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1 Introduction

Let (M, g) be a complete and connected Riemannian manifold of dimension d > 2, with Riemannian

distance ρ, boundary ∂M and inward pointing unit normal vector N . Define the second fundamental

form of the boundary by

II(X,Y ) = −〈∇XN,Y 〉 , X, Y ∈ Tx∂M, x ∈ ∂M

where T∂M denotes the tangent bundle of ∂M . In order to study non-convex boundaries we will perform

a conformal change of metric such that the boundary is convex under the new metric. In particular, we

will use the fact that if

D := {φ ∈ C2
b (M) : inf φ = 1, II > −N log φ}

and φ ∈ D then the boundary ∂M is convex under the metric φ−2g (see [16, Theorem 1.2.5]).

Given a C1-vector field Z on M , consider the elliptic operator L := ∆ + Z and let Xx
t be a reflecting

L-diffusion process starting from Xx
0 = x. Then Xx

t solves the Stratonovich equation

dXx
t =
√

2uxt ◦ dBt + Z(Xx
t ) dt+N(Xx

t ) dlxt , Xx
0 = x
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where uxt is the horizontal lift of Xx
t to the orthonormal frame bundle O(M) with π(ux0) = x, Bt

is a standard Rd-valued Brownian motion defined on a complete naturally filtered probability space

(Ω, {Ft}t>0,P) and lxt is a continuous adapted nondecreasing and nonnegative process which increases

only on {t > 0: Xx
t ∈ ∂M}. The process lxt is the local time of Xx

t on ∂M .

We assume that Xx
t is non-explosive for each x ∈ M . Then the diffusion process Xx

t gives rise to

the Neumann semigroup Pt which solves the diffusion equation (∂t − L)Pt = 0 with Neumann boundary

condition NPt = 0. Furthermore Ptf(x) = E[f(Xx
t )] for each f ∈ Cb(M) .

In [7], Hsu found a probabilistic formula for ∇Ptf for compact manifolds with boundary, which he

used to derive a gradient estimate. Feng-Yu Wang extended it to the non-compact case [16, Theorem

3.2.1] under the assumption that |∇P. f | is uniformly bounded on [0, t] ×M . Wang’s formula is given

below by Theorem 2.1. In [16, Proposition3.2.7], he proved that if

RicZ := Ric−∇Z > K

for some K ∈ C(M) and if there exists φ ∈ D such that

K̃φ := inf
M

{
φ2K +

1

2
Lφ2 − |∇φ2| |Z| − (d− 2)|∇φ|2

}
> −∞ (1.1)

then |∇P. f | is uniformly bounded on [0, t]×M by an expression involving the constant K̃φ.

In this article, we revisit this problem using coupling methods. In particular, we prove (see Theo-

rem 2.2) that if there exists φ ∈ D and a constant Kφ such that

RicZ + L log φ− 2|∇ log φ|2 > Kφ

then |∇P. f | is uniformly bounded on [0, t]×M and our upper bound improves that of [16, Proposition

3.2.7]. We construct a suitable function φ in Proposition 3.3, under the assumption that there exist

non-negative constants σ and θ such that −σ 6 II 6 θ and a positive constant r0 such that on ∂r0M :=

{x ∈M : ρ∂(x) 6 r0} the function ρ∂ is smooth, the norm of Z is bounded and Sect 6 k for some positive

constant k.

F.-Y. Wang also considered Harnack and transportation-cost inequalities on manifolds with boundary

[16]. We reconsider these problems too and find that the curvature conditions used to establish these

inequalities can also be weakened and simplified. It is worth mentioning that we find a transportation-

cost inequality on the path space of the reflecting diffusion process which (see Theorem 2.8) recovers the

results for the convex boundary case, making this aspect of the theory of functional inequalities on path

space complete.

Let us now describe the organization of this article. In Section 2, we prove the gradient estimates, Har-

nack inequalities and transportation-cost inequalities for the Neumann semigroup via coupling methods.

In Section 3, we construct a function φ which satisfies the new curvature conditions.

2 Functional inequalities

2.1 Gradient estimates

A derivative formula for Ptf that does not involve derivatives of f is typically called a Bismut formula

(see [4, 5]). The Bismut formula we introduce is of a type due originally to Thalmaier [9]. As mentioned

in the introduction, Hsu [7] found this type of formula for compact manifolds with boundary. The

following formula for manifolds with boundary, due to F.-Y. Wang [16, Theorem 3.2.1], does not require

compactness. See also [1] for recent work on probabilistic representations of the derivative of Neumann

semigroups.

Theorem 2.1. Let t > 0 and u0 ∈ Ox(M) be fixed. Suppose K ∈ C(M) and σ ∈ C(∂M) are such that

RicZ > K and II > σ. Assume that

sup
s∈[0,t]

Ex
[
exp

(
−
∫ s

0

K(Xr) dr −
∫ s

0

σ(Xr) dlr

)]
<∞.
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Then there exists a progressively measurable process {Qs}s∈[0,t] on Rd ⊗ Rd such that

Q0 = I, ‖Qs‖ 6 exp

(
−
∫ s

0

K(Xr) dr −
∫ s

0

σ(Xr) dlr

)
, s ∈ [0, t]

and for any f ∈ C1
b (M) such that ∇P. f is bounded on [0, t] ×M , for any h ∈ C1([0, t]) with h(0) = 0

and h(t) = 1, we have

u−1
0 ∇Ptf(x) = Ex

[
Qtu

−1
t ∇f(Xt)

]
=

1√
2
Ex
[
f(Xt)

∫ t

0

ḣ(s)Qs dBs

]
.

In order to use this formula it is necessary to check the uniform boundedness of ∇P. f on [0, t] ×M .

In [16, Proposition 3.2.7], F.-Y. Wang did so using a conformal change of metric such that under the new

metric the boundary is convex, and by then making a time change of the L-diffusion process Xt. Here,

we use coupling methods to study this problem again and obtain improved upper bounds.

Theorem 2.2. If there exist φ ∈ D and a constant Kφ such that

RicZ + L log φ− 2|∇ log φ|2 > Kφ (2.1)

then for all f ∈ C1(M) such that f is constant outside a compact set,

|∇Ptf | 6 ‖φ‖∞‖∇f‖∞ e−Kφt, t > 0.

