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ABSTRACT
The Internet of Things (IoT) is promising to open up opportunities
for businesses to offer new services to uncover untapped needs.
However, before taking advantage of such opportunities, there are
still challenges ahead, one of which is the development of strate-
gies to abstract from the heterogeneity of APIs that shape today’s
IoT. It is becoming increasingly complex for developers and smart
connected objects to efficiently discover, parse, aggregate and pro-
cess data from disparate information systems, as different proto-
cols, data models, and serializations for APIs exist on the market.
Standards play an indisputable role in reducing such a complexity,
but will not solve all problems related to interoperability. For exam-
ple, it will remain a permanent need to help and guide data/service
providers to efficiently describe the data/services they would like
to expose to the IoT. This paper presents PROFICIENT, a produc-
tivity tool that fulfills this need, which is showcased and evaluated
considering recent open messaging standards and a smart parking
scenario.

CCS CONCEPTS
• Networks → Network experimentation; • Software and its
engineering → Software as a service orchestration system;
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Interoperability, Internet of Things, Web APIs, Semantics, Smart
City

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
the author(s) must be honored. Abstracting with credit is permitted. To copy other-
wise, or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
MobiQuitous, November 7-10, 2017, Melbourne, Australia
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associ-
ation for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

ACM Reference format:
Niklas Kolbe, Jérémy Robert, Sylvain Kubler, and Yves Le Traon. 2017. PRO-
FICIENT: Productivity Tool for Semantic Interoperability in an Open IoT
Ecosystem. In Proceedings of 14th EAI International Conference on Mobile
and Ubiquitous Systems: Computing, Networking and Services, Melbourne,
Australia, November 7-10, 2017 (MobiQuitous), 10 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
The Internet of Things (IoT) brings societal, environmental and
economic opportunities for reducing costs for societies, improving
services for the citizens in several areas, and fostering a sustainable
economic growth [31]. IoT is not only concerned with the integra-
tion of smart connected Things to the Internet, but also with plat-
forms, applications and services that have been built on top of the
data that is generated by these Things. Businesses, governments
and innovators realized that it could become more profitable to
collaborate than innovate as individual entities [3]. Moving away
from the existing, siloed approach to one of open innovation will
enable IoT value creation above and beyond what we are seeing
today.

Recent research initiatives started to investigate open IoT ecosys-
tems that offer provisions to efficiently consume data and other dig-
ital services, i.e. to access, discover, aggregate, and semantically un-
derstand – both from a human and machine perspective – heteroge-
neous information sources from various platforms [15]. Nonethe-
less, there is still a lack of interoperable, open, and standardized
APIs that fulfill such requirements. Exposing data from smart de-
vices via Web APIs reuses established web technologies to achieve
interoperability, also known as theWeb of Things (WoT) [8]. How-
ever, IoT platforms and systems remain isolated silos [30] as there
is no established standardized open API that is widely accepted
and used by the IoT community. Today’s web consists of a huge
amount of proprietary APIs. The ProgrammableWeb, for example,
at the time of writing this paper (2017), holds a repository of more
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than 17000 APIs compared to less than 6000 APIs in 20121. With
this development, mobile and IoT services join the so-called Web
API Economy, thus facing issues related to web service design and
are expected to contribute to the growth of the number of available
open web APIs [11, 25].

This paper tackles the presented challenge by proposing the pro-
ductivity tool called PROFICIENT, which stands for “PRoductivity
tOol For semantIC IntEroperability iN IoT ecosysTems", to support
IoT data/service providers in wrapping proprietary interfaces with
an open and standardized API. This enables them to join (if de-
sired) an open IoT ecosystem and gain benefits such as better visi-
bility, new collaboration opportunities and revenues. A prototype
of PROFICIENT is developed and presented in this paper, which ad-
dresses the full interoperability stack, from the syntactical to the
technical and semantic interoperability layers. Furthermore, the
approach is illustrated with a smart parking use case, and further
evaluated through a performance analysis.

The paper is structured as follows. Section 2 presents the back-
ground and related work regarding interoperability in the IoT. Sec-
tion 3 introduces the conceptual architecture of the proposed pro-
ductivity tool, whose practicability is demonstrated in Section 4 by
applying it to a smart parking use case. The proposed approach is
finally discussed in Section 5, the conclusion follows.

