classification, data was shuffled 

in the bands of interest, which removes class-related information. In frontal cortex, 

activity in the beta frequency range predicted retrieval success. Also in medial parietal 

cortex, beta as well as gamma activity informed about whether memory was correctly 

maintained. Next to these higher frequencies, lower frequency delta and alpha activity 

was predictive of retrieval success when keeping pictures in memory. Electrode positions 

in the ROIs are marked as red dots. Gray shading and bold font denote significance 

determined by permutation tests at a level of p < 0.05. Stars indicate significance after 

FDR correction at the levels of * p < 0.05, ** p < 0.01, *** p < 0.001 

During maintenance of digits and letters, left frontal as well as left and medial 

parietal electrodes were most informative about retrieval success (Fig. 2a). 

Thus, results showed a broadly similar topography to that of the face and house 

pictures. We again defined left and right frontal, as well as left, medial, and right 

parietal ROIs to assess which areas significantly contributed to successful 

memory trials. Our analysis shows that left frontal, left parietal and medial 

parietal regions are significantly involved in successful short-term maintenance 

in the D/L task (Fig. 2b). Note that these results remain significant after false 

discovery rate (FDR) correction. Again, we assessed which frequencies 
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promoted later correct memory retrieval. Higher oscillatory activity in the beta 

and gamma bands over left frontal cortex, but also over left and medial parietal 

cortex contributed significantly to successful maintenance of digits and letters. 

Moreover, left and medial parietal alpha activity as well as activity in the theta 

and lower delta frequency band over medial parietal cortex enhanced prediction 

of retrieval success. Thus, especially in the parietal cortex, but also in frontal 

cortex, activity in similar frequency ranges determined whether short-term 

memory content would later be correctly retrieved during maintenance in both 

the F/H and D/L tasks.  

 

 

Figure 2: Decoding retrieval success in the D/L task (a) Topography of predictive 

channels based on a spatial searchlight. A searchlight with a window size of 

approximately 3.5 cm was moved across all 128 channels that covered the scalp. 

Topoplot shows smoothed average classification accuracy for the 128 spatial 

searchlights. Heat bar denotes classification accuracy. (b) Left frontal and parietal 

areas were involved in successful retention of digits or letters. (c) To assess 

importance of individual frequency bands for classification, data was shuffled in the 

bands of interest. Frontal higher frequency activity in the beta and gamma bands 

predicted successful retrieval. Similarly, beta and gamma activity was informative 

about the success of memory maintenance in both left parietal as well as medial 

parietal cortex, where we additionally observe contributions of the alpha band. In 

medial parietal cortex, classification accuracy likewise dropped significantly if class-

related information was removed from the theta band and the lower frequency delta 

band. Electrode positions in the ROIs are marked as red dots. Gray shading and bold 

font denote significance determined by permutation tests at a level of p < 0.05. Stars 

indicate significance after FDR correction at the levels of * p < 0.05, ** p < 0.01, 
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Short-term memory content (faces vs houses and digits vs letters) 

Decoding the content held in short-term memory was only possible for the F/H 

Sternberg task, in the D/L Sternberg task, classification remained at chance level 

(see Table 2). 

 

Table 2. Classifier performance when decoding memory content 

Condition Ntrial CCR p-value 

F/H 80 61.25 0.022 

D/L 76 48.68 n.s. 

 

 

Stronger and more faithful memory processing during retention should result 

in improved classifiability of the content that is being maintained. Classifier 

performance may thus be a good indicator for both the strength and the fidelity 

of information maintenance. We found that classifier performance correlated 

positively with short-term memory performance measured as memory 

sensitivity index d’ (r = 0.313; p = 0.049), indicating that continuous and faithful 

processing of the previously learned material is instrumental for successful 

short-term memory maintenance. 

Analogous to the analysis of retrieval success reported above, we moved a 

spatial searchlight across all 128 channels to assess which electrodes carry the 

most information about the content kept in short-term memory. Mainly 

electrodes over temporal and lateral occipital, but also over parietal areas were 

informative about whether faces or houses were being maintained in the F/H 

task (Fig. 3a). We thus defined left and right temporal as well as left, right, and 

medial parietal ROIs to test which areas carry significant information about the 

content of short-term memory. We found that it is possible to decode from 

activity over both temporal and medial parietal cortex whether faces or houses 

are maintained (Fig. 3b). These results remain significant after FDR correction. 

In temporal cortex, only beta activity contributed significantly to this distinction. 
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Over medial parietal cortex, oscillatory activity in the theta, beta, and gamma 

bands was critical for decoding memory content.  

Figure 3: Decoding memory content in the F/H task. (a) Topography of predictive 

channels based on a spatial searchlight. A searchlight with a window size of 

approximately 3.5 cm was moved across all 128 channels that covered the scalp. Topoplot 

shows smoothed average classification accuracy for the 128 spatial searchlights. Heat bar 

denotes classification accuracy. (b) Memory content in the F/H task could be decoded 

from left temporal and medial parietal regions. (c) To assess importance of individual 

frequency bands for classification, data was shuffled in the bands of interest. In temporal 

cortex, only information in the beta band was crucial to predict memory content. In 

medial parietal cortex, classification accuracy dropped significantly if information from 

the theta band or from the higher frequency beta and gamma bands was removed. 

Electrode positions in the ROIs are marked as red dots. Gray shading and bold font denote 

significance determined by permutation tests at a level of p < 0.05. Stars indicate 

significance after FDR correction at the levels of * p < 0.05, ** p < 0.01. 

As a proof of principle, we performed the same spatial searchlight and ROI 

analysis also for the D/L task, where it was not possible to decode memory 

content from electrical brain activity. As expected, classification accuracies over 

all electrodes are low and it was not possible to predict with an activity 

significantly exceeding the chance level whether digits or letters were 

maintained from activity over the individual ROIs (see Fig. 4). 
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Discussion 

It is possible to predict, based on brain activity recorded during the delay period 

of a short-term memory task, whether the memory content will later be 

correctly recalled. We find that activity in frontal as well as parietal areas 

critically contributes to successful maintenance, regardless of whether pictures 

of faces and houses or digits and letters are kept in memory. Similarly, we could 

decode whether participants were keeping pictures of faces or pictures of 

houses in memory, with activity over temporal and parietal areas most 

informative. Interestingly, classification accuracy on this problem correlated 

with behavioral performance in the short-term memory task, indicating that 

processing of the learning material critically contributes to successful memory 

retrieval. Frontal brain activity selectively coded for retrieval success whereas 

temporal brain activity selectively informed about memory content. The only 

overlap of electrodes predictive for both successful retrieval as well as the 

Figure 4: Decoding memory content in the D/L task. (a) Topography of predictive 

channels based on a spatial searchlight. A searchlight with a window size of 4 channels 

was moved across all 128 channels that covered the scalp. Topoplot shows smoothed 

average classification accuracy for the 128 spatial searchlights. Heat bar denotes 

classification accuracy. In line with the finding that whole-brain classification of memory 

content did not reach significance in the D/L task, overall accuracies in the spatial 

searchlight are low and classification did not reach significance in any of the defined 

regions of interest (b). 
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particular content kept in memory was found over medial parietal areas. We 

thus suggest that a short-term memory representation is formed and rehearsed 

in medial posterior cortex. 