Proof. We start with a conformal change of the metric g. Since φ ∈ D , the boundary ∂M is convex

under the metric g′ := φ−2g. Let ∆′ and ∇′ be the Laplacian and gradient operator associated with the

metric g′. Then

L = φ−2
(
∆′ + φ2 (Z + (d− 2)∇ log φ)

)
= φ−2 (∆′ + Z ′) (2.2)

where Z ′ := φ2 (Z + (d− 2)∇ log φ). For the process Xt generated by L, viewed as a process on (M, g′),

denoting by dI the Itô differential, it follows that

dIXt =
√

2φ−1(Xt)ut dBt + φ−2(Xt)Z
′(Xt) dt+N ′(Xt) dlt, X0 = x (2.3)

where Bt is the Brownian motion and the lift ut and boundary local time lt are defined now with respect

to the metric g′. Recall that in local coordinates, the Itô differential of a continuous semimartingale Xt

on M is given (see [6] or [2]) by

(dIXt)
k = dXk

t +
1

2

d∑
i,j=1

Γ′
k
ij(Xt) d〈Xi, Xj〉t, 1 6 k 6 d

where Γ′
k
ij are the Christoffel symbols of g′. Similarly, let Yt solve

dIYt =
√

2φ−1(Yt)(1{(Xt,Yt)/∈cut}P
′
Xt,Ytut dBt + 1{(Xt,Yt)∈cut}ũt dB′t) + φ−2(Yt)Z

′(Yt) dt+N ′(Yt) dl̃t

with Y0 = y, lift ũt and boundary local time l̃t, where cut ⊂ M ×M denotes the set of cut points and

where B′t is a Brownian motion independent of Bt (see [16, Theorem 3.2.5] or [11, Section 2.1]). Now,

for (x, y) /∈ cut and x 6= y, define

IφZ(x, y) :=

d∑
i=1

(Ui)
2ρ′(x, y) +

〈
φ−2(y)Z ′(y),∇′ρ′(x, ·)(y)

〉′
+
〈
φ−2(x)Z ′(x),∇′ρ′(·, y)(x)

〉′
where {Ui}di=1 are vector fields on M ×M such that ∇′Ui(x, y) = 0 and

Ui(x, y) = (φ−1(x)Vi, φ
−1(y)P ′x,yVi), 1 6 i 6 d
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for {Vi}di=1 a g′-orthonormal basis of TxM . Here P ′x,y denotes parallel displacement from x to y with

respect to the metric g′. Denote by ρ′ the distance function for the metric g′. Since the boundary ∂M

is convex under g′, that is N ′ρ′|∂M 6 0, by a slight modification of the proof of [11, Theorem 2.1.6], we

have the following result which is similar to [16, Theorem 3.2.5]: if there exists J ∈ C(M ×M) such that

J > IφZ outside the cut locus and D(M), where D(M) := {(x, x) : x ∈M}, then

dρ′(Xt, Yt) 6
√

2
(
φ−1(Xt)− φ−1(Yt)

)
dbt + J(Xt, Yt) dt (2.4)

up to the coupling time τ := inf{t > 0 : Xt = Yt}, where bt is a one-dimensional Brownian motion. From

this, it now suffices for us to estimate the term IφZ . Write ρ′ = ρ′(x, y) and for a minimizing g′-geodesic

γ with γ(0) = x and γ(ρ′) = y let

Ji(s) = φ−1(γ(s))P ′γ(0),γ(s)Vi, 1 6 i 6 d

where Ji(0) = φ−1(x)Vi and Ji(ρ
′) = φ−1(y)P ′x,yVi. Since P ′γ(0),γ(s)Vi are parallel vector fields along γ

with respect to the metric g′, we have that for (x, y) /∈ cut∪D(M), that

d∑
i=1

(Ui)
2ρ′(x, y)

6
d∑
i=1

∫ ρ′

0

{
|∇′γ̇Ji|′2 − 〈R′(γ̇, Ji)Ji, γ̇〉

′
}

(s) ds

= d

∫ ρ′

0

φ−2(γ(s))〈∇ log φ(γ(s)), γ̇(s)〉2 ds−
∫ ρ′

0

φ−2(γ(s))Ric′(γ̇(s), γ̇(s)) ds. (2.5)

On the other hand

φ−2(x) 〈Z ′(x),∇′ρ′(·, y)(x)〉′ + φ−2(y) 〈Z ′(y),∇′ρ′(x, ·)(y)〉′

=

∫ ρ′

0

d

ds

{
φ−2(γ(s)) 〈Z ′(γ(s)), γ̇(s)〉′

}
ds

=

∫ ρ′

0

φ−2(γ(s))
〈
(∇′γ̇Z ′) ◦ γ, γ̇

〉′
(s) ds

− 2

∫ ρ′

0

φ−2(γ(s))〈∇ log φ(γ(s)), γ̇(s)〉 〈Z ′(γ(s)), γ̇(s)〉′ ds. (2.6)

Moreover

〈Z ′(γ(s)), γ̇(s)〉′ = 〈Z, γ̇(s)〉+ (d− 2)〈∇ log φ, γ̇(s)〉.

Combining this with (2.5) and (2.6), we have

IφZ(x, y) 6 −
∫ ρ′

0

φ−2(γ(s))((RicZ)′(γ̇(s), γ̇(s)) + (d− 4)〈∇ log φ, γ̇(s)〉2 ds

−
∫ ρ′

0

2〈∇ log φ, γ̇(s)〉〈Z, γ̇(s)〉) ds. (2.7)

By [3, Theorem 1.159], in which the Laplacian differs from our’s by a negative sign, we know that

(RicZ)′(γ̇, γ̇) = Ric′(γ̇, γ̇)− 〈∇′γ̇Z ′, γ̇〉′

= RicZ(γ̇, γ̇) +
1

2
Lφ2 − 2 〈∇ log φ, γ̇〉 〈Z, γ̇〉 − (d− 2) 〈γ̇,∇ log φ〉2 − 2|∇φ|2

and, noting that |γ̇| = φ, we thus have

(RicZ)′(γ̇(s), γ̇(s)) + (d− 4)〈∇ log φ, γ̇(s)〉2 + 2〈∇ log φ, γ̇(s)〉〈Z, γ̇(s)〉
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= RicZ(γ̇(s), γ̇(s)) +
1

2
Lφ2 − 2 〈γ̇,∇ log φ〉2 − 2|∇φ|2

> RicZ(γ̇(s), γ̇(s)) +
1

2
Lφ2 − 4|∇φ|2

= RicZ(γ̇(s), γ̇(s)) + φ2L log φ− 2|∇φ|2. (2.8)

Consequently, using the condition (2.1), letting Xt = Yt after coupling time, and then combining (2.7)

with (2.8) and (2.4), we arrive at

dρ′(Xt, Yt) 6
√

2(φ−1(Xt)− φ−1(Yt)) dbt −Kφρ
′(Xt, Yt) dt. (2.9)

From this, we know that

E(x,y) [ρ′(Xt, Yt)] 6 e−Kφt ρ′(x, y).