2 INTEROPERABILITY IN THE IOT
Interoperability in the IoT needs to be achieved at various inter-
dependent levels. Interoperability definitions and the decomposi-
tion into layers that are discussed in IoT often originate from the
information systems community. In [20], the authors propose the
C4 Interoperability Framework, which consists of four categories:
(i) connection, (ii) communication, (iii) consolidation, and (iv) col-
laboration. In [28], the authors differentiate between syntactical,
technical, semantic, and organizational interoperability, which is
also discussed for IoT in [10, 12]. In [26], the authors apply the
Levels of Conceptual Interoperability Model (LCIM) [27] to system-
of-systems engineering. This model, whose underpinning interop-
erability levels are given in Table 1, has been also discussed later
for IoT interoperability in [22]. This model is considered in the rest
of this paper to refer to when discussing interoperability in the IoT.

The scope of this paper does not focus on the technical interop-
erability level (i.e., transport and application layer of the network),
but rather on the upper levels. Syntactic and semantic interoper-
ability ismainly concernedwith the payload ofmessages (i.e., inter-
operability in terms of data formats, models and semantics), while
the pragmatic interoperability refers to the understanding of the
service description (i.e., to have a clear definition of what the ser-
vice offers and how to request it). The dynamic interoperability
level allows systems to be discoverable and track the evolution of
the interface. The conceptual interoperability requires an aligned
formal model for the development of intelligent agents which are
able to reason about the published data.

In the following, Section 2.1 discusses the design of web services
for the IoT; Section 2.2 presents the background of semantics for

1ProgrammableWeb Research: https://www.programmableweb.com/api-research, ac-
cessed in July 2017

Table 1: LCIM [26] overview

Interoperability level Concerned concepts
6 Conceptual Formal conceptual model
5 Dynamic Versioning, discovery
4 Pragmatic Service description
3 Semantic Data model, semantics
2 Syntactic Data format
1 Technical Communication protocol

interoperability; Section 2.3 describes related approaches for inter-
operability in IoT ecosystems.

2.1 Interoperable Web Services for the IoT
Interoperability, composition, and discovery of web services has
been thoroughly investigated by the service-oriented computing
community [23]. In the IoT, web service design is often investi-
gated under the WoT paradigm [9, 32]. In the WoT, services need
to cope with specific requirements that arise from the integration
of real-time data, the huge scale in terms of devices and services,
as well as potential resource constraints of devices and network
gateways that host the web services.

Web service design is usually classified in two paradigms: Ser-
vices that are based on the Simple Object Access Protocol (SOAP) –
referred to asWS-* stack – and services that are based on a RESTful
architecture. The WS-* stack typically comes with solutions that
are strongly standardized, like the Web Service Description Lan-
guage (WSDL) and the Universal Description, Discovery and In-
tegration (UDDI). Such solutions provide strong interoperability
at various levels of LCIM, however, they also increase the com-
plexity when implementing IoT services. Furthermore, the tight
coupling between providers and consumers is a critical obstacle to
their adoption for the IoT. REST, in contrast, enables the develop-
ment of lightweight and loosely-coupled services [6].

In practice, developers are often hesitant to adopt theWS-* stack.
Google trends2 as an example indicates that the interest in REST-
ful APIs is growing, whereas the interest in SOAP-based APIs stag-
nates, and the past few years have confirmed this with a rapid in-
crease of proprietary APIs (potentially RESTful). A common con-
clusion drawn is that approaches which are based on simplicity
and utility are more likely to be adopted by the web community.
Previous studies in theWoT community often concluded that REST-
ful services better meet IoT requirements [7], but it should not
be considered as the solution to all interoperability problems [32].
One of the key challenges with RESTful APIs in an IoT ecosystem
setting is the lack of established standards for achieving syntactic
and dynamic interoperability.

2.2 Semantics and Linked Vocabularies
Existing IoT platforms often rely on pre-defined data models to de-
scribe and annotate data that is generated by Things. The FIWARE
project for example defines a set of harmonized data models to
enable data portability among smart city applications. However,

2Google Trends, SOAP vs REST: http://bit.ly/2tz3TiB, accessed in July, 2017.
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such data models are technology-dependent and implementation-
specific features (e.g., specific protocols, language support, struc-
tures, etc.), which inevitably affect the way and expressivity of the
semantic definition [24]. These different models that are used to
describe resources, entities, and services must be aligned among
frameworks and platforms to achieve interoperability in the IoT
vision [12].

