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ABSTRACT 

 

In-silico optimization and molecular validation of putative anti-HIV antimicrobial 

peptides for therapeutic purpose 

 

M. B. Tincho 

Ph.D. thesis, Department of Biotechnology, Faculty of Life Science, University of the 

Western Cape 

 

AIDS is considered a pandemic causing millions of deaths worldwide and a cure for this 

disease is still not available. Failure to implement early treatments due to the poor diagnostic 

methods and ineffective therapeutic regimens to treat HIV patients to achieve complete viral 

eradication from the human body has encouraged the escalation of this disease at an 

exponential rate. Though the current treatment regimens (High Active Antiretroviral 

Therapy) have aided in increasing the lifespan of HIV patients, it still suffers from some 

shortcomings such as adverse side effects and non-eradication of the virus. Thus, there is a 

need for a non-toxic therapeutic regimen to stop further infection of HIV-infected patients. 

Antimicrobial Peptides (AMPs) are naturally occurring peptides which are components of the 

first line of defence of many organisms against infections and have been proven to be 

promising therapeutic agents against HIV. The use of AMPs as anti-microbial agents is due 

to the fact that most AMPs have a net positive charge and are mostly hydrophobic molecules. 

These features allow AMPs to be site directed electro-statistically to the mostly negatively 

charged pathogens. In a previous study, a number of novel anti-HIV AMPs was identified 

using a predictive algorithm Profile Hidden Markov Models (HMMER). The AMP’s three-

dimensional structures were predicted using an in-silico modelling tool I-TASSER and an in-

silico protein-peptide interaction study of the AMPs to HIV protein gp120 was performed 

using PatchDock. Five AMPs were identified to bind gp120, at the site where gp120 interacts 

with CD4 to prevent HIV invasion and HIV replication. Therefore, the aims of this research 
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were to perform in-silico site-directed mutation on the parental anti-HIV AMPs to increase 

their binding affinity to the gp120 protein, validate the anti-HIV activity of these peptides and 

confirm the exclusivity of this activity by testing possible anti-bacterial and anti-cancer 

activities of the AMPs. 

Firstly, the five parental anti-HIV AMPs were used to generate mutated AMPs through in-

silico site-directed mutagenesis. The AMPs 3-D structures were determined using I-TASSER 

and the modelled AMPs were docked against the HIV protein gp120 using PatchDock. 

Secondly, an “in house” Lateral Flow Device (LFD) tool developed by our industrial partner, 

Medical Diagnostech (Pty) Ltd, was utilised to confirm the in-silico docking results. 

Furthermore, the ability of these AMPs to inhibit HIV-1 replication was demonstrated and 

additional biological activities of the peptides were shown on bacteria and cancer cell lines. 

In an effort to identify AMPs with increased binding affinity, the in-silico results showed that 

two mutated AMPs Molecule 1.1 and Molecule 8.1 bind gp120 with high affinity, at the point 

where gp120 bind with CD4. The molecular binding however showed that only Molecule 3 

and Molecule 7 could prevent the interaction of gp120 protein and CD4 surface protein of 

human cells, in a competitive binding assay. Additionally, the testing of the anti-HIV activity 

of the AMPs showed that Molecule 7, Molecule 8 and Molecule 8.1 could inhibit HIV-1 

NL4-3 with maximal effective concentration (EC50) values of 37.5 μg/ml and 93.75 μg/ml 

respectively. The EC50 of Molecule 8.1 was determined to be around 12.5 μg/ml. This result 

looks promising since 150 μg/ml of the AMPs could not achieve 80% toxicity of the human T 

cells, thus high Therapeutics Index (TI) might be obtained if 50% cytotoxic concentration 

(CC50) is established. Further biological activity demonstrates that Molecule 3 and Molecule 

7 inhibited P. aeruginosa completely after 24 hours treatment with peptide concentrations 

ranging from 0.5 mg/ml to 0.03125 mg/ml. Nevertheless, moderate inhibition was observed 

when CHO, HeLa, MCF-7 and HT-29 were treated with these peptides at peptides 

concentration of 100 μg/ml. 

The ability of these AMPs to block the entrance of HIV via the binding to CD4 of the host 

cells is a good concept since they pave the way for the design of anti-HIV peptide-based 

drugs Entry Inhibitors (FIs) or can be exploited in the production microbicide gels/films to 

suppress the propagation of the virus.  
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CHAPTER ONE: LITERATURE REVIEW 

 

1.1. Introduction 

The world has witness deathly pathogens, starting from the mid 19th century to the 

earlier 21st century. Some of these pathogens included Cholera, Malaria parasite, 

Poliovirus, Ebola virus, Chikungunya virus, Viral hepatitis, Mycobacterium 

tuberculosis, Smallpox, Typhus, Herpes simplex virus and last but not least, the 

Human Immunodeficiency Virus (HIV), just to name a few (Pacini, 1854; Pike, 2007; 

Gallagher, 1990; Kuhnke, c1990; Conlon, (n.d.); Bruns, 2000; Marr, and Cathey, 

2013; Khaled, 1993; Miller, 2005; WHO, 2008; UNAIDS, 2010). Though these 

pathogens have caused many fatalities amongst human populations, researchers have 

managed to develop advanced techniques and treatment regimens that have enabled 

most of these pathogens to be kept under control. Moreover, some of these parasitic 

microbes have been eradicated in certain geographic areas (Baxby, 1999; Stern, and 

Markel, 2005; Pillay et al., 2009). Nonetheless, the Human Immunodeficiency Virus 

(HIV) is one of the few pathogens cited above which has caused many deaths on earth 

and is still of a major clinical concern in certain areas of the world, particularly in 

Sub-Saharan Africa (SSA) (Kendall, 2012). 

Human Immunodeficiency Virus (HIV) causes the condition named Acquired 

Immune deficiency Syndrome (AIDS). This condition is mainly termed because of 

the fact that the infection by any type of HIV (HIV-1 and HIV-2) affects the 

individual’s immune system. Later on, the immune system of the infected individual 

deteriorates as the virus gets into healthy human cells. In the long run, the human 

immune system cannot withstand other elementary bacterial infections hence the 

establishment of opportunistic diseases. The situation at which the human immune 

system collapses thus gives the denomination Acquired Immune deficiency Syndrome 

(AIDS).  