Then, observing that ρ′ 6 ρ 6 ‖φ‖∞ρ′, we have

|∇Ptf |(x) = lim
y→x

∣∣∣∣Ptf(x)− Ptf(y)

ρ(x, y)

∣∣∣∣
= lim
y→x

∣∣∣∣E(x,y)

[
f(Xt)− f(Yt)

ρ(Xt, Yt)

ρ(Xt, Yt)

ρ′(Xt, Yt)

ρ′(Xt, Yt)

ρ′(x, y)

ρ′(x, y)

ρ(x, y)

] ∣∣∣∣
6 ‖φ‖∞‖∇f‖∞ e−Kφt

which completes the proof.

Remark 2.3. (i) Since (Ud)
2ρ′ 6= 0, it was indeed necessary to account for this quantity in inequality

(2.5), correcting the proof of [16, Theorem 3.4.6].

(ii) Compared with the proof of [16, Theorem 3.4.6], our choice of vector field Ji yields a simpler result.

(iii) In [17], a certain technical assumption which was used to ensure the uniformly boundedness of

|∇P. f | on [0, t]×M is no longer needed in the results.

The following results remove the additional condition in [16, Corollary 3.6.5 (1)] and [17, Corollary

1.2 (1)] to ensure the uniform boundedness of |∇P. f | on [0, t]×M and give a another proof of an extension

of these inequalities to Lp forms for p > 1:

Theorem 2.4. If there exists φ ∈ D such that for p > 1 the inequality

RicZ + L log φ− p|∇ log φ|2 > Kφ,p (2.10)

holds, then for t > 0 and f ∈ C1
b (M),

|∇Ptf | 6
1

φ
e−Kφ,pt

(
Pt(φ|∇f |)p/(p−1)

)(p−1)/p

.

Proof. The lower bound (2.10) implies RicZ+L log φ−2|∇ log φ|2 is bounded below (since φ ∈ D implies

|∇ log φ| bounded). By Theorem 2.2, it follows that |∇P. f | is bounded on [0, t]×M . Furthermore

RicZ > Kφ,p − L log φ+ p|∇ log φ|2 = Kφ,p +
1

p
φpLφ−p and II > −N log φ

and so, by Theorem 2.1, there exists {Qs}s∈[0,t] such that

‖Qt‖ 6 exp

(
−Kφ,pt−

1

p

∫ t

0

φpLφ−p(Xs) ds+

∫ t

0

N log φ(Xs) dls

)
(2.11)

with

|∇Ptf |p 6
(
Pt(φ|∇f |)p/(p−1)

)p−1

E
[
φ−p(Xt)‖Qt‖p

]
. (2.12)
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It therefore suffices to give the upper bound estimate of the following term:

E
[
φ−p(Xt) exp

(
−
∫ t

0

φpLφ−p(Xs) ds+ p

∫ t

0

N log φ(Xs) dls

)]
.

To this end, by the Itô formula, it is easy to see that

dφ−p(Xt) = 〈∇φ−p(Xt), ut dBt〉+ Lφ−p(Xt) dt+Nφ−p(Xt) dlt

= 〈∇φ−p(Xt), ut dBt〉 − pφ−p(Xt)

(
−1

p
φpLφ−p(Xt) dt+N log φ(Xt) dlt

)
.

So

Mt = φ−p(Xt) exp

(
−
∫ t

0

φp(Xs)Lφ
−p(Xs) ds+ p

∫ t

0

N log φ(Xs) dls

)
is a positive local martingale. Thus

E
[
φ−p(Xt) exp

(
−
∫ t

0

φp(Xs)Lφ
−p(Xs) ds+ p

∫ t

0

N log φ(Xs) dls

)]
6 φ−p(x).

Combining this with (2.11) and (2.12) completes the proof.

Corollary 2.5. If there exists φ ∈ D such that for p > 1 the inequality

RicZ + L log φ− p|∇ log φ|2 > Kφ,p

holds, then for t > 0 and f ∈ C1
b (M),

|∇Ptf | 6 ‖φ‖∞ e−Kφ,pt(Pt|∇f |p/(p−1))(p−1)/p;

and for f ∈ Bb(M) and t > 0,

|∇Ptf |2 6 ‖φ‖2∞
Kφ,2

e2Kφ,2t−1
Ptf

2. (2.13)

Proof. The first assertion follows from Theorem 2.4 by observing φ > 1. As Theorem 2.1 can be used

under our condition directly, the main idea of the proof of (2.13) is similar to that of [16, Corollary 3.2.8],

so we skip it here.

Note that taking the limit p ↓ 1 in Corollary 2.5 improves Theorem 2.2 by replacing the constant Kφ

with Kφ,1.

2.2 Harnack inequalities

In [16, Theorem 3.4.7] and [14, Theorem 3.1], F.-Y. Wang used a coupling method to obtain dimension

free Harnack inequalities and a log-Harnack inequality on manifolds with boundary, assuming RicZ > K

for some K ∈ C(M) with φ ∈ D such that K̃φ is finite (where the quantity K̃φ is defined as in (1.1)).

The coefficient involved in these inequalities is:

2K̃−φ + 4‖φZ + (d− 2)∇φ‖∞‖∇ log φ‖∞ + 2d‖∇ log φ‖2∞.