Semantic Web [2] technologies have been commonly identified
as a key technology to overcome this issue. The overall approach
of applying ontologies to solve the semantic interoperability of the
IoT is often described as the Semantic Web of Things (SWoT) [21].
The cornerstone of the semantic web is the Resource Description
Format (RDF) which, when combined with other standards such
as RDF Schema (RDFS) and Web Ontology Language (OWL), can
represent knowledge about the physical world [13]. This represen-
tation also allows for automated reasoning that plays an important
role towards improving interoperability in the IoT, reducing the
integration effort of data and services originating from different
providers [1]. Unfortunately, semantic-based approaches also face
various challenges. Firstly, creating and reusing semantic models
for a specific domain is not an easy process, especially for non-
experts of the semantic web [10]. Second, providers of semantic
data are expected to follow certain guidelines and best practices,
of which they might not be aware. Third, existing integration ef-
forts of the semantic web principles to web services, like Semantic
Web Services based on OWL-S [17], add even further complexity,
which is an aspect that could contribute to the disruption and wide
adoption of semantic-based approaches [1, 6].

The fundamental idea to facilitate interoperability with seman-
tics is to reuse and link to existing and commonly adapted ontolo-
gies of the corresponding domain, e.g. using the Semantic Sensor
Network Ontology (SSN) [4] to describe sensor setups and read-
ings. Aligning different ontologies of the same domain is still a
challenging process [18], thus, being aware of the most suitable
vocabulary when publishing data and services is a crucial step.
In practice, several repositories of such Linked Vocabularies have
emerged in order to discover and promote the reuse of already de-
fined terms and vocabularies. Initially, fundamental search engines
were developed, like Watson3. Partners of SWoT research projects
propose collections of vocabularies recommended for reuse in the
respective domain, e.g. READY4SmartCities4 and LOV4IoT5. The
Linked Open Vocabularies (LOV) repository [29] provides a domain-
independent platform with a semi-automated process to curate vo-
cabularies, along with various endpoints for users to access and
discover relevant vocabulary terms.

2.3 Related Work
Existing approaches and tools can be found in the literature that
are concernedwith interoperability in the IoT. An extensive project
is described in [13], which (i) discusses dynamic and conceptual in-
teroperability relying on semantic web technologies, and further
(ii) presents a semantic interoperability architecture for IoT where
gateways act as semantic information brokers. A similar framework
3Watson: http://watson.kmi.open.ac.uk/WatsonWUI/, accessed in July, 2017.
4READY4SmartCities: http://smartcity.linkeddata.es/, accessed in July, 2017.
5LOV4IoT: http://sensormeasurement.appspot.com/?p=ontologies, accessed in July,
2017.

is presented in [16] for the industrial IoT, which relies on a set of
core ontologies (e.g., units). This framework is extended through
domain-specific knowledge packs such as smart buildings. Another
approach, closer to the one considered in this paper, is presented
in [24], which focuses on both, models and ontologies. It is argued
that semantic technologies are a key enabler for pragmatic (i.e.,
commands) and dynamic interoperability (i.e., discovery), and the
proposed semantic interoperability mapping layer creates a bridge
between vendor-neutral and vendor-specific commands and data.

Related tools that aim for productivity regarding IoT interoper-
ability for example include SWoTSuite [19], which was developed
with a similar motivation. It is extensively built upon semantic web
technologies and includes steps to transform sensor data into an
RDF/XML representation and to generate templates which help to
build semantic web services based on the RDF-based data.

3 PRODUCTIVITY TOOL ARCHITECTURE
As previously discussed, composing and maintaining IoT services
that consume IoT data coming from heterogeneous and propri-
etary systems/interfaces is a very complex task. The combination
of different protocols (e.g., HTTP, MQTT, XMPP), serializations
(e.g., JSON, CSV, XML), and semantic models (e.g., UML models,
standard specifications, RDF vocabularies) impose huge efforts on
the consumer to understand, parse, transform and aggregate infor-
mation for processing. Formally, the complexity can be denoted
as in Eq. 1, where n represents the numbers of different accessed
APIs. Therefore, the effort for maintaining the integration of APIs
grows exponentially. The same issue has been identified for proto-
col translation [5] and was presented as the industrial IoT connec-
tivity challenge [22].

c =
n(n − 1)

2
(1)

PROFICIENT is intended to overcome parts of this problem, whose
primary objective is to provide data/service providers with a semi-
automated solution to easily develop a standardized façade on top
of their proprietary interfaces. This is a prerequisite to join and
benefit from IoT ecosystem features (e.g., enhanced data/service
discovery capabilities, micro-payment opportunities, etc.), as the
ones developed through the IoT-EPI initiative [15]. The keymotiva-
tion is to reduce the development effort (i.e., costs) to create a stan-
dardized IoT gateway, and incentivize data and service providers
to join open innovation marketplaces. The proposed tool aims to
hide the technical complexity of achieving semantic M2M interop-
erability from the user, which is key to improve user acceptance
of semantic-based approaches to a broader audience [1, 23]. The
next section provides a greater insight into the underlying build-
ing blocks of PROFICIENT.

