
Real time degradation identification of UAV using machine learning
techniques

Anush Manukyan∗, Miguel A. Olivares-Mendez∗, Holger Voos∗, Matthieu Geist1,2,3

∗ University of Luxembourg, Luxembourg
forename.lastname@uni.lu

1 Université de Lorraine, LORIA, UMR 7503, Vandoeuvre-lès-Nancy, F-54506, France
2 CNRS, LORIA, UMR 7503, Vandoeuvre-lès-Nancy, F-54506, France
3 LORIA, CentraleSupélec, Université Paris-Saclay, 57070 Metz, France

forename.lastname@centralesupelec.fr

Abstract— The usages and functionalities of Unmanned
Aerial Vehicles (UAV) have grown rapidly during the last years.
They are being engaged in many types of missions, ranging from
military to agriculture passing by entertainment and rescue
or even delivery. Nonetheless, for being able to perform such
tasks, UAVs have to navigate safely in an often dynamic and
partly unknown environment. This brings many challenges to
overcome, some of which can lead to damages or degradations
of different body parts. Thus, new tools and methods are
required to allow the successful analysis and identification
of the different threats that UAVs have to manage during
their missions or flights. Various approaches, addressing this
domain, have been proposed. However, most of them typically
identify the changes in the UAVs behavior rather than the issue.
This work presents an approach, which focuses not only on
identifying degradations of UAVs during flights, but estimate
the source of the failure as well.

I. INTRODUCTION
During last years, the use of intelligent robots in daily ap-

plications has grown dramatically and are typically used for
performing tasks that are hazardous, dangerous or unpleasant
for humans [12]. However, performing such challenging
tasks in an unknown and dynamic environment can lead to
unexpected events, such as damaging of robots body parts.

To avoid worsening the situations, the robot needs
to have knowledge about its own possible damages or
defects. These degradations should be detected quickly in
order to be able to take an immediate decision during the
robots mission. This improves the autonomy of the robot,
provides more reliable and safe accomplishment of the
task and reduces the risk of unexpected breakdowns [17][20].

In this work, we present a lightweight method that can
detect any degradation and point out the cause for the
abnormal behavior in real time. Based on a UAVs internal
and/or external sensors, the flight data stream is used for
analysis and estimation of the UAVs performance using well-
known machine learning techniques.

The proposed method consists of two phases: offline
learning and online prediction. During the first phase, the
training data is processed and prepared such that the model
can be trained using a supervised learning approach. The
second phase uses the trained model in an online mode and

predicts the level of degradation of the UAV in real time
using a sliding time window technique. The model is based
on k Nearest Neighbor (kNN) algorithm using Dynamic
Time Warping (DTW) as a distance measure. The choice
of those algorithms is motivated by the significant results
that have been presented in our previous work [14], where
we were dealing with the task of identifying anomalies of a
UAV in an offline mode exclusively.

This work shows significant improvements of the
classifier, not only in terms of accuracy but also in terms
of speed and parallelization possibilities, over the previous
method [14]. As a proof a concept, a Python based command
line tool has been implemented, which provides an interface
to analyze data of UAVs, creates and trains models and
finally, simulates real time prediction of degradations.

The paper is organized as follows: Section 2 investigates
the existing approaches for similar problems. Section 3
describes the fundamental steps of the approach, by giving
a detailed explanation about the learning phase and the
real time prediction phase. In section 4 we discuss about
the experimental setup and the experiments performed for
gathering the training data. Then, section 5 presents all the
results of the algorithm’s performance evaluations. Finally,
section 6 concludes the presented along with the feasible
future work.

II. RELATED WORK

Real time anomaly detection of Unmanned Vehicles (UV)
has become an extensive research area for fields such as
robotic, machine learning, and artificial intelligence. This
section first investigates existing approaches for anomaly
detection of UVs, and then, reviews the state of the art
focused on streaming time series classification.