The deterioration of the immune system is mostly affected since the primary cells that 

are responsible for the body defence system, namely monocytes, macrophages, 

dendritic cells and T lymphocytes, are targeted by HIV (Chan et al., 1997). This 
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advantage is possible as HIV utilises the CD4 receptor on the surface of macrophages, 

monocytes and T lymphocytes to gain entrance into these cells. Furthermore, the virus 

utilises the Dendritic Cell-Specific Intercellular adhesion molecule-3-Grabbing Non-

integrin (DC-SIGN) receptor on macrophages and dendritic cells to mediate their 

entrance into healthy CD4+ T cells (Geijtenbeek et al., 2000b; Pope and Haase, 2003; 

Su et al., 2004). Since the CD4 molecule is at the centre of the HIV infection 

regardless of the initial route of invasion, a decrease in the body CD4 molecule count 

is observed as the condition of the patient becomes chronic and the immune system 

progressively deteriorates. The decrease of CD4 is as a result of depletion of the 

above-mentioned cells.   

The inability of the human body to fight back HIV invasion, the collapse of the 

human immune system as a result HIV infection and the rate at which people are 

infected, make HIV accounts for the infection with largest number of individuals 

living with an infectious disease in the modern world. As a result of the 

abovementioned, AIDS was declared an epidemic by UNAIDS (Kallings, 2008). 

Judging from the current situation and even though some efforts have been made to 

combat the virus and to reduce HIV infection, the number of HIV-infected people has 

not decreased substantially. As from 2013, UNAIDS global statistics report declares 

that 35 million peoples were still living with HIV, with about 2.1 million new 

infections in the same year. In addition, this epidemic has caused an average of 1.5 

million AIDS-related deaths as from 2013. Looking at the epidemic since its inception 

in 1981, 39 million people have died from AIDS-related illnesses and 78 million 

people have become infected with this virus (UNAIDS fact sheet, 2014). 

Whilst tremendous efforts have been made to develop drugs that could stop the AIDS 

condition, it has been impossible to achieve the goal. Thus, there is neither a cure to 

destroy the virus nor an HIV vaccine to date, to prevent viral infection. The only 

potential treatment developed so far consists of Highly Active Anti-Retroviral 

Therapy (HAART) or Anti-Retroviral therapy (ARV). This treatment regimen can 

only help manage the AIDS condition, so as to prevent further deterioration of the 

body’s immune system, by slowing the progression of HIV and increase the life span 

of the patient (Dybul et al., 2002; Burgoyne and Tan, 2008). However, the treatment 

regimen is accompanied with some side effects, which include: hyperlactatemia, 

hepatotoxicity, hyperglycemia, osteonecrosis, osteopenia and osteoporosis, 
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lipodystrophy syndrome, dyslipidaemia (Montessori et al., 2004), hyperlipidaemia 

and an increased risk of cardiovascular disease (Volberding and Deeks, 2010).   

While the current treatment regimens can improve the disease condition and increase 

the life span of the patient, further solutions for HIV treatments ought to be addressed. 

Therefore, there is a need for additional therapeutic molecules besides the existing 

HAART drugs, which can prevent gp120 attachment to CD4+ T cells and the 

penetration of HIV into human cells. This approach would limit further contamination 

of healthy human cells and prevent spreading of the HI Virus within infected 

individuals. Antimicrobial Peptides (AMPs) have been put forward as a potential 

class of molecule that can be utilised to prevent HIV contamination in human cells 

(Wang et al., 2010; Chen et al., 2012).  

AMPs are considered to be the first line of defence of many prokaryotes and 

eukaryotes and have shown to have a wide range of activity against gram-negative 

and gram-positive bacteria, fungi, cancer cells, protozoa as well as viruses (Andreu 

and Rivas, 1998). Experimental data have also shown that AMPs could inhibit HIV 

proliferation and replication (Wang et al., 2010), and would, therefore, be a likely 

candidate for the design of future peptide-based drugs. Although these AMPs display 

promising therapeutic activity, their unique physicochemical properties and qualities 

could encourage their application as potent microbicides against HIV (Lalezari et al., 

2003; Dwyer et al., 2007). These AMPs might be useful as microbicides in gels, 

creams, films, or suppositories to prevent infection of HIV and if possible other 

Sexually Transmitted Infections (STIs). Additionally, they could be enhanced into 

intravenous solution, to be administered to HIV-infected individual, to prevent further 

binding of HIV to the patient CD4+ T cells. An example of such a fusion inhibitor 

Enfuvirtide, the first HAART which backbone has an AMP origin, and which was 

FDA approved in 2003 (Lalezari et al., 2003). This AMP based drug could stop or 

reduce viral replication in human cells and therefore suppress spreading of the virus in 

infected patients.  

The first section of this review will focus on the HIV-1 genome, its structure, and life 

cycle. The human immune system during HIV-1 infection, the evasion of this immune 

system by the HI Virus will be discussed in the later part of this section. The second 

section will elaborate on the ability of AMPs to counter HIV invasion, based on the 
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virus structures and its mode to evade the human immune system. Finally, the review 

will look at the various approaches to applying these AMPs as new molecules to 

produce HAART or ARVs. 

1.2. HIV/AIDS 

Human Immunodeficiency Virus (HIV) is a retrovirus, which belongs to the 

Retroviridae family. It has a well-developed and advanced structure as compared to 

other single cell microorganisms, especially for a virus. Such structure has enabled 

the HI Virus to establish a perfect defence mechanism to invade the host strategic 

cells such as the macrophages and dendritic cells. These cells favour HIV invasion 

because the virus uses the surface receptor CD4+ molecule to get entrance into these 

host cells. Additionally, these mechanisms are able to evade the human immune 

system because the virus can bypass these defences (Kamp et al., 2000). 

1.2.1. The structure and life cycle of HIV 

1.2.1.1. HIV genome and structural organisation 

A mature HIV virion is spherical in shape and has a size of 100 to 120 nm in 

diameter. It is made up of a lipid bilayer that encapsulates its cytoplasmic contents. 

This lipid bilayer membrane is constituted of viral Env glycoproteins and viral 

proteins (Sierra et al., 2005). Attach to this lipid bilayer are the viral glycoproteins, 

the surface membrane protein glycoprotein gp120, and the transmembrane 

glycoprotein gp41. Just beneath the viral membrane are the matrix antigen protein 

p17, followed by the capsid core protein p24, which enclose the two unspliced 

genomic RNAs of the virus, forming a ribonucleoprotein complex. The two complete 

genomic RNA strands could explain the reason whilst HIV is called a diploid virus. 

However, the genetic material of HIV within infected cells is kept in the form of a 

proviral double-stranded DNA. Besides the RNA genome, integrase, protease and 

reverse transcriptase are found in the capsid core. Additional proteins included in the 

capsid core are the accessory proteins rev, tat, vpr, vpu and nef (Figure 1.1).  
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Figure 1.1: Physiological arrangement of an HIV virion. Figure adapted from Shum 

et al., 2013. 