The API harmonization process of the productivity tool is de-
picted in Figure 1, which is a two-step approach denoted by À

and Á in the figure. The first step consists in creating a seman-
tic data structure, while the subsequent step consists in creating
a schema- and entity-level mapping of the proprietary data to the
newly created data structure. These two steps are further discussed
hereinafter:

• Step 1 – Defining a semantic-based data structure:
As a first step, the provider is expected to describe the

http://watson.kmi.open.ac.uk/WatsonWUI/
http://smartcity.linkeddata.es/
http://sensormeasurement.appspot.com/?p=ontologies
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IoT Data/Service marketplace: Search, Discovery & Micro-billing capabilities
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gateway
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✉
✉

✉

Linking API
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tary systems/APIs

U

I want to publish
my data using well
established seman-
tic vocabularies

Figure 1: Overview of PROFICIENT and associated components

Table 2: Types of Schema- and entity-level mapping

Type of mapping I/O Description
Simple mapping (1 : 1) One term of the targeted schema is mapped to only one property from the proprietary format. Transfor-

mation rules e.g. include conditional expressions to transform proprietary values to vocabulary terms.
Splitting (1 : n) When mapping a property from the proprietary format to multiple terms of the target schema, a splitting

occurs and transformation rules for all terms of the target schema need to be defined. This case could
for example occur if coordinates are represented as two comma-separated values in one string, but the
targeted semantic schema requires it to be split explicitly to longitude and latitude. Easy-to-use splitting
rules can be defined via techniques such as tokenizing the string based on delimiters, based on regular
expressions, etc.

Aggregation (m : 1) Aggregation forms the counterpart to splitting, i.e. it occurs whenmultiple properties are linked to a single
term of the target schema. The transformation rule in this case needs to define how to combine the values
from different properties (e.g., concatenating two or more values, applying mathematical operations, etc.).

data/service that is intended for publication. As argued
previously, semantic interoperability is most likely to be
achieved when using semantic web technologies. As se-
mantic web technology is not widely adapted due to its
complexity, the structure is represented in a tree format.
This approach is inspired by the presentation of more pop-
ular vocabularies like schema.org and by the JSON-LD for-
mat. Furthermore, the tree representation abstracts from
the semanticweb approach. Other standards and datamod-
els could be used in a similar manner to create the seman-
tic schema. The tool supports the selection of vocabulary
terms based on string searches by accessing repositories
of semantic vocabularies (e.g., the LOV repository, as dis-
cussed in section 2.2). Exploration of attached elements of
a chosen vocabulary term should also be abstracted from
the underlying concept, and selected terms may be added
to any part of the targeted schema tree. The example in
Figure 1 shows a user who intends to publish information

about a smart home and creates a tree structure of seman-
tic terms related to his/her facilities/Things (e.g., House,
Car, etc. in À).

• Step 2 – Defining a schema- and entity-level map-
ping: In this second step, the assumption is made that the
user is already able to access the data (e.g., in the local net-
work or through already implemented web gateways). To
put it another way, the tool’s user has to specify the ac-
cess to the data sources he/she would like to expose to the
WoT. Given this assumption, the end-user needs at this
stage to perform a mapping between such existing data
sources and elements of the semantically annotated tree
resulting from step 1. These mappings can be of the ones
described in Table 2. In the second part of the mapping (cf.,
Á in Figure 1), specific entity-based configurations can be
made. This could include the specification of transforma-
tion rules for certain objects, such as exemption of certain
data objects from publication and addition of metadata.
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Figure 2: Smart parking use case benefiting from PROFICIENT & the bIoTope building blocks

The goal of creating the semantic schema and specifying map-
pings is to generate a deployable image of an IoT gateway agent
which is in charge of pulling the data from the proprietary APIs
(see e.g. the Netatmo weather station or car examples in Figure 1)
and to perform the transformations/aggregation of this data, and
ultimately publishing the harmonized data to theWoT. From an IoT
ecosystem viewpoint, this gateway and the exposed data/services
could then be automatically indexed by IoT search engines, be avail-
able for trade through IoT service marketplaces (as the one pre-
sented e.g. in [15]), etc. All this is illustrated at the top of Figure 1.