We now give the following result, weakening the curvature condition, in terms of a different coefficient:

Theorem 2.6. Assume there exists φ ∈ D such that

RicZ + L log φ− 3|∇ log φ|2 > Kφ,3 (2.14)

for some constant Kφ,3. Then for T > 0, x, y ∈M , p > ‖φ‖2∞ and f ∈ C1
b (M), we have

(
PT f(y)

)p
6 PT f

p(x) exp

(√
p(
√
p− 1)Kφ,3 ‖φ‖2∞ ρ2(x, y)

8δp(
√
p− 1− δp)(e2Kφ,3T −1)

)
,

where δp = max
{
‖φ‖∞ − 1,

√
p−1

2

}
.
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Proof. Fix x, y ∈M and T > 0. As in the proof of Theorem 2.2, we consider the process Xt generated

by L = ∆ + Z under the metric g′ := φ−2g, for which the boundary (∂M, g′) is convex. Let Xt solve

equation (2.3) with X0 = x. For a strictly positive function ξ ∈ C([0, T )), to be later determined, let Yt
solve

dIYt =
√

2φ−1(Yt) 1{(Xt,Yt)/∈cut}P
′
Xt,Ytut dBt +

√
2φ−1(Yt)1{(Xt,Yt)∈cut}ũt dB′t

+ φ−2
t Z ′(Yt) dt− φ−1(Yt)ρ

′(Xt, Yt)

φ−1(Xt)ξ(t)
∇′ρ′(Xt, ·)(Yt) dt+N ′(Yt) dl̃t

for t ∈ [0, T ), with Y0 = y, where l̃t is the local time of Yt on ∂M , ũt is the lift process and B′t is the

Brownian motion independent of Bt from earlier. In the following, we begin with the same argument as

in the proof of [16, Theorem 3.4.7]. The different part is how to use our curvature condition to get a

new estimate for the radial process ρ′(Xt, Yt). To this end, as explained in the proof of Theorem 2.2, we

may for the sake of conciseness disregard certain technical considerations relating to the cut locus of M .

Consider the process (Xt, Yt) starting from (x, y), which is a well defined continuous process for t 6 T ∧ ζ
where ζ is the explosion time of Yt; that is ζ := limn→∞ ζn for ζn := inf{t > 0 : ρ′(y, Yt) > n}. Let

dB̃t = dBt +
ρ′(Xt, Yt)√

2ξ(t)φ−1(Xt)
u−1
t ∇′ρ′(·, Yt)(Xt) dt, 0 6 t < T ∧ ζ. (2.15)

By the Girsanov theorem, for any s ∈ (0, T ) the process Bt is a d-dimensional Brownian motion under

the probability measure RsP for

Rs := exp

[
−
∫ s

0

ρ′(Xt, Yt)

ξ(t)φ−1(Xt)
〈∇′ρ(·, Yt)(Xt), utdBt〉′ −

1

2

∫ s

0

ρ′(Xt, Yt)
2

ξ2φ−2(Xt)
dt

]
.

Let Q = RT∧ζP. It has been shown in the proof of [16, Theorem 3.4.7] that Q(ζ = T ) = 1 and the coupling

is successful up to the time T . In the following, we look at the processes under the new measure Q. Then

dIXt =
√

2φ−1(Xt)ut dB̃t + φ−2(Xt)Z
′(Xt) dt− ρ′(Xt, Yt)

ξ(t)
∇′ρ′(Xt, ·)(Yt) dt+N ′(Xt) dl̃t;

dIYt =
√

2φ−1(Yt)P
′
Xt,Ytut dB̃t + φ−2(Yt)Z

′(Yt) dt+N ′(Yt) dl̃t, t 6 T.

Since

RicZ + L log φ− 2|∇ log φ|2 > Kφ,3 + |∇ log φ|2, t ∈ [0, T ],

by a similar calculation as for (2.8) and (2.9) we find

dρ′(Xt, Yt) 6
√

2(φ−1(Xt)− φ−1(Yt))
〈
∇′ρ′(·, Yt)(Xt), utdB̃t

〉′
−

(∫ ρ′(Xt,Yt)

0

(Kφ,3 + |∇ log φ|2)(γ(s)) ds

)
dt− ρ′(Xt, Yt)

ξ(t)
dt, 0 6 t < T (2.16)

which implies

d
ρ′(Xt, Yt)

2

ξ(t)
6

2
√

2

ξ(t)
ρ′(Xt, Yt)

(
φ−1(Xt)− φ−1(Yt)

) 〈
∇′ρ′(·, Yt)(Xt), utdB̃t

〉′
− ρ′(Xt, Yt)

2

ξ2(t)

(
ξ̇(t) + 2Kφ,3ξ(t) + 2

)
dt, 0 6 t < T, (2.17)

since the positive term coming from the covariation is smaller than the opposite of the negative term

involving |∇ log φ|2. Now for θ ∈ (0, 2) let

ξ(t) = (2− θ)
∫ T

t

e−2Kφ,3(t−s) ds, t ∈ [0, T )
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so that ξ solves the equation

ξ̇(t) + 2Kφ,3ξ(t) + 2 = θ, t ∈ [0, T ).

Combining this with (2.17), we find

d
ρ′(Xt, Yt)

2

ξ(t)
6

2
√

2

ξ(t)
ρ′(Xt, Yt)

(
φ−1(Xt)− φ−1(Yt)

) 〈
∇′ρ′(·, Yt)(Xt), utdB̃t

〉′
− ρ′(Xt, Yt)

2

ξ(t)2
θ dt.

The remainder of argument is given by the proof of [16, Theorem 3.4.7].

2.3 Transportation-cost inequalities

Consider µ, ν ∈ P(M) where P(M) denotes the space of all probability measures on M . Recall the

Lp-Wasserstein distance between µ and ν is

Wp(µ, ν) = inf
η∈C (µ,ν)

{∫
M×M

ρ(x, y)p dη(x, y)

}1/p

where C (µ, ν) is the set for couplings of µ and ν. When the manifold has no boundary, it is well known

that the curvature condition,

RicZ > K for some constant K

is equivalent to

Wp(µPt, νPt) 6Wp(µ, ν) e−Kt, µ, ν ∈P(M),

where µPt ∈P(M) is defined by (µPt)(A) = µ(Pt1A) for measurable set A. This equivalence is due to [10]

which is extended to the manifolds with convex boundary [15]. Using a coupling method, with the effect

of the cut locus accommodated as in the proof of Theorem 2.6, we obtain the following transportation-cost

inequality.

Theorem 2.7. If there exists φ ∈ D and a constant Kφ,3 satisfying

RicZ + L log φ− 3|∇ log φ|2 > Kφ,3

then

W2(µPt, νPt) 6 ‖φ‖∞ e−Kφ,3tW2(µ, ν).

Proof. By [16, Theorem 4.4.2], it suffices to only consider µ = δx and ν = δy. Let φ be a smooth

function in D and recall that L = φ−2(∆′ + Z ′) for the manifold (M, g′) as in (2.2), where g′ = φ−2g.

