
Noname manuscript No.
(will be inserted by the editor)

F-Alloy: A Relational Model Transformation Language
Based on Alloy

Loïc Gammaitoni · Pierre Kelsen

the date of receipt and acceptance should be inserted later

Abstract Model transformations are one of the core
artifacts of a model-driven engineering approach. The
relational logic language Alloy has been used in the
past to verify properties of model transformations. In
this paper we introduce the concept of functional Alloy
modules. In essence a functional Alloy module can be
viewed as an Alloy module representing a model trans-
formation. We describe a sublanguage of Alloy called
F-Alloy specifically designed to concisely specify func-
tional Alloy modules. The restrictions on F-Alloy’s syn-
tax are meant to allow efficient execution of the spec-
ified transformation, without the use of backtracking,
by an adapted interpretation algorithm. F-Alloy’s se-
mantics is given in this paper as a direct translation to
Alloy, hence F-Alloy specifications are also analyzable
using the powerful automatic analysis features of Alloy.

Keywords Model Transformation · F-Alloy · Alloy ·
Analysis · Formal method · endogenous · exogenous

1 Introduction

In recent works [12,10], we investigated the use of Alloy
[17], a formal language based on a first-order relational
logic with transitive closure, in the definition of Domain
Specific Languages (DSLs) [31]. These investigations
were led by the intuition that Alloy, which has been
successfully used to validate and verify systems from a
variety of domains [13,28], could also be used to validate
and verify DSLs specifications. Ultimately, we defined
a design cycle for DSL design in which Alloy analysis

Loïc Gammaitoni (�) · Pierre Kelsen
University of Luxembourg
E-mail: loic.gammaitoni@uni.lu
E-mail: pierre.kelsen@uni.lu

is applied at every step, hence allowing an agile valida-
tion of every aspect of the DSL defined: abstract syntax,
concrete syntax, and operational semantics, all defined
in Alloy modules. The Lightning1 language workbench
is an environment enabling the definition of DSLs fol-
lowing this design cycle.

Model transformations play a key role in the speci-
fications of DSLs. Indeed, the concrete syntax takes the
form of an exogenous transformation from the Abstract
Syntax Model to a Visual Language Model and the op-
erational semantics is defined by an endogenous inplace
transformation from/to a semantic domain model defin-
ing valid execution states of the language.

While it is known that model transformations can
be specified in Alloy [6,4,21], their execution relying
on the Alloy analyzer (a SAT-based tool) is deemed
impractical for two reasons:

– Despite many advances in the performance of SAT
solvers [19], the analysis of a model can become
quite time consuming when it requires larger scopes
to find a suitable instance (as shown by measure-
ments listed in our evaluation section).

– The problem of determining small scopes, which are
needed in order to find relevant instances in a rea-
sonable time, is itself non-trivial.In the context of
modelling model transformations, scopes would be
needed both for concepts in the source metamodel
and the target metamodel (both represented in Al-
loy), assuming we want to generate pairs of input
and output models.

In this work, we propose a solution to overcome
this limitation. This solution takes the form of a new
language, called F-Alloy, specifically designed to allow
the concise specification of efficiently executable model

1 http://lightning.gforge.uni.lu

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Repository and Bibliography - Luxembourg

https://core.ac.uk/display/132585792?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Loïc Gammaitoni, Pierre Kelsen

transformation. This F-Alloy language is based on a
subset of the syntax of Alloy but its associated seman-
tics differs in the sense that every Alloy construct is in-
terpreted in the context of model transformations. This
semantics "alteration" can be translated into explicit
Alloy constraints hence allowing to easily translate F-
Alloy specification into Alloy.

It would of course have been possible in principle to
reuse an existing model transformation language (such
as ATL) for specifying the model transformations in
Lightning. However, since we require DSL specifica-
tions to be analyzable in Lightning, a translation from
that model transformation language to Alloy would also
be needed. For the case of F-Alloy this translation is
fairly simple since F-Alloy reuses the structural con-
cepts of Alloy and only constraints need to added. Be-
cause this is not the case for other model transforma-
tion languages, a more complex translation procedure is
likely to be needed for those languages. Furthermore the
structural similarity between F-Alloy and Alloy should
ease the learning of this language for potential users
of Lightning since the use of Lightning requires some
familiarity with Alloy.

The model transformations we consider in this pa-
per are exogenous (out-place) model transformations
(source and target are distinct Alloy modules) and en-
dogenous in-place transformations (source and target
are the same Alloy module and the transformation is
expressed in terms of refinement operations) – see tax-
onomy of model transformations given in [22]. We ig-
nore endogenous out-place transformations as we re-
gard them as a special application of exogenous out-
place transformations, where the target meta-model is a
duplicate of the source metamodel, considered as differ-
ent though declaring the exact same concepts. Through-
out the paper, we therefore mean by endogenous trans-
formation, if not stated otherwise, endogenous in-place
transformation.

A central concept of F-Alloy are so-called mappings
which are essentially injective functions. The F-Alloy
language can thus be viewed as a relational model trans-
formation language (since functions are special cases of
relations). Compared to existing relational model trans-
formation languages (of which QVTr [23] is a prominent
representative) F-Alloy offers two notable features:

– F-Alloy specification can natively be translated into
Alloy for validation’s sake.

– execution (which we will refer to as interpretation)
directly exploits the functional nature of model trans-
formations , i.e., the fact that for each input model
there is at most one output model. This allows effi-
cient backtrack-free execution of model transforma-
tions.

We demonstrate the effectiveness of this functional ap-
proach by applying it to two examples, namely, the
Class Diagrams to Relational Database Management
Systems (CD2RDBMS) exogenous transformation and a
Class Diagram refinement (CDRefinement) endogenous
transformation (see Section 3).

The paper is structured as follows. In the next sec-
tion, we provide an overview of the different notions
introduced in this paper. In Section 3 we present two
running examples that will be used to illustrate and
evaluate our approach. In Section 4 we introduce the
central concepts of Alloy. In Section 5 we introduce the
notion of functional Alloy module and explain its re-
lation with model transformations. Sections 6 and 7
present the syntax and (translational) semantics of F-
Alloy. In Section 8 we illustrate how F-Alloy specifi-
cations can be efficiently interpreted. We provide an
evaluation of our approach in Section 9 by comparing
the performance of analysis and interpretation for both
case studies. We explain the context of our work and
discuss related work in Section 10. The final section
presents concluding remarks and future work.

Reader’s guide:We propose different ways to read
the paper matching the different expectations readers
may have. All readers should first get an idea of the
overall approach by reading Section 2. If readers are
interested in:

– the practical use of F-Alloy, then they can read:
– Section 3 providing case studies and their imple-

mentation in F-Alloy as well as in other recog-
nized languages like TGG and Henshin.

– Optionally Section 4.2 to get a short and infor-
mal introduction to Alloy’s concepts

– Section 6.2, 6.4 and 6.5 to get familiar with the
syntax of F-Alloy

– Optionally Section 8 to understand how F-Alloy
specifications are interpreted, though the intu-
ition given in Section 3 should be enough

– the formal definition of F-Alloy, then they can read:
– Section 4.1 providing the formal notation used

to reason about Alloy
– Section 5 defining the notion of functional Alloy

module, a formalization of Alloy modules denot-
ing transformations

– Section 6.1, 6.2, 6.3 and 6.5 introducing the syn-
tax of F-Alloy in terms of the syntax of Alloy and
containing some definition of terms and proper-
ties later used in the paper

– Section 7 defining the translational semantics of
F-Alloy

– Optionally Section 8 showing that the interpre-
tation of F-Alloy transformations follows the se-
mantics defined in Section 7

F-Alloy: A Relational Model Transformation Language Based on Alloy 3

from tofunction fm
src

m
dst

denotes

F-module
m

Efficient
Execution

x
src

in

in out x
τ

Formal
Verification

Alloy module
m

τ

denotes

F-Alloy
Interpreter

in
out

Translation
Function

in

out Alloy Analyzerx
T

x
T

x
τ

Fig. 1: An overview of the F-Alloy approach

– having a quick overview of the contributions, then
they can read:
– Section 5 defining the notion of functional Alloy

module, a formalization of Alloy modules denot-
ing transformations

– Section 7.1 providing an overview of how the se-
mantics of F-Alloy is defined

– plots in Section 9 illustrating the performance of
F-Alloy w.r.t. Alloy and existing model transfor-
mation languages

– points of interest in Section 10 positioning our
work w.r.t. related works

Extension statement: A previous version of this
work has been published in the proceedings of the 8th

International Conference on Model Transformation (
ICMT 2015)[9]. Thanks to the valuable comments and
suggestions from the anonymous reviewers of the ICMT
2015 conference and SoSyM journal, we hereby present
an extended and improved version of our work. Notably,
the main contributions with respect to the earlier pub-
lication are:

– a more general definition of the notion of functional
Alloy modules,

– an extension of F-Alloy (both in terms of syntax and
semantics) to endogenous transformations,

– a comparison of implementations of case studies in
F-Alloy with those using existing model transforma-
tion languages, namely, Henshin and TGG,

– a more comprehensive evaluation by comparing the
efficiency of F-Alloy based implementations with ATL-
and Henshin-based implementations.

2 Approach Overview

Model transformations can be viewed as defining rela-
tions between models. We limit ourselves to the study of
a subset of those relations we call functions. Functions
have the property of being deterministic and of yield-
ing, given a source model, at most one target model.

Following the line of work presented in [10], there is
a need for the specification of such functions to be for-
mally verifiable yet efficient computable. While seam-
less formal verification is natively supported by Alloy
[17], making it a formalism of choice to express those
specifications, the Alloy analyzer’s performance, rely-
ing on SAT-solving, hinders the practical use of such
specifications.

In this work we are interested in adapting Alloy to
the specification of functions in such a way that these
functions can be computed efficiently while the under-
lying specification can still be analyzed using Alloy’s
automatic analysis features. We hence define a new
language, called F-Alloy2, specifically designed to con-
cisely express functions in a restricted Alloy syntax,
that achieves the goals we just stated, i.e.:

– Functions expressed in F-Alloy can be efficiently
computed (by a process called interpretation)

– Function specifications in F-Alloy (called f-modules)
translate to an Alloy module denoting the same
function (called functional Alloy module) thus al-
lowing them to be subject to Alloy analysis.

2 stands for Functional-Alloy as it is used to specify functions

4 Loïc Gammaitoni, Pierre Kelsen

To summarize, we provide a graphical overview of
the approach in Fig. 1.

In this figure, we are interested in specifying a func-
tion f from a source to a target metamodel. To do so,
we produce an f-module m “denoting” f . This f-module
can be interpreted, given an instance xsrc conforming to
msrc, to efficiently build the instance xT corresponding
to the execution of f given xsrc. The translational se-
mantics of F-Alloy allows us to obtain the Alloy module
mT , Alloy equivalent of m in the sense that instances
yielded by interpretation of m conform to mT . Alloy
analysis can then be performed on mT (as shown in
Fig.1) to obtain, for validation’s purpose, a set of pos-
sible transformation executions (represented by the in-
stance xT in Fig. 1, bottom right).

3 Case Studies

We present in this section two model transformation
scenarios to evaluate and illustrate the use of F-Alloy.
The first one — referred to as CD2RDBMS — is an ex-
ogenous model transformation from Class Diagram to
Relational Database Management System. The second
one — referred to as CDRefinement — is an endoge-
nous model transformation on Class Diagrams.

3.1 CD2RDBMS: A Class Diagram to Relational
Database Management System Model Transformation

The CD2RDBMSmodel transformation is the defacto stan-
dard case study when it comes to benchmarking a model
transformation language [7]. We first provide a sum-
mary of the specifications provided in [7], before show-
ing how they can be implemented using Triple Graph
Grammars (TGG). The TGG implementation is then
used to give a first informal introduction to F-Alloy, by
simply providing the F-Alloy implementation of CD2RDBMS
and comparing it to the TGG implementation.

We note that we have chosen TGG for its popularity
and ability in providing a concise graphical overview of
the transformation.

3.1.1 Informal Specification

The source and target metamodels of this model trans-
formation (CD and RDBMS, respectively) are shown as
UML class diagrams in Fig. 2 and 3, respectively. Well-
formedness constraints of those metamodels can be found
in their respective Alloy representations, given in List-
ings 1 and 2.

We now give an informal specification of this trans-
formation.

For each class c without a parent, a table is created.
This table is populated with columns (1) representing
the attributes of c or of its inheriting classes, (2) issued
from associations having c as their source.

In case (1), the column is typed and named after the
represented attribute. If the class declaring the at-
tribute has a parent, names of all the parents of the
declaring class have to appear in the name of the
representing column.

In case (2), a column is created for each primary key of
the table representing the class at the destination of
the association, and is named after the association
and the attribute it represents. In this example, we
flatten associations so that their sources and tar-
gets are topmost classes. This enables us to simplify
our implementations (in TGG and F-Alloy) , with-
out decreasing the complexity of the transformation
(Recursion is still necessary when naming columns).

To better grasp the expected behavior of the trans-
formation, we provide a visualization of a CD2RDBMS

application in Fig. 4. We invite the reader to pay partic-
ular attention to the traceability links (dashed arrows).
In this figure we see that two tables are created from
the two topmost classes A and B. The columns a and
C_c of table A and the column b1 of table B are obtained
as per rule (1). The column x_b1 composes the foreign
key of table A, representing association x and referring
to table B, and is obtained as per rule (2).

3.1.2 TGG Implementation

TGG (Triple Graph Grammar)[24] is a well-known for-
malism allowing the declarative specification of model
transformations. TGG specifications are composed of
rules, each of them being expressed using three graphs.
The source and target graph represents those subgraphs
whose match will trigger the rule and those who will be
generated when the rule is triggered, respectively. A
third graph called correspondence graph keeps track of
relations between source and target elements for future
reference. In this work, we reuse the partial3 implemen-
tation of the CD2RDBMS provided in [16]. We preferred
this solution amongst others for the concise overview of
the CD2RDBMS transformation it provides.

Figure 5 provides an overview of the solution and of
the kind of traces (nodes of the correspondence graph)
used to relate elements of CD (source graph) to elements
of RDBMS (target graph).

The rules composing the transformation are given in
Fig. 6. We note that those rules are bi-directional, i.e.,

3 the notion of persistence is abstracted away and the naming
of column make abstractions of inheritance

F-Alloy: A Relational Model Transformation Language Based on Alloy 5

Fig. 2: CD metamodel (adapted from [7])

Fig. 3: RDBMS metamodel (adapted from [7])

they can be read either from left to right or right to left.
We are only interested in going from CD to RDBMS (left
to right) and thus provide a reading in that direction
solely:

– C2T enforces, via the CT correspondence node, the
creation of a table for every class so that table and
related class share the same name.

– SC2T enforces inheriting classes to be related to the
same table as their parents (via CT as well).

– PA2C enforces the creation of a primary column for
each primary attribute of a class. The column is
named and typed after the attribute it has been
created from and is contained in the table related
to the class declaring the attribute.

– A2FK enforces the creation of an FKey for each as-
sociation and of a column for each primary column
of tables related to associations’ destination classes.
The created columns are typed after those primary
key columns’ type and are named after those columns
and the association that led to their creation. Those
created columns are also composing the foreign key
created from the association and referring to the ta-
ble representing its destination class.

3.1.3 F-Alloy implementation

The source and target metamodels of an F-Alloy model
transformation are represented as Alloy modules. To

implement the CD2RDBMS transformation in F-Alloy, it
is thus a prerequisite step to express the CD and the
RDBMS metamodels in Alloy. The CD and RDBMS Alloy
modules are given in Listing 1 and 2, respectively. In
these modules, we see that each concept is declared as
a signature (sig) preceding a block containing decla-
rations of the references and attributes related to that
concept. These modules also contain several constraints
explained in comments.