Frontal higher frequency activity codes for retrieval success 

We find that frontal higher frequency activity in the beta band predictive of 

retrieval success regardless of whether faces and houses or digits and letters are 

kept in short-term memory. Some studies on short-term memory retention have 

also reported beta activity (Palva et al., 2011; Roberts et al., 2013), yet its specific 

function has so far remained unclear (Roux and Uhlhaas, 2014). Since we find 

an involvement of beta activity in the retention of both visuospatial as well as 

verbalizable material, we propose that it represents a domain-general 

mechanism of memory maintenance. Moreover, frontal gamma activity 

contributed to successful working memory maintenance in the D/L task, which 

is in line with previous observations (Gotts et al., 2013). Interestingly, frontal 

areas held no information about memory content, which supports the idea that 

frontal activity reflects memory-related control processes that are independent 

of the material content that is being retained (deBettencourt et al., 2017; 

Sreenivasan et al., 2014). The relevant frontal activity was right lateralized for 

pictures of faces and houses and left lateralized for digits and letters. It has been 

shown that participants internally rehearse letter or digit stimuli during the 

maintenance interval using speech related processing, which may explain the 

left-sided lateralization of predictive signals (Baddeley, 2012). Maintenance of 

visual information as face and house pictures, on the other hand, is not 

facilitated by verbalization, and may rather reflect the scenic and spatial visual 

aspects of the learned material, for which right-sided lateralization has been 

observed previously (Roux et al., 2012; Tallon-Baudry et al., 1998). Higher 

frequency beta in frontal cortex thus represents a domain-general mechanism 

of short-term memory control that displays domain-specific lateralization, but 

is independent of the specific content that is being processed.  
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Sensory processing areas harbor information about short-term memory 

content 

We could decode whether pictures of faces or houses were held in short-term 

memory from temporal regions and lateral occipital areas. These are associated 

with the processing of material-specific visual information of the two image 

categories. A recent study detected category-specific signatures of face and 

house processing using MVPC methods on EEG data while the stimuli were 

online (Jacques et al., 2016). Temporal areas were involved in processing of 

faces while medial and dorsal occipital cortex were activated for houses, which 

is in line with findings from functional magnetic resonance imaging (fMRI) data 

(Epstein and Kanwisher, 1998; Haxby et al., 1999; Kanwisher et al., 1997; 

Vuilleumier et al., 2001). Moreover, fMRI studies using MVPC approaches have 

found that short-term retention of familiar object, faces and scene and body 

stimuli can be decoded from the ventral occipito-temporal cortex (Han et al., 

2013; Nelissen et al., 2013; Sreenivasan et al., 2014). Since activity in both 

temporal and lateral occipital regions was not related to retrieval success, we 

suggest that it reflects a reinstatement of the sensory information or activated 

long-term memory associated with the content retained in short-term memory 

which accompanies the activation of a wider network of brain regions during 

memory processing. In temporal cortex, short-term memory content could be 

decoded from activity in the beta frequency range. We thus suggest that the 

relevant content-related activity resides in beta frequencies, again underlining 

the importance of beta activity from short-term mnemonic functions. 

Medial parietal cortex related to both retrieval success as well as memory 

content 

The only overlap of channels that were informative about both retrieval success 

as well as memory content was found over medial parietal regions. The 

posterior parietal cortex has often been implicated in the context of short-term 

memory (D'Esposito and Postle, 2015; Harvey et al., 2012). Recent studies found 
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item-specific memory representations during short-term memory tasks in 

parietal cortex (Ester et al., 2015; Sarma et al., 2016). This finding further 

strengthens the notion that short-term memory representations reside in 

posterior cortical regions that are both material-specific and relate to later 

memory performance. Interestingly, it has recently proposed that posterior 

parietal regions form a long-term memory network (Gilmore et al., 2015). 

Activity over medial parietal regions could thus reflect such activated long-term 

memory, which has been proposed to play a major part in short-term memory 

retention (Eriksson et al., 2015). We have shown that material-specific memory 

presentations are rapidly established in parietal cortex during the course of 

visuo-spatial learning (Brodt et al., 2016). It is therefore enticing to speculate 

that transient memory representations observed in parietal cortex during short-

term memory tasks may be stabilized and become long-lasting over rehearsal or 

time.  

When considering results from both the F/H as well as the D/L task, the whole 

frequency range contributed to successful memory maintenance in parietal 

cortex. It should however be noted that a large number of independent tests 

were conducted and theta activity was only predictive of retrieval success in the 

D/L task. Activity in the alpha, beta and gamma frequency ranges, however, 

remained significant predictors of successful memory retention after correction 

for multiple comparisons. Decoding of memory content in parietal cortex 

depended on activity in the theta, beta and gamma frequency bands. Given 

previous literature, we would suggest that theta might coordinate processing of 

content-related higher frequency activity like beta and gamma oscillations 

during the delay period in short-term memory tasks (Jensen and Lisman, 2005; 

Roux and Uhlhaas, 2014).  
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A role of beta in short-term memory maintenance going beyond control 

processes 

If information in the beta band was removed from the power spectrum, 

classification accuracy dropped significantly in all analyses. This strongly 

indicates that beta activity holds a functionally important role both in control of 

short-term memory processes as well as in coding more specifically for memory 

content. In support of this idea, beta predictive of retrieval success was observed 

over both frontal and parietal areas, whereas beta that coded for memory 

content was observed over both lateral temporal regions, which have been 

shown to be involved in face and house stimulus processing, as well as over 

parietal cortex. Roberts (2013) has found enhanced beta band activity over 

posterior regions during the delay period in correct short-term memory trials. 

Similarly, Palva (2011) reported load-dependent strengthening in 

frontoparietal beta activity during a visual short-term memory delay period. 

Conclusions 

We found that electrical brain activity in the frontal, temporal and parietal 

cortices is related to either successful working memory maintenance or coding 

the content of what needs to be remembered. Our data suggest that frontal 

cortex supports memory-related control processes that are domain general, 

whereas activity in the temporal lobe reflects a sensory reinstatement of 

memory-related content. Since the only overlap between electrodes coding for 

retrieval success as well as memory content was found over medial parietal 

electrodes we would argue that a dedicated short-term memory representation 

is formed in medial posterior cortex, a region recently found to also harbor item-

specific memory representations (Brodt et al., 2016; Chen et al., 2017; Gilmore 

et al., 2015). 
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Materials and Methods 

Subjects. 20 healthy subjects with no history of neurological or psychiatric 

disorders participated in this experiment. All were students, between 18 and 30 

years old, native German speakers and non-smokers. They were right handed as 

measured by Edinburgh Handedness Inventory (82 ± 18  [mean score ± SD]) 

(Oldfield, 1971). Each subject visited our laboratory for two separate 

experimental sessions, each time performing the same two short-term memory 

tasks. Daytime of testing was kept constant across participants. Participants 

were told to refrain from drinking alcohol, coffee and tea and from taking any 

drugs that can affect the central nervous system on the days of the experiment.  

Learning Task. During each of the two experimental sessions, subjects learned 

two Sternberg short-term memory tasks that assessed maintenance of different 

kinds of material. The two tasks were performed consecutively. In the first 

Sternberg task, participants memorized 8-item image sequences of either faces 

or houses (F/H task). In the second Sternberg task, they memorized 7-item 

sequences of either digits or consonant letters (D/L task; see Fig. 5). Thus, for 

each kind of stimulus material, short-term memory content was derived from 

two distinct categories. Sequence length was pretested to achieve intermediate 

levels of maintenance performance for the different kinds of material. 

Participants completed 80 maintenance trials in both tasks. Individual trials 

contained only items of one content category. Stimulus categories were evenly 

distributed and trial order was randomized. One participant did not participate 

in the D/L task. 

During each trial, individual stimuli from one content category were presented 

consecutively for 100 ms in random order with an interstimulus-interval of 1 s 

showing a black screen. The sequence of memory items was followed by a 4-s 

maintenance interval during which a black screen with fixation dot was shown. 

Then, subjects were presented with a probe item for 100 ms followed by a 2-s 

black screen. Then, they had to indicate via key-press whether this stimulus was 
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part of the previous sequence, yes or no. They had maximally 5 s to give an 

answer. After an inter-trial interval of 1 s, the next trial was initiated. 

 

 

 

 

Figure 5:  Sternberg task. During the F/H task, participants were instructed to memorize 

8 pictures of faces or houses that were presented to them sequentially on a screen. During 

the following 4-s maintenance period, they had to fixate a dot in the middle of the screen 

and keep the previously presented information in mind. When the probe item appeared, 

they fixated it for 2 s until prompted to answer whether it appeared in the studied row of 

pictures. The D/L task followed the exact same procedure, yet only 7 stimuli were 

presented in one learning trial. 