Afridi et al. [7] implemented a machine learning tool
for detecting Anomalies due to Wind Gusts (AWG). AWG
accurately detects the wind gust anomalies in the altitude
control unit of an Aerosonde UAV. The approach is based on
supervised learning using several classification algorithms,
based on the Waikato Environment for Knowledge Analysis

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Repository and Bibliography - Luxembourg

https://core.ac.uk/display/132585738?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


(WEKA) implementation, for comparing results. Finally,
they show that the J48 decision tree over neural networks
algorithms gives the best results. Larrauri et al. [5] designed
a novel fully automatic system for overhead power line
inspection for UAVs. It enables anomalies detection without
requiring manual intervention on the ground station or
control center. The main idea is to process the telemetry
data and consecutive images sent from the autopilot in order
to identify online areas of vegetation, trees and buildings
close to power lines and to calculate the distance between
power lines and the respective obstacles. They use artificial
vision algorithms to calculate distances and detect hotspots.

In several research works, Mahanalobis distance is
applied as anomaly detection identifier. Such approach is
presented by Khalastchi et al. [8] in their online data-driven
anomaly detection work for light-weight robots. They show
that, for robots and agents, considering the differential of
the sensor data instead of the raw data, can improve the
anomaly detection process. They use Mahanalobis distance
as a distance measure function between simple points
and multi-dimensional distributions. In general, the data
produced by robots is composed of high-dimensional sensor
data, which is not trivial. Therefore, they apply an approach
presented in their previous work [2], which focuses on
finding the correlation between the attributes in order to
reduce the dimensions. Afterwards, they apply Mahalanobis
distance, which returns the degree of difference between
sets of data being anomalous, and by beforehand-defined
threshold, they declare anomalies. Brotherton et al. [6]
present another technique of anomaly detection for military
aircraft subsystem data. Using Mahanalobis distance they
identify whether each individual signal received from
an aircraft has normal or abnormal behavior. A similar
approach has been presented by Laurikkala et al. [9]. In that
case, Mahanalobis distance is used to reduce the multivariate
observation to univariate scalars.
Plagemann et al. [4] presents an efficient method for
failure detection of mobile robots using mixed-abstraction
particle filters [4]. The approach focuses on estimating
the failures caused by external influences like collisions
or wheel slip. They propose to build a model abstraction
hierarchy, which can be used by the mixed-abstraction
particle filter algorithm to detect computational resources
for the most efficient model whose assumptions are met.
This gives the advantage to minimize the computational
load while maximizing the soundness of the system. Stavrou
et al. [3] introduce a model-based online fault detection and
identification approach for service mobile robots, such as
iRobot Roomba [22]. The approach of the observer is to
track the error between the normal robot dynamics and an
estimation based on sensor readings. When changes in the
robot behavior are identified, the bounds are used to generate
an adaptive threshold, which is considered as a limit of the
estimation error. Faults are detected when the estimation
error exceeds the threshold. The magnitude of the fault they
identified online provides important information about the

severity of the fault. They believe that their approach can
be applied to any two-wheeled mobile robot [3][19].
Pokrajac et al. [10] proposed in their study an incremental
local outlier detection algorithm for data streams, based
on the computation of local neighborhoods densities. The
method assigns a degree called local outlier factor (LOF) to
each data record. Data records with a high LOF represent a
stronger outlier than those with lower LOF. As the first step,
the algorithm computes the distance of a data record with
all other kth nearest neighbors using Euclidean distance.
Then it computes local reachability density (LRD) of data
records as the inverse of the average reachability distance
based on the k nearest neighbors of the data record. Finally,
it computes LOF of data records as the ratio of the average
local reachability density of k nearest neighbors and local
reachability density of the data record. At the end, they
showed that their algorithm successfully detects outliers
with respect to density of their neighboring data records.
Another approach for online data stream anomaly detection
is presented by Laxhammar et al. [11]. They proposed
a parameter-light algorithm, called Sequential Hausdorff
Nearest-Neighbor Conformal Anomaly Detector (SHNN-
CAD), for sequential anomaly detection in trajectories.
The proposed approach is based on adjusting the anomaly
threshold in real time. They investigate the performance of
SHNN-CAD on four different labeled trajectory datasets,
and concluded their investigation by showing a competitive
classification performance during unsupervised online
learning.

Various other approaches for UV anomaly detection
problem have been proposed, however they typically detect
anomalies by investigating if there were any changes in the
normal behavior or not. Only a few approaches [4], [8],
[10] were focusing on anomaly detection in an online mode.
Thus, this work presents an additional approach which can
both, identify anomalies of UAVs, and pinpoint the exact
source of the failure, such as propeller, motor, battery, etc.