Given those CD and RDBMS modules, a possible F-
Alloy implementation of the CD2RDBMS transformation
is given in Listing 3. We explain it, basing ourselves on
the TGG implementation given earlier, as follows:

The CD2RDBMS module (declared on l.1) expressing
a model transformation from CD (imported on l.2) to
RDBMS (imported on l.3) is composed of four CREATE

mappings (l.6-9). CREATE mappings are used to “cre-
ate” elements in the output of the transformation. A
mapping declaration consists of a sequence of arrow-
separated signatures, the last one being the type of
elements the mapping can produce. Each mapping is
associated to a guard and a value predicate declared
using the keyword pred and identified by the name
of the mapping they are associated with prefixed by
guard_ and value_, respectively. Guard predicates de-
fine the condition under which mappings are triggered.
A guard predicate can thus be seen as a mapping pre-
condition and serves thus the same purpose as TGG’s

6 Loïc Gammaitoni, Pierre Kelsen

B

b1: Number b2: Text

A

a: Text C_c: Text x_b1: Number

C
la

ss
 D

ia
gr

am
R

D
B

M
S

A

a: String

B

b1: Int

b2: String

x

FKEY

C

c: String

Legend

Class

Primary Attr: Type
Attr : Type

association

attribute2column

class2table

association2column
Table

primary_key : Type column: Type

Transformation
 Mappings

association2foreignkey

cols

FKEY

references

Fig. 4: Sample input and corresponding output of the CD2RDBMS transformation (adapted from [11])

left hand-side graph. Value predicates define the value
of elements created by mappings. A value predicate can
thus be seen as a mapping postcondition and serves thus
the same purpose as TGG’s left hand-side graph.

We detail here the purpose of each mapping and
make a parallel with the previously listed TGG rules:

1. class2table: creates a Table for each top-most
Class (l.13) so that the Table is named after the
name of the Class (l.16). This mapping covers the
C2T rule defined in TGG.

2. attribute2Column: creates a Column for each At-

tribute (as guard l.19 is empty). The Column is
typed (l.21) and named (l.22) after the Attribute.
The name of the Column also contains the name
of the Classes in the inheritance hierarchy of the
Class declaring the Attribute if this latter has a
parent (l.24-26). Note that this requirement of in-
cluding the name of inherited classes in the column’s
name is lacking in the provided TGG implementa-
tion. The Column has to be in the set of columns
of the Table representing the top-most Class affili-
ated to the Attribute (l.29), and should also be in

the set of primary keys of the said Table if the At-
tribute is primary (l.27-28). This mapping covers
the PA2C rule defined in TGG.

3. association2column: creates a Column for each
primary Attribute of a given Association’s tar-
get Class (l.33). The Column is typed after the At-
tribute (l.36) and named after both the Associa-
tion (l.37) and the Attribute (l.38). The Column
has to be in the set of columns of the Table rep-
resenting the Class at the source of the Associ-

ation (l.39) and in the set of columns composing
the foreign key (FKey) obtained via the associa-

tion2FKey mapping from the given Association

(l.40). The association2column mapping covers
the Column creations of the A2FK rule.

4. association2FKey: creates an FKey for each As-

sociation (l.43). The FKey references the Table

representing the Association’s target Class (l.45),
and is in the set of foreign keys of the Table associ-
ated via the class2table mapping to the class at
the source of the Association (l.46).

F-Alloy: A Relational Model Transformation Language Based on Alloy 7

1 module CD
2 open util/boolean
3
4 abstract sig CDElement{
5 //no 2 distinct CDElement share the same name
6 name: disj String
7 }
8 sig Class extends CDElement{
9 attrs: some Attribute,

10 parent: lone Class,
11 is_abstract: Bool
12 }{
13 //no 2 distinct class share the same attributes
14 // & in Alloy is the set intersection operator
15 no c:Class | c!=this and c.@attrs & attrs !=none
16 //class cannot be its own ancestor
17 this not in this.^@parent
18 }
19 sig Attribute extends CDElement{
20 is_primary: Bool,
21 type:PrimitiveDataType
22 }{
23 //no orphan attributes
24 this in Class.attrs
25 }
26 sig Association extends CDElement{
27 src: Class,
28 dest: Class
29 }{
30 //association between top-classes only
31 (src+dest).parent=none
32 }
33 sig PrimitiveDataType extends CDElement{}{
34 //primitiveDataType is either named String or int
35 PrimitiveDataType.@name= "String"+"int"
36 }

Listing 1: CD Alloy module

1 module RDBMS
2
3 abstract sig RDBMSElement{
4 name: disj seq String
5 }
6 sig Table extends RDBMSElement{
7 cols: disj some Column,
8 pkeys: some Column,
9 fkeys: set FKey

10 }{
11 //pkeys is a subset of cols
12 pkeys in cols
13 }
14 sig Column extends RDBMSElement{
15 dataType: String
16 }{
17 //no orphan columns
18 this in Table.cols
19 //dataType is either text or number
20 dataType in "TEXT"+"NUMBER"
21 }
22 sig FKey{
23 references: Table,
24 columns: set Column
25 }{
26 //no orphan FKeys
27 this in Table.fkeys
28 //fkey columns are in owning table
29 columns in this.~fkeys.cols
30 }

Listing 2: RDBMS Alloy module

1 module CD2RDBMS
2 open CD
3 open RDBMS
4
5 one sig CREATE{
6 class2table: Class -> Table,
7 attribute2column: Attribute -> Column,
8 association2column: Association -> Attribute -> Column,
9 association2FKey: Association -> FKey,

10 }
11
12 pred guard_class2table(c:Class){
13 c.parent= none
14 }
15 pred value_class2table(c:Class , t:Table){
16 t.name[0]= c.name
17 }
18
19 pred guard_attribute2column(a:Attribute){}
20 pred value_attribute2column(a:Attribute, c:Column){
21 c.dataType= (a.type.name="String" implies "TEXT" else "

NUMBER")
22 c.name[0]= a.name
23 c.name[1]=
24 ((a.~attrs.parent)!=none implies a.~attrs.name else none

)
25 all i:Int| i>=1 and i< #(a.~attrs.^parent) implies
26 c.name[add[i,1]]= c.name[i].~name.parent.name
27 a.is_primary= True implies
28 c in CREATE.class2table[a.~attrs.*parent].pkeys
29 c in CREATE.class2table[a.~attrs.*parent].cols
30 }
31
32 pred guard_association2column(ass:Association, att:Attribute

){
33 att.is_primary= True and att in ass.dest.attrs
34 }
35 pred value_association2column(ass:Association, att:Attribute

, c:Column){
36 c.dataType= (att.type.name="String" implies "TEXT" else "

NUMBER")
37 c.name[0]= ass.name
38 c.name[1]= att.name
39 c in CREATE.class2table[ass.src].cols
40 c in CREATE.association2FKey[ass].columns
41 }
42
43 pred guard_association2FKey(a:Association){}
44 pred value_association2FKey(a:Association, f:FKey){
45 f.references= CREATE.class2table[a.dest]
46 f in CREATE.class2table[a.src].fkeys
47 }

Listing 3: F-Alloy specification of the CD2RDBMS

transformation

The association2FKey mapping covers the FKey

creations of the A2FK rule.

We note that SC2T is not represented as a mapping
in F-Alloy as it is not used to create any element in the
output. The use of SC2T is to relate inheriting classes
to the table representing their topmost ancestors. In F-
Alloy we use the expression c.*parent (where c is an
expression of type class) to return the set of all parents
of c. The expression Create.class2table[c.* par-

ent] then returns the table associated to the ancestors
of c, just as defined by SC2T.

Figure 4 shows traces corresponding to each of the
aforementioned mappings. In this figure, we can see
amongst other details that tables A and B are created

8 Loïc Gammaitoni, Pierre Kelsen

src

Association

name: String
FKey cols

fkeys
referencesdest

fcols

pkey
attrs

type

parent

type

TGS TGC TGT

CT

AFK

AC

110..1

0..1

1

0..1
Class

name: String

Attribute

name: String
is_primary: boolean

Table

name: String

Column
type: String
name: String

PrimitiveDataType

name: String

0..1

Fig. 5: A simplified overview of the CD2RDBMS TGG transformation as given in [16]

:Class

name=n
:CT

:Table

name=n

Class2Table(n:String)
++ ++

++

:parent
S1:Class

:Class
name=n

:CT :Table

:CT

Subclass2Table(n:String)

++++

++

:Class :Table

:src

:Class

:dest

:FKey

:Table

:cols
:fkeys

:references

:pkey

++

:CT

:AFK

:CT

++

++ ++

++
++

++ ++

++
:fcols:Association

name = an

:Column

type = t

name = an+“_“+cn

Association2ForeignKey(an:String)

:cols

:AC

S1:Class

:Attribute

name=n

primary=true

:attrs

C1:
CT T1:Table

++

++
++

++
++

:Column
name=n
type=t

PrimaryAttr2Column(n:String, t:String)

:PrimitiveDataType

name=t

:type
++

:pKey
++

++

++

:Column

type = t

name = cn

Fig. 6: TGG Rules composing the CD2RDBMS transformation proposed in [16])

A B

x

+ attr : String

CD
 Refinement

C C

A BA_B

attr : String

x_Bx_A

Fig. 7: Sample input and corresponding output of the CDRefinement transformation

F-Alloy: A Relational Model Transformation Language Based on Alloy 9

Rule fixAbstract

«preserve»
:Class
is_abstract=true->false

«forbid»
:Class

parent «forbid»

Rule AssociationClass2Class(var c1Name:EString, var c2Name, var assName:EString)

«delete»
:AssociationClass

«delete»
:Association
name=assName

«preserve»
:Class
name=c1Name

«preserve»
:Class
name=c2Name

«create»
:Class
name=c1Name+"_"+c2Name

«create»
:Association
name=assName+"_"+c1Name

«create»
:Association
name=assName+"_"+c2Name

«preserve»
:Attribute

dst

«create»

src
«create»

attributes

«delete»

dst

«create»

attrs

«create»

association «delete»

src
«create»

src

«delete» dst

«delete»

SequentialUnit CDRefinement

AssociationClass2Class(?, ?, ?)

fixAbstract

Fig. 8: CDRefinement transformation defined using Henshin

from classes A and B via the class2table mapping,
respectively. No table C is created from class C, as it
inherits class A. Column a , b1 , b2, and C_c are all
created from the attribute2columnmapping. Column
x_b1 composing the foreign key created by the associ-
ation2FKeymapping is created by the association2-
column mapping.

3.2 CDRefinement: A Class Diagram Refinement
Scenario

3.2.1 Informal Specification

The CDRefinement endogenous model transformation
is the specification of a refinement transformation ap-

10 Loïc Gammaitoni, Pierre Kelsen

sig AssociationClass {
disj association: Association,
associationAttrs: set Attribute,

}

plied to class diagrams with association classes. This
refinement transformation consists in:

1. replacing all association classes by regular classes
2. turning non-inherited abstract classes into non-

abstract classes.

The purpose of (1) is to adapt the source model to
languages in which association classes cannot be repre-
sented (e.g. Ecore), while (2) adapts the source model
to languages where non-inherited abstract classes are
not supported as such (e.g. in Alloy, non-inherited ab-
stract classes are considered non-abstract).

The manipulations to achieve (1) consist (as de-
scribed in [20]) in removing each association class and
its associated association, and in creating a new class
containing the same attributes than the removed as-
sociation class as well as two new associations, both
connecting the originally associated classes to the newly
created class. To achieve (2) it is sufficient to update the
abstract modifier of concerned classes. We choose this
case study because it exercises the three elemental op-
erations commonly used in endogenous model transfor-
mation, i.e., creation, deletion and update of elements
(see [22]).

The source (and target) metamodel of this model
transformation is the class diagram model given in List-
ing 1 extended with the concept of AssociationClass
(an entity linked to an association and composed of at-
tributes) declared in Alloy as follows :

We note that AssociationClass does not inherit
from CDElement as it has no name attribute. The ap-
plication of the CDRefinement transformation is illus-
trated in Fig. 7. In this figure, we see that the abstract
class A becomes non-abstract due to the absence of in-
heriting classes while the abstract class B stays abstract
as class C is inheriting B. We also see that the associa-
tion class linked to association x is replaced by a class
named A_B after the source and target of x, and that
this class is associated through two new associations to
the source and target classes of x.

3.2.2 Henshin Implementation

We now provide an Henshin [5] implementation of the
CDRefinement model transformation. We have chosen
the graph based model transformation language Hen-
shin over other languages for its popularity and intu-
itive graphical syntax. This graphical syntax, to the

contrary of TGG’s one, enables the concise depiction of
in-place operations, notably through the use of colors
and labels.

A possible Henshin implementation of our case study
is given in Fig. 8.

Two rules and a sequentialUnit defining in which or-
der the rules are to be executed are depicted in Fig. 8.
The first rule, namely AssociationClass2Class, states
that every AssociationClass and connected associa-
tion are to be deleted. It also enforces that for each
such deletion, a new class is created, containing those
attributes declared in the deleted AssociationClass,
and named after the two previously associated classes.
Two associations are created as well, each connecting
one of the previously associated classes to the newly
created class. Those associations are named after the
deleted association and the classes they are associating
to the new class.

The second rule, namely fixAbstract, simply changes
the value of is_abstract from true to false, for each
class that has no children.

3.2.3 F-Alloy implementation

A possible F-Alloy implementation of the CDRefine-

ment transformation is given in Listing 4.
We explain it, basing ourselves on the Henshin im-

plementation given earlier, as follows:
The CD2Refinement module (l.1) describes an en-

dogenous transformation as it imports only one module
(CD)(l.2). It is composed of the three signatures CREATE,
UPDATE and DELETE. Mappings declared in the CREATE
and DELETE signatures are meant to add and remove
new elements to/from the source model, respectively.
Mappings declared in the UPDATE signature are meant
to modify how existing elements relate to each other.

The CREATE signature contains two mappings. The
first, associationClass2Class, enforces the creation
of a new Class for any AssociationClass present
in the source model(l.9). This newly created Class is
named (l.11) after the AssociationClass it represents
and contains the same attributes (l.12).

The second one, newAssociations, ensures the cre-
ation of an Association for each combination of Class
and Association (c, a) present in the source model
with a linked to c and adorned by an Association-

Class 4 (l.16). The created Association is named
“a_c”(l.19) and then linked to either c or the Class re-
placing the AssociationClass previously adorning a

4 ~association is the inverse relation of association map-
ping an AssociationClass to an Association. The expression
a.~association hence returns the AssociationClass adorn-
ing association a.

F-Alloy: A Relational Model Transformation Language Based on Alloy 11

1 module CDRefinement
2 open CD
3
4 one sig CREATE{
5 associationClass2Class: AssociationClass -> Class,
6 newAssociations: Class -> Association -> Association
7 }
8
9 pred guard_associationClass2Class(a:AssociationClass){}

10 pred value_associationClass2Class(a:AssociationClass, y:Class){
11 y.name= a.association.name
12 y.attrs= a.attributes
13 }
14
15 pred guard_newAssociations(c:Class, a:Association){
16 c in a.(src+dest) and a.~association!=none
17 }
18 pred value_newAssociations(c:Class,a:Association,y:Association)

{
19 y.name= a.name+c.name
20 y.src= (c= a.src implies c else CREATE.associationClass2Class

[a.~association])
21 y.dest= (c= a.dest implies c else CREATE.

associationClass2Class[a.~association])
22 }
23
24 one sig UPDATE{
25 fixAbstract: Class -> Class
26 }
27
28 pred guard_fixAbstract(c:Class){
29 c.is_abstract= True and c.~parent= none
30 }
31 pred value_fixAbstract(c:Class, y:Class){
32 y.is_abstract= False
33 }
34
35 one sig DELETE{
36 associationWithClass: Association,
37 associationClass: AssociationClass
38 }
39
40 pred guard_associationWithClass(a:Association){
41 a.~association!= none
42 }
43 pred guard_associationClass(a:AssociationClass){}

Listing 4: F-Alloy specification of the CDRefinement

transformation

depending on whether the source association was point-
ing to or was coming from an AssociationClass (l.20-
21).

The previously adorned associations as well as all
the association classes are removed from the source
model as specified by the two DELETE mappings (l.36-
37).

