
UAV degradation identification for pilot
notification using machine learning techniques

Anush Manukyan†∗, Miguel A. Olivares-Mendez∗, Tegawendé F. Bissyandé∗, Holger Voos∗, Yves Le Traon∗

∗ University of Luxembourg, Luxembourg
forename.lastname@uni.lu

† forename.lastname.001@student.uni.lu

Abstract—Unmanned Aerial Vehicles are currently investigated
as an important sub-domain of robotics, a fast growing and truly
multidisciplinary research field. UAVs are increasingly deployed
in real-world settings for missions in dangerous environments
or in environments which are challenging to access. Combined
with autonomous flying capabilities, many new possibilities, but
also challenges, open up. To overcome the challenge of early
identification of degradation, machine learning based on flight
features is a promising direction. Existing approaches build
classifiers that consider their features to be correlated. This
prevents a fine-grained detection of degradation for the different
hardware components. This work presents an approach where
the data is considered uncorrelated and, using machine learning
techniques, allows the precise identification of UAV’s damages.

I. INTRODUCTION

Robotics is a fast growing and truly multidisciplinary
research field. It is at the crossing of the latest technologies
in the areas of mechanical engineering, electrical engineering,
as well as computer science.
There exist many types of robots, such as humanoid robots,
robotic arms or unmanned vehicles, to name a few. Each
brings its own set of unique challenges and constraints.
The purpose of Unmanned Vehicles, in particular Unmanned
Aerial Vehicles (UAV), is to be deployed in dangerous
environments and perform specific tasks or missions that
are highly dangerous and life-threatening for humans. Such
critical missions include, but are not limited to, defusing
bombs, find survivors in ruins and exploring unstable mines
and shipwrecks [1], [16].
UAVs can be remote controlled or autonomous (meaning
that no human interaction is required). Flying autonomously
brings up many new challenges and obstacles, because the
UAV operates in an open space, which is typically unknown.
Thus, the UAV would need to learn about the environment
or have somehow outside help in order to avoid collisions
during autonomous navigation, take-off and landing [2], [11],
[17].
By letting the UAV gain awareness about its status and overall
health of its different body parts (propeller, battery, protection
hull, sensors, . . .), it can identify and understand failures and
thus, make better decisions for a particular mission.
One of the best ways to solve these issues is to predict
the UAV’s behaviour based on the flight data, gathered by
on board or external sensors, and use those predictions as

notifications.
This work proposes an approach for UAV’s hardware
damage identification based on well-known machine learning
techniques. At the core, the idea consists of analysing
deviations between the UAV’s actual flight data and its
desired flight path and identify whether or not a degradation
or damage is affecting the drone’s performance.
The proposed machine learning approach uses k Nearest
Neighbour (kNN) algorithm along with Dynamic Time
Warping (DTW). The choice of kNN is motivated by the fact
that it is simple to implement, achieves great performance
and is flexible enough to support different types of data
and distance measure functions. In this case, the data is
flight paths, which are a time series of sensor values and
coordinates. Therefore, DTW is a great choice, since it can
compute the difference between two time series of different
lengths. Besides, most existing approaches focus on correlated
data [1], [2], but here, the individual features, such as latitude,
longitude and altitude, are handled as uncorrelated. This has
the advantage of allowing to detect the exact source of the
failure or degradations.
To prove the viability of our approach, extensive experiments
have been performed using a commercial UAV in order to
test and measure the consequences of damaging propellers.

The paper is organised as follows: Section 2 covers the state-
of-the-art research. Section 3 presents the core approach and
describes the general model, based on machine learning best-
practices, along with how the degradation identification pro-
cess is designed. Then, Section 4 showcases the experimental
setup with the different types of experiments, covers the obser-
vations and finally presents all the results and performances of
the algorithm. At last, section 5 concludes the work achieved
and describes the potential future directions.