A mature viral genome is made up of a single-stranded, positively charged RNA, 

roughly 9,7 Kb in length (Figure 1.2). The HIV RNA genome is structurally arranged 

with seven genetic elements: Long Terminal Repeat (LTR), Trans-activation 

Response Element (TAR), HIV Rev Response Element (RRE), PE, SLIP, Cis-acting 

nuclear Retention Sequences (CRS) and INS. These genetic elements serve as the 

baseline for the future genetic material for either reverse transcription and/or proteins 

synthesis. Once the fusion of HIV with the host cell has occurred and reverse 

transcription has happened, a double-stranded viral DNA genome is formed. 

The viral DNA consists of nine Open Reading Frames (ORFs), namely gag, pol, vif, 

vpr, vpu, tat, rev, env and nef. Occasionally, a 10th gene named tev (p28) is part of the 

genomic constituent of HIV (Kuiken et al., 2008). Each gene will be responsible for 

the rebuilding of the new mature HI Virus to be produced at the end of the life cycle. 

Hence, the gag gene encodes for the viral matrix (p17), capsid (p24) and nucleocapsid 

(p7). The pol gene encodes for protease (p10), reverse transcriptase (p66/p51), 

integrase (p32) and RNase H. The env encodes for the surface glycoprotein (gp120) 

and the transmembrane glycoprotein (gp41). The vif is associated with HIV 

infectivity, while rev has a role of expressing the viral protein. Vpr, vpu, tat, and nef 

encode respectively for the viral protein R, viral protein U, transactivator protein and 

the negative regulator protein (Suzuki and Suzuki, 2011).  
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Figure 1.2: The genomic arrangement of HIV. The various colours are used to 

differentiate the segments on HIV genome. The numbering of each position in HIV is 
made according to HXB2CG. The positions of the major genomic segments are 
shown. LTR: Long terminal repeat, MA: viral matrix, CA: capsid protein, NC: 

nucleocapsid, PR: protease, RT: reverse transcriptase, IN: integrase, SU: surface 
glycoprotein and the TM: transmembrane glycoprotein. HIV accessory genes: vif, vpr, 

tat, rev, nef and vpu (for HIV-1) or vpx (for HIV-2). The figure was adapted from 
Suzuki and Suzuki, 2011. 

1.2.1.2. HIV classification and genetic variability  

HIV-1 is the most mentioned HIV type in literature though another type of this virus 

exists: HIV-2. The emphasis is mostly placed on HIV-1 because this type of the virus 

is more virulent and more infective as compared to its counterpart HIV-2. Thus, HIV-

1 accounts for the major pathogenic infection of this virus worldwide, while the low 

infectivity of HIV-2 enabled fewer people to be infected with the virus when exposed 

to it. The other major difference between HIV-1 and HIV-2 is that HIV-2 infected 

individuals are majorly located in West Africa while HIV-1 is distributed across the 

world (Reeves and Doms, 2002; Gilbert et al., 2003). 

The differences between HIV-1 and HIV-2 infectivity may also be due to their genetic 

variability. Although HIV-2 is a stand-alone and a distinct type of HIV, HIV-1, 

however, shows some variability within the sequence of this type; hence various 

groups of HIV-1 have emerged to separate this diverse organism. The sequence 

variability arises even within the entire genome amongst various samples obtained 

from different patients as well as different samples obtained from the same patient 

(Alizon et al., 1986; Saag et al., 1988). This may be as a result of error attributed to 

the reverse transcriptase of HIV-1 RNA that initiates mutations within the HIV 

genome, during the process of reverse transcription (Mansky and Temin, 1995; 
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Preston et al., 1988). Another explanations may either be the replication rate of the 

virus, which is high and fast (Perelson et al., 1996), or the recombination of different 

HI Viral genomes in the host (Robertson et al., 1995; Burke, 1997). And lastly, the 

genetic variability within the same patient may be due to multiple variants of the 

virus, as a result of the patient being exposed to the virus multiple times. However, 

this aspect of recombination is rarely observed (Artenstein et al., 1995, Redd et al., 

2011). 

Due to the mutations and variability observed within the genome of various samples 

collected from HIV patients, HIV-1 could be divided into four separate groups. These 

groups are comprised of the “major” group M, the “outlier” group O and two groups, 

N and P. Group M of HIV-1 is the so-called major group due to fact that it accounts 

for the majority of HIV-1 infected patients around the world. The M group is sub-

divided into nine subtypes or clades represented by the alphabetic letters A, B, C, D, 

F, G, H, J and K; whilst subtype C is the most prevalent strain among HIV-1 subtypes 

(Gaschen, et al., 2002; WHO, 2011). These various subtypes were found when 

sequencing the genome of the virus obtained from patients, and observation was made 

that these sequences exhibit around 20% differences in their env nucleotide sequence. 

Furthermore, the variability between various HIV-1 groups was about 35% in the 

nucleotide sequence of the env gene (Gaschen, et al., 2002).  

Besides the subtypes mentioned above, which belong to the M group of HIV-1, an 

additional subtype is said to appear in this group and is due to the combination of the 

various genome subtypes found within the M group, therefore the name Circulating 

Recombinant Forms (CRFs) (Figure 1.3). This subtype is divided again into four sub-

subtypes, namely CRF01_AE, CRF02_AG, CRF03_AB, and CRF04_cpx. An 

example to illustrate the recombination of this sub-subtype could be CRF03_AB, 

which genome is majorly constituted with the genome of subtypes A and B 

(Robertson et al., 2000). The phenomena of recombination observed in HIV-1 could 

be explained in the case where a patient is infected with two subtypes of group M 

virus, the two genetic materials are mix and create a hybrid virus. This is done with a 

process similar to sexual reproduction, also called “viral sex” (Burke, 1997). 

The geographical distribution of HIV is also diverse. While group O is restricted to 

West and central Africa, group N, on the other hand, is located in Cameroon as it was 
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discovered in this country in 1998. The group P, which is related to gorilla simian 

immunodeficiency, was discovered in a Cameroonian woman (Plantier et al., 2009). 

However, group M is highly distributed in regions such as Central, South, East and 

West Africa, Europe, the Americas, Japan and Australia (Buonaguro et al., 2007). 

 

Figure 1.3: Classification of the various HIV types, groups, and sub-types. The 

diagram was adopted from and modified from WHO 2011. 

1.2.1.3. HIV life cycle  

The HI Virus life cycle only begins after it has attached its surface membrane, gp120 

to the CD4 receptor molecules of macrophages, monocytes, dendritic cells and T 

lymphocytes (Berger et al., 1999). The CD4 molecules on the surface of these cells 

act as the primary receptor of HIV. Hence, once the virus gp120 has attached to the 

CD4 surface molecule, the HIV-1 membrane protein gp120 undergoes a 

conformational change, allowing the exposure of the chemokine receptors (CCR5 or 

CXCR4) to bind to the glycoprotein gp120. The chemokine receptors play the role of 

co-receptors in the process of HIV infection and their attachment to gp120 enable a 

more stable complex formation between the virus and the human cells (Arrildt et al., 

2012). 