Let Xt and Yt solve the following SDEs respectively:

dIXt =
√

2φ−1(Xt)ut dBt + φ−2(Xt)Z
′(Xt) dt+N ′(Xt) dlt, X0 = x;

dIYt =
√

2φ−1(Yt)P
′
Xt,Ytut dBt + φ−2(Yt)Z

′(Yt) dt+N ′(Yt) dl̃t, Y0 = y.

Then, as explained in the proof of Theorem 2.2, in which we derived (2.9), we have

dρ′(Xt, Yt) 6
√

2(φ−1(Xt)− φ−1(Yt)) 〈∇′ρ′(·, Yt)(Xt), ut dBt〉
′

−

(∫ ρ′(Xt,Yt)

0

(φ−2RicZ(γ̇(s), γ̇(s)) + L log φ− 2|∇ log φ|2)(γ(s)) ds

)
dt.

Therefore

dρ′(Xt, Yt)
2 = 2ρ′(Xt, Yt) dρ′(Xt, Yt) + (φ−1(Xt)− φ−1(Yt))

2 dt

6 dM̃t + 2

(∫ ρ′(Xt,Yt)

0

〈∇′φ−1(γ(s)), γ̇(s)〉′ ds

)2

dt

− 2ρ′(Xt, Yt)

∫ ρ′(Xt,Yt)

0

(φ−2RicZ(γ̇(s), γ̇(s)) + L log φ− 2|∇ log φ|2)(γ(s)) dsdt
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6 dM̃t − 2ρ′(Xt, Yt)

(∫ ρ′(Xt,Yt)

0

(φ−2(γ(s))RicZ(γ̇(s), γ̇(s))

+ L log φ(γ(s))− 3|∇ log φ(γ(s))|2) ds

)
dt

6 dM̃t − 2Kφ,3ρ
′(Xt, Yt)

2 dt,

where

dM̃t = 2
√

2ρ′(Xt, Yt)(φ
−1(Xt)− φ−1(Yt)) 〈∇′ρ′(·, Yt)(Xt), ut dBt〉

′
.

It follows that

W2(δxPt, δyPt)
2 6 E(x,y)[ρ(Xt, Yt)

2] 6 ‖φ‖2∞E(x,y)[ρ′(Xt, Yt)
2]

6 ‖φ‖2∞ e−2Kφ,3t ρ′(x, y)2 6 ‖φ‖2∞ e−2Kφ,3t ρ(x, y)2

which completes the proof.

We now investigate Talagrand-type inequalities with respect to the uniform distance on the path space

WT := C([0, T ];M) of the (reflecting) diffusion process, for a given T > 0. Let Xµ
t be the (reflecting if

∂M 6= ∅) diffusion process generated by L with initial distribution µ ∈P(M). Let ΠT
µ be the distribution

of

Xµ
[0,T ] := {Xµ

t : t ∈ [0, T ]},

which is a probability measure on the (free) path space WT . When µ = δx we denote ΠT
δx

= ΠT
x and

Xδx
[0,T ] = Xx

[0,T ]. For any non-negative measurable function F on WT such that ΠT
µ (F ) = 1, one has

µTF (dx) := ΠT
x (F )µ(dx) ∈P(M). (2.18)

The the uniform distance on WT is given by

ρ∞(γ, η) := sup
t∈[0,T ]

ρ(γt, ηt), γ, η ∈WT .

Let W ρ∞
2 be the L2-Wasserstein distance (or L2-transportation cost) induced by ρ∞. In general, for any

p ∈ [1,∞) and two probability measures Π1,Π2 on WT ,

W ρ∞
p (Π1,Π2) := inf

π∈C (Π1,Π2)

{∫∫
WT×WT

ρ∞(γ, η)pπ(dγ,dη)

}1/p

is the Lp-Wasserstein distance (or Lp-transportation cost) of Π1 and Π2, induced by the uniform norm,

where C (Π1,Π2) is the set of all couplings for Π1 and Π2. Moreover, for F > 0 with ΠT
µ (F ) = 1, let

µTF (dx) = ΠT
x (F )µ(dx).

The following result improves [15, Theorems 4.1 and 4.2] or [16, Theorems 4.5.3 and 4.5.4]:

Theorem 2.8. If there exists φ ∈ D and a constant Kφ satisfying

RicZ + L log φ− 2|∇ log φ|2 > Kφ

then

(i) for F > 0, ΠT
µ (F ) = 1 and µ ∈P(M),

W ρ∞
2 (FΠT

µ ,Π
T
µT
F

)2 6
2‖φ‖2∞
Kφ

(e
2K+

φ
T − e

2K−
φ
T

) inf
R>0

{
(1 +R−1) exp

(
8(1 +R)‖∇ log φ‖2∞

)}
ΠT
µ (F logF );

(i’) for F > 0, ΠT
µ (F ) = 1 and µ ∈P(M),

W ρ∞
2 (FΠT

µ ,Π
T
µT
F

)2 6
2‖φ‖2∞
Kφ

(1− e−2KφT ) inf
R>0

{
(1 +R−1) exp

(
8(1 +R)‖∇ log φ‖2∞ e

2K+
φ
T
)}

ΠT
µ (F logF );
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(ii) for any µ, ν ∈P(M),

W ρ∞
2 (ΠT

µ ,Π
T
ν ) 6 2‖φ‖∞ e

(K−
φ

+‖∇ log φ‖∞)T
W2(µ, ν).

Remark 2.9.

(a) When ‖∇ log φ‖∞ > 0 and Kφ > 0 the upper bound in (i) is better than that in (i’).

(b) When the boundary is convex we can choose φ ≡ 1. In this case ∇ log φ = 0 and the estimate in

(i’) is consistent with [16, Theorem 4.4.2 (2)] for the convex case.

(c) We note that [16, Theorem 4.4.2 (6)] needs to be corrected as follows:

W ρ∞
2 (ΠT

µ ,Π
T
ν ) 6 eK

−T W2(µ, ν),

where K is the lower bound of Ricci curvature. It is then consistent with Theorem 2.8 (ii) when

φ ≡ 1 and the boundary is convex.

Proof of Theorem 2.8.

(i) Simply denote Xx
[0,T ] = X[0,T ]. Let F be a positive bounded measurable function on WT such that

inf F > 0 and ΠT
x (F ) = 1. Let

dQ = F (X[0,T ]) dP.