II. RELATED WORK

Anomaly detection of UVs recently became a major trend
and investigation topic for researchers. This chapter presents
the review of the current state of the art focuses on the work
and the research that have been done on the area of anomaly
detection of UVs and pattern recognition in time series using
machine learning techniques.978-1-5090-1314-2/16$31.00 c© 2016 IEEE

A. Anomaly detection in Unmanned Vehicles

Raz Lin et al. [1] presented a novel approach for detecting
anomalies in unmanned autonomous vehicles, based on their
internal and external sensor readings using the Mahalanobis
distance[13]. First is the pre-processing phase, they search
for dependencies, between different internal sensors on the
vehicles. It uses an efficient search method to identify sub-
groups of variables that are statistically dependent [1]. Thus,
they find several distinct groups of variables, each of much
smaller dimension than the initial set. Then, they identify
abnormal values in each of the smaller-dimensional groups of
variables using Mahalanobis distance [1]. Khalastchi et al. [15]
presented another approach, which is the improvement of their
previous technique [1]. In this work they present an online
data-driven anomaly detection approach, based on sliding
window technique, which allows mining frequent patterns
over data streams. First, they filter the input to reduce noise,
after they split the data into sets of correlated attributes to
reduce the dimension of a data. And finally, they calculate
the Mahalanobis distance for each set in order to return the
degree of difference between sets of data being an outlier
and by beforehand-defined threshold they declare anomalies.
Das et al. [2] have pursued another research direction about
anomaly detection in flight recorder data, based on dynamic
data-driven approach. They offer a novel approach, standing
on a feature extraction technique, called symbolic dynamic
filtering, which extends the iOrca algorithm [2], making its
performance faster and computationally less expensive. They
divide time-series data into general symbol sequences, and
build probabilistic finite state automata for using as features
for pattern classification. They use this approach for anomaly
detection and behaviour identification of mobile robots.

B. Machine learning approaches for classification of Time
Series

As the data provided from UAVs are continuous time series
data, we overview previous work that have been done on
identifying and determining abnormal patterns in time series
using machine learning approaches.
Spiegel et al. [4] worked on Pattern Recognition and
Classification for Multivariate Time Series. Their approach
starts by splitting a time series into segments, and then
clustering the recognized segments into groups with similar
contexts [4]. Lin et al. introduce a novel approach of symbolic
representation of time series, that is suitable for streaming
algorithms [3]. They propose an algorithm for dimensional
and numerosity reduction of time series. Their approach is
called Symbolic Aggregate ApproXimation (SAX). On the
first step of the algorithm the data is transformed into the
Piecewise Aggregate Approximation (PAA) representation and
then symbolized into a discrete string. Basically, dimensional
reduction, via PAA, reduces time series of n dimensions into
w dimensions, (n¿w), by dividing the data into w equal sized
frames. The calculated mean value of the data falling within
a frame, where data-reduced representation is the vector of
these values. At the last step, they use a distance measure

function which is based on Euclidean distance and gives the
minimum distance between the original time series of two
words. Recently Li et al.[5] suggested a novel approach that
uses n-gram language modelling techniques [5]. The proposed
method, called Domain Series Corpus (DSCo), is based on
previous work that has been mentioned in the state of the
art [3]. It works by first building pre-class language models
and then uses those models for segmenting the time series
samples. Essentially, the algorithm classifier a time series by
looking at what language model it belongs the most.

After investigation of existing research and work, it is
clear that many different approaches and solutions have been
proposed. However, most of them were focused on anomaly
detection of autonomous robots where the altitude, longi-
tude and latitude are correlated, which means that they can
successfully identify anomalies, but do not detect the exact
source of the failure. Thus, this work considers that the
altitude, longitude and latitude are not correlated. This has the
advantage of allowing to isolate each feature and to pinpoint
the exact issue.

III. APPROACH

This section presents a new approach for identification of
degradations.

A. Model

A typical scenario consists of a mission given to a drone,
which is a pre-determined path, that the UAV follows au-
tonomously in an arbitrary environment. During this mission,
flight data is being recorded by internal and/or external sensors
or other movement tracking systems. The captured data is in
a raw format and, thus, must be pre-processed by performing
various feature extraction techniques, such as reducing the
dimension in order to facilitate the next computational steps
in the model. After those first steps, the processed data should
be stored in a convenient file format or database in order to
easily perform further analysis.

Raw Data

As previously stated, UAVs have on-board sensors or exter-
nal ones that are being employed for tracking and that record
all kinds of data. Usually, this data is in raw format since it
is unprocessed. Also, the recorded features or attributes are
programmatically or manually defined beforehand.