4 SMART PARKING USE CASE
The context of the proposed use case falls within the scope of the
bIoTope H2020 project, which is part of the IoT-EPI initiative [15].
The bIoTope ecosystem is built upon three building blocks that aim
to form a trade-off between RESTful principles using open stan-
dards (while also supporting remote procedure calls for heavier
web services) and developing ecosystem components that provide
interoperability among all levels under IoT requirements. These
three building blocks are briefly introduced hereinafter:

• Open Data Format6 (O-DF) standard: It defines a hierarchi-
cal data structure of objects which are comprised of In-
foItems with values and potentially associated metadata.
Additionally to O-DF, that solely defines the taxonomy of
the data, data models and vocabularies are used to define
the meaning of the objects and InfoItems, as it was previ-
ously outlined in subsection 2.2.

• OpenMessaging Interface7 (O-MI) standard: It acts as ames-
saging interface that defines how to call the services, ei-
ther with resource-oriented requests like read, write and

6O-DF: https://www2.opengroup.org/ogsys/catalog/C14A, accessed in July, 2017.
7O-MI: https://www2.opengroup.org/ogsys/catalog/C14B, accessed in July, 2017.

subscribe, or by remote procedure calls. O-MI, in combina-
tion with O-DF, forms a service description and are thus
applied to achieve pragmatic interoperability.

• IoT service marketplace [15]: It holds a repository of avail-
able O-MI/O-DF services and their specifications. Based
on the integration of vocabularies it is possible to discover
relevant data and services, which can then be accessed in a
peer-to-peer fashion in a common publish-find-bind man-
ner. Consumers are also able to track changes in the state
of published services, which allows for dynamic interop-
erability through the marketplace.

In order to demonstrate the practicability of our productivity
tool, a smart parking use case has been defined and implemented.
This use case extends the one presented in [14], and is illustrated
in Figure 2. Considered is a scenario in two distinct smart cities,
namely Grand Lyon and Brussels Region, both being official part-
ners of the bIoTope project. Step À in Figure 2 illustrates how
various data providers of smart things (e.g., of parking sensors or
charging stations) in the city expose the data through traditional,
proprietary APIs. In step Á, PROFICIENT is used to create a stan-
dardized gateway around these APIs. In this demonstrator, two O-
MI gateway agents – exposing information of parking facilities in
Lyon and in Brussels – are deployed thanks to a prototype (which
is presented in following Section 4.1). The two existing formats of
the parking data (proprietary JSON, Datex II8 in XML) are mapped
to the MobiVoc9 vocabulary. Step Â shows the implementation of
an IoT service that relies on the published data, namely a service
that is able to discover available parking data and gives recommen-
dations to drivers for best parking locations based on the location
and other vehicle-related features. Step Ã shows the bIoTope ser-
vice flow through the O-MI gateway, whereas step Ä shows the

8Datex II: http://www.datex2.eu/, accessed in July, 2017.
9MobiVoc: http://schema.mobivoc.org/, accessed in July, 2017.

https://www2.opengroup.org/ogsys/catalog/C14A
https://www2.opengroup.org/ogsys/catalog/C14B
http://www.datex2.eu/
http://schema.mobivoc.org/
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Figure 3: PROFICIENT implementation, from proprietary data sources to enriched O-DF published by the generated O-MI
agent

traditional way of collecting data from vendor lock-in systems and
proprietary APIs.

In the following, the implementation of PROFICIENT is pre-
sented in Section 4.1. A performance evaluation of the generated
O-MI gateway is carried out in Section 4.2. This performance eval-
uation is briefly illustrated in Figure 2 as well, for which an O-MI
gateway has been hosted in Metz, France (step Å). Furthermore,
the two different approaches to access IoT data/services (i.e., Ã vs.
Ä) are assessed from a client perspective by comparing the parsing
time of the message payloads (cf., Â in Figure 2).

4.1 PROFICIENT Prototype
The productivity tool concepts presented earlier in Section 3 are
implemented as a prototype tomeet the bIoTope requirements. This
implies that O-DF is the targeted format and that the generated
IoT gateway agent pushes the O-DF structured data into an O-MI
server node. However, the internal representation is based on a
generic semantic format, which is JSON-LD.

The implementation of the PROFICIENT prototype is depicted
in Figure 3. Steps 1 and 2 are illustrated through two distinct screen-
shots of the web interface of the productivity tool. In step 1, the
user can define the targeted semantic schema(s) of the data to be
published by accessing vocabulary terms from the LOV reposi-
tory (cf., Section 2.2). The user is able to add terms individually or
browse through attached properties and add parts of the tree struc-
ture to the targeted schema. An example for a schema of parking
data is given for step 1. Subsequently, through step 2, the user is

able to link the proprietary API/schema to the targeted schema.
Different sources can be defined for the mapping; the example
shows a proprietary JSONfile that contains information about park-
ing facilities in Lyon. The tool is able to automatically suggest map-
pings based on a similarity measure of the source string and the
vocabulary terms.