EEG was recorded throughout the experiment. Participants were instructed to 

fixate the middle of the screen with eyes open, blinking and moving their eyes 

as little as possible. To allow relaxation, brief breaks were introduced every 5 

min that were terminated by the participants when they felt ready to continue 

the experiment. Both the F/H task and the D/L task lasted approximately 25 

min. 

For stimuli in the first Sternberg task, 300 images were taken from German 

online real estate sites, as well as 300 pctures of neutral faces from Minear & 

Park (Minear and Park, 2004). For the second Sternberg task, individual stimuli 

were chosen from the digits 0 to 9 and the consonant letters of the alphabet. 
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Digits and letters were presented in equally sized light gray sprites using dark 

gray font. Overall luminance was adjusted by slight modifications to the 

background color for all stimuli. Pictures of faces and houses had the same 

format and size. All stimuli were presented centered on the middle of the screen. 

EEG Recording. EEG was recorded using an active 128 channel Ag/AgCl-

electrode system (ActiCap, Brain products, Gilching, Germany) with 1 kHz 

sampling frequency and a high-pass filter of 0.1 Hz. Electrodes were placed 

according to the extended international 10–20 electrode system.  

EEG Data Preparation. EEG data was analyzed using support vector machine 

(SVM) multivariate pattern classification (MVPC). Before classification, the EEG 

data was preprocessed to minimize problems associated with high dimensional, 

low sample size data (Jamalabadi et al., 2016). First, EEG data from the 4-s 

maintenance period was artefact corrected and transformed into the frequency 

domain using Fourier transformation. Artefact rejection was done in a 

semiautomatic process using custom MATLAB scripts, ensuring that only a 

minimal number of artefacts remained in the data. We assessed open channels 

(outliers in overall power), jumps (outliers in amplitude changes) and muscle 

artefacts (strong amplitudes in power > 25 Hz). Thresholds were automatically 

detected based on the variance of the data and manually confirmed upon visual 

inspection of parameter distributions and concurrent inspection of the raw data. 

Trials containing artefacts were removed from the data set, channels that 

contained too many trials with artefacts were removed and interpolated using 

EEGLAB (Delorme and Makeig, 2004). Trials or channels to be removed were 

determined by an optimization algorithm so that data loss was kept minimal. To 

get smooth spectra, Welch’s method was used for Fourier transformation, 

averaging over 10 Hamming windows of 4-s length with 95% overlap, resulting 

in a final data resolution of 0.25 Hz. Data was used up to a maximum frequency 

of 45 Hz.  

Next, we reduced the number of features entering classification in a two-step 

procedure using both spatial averaging and a channel-based weighted average 
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(Schönauer et al., 2017)(Fig. 6a). First, electrode power spectra were averaged 

within a radius of approximately 3 cm around the 32 evenly spread locations of 

an extended 10-20-system to increase signal-to-noise ratio and reduce 

dimensionality. We then averaged over all available artefact-free maintenance 

trials to obtain a reliable estimate of spectral properties. To remove amplitude 

differences between channels, which are caused by the distance of each channel 

to the reference electrode, spectra of all channels were separately normalized 

between zero and one, removing between subject variability in general spectral 

power. Baseline EEG power spectra are very similar and differences between 

conditions are of comparably smaller magnitude. In a final data preparation 

step, we thus emphasized the relevant differences between neighboring 

frequencies, by applying a spectral sharpening filter. For this, the moving 

average of 23 neighboring frequency bins (window size: 5.5 Hz) was subtracted 

from the signal to remove the baseline spectrum.  

EEG Multivariate Pattern Classification (MVPC) Analysis. The aim of the 

present study was to test whether EEG activity during a short-term memory 

maintenance interval can predict whether retrieval from short-term memory 

will be successful and whether the EEG contains information about the kind of 

stimuli that are retained. We thus conducted two separate MVPC analyses on 

both the face/house and the digit/letter Sternberg data. The first analysis 

assessed which features of the EEG data predict if the trial can be solved 

correctly. The second analysis considered whether the EEG data reflects which 

content category (faces vs. houses, digits vs. letters) is kept in short-term 

memory, and whether the strength of such off-line content processing is related 

to memory performance. 

For the F/H task, EEG recordings from 40 experimental sessions were analyzed 

using a classification algorithm developed on the basis of linear support vector 

machines (SVM). Please note that one participant did not participate in the D/L 

task, thus only 38 experimental sessions were available for analysis. During data 

preparation, we reduced the number of channels from 128 to 32 and averaged 
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over all available trials of each condition in each subject and session, leaving 

32 × (45 × 4) data features (# channels, # frequency bins [high-cutoff = 45 Hz, 

fs = 0.25 Hz]). Because generalizability of the data decreases with number of 

features that enter classification, we used a stepwise procedure during 

classification (Fig. 6b). First, data was split into independent training and 

validation sets. Please note that all 4 data points of a subject (2 conditions × 2 

sessions) were allocated to either the training set or the test set following a 

between-subject classification approach. We then trained one linear SVM per 

EEG channel to determine how well the different categories can be distinguished 

based on individual channel data. This channel-based classification was cross-

validated on each subject of the training set in a leave-one-out (LOO) procedure, 

and the resulting accuracies were averaged over all possible cross-validation 

runs (n-1, with n denoting the number of subjects; again note that all 4 data 

points of a subject for each task were treated as an individual fold in this 

procedure). In the second step, the resulting average classification accuracy for 

each channel was used to calculate a weighted average of data. The main SVM 

was trained on this weighted training set and classification accuracy was tested 

on the independent validation set. This complete two-step process was cross-

validated in a LOO procedure. 

Significance of the classification accuracies in the whole-brain analysis was 

tested using randomization statistics. The distribution of the null hypothesis 

was generated by randomly shuffling condition labels of the original data and 

repeating the complete classification procedure 1001 times. Significance was 

calculated by determining the percentage of times that a randomly labeled data 

produced a classification accuracy that was equal or higher to the one found in 

the correctly labeled data (lower limit of estimate p < 0.001). 
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Figure 6: Algorithms used for data preparation and MVPC analysis. (a) After artefact 

rejection, power spectra of the 4-s memory maintenance trials of the 128-channel EEG 

recordings were calculated. To reduce the dimensionality of the data and to increase the 

signal-to-noise ratio, all trails for each content category and session, as well as 

neighboring channels were averaged. Next, spectra of all channels were normalized 

separately to make them comparable, and a spectral sharpening filter was applied to 

remove the baseline spectrum and enhance differences between neighboring frequency 

bins. (b) In MVPC analysis, training data was strictly separated from validation data. 

During training, it was again an important goal to reduce dimensionality of the data. 

Therefore, channels were weighted according to their performance in separate single-

channel classifiers. A weighted average of data from all channels was then used to train a 

classifier to distinguish between two conditions. Finally, classification was tested on 

independent validation data.  

If classification from this whole-brain MVPC analysis yielded significant results, 

we ran a spatial searchlight to assess the relative importance of different brain 

regions to classification. Thus, for retrieval success, searchlight analysis was 

done for both the F/H as well as for the D/L data. In the analysis of short-term 

memory content, searchlight analysis was similarly conducted for the F/H data, 

and additionally for the D/L data, where whole-brain MVPC analysis was not 

possible, to assess the specificity of our method. Searchlight analysis used the 

same data preparation procedure as before, except that it omitted spatial down-

sampling during data preparation, thus considering data from all 128 channels. 



CHAPTER 3: DECODING WORKING MEMORY 

 

96 

 

The searchlight moved a spatial window with a 3.5 cm radius across the scalp, 

estimating average classification accuracy in the same two-step classification 

procedure as the main MVPC analysis. That is, we trained separate linear SVMs 

for each individual channel in the searchlight in the first step, then used the 

resulting channel-based averaged data to train and cross-validate the main SVM. 