Feature Extraction

Following general machine learning techniques, the gath-
ered raw data should go through a feature extraction phase,
also called pre-processing. In case of UAVs, a typical batch
of data consists of several flights and each flight contains at
least timestamped coordinates and other sensor specific data,
such as battery level, speed, or even temperature. The raw
data can contain a lot of data points, especially if they have
been recorded via an external, high performance, sensor. Thus,
dimensionality reduction techniques can be applied without

any loss of quality or detail. Additionally, certain attributes,
such as speed and heat, can be removed altogether, effectively
focusing on location based data and reducing the size of the
data in storage.

Fig. 1. General flow of the degradation identification process.

General Inputs

After the feature extraction is done, the next step consists
of actually using the gathered knowledge for training the
algorithm. It is crucial that when new test data is being
collected, it must first go trough the exact same feature
extraction process, which has been previously used for training
the model, and then into the degradation identification process.
Otherwise, many errors and inconsistencies can occur due to
feature or format differences. The machine learning algorithm
used in this approach, has to be trained once and then can
predict the label of each incoming test objects. However, it
is preferred to continuously try to improve the algorithm by
extending or refining the training set or algorithm parameters
as more data is collected over time.

Learning Model

The initial set of raw data needs to be labelled in order
to train the machine learning algorithm. This is called model
learning. In this case, a supervised learning approach is taken.
In other words, the original data samples, representing each
UAV flight sessions, are being labelled manually.

Degradation Identification

The last step comprises the identification of degradations
of new UAV’s flight data. This data is also referred to as the
input test set. The goal is to yield an estimation about how
good or bad a flight is, based on the learned knowledge from
the training set. And in case of a bad flight, the cause, such as
defect in the motors or a broken battery should be identified.

Outputs and Results

The final returned result presents information about the level
of anomalous behaviour and points out the exact source of the
issue.

B. Degradation Identification Process

The main objective of the degradation identification
process is to categorize the output based on the learned
samples. In short, it is a classification job. Thus, the model
learning procedure can be supervised, unsupervised or
semi-supervised. For solving the particular task presented in
this work can be applied any of those three types of learning
approaches. However, the later showcased proof of concept

uses a supervised learning technique. The main task of this
type of learning is to map a category to an observed input
[6].

There exist many different machine learning algorithms,
but the focus is on classification methods for time series. Still,
many options are available such as k Nearest Neighbour [7],
Support Vector Machines [8], Single Value Decomposition
[10], Symbolic Aggregate approximation [2], and many more,
for this purpose.

In this work, k Nearest Neighbour (kNN) classification has
been chosen, due to its known simplicity, intuitiveness and
ability to produce high performance results. Besides, kNN
can handle time series effectively and can be easily extended
to support other distance measures as it will be presented
later in this section.
kNN, after being trained with labelled time series data, takes
unlabelled time series as an input, along with a value for how
many nearest neighbours will be retained and a function to
compute the distance measure between pairs of objects. As a
result, the algorithm finds the closest candidates relative to
the training dataset and assigns the most frequent label to the
given input test data.
Regarding the distance measure of the kNN classifier, it is
required to have a function able to compare two time series of
different sizes or lengths. Thus, the Dynamic Time Warping
(DTW) has been selected, because of its specific feature of
being insensitive to the difference of length of two time series
when computing the distance between them. DTW basically
finds the distance between two data sets by calculating the
possible alignment warp, also called warping path, using a
dynamic programming approach and selecting the one having
the minimum value.

DTW has the disadvantage of not being very efficient when
working with large data sets as it is computationally intensive.
Fortunately, the algorithm can be improved by making use
of a smaller warping window, effectively speeding up the
algorithm by reducing the number of computations.

In the state of the art, it has been shown that most existing
works have been focusing on correlated data. On opposite,
the approach presented in this paper focuses on uncorrelated
data, in order to achieve more detailed and isolated analyses.
This means that x, y and z, respectively, latitude, longitude
and altitude are studied individually.

IV. ASSESSMENT

This section presents in great detail each step of the
experiments. The entire process from the initial experiment
setup and data gathering phase to the final model training and
performance evaluation.