III. SLIDING TIME WINDOW DEGRADATION
IDENTIFICATION APPROACH

The approach for real time degradation identification,
proposed in this paper, consists of two phases: 1) offline
model learning and 2) real time prediction using a learnt
(trained) model. It focuses on a scenario where the UAV
has been given a pre-determined path that it must follow
autonomously.

A. Sliding Time Window-Based Model

In the first phase, the model is being trained using a
dataset of the UAVs past flights. As the model aims to
pinpoint not only degradations but also the exact source
of their appearance, the data used for model learning is
constructed not only from samples of fault-free flights, but
also from samples of flights where UAV had a different



level of degradations.

In a model that is not window-based, each flight would
have one label, that describes the level of degradation of
the flight, and each prediction is made by using the entire
flight [14]. However, in a window-based approach, we are
working with chunks of flights. Here, we use time windows,
meaning that the flights have been split into chunks of
constant time intervals. For example, a 1 min flight could
have 10 chunks of 6 seconds each. Since chunks of flights
are used, instead of having one label describing the entire
flight, each time window has its own label. In this way, we
can also achieve a more precise labelling of the entire flight.
Figure 1 represents the general flow of the model learning
process using sliding time window.

Fig. 1: General flow of the model learning using time
window.

Once the data is labelled, the model is trained and vali-
dated offline in order to find the best parameters to run the
model in real time. Since the model uses the labelled time
window data, it must simulate the stream of data as well.
In this time window-based approach, the simulation restricts
the model to only access the current time window for every
flight. Thus, it is not allowed to use past or future data points,
outside of the current time interval.

Fig. 2: General flow of the real time degradation identifica-
tion process.

B. Real Time Prediction Using Sliding Time Window

Now, when the model has been trained offline, it can
be used online to identify degradations of the UAV in real

time. During the mission of the UAV, flight data is being
recorded by internal and/or external sensors and the data is
streamed to the degradations identification algorithm, which
should be running on a server in the cloud. Running the
online model onboard the UAV is also possible, but requires
a UAV with a more computing power and thus more battery
life.
As data come in, the current time window is filled. In this
approach, we use a window-based on duration and not
based on the amount of data. This means that after a fixed
time interval (e.g., 10 seconds) the current window is closed
and sent asynchronously to the machine learning algorithm,
which then estimates the behavior of the UAV for the given
window. Since we are working on a continuous stream of
data, the algorithm predicts the level of degradations in the
background while the server already records the incoming
stream of data for the next time window. Figure 2 presents
each step of degradation identification process in a real
time, using offline trained model.

The real time prediction capabilities depend on the amount
of data to process for each window and the speed of the
prediction algorithm. Because the prediction is run once on
each time window, the estimated level of degradation can
only be updated every x seconds, x being the size of the time
window. Ideally, the computation of the prediction should be
fast enough that it yields an estimation before the next time
window is reached.

It is worth mentioning, that the streamed data arrives in a
raw, unprocessed format, and can contain many unnecessary
feature attributes and/or many repetitive data points. This is
especially the case when the data is being streamed by high-
performance sensors. Therefore, the stream of data should
go through some kind of pre-processing. One approach is
to pre-process the outgoing stream form the perspective of
the UAV. This can be achieved by reducing the frequency
of the streamed data. Another way consists of recording
the entire stream and only pre-processing the current time
window before running the the prediction. The aim of pre-
processing the stream is to apply several feature extraction
techniques in order to reduce the dimensions of the data and
facilitate the next computational steps.

C. Real Time Degradation Identification Process

Following the general model descriptions and learning,
this section focuses on the core algorithms and techniques
that are used and which have been implemented as a proof
of concept on real UAV flights. The classification technique
that has been developed in this study is chosen based on the
experience of the previous work, where we have learnt that
kNN can achieve high-performance results for time series
classification. However, the current technique differs from
the previous approach by using a sliding window technique,
which works with small batches of flight data. Additionally,
the calculations of the classifier algorithm have been paral-
lelized. The combination of both dramatically decreased the
computation time.