For this part of the analysis, power spectral values for all 45 × 4 frequency bins 

entered classification. 

We defined separate regions of interest (ROI) based on the results of the 

foregoing spatial searchlight analysis to test which brain regions carry 

information about retrieval success and memory content, respectively. For the 

analysis of retrieval success, we defined ROIs over the left and right frontal 

cortex (left frontal electrodes: F1, F3, FFC1h, FFC3h, FFC5h, FC1, FC3; right 

frontal electrodes: F2, F4, FFC2h, FFC4h, FFC6h, FC2, FC4) as well as the parietal 

cortex (left parietal electrodes: P1, P3, P5, PPO5h, PO3, P07; medial parietal 

electrodes: Pz, POz, POO1, POO2, PPO1h, PPO2h; right parietal electrodes: P2, 

P4, P6, PPO6h, PO4, P08). For the analysis of short-term memory content, we 

defined ROIs over the left and right temporal cortex (left temporal electrodes: 

FC5, FCC5h, C3, C5, CP5h, CP5; right temporal electrodes: FC6, FCC6h, C4, C6, 

CP6h, CP6) as well as the parietal cortex (left parietal electrodes: P1, P3, P5, 

PPO5h, PO3, P07; medial parietal electrodes: Pz, POz, POO1, POO2, PPO1h, 

PPO2h; right parietal electrodes: P2, P4, P6, PPO6h, PO4, PO8). To assess which 

specific frequency features contributed most to classification, we then ran 

additional searchlight analyses on individual frequency bands of the EEG power 

spectrum (delta: 1 – 2.75 Hz, theta: 3 – 7.75 Hz, alpha: 8 –11.75 Hz, beta: 12 – 

29.75 Hz, gamma: 30 – 45 Hz). That is, keeping data in other frequency bands 

unchanged, we shuffled data in the target frequency band of the power spectrum 

1001 times to remove class-related information, and tested whether this leads 

to a significant drop in classification accuracy, to examine whether this 

frequency band critically contributed to retrieval success or to coding memory 

content. Frequency searchlights were done separately in the pre-defined ROIs 
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reported above. For the ROI and frequency searchlight analysis, false discovery 

rate (FDR) corrected significance estimates are reported in addition to the 

values obtained by permutation testing. 

Behavioral Performance. For assessment of memory performance, we 

calculated the memory sensitivity index d’ as the difference of z-values between 

correctly recognized old items vs. falsely recognized new items (z [hits] – z [false 

alarms]). To examine whether content reprocessing during short-term memory 

maintenance is associated with better memory performance, we correlated 

classifier performance with memory sensitivity d’ for the testing probes. 

Classification accuracy on each of the four data points from a participant’s LOO 

fold in the outer loop was used as an estimate of classifier performance and 

related to the respective average retrieval success for this content category and 

session. 
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Abstract 

Multivariate pattern analysis (MVPA) methods are now widely used in life-

science research. They have great potential but their complexity also bears 

unexpected pitfalls. In this paper, we explore the possibilities that arise from the 

high sensitivity of MVPA for stimulus-related differences, which may confound 

estimations of class differences during decoding of cognitive concepts. We 

propose a method that takes advantage of concept-unrelated grouping factors, 

uses blocked permutation tests, and gradually manipulates the proportion of 

concept-related information in data while the stimulus-related, concept-

irrelevant factors are held constant. This results in a concept-response curve, 

which shows the relative contribution of these two components, i.e. how much 

of the decoding performance is specific to higher-order category processing and 

to lower order stimulus processing. It also allows separating stimulus-related 

from concept-related neuronal processing, which cannot be achieved 

experimentally. We applied our method to three different EEG data sets with 

different levels of stimulus-related confound to decode concepts of digits vs. 

letters, faces vs. houses, and animals vs. fruits based on event-related potentials 

at the single trial level. We show that exemplar-specific differences between 

stimuli can drive classification accuracy to above chance levels even in the 

absence of conceptual information. By looking into time-resolved windows of 

brain activity, concept-response curves can help characterize the time-course of 

lower-level and higher-level neural information processing and detect the 

corresponding temporal and spatial signatures of the corresponding cognitive 

processes. In particular, our results show that perceptual information is 

decoded earlier in time than conceptual information specific to processing digits 

and letters. In addition, compared to the stimulus-level predictive sites, concept-

related topographies are spread more widely and, at later time points, reach the 

frontal cortex. Thus, our proposed method yields insights into cognitive 

processing as well as corresponding brain responses. 
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Introduction 

Advances in electrophysiological, genetic, and neuroimaging methods generate 

ever growing volumes of data. These massively multivariate data sets require 

methods of analysis which go beyond traditional statistical ANOVA-based 

approaches (Haynes and Rees 2006; O'Toole et al. 2007; Tong and Pratte 2012). 

Particularly machine learning methods have seen growing adoption in the life 

sciences because they can be used to analyze high-dimensional data with great 

sensitivity (Norman et al. 2006; Haxby et al. 2014). In neuroimaging, 

multivariate pattern analysis (MVPA) has made it possible not only to 

investigate differences in brain regional activity during the performance of a 

task, but also to decode perceptual and mental representations as well as 

conceptual and semantic information (Kamitani and Tong 2005; Kay et al. 2008; 

Mitchell et al. 2008; Schwarzlose et al. 2008; Rissman et al. 2010; Simanova et 

al. 2014).      

The complexity of multivariate analysis, however, leads to unexpected problems 

(Todd et al. 2013; Woolgar et al. 2014; Haynes 2015; Jamalabadi et al. 2016). 

Here, we will explore the consequences of the high sensitivity of MVPA for 

differences found between subgroups of trials in cognitive experiments. In 

classical analyses, two conditions with identical means are considered identical. 

Differences between trials (caused by different stimuli, subjects, etc.) usually 

average out on the dependent variable and therefore do not influence the group 

average. The multivariate nature of MVPA, however, allows differences to 

accumulate over dimensions (Fan and Fan 2008; Jamalabadi et al. 2016). Any 

differences between individual elements of the categories will be used by MVPA 

to distinguish between categories, even if the categories themselves have 

identical centroids. For example, if concept-related features are the intended 

focus of study, different combinations of low-level, stimulus-specific features 

like orientation, shape, color, etc. can drive decoding although there is no overall 
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average difference in these features between both concepts (Haynes and Rees 

2006). In fact, MVPA is sensitive to both the effect of interest and to any other 

confounding factors that drive a difference between conditions (Todd et al. 

2013; Woolgar et al. 2014). Thus, if a data set consists of groups of trials that 

differ in some stimulus-specific features, MVPA can detect differences that might 

then be mistakenly attributed to the concept under investigation. In other 

words, the classifier can use stimulus-specific rather than category-specific 

features to decode data, effectively predicting stimuli instead of conceptual 

categories. Therefore, the present paper explores a method to determine the 

degree to which classification performance is specific to higher order category 

processing and to lower order stimulus processing. 

Consider the following neuro-cognitive experiment, in which the concepts of 

animate and inanimate objects are to be distinguished based on electrical brain 

activity. 40 pictures each of six different types of animals (e.g. cow, bear, dog, 

frog, …) and tools (e.g. knife, scissors, hammer, saw, …) are presented to subjects, 

with the aim to decode the two conceptual categories from event-related EEG. 

Since different types of stimuli have features that distinguish them from the 

other types, the classifier will detect brain responses to individual stimuli based 

on combinations of their physical features alone (e.g. cows and frogs differ in 

size, shape and color). As we will show below, these differences between 

stimulus types will contribute to classification even in the absence of an actual 

effect of the superordinate concept. We will investigate the relative contribution 

of these two components, i.e. how much of the decoding performance originates 

from concept-related information and how much is caused by stimulus 

differences.  