Since E
[
F (X[0,T ])

]
= ΠT

µ (F ) = 1, Q is a probability measure on Ω. Then we conclude that there exists

a unique Ft-predictable process βt on Rd such that

F (X[0,T ]) = exp

(∫ T

0

〈βs,dBs〉 −
1

2

∫ T

0

‖βs‖2 ds

)

and ∫ T

0

EQ‖βs‖2 ds = 2E
[
F (X[0,T ]) logF (X[0,T ])

]
. (2.19)

Then, by the Girsanov theorem, B̃t := Bt−
∫ t

0
βs ds, t ∈ [0, T ] is a d-dimensional Brownian motion under

the probability measure Q.

As explained in the proof of [16, Theorem 4.5.3], it suffices to assume µ = δx, x ∈M . In this case, the

desired inequality involves

µTF = δx and ΠT
µ (F logF ) = ΠT

x (F logF ).

Since the diffusion coefficients are non-constant, it is convenient to adopt the Itô differential dI for the

Girsanov transformation. So the reflecting L diffusion process Xt can be constructed by solving the Itô

SDE

dIXt =
√

2φ−1(Xt)ut dBt + φ−2(Xt)Z
′(Xt) dt+N ′(Xt) dlt, X0 = x,

where Bt is the d-dimensional Brownian motion with natural filtration Ft. Then

dIXt =
√

2φ−1(Xt)ut dB̃t + {φ−2(Xt)Z
′(Xt) +

√
2φ−1(Xt)utβt} dt+N ′(Xt) dlt, X0 = x (2.20)

and let Yt solve

dIYt =
√

2φ−1(Yt)P
′
Xt,Ytut dB̃t + φ−2(Yt)Z

′(Yt) dt+N ′(Yt) dl̃t, Y0 = x (2.21)

where lt and l̃t are the local times of Xt and Yt on ∂M , respectively. Moreover, for any bounded

measurable function G on WT ,

EQG(X[0,T ]) := E(FG)(X[0,T ]) = ΠT
x (FG).
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We conclude that the distribution of X[0,T ] under Q coincides with FΠT
x . Therefore,

W ρ∞
2 (FΠT

x ,Π
T
x )2 6 EQρ∞(X[0,T ], Y[0,T ])

2 = EQ max
t∈[0,T ]

ρ(Xt, Yt)
2

6 ‖φ‖2∞ EQ max
t∈[0,T ]

ρ′(Xt, Yt)
2. (2.22)

Note that due to the convexity of the boundary,

〈N ′(x),∇′ρ(·, y)(x)〉′ 6 0, x ∈ ∂M.

From this and equations (2.20) and (2.21), it follows that

dρ′(Xt, Yt) 6
√

2(φ−1(Xt)− φ−1(Yt))
〈
∇′ρ′(·, Yt)(Xt), ut dB̃t

〉′
−Kφρ

′(Xt, Yt) dt+
√

2‖βt‖ dt.

Defining

Mt :=
√

2

∫ t

0

eKφs(φ−1(Xs)− φ−1(Ys))
〈
∇′ρ′(·, Ys)(Xs), us dB̃s

〉′
we have

ρ′(Xt, Yt) 6 e−Kφt
(
Mt +

√
2

∫ t

0

eKφs ‖βs‖ ds

)
, t ∈ [0, T ].

So to prove (i), we will estimate the function

ht = EQ max
s∈[0,t]

e2Kφs ρ′(Xs, Ys)
2.

By the Doob inequality, for any R > 0, we have

ht : = EQ max
s∈[0,t]

e2Kφs ρ′(Xs, Ys)
2

6 (1 +R)EQ max
s∈[0,t]

M2
s + 2(1 +R−1) max

s∈[0,t]
EQ

(∫ s

0

eKφr ‖βr‖dr

)2

6 4(1 +R)EQM
2
t + 2(1 +R−1)

∫ t

0

e2Kφs ds

∫ t

0

EQ‖βs‖2 ds

6 8(1 +R)‖∇ log φ‖2∞
∫ t

0

hs ds+ 2(1 +R−1)

∫ T

0

e2Kφs ds

∫ T

0

EQ‖βs‖2 ds, t ∈ [0, T ]. (2.23)

Since h0 = 0, by using the Gronwall inequality, this inequality further implies

hT 6 2(1 +R−1) exp
(
8(1 +R)‖∇ log φ‖2∞

) ∫ T

0

e2Kφs ds

∫ T

0

EQ‖βs‖2 ds (2.24)

By (2.19) and (2.24) we thus have

EQ max
s∈[0,T ]

ρ′(Xs, Ys)
2 6 4(1 +R−1) exp

(
8(1 +R)‖∇ log φ‖2∞

) e2K+
φ T − e2K−φ T

2Kφ
ΠT
x (F logF ).

(i’) For this we use the function

h̃t = e2Kφt EQ max
s∈[0,t]

ρ′(Xs, Ys)
2.

The inequality (2.23) should then be modified as follows:

h̃t := e2Kφt EQ max
s∈[0,t]

ρ′(Xs, Ys)
2

6 e2Kφt(1 +R)EQ max
s∈[0,t]

e−2KφsM2
s + 2 e2Kφt(1 +R−1) max

s∈[0,t]
EQ

(∫ s

0

e−Kφ(s−r) ‖βr‖ dr

)2
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6 4(1 +R) e2K+
φ t EQM

2
t + 2(1 +R−1)

∫ t

0

e2Kφr dr

∫ t

0

EQ‖βs‖2 ds

6 8(1 +R)‖∇ log φ‖2∞ e2K+
φ T

∫ t

0

h̃s ds+ 2(1 +R−1)

∫ T

0

e2Kφr dr

∫ T

0

EQ‖βs‖2 ds, t ∈ [0, T ].

Since h̃0 = 0, this inequality implies

h̃T 6 2(1 +R−1) exp
(

8(1 +R)‖∇ log φ‖2∞ e2K+
φ T
)∫ T

0

e2Kφs ds

∫ T

0

EQ‖βs‖2 ds.

We then conclude that

EQ max
s∈[0,T ]

ρ′(Xs, Ys)
2 6 4(1 +R−1) exp

(
8(1 +R)‖∇ log φ‖2∞ e2K+

φ T
) 1− e−2KφT

2Kφ
ΠT
x (F logF ).