All those aforementioned mappings express the Hen-
shin rule AssociationClass2Class.

The Henshin rule fixAbstract is represented by
the UPDATE mapping of the same name.

The mapping fixAbstract simply enforces that each
abstract class without children (l.29) should have their
is_abstract field set to False (l.32). We note that
other fields of Class do not appear in the body of
value_fixAbstract as they are meant to remain un-
changed.

4 Background on Alloy

We provide in this section a formal definition of the
basic concepts of Alloy used throughout the paper fol-
lowing by a comparison of those concepts with their
Ecore counterparts. While the first part allows us to
lay down the formal background needed to reason later
on about Alloy, the second part is provided as a way
to put the given definitions in the MDE perspective,
specifically using Ecore as reference.

4.1 An Alloy Formal Introduction

A metamodel can be expressed in one or several Alloy
modules, each module being associated to a single file.
Modules are composed of signature and field declara-
tions, and of constraints. A module may import other
modules, in which case the importing module can use
features of the imported modules.

Definition 1 (Alloy Module, Signature, Field) An
Alloy module is a tuple (S, F, ϕ) with S and F being
the sets of signatures and fields declared in the module
or any of its (recursively) imported modules, respec-
tively. Signatures may be defined as subsignatures of
other signatures (using the extends keyword). Fields
of F have as type a sequence of signatures in S, the
first one being the signature that contains it. ϕ is a
first-order logic formula (possibly containing the tran-
sitive closure operators5ˆand ∗) representing the set of
constraints, called facts, expressed in the module.

Alloy modules representing the CD and RDBMS meta-
models of the case study presented in Section 3 are
given in Listings 1 and 2, respectively. We note that the
field name in the RDBMSElement signature is declared
as a sequence of string to enable string concatenation,
string operations not being supported by Alloy.

The RDBMS module presented in Listing 2 could thus
be rewritten following definition 1 as m = (S, F, ϕ)

with6:
S = { Table , Column , FKey , RDBMSElement }
F = { cols: (Table , Column)

pkeys: (Table , Column) ,
fkeys: (Table , FKey) ,
type: (Column , String) ,
references: (Fkey , Table) ,

5 R̂ returns the smallest relation R′ containing R and being
transitive while ∗R returns the smallest relation R′ containing R

and being both transitive and reflexive
6 We have omitted the constraints that express multiplicities

and disjointedness in ϕ – e.g. that each table should have at least
one column, or that no two RDBMSElement should have the same
name.

12 Loïc Gammaitoni, Pierre Kelsen

columns: (FKey , Column) ,
name: (RDBMSElement , Int, String)}

ϕ = (∀ t:Table , pkey(t) ∈ cols(t)) ∧
((∀ c: Column , ∃ t: Table , c ∈ cols(t))) ∧
(∀ f: FKey , ∃ t: Table, f ∈ fkeys(t)) ∧
(∀ f:FKey, columns(f) ⊆ cols(references(f)))

We note that in this example we express ϕ as a con-
junction of first order logic clauses listed following the
order of appearance of the fact they represent in the
RDBMS module

Considering now A, a set of indivisible entities called
atoms, T , a set of atom tuples, and a module m =

(S, F, ϕ), we call typed atoms pairs (x, s) where x ∈ A
and s ∈ S. A typed atom (x, s) is also denoted xs (read
“atom x of type s”). A typed tuple is a pair (t, f) where
t ∈ T and f ∈ F . A typed tuple (t, f) is also denoted
tf (read “tuple t of type f ”). Note that for a typed
tuple tf the following must hold: if the type of the field
is (X1, . . . , Xn), then the i-th component of the tuple
must have as type Xi or a subsignature of Xi.

We call xs an s-atom and tf an f-tuple and extend
the superscript notation so that sets of s-atoms A and
of f-tuples T are denoted As and T f , respectively

Definition 2 (Alloy Instance) An Alloy instance of
an Alloy module m, also called m-instance, is a triplet
x = (X,Y,m) where m = (S, F, ϕ), X is a set of atoms
typed by signatures of m and Y is a set of tuples typed
by fields of m and composed of atoms in X. We write
x � ϕ if an instance x of m satisfies ϕ and call valid
instances ofm the subset of instances ofm which satisfy
ϕ7. We denote the set of valid instances of m by I(m).
Formally:

I(m) = {(X,Y,m)|∀xs ∈ X, s ∈ S∧
∀yf ∈ Y, f ∈ F ∧ (X,Y,m) � ϕ}

An instance (X,Y,m) is an (m-)sub-instance of (X ′, Y ′,m′)
if X ⊆ X ′ , Y ⊆ Y ′ and m′ is equal to m or m′ imports
m.

As an example, let us consider the table named “A”
depicted in Fig. 4. The Alloy instance corresponding to
that table is given in Fig. 9. To illustrate the formalism
introduced in Definition 2 without providing an use-
lessly verbose textual representation of the instance, we
simply note that the set of atoms X contains, amongst
other atoms, Column2Column and "A"String; that the set
of tuples Y contains (Table1Table, Column1Column)

cols

and (Column3Column, 1Int,"b1"String)
name, amongst other

tuples; and that the module m is the RDBMS module
as defined in the previous illustration of Alloy modules.

Alloy comes with its dedicated tool, the Alloy ana-
lyzer, enabling the automatic analysis of Alloy modules.

7 We relax here the Alloy terminology in which instance usually
means valid instance

This analysis returns for a given Alloy module m the
subset of valid instances of I(m) that fit within the
given scope.

4.2 An Informal Alloy Introduction Based on Ecore

For those readers familiar with Ecore [27], we propose
to draw a parallel between the previously defined Alloy
notions and Ecore concepts:

– Alloy modules corresponds to Ecore metamodels en-
hanced with OCL in the sense that they are enti-
ties used to define static constructs and their well-
formedness rules.

– Signatures correspond to EClass in the sense that
they allow the definition of concepts. Signatures can
also be abstract and inherited. Signatures, to the
contrary of EClasses, do not support multiple in-
heritence per-se but support the broader notion of
set inclusion: each signature representing a set of
atoms in Alloy, a signature can be defined as a sub-
set of several others. Note that when a signature A
extends a signature B in Alloy it does not only en-
force that atoms in A are contained in B. It also
enforces that the set of atoms defined by A is dis-
joint from any other set of atoms defined by signa-
tures extending the same class as A (in short, in-
heritance declared using the extend keyword is a
stronger notion than set inclusion defined using the
in keyword).

– Fields are more expressive than any corresponding
EStructuralFeature (EReference, EAttribute, ...) in
the sense that they allow the definition of relations
of any arity. Yet a field has no properties as opposed
to, e.g., EReferences, hence properties like containe-
ment or EOpposite are to be defined through con-
straints.

– Alloy Instances are comparable to Ecore instanti-
ations represented by an XMI file. Saying that an
instance is conforming to a module, or calling an in-
stance a valid instance of a given module is similar
as saying that an Ecore instance conforms to a given
Ecore model.

– Atoms and Tuples are elements of an Alloy instance
just like objects and links are of an Ecore instance.

5 Functional Alloy Modules

In this section, we introduce functional Alloy modules
as a way to define transformations in Alloy.

We have seen earlier that the Alloy language is well
suited to express relations between concepts through
the declaration of fields.

F-Alloy: A Relational Model Transformation Language Based on Alloy 13

Table1

"A"Column2

Column1
cols

cols

pkeys"a"

"C" "c"

name[0]

name[0] name[1]

"Text"

type

type
Column3

"x" "b1"

name[0] name[1]

"Number"

type

name[0]

cols

Fig. 9: The Alloy instance corresponding to the “A” table depicted in fig. 4, visualized as a graph whose nodes and
edges are its composing atoms and tuples, respectively.

A natural approach to define a transformation from
a source module msrc to a target module mdst as an
Alloy module m is thus to declare, in a signature, fields
relating signatures of msrc to signatures of mdst. Those
fields, that we call mappings from now on, should then
be suitably constrained so that in any valid m-instance,
the presence of certain msrc-elements (atoms and tu-
ples typed by signatures or fields declared in msrc) en-
force the presence of their expected images (w.r.t. the
transformation defined). This approach is illustrated in
Fig. 10. Given such an Alloy module m, executing the
transformation it defines on an msrc-instance xsrc con-
sists in using the Alloy analyzer to find m-instances in
which the msrc-sub-instance is xsrc.

We illustrate the previously used notation by not-
ing that in our case studies m denotes the modules in
which the CD2RDBMS and CDRefinement transforma-
tions are defined, respectively. In the context of both
transformations, msrc denotes the CD module. mdst de-
notes the RDBMS module in the context of the CD2RDBMS
transformation and the CD module in the context of the
CDRefinement transformation.

To formally define the kind of model transforma-
tion expressible in Alloy, we introduce the notion of
transformation functions which may be viewed as the
mathematical representation of model transformations
expressed in terms of Alloy instances.

Definition 3 (Transformation Function) Letm and
m′ be two Alloy modules. A transformation function f
from m to m′, noted f : I(m) → I(m′), is a function
that takes as input a valid instance of m and returns as
output a valid instance of m′.

Alloy Module

m

Alloy Module

m
dst

Alloy Module

m
src

imports imports

instance of

instance of
instance of

Fig. 10: Illustration of the approach to represent model
transformation in Alloy

As motivated in the introduction, we are interested
in formalizing those Alloy modules that embody func-
tions, i.e., deterministic single-output model transfor-
mations. We call those Alloy modules functional Alloy
modules and define them formally as follows:

14 Loïc Gammaitoni, Pierre Kelsen

m

m
src

m
dstffrom to

imports imports

denotes

f
in from

to

f
outfrom

to

Fig. 11: Illustration of the usage of transformation func-
tions w.r.t. the definition of functional Alloy modules

Definition 4 (Functional Alloy Module) Let m,
msrc and mdst be Alloy modules8 and let fin : I(m)→
I(msrc) and fout : I(m) → I(mdst) be two transfor-
mation functions. We say that m is a functional Alloy
module with respect to fin and fout if the following
holds:

∀x, x′ ∈ I(m), fin(x) = fin(x
′) =⇒ fout(x) = fout(x

′)

We then say that m specifies a (possibly partial)
transformation function f : I(msrc) → I(mdst), such
that:

∀x ∈ I(m), f(fin(x)) = fout(x)

In the previous definition, functions fin and fout
return, given an m-instance, the msrc and mdst sub-
instance corresponding to the input model and output
model of the transformation expressed in m, respec-
tively. We illustrate the use of those functions in Fig. 11.

We note that the nature of the transformation (en-
dogenous or exogenous) influences the way those input
and output models are obtained from an m-instance.
Those transformation functions are defined for both
endogenous and exogenous transformations in Sections
7.3.1 and 7.3.2, respectively.

6 Syntax of F-Alloy

This section aims at providing a formal yet comprehen-
sive introduction to the F-Alloy syntax. To achieve this
goal, and because F-Alloy is based on Alloy, we first
introduce the syntax of Alloy, that will then be reused
in the definition of F-Alloy’s syntax. We finish the sec-
tion by giving the purpose of each F-Alloy syntactic
construct defined and by showing that those constructs
are valid Alloy constructs.

8 with the possibility that msrc = mdst

6.1 Alloy’s Syntax

The grammar of Alloy is given in Listing 5, as provided
in [17]. To avoid confusion and for this work to be self
contained, we list the remarks given in [17] concerning
the notation used and invite readers unfamiliar with
BNF notations to go through it before proceeding to
the grammar.

“The grammar uses the standard BNF operators:

– x∗ for zero or more repetitions of x;
– x+ for one or more repetitions of x;
– x|y for a choice of x or y;
– [x] for an optional x.

In addition,

– x,∗ means zero or more comma-separated occur-
rences of x;

– x,+ means one or more comma-separated occur-
rences of x;

To avoid confusion, potentially ambiguous symbols
– namely parentheses, square brackets, star, plus and
the vertical bar – are set in bold type when they are to
be interpreted as terminals rather than as meta sym-
bols. The string name represents an identifier and num-
ber represents a numeric constant, ...”[17].

6.2 F-Alloy’s Syntax

We now introduce the syntax of F-Alloy by giving a
BNF description in Listing 6.

We split the BNF definition of F-Alloy into two
parts in order to ease its understanding. While the first
part reveals the structure of f-modules – i.e., modules
expressed in F-Alloy – the second part defines the sub-
set of boolean-valued Alloy expressions, called rules.
We bring the reader’s attention to the fact that the
syntactical constructs expr, name, qualName, decls,
paraDecls, moduleDecl, import and block present
in the BNF are coming from the Alloy BNF given in
Listing 5.

The presented F-Alloy BNF allows the expression of
both endogenous and exogenous specifications. We note
the presence of UPDATE and DELETE signatures, which
together with CREATE are used to define endogenous
transformation following a standard CRUD approach
[29], namely by enabling the specification of mapping
enforcing the creation, update and deletion of elements
in a given instance.

The nature of an f-module specification is deter-
mined by the number of open statements it contains
(one for endogenous, two for exogenous) and by the

F-Alloy: A Relational Model Transformation Language Based on Alloy 15

1 alloyModule::= [moduleDecl] import∗ paragraph∗

2 moduleDecl::= module qualName [[name,+]]
3 import::= open qualName [[qualName,+]] [as

name]
4 paragraph::= sigDecl | factDecl | predDecl
5 | funDecl | assertDecl | cmdDecl
6 sigDecl::= [abstract] [mult] sig name,+ [sigExt]

{ decl,∗} [block]
7 sigExt::= extends qualName | in qualName

[+qualName]∗

8 mult::= lone | some | one
9 decl::= [disj] name,+: [disj] expr

10 factDecl::= fact [name] block
11 predDecl::= pred [qualName.]name[paraDecls] block
12 funDecl::= fun [qualName.]name[paraDecls] : expr

{expr}
13 paraDecls::= (decl,∗)|[decl,∗]
14 assertDecl::= assert [name] block
15 cmdDecl::= [name :] [run|check]

[qualName|block][scope]
16 scope::= for number [but typescope,+]
17 | for typescope,+

18 typescope::= [exactly] number qualName
19 expr::= const | qualName | @name | this
20 | unOp expr | expr binOp expr
21 | expr arrowOp expr | expr[expr,∗]
22 | expr [!|not] compareOp expr
23 | let letDecl,+ blockOrBar
24 | quant decl ,+ blockOrBar
25 | {decl,+ blockOrBar}
26 | (expr)| block
27 const::= [-] number | none | univ | iden|
28 unOp::= ! | not | no | mult | set | # | ˜ | * | ˆ
29 binOp::= || | or | && | and | <=> | iff | => |

implies
30 | & | + | - | ++ | <: | :> | .
31 arrowOp::=[mult|set] -> [mult|set]
32 compareOp::= in | = | < | > | =< | >=
33 letDecl::= name = expr
34 block::= {expr∗}
35 blockOrBar::= block | bar expr
36 bar::= |
37 quant::= all | no | sum | mult
38 qualName::= [this/] (name/)∗ name

Listing 5: Alloy BNF as given in [17]

presence or absence of the UPDATE and DELETE signa-
tures (those are only allowed in endogenous specifica-
tions). We generally call f-module from msrc to mdst
any f-module defining a transformation from msrc to
mdst.

6.3 A Formal Definition of Mappings

Before illustrating the usage of the previously intro-
duced F-Alloy’s syntax, we provide a formal definition
to mappings and their surrounding concepts as we often
refer to those in the remaining sections.