The third screenshot in Figure 3 shows the web interface of
a running instance of the O-MI reference implementation10. The
data is pushed to the node by a generated agent, whose behaviour
is determined through the defined schema, data sources, mappings,
and configurations in PROFICIENT. The final export is a Docker
image including the setup for the O-MI agent and the O-MI node
reference implementation, which is thus ready for immediate de-
ployment to be hosted as an IoT gateway.

O-DF is not designed to represent RDF-based annotations. How-
ever, semantic tags can be added in the O-DF payload by using
the type attribute of Objects and InfoItems. These semantic tags are
used for discovery of published data at the IoT service marketplace.
An example of the resulting O-DF structure, which is published
through the generated O-MI agent of PROFICIENT, is shown in
the bottom right corner of Figure 3. It shows the O-MI/O-DF re-
sponse of a read request of some parking facility properties.

10O-MI node by Aalto University: https://github.com/AaltoAsia/O-MI, accessed in
July, 2017.

https://github.com/AaltoAsia/O-MI
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Figure 4: Experimental setup for performance assessments

4.2 Performance Evaluation
The previously presented smart parking use case is considered to
assess the performance and scalability of the O-MI gateway. More
concretely, the objective is to evaluate the feasibility to deploy
such gateways on resource-constrained devices. The experimen-
tal setup is depicted in Figure 4. The O-MI server (version 0.8.2 of
the reference implementation) is set-up on a resource-constrained
device, a cubieboard, with the following features: i) CPU: 1 ARMv7
Processor rev 2 @[624 – 1008] MHz; ii) operating system: ARM-
BIAN 5.25 stable Debian GNU/ Linux 8 (jessie); iii) memory: 1GB.
It is hosted in Metz, France. The objective of the performance eval-
uation is to perform a stress test to observe the behavior of the
O-MI gateway – mainly in terms of response time – under heavy
load. The open-source software Apache JMeter11 is used to simu-
late the load on the O-MI gateway for the experiment. The requests
are sent from the university network in Luxembourg from a MAC
Book Pro Retina (mi-2015) with a CPU Intel Core i7 2.8GHz and
the memory of 16GB 1600MHz DDR3.

The test plan is designed as follows. The simulated users send
O-MI/O-DF requests to receive, in return, parking-related informa-
tion generated by the O-MI gateway (cf., Figure 3). The number of
concurrent users increases gradually (in groups of 10 users), as de-
picted in Figure 5(d), up to 30 concurrent users request the same
information. After 500 seconds, the number of users is decreased
10-by-10 until the end of the experiment (1000 seconds). Two load
scenarios are considered: in the first one, users only request data
about a single parking facility (‘small’ request of size 2605 bytes
each), whereas in the second one the request is extended to the
whole data of parking facilities published by the O-MI node (‘large’
request of size 19740 bytes each). Each scenario is run only three
times since the observed response times do not significantly evolve,
as evidenced through Figure 5(c) in which the response time of the
first simulated user is displayed. Figures 5(a) and 5(b) respectively
provide an aggregated view of the results for both scenarios, as
a boxplot provides the minimum, 1st quartile, median, 3rd quar-
tile, and maximum of the response time for the three different user
groups over each 100 second period (i.e., corresponding to the in-
terval of time over which the number of users varies).

11Apache JMeter: http://jmeter.apache.org/, accessed in July, 2017.
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Table 3: Experiments summary

Scenario Exp Group No. of Req. %Error

‘Small’ request/
reponse load (2605
bytes)

1
1 3115 0.35%
2 242 0%
3 117 0.41%

2
1 2945 0.10%
2 1166 0.09%
3 241 0%

3
1 3099 0.32%
2 1171 0%
3 255 0%

‘Large’ request/ re-
sponse load (19740
bytes)

1
1 544 1.47%
2 203 2,96%
3 39 28,21%

2
1 549 0.91%
2 199 1.51%
3 34 11.76%

3
1 538 1.30%
2 189 4.23%
3 40 7.5%

Based on the resulting response time boxplots of the first sce-
nario (cf., Figure 5(a)), the following conclusions can be drawn:

• When the load is relatively low (i.e., between 1 and 10 con-
current users [0s; 200s]), the response time is about 2-4 sec-
onds, which is already high for such Internet communica-
tions. This can be explained by the fact that (i) the O-MI
gateway is hosted on a resource-constrained device (be-
hind an Internet gateway with port redirection to be more
precise) and (ii) each request/response needs five TCP seg-
ments in total (excluding the opening/closing connection
and the acknowledgement frames).