(ii) Without loss of generality, we consider µ = δx, and ν = δy. Let Xt and Yt solve the following SDEs,

respectively:

dIXt =
√

2φ−1(Xt)ut dBt + φ−2(Xt)Z
′(Xt) dt+N ′(Xt) dlt, X0 = x;

dIYt =
√

2φ−1(Yt)P
′
Xt,Ytut dBt + φ−2(Yt)Z

′(Yt) dt+N ′(Yt) dl̃t, Y0 = y.

Then, as explained in the proof of Theorem 2.2, we have

dρ′(Xt, Yt) 6
√

2(φ−1(Xt)− φ−1(Yt)) 〈∇′ρ′(·, Yt)(Xt), ut dBt〉
′

−

(∫ ρ′(Xt,Yt)

0

(
φ−2RicZ(γ̇(s), γ̇(s)) + L log φ− 2|∇ log φ|2

)
(γ(s)) ds

)
dt. (2.25)

Therefore,

ρ′(Xt, Yt) 6 e−Kφt(M̂t + ρ′(x, y)), t > 0 (2.26)

for

M̂t :=
√

2

∫ t

0

eKφs(φ−1(Xs)− φ−1(Ys)) 〈∇′ρ(·, Ys)(Xs), us dBs〉
′
.

Again using the Itô formula, we have

dρ′(Xt, Yt)
2 6 dM̃t − 2(Kφ − ‖∇ log φ‖2∞)ρ′(Xt, Yt)

2 dt

where

dM̃t = 2ρ′(Xt, Yt)(φ
−1(Xt)− φ−1(Yt)) 〈∇′ρ′(·, Yt)(Xt), ut dBt〉

′

which implies

Eρ′(Xt, Yt)
2 6 e−2(Kφ−‖∇ log φ‖2∞)t ρ′(x, y)2.

Combining this with (2.26) we arrive at

W ρ∞
2 (ΠT

x ,Π
T
y )2 6 ‖φ‖2∞ E max

t∈[0,T ]
ρ′(Xt, Yt)

2

6 ‖φ‖2∞ e2K−φ T E max
t∈[0,T ]

(M̂t + ρ′(x, y))2

6 4‖φ‖2∞ e2K−φ T E(M̂T + ρ′(x, y))2

= 4‖φ‖2∞ e2K−φ T
(
EM̂2

T + ρ′(x, y)2
)

6 4‖φ‖2∞ e2K−φ T

(
2

∫ T

0

e2Kφt ‖∇ log φ‖2∞ Eρ′(Xt, Yt)
2 dt+ ρ′(x, y)2

)
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6 4‖φ‖2∞ e2(K−φ +‖∇ log φ‖2∞)T ρ′(x, y)2

6 4‖φ‖2∞ e2(K−φ +‖∇ log φ‖2∞)T ρ(x, y)2

where the second inequality is due to the Doob inequality. This implies the desired inequality for µ = δx
and ν = δy.

Corollary 2.10. If there exists φ ∈ D and a constant Kφ satisfying

RicZ + L log φ− 2|∇ log φ|2 > Kφ

then

(i) for F > 0, ΠT
µ (F ) = 1 and µ ∈P(M),

W ρ∞
2 (FΠT

µ ,Π
T
µT
F

)2 6
2‖φ‖2∞
Kφ

(
e
2K+

φ
T − e

2K−
φ
T
)

exp
(

8‖∇ log φ‖2∞ + 4
√

2‖∇ log φ‖∞
)

ΠT
µ (F logF );

(i’) for F > 0, ΠT
µ (F ) = 1 and µ ∈P(M),

W ρ∞
2 (FΠT

µ ,Π
T
µT
F

)2 6
2‖φ‖2∞
Kφ

(
1− e−2KφT

)
exp

(
8‖∇ log φ‖2∞ e

2K+
φ
T

+4
√

2‖∇ log φ‖∞ e
K+
φ
T
)

ΠT
µ (F logF ).

Proof. It is easily observed that

(1 +R−1) exp
(
8(1 +R)‖∇ log φ‖2∞

)
6 exp

(
R−1 + 8(1 +R)‖∇ log φ‖2∞

)
.

Taking the infimum about R on the right side above, we arrive at

exp
(
R−1 + 8(1 +R)‖∇ log φ‖2∞

)
> exp

(
8‖∇ log φ‖2∞ + 4

√
2‖∇ log φ‖∞

)
which allows to prove (i). The inequality (i’) can be checked in the same way.

3 New construction of function log φ

In this section, we give a new construction of a function φ which satisfies the conditions of the previous

section. To do so, we let ρ∂ be the Riemannian distance to the boundary ∂M and use a comparison

theorem for ∆ρ∂ near the boundary, essentially due to [8]. Note that, by using local charts, it is clear

that ρ∂ is smooth in a neighbourhood of ∂M . We call

i∂ := sup {r > 0 : ρ∂ is smooth on {ρ∂ < r}}

the injectivity radius of ∂M . Obviously, i∂ > 0 if M is compact, but it could be zero in the non-compact

case (sup∅ = 0 by convention). As [16, Theorem 1.2.3] we have:

Lemma 3.1. Let θ, k be constants such that II 6 θ and Sect 6 k. Let

h(t) :=


cos
√
kt− θ√

k
sin
√
kt, k > 0,

1− θt, k = 0,

cosh
√
−kt− θ√

−k sinh
√
−kt, k < 0

(3.1)

for t > 0. Let h−1(0) be the first zero of h (with h−1(0) := ∞ if h(t) > 0 for all t > 0). Then for any

x ∈ M̊ such that ρ∂(x) 6 i∂ ∧ h−1(0) we have

∆ρ∂(x) > (d− 1)
h′

h
(ρ∂(x)). (3.2)
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Note that if k is positive then

h−1(0) =
1√
k

arcsin

(√
k

k + θ2

)
.

We now work under the following assumption:

Assumption (A) There exist non-negative constants σ and θ such that −σ 6 II 6 θ and a positive

constant r0 such that on ∂r0M := {x ∈ M : ρ∂(x) 6 r0} the function ρ∂ is smooth, the norm of Z is

bounded and Sect 6 k for some positive constant k.

Using this assumption, F.-Y. Wang constructed a function φ satisfying φ ∈ D (see [13, p.1436] or [16,

Theorem 3.2.9]). Following his construction, we define

log φ(x) =
σ

α

∫ ρ∂(x)

0

[h(s)− h(r1)]1−dds

∫ r1

s∧r1
[h(u)− h(r1)]d−1du,

where r1 := r0 ∧ h−1(0) and

α := (1− h(r1))1−d
∫ r1

0

[h(s)− h(r1)]d−1ds.