A. Experimental Setup
The Automation and Robotics Research Group of the

University of Luxembourg was having a dedicated space

at the Mudam museum in Luxembourg City, where they
demonstrated via a show the possible collaboration of
different kinds of robots, such as a humanoid robot and a
drone. Since, it was running in a closed and relatively small
environment, safety nets surrounded the scene to avoid the
drone from flying into the public. In addition, a large table
(2.5 x 2.5m) was used as a scene for the robots and a motion
tracking system (OptiTrack) has been installed. Figure 5.1
showcases the entire setup as seen by the public.
For all shows, and thus, all our experiments, the commercially
available AR.Drone [9] has been used. This UAV was modified
by gluing 6 small motion capture markers on it, which allows
OptiTrack [12] to follow the moving object and record every
coordinate. Figure 5.2 shows the AR.Drone with the markers
installed.
The public show or exhibition was about a humanoid robot
communicating with the drone and interacting with the public.
The complete scenario takes about 12 minutes and for the
entire duration, the robots were performing autonomously.
Since, this paper focuses on the drone data, the scenes
related to the humanoid robot were fully omitted from the
context. This made experiments faster, effectively reducing
the duration to 1 minute and 40 seconds. In addition, this had
the effect of skipping the parts where the drone waits on the
table for several minutes without flying.

The entire show consists of four short parts. Each part starts
with a take-off and ends with a landing. For simplicity, we
refer to one each show or run as one flight. Here are the
different parts:

Fig. 2. The setup at the musem
as seen from the public

Fig. 3. AR.Drone with the
markers installed

• Part 1: The drone takes off from the table and flies
upwards before hovering a few seconds. Then it goes
back downward and lands on it’s initial position.

• Part 2: The drone takes off from the table and flies
upwards. Then, it flies to the right in an aggressive
fashion and goes back to the left more gently. Finally, it
goes downward and lands also on it’s initial position.

• Part 3: The drone takes off from the table and flies
upwards. Here, it starts flying to the right and makes a
semi circle. At the end, it goes downward and lands on
the table at a different location.

• Part 4: The drone takes off from the table and flies
upwards. It performs a complete circular flight over the
table and finished by landing on his initial position.

It is implemented into the show’s computer, which controls
the drone, that no exact speed parameter is given to the drone.
Instead, a time duration is given for each step. Thus, when
the drone is instructed to fly to a certain coordinate in a
certain time, the controller computes the manoeuvre and speed
required.

B. Experiments

Since, the focus of this work is towards identification of
degradations, the goal of the experiments are to find out how
the AR.Drone behaves with different kind of damage. The
idea is to introduce damage on one part at a time in order to
destabilize the drone.

Using the environment at the museum, several experiments
have been setup and each one has been performed multiple
times in order to record enough data to build the training,
validation and test data needed for the proof of concept.
Bellow is presented the various experiments performed, along
with some descriptions of what has been observed for each
case.

We have chosen to mainly play with the different levels
of damage on propellers, but the upcoming analysis and the
approach, presented here, can also be adapted for motors,
battery and their associated time series.

Fig. 4. New propellers Fig. 5. Slightly damaged
left propeller

The 1st stage of the experiments used four completely new
factory propellers as shown on figure 4. As expected, the drone
had a smooth and stable flight and followed the scenario’s
path very closely. Thus, this flight has been considered as the
desired and best one. This information is important, because
it will be used later for correctly labelling the initial data.
The 2nd step consisted of slightly damaging the left propeller
on the back side, by scraping away a small amount of plastic
as seen on figure 5. The change resulted in a small decrease
in the flight quality. A noticeable degradation was the fact that
the UAV did not fly up smoothly all the time and had a very
small loss of speed.

Fig. 6. Front-left damaged
propeller

Fig. 7. Scarped front-right
propeller

For the 3rd experiment, the left propeller on the front side
has been damaged in a similar way as the one on the left back
side. Surprisingly, this did not make much of a difference,
except that landing position was not equal to the take off
position by a few centimetres. Figure 6 shows the damaged
propeller.
Then, for the 4th experiment, the right propeller on the front
side has been scarped on both sides of the blade, as shown on
figure 7. Again, the resulting behaviour was quite similar to the
previous experiments, but there were a little more instabilities
and, thus, more corrections are done by the drone’s controller.