In the following, we will consider the concept-related information as the factor 

of interest (primary effect) and all the other contributing, concept-irrelevant 

factors as the nuisance effects. By relabeling the data, we can manipulate the 

relative contribution of concept (animate, inanimate) and stimulus (cow, frog, 

knife, scissors, …) to determine the presence of the effect of interest when 
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nuisance effects are controlled for. The basic idea resembles that of a dose-

response curve, in that we systematically vary the amount of concept-related 

information in the training data set of the classifier to assess how classification 

performance changes with varying levels of conceptual information. When the 

effect of concept-related information is completely counterbalanced, decoding 

performance originates solely from concept-irrelevant nuisance effects, which 

constitutes our null hypothesis for statistical testing. We will apply this method 

here in several examples, showing how to separate high-level cognitive concepts 

from low-level stimulus processing. In particular, we will show how this method 

can be used to describe the detailed time-course of cognitive concept processing. 

However, we believe that the basic method can find application in many similar 

problems. 

Method & Results 

Suppose that an experiment has the aim to decode conceptual information (e.g. 

the semantic category) from brain activity. Different exemplars of each category 

are presented to the subjects and the brain response is recorded. For the sake of 

simplicity, and without loss of generality, we assume that there are two semantic 

categories � and �. Each category consists of stimuli coming from � = 1, 2, … , 	 

subclasses (see Fig. 1A). For instance, in our example of animals and tools, there 

are six subclasses per category (cow, bear, dog, frog, … for animals and knife, 

scissors, hammer, saw, … for tools). We assume that each stimulus is presented 


 times, resulting in 	 × 
 trials per category. We consider all of the 
 trials that 

belong to the �th subclass as one block of data and denote it with ��  or �� . 

Therefore, each category consists of 	 blocks and can be defined as a set. 

� = ��, ��, … , ���    ,     � = ��, ��, … , ��� 

Here we are interested in decoding neural activity that is specific to concept 

processing. To do this, we adopt a systematic approach that gradually eliminates 

the amount of concept-related information in the data while preserving concept-
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irrelevant information. To do this, we generate a number of new sets �� and �� 

that comprise varying proportions of elements of � and �. More precisely, �� is 

built by randomly selecting � = 0, 1, … , 	 2⁄  blocks from category � and 

�	 − �� blocks from category �. Therefore, 

�� = ��⋃���� ,     �� ⊆ � ,    ���� ⊆ � 

where �� and ���� are random subsets of � and � of size � and 	 − �, 

respectively. Accordingly,  

�� = ��\��� ⋃ ��\�����   

where �\�� denotes the set of elements in � but not in ��, and �\���� 

represents the elements in � but not in ����. Thus, each set �� contains � out 

of 	 blocks belonging to category �, while the corresponding sets �� contain � 

out of 	 blocks belonging to category �. The ratio of data from categories � �⁄  

in �� therefore varies between 0 and 1/2, and is complemented by ��. We apply 

a linear support vector machine (SVM) with cross-validation to distinguish the 

two sets �� and ��. This process can be repeated up to ! �
�"! �

���" = ! �
�"

�
 [or 

�

�
! �

�"
�

 for � = 	/2] times to account for random subset selection of �� and 

����. Resulting classification accuracies are averaged. The whole procedure is 

repeated for � ranging from 0 (sets containing only elements of either category 

� or �) to 	/2 (two sets with an equal number of elements belonging to 

categories � and �). It is worth noting that the ratio of �/	 which represents 

the proportion of relabeled subclasses has always a range of 0 to 0.5, regardless 

of the number of subclasses. Thus, we gradually manipulate the amount of 

concept-related information differentiating between sets �� and ��.  
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Figure 2: Example of a concept-response curve. (A) Structure of data with two 

experimental conditions (% and &, e.g. animate and inanimate objects) and ' blocks of 

data per condition. Each block consists of all trials that belong to one subclass (e.g. frogs, 

cows, hammers, scissors, …).  (B) By changing the number of blocks ( in set )* belonging 

to category % from 0 to ' +⁄ , we can change the amount of concept-relevant information 

distinguishing between sets )* and )+. Each point of the curve is derived from the 

classification of )* versus )+. ,( and -( represent (-block subsets of % and &, 

respectively. %\,( denotes the set of blocks in % but not in ,( (similar for &\-().   

We can plot classification accuracy depending on values of � to get a graph that 

indicates how the response of a classifier changes with varying levels of 

conceptual information (Fig. 1B). The first point of this concept-response curve 

(� = 0), which corresponds to the classification of category � versus �, 

represents the total discrimination power driven by both the effect of interest 

and nuisance effects. In the last point (� = 	/2�, discrimination originates 

solely from nuisance effects, because the effect of categories � and � cancel out. 

This is also the classification performance that we would expect if the null 

hypothesis that there is no primary effect in the data is true, i.e. the concept in 

question does not affect brain activity. A concept-response curve as shown in 

Figure 1B can have several theoretical shapes. Figure 2 shows the four possible, 

idealized curves that can be obtained. The shape of the curve reveals which 
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sources of information (primary effect or nuisance effects) drive decoding 

performance. Depending on the shape of the curve, only a primary effect (Fig. 

2A), only a nuisance effect (Fig. 2B), a combination of both (Fig. 2C), or no effect 

can be detected (Fig. 2D).  

Figure 3: Four possible, idealized concept-response curves that can be obtained from our 

proposed method. The ‘+’ sign represents a contribution of the primary/nuisance effect 

to the decoding accuracy. The ‘-’ sign signifies the absence of the corresponding effect. ( 
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represents the number of relabeled subclasses with a discrete value from 0 to '/+. Scatter 

plots in the second column illustrate two-dimensional sample data sets with two 

subclasses per category (' = +). Color and markers represent categories and subclasses 

respectively. Scatter plots in the gray boxes show the two possible ways of random 

relabeling of subclasses for ( = '/+. Filled and open markers represent random sets )* 

and )+. Classification accuracies (Acc) and decision boundaries were calculated using 

linear discriminant analysis (LDA). Average classification accuracy for ( = '/+ is higher 

than 50% when nuisance effects contribute to decoding performance (B, C). A value of 

50% signifies that no relevant nuisance effects exist (A, D). 

Although one might assume that classification performance should be at chance 

level (50%) if the effect of concept cancels out between �� and ��, this is not 

necessarily the case. As we will show below, classification accuracy in case of 

missing concept information is determined by the subclasses of � and �. If 

subclasses have some distinguishing features, the chance level for classification 

of any sets �� and �� of subclasses will be above 50%. Therefore, the difference 

between the first (� = 0) and the last points (� = 	/2� of the concept-response 

curve in Figure 1B indicates the contribution of concept-relevant information 

above the influence of the subclass-related nuisance effects. The point � = 	/2 

also represents the correct null hypothesis against which the effect of interest 

has to be compared. Because the effect of interest cancels out only for � = 	/2, 

all the other points of the curve are partially biased by this effect. Therefore, it 

is strictly the point � = 	/2 which should be used to test the null hypothesis 

that there is no relationship between classes in the data if one wants to avoid 

overly conservative statistical testing. The true null distribution for � = 	/2 is 

produced by balanced permutation on blocks of trials belonging to different 

subclasses and contrasts to the typical trial-wise permutation test, where single 

trials are relabeled and different proportions of data from two classes can 

potentially exist in the randomized data sets. In other words, the proper 

exchangeability unit in the permutation scheme for data sets with subclasses is 

the subclass and not the overarching category/concept. Using the 95% 

confidence interval (CI) of the classification accuracy for � = 	/2, which can be 

determined from the distribution of random permutations of subclass labels, we 
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can assess whether decoding of neural activity is specific to processing of the 

cognitive concepts of interest. It must be noted that if 	 (number of blocks in 

each category) is an odd number, � ranges from 0 to .	/2/ (the largest integer 

no greater than 	/2). For the case of � = .	/2/, the primary effect due to the 

categories � and � is not completely balanced between sets �� and ��, which 

results in a slightly more conservative test. 