Following the complex formation between HIV membrane protein and human cells, 

the fusion of membranes occurs, and the virus releases its contents into the human 

cells and the capsid membrane is sheared through an uncoating process. This 

procedure allows the release of viral genetic material and the associated protein into 

the cytoplasm of the infected human cell. Immediately after, the virus RNA 

undergoes reverse transcription to generate a double-stranded complementary DNA 

(cDNA) molecule. This step is followed by the integration of the HI Virus DNA with 

the human DNA, with the help of the viral integrase protein. The integrated DNA is 
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then transcribed into mRNA, which will then be spliced into many small segments. 

The various spliced mRNA will be carried from the cellular nucleoplasm to the 

cytoplasm where the translation of the mRNA will take place. 

The translation enables the formation of accessory proteins such as rev, tat, and nef as 

these proteins are crucial for the virus assembly and reconstitution. The tat protein 

will encourage the formation of the new virus to be produced in future; whilst the rev 

protein will enable the transportation of the unspliced recombinant genetic material 

from the cellular nucleus to the cellular cytoplasm, where they are spliced. Also, other 

components of HIV such as the gag and env proteins are produced after the 

translation from the mRNA. The genetic material is also formed here and all the 

formed viral components are packaged into the future virions. As the assembly is 

proceeding to completion, a budding process is initiated on the human infected cell 

membranes and the protease cleaves the viral polyproteins to yield a functional HI 

Virus during the maturation process. These mature virions are now capable of 

infecting other human cells (Turner and Summers, 1999; Trkola, 2004).      

 

Figure 1.4: Life cycle of HIV. The figure was adapted and modified from Engelman 
and Cherepanov, 2013. 
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1.2.2. Infectivity of the disease and the principal role of gp120 in HIV infection 

1.2.2.1. HIV infection and pathophysiology 

HIV major routes of infection still remain the contact with HIV infected blood, 

mostly during blood transfusion, infection from mother-to-child during pregnancy, 

delivery and during breastfeeding, through sexual intercourse with an infected 

partner, and sharing a needle during drug injection with an infected person 

(Markowitz, 2007; Coutsoudis et al., 2010). Once in the human body, the virus gets 

into contact with CD4 related cells such as macrophages, monocytes, dendritic cells 

and T lymphocytes, so as to gain entry into these cells (Chan et al., 1997; Pope and 

Haase, 2003; Su et al., 2004). The entrance of the HI Virus to the patient cells 

following the infection of a human by the virus is the initiation for the HIV/AIDS 

disease condition. The disease condition is characterized by two major phases, which 

include an acute phase and a chronic phase that might lead to AIDS, with the 

appearance of opportunistic illnesses. Though the initial phase of HIV infection is 

said to be asymptomatic and is not of a major clinical concern to the patients health, 

the infection however is manifested by some signs of influenza-like illness, 

temperature increase, headaches, inflammation of the lymph nodes and some viral 

infection related symptoms (Kahn and Walker, 1998). These symptoms are not of 

major importance since many infectious pathogens have these manifestations. 

Once the macrophages, monocytes, dendritic cells and T cells have encountered the 

presence of the HI Virus, there is activation of the cellular and humoral immune 

systems via the macrophages and the dendritic cells, to inactive the HI Virus within 

the circulatory system. Though a rise of CD4 molecules is observed at the beginning 

of the HI Virus invasion, there is still a drop in the CD4 molecule count as the 

infection progresses with time. Such a decrease in the CD4 count in the human body 

is synonymous to HIV destroying the cells that are responsible for the body defence 

mechanisms. On the other hand, the decrease in CD4 counts correlates with an 

exponential increase in the viral load of HIV as the virus infects new human cells 

(Cadogan and Dalgleish, 2008). The decrease in CD4 molecules might also be due to 

the fact that CD8+ T cells destroy HIV-infected cells, as the cytotoxic T cells have to 

control the viral levels or by undergoing apoptosis (Pillay et al., 2009). Following the 

depletion of CD4 molecules within a few weeks of HIV infection, there is a 
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progression in the immune system response, with the production of immunoglobulin 

G (IgG) and immunoglobulin M (IgM); hence a slow rise in CD4 counts and a 

reduction in viral load. These antibodies also aid in the diagnosis of HIV and give an 

idea of the stage of the infection (Hauck et al., 2010; Wang et al., 2010).  

Whilst there is a gradual maintenance in the CD4+ T cells to fight the HI Virus, the 

viral load is still increasing as the immune system in ineffective and there is an 

inability to produce new T cells. This period is marked as a time of clinical latency 

and may persist up to a period of four to five years. This period is irreversible and the 

situation is progressing towards a chronic phase of the condition since there is more 

depletion of the mucosal CD4+CCR5+ T cells. This is aimed at preventing the 

infection of more T cells with the help of CCR5 co-receptor (Brenchley et al., 2004). 

At this point, the patient ought to be placed on treatment to boost the immune system 

by reducing the viral load and increase the CD4 molecule count.  

Though the body seems to be at a stable stage, the immune system and the defence 

mechanism of the body are at their maximum level of protection but cannot do much 

to avoid further cells contamination, as both CD4+ and CD8+ T cells are critically 

low. Consequently, there is a breakdown of the immune system and the installation of 

opportunistic illnesses, which may lead to AIDS. The main problem affecting the 

collapse of the immune system is due to the fact that the very same cells responsible 

for eliminating HIV seem to play deleterious roles by driving chronic immune 

activation, thus the failure of the patient defence mechanism and a progression to 

AIDS (Quaranta et al., 2012). 

1.2.2.2. Mechanism of HIV entry into host cells: the prime role of gp120 

The fundamental principle of drug screening and design for a particular disease is to 

study the disease at a detail level, its route of infection and the different molecules 

involved in its propagation or its life cycle within the human cells. In the context of 

HIV, the entry of the virus is a multi-step process, of which many drugs have been 

designed to act at a particular level of the HI Virus life cycle. Regardless of these 

therapeutic regimens, new cells are still infected. Due to the fact that gp120 

glycoprotein is a crucial HIV protein, with its role well established and found to be a 

key component in the process of human cells infection by the HI Virus. Reviewing its 
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composition, structure and role in HIV infection will help shed light on the 

importance of this protein in the process of viral infection. Additionally, It may 

illustrate some suggestions to counteract this viral infection to other healthy human 

cells (Kamp et al., 2000; Briz et al., 2006). 