The main advantage of kNN is its flexability, that allows
the distance measure functions to be easily adapted to the
data specificities, in this case to the different lengths of time
series. Thus, the Dynamic Time Warping (DTW) has been
selected, which computes the best possible alignment warp
between two unequal length time series by selecting the one
with the minimum value [13][16].

Upcoming is an in-depth explanation of kNN and DTW
algorithms.

k Nearest Neighbours Classification Algorithm

At the core, kNN takes a set of labelled training samples
and classifies test samples by the use of a similarity or
distance metric. In other words, it predicts the label of new
objects based on the k most similar training samples, better
referred to as k nearest neighbours [1][16][21].

Given a training set X , of size N with Y class labels and
an unknown test sample x, the computational steps of kNN
are as follows:
• Step1: Choose a k, the number of nearest neighbours.
• Step2: Compute the distance d between the test sample

and each training samples, noted d(Xi, x), i ∈ [1, n].
• Step3: Sort the distances and extract the class labels

yj , for the smallest jth distances (j ∈ [1, k]).
• Step4: Compute a majority vote on the extracted labels

and return the resulting winner, y′.
The majority voting rule assigns the class label to an

unknown data object based on the most frequent labels
among the k candidates extracted from the training set.

The majority voting formula is the following:
y′ = argmax

v

∑
I (v = yj), where v is a class label,

yj is the class label for the jth nearest neighbour, and
I (·) is an indicator function that returns the value 1 if its
argument is true and 0 otherwise [1].

Dynamic Time Warping

Dynamic Time Warping (DTW) is an algorithm to
measure the distance of two time series, or temporal
sequences, of different length. It is often compared with
the Euclidean distance, which differs in a sense that it only
measures the distance between two points, rather than two
sets of data of different sizes.

Given two time series X = (x1, x2, ...xN ), N ∈ N and
Y = (y1, y2, ...yM ), M ∈ N, sampled at unequidistant points
in time. The more similar X and Y are, the smaller the
distance function D(X , Y ) is. Furthermore, the value of
distance measure function increases as the time series differ
more from each other [16].
In other words, the D(X , Y ) is a distance measure function
which computes the best possible alignment or the minimum
mapping distance between two time series, using dynamic
programming approach.

It builds the warping path between time series and returns
the distance value by following these tree main conditions:

Boundary condition. The first and last elements of X
and Y must map exactly to the starting, respectively
ending points of the warping path: p1 = (1, 1) and
pK = (N,M)
Monotonicity condition. Elements of X and Y should
stay to time-ordered: n1 ≤ n2 ≤ ... ≤ nK and m1 ≤
m2 ≤ ... ≤ mK

Step size condition. While mapping sequences, this
condition is used for limiting the warping path from
long jumps: pl+1 − pl ∈ {(1, 1) , (1, 0) , (0, 1)} .

We note p∗, the best warping path between X and Y
with the minimal total cost: p∗ = argmin(D(X,Y )).
This minimization problem is computationally difficult,
since the algorithm has to calculate all possible warping
paths, which number grows exponentially as the size of the
time series grows linearly. Therefore, DTW uses a Dynamic
Programming algorithm to find this minimum-distance warp
path, which evaluates the recurrence of the cumulative
distance that is found in the adjacent elements: Once

D(i,j) = d(xi, yj) +min





D(i, j − 1)

D(i− 1, j)

D(i− 1, j − 1)

the cumulative distance matrix is computed, we can use
backtracking to find the minimum warping path. The last
element of the warping path is the distance between two
time series [15]. This matrix has complexity of O(MN),
thus in our implementation we decreased the complexity by
limiting the warping window size. For the proof of concept
those algorithms has been implemented. In the section 5 the
evaluation of the algorithms behavior is discussed in a great
details.

IV. EXPERIMENTAL SETUP

The used dataset originates from a scenario described in
our previous work [14]. The full scenario, or mission, took
place indoor, where a motion capture system (OptiTrack)
has been setup. A commercially available drone (Ar.Drone),
shown on figure 3, has been used and it has been
programmed to autonomously follow a pre-defined path.
The scenario lasts for about 1m40s, during which time the
UAV performs different fast and slow basic maneuvers such
as take off, landing, forward/backward moves, right/left
turns and hovering.