Definition 5 (Mappings, domain, range) In an f-
module m defining a model transformation from msrc

1 fmodule::= moduleDecl import+ fparagraph∗

2 fparagraph::= fsigDecl | guardDecl | valueDecl
3 fsigDecl::= one sig sigName { mappingDecl,∗}
4 sigName::= CREATE | UPDATE | DELETE
5 mappingDecl::= name : qualName(->qualName)∗,
6 guardDecl::= pred guard_name[paraDecls] block
7 valueDecl::= pred value_name[paraDecls] rBlock
8 rBlock::= {rule∗}
9

10 rule::= strict | loose | step | conditional
11 conditional::= expr implies rule
12 strict::= name.name[[expr]]= expr
13 loose::= name in image.name[[expr]]
14 image::= sigName.name[expr]
15 step::= all i:Int| range implies

name.name[add[i,1]] = expr
16 range::= i (>|>=) expr and i (<|<=) expr

Listing 6: F-Alloy BNF

to mdst, we call the fields relating signatures of msrc
to signatures of mdst mappings. Considering a mapping
of the form map: X1 -> . . . -> Xn -> Y the domain
denotes the tuple of signatures (X1, . . . , Xn) and the
range denotes the signature Y. Mappings declared in a
DELETE signature being of the form map: X, they do
not have range.

To illustrate this definition, let us consider the fol-
lowing mappings:
– from the CD2RDBMS transformation given in Listing

3:
– association2column : Association -> Attribute

-> Column

The domain of association2column is the tu-
ple of signature (Association, Attribute) and
the range is the signature Column.

– from the CDRefinement transformation given in List-
ing 4:
– associationClass2Class : AssociationClass -> Class

The domain of associationClass2Class is the
signature AssociationClass and the range is
the signature Class.

– associationClass : AssociationClass

The domain of associationClass is the sig-
nature AssociationClass. This mapping be-
ing declared in the DELETE signature, it does not
have any range.

– fixAbstract : Class -> Class

The domain and range of fixAbstract is the
signature Class.

6.4 F-Alloy’s Syntax Usage

To help the reader understand why F-Alloy’s syntax is
defined the way it is, and to give a short introduction

16 Loïc Gammaitoni, Pierre Kelsen

on how the syntax is used, we list in the following item-
ization the intentions behind each concept declared in
Listing 6, and exemplify their usage with excerpts of
the CD2RDBMS and CDRefinement case studies given in
Listing 3 and 4:

– f-module: Any specification written in F-Alloy is
called an F-module and consists of an Alloy mod-
ule declaration (moduleDecl, identifying the mod-
ule), some import declarations corresponding to the
transformation’s source and target metamodels (ex-
pressed in Alloy modules) and of a body composed
of several fparagraph.
Example: The CDR2RDBMS specification given in List-
ing 3 is a syntactically valid f-module.

– fparagraph: A paragraph in F-Alloy takes either
the form of a signature declaration (fsigDecl), a
guard declaration (guardDecl) or a value declara-
tion (valueDecl). Guards and values are both Alloy
predicates.
Example: The CDR2RDBMS specification given in List-
ing 3 is composed of 9 fparagraph (a CREATE sig-
nature, four guard and four value predicates).

– fsigDecl: In F-Alloy, signatures are declared as
singleton (one) and have as sole purpose to act as
container for the mappings (mappingDecl) compos-
ing the transformation. In exogenous transforma-
tions, only one signature, named CREATE is allowed.
In endogenous transformations, there are three sig-
natures named CREATE, UPDATE and DELETE after
the different kind of operations used in endogenous
transformations:
– CREATE mappings are used to express the cre-

ation of atoms typed by their range for given
tuples typed by their domain.

– UPDATE mappings have their domain and range
bound to be the same signature. They are used
to express a substitution: if an atom a is mapped
via an update mapping to an atom b, then a will
be replaced by b. (all the tuples referring to a
will then refer to b instead).

– DELETE mappings do not have a range and are
used to express that an element is to be deleted
from an instance.

Example: The following excerpt from Listing 3 con-
sists of a signature declaration and four mapping
declarations.
one sig CREATE{
class2table: Class -> Table,
attribute2column: Attribute -> Column,
association2column: Association -> Attribute -> Column,
association2FKey: Association -> FKey,

}

– guardDecl: A guard predicate contains the precon-
dition under which a mapping is to be triggered.

The sequence of parameters it takes (paraDecls)
corresponds to the domain of the mapping it is as-
sociated to. The association between mapping and
guard predicate is done by name, i.e., the guard of
a mapping called g will be named “guard_g”.
Example: The following excerpt from Listing 3 shows
the guard predicate of the association2column

mapping. We can see that the types of the declared
parameters ass and att match the type of the sig-
natures in the domain of the association2column
mapping.

pred guard_association2column(ass:Association, att:
Attribute){

att.is_primary= True and att in ass.dest.attrs
}

– valueDecl: A value predicate contains a set of rules
(rule) defining the values of fields of the elements
created by the mapping it is associated with. As-
sociation between mapping and value predicate is
done by name, just like for guard predicate. The
sequence of parameters (paraDecls) a value predi-
cate takes corresponds to the domain and range of
the associated mapping.
Example: The following excerpt from Listing 3 shows
the value predicate associated to the class2table map-
ping. Parameters c and t are typed after the domain
and range of the class2table mapping.

pred value_class2table(c:Class , t:Table){
t.name[0]= c.name

}

– rule: Rules in F-Alloy are Alloy expressions that
restrict the value of fields in the output model.
– conditional rules enable each rule to be pre-

ceded by a condition with effect that the rule is
applied if and only if the condition is satisfied.
Example: a loose rule here is to be applied if
and only if the attribute a given as parameter is
primary.

a.is_primary= True implies c in CREATE.class2table[a.~
attrs.*parent].pkeys

– strict rules are direct restrictions of the value
of a created or updated atom’s field.
Example: We restrict the name of a table t9 to
be the name of the class c.

t.name[0]= c.name

– loose rules are restrictions on the value of fields
of an atom created or updated by another map-
ping.
Example: The created column c composes the
set of pkeys of the table created, through the

9 at index 0 as name is declared as a sequence of string

F-Alloy: A Relational Model Transformation Language Based on Alloy 17

class2table mapping, from the parents of the
class declaring a (or the class itself if its has no
parent).

c in CREATE.class2table[a.~attrs.*parent].pkeys

– step rules are used to inductively restrict a field
of a created or updated atom to be composed of
certain tuples.
Example: each entry in the name of the column
c corresponds to the name of the parent of the
previous entry, with the first entry (index 0) be-
ing already defined through the use of a strict
rule.

all i:Int| i>=1 and i< #(a.~attrs.^parent) implies
c.name[add[i,1]]= c.name[i].~name.parent.name

For completeness sake, we now give well-formedness
constraints for the BNF given in Listing 6.

6.5 F-Alloy’s Well-Formedness Constraints

1. Concerning F-Alloy’s overall structure:

(a) For specifying exogenous transformations, only
a CREATE signature is included, as exogenous
transformations define how to “create from scratch”
an output instance given an input instance.

(b) Mappings in the CREATE signature are associated
to one guard and one value predicate each. Se-
mantically, an atom typed by the range of the
mapping is created for each tuples typed by the
domain of the mapping and satisfying the guard
predicate. The values of the fields of the created
atom are then defined by the value predicate.
Drawing a parallel with QVTr and TGG’s ter-
minology, guard and value predicates are thus
the F-Alloy equivalents of QVT’s checkonly and
enforce patterns and of TGG’s source and target
graph, respectively.

(c) In the UPDATE signature (present only in endoge-
nous specifications), mappings are binary rela-
tions having the same signature as domain and
range. They are also associated to one guard
and one value predicate each. Semantically, each
atom typed by the domain of the mapping and
satisfying the guard is related to a new output
atom of same type, with the intention that the
former is to be replaced by the latter. The val-
ues of the fields of the updated atom are defined
by the value predicate. Unassigned fields are left
unchanged.

(d) In the DELETE signature (present only in endoge-
nous specifications), “mappings” are unary rela-
tions that represent atoms to be deleted. They
are hence solely associated to a guard predicate
with the intention that each atom typed by the
domain of the mapping and satisfying the guard,
as well as all references to that atom, are re-
moved from the instance.

(e) Correspondences between mappings and predi-
cates are done by name, i.e., predicates are named
after the mapping they are associated with, pre-
fixed by the nature of the predicate (“guard_”
or “value_”).

(f) In an UPDATE signature, occurrences of qual-

Name composing each mappingDecl should be
the same as an update operation is not meant to
change the type of an atom.

(g) For a CREATE mapping map: X1->...->Xn->Y

there are n parameters in the guard predicate as-
sociated to the mapping with effect that a new
atom Y is created for each tuple, typed by the
domain of the mapping, satisfying the guard.
Guard predicates of UPDATE and DELETE map-
pings take exactly one parameter.

(h) For a CREATE mapping map: X1->...->Xn->Y

there are n+1 parameters in the value predicate
associated to the mapping (this n + 1th param-
eter representing the atom created of type Y),
while value predicates of UPDATE mappings take
exactly two parameters, namely, the old and new
version of the updated atom. We note that there
are no value predicates for DELETE mappings,
atom satisfying the guard of a DELETE mapping
being directly removed.

(i) Two open statements (line 2) mean that the spec-
ification is exogenous, one statement means it is
endogenous.

(j) expr in guard predicates are boolean valued Al-
loy expressions that may solely contain features
of msrc and input parameters of the enclosing
predicate, guards having as role to define pat-
terns to be matched in the input instance.

2. Concerning F-Alloy’s rules:

(a) expr is an Alloy expression that may contain
features of msrc and input parameters of the en-
closing predicate as well as occurrences of image.
This restriction allows to enforce that the value
of fields in the output instances solely depends
on the input instance (as we will prove in Section
7.3).

18 Loïc Gammaitoni, Pierre Kelsen

(b) strict rules are used to express direct assign-
ments, i.e., the assignment of a value to a field
The first name occurrence is the name of the out-
put parameter (i.e., typed after the range of the
mapping), and the second is the name of a field
declared in the signature typing that parameter.
The expr in square brackets is to appear if and
only if this field has an arity greater than 2.

(c) loose rules are used to express indirect assign-
ments, i.e., state that a given value is composing
a given field. the first name is the name of the
output parameter and the second name is a field
of the signature typing the image. The expr in
square brackets is to appear if and only if this
field has an arity greater than 2.

(d) step rules are used to express inductive assign-
ments. They are thus always preceded by a strict
rule, composing the base of the induction, and
featuring an integer-valued index. In step, the
first name occurrence is the name of the output
parameter and the second is the name of the
field assigned in the preceding strict rule. The
right-hand side – expr – of step should then
contain an occurrence of name.name[i].

(e) In range, the two expr are integer-valued and
the first expr value is bound to be equal to the
index value of the strict rule composing the
base of the induction for well-formedness sake.

6.6 F-Alloy to Alloy Correspondences

We finish this introduction to the F-Alloy syntax by
showing, based on the given Alloy and F-Alloy BNFs,
that any F-Alloy syntactic construct is also a valid Alloy
syntactic construct (in other words an f-module is a
syntactically valid Alloy module).

Correspondences between F-Alloy’s syntactic con-
structs and their Alloy counterparts are detailed in Ta-
ble 1.

7 Translational Semantics of F-Alloy

7.1 Overview

To ease the reading of this section, we picture the rela-
tion between Alloy and F-Alloy’s semantics in Fig. 12.

The semantics of Alloy is given in [17] using a de-
notational approach – each syntactic construct being
mapped to a function from instance to boolean value,
with the effect of defining which properties are enforced
in an instance by the construct in question. In short, an

F-module
f : msrc→ mdst

Functional Alloy
Module m

2.translates into

set of
m-instances

3.denotes 1. denotes

4.represent

Transformation function
f : msrc→ mdst

Fig. 12: Relation between Alloy and F-Alloy’s semantics

Alloy module denotes a set of instances – edge number
1 of Fig. 12.

One of the great advantages in reusing the syn-
tax of Alloy in the definition of the F-Alloy transfor-
mation language is the ease of translation between F-
Alloy specifications and Alloy. Indeed, f-modules are by
essence valid Alloy modules. Yet the meaning we give to
f-modules differ from their original Alloy meaning. This
difference stems from our design choice of leaving out
redundant constraints needed to ensure the “functional
behaviour” of f-module for conciseness sake.

In the next subsection we thus define a translation
function T : Falloy → Alloy, with Falloy and Alloy
being the set of all possible f-modules and Alloy mod-
ules, respectively, – corresponding to edge number 2 of
Fig. 12 – and set the meaning of an f-module m to be
that of T (m) (as defined in [17]).

In a nutshell, m denotes the same set of instances
as T (m).

In Subsection 7.3, we will show that for any f-module
m, T (m) is a functional Alloy module, hence showing
that instances conforming to T (m), and thus transi-
tively m, denote a transformation – corresponding to
edge number 4 of Fig. 12.

7.2 Translating F-Alloy to Alloy

In this subsection, we define the translational semantics
of F-Alloy by defining a translation function T mapping
each f-module m, defining either an endogenous or an
exogenous model transformation, to an Alloy Module
mT . We define then the meaning of m to be the one
Alloy gives to mT .

When considered as an Alloy module (we recall that
f-modules are syntactically valid Alloy modules), an f-
module m only defines relations from signatures of the

F-Alloy: A Relational Model Transformation Language Based on Alloy 19

F-Alloy construct Alloy construct explanation
range expr is of the form expr compareOp expr binOp expr compareOp expr

step expr is of the form quant decl bar expr binOp expr compareOp expr

image expr is of the form expr binOp expr

loose expr is of the form expr compareOp expr binOp expr

strict expr is of the form expr compareOp expr

conditional expr is of the form expr binOp expr

rule expr strict, loose, conditional and step are valid expr

rBlock block rule is a valid expr

valueDecl predDecl rBlock is a valid block

guardDecl predDecl straightforward
mappingDecl decl expr -> expr is a syntactically valid expr

sigName name straightforward
fsigDecl sigDecl mappingDecl is a valid decl

fparagraph paragraph straightforward
fmodule alloyModule hold from all previous statements

Table 1: Syntactical correspondences between F-Alloy and Alloy syntactic constructs

source to signatures of the target module. Those rela-
tions provide enough structure to obtain transforma-
tion instances from analysis. Yet, the way elements are
related is not constrained. Only some predicates are
present to give information on how elements of the
source and target should relate to each other. Con-
straints enforcing the properties defined in the pred-
icates as well as other expected functional properties
such as disjointness of the input and output instance
should thus be made explicit as Alloy facts to convey
the real intent of the F-Alloy specification.

In the definition of T , we list those constraints that
should be added to any f-module m in order to obtain
the Alloy module defining the meaning of m. We recall
from Def. 5 that for a mapping map: X1->..->Xn->Y,
the domain denotes the sequence of signatures X1,..,Xn
and the range denotes the signature Y. We introduce
the term of input tuple and output atom here to denote
the set of tuples typed after the domain of a mapping
and satisfying its associated guard and those atoms
typed after the range of a mapping and who have been
mapped to input tuples through that mapping, respec-
tively. We now list the constraints to be added to an
f-module m in order to obtain mT . Pseudo codes show-
ing how each of those constraints can be procedurally
generated are given in Annexe A.

– Constraints to be added to any f-module m
– Map Disjunction. Mappings declared in CRE-

ATE and UPDATE signatures define partial func-
tions which have disjoint ranges.
The intent is to ensure that for any rule, the
triggering of a guard will lead to the creation of
a new atom. This constraint enables, when in-
terpreting f-modules (see Section 8), to consider
mappings one at a time when creating output
elements.

Example (CD2RDBMS): columns representing at-
tribute and association should be disjoint.