1.2.2.2.1. The envelope glycoprotein of HIV: the surface membrane protein 

gp120 

The HI Virus envelope membrane is an assembly of polypeptide moieties forming the 

glycoprotein gp160. The splicing of gp160 generates the surface membrane protein 

gp120 and the transmembrane protein gp41 by cellular proteases. The surface 

membrane protein is anchored externally to the virus lipid bilayer and is linked to the 

transmembrane protein gp41 with non-covalent interactions. Both proteins are 

compiled in a trimer of heterodimer molecules (Dowbenko et al., 1988; Finzi et al., 

1999). Since the gp120 forms part of the outer membrane receptor, it is the most 

important of both proteins as it enables the infection of human cells, by attaching to 

CD4 molecules of macrophages, monocytes, T lymphocytes and dendritic cells. Thus, 

it plays a key role in the host attachment to the HI Virus. Though the transmembrane 

protein gp41 is not of major importance at the initial stage of infection, it contains the 

fusion protein, the main role of which is to mediate host cell-HIV-1 membrane 

attachment, and also helps the formation of a linker for the delivery of the viral 

genetic material to the host cell (Pope and Haase, 2003; Su et al., 2004). 

A close analysis of the entire organization of the membrane protein reveals that this 

protein is made of segments of conserved regions in addition with extremely variable 

regions. It is said to exist of 6 conserved regions and they are represented as C1-C6. 

Nonetheless, only 5 conserved regions are recognized and designated as C1-C5 and 

form the core of the membrane protein. The variable regions, on the other hand, are 

labelled as V1-V5 and they formed the surface of the protein (Modrow et al., 1987). 

The gp120 contains complete conserved cysteine amino acids that enable the 

formation of disulphide bonds; of which 9 highly conserved disulphide bonds are 

present on this protein (Wiley et al., 1986; Leonard et al., 1990).  

The protein is also made up of highly glycosylated regions, which accounts for about 

half of the protein’s molecular weight. The glycosylated moiety is attributed to the 

presence of roughly 24 N-linked glycans being found on gp120 (Matthews et al., 
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1987; Leonard et al., 1990). Though the glycosylation enables the proper folding and 

final conformation of gp120 protein so as to mediate an exposed CD4-binding site (Li 

et al., 1993), additional function of the HI Virus N-linked sugars moiety is their vital 

role in helping the virus to escape attack from neutralization antibodies (Wei et al., 

2003). 

 

Figure 1.5: Structural representation of gp120 sequence. The variable regions are 
coloured orange and are labelled V1-V5, and the protein backbone is coloured black. 

The high-mannose, hybrid-type glycans and complex glycans are shown in black and 
purple. The disulfide bridges are designated in blue. This picture was taken from and 

modified from Zolla-Pazner, 2004.   

 

1.2.2.2.2. The structure of gp120  

Since the surface membrane gp120 is said to be the point of contact with 

macrophages, monocytes, T cells via CD4 molecules, thus mediating the entrance of 

the virus through gp120-CD4 binding. Furthermore, knowing that the adhesion of any 

pathogen to the host cell surface may prevent any clearance (Cossart and Sansonetti, 

2004; Pizzaro-Cerda and Cossart, 2006a), there is a need to prevent gp120-CD4 

interaction, thus studying gp120 structure may help develop a proper competitive 

inhibitor of CD4 binding. 
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With respect to the complexity depicted by gp120 protein, the availability of the 

glycosylated regions within this protein has not made it easy to obtain the protein 

crystal structure at its final conformation. Though the importance of these N-linked 

glycans have been questioned previously during the gp120-CD4 interaction, a report 

has however suggested that the glycosylation does not really affect gp120-CD4 

interaction but the glycosylation rather enables gp120 to generate a proper 

conformation required for CD4 binding (Li et al., 1993). Putting the above finding 

into context, the first crystal structure of gp120 was obtained by removing the sugars 

moieties found on the protein through deglycosylation and by conserving the flexible 

variable loops of the protein (Kwong et al., 1998). The glycoprotein gp120 structure 

was solved in conjunction with the complex it formed between and CD4, and the 

antigen-binding fragment (Fab) of the anti-gp120 antibody 17b (Kwong et al., 1998; 

Kwong et al., 2000). An examination of the structure generated by Kwong et al., 1998 

reveals that gp120 is made up of 25 β- and 5 α-helical loops (Figure 1.6). It was also 

noticed that the structure is folded into two major domains. The inner domain of 

gp120 extends from the N- and C-termini to the V1/V2 loops, whereas the outer 

domain consists of the V4 and V5 loops. The two domains are connected together by 

a four-stranded bridging sheet (Figure 1.6).  

 

Figure 1.6: Image depicting the carton representation of gp120 conformation in its 3-
Dimensional structure with the number of β- and α-helical loops. The structure is 
ready to bind the CD4 molecule of the host cells. The two domains are clearly visible 

with the bridging sheet. Adapted from Kwong et al., 1998.  
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The complex formed by gp120, CD4 and 17b clearly illustrates the events going on 

during HIV infection. The complex elucidated by Kwong and colleagues in 1998 

indicates that CD4 binds to gp120 at the interface of the inner and outer domains and 

the bridging sheet, with the strong mediation of Phe43 on CD4 (Figure 1.7).  

A further study conducted by Huang et al., 2004 with the aim to obtain the main 

residues involved in gp120-CD4 interaction and to neutralize this binding, noticed 

that Asp368 on gp120 and Arg59 on CD4 enable the bonds to stay together (Huang et 

al., 2004). Conversely, the removal of Phe43 and Arg59 residues from CD4 disable 

the ability of gp120 interacting with the CD4 receptor (Moebius et al., 1992; Ryu et 

al., 1994). The relevance of these results permitted the design of polypeptides 

mimicking CD4 domain of interaction with gp120, which could stop gp120 from 

binding to CD4 in a competitive binding manner (Meier et al., 2012).       

 

Figure 1.7: Carton representation of gp120 and CD4 interaction during HIV invasion 
of the host cells. The glycoprotein is in grey while CD4 receptor is in black colour. 
CD4 domains interacting with gp120 are in green and blue and the important residues 

are numbered Phe43 and Arg59. The image was adapted from Meier et al., 2012.  

 

1.2.2.2.3. The role of gp120 in HIV infection 

Though the HIV tropism infection will dictate the type of chemokine co-receptors to 

be used in the virus transition to gain entrance to the human cells via gp120, the 
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chemokine can be of M-tropism if CCR5 co-receptor is used to mediate the entrance 

of HIV to macrophages and CD4+ T cells. Such mediation involving CCR5 HIV-1 

gp120 is called the CD4-dependent as well as CCR5 dependent intracellular signals. 

However, the chemokine can be a T-tropism if CD4 T cells, as well as macrophages, 

are infected with the mediation of CXCR4 co-receptor in a CD4-independent manner 

(Cicala et al., 1999; Iyengar et al., 1999; Moser, 1998). However, it is reported that 

early HIV infection utilises CCR5 as co-receptor whereas CXCR4 co-receptor is 

frequently used at the later stage of viral infection in certain patients (Connor et al., 

1997; Feng et al., 1996).  