Since the interest of this work is to identify the
degradations of a UAVs body parts, the propellers have been
chosen as the main target for being altered and damaged.
Several incremental damages, such as bending, cutting
and/or scraping has been made on the propellers. At each
level of damage, the scenario has been fully run in order
to observe and collect the flight data. Figure 4 presents the



different kind of damages that have been made on the UAVs
propellers. Even though this paper focuses on degradations
of propellers, the same technique can be applied for any
other body parts of the UAV, such as motors or batteries.

Experiments have been video recorded and one of the
experiments is available online [23], which showcases the
desired flight against the “Worst” flight.

Fig. 3: A commercially available drone (Ar.Drone)

(a) Cut and bended propeller. (b) Cut propeller.

Fig. 4: Different damages made on propellers.

V. EVALUATIONS AND RESULTS

In this section, we introduce the dataset used for the
evaluation. Then, we describe in detail the real time data
stream simulation for labeling, pre-processing and model
learning. After, we present the evaluations of several models,
along with the comparison of the results from the previous
work [14].

A. Data

The data used in this research is based on 50 flights
performed by a commercially available “AR.Drone” UAV.
Each flight has been recorded by the UAVs internal sensors,
which contain up to 36 different attributes such as position,
speed, battery percentage or even rotation. Because the
scenario was played in a small environment, it has also
been possible to record the flight using an external high

performance motion capture system, allowing to record
the precise location coordinates of the UAV at a rate of
240 readings per second. In this paper, the data gathered
form the motion capture system has been used, due to its
preciseness.

Once the data has been gathered, pre-processing is directly
applied by removing consecutive location points that are less
than 0.01m apart from each other, which reduces the size of
the data by 60%, without any important information loss.

B. Labelling
After pre-processing, each flight needs to be split into

multiple time windows of equal time interval.
This labelling approach is based on our previous work [14],
with the main difference that here are computed the DTW
distances between the time window of the desired flight
and each time window of the other flights for a given time
interval. After a manual analysis of the results, a label is
automatically assigned to each time window-based on several
DTW distance thresholds.

Another point to consider is that larger time windows can
help the model achieve higher accuracy, but requires much
more computation power. A smaller time window allows for
quicker computation of DTW distances. For those reasons,
and based on the length of our scenario, a window size of
10 seconds has been chosen.

To provide a better and clearer understanding of the
manual analysis of the results, three random flights has been
selected for the visualization of the UAVs behavior using
DTW values. Figure 5 is a 2D representation of the z axis
position (in meters) of each flight (shown as red, green and
purple), along with the best desired flight (shown in blue),
over time (in seconds) for time interval [10, 20]. We see
that flight 3 is close to the desired flight with some small
differences. Flight 1 and 2 are similar with each other, but
are very different from the desired one.

After computing the DTW values between each flight and
the desired flight, we have the following distances for this
example: Flight 1: 281, flight 2: 316, flight 3: 26. Those
values confirm the similarities observed previously.

Figure 6 presents the distribution of the DTW values for
all flights for only one time window [10, 20]. We can observe
that most flights do have a DTW distance between 150 and
350. As a starting point, we chose to classify all flight with
DTW value between 0 and 99 as “Good”, meaning that no
degradation is identified. Flights with DTW values between
100 and 299 are assigned the label “Bad”, which could
describe a possible defect on the UAVs propellers. Finally,
all flights with a DTW value higher than 300 are labelled
as “Worst”. This last label warns that the propellers of the
UAV is probably damaged and could lead to a crash.

C. Classification
After, the data is split into multiple time windows, and

labelled, as described in section 3, then it is given to the



Fig. 5: 2D representation of z axis position for time interval
[10, 20].

(a) DTW value between first show and each other show.

(b) Distribution of experiments grouped by DTW value.

Fig. 6: DTW values representation.

classification algorithm for training. While in real time
mode, the model collects the streamed data for the current
time window. Once the time interval limit is reached, the
unlabeled time window is given to the classifier, which
computes the DTW distances between this input and all
other time windows of every other flight, from the training
dataset, for this current time interval. The classifier finds

(a) Model comparison for position x.

(b) Model comparison for position y.

(c) Model comparison for position z.