Then from the proof of [12, Theorem 1.1], we know:

Theorem 3.2. Suppose that Assumption (A) holds and RicZ > K. Define

Kp = K − σ
(
δr1(Z) +

d

r1

)
− pσ2,

where

δr1(Z) := sup
{
|Z(x)| : x ∈ ∂r1M

}
. (3.3)

Then all results in Section 2 hold by replacing

Kφ, Kφ,p, ‖φ‖∞ and ‖∇ log φ‖∞

with

K2, Kp, eσdr1/2 and σ

respectively.

In the following we give a new construction of φ by using the function

`(r) =

{
e−2− e−2(1−2r)−1

, 0 6 r < 1
2 ,

e−2, r > 1
2 .

Proposition 3.3. Suppose that Assumption (A) holds. Let

H(r) :=

√
k + θ2

k
cos

(
arcsin

(√
k

k + θ2

)
−
√
k (r ∧ r1)

)
− θ

k
.

Then the function

log φ(x) :=
1

2
σ e2 `

(
H(ρ∂(x))

2H(r1)

)
H(r1) (3.4)

satisfies

N log φ|∂M = σ > −II.

Moreover,

‖φ‖∞ 6 eσH(r1)/2, |∇ log φ| 6 σ

and

L log φ(x) > −σ
(
d
√
θ2 + k + δr1(Z) +

5

2H(r1)

)
.



L.-J. Cheng et al. Sci China Math 15

Proof of Proposition 3.3. First it is easy to see that the function ` satisfies ` 6 e−2. Differentiating `

we obtain

`′(r) =


(

1
2 − r

)−2
e−
(

1
2−r
)−1

, 0 6 r < 1
2 ;

0, r > 1
2

and

`′′(r) =

−2r
(

1
2 − r

)−4
e−
(

1
2−r
)−1

, 0 6 r < 1
2 ;

0, r > 1
2 .

As `′′ < 0 on [0, 1/2), the function `′ is at its maximal point when r = 0, which implies 0 6 `′ 6 4 e−2.

Using the same method, when r =
√

3/6 the function `′′ reaches the minimal value, which implies

`′′ > −3−1/2(3 +
√

3)4 e−(3+
√

3) > −20 e−2 .

Using these results, we have

N log φ|∂M =
1

4
e2 σ`′(0)Nρ∂ = σ,

and

|∇ log φ| = 1

4
e2 σ`′

(
H(ρ∂)

2H(r0)

)
H ′(ρ∂) 6 σ.

Moreover, by Lemma 3.1, we have

L log φ =
1

4
e2 σ

(
`′
(
H(ρ∂)

2H(r0)

)
h(ρ∂)Lρ∂ + `′′

(
H(ρ∂)

2H(r0)

)
h(ρ∂)2

2H(r0)
+ `′

(
H(ρ∂)

2H(r0)

)
h′(ρ∂(x))

)
>

1

4
e2 σ

(
`′
(
H(ρ∂)

2H(r0)

)(
dh′(ρ∂)− sup

∂r0M
|Z|
)

+
h(ρ∂)2

2H(r0)
`′′
(
H(ρ∂)

2H(r0)

))
,

where h is defined as in (3.1) for k > 0. It is easy to calculate that

h′(r) > −
√
θ2 + k.

Combining this with properties of `, we conclude that

L log φ >− σ
(
d
√
θ2 + k + sup

{
|Z|(x) : x ∈ ∂r0∧h−1(0)M

}
+

5

2H(r0)

)
which completes the proof.

Corollary 3.4. Suppose that Assumption (A) holds and RicZ > K. Define

K̃ = K − σ
(
d
√
θ2 + k + δr1(Z) +

5

2H(r1)

)
,

and K̃p = K̃ − pσ2 with δr1(Z) as defined in (3.3). Then all results in Section 2 hold by replacing

Kφ,p, ‖φ‖∞ and ‖∇ log φ‖∞

with

K̃p, eσH(r1)/2 and σ

respectively.
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6 Michel Émery, Stochastic calculus in manifolds, Universitext, Springer-Verlag, Berlin, 1989, With an appendix by

P.-A. Meyer.

7 Elton P. Hsu, Multiplicative functional for the heat equation on manifolds with boundary, Michigan Math. J. 50

(2002), no. 2, 351–367.

8 Atsushi Kasue, A Laplacian comparison theorem and function theoretic properties of a complete Riemannian manifold,

Japan. J. Math. (N.S.) 8 (1982), no. 2, 309–341.

9 Anton Thalmaier, On the differentiation of heat semigroups and Poisson integrals, Stochastics Stochastics Rep. 61

(1997), no. 3-4, 297–321.

10 Max-K. von Renesse and Karl-Theodor Sturm, Transport inequalities, gradient estimates, entropy, and Ricci curvature,

Comm. Pure Appl. Math. 58 (2005), no. 7, 923–940.

11 Feng-Yu Wang, Functional inequalities, Markov semigroups and spectral theory, Science Press, 16 Donghuangchenggen

North Street, Beijing 100717, China, 2005.

12 Feng-Yu Wang, Gradient estimates and the first Neumann eigenvalue on manifolds with boundary, Stochastic Process.

Appl. 115 (2005), no. 9, 1475–1486.

13 Feng-Yu Wang, Estimates of the first Neumann eigenvalue and the log-Sobolev constant on non-convex manifolds,

Math. Nachr. 280 (2007), no. 12, 1431–1439.

14 Feng-Yu Wang, Harnack inequality for SDE with multiplicative noise and extension to Neumann semigroup on non-

convex manifolds, Ann. Probab. 39 (2011), no. 4, 1449–1467.

15 Feng-Yu Wang, Transportation-cost inequalities on path space over manifolds with boundary, Doc. Math. 18 (2013),

297–322.

16 Feng-Yu Wang, Analysis for diffusion processes on Riemannian manifolds, Advanced Series on Statistical Science &

Applied Probability, 18, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2014.

17 Feng-Yu Wang, Modified curvatures on manifolds with boundary and applications, Potential Anal. 41 (2014), no. 3,

699–714.


	Introduction
	Functional inequalities
	Gradient estimates
	Harnack inequalities
	Transportation-cost inequalities

	New construction of function log