Regardless of the differences in co-receptors used during HIV infection, it is known 

that this virus life cycle only begins once the viral membrane protein gp120 is 

attached to a CD4 molecule and a co-receptor of macrophages, monocytes, T cells 

and dendritic cells is utilized (Moser, 1998). Thus, gp120 could become the centre of 

attention to prevent HIV infection to human cells. The main purpose of gp120 binding 

to CD4 molecule is to mediate the conformational change of the protein at its V3 loop 

(Sattentau and Moore, 1991), hence contributing to the exposure of the co-receptor-

binding site. Furthermore, this binding also permits the dissociation of gp120 from 

gp41 by the resulting conformational changes. As such, reports have shown that the 

deletion of the V3 loop, gp120 was unable to bind the CCR5 chemokine receptor 

(Lapham et al., 1996; Trkola et al., 1996). 

Besides the conformational change observed at the V3 loop after gp120 binds to CD4, 

the binding of gp120 to CD4 also mediates major alterations of the variable loops V1 

and V2, therefore enabling the exposure of protected residues (Morikita et al., 1997). 

The changes of these loops enable the exposure of the essential domain required for 

the binding of co-receptor linked with CCR5 and CXCR4 (Alkhatib et al., 1996; 

Rizzuto et al., 1998; Kwong et al., 1998). Unexpectedly, CD4 has also been reported 

to exhibit minor conformational changes after binding to gp120 (Kwong et al., 1998).   

1.2.2.3. Immunology of HIV/AIDS and the evasion of the human immune system  

Once the virus gets into contact with the human system, the pathogen-associated 

molecular pattern (PAMP) is triggered, which in return actives the pathogen 

recognition receptors (PRRs) of the body. These cascades of events will then active 
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the cellular and the humoral immunity of the hosts, which will participate in the 

clearance of the HI Virus in the system. However, despite the fact that multiple 

defence systems are put in place by the human body to face such an invasion, the HI 

Virus infection still progresses to the stage of AIDS due to the virus ability of evading 

these defence mechanisms.  

1.2.2.3.1. Cellular immune response 

The ability of the innate immune system to react to a microbe invasion is due to a 

well-coordinated cellular immune response, through the dendritic cells and the 

macrophages. These cells are activated by the secreted PAMPs and while the 

macrophages would attempt to remove the virus by phagocytosis and inflammatory 

molecules, the dendritic cells will produce cytokines to activate the leukocyte 

membrane-associated proteins or major histocompatibility complex type 1 and 2 

(MHC-1 and MHC-2). These MHCs are termed human leukocytes antigens (HLA) 

(Mogensen, 2009; Akira, 2009). 

Dendritic Cells Specific Intercellular adhesion molecule-3-Grabbing Non-integrin 

(DS-SIGN) is one such molecule that the dendritic cell produces to stimulate the T 

cells defence mechanism. It is activated through the multiple histocompatibility 

complex type 2 (MHC-2), which will activate the naïve CD4+ T cells by binding to 

the Intercellular Adhesion Molecule 3 (ICAM-3). Although the T cells will mature 

and differentiate to generate different T cells (T helpers, T follicular, and T regulator), 

the naïve CD4+ T cells through the T-cell receptor (TCR) will bind to the B7 

molecule of B cells and activate antibodies production, which will attempt to 

neutralize the propagation of the HI Virus (Look et al., 2010). The T helpers are the 

most HIV-specific CD4+ T cells and will help to reduce viral reproduction and 

control the level of viremia in an infected person (Kalams et al., 1999; Brander and 

Walker, 1999; Goulder and Walker, 1999).  

Regardless of the tremendous works accomplished by the CD4+ T cells to eradicate 

the virus, the real viral battle is nonetheless accomplished by the HIV-1 specific 

cytotoxic CD8+ T lymphocytes (CTL) through specific mechanisms. These cells are 

activated via the multiple histocompatibility complex type 1 (MHC-1). The MHC-1 

presents the B7 molecule on dendritic cells to bind to CD28 T-cell receptor of CD8+ 

T cells and this binding triggers the activation of CD8+ T cells. This complex CTL-
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TCR binds the HI Virus peptides that are related to the MHC-1 molecules expressed 

on the surface of the infected cells. The binding stimulates the production of proteases 

to kill the infected cells (McMichael and Rowland-Jones, 2001). The activity of HIV-

1 specific cytotoxic CD8+ T lymphocytes (CTL) has been shown to play a crucial 

role at the beginning of HIV infection and has proven to be efficient to control HI 

Virus replication (Ogg et al., 1998; Brander and Walker, 1999; Goulder and Walker, 

1999). 

Another mechanism of CTL neutralizing HIV-1 is made possible with the interaction 

of the Fas ligand (FasL) on the CTL membrane surface with the Fas molecule on the 

HI Virus. This contact causes the infected cells to lyse through the process of 

apoptosis (Hadida et al., 1999). The presence of high amounts of HIV-1 specific CTL 

has been detected in the blood of HIV-seronegative individuals, but who were 

previously exposed to the virus (Bernard et al., 1999).  

The ability of the HIV-1 specific cytotoxic CD8+ T lymphocytes (CTL) to reduced 

HIV-1 replication is determined by the presence of various alleles of HLA-1 and 

HLA-2. This argument is advanced as observations have been made that long-term 

non-progressors (LTNP) harboured certain type of HLA alleles, which have been 

revealed to possess qualitative and quantitative CTL responses (Migueles et al., 2002; 

Betts et al., 1999; Pontesilli et al., 1998). The varieties and importance of such alleles 

will be discussed properly in 1.2.2.3.3.1..  

1.2.2.3.2. Humoral immune response 

The ideal humoral response of the human defence system during HIV invasion ought 

to be the secretion of neutralizing antibodies to inhibit the viral replication and if 

possible eradicate the virus in the patient circulatory system. However, it has been 

shown that the specific humoral immune response during HIV invasion contributes 

very little during HIV infection and its responsibility to stop the HI Virus replication 

and/or to eliminate the virus into the patient bloodstream is limited (Sierra et al., 

2005). 

During the HIV humoral immune response, the neutralizing antibodies are supposed 

to bind the virus and mediate the virus incorporation and eradication by phagocytosis. 

Nevertheless, conclusive reports have indicated that the sera of HIV-1 infected 

 

 

 

 



 19 

individuals were unable to reduce a considerable amount of HIV-1 in an in-vitro 

experiment (Kostrikis et al., 1996). The problem of such inefficacy could be 

explained by the fact that the reduction of HIV replication by antibodies is mediated 

with an amount of total neutralizing antibodies in the system as oppose to the fact that 

HIV suppression and eradication would have been possible with the intervention of 

total HIV-1 specific neutralizing antibodies (Sierra et al., 2005).  