CREATE.attribute2column[Attribute] & CREATE.
association2column[Association,Attribute] =none

– Map Injectiveness. Functions defined by CRE-
ATE and UPDATE mappings are injective.
The intent is again to simplify the process of
creating output elements when interpreting f-
modules. This time, this constraint enables us
to consider candidates to trigger a mapping one
at a time, a new output element being created
at any triggering.
Example (CD2RDBMS): distinct attributes should
be mapped to distinct columns, at most one at-
tribute being mapped to a given column.

all y: Column | lone CREATE.attribute2column.y

– Predicate Association. For each CREATE and
UPDATEmapping there is an output atom exactly
for those tuples in the domain that satisfy the
guard predicate. The values of fields of the out-
put atom are defined in the value predicate. For
a DELETE mapping there is a tuple of the form
(d, s) where d is a single DELETE atom for each
atom s in the domain of the mapping satisfying
the guard predicate.
The intent is to ensure that guard and value
predicates play their expected role of pre- and
post-conditions for the mappings they are asso-
ciated to.
Example (CD2RDBMS): a column y is associated
to an attribute x if and only if the guard pred-
icate is satisfied for x. In that case, the value
predicate has to hold for x and y as well.

all x : Attribute{

20 Loïc Gammaitoni, Pierre Kelsen

(guard_attribute2column[x] and one CREATE.
attribute2column[x]

and value_attribute2column[x, CREATE.attribute2column[x
]])

or
(not guard_attribute2column[x] and no CREATE.

attribute2column[x])
}

– Minimal Assignment. The values of the fields
of output atoms are limited to those explicitly
specified through rules, except for UPDATE map-
pings, in which case values of fields which are not
specified through rules are equal to the values of
the same fields prior to update.
The intent of this constraint is to provide an
upper-bound to fields for which values where
partially specified, e.g., using “in” instead of strict
equality. The extra clause of this constraint con-
cerning UPDATE mappings is here to make en-
dogenous transformations less verbose. The idea
is to avoid rewriting existing values by limiting
the transformation to the expression of what has
to change.
Example (CD2RDBMS): The name of a column in
the range of the association2column mapping
is a sequence of string whose size is equal to the
number of elements returned by all the expres-
sions explicitly assigned through rules.

#c.name=add[#att.name,#ass.name]

Example (CDRefinement): isAbstract is the
only field present in the noUselessAbstract

value predicate. Constraints are thus added to
force other fields to keep their original values.

pred value_noUselessAbstraction(c:Class,y:Class){
y.isAbstract=False
y.attrs=c.attrs //added constraint
y.parent=c.parent //added constraint
y.name=c.name //added constraint

}

– Constraints to be added to any f-module m defining
an endogenous model transformation:
– IO Disjunction. The set of all atoms in the in-

put tuples of CREATE, UPDATE, and DELETE map-
pings are disjoint with the set of all output atoms
of CREATE and UPDATE mappings.
The intent is to clearly separate through con-
straints the input instance from the output in-
stance. We note that these constraints are only
needed for endogenous transformations as the
type of atoms in an exogenous transformation
are signatures being declared either in the input
or in the output module of the transformation,
hence enabling to clearly dissociate atoms be-
longing to the input instance from those in the
output instance.

Example (CDRefinement): the set of classes which
are output atoms in the range of the mapping
associationClass2Class and the set of classes
in input tuples in the domain of the mapping
newAssociation should be disjoint.

no associationClass2Class[AssociationClass] &
newAssociations.Association.Association

– Constraints Framing Transformation instances
conforming to an endogenous f-module are com-
posed of an input-instance and of tuples, typed
by CREATE, UPDATE and DELETEmappings,
embodying the operations to be performed (see
Fig. 14). This becomes problematic when con-
sidering the constraints declared in the source
model of the transformation. Indeed, when run-
ning an analysis on such an endogenous specifi-
cation, those aforementioned constraints should
be satisfied in the transformation instance. Yet
this later contains source model elements other
than those present in the valid source model in-
stance given as input. This particularity of en-
dogenous transformation makes it likely that anal-
ysis fails to obtain all expected transformation
instances. A solution to this problem is to give
a context to those source model constraints, so
that they apply only on the input instance and
output instance, respectively (instead of the trans-
formation instance). To do so, all facts of the
input module are to be rewritten as predicates,
taking as parameter the set of atoms they are
to be applied on, i.e.. Those predicates are then
called in a fact in the transformation module,
where the parameter given correspond to the set
of atoms composing the input instance (returned
by fin) and the output instance (returned by
fout), respectively.
Example (CDRefinement): the attribute disjoint-
ness constraint is bound to be violated when
updating a class without updating its set of at-
tributes (as a result two classes with the same set
of attributes will appear in the transformation
instance). To prevent this violation and still en-
sure that attributes of classes are disjoint in the
input-instance and output-instance, the disjoint-
ness constraint in the input module is replaced
by the following predicate:

pred attrDisj(context:set univ){
no disj x,y: ((Class+AssociationClass) & context) |

x.(attrs& context->context) & y.(attrs&
context->context) !=none

}

F-Alloy: A Relational Model Transformation Language Based on Alloy 21

In this predicate, all the sets and tuples of atoms
present in the formula are restricted to the con-
text given as parameter.
This predicate is then called in the transforma-
tion module with parameters consisting of all
the atoms present in the input and output in-
stance, respectively. Those set of atoms can be
defined in Alloy, following the definition of fin
and fout given in Definitions 7 and 8. Following
is how those sets of atoms are defined for our
CDRefinement case study:
let input = univ - (CREATE + DELETE + UPDATE + UPDATE.

fixAbstract[Class] + CREATE.
associationClass2Class[AssociationClass] + CREATE
.newAssociations[Class, Association])

let output = univ - (CREATE + DELETE + UPDATE + DELETE
.(associationWithClass + associationClass) +
UPDATE.fixAbstract.Class)

– Constraints to be added to any f-module m defining
an exogenous model transformation:
– Minimum Output. For an f-module m from
msrc to mdst, we enforce that the set of atoms
typed by signatures declared in mdst should be
limited to the output atoms of CREATEmappings
declared inm. The intent is for the output of the
transformation to be composed of only those el-
ements defined through mappings (no extra ele-
ments are allowed to be generated by analysis).
We note that this constraint does not apply to
endogenous transformations because anymsrc el-
ement not present in the range of a mapping is
considered as part of the transformation’s input-
instance.
Example (CD2RDBMS): RDBMS elements are lim-
ited to the output atoms of declared mappings.
RDBMSElem= class2table[Class] + primAttr2column[

Attribute] + classAttr2column[Attribute,Attribute
] + association2column[Association,Attribute]

For any given f-module m, mT = T (m) is the Alloy
module m to which the aforementioned constraints are
added. We will see in the next subsection that those
added constraints enforce the “functional" behavior ex-
pected from the Alloy module represented by an F-
Alloy specification, that is, that any Alloy module T (m)

is a functional Alloy Module.

7.3 From F-modules to Functional Alloy Modules

We are now interested in proving that any Alloy mod-
ule mT obtained from the translation of an f-module m
is a functional Alloy module. This enables us to ensure
that F-Alloy specifications indeed denote transforma-
tion functions.

To achieve our goal, we first define the transforma-
tion functions fin and fout used to extract from an mT -
instance the input and output of the transformation de-
noted by m. Next we examine the influence of rules de-
fined in value predicates onmT -instance. We then show
by construction that for any mT , there cannot be two
distinct mT -instance xT and x′T s.t. fin(xT) 6= fin(x

′
T)

which will allow us to finally conclude that any Al-
loy module mT obtained from the translation of an f-
module m is a functional Alloy module (with respect to
the defined transformation functions fin and fout).

7.3.1 Exogenous transformation functions

We are about to prove that the module mτ obtained
by translation is a functional Alloy module. Before we
can actually do this, we need to define the functions fin
and fout that extract the input and output instances
from a valid instance of mτ . In the present subsection
we define these functions for the exogenous case. In the
next subsection we then deal with the endogenous case.

In the exogenous case we call instance projection
the operation those functions embody and define it as
follows:

Definition 6 (Instance Projection) The projection
of an instance x : (X,Y,m) on a modulem′ : (S′, F ′, ϕ′),
with m′ being in the import hierarchy of m, is the m′-
instance composed of the atoms and tuples present in x
and typed by signatures and fields of m′, respectively.
We denote projections using the evaluation symbol ⇓:
x ⇓ m′ reads “the projection of x on m′”.
Formally : x ⇓ m′ = (X ′, Y ′,m′) with X ′ = {as ∈
X|s ∈ S′} and Y ′ = {yf ∈ Y |f ∈ F ′} .

Thus for exogenous transformations:

fin(x) = x ⇓ msrc and fout(x) = x ⇓ mdst

We illustrate this application of instance projection
in Fig. 13.

This figure represents a CD2RDBMS instance (nodes
represent atoms and arrows represent tuples.). The pro-
jections of this instance on msrc and mdst are repre-
sented in red and bold, respectively. We notice that
String typed atoms are part of both projections as the
built-in type String is well defined in both msrc and
mdst.

7.3.2 Endogenous transformation functions

We now define the functions fin and fout that extract
the input and output instances from a valid instance
of mτ in the endogenous case. We first give informal
definitions and then provide formal definitions.

22 Loïc Gammaitoni, Pierre Kelsen

nameClass2

Class1

"Food"

"Product"

parent

nameClass3 "Meat"

parent

name

attrs

class2table

CREATE

Attribute name "origin"

Table

name

Column attribute2column

cols
pkeys

is_primary

True

name[0]

name[1]

name[2]

"Text"

dataType

type

PrimitiveType name "String"

Fig. 13: A CDRDBMS-instance x with fin(x) highlighted in red and fout highlighted in bold

The function fin extracts the input instance of the
transformation from a given mτ -instance, namely, the
sub-instance made up of atoms typed by signatures in
msrc and tuples typed by fields in msrc, with all atoms
in the range of a CREATE or UPDATEmappings (and their
associated tuples) being removed.

The function fout extracts the output instance of
the transformation from a given mτ -instance, namely,
the sub-instance made up of atoms typed by signatures
in msrc and tuples typed by fields in msrc in which ele-
ments in the domain of UPDATE mappings are replaced
by their images, preserving links to the replaced ele-
ment, and where elements in the domain of DELETE

mappings are removed.
We call those operations embodied by fin and fout

“transformation-aware input projections” and “transfor-
mation-aware output projections”, respectively, and de-
fine them as follows. In the following two definitions, we
denote by fd and fr the set of input tuples and output
atoms composing tuples typed by mapping f , respec-
tively. We also write as ∈ tf if the atom a typed by
signature s is contained in the tuple t typed by field f .

Definition 7 (transformation-aware input projec-
tion) Given an instance x : (X,Y,m), withm : (S, F, ϕ)

being a functional Alloy module expressing an endoge-
nous transformation onmsrc : (S

′, F ′, ϕ′), the m-aware
input projection of x, denoted x ⇓inm is the projection

of x on msrc from which we subtract output atoms of
mappings in F .

Formally : x ⇓inm= x ⇓ msrc − (X ′, Y ′,msrc) with :

– X ′ = {as ∈ X : ∃f ∈ F s.t. as ∈ fr}
– Y ′ = {tf ∈ Y : ∃as ∈ X ′ s.t. as ∈ tf)}

In the following definition, we denote C, U and D

the set of CREATE, UPDATE and DELETE mappings de-
clared in m, respectively.

Definition 8 (transformation-aware output pro-
jection) Given an instance x : (X,Y,m) – with m :

(S, F, ϕ) being a functional Alloy module expressing an
endogenous transformation on msrc : (S′, F ′, ϕ′) – the
m-aware output projection of x, denoted x ⇓outm is the
projection of x on msrc from which we subtract input
tuples of UPDATE and DELETE mappings in F .

Formally : x ⇓outm = x ⇓ msrc − (X ′, Y ′,msrc) +

(∅, Y ′′,msrc) with :

– X ′ = {as ∈ X : ∃tf ∈ Y s.t. f ∈ U ∪D ∧ as ∈ fd)}
– Y ′ = {tf ∈ Y : ∃as ∈ X ′ s.t. as ∈ tf)}
– Y ′′ =

⋃
i∈[1,n],tf :(x1,..,xn)∈Y :f∈U

{(x1, .., f(xi), .., xn)|

∃as ∈ fd : as = xi} ,
where f(xi) is the atom mapped to xi through the
update mapping f .

We then define for endogenous transformations:

fin(x) = x ⇓inm and fout(x) = x ⇓outm

F-Alloy: A Relational Model Transformation Language Based on Alloy 23

We illustrate the application of transformation-aware
projections in Fig. 14. In those visualizations, atoms are
represented by nodes and tuples by links. Note that the
tuples typed by the CDElement’s field name have been
filtered out for readability’s sake.

Figure 14(a) represents a CDRefinement instance
in which CREATE, UPDATE and DELETE atoms and tu-
ples are depicted in green, purple and red, respectively.
All atoms being in the domain of mappings as well
as tuples being exclusively composed of those afore-
mentioned atoms are highlighted in boldface. Those
atoms and tuples compose the transformation aware in-
put projection of the depicted CDRefinement instance.
The transformation aware output projection of the stud-
ied instance is given in Fig. 14(b). In this instance,
atoms in the range of CREATE and UPDATE mappings,
as well as tuples conforming to the value predicate of
those mappings, are highlighted in green and purple,
respectively.

7.3.3 The meaning of rules

Considering an f-modulem, its associated Alloy module
mT = T (m) and xT ∈ I(mT), the predicate associa-
tion constraints defined previously enforce that, given
a mapping µ declared in m, only those input tuples for
which the guard predicate associated to µ is satisfied
are associated through µ to an output atom. Moreover,
the value predicate associated to µ holds in xT when
given as parameter any such pair of input tuples and
output atom.

Rules inside a value predicate are boolean expres-
sions that may use the parameters of the value pred-
icate. In the following lemma we prove that each rule
can be rewritten in the form

V in f

where V is an Alloy expression denoting a relation,
in denotes set inclusion, and f is a field of mdst. Since
V , seen as a set of tuples, generally depends on the
rule r, the input instance fin(xT), and the parameters
x1, . . . , xn and y of the enclosing value predicate, we
refer to V as V (r, fin(xT), x1, . . . , xn, y).

To understand the importance of this lemma, note
that the value predicate is a conjunction of rules, each
stating that a set of tuples is contained in the relation
representing a field of mT . This will imply that the
relation of each field can be written as the union of the
V -sets of the contributing rules, since no other tuples
can be in the relation of the field due to the minimal
assignment constraints. This fact will be used to derive
an explicit formula for the “shape” of a valid instance
of mτ in Lemma 2.

Lemma 1 Each rule r can be rewritten as a logically
equivalent formula

V (r, fin(xT), x1, . . . , xn, y) in f

where V is an Alloy expression denoting a relation, in
denotes set inclusion, and f is a field of mdst.

Proof. We describe how to rewrite each type of rule
in the required form. In the following, occurrences of
name in each syntactic construct are replaced by y when
they denote the output atom (according to the well-
formedness of F-Alloy), or by f if they denote the field
the rule is contributing to. The rewriting of rules is done
as follows:

– For strict rules:
1. y.f[[expr1]] = expr2

2. [expr1->]expr2 in y.f

3. y-> [expr1->]expr2 in f

– For loose rules:
1. y in image.f[[expr]]

2. [expr->]y in image.f

3. image-> [expr->]y in f

– For step rules:
1. all i:Int|range implies y.f[add[i,1]] = expr

2. all i:Int|range implies [add[i,1]]-> expr

in y.f

3. all i:Int|range implies y-> [add[i,1]]-> expr

in f

Note that in all cases:

– item 1. is the base case directly taken from F-Alloy’s
BNF

– item 2. is obtained by refining item 1., of the form
y.f = v, to an assignment of the form v in y.f.
Both forms are semantically equivalent if we con-
sider Minimal Assignment constraints.

– item 3. is obtained by rewriting item 2. by passing
relation joins from one side of the equation to the
other.