Fig. 7: Model comparison for different k values.

the kth nearest time windows for the current interval and
predicts a label that corresponds to the estimated level of
damage of the UAV.

To evaluate the model, we first randomly split the entire
dataset into 90% training and 10% testing. The training
dataset is then divided again such that 70% is used for
training and the remaining 30% for validation. The training
and validation datasets are used to find the best parameters



and tune the performance of the model. At the end, the final
model is fitted on the entire 90% training dataset and the
10% testing dataset is used to measure the actual accuracy
of the model.

To measure the accuracy, we first compute a confusion ma-
trix. The accuracy is calculated as follows: (TP+TN)/(P+
N), where TP is all true positives, TN all true negatives,
P all positives and N all negatives.

Fig. 8: Model comparison for position z with dif-
ferent w values.

In order to find the best model, we have to find the best
k and the best warping window size w. In our previous
evaluation [14], it had been shown that a warping window
size between 200 and 300 yields the best results. Therefore,
we start by running the algorithm for different ks (1, 2, 3, 4
and 5) and a warping window w of 250. Figure 7 represents
the accuracy results for positions x, y and z. The plots show
that the algorithm achieves its best accuracy of 93%, when
k is equal to 3, for a warping window of 250 for the z-axis
position.

The next step is to use the best k and run the algorithm
for different warping window sizes. Figure 8 presents the
results of 6 new models that have been trained and tested
for different ws of 100, 250, 400, 550, 700, 850, and k = 3.
It is obvious that the algorithm has its best performance when
the warping window size is 250.
Finally, when the optimal parameters have been found, the
classifier, fitted with 90% training data, is being tested and
evaluated against the 10% test data.

TABLE I: The final results for each parameter and position.

Feature Accuracy k Max Warping Window Comp. Time
X 92.5% 2 250 ≈ 6 sec
Y 88.5% 3 250 ≈ 6 sec
Z 90.6% 3 250 ≈ 6 sec

Table I presents the final results of the classifier’s perfor-
mance for each position x, y, z. The trained model achieves
an accuracy of 92, 5% for position x, 88, 5% for position
y and 90.6% for position z with the computational time
of around 6 seconds for each 10 second long sliding time

window. In addition, the computation of each DTW distance
for each time window can be easily parallelized, because
each time window is relatively small and multiple windows
can easily be loaded into memory.

Looking at the table II, which represents the results of
the previous work, it is obviously seen that using a sliding
window approach not only improved the accuracy, but also
reduced the reduced the wait time to get the first prediction.

TABLE II: The final results on the test data for each
position [14].

Feature Accuracy k Max Warping Window Comp. Time
X 90.7% 2 200 ≈ 45 sec
Y 85.7% 3 200 ≈ 45 sec
Z 88.6% 3 200 ≈ 45 sec

All presented results have been obtained by the proof of
concept. The results prove that the kNN along with DTW
not only can be used for offline time series classifications,
but also can successfully classify streams of time series in
a real time.

VI. CONCLUSION AND FUTURE WORK

The main focus of this paper was to analyze a stream of
flight data from a UAV following a pre-defined mission and
predict the level of degradation of a body part, in this case of
propellers, in real time. To achieve this goal, we have used
k Nearest Neighbor as classification algorithm, along with
Dynamic Time Warping as a distance measure for computing
the similarity between two chunks of flights.

It is important to note that the presented results are
improved than the ones in our previous work [14] and
thus, demonstrates that the online mode using a sliding
time window approach performs better, and speeds up the
computation time. The reason is due to the fact that a single
flight has been split into chunks, and each chunk has been
individually labelled. This leads to an improved and more
fine-grained definition of the level of degradation at the
different stages of the mission. Essentially, instead of having
one label, describing the entire flight, we have several labels,
each describing a portion of the flight.

The advantage of this approach is that it can be applied
to other experimental setups and can be used to estimate
degradations, not only of propellers, but for any other body
parts. Ideally, the flight data used for the prediction should
be the one generated by the UAVs internal GPS sensors.
Additionally, a model should only be trained for one type of
degradation. In general, machine learning algorithm require
a substantial amount of computing power. Running such al-
gorithm onboard the UAV is feasible, but such computations
do drain the battery much faster, effectively reducing the
drone’s time to complete its mission. It is preferred to run
the algorithm in the cloud and stream the flight data directly
to the server.