Fig. 8. Front-right pro-
peller cut at the edge

Fig. 9. Front-right bended
propeller

The last three experiments did not affect to UAV’s flight
significantly. As a result, it became obvious that if a propeller
loses some small part of plastic, it can still fly smoothly.
Therefore, for the 5th experiment, the decision was made to
cut and bend the propeller which would soften the plastic and
lead to increasing degradations in the flight. Figure 8 presents
the front right propeller, which is cut at the edge and bended
on the middle.
It turns out that bending propellers does, indeed, create many
disturbances. Already during the take off, the UAV didn’t fly
straight up but went off course and flew over the table’s border.
At the end, it also landed, quite brutally, many centimetres
farer away from the desired landing position.
The reason for this sudden worsening is that scarped or slightly
cut propellers does not create enough disturbances. Thus,
the drone’s controller is able to self-balance and counteract
the issue easily. Only a slight decrease in acceleration and

smoothness is felt. However, the act of bending propellers
completely changes the natural movement and interaction with
the air while rotating. Therefore, the controller gets confused,
since it is not programmed to handle such a level of damage.
For the 6th experiment, the right propeller in the front has
been bended, which had been already damaged a first time
during the third experiment. Figure 9 shows the damage done.
With two bend propellers and two other slightly scraped,
the controller’s job was getting even harder. Within the first
seconds of flight, the degradations were clearly visible. The
most significant bad behaviour was that the UAV started to
whisk horizontally, as it was struggling to keep hovering in
one place and need to constantly make small, but strong
corrections.

Fig. 10. Cut propeller Fig. 11. Cut and bended
propeller

Since the attempt to degrade the flying capabilities of
the drone was looking successful by bending propellers, the
7th experiment consisted of cutting a bigger chunk off the
propeller as shown on figure 10. If the drone behaves with
the same level of instability it did during the fifth experiment,
then it validates the fact that cutting does not influence the
drone much, at least less than bending.
Last but not least, for the 8th experiment, an even bigger
piece of the propeller has been cut and multiple bends has
been added as it can be seen on figure 11. The resulting
show was, by far, the worst one. Clearly, the UAV had a
lot of trouble taking off and following the desired path. At
many occasions, it was sliding off course, sometimes even
for one to two full seconds, effectively crashing into the
safety nets and never being precisely where it should be.
It constantly lost altitude, forcing the controller to adjust
aggressively. While landing, the drone could not stabilize and
was rotating to the right. This was most probably due one
propeller producing less power and thus naturally pushing the
drone in one direction. At last, it has been previously stated
that all experiments were run multiple times.

To conclude the experiments, it has been observed and
recorded what the different kinds of damages, or degradations,
affects the drone’s flying capabilities. Next step is to gather
raw data and evaluate it using the presented approach.

C. Evaluation and Results

Before the experiments can be evaluated and the results
interpreted, the collected data samples’ structure needs to be
first understood in order to effectively build a pre-processing
phase. Note that all further analysis has been performed
using offline techniques. Once processed, the initial labelling
method of the data will be presented, which will lead to the
actual implementation of the kNN classifier with DTW.

A total of 60 experiments has been performed, resulting in
60 rosbags files, which were later split into 120 CSV files (1
GB), because AR.Drone and OptiTrack message data were
contained in the same Bag file. This leads us to the actual
content of the CSV files, before any pre-processing.
On one hand, one message, generated from the AR.Drone,
is referred as ”navdata” and contains about 36 different
attributes about the current status of the drone at any time.
On the other hand, the message data, recorded from OptiTrack,
contains only position and orientation information about the
tracked rigid bodies, in this case the AR.Drone only. About
10 different attributes are saved.

For this work, the OptiTrack data is the most interesting
and useful, since it describes the position and orientation of
the drone at a rate of 240 recordings per seconds. This high
rate is needed for the system to control the show in real-time.
However, for analytical and data mining purposes, it generates
more data than is actually needed. Additionally, only the
position and timestamp will be kept for the degradation
identification process.
Therefore, pre-processing techniques are applied to reduce
and clean the data in a first place. Here, reduction consists of
diminishing the number of recordings per seconds and still
keep the same quality. This has been done by simply removing
duplicate coordinates for each timestamp. Two values were
considered the same if there is not more difference than 0.01,
which is equivalent to 1 centimetre.
Furthermore, through cleaning, the unused attributes are
being purged, effectively keeping only header stamp secs,
pose position x, pose position y, pose position z attributes.