We list in Table 2 the set of tuples returned by the
function V . For strict rules expr1 and expr2 may use
input parameters as well as features ofmsrc (by the well-
formedness constraints given in Subsection 6.5). Thus
the V -set for strict rules only depends on the input in-
stance and the parameter values. For loose rules, image
denotes the output atom for an input tuple given by
the specified expressions, which depends only on the
input instance and values of input parameters. There-
fore, the tuples in the V -set for loose rules depend only
on the input instance and the parameter values as well.
The same holds for step rules since the expr satisfies
similar restrictions and the range is given by an expres-
sion that depends on the input instance and values of

24 Loïc Gammaitoni, Pierre Kelsen

Class2Class1

Class3

parent

Association

dest

True

False

is_abstract
is_abstract

ClassAssociation

association associationAttrs

Attribute

PrimitiveDataTwpe

type

is_abstract

DELETE

associationClass

UPDATE

Class4

fixAbstract

is_abstract

CREATE

Class5

associationClass2Class

attrs

src

(a) A CDRefinement-instance x

with fin(x) highlighted in bold

Class4

is_abstract

Class1

parent

is_abstract

Class3

srcdest

Association

True

False

type

Attribute

PrimitiveDataType

isAbstract

attrs

Class5

(b) fout(x) (with x depicted in (a))

Fig. 14: A CDRefinement-instance, and the input and output of the transformation CDRefinement specifies as
defined by fin and fout, respectively.

input parameters. Since the conditional expression in
conditional rules satisfy the same restrictions, the cor-
responding V -set only depends on the input instance
and the values of the parameters. �

We now exemplify the valuation of t given in Table
2 by explicitly listing the tuples assigned through rules
of the value predicate associated to the mapping at-

tribute2column (taken from the CD2RDBMS case study).
To do so, let us consider the CD2RDBMS-instance xT de-
picted in Fig. 13. Given the two parameters a= At-

tribute and c=Column and xsrc = fin(xT) we have:

– With r being the strict rule

c.dataType=(a.type.name="String" implies "TEXT" else "
NUMBER")

V (r, xsrc, a, c) ={c, a.type.name="String" implies

"TEXT" else "NUMBER"}dataType

={Column, "TEXT"}dataType

– With r being the strict rule

c.name[0]= a.name

V (r, xsrc, a, c) ={c, 0, a.name}name

={Column, 0, "origin"}name

– With r being the strict rule

c.name[1]=((a.~attrs.parent)!=none implies a.~attrs.name
else none)

V (r, xsrc, a, c) ={c, 1, ((a.~attrs.parent)!=none implies

a.~attrs.name else none)}name

={c, 1, (Class2!=none implies

Class3.name else none)}name

={Column, 1, "Meat"}name

– With r being the step rule

all i:Int| i>=1 and i< #(a.~attrs.^parent) implies c.name[
add[i,1]]= c.name[i].~name.parent.name

V (r, xsrc, a, c) =
⋃

{i∈[1,#(a.~attrs.^parent)[}

{(c, i+ 1,

c.name[i].~name.parent.name)name}

=
⋃

i∈[1,2[

{(c, i+ 1,

c.name[i].~name.parent.name)name}
={(c, 2, "Meat".~name.parent.name)name}
={(c, 2, Class3.parent.name)name}
={(Column, 2, "Food")name}

– With r being the conditional rule

a.is_primary=True implies c in CREATE.class2table[a.~
attrs.*parent].pkeys

F-Alloy: A Relational Model Transformation Language Based on Alloy 25

Type of Rule r Syntax followed by r value of V (r, xT , (x1, ..., xn), y)

strict y.f[[expr1]] = expr2 {(y, expr1, expr2)f}
loose y in image.f[[expr]] {(image, expr, y)f}

step
all i:Int|range implies
y.f[add[i,1]] = expr

⋃
{i∈range}

{(y, i+ 1, expr)f}

conditional expr implies rule

{
V (rule, xT , (x1, ..., xn), y), if xT � expr

∅ otherwise

Table 2: Valuation of V for the different rule constructs identified in Listing 6

V (r, xsrc, a, c) =

V (r2, xsrc, a, c)

if xsrc � a.is_primary=True

∅
otherwise

= V (r2, xsrc, a, c)

with r2 being the loose rule:
c in CREATE.class2table[a.~attrs.*parent].pkeys

V (r, xsrc, a, c) ={(class2table[a.~attrs.*parent], c)pkeys}
={(Table, Column)pkeys}

– With r being the loose rule:
c in CREATE.class2table[a.~attrs.*parent].cols

V (r, xsrc, a, c) ={(class2table[a.~attrs.*parent], c)cols}
={(Table, Column)cols}

7.3.4 mT is a functional Alloy module

Let us consider an f-module m from msrc to mdst speci-
fying an exogenous or endogenous transformation. The
following lemma proves that valid instances of mτ have
a particular “shape”, namely, they can be written as
the union of the input instance, atoms and tuples rep-
resenting the mappings, as well as the union of V -sets
of contributing rules. This lemma constitutes the final
stepping stone that will allow us to prove (in Theorem
1) that mτ is a functional Alloy module.

In the following, we introduce the notation −→x as a
shorthand for tuples of the form (x1, ..., xn)

Lemma 2 Any valid instance xT : (X,Y,mT) satisfies
the equation:

xT = fin(xT) ∪A ∪
⋃

b∈A,µ∈Mb

F (µ) (1)

where

F (µ) =
⋃

(b,−→x ,y)µ∈Y

(
{y} ∪ {(b,−→x , y)} ∪

⋃
r∈µ

V (r, fin(xT),
−→x , y)

)
(2)

with

– the union between an instance (X,Y,m) and a set
of atom A being (X ∪A, Y,m)

– the union between an instance (X,Y,m) and a set
of tuples T being (X,Y ∪ T,m)

– the union between the two instances (X,Y,m) and
(X ′, Y ′,m) being (X ∪X ′, Y ∪ Y ′,m)

– A being the set of singleton atoms typed after the
signatures declared in m (CREATE, and possibly UP-

DATE and DELETE)
– Mb being the set of mappings declared in the signa-

ture typing b.
– (b,−→x , y)µ ∈ Y denoting that tuple (b,−→x , y) ranges

over all tuples in Y typed by the mapping µ with
first component equal to b.

– r ∈ µ denoting that rule r is declared in the value
predicate associated to µ.

– V (r, fin(xT),
−→x , y) as defined in the previous sub-

section.

Note that tuples typed by delete mapping are of the form
(b,−→x). Moreover no value predicate is associated to the
mapping. This is why we can simply replace Vr by ∅
in the given equation. Hence we would have for any µ
declared in a value DELETE signature:

F (µ) =
⋃

(b,−→x)µ∈xT

{(b,−→x)}

Proof:

– fin(xT) yields a sub-instance of xT by construction,
in both endogenous and exogenous cases.

– The presence of elements of A in xT is due to a syn-
tactic constraint of F-Alloy. Indeed each signature
declaration is preceded by the keyword one ensuring
the presence of exactly one atom typed by it.

– The rest of the formula is enforced by predicate as-
sociation constraints stating that for each signature
inm, for each mapping, for each input tuple, an out-
put atom y should be part of the mapping (hence
the addition of tuple (b,−→x , y)). This output atom
y should have its field bounded by the value predi-
cate – i.e., the set of tuples returned by the V -set of
each rule r declared in the associated value predi-
cate. Note that Map Injectiveness, Map Disjunction

26 Loïc Gammaitoni, Pierre Kelsen

and IODisjunction constraints enforce every y to be
disjoint from fin(xT) and from each other.

– Minimum Output constraints prevent xT from be-
ing composed of any other elements in the case of
an exogenous transformation. In the case of an en-
dogenous transformation, any other element which
is not part of a mapping is in fin(xT).

We have shown by construction that the equation
given in Lemma 2 is bound to hold in any instance of
an Alloy module mT obtained by translation of an F-
module. �

Theorem 1 (F-modules translate to functional
Alloy modules) For any f-module m, the translated
module mT is a functional Alloy module with respect
to fin and fout defined in Section 7.3.1 for exogenous
transformations and in Section 7.3.2 for endogenous
transformations.

Proof. Let xT and x′T be two instances of mT with
fin(xT) = fin(x

′
T).

Let us take a look at the terms on the right-hand
side of the top equation in Lemma 2.

The first term is the same for xT and x′T by the
above assumption.

The second term A is the same for xT and x′T .
For the third term select a mapping µ. Note that

the set of argument tuples −→x that satisfy the guard of
µ is the same in both cases because fin(xT) = fin(x

′
T).

Now fix one such argument tuple −→x . The tuple (b,−→x , y)
is the same in xT and x′T . Finally the set of tuples
V (r, fin(xT),

−→x , y) is the same, for any rule r in xT
and x′T .

We conclude that xT and x′T are identical. It follows
that fout(xT) = fout(x

′
T) and hence mT is a functional

Alloy module. �

8 Interpreting F-Alloy specifications

We have seen in the previous section that any instance
xT conforming to an Alloy module mT = T (m) (with
m being an f-module) can be computed from its subin-
stance fin(xT) (see Lemma 2). In this section, we present
the procedure for performing this computation, a pro-
cess we call interpretation.

First, we give the F-Alloy interpretation procedure
in Listing 7. The interpretation of rules is given as a
subprocedure in Listing 8.

The notation in which the pseudo-code is provided
has the following properties:

– Keywords structuring the code are highlighted in
bold and are written in uppercase.

– Variables names are highlighted in bold and are
written in lowercase.

– Text and numbers are highlighted in italic.
– Function names (in declarations and in calls) are

highlighted in bold and italic.
– Expressions of the form “WITH var: description” con-

sists in providing a syntactic description of the vari-
able, consisting of syntactical constructs and termi-
nals. Each syntactical construct counts as a variable
declaration, the variable being initialized following
the value of the described variable var. Each of such
“syntactic variable” is highlighted in blue, to differ-
entiate them from terminals and other possibly al-
ready defined variables.

It may be helpful for the reader to consult the formal
definitions of instance and module in Section 4 before
reading the procedures below.

We note that in the following pseudo-code, the func-
tion Eval(AlloyExpression e, Instance x) repre-
sents the method A4Solution.eval provided in the
Alloy API10. This method evaluates an expression e in
an A4Solution (object representation of an instance) x
and returns a set of atoms, tuples or a boolean value
depending on the type of expression given as parameter.

The pseudo code, given in Listing 7, closely follows
the structure of transformation instances detailed in the
equation (1) of Lemma 2. We see that interpretation is
performed in three steps:

1. Initialization [lines 4 to 16]: The instance to be
returned (xT) is set to contain atoms and tuples of
the input instance (xsrc) and arbitrary CREATE,
UPDATE and DELETE atoms (two last ones only
if the transformation is endogenous).

2. Mapping Processing [lines 17 to 45]: A first iter-
ation over declared mappings in which guard pred-
icates are evaluated for each combination of atoms
in the input instance (xsrc). In the case of CREATE
and UPDATE mappings, a new atom y, typed by the
range of the mapping is created each time a combi-
nation of atoms satisfying the guard is found. Both
the created atom and a trace tuple (marking the re-
lation between the triggering combination of atoms
and the created atoms) are added to the instance to
be returned (xT). In the case of DELETE mappings,
no atoms are created, and thus only the trace tuple
(marking the triggering combination of atoms to be
deleted) is added to the instance to be returned.

3. Rule Processing [lines 47 to 54]: A second itera-
tion assigning values to fields of created atoms by
parsing rules of associated value predicates. Four

10 http://alloy.mit.edu/alloy/documentation/
alloy-api/index.html

http://alloy.mit.edu/alloy/documentation/alloy-api/index.html
http://alloy.mit.edu/alloy/documentation/alloy-api/index.html

F-Alloy: A Relational Model Transformation Language Based on Alloy 27

1 /*INPUT : an F-module m from m_src to m_dst and an m_src-
instance x_src

2 *OUTPUT: a valid mT-instance xT:(A, T, mT) s.t. f_in(xT) =
x_src or NONE */

3 FUNCTION Interpretation(F-module m, Instance x_src)
4 WITH x_src: (A_src, T_src, m_src)
5 LET c = new Atom(CREATE), u = none , d = none
6 LET m_src = m.getImportedModule(1) //1st open statement
7 WITH m_src= (S_src, F_src, phi_src)
8 LET m_dst = m.getImportedModule(2) //2nd open statement
9 WITH m_dst: (S_dst,F_dst,phi_dst)

10 IF m_dst = none THEN //endogenous case
11 u = new Atom(UPDATE)
12 d = new Atom(DELETE)
13 FI
14 // We will return xT:(A,T,mT)
15 LET A = c + u + d + A_src
16 LET T = T_src
17 FOR EACH mapping map DECLARED IN m DO
18 LET sig = signature in which map is declared
19 IF sig = CREATE THEN
20 WITH map: name: X1 -> .. -> Xn -> Y
21 FOR EACH tuple (x1,..,xn) of atoms IN A_src
22 WITH x1,..,xn typed by X1, .., Xn
23 IF Eval(guard_name(ax, .. ,xn), x_src) THEN
24 y = new Atom(Y)
25 A = A + y
26 T = T + (c, x1, .., xn, y)
27 FI
28 DONE
29 ELSE IF sig = UPDATE THEN
30 WITH map: name: X -> Y
31 FOR EACH atom x IN A_src typed by X DO
32 IF Eval(guard_name(x), x_src) THEN
33 y = new Atom(Y)
34 A = A + y
35 T = T + (u,x,y)
36 FI
37 DONE
38 ELSE IF sig = DELETE THEN
39 WITH map: name: X
40 FOR EACH atom x IN A_src typed by X DO
41 IF Eval(guard_name(x), x_src) THEN
42 T = T + (d,x)
43 FI
44 DONE
45 FI
46 DONE
47 FOR EACH mapping map DECLARED IN m DO // CREATE or UPDATE

mappings
48 FOR EACH tuple t IN T typed by map DO
49 WITH t: (b,x1,..,xn,y) // b is either a create or

update atom
50 FOR EACH rule r DECLARED IN value_map DO
51 \var{T} = \var{T} + ProcessRule(r,xT,(x1,..,xn),y)
52 DONE
53 DONE
54 DONE
55 LET xT=(A,T,mT)
56 IF Eval(phi_src,f_in(xT)) AND Eval(phi_src,f_out(xT)) THEN
57 RETURN xT
58 ELSE
59 RETURN none
60 END FUNCTION

Listing 7: F-Alloy Mapping Interpretation pseudo
code

kind of rules are expressible in F-Alloy (strict, loose,
conditional, step). For each of them it is possible to
compute a set of tuples to be added to the instance
to be returned, given the input instance (xsrc) as
defined in Listing 8.

1 /*INPUT : r the rule to be processed
2 xT instance in which expressions are evaluated
3 (x1,...,xn) and y parameters given to the value

predicate containing the rule
4 *OUTPUT: a set of tuples typed by the field assigned in r*/
5 FUNCTION ProcessRule(Rule r, Instance xT, Tuple (x1,..,xn) ,

Atom y)
6 LET solution=none // tuples to return
7 IF r IS strict rule THEN
8 WITH r: y.f[expr1]=expr2
9 LET val = Eval(expr1,xT)

10 LET val2 = Eval(expr2,xT)
11 FOR EACH v IN val DO
12 FOR EACH v2 IN val2 DO
13 solution = solution + (y, v, v2)
14 DONE
15 DONE
16 ELSE IF r IS step rule THEN
17 WITH r: all i:Int|range implies y.f[add[i,1]] = expr
18 LET val = Eval(range,xT)
19 LET t = none // set of tuples
20 FOR EACH v IN val DO
21 LET val2 = Eval(expr, xT)
22 LET i = Eval(add[v,1])
23 FOR EACH v2 In val2 DO
24 solution = solution + (y, i, v2)
25 DONE
26 DONE
27 ELSE IF r IS conditional rule THEN
28 WITH r: expr implies r2
29 IF Eval(expr,xT) = True THEN
30 solution = ProcessRule(r2, xT, (x1,...,xn), y)
31 FI
32 ELSE IF r IS loose rule THEN
33 WITH r: y in image.f[expr]
34 LET val = Eval(image,xT)
35 LET val2 = Eval(expr,xT)
36 FOR EACH v IN val DO
37 FOR EACH v2 IN val2 DO
38 solution = (v,v2,y)
39 DONE
40 DONE
41 FI
42 RETURN solution
43 END FUNCTION

Listing 8: F-Alloy Rule Interpretation pseudo code

Let us analyze the time complexity of interpreta-
tion. Let n denote the number of atoms in xsrc. There
are two outer for-loops in the interpretation code. The
first outer for-loop (l.17 –l.45) involves a polynomial
number of evaluations (in terms of n) of Alloy expres-
sions (guard predicates). If we assume that the evalu-
ation of Alloy expressions can be done in polynomial
time in n - which can be shown by structural induc-
tion - then the overall time for the first outer loop will
be at most polynomial in n. The second outer for-loop
entails a polynomial number of invocations of the Pro-
cessRule function. We claim that each call to Pro-

cessRule terminates in polynomial time. To see this,
note that ProcessRule itself evaluates at most a poly-
nomial number of Alloy expressions, hence yielding our
claim. We conclude that interpretation takes at most
time polynomial in n. We finally note that analysis is
done via SAT-solving of a Boolean formula whose size is
larger than n [17]. Thus analysis takes super-polynomial

28 Loïc Gammaitoni, Pierre Kelsen

time in n in the worst case (unless P=NP). . This will
be confirmed empirically in the next section.