Another possible extension for the current approach is to
reduce the high computational cost of DTW distances using a



lower-bounding measure [24][25], which can reduce the cost
of many tasks that rely on DTW. A lightweight algorithm
would open the possibility of running the classifier directly
on the drone without requiring a cloud solution.

A natural extension of this work consists in applying an
unsupervised approach. This means that the degradations
should be detected, without having prior knowledge of the
possible problems. Such technique might discover many
more degradations or anomalies than a supervised model.
The proposed technique can be tailored for different scenar-
ios and data.

As a future work, for the identification of degradation of
an aircraft, the data collected by the internal GPS sensors of
UAV will be used. This will give an advantage to run such
technique on the aircrafts that perform outdoor missions.
One usecase consists of monitoring a swarm of robots and
detecting if there are any abnormal behaviors or if the
formation has been broken.
It is also worth to mention that such solutions can be
integrated into continuing airworthiness processes [26] of the
aircrafts and system/component reliability and availability.

To conclude, it has been shown that the level of degrada-
tion of a UAV can be predicted in an online mode, based on
the analysis of flight coordinates. Both, autonomous robots
and machine learning, are relatively new research areas and
there are still many challenges ahead, especially in terms of
high-performance online data mining and live identification
of degradations and anomalies. Additionally, UAVs and other
autonomous robots, have many more sensors that generate a
huge amount of data. This data can be used and processed
in many different and creative ways in order to discover new
insight during autonomous or pre-defined tasks and allow for
smarter and more advanced usage of robotic applications.

REFERENCES

[1] Kataria, Aman, and M. D. Singh. ”A Review of Data Classifica-
tion Using K-Nearest Neighbour Algorithm.” International Journal of
Emerging Technology and Advanced Engineering 3.6 (2013): 354-360.

[2] Lin Raz, Eliyahu Khalastchi, and Gal Kaminka. ”Detecting anomalies
in unmanned vehicles using the mahalanobis distance.” Robotics and
Automation (ICRA), 2010 IEEE International Conference on.

[3] Stavrou, Demetris, et al. ”Fault detection for service mobile robots
using model-based method.” Autonomous Robots 40.2 (2016): 383-
394.

[4] Plagemann, Christian, Cyrill Stachniss, and Wolfram Burgard. ”Ef-
ficient failure detection for mobile robots using mixed-abstraction
particle filters.” European Robotics Symposium 2006. Springer Berlin
Heidelberg, 2006.

[5] Larrauri, Juan I., Gorka Sorrosal, and Mikel Gonzlez. ”Automatic
system for overhead power line inspection using an Unmanned Aerial
VehicleRELIFO project.” Unmanned Aircraft Systems (ICUAS), 2013
International Conference on. IEEE, 2013.

[6] Brotherton, Tom, and Ryan Mackey. ”Anomaly detector fusion pro-
cessing for advanced military aircraft.” Aerospace Conference, 2001,
IEEE Proceedings. Vol. 6. IEEE, 2001.

[7] Afridi, M. Jamal, Ahsan Javed Awan, and Javaid Iqbal. ”AWG-
Detector: A machine learning tool for the accurate detection of
Anomalies due to Wind Gusts (AWG) in the adaptive Altitude control
unit of an Aerosonde unmanned Aerial Vehicle.” Intelligent Systems
Design and Applications (ISDA), 2010 10th International Conference
on. IEEE, 2010.

[8] Khalastchi, Eliahu, et al. ”Online anomaly detection in unmanned
vehicles.” The 10th International Conference on Autonomous Agents
and Multiagent Systems-Volume 1. International Foundation for Au-
tonomous Agents and Multiagent Systems, 2011.

[9] Laurikkala, Jorma, et al. ”Informal identification of outliers in medical
data.” Fifth International Workshop on Intelligent Data Analysis in
Medicine and Pharmacology. Vol. 1. 2000.

[10] Pokrajac, Dragoljub, Aleksandar Lazarevic, and Longin Jan Latecki.
”Incremental local outlier detection for data streams.” Computational
Intelligence and Data Mining, 2007. CIDM 2007. IEEE Symposium
on. IEEE, 2007.