For the proof of concept, a web service has been
implemented in order to perform the pre-processing steps
presented above. The web service is developed using Spring
Boot, a Java web framework. It provides a user interface that
allows the upload of CSV files. The service then processes it
directly and saves the result as a new CSV file on the server.
Generally, for this case, each CSV has been reduced by 80%
in size.

As an alternative, the web service can also be used as an
API, which allows to build simple automation scripts that, for
instance, upload multiple CSV files. It has also the advantage
of being the first step toward building an online detection tool
and can be extended easily to support more functionalities.

Once the pre-processing is achieved, the next step is to build
training data. As stated in section 3, the presented approach
uses a supervised learning technique, which requires manual
labelling of the training samples.

In section 4.1, it was described that the first experiment,
with all four new propellers in perfect conditions, has been
considered as the best flight. Thus, the recorded path of this
flight will be the desired path and the main reference point
for evaluating the quality of the other flights. Since, the
classification algorithm used for this work uses DTW as a
distance measure, it is safe to assume that using DTW to label
all samples is a reliable approach. Essentially, the distance
between the best flight and each other flight is computed
and ordered by increasing value. So, the first element is the
second best flight and the last flight is the worst, compared to
the desired one. This ordered list can then be split into three
parts, one for each of the following class labels: ”Good”,
”Bad”, ”Worst”.

The result of computing the DTW of the 51 full flights
resulted in some interesting insight. The second best flight,
which is the first element in the list, has a DTW value of 60.
On the contrary, the last or worst flight has a value of 616.
The average DTW distance is at 208. The data set actually
comprises many average (bad) flight and only a few good
and worst ones. This is not an optimal data set. The best is
to have completely uniformly distributed samples.

Figure 12 shows the graphical representation of the DTW
values (x-axis), relative to the best flight, of all 51 flights (y-
axis), ordered in from smallest to biggest difference. Figure 13
presents the distribution of the experiments grouped by their
DTW value. It is obvious form that graph that most flights are
average, with DTW values between 150 and 180.

Fig. 12. DTW value between first
show and each other show.

Fig. 13. Distribution of experi-
ments grouped by DTW value.

Based on those values and on the observed drone behaviour
during the experiments, we have chosen to assign a range of
DTW values to a specific class label as shown on table I:

TABLE I
DTW VALUE LIMIT FOR EACH LABEL.

Min DTW Max DTW Class Label Flight quantity
0 150 Good 19

150 350 Bad 25
350 ∞ Worst 7

Looking at how the table showing that most flights are
being labelled as ”Bad”, highlights the fact that for half of
the experiments, the UAV’s on-board controller could adapt to
the degradations and keep flying. However, once the damage
reached a more critical level, the DTW values also increases
more dramatically.

D. Classification

With the labelled data built and ready to use, the
classification process can be performed. In this work and
proof of concept, the classifier used is k Nearest Neighbour
with Dynamic Time Warping as a distance measure, as it
was previously stated. The goal of this classification is to
predict the level of damage of propeller of new flight paths.
The classifier will take the unlabelled input flight and return
the label associated to the closest flight that has been learned
during training.

The first step, as for most machine learning algorithm, is to
select the model and then evaluate its performance. Model
selection consists of choosing the best values for all free
variables in the algorithm, which are in this case the number of
neighbours, k, and the size of the warping window, w. Multiple
models are created and their performances are measured based
on their accuracy. As a reminder, accuracy is the ratio of
correct predictions.
To achieve this, the initial and complete data set was randomly
split into two disjoint subsets: 90% has been used for training
and 10% for testing. Then, the training data has been again
randomly divided into two subsets: 70% has been used for
the actual training and the remaining 30% for validation. In
essence, the training set is used for finding the best parameters
for the model and the validation set is used to tune those
parameters. At last, using the best value for the model’s
parameters, the entire training data is used to train the classifier
and the performance of the algorithm is estimated on the test
data.

Fig. 14. Model comparison for
position z.

Fig. 15. Model comparison.