The following theorem states that the interpretation
of f-modules implemented by the pseudo code of Listing
7 conforms to the translational semantics given to F-
Alloy in Section 7.

Theorem 2 Given an f-module m from msrc to mdst

and a valid instance xsrc of msrc, interpretation returns
a valid instance of the augmented module mT if there
exists such an instance, otherwise it returns none.

Proof: The interpretation closely follows the structure
of the equation given in Lemma 2, which holds in all
augmented module instances. Furthermore the Pro-

cessRule function closely follows the definition of the
V -sets given in Lemma 1. By construction, it will thus
yield an mT -instance x in which the equation given in
the aforementioned lemma holds. If some valid instance
of mT exists (for given xsrc), it must be the same as
the constructed instance. Therefore the constructed in-
stance must be valid as well and is indeed returned on
line 56. If no valid instance of mT exists (for the given
xsrc) then the constructed instance cannot be valid and
nothing will be returned. �

9 Evaluation

In this section, we provide a first step toward evaluating
our approach by answering through empirical means
the following questions:

1. Can F-modules be analyzed more efficiently than
Functional Alloy Modules?

2. How does F-Alloy compare to other existing model
transformation approaches in terms of execution time?

We note that the following experiments were per-
formed on a machine running an Intel i5 CPU (3.20Ghz)
with 16GB of RAM, and that all the files necessary at
the reproduction of those experiments can be found on-
line11.

9.1 Speeding Up Analysis using F-Alloy Interpretation

To answer the first question, we compare the time needed
to obtain the first valid instance of our CD2RDBMS and
CDRefinement functional Alloy modules using either
pure Alloy analysis or a hybrid analysis consisting of
using Alloy and F-Alloy jointly. Hybrid analysis is first
introduced in [11].

The manipulations performed to obtain the first in-
stance are the following:
11 https://goo.gl/fyvqRg

10 20 30 40 50
0

10000

20000

30000

40000

50000

60000

70000

80000

90000

CD2RDBMS
analysis

CD analysis

CD2RDBMS
hybrid analysis

size (number of CDElement)

time (ms)

Fig. 15: Plot showing the time taken to complete the
Alloy analysis of CD2RDBMS and CD in function of the
scope defined (in term of number of CDElement) and to
complete the hybrid analysis of the CD2RDBMS F-module
in function of the size of CD-instances given as input

In the case of Alloy analysis: we use the Alloy analyzer
(configured to use SAT4J) to generate the first in-
stance conforming to the CD2RDBMS and CDRefine-

ment Functional Alloy modules.
In the case of hybrid analysis: two steps are performed:

Step 1 consists in generating a valid CD-instance (CD
being the input of both CD2RDBMS and CDRefine-
ment transformations).

Step 2 consists in feeding this instance along with
the F-Alloy specifications of the CD2RDBMS and
CDRefinement transformations to the F-Alloy
interpreter.

The time needed by those manipulations is displayed
as bar charts in Fig. 15 and Fig. 16 for the CD2RDBMS

and CDRefinement case study, respectively. Measure-
ments were performed for a scope of up to 50 CDEle-
ments. The absence of a bar marks a failure to yield
instances in reasonable time.

Observation: Frommeasurements displayed in Fig. 15
and Fig. 16, we observe that F-Alloy and its interpreter
can help in reducing the time needed to analyze both
endogenous and exogenous functional Alloy modules.
Indeed, the time needed to return a transformation in-
stance using hybrid analysis is essentially reduced to
the time needed by the Alloy analyzer to generate in-
stances from the CD module.

9.2 Comparing F-Alloy with Existing Model
transformations

To answer our second question, we compare the time
needed by the F-Alloy interpreter to compute the CD2-
RDBMS and CDRefinement transformations to that of

https://goo.gl/fyvqRg

F-Alloy: A Relational Model Transformation Language Based on Alloy 29

10 20 30 40 50
0

5000

10000

15000

20000

25000

30000

35000

40000

CDRefinement
analysis

CD analysis

CDRefinement
hybrid analysis

size (number of CDElement)

time (ms)

Fig. 16: Plot showing the time taken to complete the
Alloy analysis of CDRefinement and CD in function of
the scope defined (in term of number of CDElement)
and to complete the hybrid analysis of the CDRefine-
ment F-module in function of the size of CD-instances
given as input

10 20 30 40 50
20

200

2000

20000

Alloy
Analyzer

F-Alloy
Interpreter

ATL
Engine

size (number of CDElement)

time (ms)

Fig. 17: Plot showing the time taken by ATL, Alloy
and F-Alloy to execute the CD2RDBMS transformation
in function of the size of CD-instances given as input

ATL and Henshin, respectively. Input instances used
in the following manipulations are those obtained pre-
viously by Alloy analysis of the CD module. The time
taken by ATL and F-Alloy to compute the CD2RDBMS
transformation on this sample of input instances is plot-
ted in Fig. 17 while the time taken by Henshin and
F-Alloy to compute the CDRefinement transformation
is plotted in Fig. 18. In the plot given in Fig. 17, we
also show, as a reference, the time needed by the Al-
loy analyzer to compute the transformations for given
CD instances. Computing a transformation with the Al-
loy analyzed for a fixed input instance is achieved by
over-constraining the CD module so that the only input
instance it allows is the fixed one. We note that this ap-
proach can’t be applied to endogenous transformation
as over-constraining the CD module doesn’t only im-
pact the input instance but also the output instance.

10 20 30 40 50
30

40

50

60

70

80

90

100

F-Alloy
Interpreter

Henshin
Interpreter

size (number of CDElement)

time (ms)

Fig. 18: Plot showing the time taken by Henshin and
F-Alloy to execute the CDRefinement transformation
in function of the size of CD-instances given as input

Observation: From the measurements plotted in
Fig. 17 and Fig. 18, F-Alloy’s performance is of the
same order than those of ATL and Henshin and con-
siderably outperforms the Alloy analyzer It seems that
the Henshin interpreter undergoes an heavy initializa-
tion process before actually computing the transforma-
tion hence explaining the fact that the F-Alloy inter-
preter performs faster. We observe that compared to
Henshin and ATL which are mature model transforma-
tion languages, the time needed by F-Alloy to complete
its tasks varies more in function of the input size. This
can be explained by the difference of maturity between
the two tools and may also be partly attributed to the
current lack of effort spent in optimizing the F-Alloy in-
terpreter’s code. As a result, it is natural to question the
efficiency of F-Alloy interpretation on big input models.
This is usually not a problem in practice as F-Alloy is
designed as a language allowing the transformation of
Alloy instances which are of relatively small size. For
this particular problem we see that F-Alloy interpreta-
tion outperforms Alloy analysis in terms of execution
time, hence widening the applicability of Alloy-based
model transformation specifications.

10 Discussion and Related Work

F-Alloy vs. Alloy. Analysis with the Alloy analyzer is
always done for a finite scope using SAT-solving, itself
an NP-complete problem. In practice Alloy’s analysis,
although having a high worst case complexity, works
surprisingly well, as documented in numerous publi-
cations. No guarantees can be given, though, on the
time needed for analyzing Alloy modules, hence turning
Alloy analysis into a non-practical solution for model
transformation computation. Contrary to this we show
that model transformations specified in F-Alloy can be

30 Loïc Gammaitoni, Pierre Kelsen

computed in polynomial time through a process called
interpretation (see Section 8). Analysis of F-Alloy spec-
ification for validation’s sake is still possible using the
translational semantics defined: any F-module can be
automatically translated into an Alloy module express-
ing the same transformation. Furthermore, we recall
that interpretation of modules written in F-Alloy re-
lieves the analyst of having to determine proper scopes
for the signatures itself a non-trivial problem. Con-
cerning scalability, we recall that F-Alloy interpretation
yields Alloy instances and note that there exists an un-
told limit in the size of Alloy instances.This limitation
will cause the Alloy API to fail parsing big transforma-
tion instances built by interpretation (∼ 1000 atoms).
Parsing interpretation-built instance is only necessary
to enable the evaluation of expression in the said in-
stance. If this feature is not needed, then this scalability
issue is usually not a problem.

Related work on model transformation lan-
guages. We can consider the F-Alloy language as a
relational model transformation language. Relational
model transformation languages (such as those given
in [2], [23] and [14]) are those where the main concept
is that of a mathematical relation [8]. Note that in F-
Alloy the mathematical relations, represented by map-
pings, are in fact injective functions. In their pure form
(e.g., [2]) relational specifications are not executable. In
other cases (e.g., [23]) they are executable in principle
but still lack proper tool support. In the case of QVTr
there are some tools that execute QVTr specifications
but none of them take into account all the features of
the QVTr language yet. Note however that the QVTd
project is working on a soon-to-be-finished implemen-
tation of QVTr12. This is an indication that providing
execution semantics for a relational language is a non-
trivial task, especially if some semantic inconsistencies
exist as is the case for QVTr ([21]). In this paper we
have shown that F-Alloy specifications are efficiently
executable.

In the case of endogenous transformations, in-place
transformations – defining how to obtain the output of
the transformation via operations to be applied on a
given input – are often considered as syntactic sugar
for their out-place counterparts – defining how to build
the output from scratch given the input. To illustrate
this trend, the ATL refining mode, which allows the
specification of in-place transformation, is executed as
an out-place transformation (input-model not modi-
fied, elements copied from input to output) by the ATL

12 https://projects.eclipse.org/projects/modeling.
mmt.qvtd

2004 compiler 13. Our motivation to make in-place con-
structs an integral part of our functional Alloy modules,
and consequently F-Alloy is to directly provide a for-
mal ground to F-Alloy’s in-place syntax, thus prevent-
ing any ambiguities in the semantics of each operation.
Another language that natively supports endogenous
in-place transformations is Henshin[5], which was used
in the case study section as well as in the evaluation
section and supports a formal graph transformation se-
mantics.

One distinguishing feature of F-Alloy is that it is
based on the formal language Alloy (we have defined F-
Alloy reusing Alloy’s syntax and semantics definition).
Not all model transformation languages are based on
formal languages For instance the previously mentioned
model transformation language ATL [18] was defined
semi-formally. A formal semantics in terms of rewriting
logics was later given by [30]. Even if a formal seman-
tics is given there is in general no guarantee that the
implementation does indeed conform to the semantics.
A good illustration of this is the case of the triple graph
grammar approach [25,26], used in the case study sec-
tion, for which the authors of [15] describe an approach
to show conformance of an existing implementation to
the formal semantics. We have shown in Theorem 2
that the interpretation process (described using pseudo
code) conforms to the translational semantics we have
given to F-Alloy. A certain degree of confidence on F-
Alloy interpretation’s correctness is thus reached, pro-
vided that the actual interpreter’s implementation con-
forms to the given pseudo-code.

Related work on verifying model transforma-
tion languages. As mentioned in the introduction Al-
loy has been used in the past to verify model transfor-
mations. Anastasakis et al. [4] use Alloy to analyze the
correctness of model transformations. They resort to
their tool UML2Alloy [3] to transform the source and
target metamodels into Alloy and translate the trans-
formation rules into mapping relations and predicates
at the Alloy level. The goal of their work is to check
that the target instances are conforming to the tar-
get metamodel of the transformation. This is done by
checking an Alloy assertion using the Alloy analyzer. In
a similar line of work Baresi et al. [6] use Alloy to rep-
resent graph transformations represented in the AGG
formalism. They use the Alloy analyzer to verify the
correctness of the transformation by generating possi-
ble traces. We can similarly use Alloy’s analysis features
to verify model transformations represented in F-Alloy.
Furthermore, as we show in the evaluation section, in

13 we note that this is not the case anymore since the release of
the ATL 2009 compiler

https://projects.eclipse.org/projects/modeling.mmt.qvtd
https://projects.eclipse.org/projects/modeling.mmt.qvtd

F-Alloy: A Relational Model Transformation Language Based on Alloy 31

certain cases we can speed up the analysis using inter-
pretation.

11 Conclusion and Future Work

In this paper we have introduced the notion of func-
tional Alloy module as an Alloy module representing
either an exogenous or an endogenous transformation.
We have defined a sublanguage of Alloy, named F-Alloy,
which can be used to express functional Alloy modules
and allows efficient interpretation of these modules. We
have given first evidence of this for two model transfor-
mations, an exogenous one called CD2RDBMS, and an en-
dogenous one called CDRefinement. Several other case
studies have been implemented using F-Alloy 14, but
a more thorough evaluation of the approach by imple-
menting further case studies is planned.

F-Alloy’s semantics has been defined as a transla-
tion to Alloy, hence making the Alloy analysis of any
F-Alloy specification possible. This contrasts with other
approaches where a separate formal verification method
is provided.

One of the potential limitations of F-Alloy is the
prerequisite of being familiar with Alloy in order to use
the language. We plan in future work to provide an
alternative graphical syntax to make F-Alloy more ac-
cessible. Furthermore, work is underway to make lan-
guages defined in the Lightning tool [1] – a language
workbench embedding the F-Alloy interpreter – usable
by non-Alloy experts via a web interface. This interface
will support the creation and edition of instances using
their concrete syntax (a domain specific visualisation)
as well as exercising model transformations on them.

Another area of investigation concerns bidirectional
transformations. These are transformations that allow
forward and backward transformations to be generated
from a unique transformation specification. Bidirectional
transformations are useful in the context of synchro-
nization between models. Future work will determine if
we can make our approach bidirectional. This has al-
ready been achieved for existing relational model trans-
formation languages such as QVTr but also graph based
approaches such as triple graph grammars.

As seen in the evaluation section, the execution time
of F-Alloy specifications using our own interpreter is
less predictable than the one obtained by mature model
transformation tools like ATL and Henshin. To make
F-Alloy into a practical and appealing solution to the
design of seamlessly verifiable model transformations,
more work on optimizing our tooling is thus needed. Fi-
nally, we want to explore whether the more general defi-
14 http://lightning.gforge.uni.lu/examples

nition of functional Alloy modules, parametrized by two
transformation functions defining the domain and range
of the function denoted, has applications beyond the
definition of endogenous and exogenous model trans-
formations.

References

1. Lightning tool website. http://lightning.gforge.uni.lu.
2. David H Akehurst, Stuart Kent, and Octavian Patrascoiu. A

relational approach to defining and implementing transfor-
mations between metamodels. Software and System Model-
ing, pages 215–239, 2003.

3. Kyriakos Anastasakis, Behzad Bordbar, Geri Georg, and In-
drakshi Ray. On challenges of model transformation from
UML to Alloy. Software & Systems Modeling, pages 69–86,
2010.

4. Kyriakos Anastasakis, Behzad Bordbar, and Jochen M
Küster. Analysis of model transformations via Alloy. In Pro-
ceedings of the 4th MoDeVVa workshop: Model-Driven En-
gineering, Verification, and Validation, pages 47–56, 2007.

5. Thorsten Arendt, Enrico Biermann, Stefan Jurack, Christian
Krause, and Gabriele Taentzer. Henshin: advanced concepts
and tools for in-place emf model transformations. In Model
Driven Engineering Languages and Systems, pages 121–135.
2010.

6. Luciano Baresi and Paola Spoletini. On the use of Alloy to
analyze graph transformation systems. In Graph Transfor-
mations, pages 306–320. 2006.