Additionally, an observation was made on the ability of HIV-1 to overcome the 

neutralizing antibodies directed against HIV-1 glycoprotein gp120, thus the 

neutralization-sensitive HIV-1 were replaced by immune escaping HIV-1 variants. It 

was achieved by either mutating the residues involved in the conformational changes 

of gp120 (Wrin et al., 1994); and/or by changing the glycosylation arrangement of 

gp120 (Wei et al., 2003). With respect to all the mechanisms put in place by the 

immune system to combat HIV and therapeutic regimens, there is still a sense that 

these tactics are not enough, as the HIV infection would still progress to the chronic 

stage of AIDS. While this is due partially to the ability of the virus to mutate and/or 

change as different strategies are used, it is also due to some genetic variability 

amongst human genomes.  

1.2.2.3.3. HIV evasion of the human immune system and opportunistic diseases 

The effort made by the immune surveillance in response to the HI Virus invasion 

though well coordinated and organized face some challenges, either due to the 

difficulty to generate a strong response or due to the capacity of the virus to bypass 

these defence mechanisms by using their own molecules.  

1.2.2.3.3.1. The host genetic factor for HIV infection progression  

Many observations have shown that the time of disease progression is associated with 

the genetic variations of the human leukocytes antigen (HLA) haplotypes (Kamp et 

al., 2000). Studies have detailed that long-term non-progressors (LTNP) infected with 

HIV-1 possessed a high amount of specific HLA class 1, namely HLA-A1, HLA-A2, 

HLA-B14, HLA-B17 and HLA-B27. The HIV-1 infected LTNP patients with HLA-

B27 allele were mostly found to be heterozygous for this class of loci (Louie et al., 

1991; Kamp et al., 2000).  
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On the other hand, reports have also indicated that HIV-1 infected individuals 

harbouring the HLA-B35 allele were presenting the possibility to be rapid progressing 

patients for the disease. This allele was mainly found to be responsible for the rapid 

development of AIDS in Caucasians (Carrington et al., 1999b). While the HLA-B35 

allele was also found in HIV-negative female Gambian prostitutes, however, they 

possessed cytotoxic T lymphocytes (CTLs) capable to vigorously act against four 

HIV-1 and HIV-2 cross-reactive peptides epitopes (Rowland-Jones et al., 1995). The 

same observation of genetic variations associated with HIV progression was also 

reported for HLA class 2, where HIV-1 infected individuals LTNP exhibit HLA-DR5 

and HLA-DR6 alleles, while on the other hand, rapid disease progressing patients 

have the HLA-DR1, HLA-DR3 and HLA-DQ1 alleles (Magierowska et al., 1999; 

Kamp et al., 2000).  

Besides the genetic predisposition of MHC that facilitates the progression of HIV 

infection to AIDS, scientific evidences on the genetic variability of HIV-1 co-

receptors have also contributed to progression to AIDS. In vivo experiments have 

proven that the natural ligands of co-receptor CCR5 (MIP-1 alpha, MIP-1 beta, and 

RANTES) and co-receptor CXCR4 (SDF-1) were able to inhibit T cell tropic or 

monocyte tropic HIV-1 replication (Cocchi et al., 1995; Oberlin et al., 1996). Since it 

is known that CCR5 co-receptor (R5 strains) initiates HIV-1 infection and that 

CXCR4 (X4 strains) only appear at the later stage of infection, therefore the 

appearance of X4 viruses could be associated with the progression to AIDS (Connor 

et al., 1997; Kupfer et al., 1998). Additionally, different genetic variations within 

CCR5 gene were identified and they play a vital role in the progression of HIV-1 

infection (Carrington et al., 1999a). Nonetheless, total protection against HIV-1 

infection and/or reduce progression to AIDS was accomplished when a deletion of a 

32 bp was performed within the CCR5 gene (CCR5-delta32) (Dean et al., 1996; 

Michael et al., 1997).  

1.2.2.3.3.2. The virus strategy contributing to HIV infection progression 

The inability of the immune system to properly prevent the progression of HIV 

infection to AIDS could not only be justified by the genetic variability of MHC and 

HIV co-receptors. Such immune escape could also be explained by the role played by 

the HI Virus Tat, Vpu, and Nef. Many proofs of the down-regulation of MHC-1 after 
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HIV infection have been put forward (Scheppler et al., 1989) and as such, early 

results have confirmed the initial hypothesis and have shown that the down-regulation 

was due to the viral Tat protein (Howcroft et al., 1993).  

Another viral protein involved in the down-regulation of MHC-1 is the Vpu, even 

though not initially implicated in this process. However involved in the proteolytic 

degradation of newly synthesized CD4 in the endoplasmic reticulum (Willey et al., 

1992a; Willey et al., 1992b), Vpu was designated to be involved in the down-

regulation of cell surface expression of MHC-1 molecules by inducing the rapid loss 

of synthesized endogenous MHC-1 α-chains (Kerkau et al., 1997). The same role was 

also attributed to Nef where mediating the down-regulation of MHC-1, targets the 

CD4 degradation (Schwartz et al., 1996; La Gall et al., 1998). 

The other major contributor for the evasion of the defence immunity by HIV and the 

deterioration of the human immune system is the presence of CD4 molecule on the 

surface of the main cells involved in the defence system, namely 

macrophages/monocytes, dendritic cells and T lymphocytes. The HI Virus entrance 

into T cells is mediated by the attachment of virus surface glycoprotein gp120 to CD4 

of the cells cited above (Chan et al., 1997). This attachment enables the gp120 to 

undergo conformational changes and contribute to gp120 binding to HIV co-receptors 

CCR5 and CXCR4; hence the virus can commence its cycle and survive in the human 

system.  

Likewise the use of CD4, the virus also utilises the Dendritic Cell-

Specific Intercellular adhesion molecule-3-Grabbing Non-integrin (DC-SIGN) 

receptor on macrophages and dendritic cells to enable its entrance into healthy CD4+ 

T cells (Geijtenbeek et al., 2000b; Pope and Haase, 2003). Conclusive reports have 

shown that this is possible because the viral gp120 protein has a stronger binding 

affinity to DC-SIGN receptor of dendritic cells, thus preventing the DC-SIGN to bind 

to the Intercellular Adhesion Molecule 3 (ICAM-3) (Su et al., 2004). The 

consequence of such action will be the inability of the dendritic cells to activate the 

DC-mediated T cells (Geijtenbeek et al., 2000b; Geijtenbeek et al., 2002).    

 

 

 

 



 22 

1.2.3. Management and treatment regimens of HIV/AIDS 

Despite the research efforts made in the past decades towards the process of inhibiting 

the HI Virus replication within an infected patient, four main classes of drugs 

standout as standard regimens, used to manage the progression of the AIDS condition. 