Experiment 1A: Decoding digits and letters from visually evoked 

potentials 

In the first experiment, we aim to decode the semantic categories of ‘digits’ and 

‘letters’ from event-related EEG-potentials (ERP) elicited by presentation of 

visual stimuli. 19 healthy subjects with no history of neurological or psychiatric 

disorders underwent EEG recording in two sessions while individual digits and 

letters were repeatedly presented to the subjects in randomly ordered 

sequences of 6 characters in the context of a Sternberg task, i.e. with the 

instruction to remember all elements of the sequence. Each stimulus appeared 

for 100 ms, to avoid eye movement during presentation, and was followed by a 

black screen for 1 s. The stimuli were the digits from 0 to 9 and 10 consonant 

letters, which were selected randomly but remained the same for all of the 

subjects (see Fig. 3A). Each stimulus was presented 18 times, resulting in a total 

of 180 trials per category. EEG was recorded during the whole task using an 

active 128-channel Ag/AgCl-electrode system (ActiCap, Brain products, 

Gilching, Germany) with 1 kHz sampling frequency and a high-pass filter of 

0.1 Hz. Electrodes were placed according to the extended international 10-20 

electrode system. Because the most relevant components of the visual ERP have 

a duration of 40 – 70 ms, which corresponds to maximum frequency of 25 Hz, 

we have applied a 40 Hz low-pass filter to reduce the number of features entered 

into the classification. Data was then divided into epochs of one second starting 

50 ms before stimulus onset. Artefact rejection was done in a semiautomatic 

process using custom MATLAB scripts. Epochs containing artefacts were 

removed from the data set. Channels that contained too many epochs with 
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artefacts were removed and interpolated using routines provided by EEGLAB 

(Delorme and Makeig 2004).  

In order to decode brain activity, we employed a linear SVM with 2-fold cross-

validation to identify on a single trial level which of the two stimulus categories 

(digits or letters) was presented to the subject. 2-fold cross-validation was 

chosen because resulting classification accuracies have a lower variance than 

those obtained with a higher number of folds. It therefore has a higher 

sensitivity for the purpose of hypothesis testing (Jamalabadi et al. 2016). As 

input to the classifier, we used the 1-s ERP response in all 128 channels. The 

classifier was trained and tested within each subject. Performance was 

evaluated using the average percentage of the correctly classified trials in the 

test set (classification accuracy). No outliers have been removed from analysis, 

because classification accuracies can have a strongly asymmetric null 

distribution with a mean of 50% and a median above 50%. Removal of 

individual data points with low classification accuracies would lead to false 

positive results in this case (for details, see Jamalabadi et al. 2016). 

As Figure 3B shows, single trial classification of digits and letters in individual 

subjects resulted in classification accuracies ranging from 47.0% to 60.2%, with 

a mean value of 54.2% across all subjects and sessions. Classification accuracy 

is positively correlated with the performance of the subjects in the Sternberg 

task (r38 = 0.372, p = 0.02), confirming the behavioral relevance of the 

classification results. 

To determine if category-related information specific to processing of digits and 

letters is present on the group level, we varied the amount of concept-relevant 

information by changing the ratio of digit and letter stimuli in the classification 

sets �� and �� according to the method proposed above. Since there are 10 

subclasses (digits, letters) per category (	 = 10), we varied � (number of 

different letters in ��) from 0 to 5, decreasing the primary effect of stimulus 

category gradually to zero. For each value of �, we repeated the random 

sampling of � letter and �10 − �� digit stimuli for all possible permutations and 
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averaged classification accuracies over all repetitions in case the number of 

possible permutations was lower than 100. When more permutations were 

possible, we limited random sampling to 100 times, because the group null 

distribution which is needed for statistical inference on group level, converges 

already with 100 random permutations on the single subject level (Stelzer et al. 

2013). This resulted in a concept-response curve for each subject and session. 

By averaging all curves, we obtained the group mean concept-response curve, 

which is shown in Figure 3C. The first point of the curve (� = 0), which 

corresponds to the classification of digits versus letters, shows an average 

classification accuracy of 54.2%. With increasing �, which is equivalent to 

decreasing the amount of conceptual information, the average classification 

accuracy monotonically decreases. For � = 5, although the primary effect is 

completely balanced between sets �� and ��, the average classification 

performance is still 50.9%, and not 50.0% as might be expected. To obtain the 

confidence interval for � = 5, we generated the group null distribution by 

combining the subject-wise distributions of classification accuracies over 100 

random combinations of 5 letters and 5 digits (Stelzer et al. 2013). This was 

done by randomly drawing (with replacement) from each subject one of the 100 

classification accuracies. These subject-level accuracies were then averaged to 

obtain the group-level accuracy. This procedure was repeated 105 times, 

resulting in a distribution of 105 group-level accuracies. The resulting 

distribution shows that for two sets, each consisting of 5 random digits and 5 

random letters, classification accuracy was still significantly above chance level 

(95% CI: [50.2%, 51.6%], p < 0.018). This means that besides the concept of 

digits and letters, the stimuli themselves (individual digits/letters) represent 

subclasses that also influence classification performance. It also signifies that 

the correct null distribution for the digit/letter concept classification cannot be 

derived from trial-wise permutation, which results in exactly 50% mean 

classification accuracy, but must be derived from subclass-wise permutation, 

which retains the bias produced by the similarity of subclass stimuli. Comparing 

the classification accuracy for � = 0 with the distribution for � = 5 shows that 
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the former is significantly above the latter (p < 10-5). Thus, classification 

accuracy is significantly higher when stimuli are sorted according to the concept 

of digits/letters than when different subclasses of digits and letters are 

randomly combined. We therefore showed that the ERP contains information 

specific to processing the concepts of digits and letters.  

 

Figure 4: Decoding concepts of digits and letters (A-C) and even and odd digits (D). (A) 

Structure of the data for digit versus letter classification. Each category consists of 10 

different stimuli. Stimuli were pictures of 10 digits (0-9) and 10 consonant letters (G, J, L, 

P, Q, R, S, W, X, Z) which were presented to the subjects. All trials that presented the same 

stimulus are considered as one block of data. (B) Digit/letter classification accuracy. The 

bar represents group average classification accuracy, each dot indicates results from one 

subject and session. The dashed line represents chance performance (50%). (C) Concept-

response curve for different proportions of digits and letters per set. The procedure is 

shown for three points of the curve (m=0,2,5), representing combinations of 0/10, 2/8, 

and 5/5 digits/letters, respectively. ‘D’: digit, ‘L’: letter. The error bar shows the 95% CI 

of the stimulus-level classification on the group level. (D) Concept-response curve for 

decoding even and odd digits. 
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Experiment 1B: Decoding the concepts of ‘even’ and ‘odd’ digits 

In continuation of the digit/letter analysis above, we used the same procedure 

as above to classify digits into ‘even’ and ‘odd’ numbers. Each category consists 

of 5 subclasses ({0, 2, 4, 6, 8} and {1, 3, 5, 7, 9}). We manipulated the amount of 

concept in sets �� and �� by varying � (number of even digit exemplars in ��) 

from 0 to 2. Figure 3D illustrates the resulting concept-response curve. The 

average performance of odd/even classification (� = 0� is 50.7%. For � = 2, 

the average classification accuracy is 51.2% (95% CI: [50.2%, 52.2%]). This 

shows that in contrast to the concept of digits/letters, no information specific to 

whether a stimulus is odd or even can be detected in the ERP. The shape of the 

concept-response curve, which resembles Fig. 2B, indicates that the 

discrimination can be explained solely by the nuisance effects and no 

contribution of the primary effect to decoding performance can be concluded.  