7. Jean Bézivin, Bernhard Rumpe, Andy Schürr, and Laurence
Tratt. Model transformations in practice workshop. In Satel-
lite Events at the MoDELS 2005 Conference, pages 120–127,
2006.

8. Krzysztof Czarnecki and Simon Helsen. Classification of
model transformation approaches. In Proceedings of the 2nd
OOPSLA Workshop on Generative Techniques in the Con-
text of the Model Driven Architecture, pages 1–17, 2003.

9. Loïc Gammaitoni and Pierre Kelsen. F-Alloy: An Alloy based
model transformation language. In Theory and Practice of
Model Transformations, pages 166–180. 2015.

10. Loïc Gammaitoni, Pierre Kelsen, and Christian Glodt. De-
signing languages using lightning. In International Confer-
ence on Software Language Engineering, pages 77–82, 2015.

11. Loïc Gammaitoni, Pierre Kelsen, and Qin Ma. Agile valida-
tion of higher order transformations using f-alloy. In Theo-
retical Aspects of Software Engineering (TASE), 2016 10th
International Symposium on, pages 125–131. IEEE, 2016.

12. Loïc Gammaitoni, Pierre Kelsen, and Fabien Mathey. Ver-
ifying modelling languages using lightning: a case study. In
11th MoDeVVa Workshop: Model-Driven Engineering, Ver-
ification and Validation, pages 19–28. 2014.

13. Geri Georg, Jores Bieman, and Robert B France. Using alloy
and uml/ocl to specify run-time configuration management:
A case study. In pUML, pages 128–141. Citeseer, 2001.

14. Anna Gerber, Michael Lawley, Kerry Raymond, Jim Steel,
and Andrew Wood. Transformation: The missing link of
MDA. In Graph Transformation, pages 90–105. 2002.

15. Holger Giese, Stephan Hildebrandt, and Leen Lambers. To-
ward bridging the gap between formal semantics and imple-
mentation of triple graph grammars. In Proceeding of the
7th MoDeVVa Workshop: Model-Driven Engineering, Veri-
fication, and Validation, pages 19–24, 2010.

http://lightning.gforge.uni.lu/examples

32 Loïc Gammaitoni, Pierre Kelsen

16. Frank Hermann, Hartmut Ehrig, Fernando Orejas, and Ul-
rike Golas. Formal analysis of functional behaviour for model
transformations based on triple graph grammars. In Interna-
tional Conference on Graph Transformation, pages 155–170.
Springer, 2010.

17. Daniel Jackson. Software abstractions. MIT Press Cam-
bridge, 2012.

18. Frédéric Jouault, Freddy Allilaire, Jean Bézivin, and Ivan
Kurtev. ATL: A model transformation tool. Science of com-
puter programming, pages 31–39, 2008.

19. Hadi Katebi, Karem A. Sakallah, and João P. Marques-Silva.
Empirical study of the anatomy of modern sat solvers, vol-
ume 6695 LNCS of Lecture Notes in Computer Science (in-
cluding subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), pages 343–356. 2011.

20. K Lano. Catalogue of model transformations.
21. Nuno Macedo and Alcino Cunha. Implementing QVT-R bidi-

rectional model transformations using Alloy. In Fundamental
Approaches to Software Engineering, pages 297–311. 2013.

22. Tom Mens and Pieter Van Gorp. A taxonomy of model
transformation. Electronic Notes in Theoretical Computer
Science, 152:125–142, 2006.

23. OMG. Meta object facility query/view/transformation spec-
ification, 2011.

24. Andy Schürr. Specification of graph translators with triple
graph grammars. In in Proc. of the 20th Int. Workshop on

Graph-Theoretic Concepts in Computer Science (WG ‘94),
Herrsching (D. Springer, 1995.

25. Andy Schürr. Specification of graph translators with triple
graph grammars. In Graph-Theoretic Concepts in Computer
Science, pages 151–163, 1995.

26. Andy Schürr and Felix Klar. 15 years of triple graph gram-
mars. In Graph Transformations, pages 411–425. 2008.

27. Dave Steinberg, Frank Budinsky, Ed Merks, and Marcelo Pa-
ternostro. EMF: eclipse modeling framework. Pearson Edu-
cation, 2008.

28. Mana Taghdiri and Daniel Jackson. A lightweight formal
analysis of a multicast key management scheme. In Interna-
tional Conference on Formal Techniques for Networked and
Distributed Systems, pages 240–256. Springer, 2003.

29. Massimo Tisi, Salvador Martínez, Frédéric Jouault, and Jordi
Cabot. Refining models with rule-based model transforma-
tions. 2011.

30. Javier Troya and Antonio Vallecillo. A rewriting logic se-
mantics for ATL. Journal of Object Technology, pages 1–29,
2011.

31. Arie Van Deursen, Paul Klint, and Joost Visser. Domain-
specific languages: An annotated bibliography. ACM Sigplan
Notices, 35(6):26–36, 2000.

F-Alloy: A Relational Model Transformation Language Based on Alloy 33

A F-Alloy to Alloy translation procedures

In this appendix, we provide procedures in pseudo-code describ-
ing how each type of constraint identified in section 7 is automat-
ically generated.

We recall that the notation in which the pseudo-code is pro-
vided has the following properties:

– Keywords structuring the code are highlighted in bold and
are written in uppercase.

– Variables names are highlighted in bold and are written in
lowercase.

– Text and numbers are highlighted in italic.
– Function names (in declarations and in calls) are highlighted

in bold and italic.
– Expressions of the form “WITH var: description” consists

in providing a syntactic description of the variable, consist-
ing of syntactical constructs and terminals. Each syntactical
construct counts as a variable declaration, the variable being
initialized following the value of the described variable var.
Each of such “syntactic variable” is highlighted in blue, to
differentiate them from terminals and other possibly already
defined variables.

A.1 Map Disjunction

The Map Disjunction function, given in Listing 9, first identi-
fies (via nested loops) each pair of mappings (different from one
another) having ranges typed by the same signature. For each
such pair, a constraint is written enforcing that the intersection
between atoms in the range of those mappings is empty, i.e., no
disjoint mappings have overlapping ranges.

FUNCTION MapDisjunction (F-Module m)
WRITE fact MapDisjunction{
LET m_dst= m.getImportedModule(2) //2nd open statement in m
IF m_dst= none THEN //endogenous case
m_dst= m.getImportedModule(1) //1st open statement in m

FI
FOR EACH signature y DECLARED IN m_dst DO
LET maps = FIND ALL mappings having y as range IN m
FOR EACH mapping map IN maps DO
WITH map: name : x1 -> .. -> xn -> y
FOR EACH mapping map2 IN maps DO
WITH map2: name2: x1’ -> .. -> xn’ -> y
IF name != name2 THEN

WRITE name[x1,..,xn] & name2[x1’,..,xn’] = none
FI

DONE
DONE

DONE
WRITE }

END FUNCTION

Listing 9: Pseudo code describing how Map Disjunction
constraints can be generated from an F-module m

A.2 Map Injectiveness

The Map Injectiveness function, given in Listing 10, iterates
over each mapping declared in the f-module and writes an Alloy
constraint enforcing that each element in the range of a given
map has at most one preimage.

FUNCTION MapInjectiveness (F-Module m)
WRITE fact MapInjectiveness{
LET maps = FIND ALL CREATE and UPDATE mappings DECLARED IN m
FOR EACH mapping map IN maps DO

WITH map: name : x1 -> .. -> xn -> y
LET sig= signature in which map is declared
WRITE all y:y | lone sig.name.y

DONE
WRITE }

END FUNCTION

Listing 10: Pseudo code describing how
Map Injectiveness constraints can be generated from
an F-module m

A.3 Predicate Association

The Predicate Association function , given in Listing 11, it-
erates over all mappings declared in the f-module and writes an
Alloy constraint enforcing that for each mapping, each combina-
tion of atoms typed after the domain of the mapping is mapped
to an atom in the range if and only if the said combination satis-
fies the guard. Also, the value predicate should be satisfied given
as parameters the satisfying combination of domain atoms and
their associated atom in the range.

As delete mappings don’t have range, the function simply
writes an Alloy expression that ensures that combinations of
atoms in the domain are to be part of the delete mapping if
and only if they satisfy the guard.

FUNCTION PredicateAssociation (F-Module m)
WRITE fact PredicateAssociation{
LET maps = FIND ALL mappings DECLARED IN m
FOR EACH map IN maps DO

WITH map: name : x1 -> .. -> xn -> y
LET sig= FIND signature in which map is declared
IF sig=CREATE OR sig=UPDATE THEN
WRITE
all x1:x1|..|all xn:xn{
(guard_name[x1,..,xn] and
one sig.name[x1,..,xn] and value_name

[x1,..,xn,sig.name[x1,..,xn]])
or (not guard_name[x1,..,xn] and no

sig.name[x1,..,xn]) }
WROTE

ELSE IF sig=DELETE THEN
WRITE
all x1:x1{
(guard_name[x1] and x1 in DELETE.name
or (not guard_name[x1] and x1 not in DELETE.name)

WROTE
FI

DONE
WRITE }

END FUNCTION

Listing 11: Pseudo code describing how Predicate
Association constraints can be generated from an F-
module m

34 Loïc Gammaitoni, Pierre Kelsen

A.4 Minimal Assignment

The Minimal Assignment function, given in Listing 13, iterates
over maps declared in the f-module. For each map, it iterates over
fields declared in the signature typing its range. It then writes a
constraint limiting the cardinality of that field to be that ex-
pected from the assignment defined by strict and step rules of
the associated value predicate and by loose rules of other value
predicates. To do so, it relies on the COUNT function which returns
an Alloy expression yielding the expected cardinality.

FUNCTION MinimalAssignment (F-Module m)
FOR EACH mapping map DECLARED IN m DO
WITH map: name: x1 -> .. -> xn -> y
LET sig= FIND signature IN which map is declared
LET val= FIND predicate named value_name
LET paramY = last parameter of val (typed by y)
FOR EACH field f DECLARED IN signature y DO
LET constraint = none
FOR EACH rule r CONTAINING f IN val DO
IF r NOT CONTAINING loose rule THEN

IF constraint= none THEN
constraint= COUNT(r) //COUNT defined bellow

ELSE
constraint= add[COUNT(r) , constraint]

FI
FI

DONE
APPEND TO val block
#paramY.f=constraint

APPENDED
LET flag= false
FOR EACH mapping map2 IN m DO
WITH map2: name’: x1’ -> .. -> xn’ -> y’
LET val2= FIND predicate named value_name’
LET paramY’ = last parameter of val2 (typed by y’)
IF name != name’ THEN

FOR EACH rule r IN val2 DO
IF r CONTAINS loose rule THEN
flag= true
APPEND TO val2 block
#f.paramY’=COUNT(r])

APPENDED
FI

DONE
FI

DONE
IF sig= UPDATE THEN
IF NO rule r CONTAINS f IN any value predicate of m

THEN
APPEND TO val2 block
paramY’.f= x1’.f

APPENDED
FI

ELSE IF flag= false
APPEND TO val block

paramY.f= none
APPENDED

FI
DONE

DONE
END FUNCTION

Listing 12: Pseudo code describing how Minimal
Assignment constraints can be generated from an F-
module m

/*Utility function returning an integer-valued Alloy
expression corresponding to the expected cardinality
of the field assigned by a given rule. */
FUNCTION COUNT[rule r]
IF r IS a strict rule THEN

WITH r: y.f[expr1]=expr2
IF expr1= none OR expr1 IN INT THEN
RETURN #expr2

ELSE // multiply #expr1 and #expr2
RETURN mult[#expr1,#expr2]

FI
FI
IF r IS a step rule THEN

WITH r: all i:Int|range implies y.f[add[i,1]] = expr
WITH range: i > expr1 and i < expr2
LET r= max[sub[#expr2,#expr1]+0]
RETURN mult[#expr,c]

FI
IF r IS a conditional rule THEN

WITH c: expr1 implies r2
RETURN not expr1 implies 0 else COUNT(r2)

FI
IF r IS a loose rule THEN

WITH r: y in image.name[expr]
IF expr= none OR expr IN INT THEN
RETURN #image

ELSE
RETURN mult[#expr,#image]

FI
FI

END FUNCTION

Listing 13: Pseudo code of the COUNT function used
by the MinimalAssignment function

A.5 IO Disjunction

The IO Disjunction function iterates (via nested loops) over
pairs of mappings (not forcibly different), and writes an Alloy
expression ensuring that the domain of one is disjoint from the
range of the other.

FUNCTION IODisjunction (F-Module m)
WRITE fact IODisjunction{

FOR EACH mapping map1 DECLARED IN m DO
WITH map1: name: x1 -> .. -> xn -> y
LET sig1=FIND signature in which map1 is declared
FOR EACH mapping map2 DECLARED IN m DO
WITH map2: name’: x1’ -> .. -> xn’ -> y’
LET sig2=FIND signature in which map2 is declared
FOR EACH i IN RANGE [1, n]
IF xi’ = y THEN

WRITE no sig1.name[x1,..,xn] & sig2.name’
[x1’,..,xi-1’].xi+1’.(..).xn’.y’

FI
DONE

DONE
DONE
WRITE }

END FUNCTION

Listing 14: Pseudo code describing how IO Disjunction
constraints can be generated from an F-module m

F-Alloy: A Relational Model Transformation Language Based on Alloy 35

A.6 Constraint Framing

The first part of the Constraint Framing function, given in
Listing 15, writes two Alloy expressions defining the set of atoms
contained in the input and output instance of the f-module, re-
spectively.

The second part rewrites facts of the input module as pred-
icates and writes in a fact of the translated f-module an Alloy
expression enforcing those predicates to hold given the set of all
input and output atoms as parameters, respectively.

FUNCTION ConstraintFraming (F-Module m)
WRITE fact ConstraintsFraming{
LET in= let input= univ - (CREATE + DELETE + UPDATE
LET out= let output= univ - (CREATE + DELETE + UPDATE
FOR EACH mapping map DECLARED IN m DO
WITH map: name: x1 -> .. -> xn -> y
LET sig= signature in which map is declared
IF sig= CREATE OR sig= UPDATE THEN
in+= + sig.name[x1,..,xn]

FI
IF sig= UPDATE THEN
out+= + sig.name.x1.(..).xn

FI
IF sig= DELETE THEN
out+= + sig.name

FI
DONE
in+=)
out+=)
WRITE in + out
LET m_src= m.getImportedModule(1) //1st open statement in m
REPLACE facts by predicates in m_src
LET preds be the set of added predicates
FOR EACH predicate p IN preds DO
LET n = p’s name
WRITE n[input] and n[output]

DONE
WRITE }

END FUNCTION

Listing 15: Pseudo code describing how Constraint
Framing constraints can be generated from an F-
module m

A.7 Minimum Output

The Minimum Output function, given in Listing 16, iterates over
all signatures declared in the output module and writes an Alloy
expression enforcing the set of all atoms typed by each of these
signatures to be equal to the union of atoms in the range of
mappings whose range is typed by the given signature.

FUNCTION MinimumOutput (F-Module m)
WRITE fact MinimumOutput{
m_dst= m.getImportedModule(2) //2nd open statement in m
FOR EACH signature y DECLARED IN m_dst DO

LET maps = FIND ALL mapping IN m having vary as range
LET constraint= y=
IF maps is empty THEN
constraint += none

FI
FOR EACH map IN maps DO
WITH map: name: x1 -> .. -> xn -> y
LET sig= FIND signature in which map is declared
constraint+= sig.name[x1,..,xn]
IF NOT last iteration of this loop THEN
constraint += +

FI
DONE
WRITE constraint

DONE
END FUNCTION

Listing 16: Pseudo code describing how Minimum
Output constraints can be generated from an F-module

	Introduction
	Approach Overview
	Case Studies
	Background on Alloy
	Functional Alloy Modules
	Syntax of F-Alloy
	Translational Semantics of F-Alloy
	Interpreting F-Alloy specifications
	Evaluation
	Discussion and Related Work
	Conclusion and Future Work
	F-Alloy to Alloy translation procedures