[11] Laxhammar, Rikard, and Gran Falkman. ”Online learning and sequen-
tial anomaly detection in trajectories.” IEEE transactions on pattern
analysis and machine intelligence 36.6 (2014): 1158-1173.

[12] Ahmad, Subutai, and Scott Purdy. ”Real-Time Anomaly Detection for
Streaming Analytics.” arXiv preprint arXiv:1607.02480 (2016).

[13] Lee, Yen-Hsien, et al. ”Nearest-neighbor-based approach to time-series
classification.” Decision Support Systems 53.1 (2012): 207-217.

[14] Manukyan, Anush, et al. ”UAV degradation identification for pilot
notification using machine learning techniques.” Emerging Technolo-
gies and Factory Automation (ETFA), 2016 IEEE 21st International
Conference on. IEEE, 2016.

[15] Chaovalitwongse, Wanpracha Art, Ya-Ju Fan, and Rajesh C. Sachdeo.
”On the time series k-nearest neighbor classification of abnormal brain
activity.” IEEE Transactions on Systems, Man, and Cybernetics-Part
A: Systems and Humans 37.6 (2007): 1005-1016.

[16] Suguna, N., and K. Thanushkodi. ”An improved K-nearest neighbor
classification using Genetic Algorithm.” International Journal of Com-
puter Science Issues 7.2 (2010): 18-21.

[17] Park, Youngser, Carey E. Priebe, and Abdou Youssef. ”Anomaly
detection in time series of graphs using fusion of graph invariants.”
IEEE journal of selected topics in signal processing 7.1 (2013): 67-75.

[18] Abid, Anam, Muhammad Tahir Khan, and C. W. de Silva. ”Fault
detection in mobile robots using sensor fusion.”Computer Science &
Education (ICCSE), 2015 10th International Conference on. IEEE,
2015.

[19] Duan, Zhuohua, Hui Ma, and Liang Yang. ”Fault detection for internal
sensors of mobile robots based on support vector data description.”
Control and Decision Conference (CCDC), 2015 27th Chinese. IEEE,
2015.

[20] Arrichiello, Filippo, Alessandro Marino, and Francesco Pierri. ”A de-
centralized fault detection and isolation strategy for networked robots.”
Advanced Robotics (ICAR), 2013 16th International Conference on.
IEEE, 2013.

[21] Wu, Xindong, et al. ”Top 10 algorithms in data mining.” Knowledge
and Information Systems 14.1 (2008): 1-37.

[22] iRobot Roomba
https://www.irobot.com/For-the-Home/Vacuuming/
Roomba.aspx

[23] Video of the UAV Good and Worst flight
https://www.dropbox.com/s/tfc6jjvrzqy5l2d/UAV_
Good_Worst_Flight.mp4?dl=0

[24] Yang, Peng, et al. ”A tighter lower bound estimate for dynamic time
warping.” Acoustics, Speech and Signal Processing (ICASSP), 2013
IEEE International Conference on. IEEE, 2013. APA

[25] Rakthanmanon, Thanawin, et al. ”Searching and mining trillions of
time series subsequences under dynamic time warping.” Proceedings
of the 18th ACM SIGKDD international conference on Knowledge
discovery and data mining. ACM, 2012.

[26] Correia, Vitor Monteiro. ”The Aircraft Maintenance Program and its
importance on Continuing Airworthiness Management.”

https://www.irobot.com/For-the-Home/Vacuuming/Roomba.aspx
https://www.irobot.com/For-the-Home/Vacuuming/Roomba.aspx
https://www.dropbox.com/s/tfc6jjvrzqy5l2d/UAV_Good_Worst_Flight.mp4?dl=0
https://www.dropbox.com/s/tfc6jjvrzqy5l2d/UAV_Good_Worst_Flight.mp4?dl=0

	INTRODUCTION
	RELATED WORK
	SLIDING TIME WINDOW DEGRADATION IDENTIFICATION APPROACH
	Sliding Time Window-Based Model
	Real Time Prediction Using Sliding Time Window
	Real Time Degradation Identification Process

	EXPERIMENTAL SETUP
	EVALUATIONS AND RESULTS
	Data
	Labelling
	Classification

	CONCLUSION AND FUTURE WORK
	References