The strategy for finding the best parameters for the proof of
concept has been to first find the best value for k, among the
values 1, 2, 3, 4 and 5, given a very large warping window w of
4000. As was mentioned before, the warping window limits the
number of calculation done. Therefore, a high number makes

sure that nearly no calculations are skipped. However, the
computation takes much more time and is thus only interesting
in this case, for first finding the best k.

Starting with position z, figure 14 shows that the best
value for k is 3, achieving 81% accuracy. For this model, the
warping window has been set to 4000.

With the best k of 3 defined, the next step consists of
tuning, or more precisely, reducing the maximum warping
window value, such that the overall computation is quicker,
for the same result. Thus, 9 new models have been trained
and tested for the following values for w: 100, 150, 180, 200,
250, 300, 350, 500, 1000, 4000. Figure 15 presents the results
of these 9 modes trained with k = 3 value. It is obvious that
when the warping window size is 200 algorithm has the best
performance. However, it is interesting to note that once a
certain value reached, the warping window doesn’t affect the
accuracy anymore. A warping window of 250 yields the same
performance as for 4000, yet needs less than half the time to
be computed. The warping window size of 200 is only chosen
once and is used for all following analysis, because as it will
be presented shortly, it turns out that it achieves similar great
result for position x and y.

Fig. 16. Model comparison for
position x.

Fig. 17. Model comparison for
position y.

Figure 16, shows that for position x, the best value for k,
using a warping window of 200, is 2 and 3. Both models
achieve an impressive 93% accuracy at most and 81% for the
worst case of k equal to 5. Finally, for position y, presented
on figure 17, the result looks more similar too position z.
There, the best value for k is 3 and provides an accuracy
of 86%. The lowest value is 69% for k equals to 4. Recall
that the data is uncorrelated, so it is perfectly normal to have
different best ks for each feature.
At this stage, the optimal parameters have been defined
using the training and validation sets. The final step consists
of training the model using the entire 90% training data
and evaluate it against the remaining 10% of test data,
which will provide the real performance of the model. Table
II summarizes the final results on the test data for each
position x, y and z, with their corresponding parameters.
The proposed model achieves an accuracy between 85%
and 91%. Those results have been produced by the proof
of concept, that implements the presented machine learning

TABLE II
THE FINAL RESULTS ON THE TEST DATA FOR EACH POSITION X, Y, Z.

Feature Accuracy K Max Warping Window
X 0.9075% 2 200
Y 0.8575% 3 200
Z 0.8866% 3 200

algorithms presented here, that is kNN classifier with DTW.
The implementation is written in Python and made available
on GitHub [14]. The choice for Python is motivated by the
numerous libraries available for handling large data sets, such
as numpy. Additionally, the language itself allows for short
yet powerful code. The implementation allows to be installed
locally and be used as a command line tool. In its basic
usage, it takes as input parameters k and w, mentioned above,
along with the training data and the test data, whose labels
will be predicted. Other features are included, such as finding
the best k or w and printing the confusion matrix. Note that,
the Python classes implementing those functionalities, can be
easily ported into a web service, allowing for remote usage
or for running on a more performant server.

As final words about the validation of the models, it has
been proven that well-known algorithms, in this case kNN
and DTW, can be applied on new areas, such as UAV flight
data. Those simple algorithms are relatively straightforward
to implement and yield great results and performance. Thus,
they are good candidates for a first approach to a solution. In
addition, this proposed approach can be further used for any
other kind of time series data, like battery or motor data. The
only important point is that before being able to predict the
new data, the model needs to be optimized and trained for it
as it has been done for the position data with the propeller
related experiments.

V. CONCLUSION AND FUTURE WORK

This paper focused on the issue, that fully autonomous
drones are facing numerous challenges, such as navigation
and environment awareness and need to have the capability to
react to errors, anomalies and damages or degradations over
time. It presented an approach that identifies degradations
of UAVs, using well-proven machine learning techniques on
the flight data. Presented approach is different from existing
solutions in a sense that it handles x, y and z as uncorrelated.
Thus, it is assumed that a degradation of some kind does
not necessary affect all directions or capabilities of the
drone. Which means that it is not only successfully identifies
the anomalies but also pinpoints the exact source of the failure.