Experiment 1C: The spatiotemporal dynamics of conceptual and 

perceptual processing  

Tracking the time course of brain activity to separate between different 

components of information processing is an interesting possibility which is put 

forward by time-resolved analysis of decoding accuracy (Bode and Haynes 

2009; Simanova et al. 2010; Sudre et al. 2012). Here, we show that the method 

that we propose here can not only dissociate primary and nuisance effects, it can 

also characterize their spatiotemporal dynamics. Using the same digit/letter 

ERP data as above, we performed a time resolved decoding using classification 

accuracies from a sliding 70-ms window, which was gradually shifted in 5-ms 

steps over the whole 1-s duration of the ERP. For each point, we repeated the 

classification procedure for � = 0 (digit/letter concept present) and � = 5 (no 

concept present). For � = 5, we calculated the 95% CI from the group null 

distribution by combining the distribution of classification accuracies obtained 

from 100 randomly selected sets �� on the subject level with a bootstrapping 

procedure on the group level as above (Stelzer et al. 2013). The bootstrapping 
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process was repeated 105 times, resulting in a group null distribution with 105 

group accuracies.  

Figure 4A shows the time course of decoding accuracy averaged over nineteen 

subjects and two sessions. The blue line represents the time course of 

digit/letter decoding (� = 0), driven by both conceptual and perceptual 

differences between stimuli. The red line represents the time course of subclass-

level decoding (� = 5), driven by perceptual, stimulus-related differences. This 

curve characterizes the portion of the ERP signal that is unrelated to the concept 

of digits vs. letters. Our data show that perceptual information can be reliably 

decoded between 150 and 350 ms after stimulus onset, when the lower bound 

of the 95% CI exceeds chance level (50%). Where digit/letter classification 

exceeds the upper bound of the 95% CI, i.e. from 90 to 635 ms after stimulus 

onset, concept-related information can be reliably decoded. Stimulus-level 

decoding (red line) shows peak performance around 220 ms after stimulus 

onset while digit/letter decoding (blue line) reaches its peak 35 ms later at 

255 ms after stimulus onset. We can assume that this time lag occurs because 

lower-level, stimulus-specific information processing is faster and terminates 

earlier than higher-level concept processing. To further look into stimulus-level 

information processing, we repeated the same time-resolved analysis by one-

versus-one classification of digits and letters, separately, and averaged over all 

45 possible binary classifications of 10 stimuli in each category. Figures 4B-C 

show the time course of average classification accuracy for stimulus-level 

classification within each stimulus category. The results show that single digits 

and letters can be decoded reliably from 150 to 300 ms after stimulus onset, 

which overlaps substantially with the interval for successful subclass-level 

classification above. This indicates that it is stimulus-specific differences that 

make subclasses distinguishable. Moreover, one-versus-one stimulus 

classification peaks earlier than concept-level digit/letter classification, 

reflecting the slower nature of higher-level concept processing.  
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Figure 5: Time-resolved decoding of digits and letters (A). The blue line shows the time 

course of classification accuracy for digit/letter classification (( = 1). The red line 

represents the results for stimulus-level classification (( = 2). The shaded area around 

the red line indicates the 95% CI for stimulus-level classification on the group level. 

Where the lower margin of the CI exceeds 50%, significant stimulus-level information is 

present in the data. Where the blue line exceeds the upper margin of the CI significant 

concept-level classification is possible. The vertical dashed lines indicate the latencies at 

which the blue and red curves peak. (B, C) Time course of average classification accuracy 

for one-versus-one classification of digits and letters, respectively. The shaded area 

indicates the 95% CI on the group level. 

Going beyond temporal localization, we can use a so-called searchlight approach 

to perform spatiotemporal localization (Kriegeskorte et al. 2006). We used a 

temporal window size of 70 ms with a 20 ms resolution and a spatial window 

size of 4 cm on-scalp radius around the 32 evenly spaced locations of the 

extended 10-20 system. For each spatiotemporal searchlight, we calculate a 

linear SVM with 2-fold cross-validation as proposed above, once for � = 0 and 

once for � = 5 (Fig. 5). To get the significance maps for digit/letter classification 

(� = 0), we compare the classification accuracy of each spatiotemporal 

searchlight with the group null distribution obtained by the permutations of 

� = 5. On the other hand, significances for stimulus-level classification are 

calculated based on the probability that the group distribution of permutations 

of � = 5 exceed 50%. Resulting topographies show areas of the cortex surface 
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that hold information relevant to the distinction between digits and letters and 

to the distinction of individual digits and letters, respectively. The results show 

that predictive sites for the digit/letter classification overlap with those sites 

responsible for the stimulus-level distinction, speaking for a contribution of 

these sites to both lower and higher-level processing. In particular, both include 

the occipital and temporal cortices. Concept-related topographies, however, are 

spread more widely and, at later time points, reach the frontal cortex, which is 

completely spared by stimulus-level processing. These results are in line with a 

previous study by Sudre et al. (2012) that used machine learning to track neural 

coding of perceptual and semantic features of concrete nouns in MEG data. In 

particular, they showed that perceptual features related to visual stimuli are 

decodable earlier in time than higher-level semantic features (e.g. animacy, 

manipulability and size), which were best decoded only after 250 ms post 

stimulus onset. Similarly, the lateral occipital cortex was shown to be 

preferentially related to encoding of perceptual features whereas activity in 

parietal and temporal regions were mainly associated with encoding semantic 

information. 
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Figure 6: Searchlight classification of digits and letters. Performance of the digit/letter 

(A) and stimulus-level (C) classifier for all the spatiotemporal searchlights. (B) 

Significance maps for digit/letter classification after Bonferroni-Holm correction for 

32×47 tests. Significant searchlights after correction are shown in black. Significances are 

calculated by comparing the classification accuracy of each spatiotemporal searchlight 

with the corresponding group null distribution obtained by permutations of ( = 2 

(stimulus-level classification). (D) Significance maps for stimulus-level classification. P-

values are based on the distribution of permutations of  ( = 2 compared to chance 

performance of 50%. Significant searchlights did not survive the correction for multiple 

comparison.  
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Experiment 2: Decoding faces and houses from EEG with repeated 

stimulus presentation 

We can use concept-response curves in any experiment where MVPA is used to 

decode category information from brain activity when different exemplars of 

each object category are presented multiple times. Here, we used EEG 

recordings from 19 healthy subjects in two sessions during presentation of 

visual stimuli belonging to the two categories of faces and houses. Similar to 

Experiment 1, subjects were presented with randomly ordered sequences of 8 

pictures of either faces or houses in the context of a Stenberg task, i.e. they had 

to remember all pictures of the sequence and later report whether a target 

stimulus was present or not. We used totally 10 exemplars per category (10 

different pictures of faces/houses). Each exemplar was presented 4 times 

throughout the experiment, resulting in a total of 40 trials per category. Each 

trial consisted of 100 ms visual presentation followed by a 1-s black screen. 

Recording, preprocessing and artefact rejection procedures were done as in 

Experiment 1.  

We employed linear SVM with 2-fold cross-validation to identify on a single trial 

level whether an image of a face or house was presented to the subject. To 

analyze whether the concepts can be decoded from our data, we generated a 

concept-response curve as above. Since stimuli were selected from a set of 20 

different pictures (2 categories with 10 exemplars each), each category consists 

of 10 blocks of 4 trials each (	 = 10). We manipulated the amount of category-

specific information by changing the ratio of face/house exemplars in sets �� and 

��. By changing � (number of face exemplars in ��) from 0 to 5 we obtained the 

concept-response curve shown in Figure 6A. The curve shows a clear 

dependence of classification rate on the amount of concept present in the data. 

The average classification accuracy for � = 0 (maximum separation of 

concepts) over all subjects and sessions is 62.0%. For � = 5, the average 

classification accuracy due to category-irrelevant information is slightly but not 

significantly above chance (50.8%; 95% CI: [49.6%, 51.9%], p = 0.132). Based 
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on the shape of the concept-response curve we can therefore conclude that the 

primary effect of ‘face’ and ‘house’ category is present in the data and no 

significant nuisance effect due to the presentation of multiple category 

exemplars can be detected. However, the correct null-distribution to test for 

significance is still the one defined by the permutations of � = 5.  