• When the load increases (due to the increase of users [200s;
600s]), the response time increases accordingly. The re-
sponse time can even reach more than 15 seconds depend-
ing on the synchronization of the concurrent requests on
the O-MI server. It follows that the O-MI gateway cannot
handle 30 users at the same time with low latency. How-
ever, the server is still capable to reply all requests since
the number of errors is very low, as shown in Table 3. Fur-
thermore, the HTTP error code associated to all these er-
rors is 400 Bad Request, which implies that the errors
occurred either at the sender or at the network level (e.g.,
an erroneous bit), but not at the server.

• Finally, when the number of users is reduced back to 10,
the server progressively adapts itself and the response time
decreases.

A similar conclusion can be drawn from the response time box-
plots in Figure 5(b) (scenario 2). However, the response times are
significantly higher (around 20-40 seconds for 30 concurrent users)
due to the increased number of TCP segments (i.e., 16 segments
excluding the opening/closing connection and acknowledgement)
that are needed to generate and to transport all parking informa-
tion. The maximum goes up to more than 150 seconds. In addition,
the number of errors is substantially more important in scenario 2

Table 4: Parsing performance comparison (in Java)

Approach Payload (bytes) Avg. (ms) Std. dev. (ms)

Traditional
Overall: 24766 100.74 2.96
Brussels (XML): 10212
Lyon (JSON): 14554

O-DF Overall (XML): 47537 34.42 2.04

(‘large’ request). As evidenced in Table 3, the O-MI node is not
able to handle all the requests. The HTTP error codes associated
to these errors are of type (i) 502 Bad Gateway or (ii) 503 Service
Unavailable. It implies that (i) one gateway did not receive an an-
swer from the server, or (ii) the service provided by the server is
unavailable at that time. In both cases the server was unable to
handle the request due to too many incoming requests at the same
time.

Even for a smart mobility application, which does not require
(hard) real-time data, this might become a serious problem for the
development of applications. Thus, requests should be kept as small
as possible. To this end, it is important that developers and/or con-
nected Things can first discover one or more service items (e.g.,
only one parking item in Brussels) instead of requesting the whole
data structure (e.g., all parking-related data) exposed by the O-MI
gateway. The IoT service marketplace developed in bIoTope can
eventually help developers to search for and access such service
items depending on their location, service type and/or reputation,
etc.. Such an architecture – having resource-constrained devices at
the edge of the network and a powerful server at themarketplace level
– helps unload the incoming traffic at the O-MI gateway level, thus
offering low response times. The effort is therefore drifted from the
IoT data publishers to an IoT intermediary service, namely the IoT
service marketplace.

In a second experiment, it was investigated whether the har-
monized data formats (O-DF-based) impacts the application per-
formance compared to the direct access to the proprietary APIs.
To this end, the parsing time of the two (proprietary) data sources
– namely (i) Brussels-related data accessed from the open data por-
tal of Brussels Region (formatted using XML), and (ii) Lyon-related
data accessed from the open data portal of Grand Lyon (formatted
using JSON) – is compared with the parsing of the harmonized O-
DF structure (in XML) considering the two corresponding O-MI
gateways (one exposing Brussels-related data and one exposing
Lyon-related data, as depicted in Figure 2). The experiment is run
with Java™, relying on the JAXB library for parsing XML and the
native Java library to parse JSON objects. The experiment results
are shown in Table 4 (considering only the time required to parse
the string response into internal objects). It can be noted that the
time for accessing the both proprietary APIs is significantly higher
to the one for accessing the O-MI gateway, even though this does
not really impact on the quality of user experience. The reason for
this time difference is that the data is already pre-processed when
accessing the O-DF payload at the gateway level. However, com-
pared to the overall latency in collecting the O-MI/O-DF messages
(cf., previous experiment), the absolute values are not significant
(ms against s). Nonetheless, one of the main benefits remains the
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reduced complexity and development effort for developers to un-
derstand and integrate heterogeneous data sources.