The model is based on kNN with DTW as a distance
measure to achieve classification of time series of different
lengths.
Despite the fact that this work is based on offline processing,
an online solution is possible and is a logical extension as
a future work. The idea being that the classification of new
incoming flight data is done during the UAV’s flight. It can be

real-time or work with batches of data points. One approach
consists of using an expanding window, where the data is
buffered as it arrives and the classification is performed
on the entire buffer. This approach is, however, limited by
the total flight time, since the buffer grows as time passes.
Furthermore, as the algorithm runs in short regular intervals,
it slows down as the data sets grows.
Another possible extension is to use other classification
algorithms for handling time series effectively and efficiently.
A recent approach suggests a novel approach that uses n-gram
language modelling techniques [5]. The proposed method,
called Domain Series Corpus (DSCo) [18], is based on
previous work that has been mentioned in the state of the art
[3]. It works by first building pre-class language models and
then uses those models for segmenting the time series samples.

To conclude, it has been shown that the level of degradation
of a UAV can be predicted based on the analysis of flight
coordinates using different approaches.

REFERENCES

[1] Lin Raz, Eliyahu Khalastchi, and Gal Kaminka. ”Detecting anomalies
in unmanned vehicles using the mahalanobis distance.” Robotics and
Automation (ICRA), 2010 IEEE International Conference on.

[2] Das, Santanu, et al. ”Anomaly detection in flight recorder data: A dynamic
data-driven approach.” American Control Conference (ACC), 2013.

[3] Lin, Jessica, et al. ”A symbolic representation of time series, with
implications for streaming algorithms.” ACM 2003.

[4] Spiegel, Stephan, et al. ”Pattern recognition and classification for multi-
variate time series.” Proceedings of the fifth international workshop on
knowledge discovery from sensor data. ACM, 2011.

[5] Li, Daoyuan; Bissyandé, Tegawendé F.; Kubler, Sylvain; Klein, Jacques;
Le Traon, Yves. ”Profiling household appliance electricity usage with n-
gram language modeling.” The 2016 IEEE International Conference on
Industrial Technology.

[6] Lin, Jessica, et al. ”Pattern recognition in time series.” Advances in
Machine Learning and Data Mining for Astronomy 1 (2012)

[7] Gou, Jianping, Taisong Xiong, and Yin Kuang. ”A novel weighted voting
for k-nearest neighbor rule.” Journal of Computers 6.5 (2011)

[8] Hearst, Marti A., et al. ”Support vector machines.” Intelligent Systems
and their Applications, IEEE 13.4 (1998): 18-28.

[9] http://ardrone2.parrot.com, (November,2015)
[10] De Lathauwer, Lieven, Bart De Moor, and Joos Vandewalle. ”A multi-

linear singular value decomposition.” SIAM journal on Matrix Analysis
and Applications 21.4 (2000): 1253-1278.

[11] Olivares Mendez, Miguel Angel, and Pascual Campoy. ”Vision Based
Fuzzy Control Approaches for Unmanned Aerial Vehicles.” 16th IFSA/9th
EUSFLAT. 2015.

[12] OptiTrack Wiki
http://wiki.optitrack.com, (December, 2015)

[13] De Maesschalck, Roy, Delphine Jouan-Rimbaud, and Dsir L. Massart.
”The mahalanobis distance.” Chemometrics and intelligent laboratory
systems 50.1 (2000): 1-18.

[14] GitHub repository of the proof of concept
https://github.com/anumanu/uav-degradation
-identifivation.git, (February, 2016)

[15] Khalastchi, Eliahu, et al. ”Online data-driven anomaly detection in
autonomous robots.” Knowledge and Information Systems 43.3 (2015):
657-688. APA

[16] Renckens, I. R. ”Automatic Detection of Suspicious Behaviour.” (2014).
[17] Olivares-Mendez, Miguel A., Somasundar Kannan, and Holger Voos.

”Vision based fuzzy control autonomous landing with UAVs: From V-
REP to real experiments.” Control and Automation (MED), 2015 23th
Mediterranean Conference on. IEEE, 2015.

[18] Li, Daoyuan; Bissyandé, Tegawendé F.; Klein, Jacques; Le Traon, Yves.
”DSCo: A Language Modeling Approach for Time Series Classification.”
The 12th International Conference on Machine Learning and Data Mining
(MLDM 2016).