Experiment 3: Decoding the concepts of ‘animal’ and ‘fruit’ 

In this last experiment, we aim to decode the two semantic categories ‘animal’ 

and ‘fruit’ from event-related EEG potentials. EEG was recorded with the same 

setup as in Experiment 1 above. 19 healthy subjects participated in two sessions 

during which visual stimuli belonging to the two categories were presented in a 

learning and recognition task. For the present analysis, ERP responses to 120 

pictures (60 different pictures per category) were analyzed. Each picture was 

presented to the subjects once for 300 ms, followed by a black screen for 1.5 s. 

ERPs were calculated for epochs of 1 s starting at stimulus onset. Recording, 

preprocessing, and artefact rejection procedures were done as above. We used 

a linear SVM with 2-fold cross validation on the whole 128-channel ERP in order 

to decode for each trial whether a fruit or an animal had been presented. To 

investigate whether concept-irrelevant variance induced by different stimuli 

can affect classification, we generate a concept-response curve, which presents 

the relationship between the amount of concept in the data and classification 

accuracy. Notably, since there were no obvious subclasses in the data, the 

number of blocks in each category is equal to the number of trials (	 = 60). We 

varied the amount of category-related information by changing the ratio of 

animal and fruit trials in the classification sets �� and ��. We repeated the 

procedure for 6 points of the curve (� = 0, 6, 12, 18, 24, 30), equivalent to a 0%, 

10%, 20%, 30%, 40% and 50% combination ratio, respectively. Figure 6B shows 

the resulting concept-response curve. The average classification accuracy over 

all subjects and sessions is 57.23% for � = 0. It decreases monotonically and 

converges to 50.0% (95% CI: [49.0%, 50.9%]) for � = 30. The shape of the 
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curve confirms that there is category-specific information related to the 

concepts of ‘animal’ and ‘fruit’ in our EEG data. 

Figure 7: Concept-response curve for (A) decoding face and house stimuli and (B) 

decoding animal and fruit stimuli from event-related EEG potentials. The error bars show 

the 95% CI of the stimulus-level classification on the group level. 

Discussion 

The high sensitivity of MVPA for any kind of structure in a data set allows to 

detect subtle differences between conditions of interest, e.g. the distinct 

patterns of brain activity during processing of separate concepts (Haxby et al. 

2001; Cox and Savoy 2003; Shinkareva et al. 2008; Simanova et al. 2010; Wang 

et al. 2013). In principle, although MVPA is a statistically powerful and robust 

method, its complexity can lead to important methodological and conceptual 

issues. Classification rates should not be tested for significance with classical 

parametric tests because their distribution can be strongly skewed for small 

effect sizes and it does not fulfill prerequisites for these tests (Noirhomme et al. 

2014; Jamalabadi et al. 2016). Moreover, the sensitivity of MVPA makes it 

susceptible to effects of nuisance variables, which cannot be completely 

counterbalanced in some circumstances. This is usually the case if there are 

distinct subclasses in the data set. Subclasses can exist e.g. if several groups of 
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trials are combined into one class, if stimuli or types of stimuli are presented 

repeatedly, or if multiple subjects or experimental sessions are included in one 

analysis. In principle, these nuisance effects differ from systematic confounds 

(e.g. decoding black and white inanimate objects versus colorful animals) 

because they cannot be avoided experimentally. Therefore, confounds induced 

by subclasses are a general concern for MVPA, because they can lead to 

significant bias and higher than chance classification accuracy, even when the 

primary effect is nonexistent. To test against the correct null hypothesis, the 

influence of these nuisance effects has to be accounted for. Previous literature 

noted the challenges posed by nuisance variance and proposed to identify 

proper exchangeability blocks when constructing the null distribution (Nichols 

and Holmes 2002; Schreiber and Krekelberg 2013; Winkler et al. 2014). Here, 

we propose a method to present and test MVPA results which can quantify the 

contribution of nuisance variance by taking the data set structure into account. 

Concept-response curves enable us to show whether significant nuisance 

variables are present in the data and test whether the actual effect in question 

goes significantly beyond these effects. In the context of hypothesis testing, our 

method provides a permutation inference framework for the case when 

exchangeable units in the relabeling scheme are defined by the subclasses in the 

data. Importantly, our method is meant to be useful for cases when the 

confounds are not systematic and therefore cannot be avoided experimentally. 

Similar to dose-response curves, concept-response curves also provide a 

convincing way to show that classification accuracy is increasing with the 

amount of conceptual information in a data set and increase confidence in the 

validity of a finding, especially if effects are small and classification rates are 

close to chance levels. Using concept-response curves provides an additional 

measure of validity because multiple classification steps are involved. An 

accurate decoding of concept-related information can only be confirmed if 

accuracy lies significantly above the rightmost point of the concept-response 

curve and if the concept-response curve shows a monotonic decay. If the curve 
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has an irregular structure, this indicates that classification accuracies are not 

stable enough and therefore cannot be attributed to the concept under study.  

Using a grouping factor unrelated to the actual classification can not only be 

used to derive the correct null hypothesis when decoding cognitive concepts 

from brain activity, but is also helpful when separating the effects of different 

experimental factors. Because such factors (e.g. concept-related and perceptual 

influences as in Experiment 1C) often cannot be separated experimentally 

(Simanova et al. 2010; Murphy et al. 2011; Wurm et al. 2015), we believe that it 

is a worthwhile approach to manipulate the amount of concept-related 

information in the data during analysis and thus separate the actual concept 

from other (nuisance) factors. This method can also be used, e.g., to identify the 

temporal and spatial aspects of the signal related to each process, by 

determining where decoding accuracies related to the concept exceed those 

from concept-irrelevant classification, or to characterize the spatiotemporal 

dynamics of mental representations. Finally, by deliberately introducing other 

experimental factors as subclasses, it is possible to distinguish the independent 

contributions of several factors to classification.  

It has been recently proposed by Höhne et al. (2016) that additional label 

information (i.e. subclass labels) should be incorporated into the classifier to 

improve the accuracy of pattern classification in neuroimaging studies. It is 

important to note that this is only true for designs with crossed factors, i.e., when 

every subclass coexists in both categories. While exploiting the information that 

is shared between crossed subclasses can improve classification performance 

(Hohne et al. 2016), the contribution of such information in nested designs, i.e. 

when each subclass pertains only to one of the categories (see Experiments 1 

and 2), represents a confound and can lead to false positive results. Nested data 

are characterized by a hierarchal, multi-level structure (e.g. recordings using 

repeated stimuli, multiple sessions per subject, or multiple cells per animal). It 

has been reported that more than 50% of neuroscience papers included nested 

data, although this is largely ignored (Aarts et al. 2014). The nested structure 
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introduces dependency in the data that must be statistically accommodated. 

Although such considerations are not new for classical statistics (Galbraith et al. 

2010; Lazic 2010; Aarts et al. 2014; Aarts et al. 2015; Moen et al. 2016), the 

implications for the use of MVPA must be further explored. 

When planning to use MVPA for decoding cognitive concepts, and if confounding 

subclasses cannot be avoided, we recommend increasing the number of 

subcategories per condition. This makes subclass-specific information less 

prominent (see Experiment 2). Particularly, when more than five distinct 

subclasses are available, the correct null distribution and the corresponding 

95% CI can easily be determined by random permutation. If only a smaller 

number of groupings is available, e.g. because the nuisance feature is dichotomic 

by nature, statistical inference on the group level must be applied to correct for 

the subclass-related bias instead. Together, we suggest that including concept-

unrelated grouping factors into analyses, using blocked permutation tests, and 

gradually manipulating the proportion of concept-related information in MVPA 

to achieve concept-response curves is a viable, sensible and often necessary 

approach to data analysis when investigating brain responses to cognitive 

concept processing.  
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