5 DISCUSSION
To open the discussion section about the approach for enhanced in-
teroperability proposed in this paper, the links between the build-
ing blocks of the bIoTope ecosystem and LCIM (cf. Table 1) are pre-
sented in Table 5, while highlighting which layers the productivity
tool prototype directly and indirectly supports. The presented pro-
ductivity tool directly contributes to semantic and pragmatic inter-
operability. Supporting the design of a standardized data structure
by suggesting known semantic terms for annotation aims at se-
mantic interoperability. The application of the tool to O-MI/O-DF
addresses pragmatic interoperability, as O-MI and O-DF together
form a service description, i.e. define how to read data objects and
call methods.

Table 5: LCIM mapped to bIoTope building blocks

Interoperability layers bIoTope approach Prod. Tool
6 Conceptual Open policy (3)
5 Dynamic IoT marketplace (3)
4 Pragmatic O-MI 3

3 Semantic O-DF + vocabularies 3

2 Syntactic XML compliant
1 Technical HTTP, etc. compliant

This table reveals that our approach relies indirectly on existing
interoperability mechanisms for the lower layers. The O-MI stan-
dard (used for the presented prototype) is mainly built upon the
HTTP stack (technical interoperability) and uses XML as a seri-
alization (syntactical interoperability). The presented productivity
tool prototype does not contribute to these levels, but relies and
complies with existing solutions of the bIoTope initiative. The in-
direct influence of the proposed productivity tool on dynamic and
conceptual interoperability is more significant. This is because the
discovery of data and services via the IoT marketplace (at the dy-
namic interoperability level) highly depends on the semantic anno-
tations. At the same time, the bIoTope ecosystem follows an open
vision that does not statically impose a conceptual model on all
data/service providers and consumers, but rather aims to guide
data/service providers to find the right model for their use case.
Such a guidance can be achieved thanks to an approach (and asso-
ciated productivity tools) like the one presented in this paper.

The proposed productivity tool, as of now, relies on the LOV
repository. If a certain term is not available in existing vocabular-
ies, the user is able to add custom elements to the data structure.
This could be an advantage in terms of flexibility, however, it also
leads to inconsistencies in the semantic model. In addition, the se-
lection of the right vocabulary term(s) is not very intuitive from the
ranking of terms returned by LOV’s API. Users might have a differ-
ent technical and domain-related background and might want to
reuse vocabulary terms based on custom preferences. This opens

up a research question on how to “optimally" select the right vo-
cabulary terms depending on various criteria such as the vocabu-
lary relevance (popularity. . . ), or the relationship between vocab-
ularies (which impacts on potential reasoning built on the data
structure). Furthermore, even though the tool aims at reducing the
overhead for such a process, it is still challenging to motivate IoT
data/service providers to publish their IoT resources based upon
open standardized APIs as long as the process is not fully auto-
mated. However, such a productivity tool could also be applied
by consumers themselves, e.g., by system integrators of companies
who aim to provide all company departments with an harmonized
way of accessing and understanding data from various and dis-
parate information systems. Another limitation for the bIoTope
prototype arises through the design of O-DF, which was not de-
signed to represent RDF but rather for describing IoT resources in
a simple manner. The integration of terms from RDF vocabularies
can be done through certain attributes of the O-DF standard that
allow for the specification of URIs of linked vocabularies.

6 CONCLUSION AND FUTUREWORK
This paper presents a productivity tool that allows to publish IoT
data and services with minimal effort to the Web of Things (WoT).
The steps introduced by the conceptual design of the tool include
the development of the data structure based on semantic vocabu-
laries, mapping of proprietary formats and entities, and the gen-
eration of an IoT gateway agent that can be deployed on any de-
vices at the edge of the WoT. The prototype and use case is im-
plemented in the framework of the H2020 bIoTope project (part of
the IoT-EPI initiative), whose resulting IoT gateway agents are de-
ployed to expose smart city-related data – Grand Lyon and Brussels
Region in the presented use case – through the adopted open stan-
dardized API named O-MI (Open-Messaging Interface) and O-DF
(Open-Data Format).

In conclusion, if O-MI nodes are hosted on resource-constrained
devices, the requests should be formulated as specific as possible.
The discovery of relevant IoT data or services (referred to as Ob-
jects and InfoItems in O-DF) can be optimized through potential
IoT search engines and associated service marketplaces (as the one
investigated in bIoTope), which is designed as a scalable cloud ser-
vice.

Future work includes the improvement of vocabulary recom-
mendation by extending the lookup ofmodel and vocabulary terms,
as well as allowing a ranking based on user preferences. Further-
more, it is intended to automate more and more steps of the tool,
e.g. with a learning model of the semantic mappings, to minimize
the additional effort to publish in a standardized format.
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