Although scientific researches had advanced, the current regimens only attempt to 

reduce the HI Virus replication. The treatment regimens could neither prevent 

transmission of the HI Virus to healthy individual nor eradicate the virus in an 

infected individual, thus these medications cannot cure the infection. These drugs are 

generally termed High Active Antiretroviral Therapy (HAART) or Antiretroviral 

Therapy (ARV) class of treatment regimens. They are comprised of the Reverse 

Transcriptase inhibitors (RTIs), Integrase Stand-Transfer Inhibitors (INSTIs), 

Protease Inhibitors (PIs) and Fusion or Entry Inhibitors (FIs). The treatment can be 

given as a single class or a combination of more than one class of HAART 

(Volberding and Deeks, 2010).  

1.2.3.1. Nucleoside Analogue Reverse Transcriptase Inhibitors (NRTIs) 

This sub-class of HAART is grouped under the reverse transcriptase inhibitors (RTIs) 

class of HIV treatments. The main role of this therapeutic regimen was to produce 

molecules that are similar to nucleoside or nucleotide bases, which are essential in the 

composition of the genetic material (RNA) of HIV. The intake of such molecules by 

the virus will inactive the reverse transcriptase that stimulate the manufacturing of 

cDNA from the HIV RNA. The Reverse transcription of the virus RNA will take 

place using these molecules as it will be preferentially incorporated into the newly 

formed cDNA; hence the introduction of NRTIs into the new DNA. The HI Virus 

cDNA will not fuse with the patient’s genetic material since the synthesized cDNA 

would be destroyed. This class of HAART was the first therapeutic regimen used to 

manage the infection of HIV patient. The first available and Food and Drug 

Administration (FDA) approved NRTI was Zidovudine (AZT). Other FDA approved 

drugs includes Didanosine (ddI), Dideoxycytidine (ddC), Stavudine (d4T), 

Lamivudine (3TC), Abacavir (ABC), Enteric coated ddI, Tenofovir (TDF) and 

Emtricitabine (FTC). Besides the single composition, other NRTIs can be given as a 

combination of two or three NRTIs. Examples include 3TC plus AZT, ABC plus 3TC 

plus AZT, TDF plus FTC, ABC plus 3TC (Bean, 2005; Volberding and Deeks, 2010).   
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1.2.3.2. Non-Nucleoside Reverse Transcriptase Inhibitors (NNRTIs) 

The non-nucleoside reverse transcriptase inhibitors (NNRTIs) belong to the RTIs 

class of HAART. Unlike their counterpart the NRTIs, these molecules are not similar 

to nucleotide or nucleoside bases that contribute to the building blocks of virus cDNA 

and RNA. Hence, these molecules are structurally different from NRTIs and their 

mode of action is made possible by acting directly on the reverse transcriptase 

enzyme. This is achieved by downregulating the catalytic activity of the enzyme at its 

active site. Examples of FDA approved NNRTIs include Nevirapine (NVP), 

Delavirdine (DLV), Efavirenz (EFV) (Bean, 2005; Pang et al., 2009).  

The NNRTIs are very good regimens to suppress the replication of HIV within the 

host body. Nevertheless, they have to be administered in combination with other 

antiretroviral medications of the NRTIs. Classes of drugs include either Tenofovir 

with Emtricitabine or Abacavir with Lamivudine; with NNRTIs prospective function 

to inhibit viral replication in the central nervous system (Bean, 2005; Volberding and 

Deeks, 2010).   

1.2.3.3. Protease Inhibitors (PIs) 

The understanding of the HI Virus life cycle was crucial to develop such therapeutic 

regimen to inhibit its replication. Knowledge that HIV replication in the host cells 

requires the intervention of enzymes and the synthesis of proteins for the constitution 

of a new virion, the HIV proteases role were to cleave the polyprotein precursors that 

enable the production of essential proteins and enzymes made for the reconstitution 

and in the formation of a new virion. Thus, the activity of this class of HAART is 

focused and acts directly on the HI virus protein components and prevents HIV 

reproduction in an infected patient. FDA approved protease inhibitors includes 

Saquinavir (SQV), Indinavir (IDV), Ritonavir (RTV), Nelfinavir (NFV), Amprenavir 

(AMP), Lopinavir (LPV) and Atazanavir (ATV). LPV plus RTV is a protease 

inhibitor made from the combination of molecule from this class of HAART (Beans, 

2005).  
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HIV patients are placed under protease inhibitor regimens either Tenofovir with 

Emtricitabine or Abacavir with Lamivudine in addition to their initial administered 

drug. The combination of different classes of HAART is to have a multiple 

synergistic effect to fight the virus and to maximize the chance to stop its replication, 

hence potentially leaving the person free of HIV (Volberding and Deeks, 2010). 

1.2.3.4. Integrase Inhibitors (INSTIs) 

Similar to the HAART cited above, the Integrase inhibitors act directly on the life 

cycle involving the production of a mature virion. The main objective of using this 

particular molecule is to inhibit and to interfere with the binding of the viral DNA to 

that of the host DNA, therefore preventing the fusion and the transfer of the pathogen 

genetic material to that of the host genetic material. The action of integrase inhibitors 

is made possible by disarming the bound metallic ions that are effective at the active 

site of HIV integrase, by influencing their positions within their binding pocket (Hare 

et al., 2010).  

A well-known integrase inhibitor is Raltegravir (RAL) and this regimen is proven to 

be safe, well tolerated and is highly effective to manage and treat HIV. Since the 

integrase inhibitor is not given as a first regimen for HIV infection, a patient receives 

this treatment as a supplementary regimen once the NRTIs treatment is failing (Beans, 

2005; Volberding and Deeks, 2010).  

1.2.3.5. Entry Inhibitors (EIs) or Fusion Inhibitors (FIs) 

Whilst the above-cited HAART regimens mostly prevent HI Virus replication by 

acting inside the infected host cell, the entry inhibitors on the other hand execute their 

activity by acting on the infected or uninfected host cells. The conception of these 

treatment regimens was made to prevent the entrance of HIV to the host cells, by 

intervening at various stages of the virus entrance process. Implementing this 

approach, three major groups of entry inhibitors have been designed and have shown 

to be potential regimens to stop HIV replication. These entry inhibitors are comprised 

of (i) drugs blocking the gp120-CD4 interaction, (ii) drugs blocking the gp120-co-

receptor interaction and finally (iii) drugs blocking gp41-mediated membrane fusion 

(Tilton and Doms, 2010).   
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1.2.3.5.1. Drugs blocking the gp120-CD4 interaction 

It is well documented that binding of HIV gp120 to CD4+ molecule of monocytes, 

macrophages and T lymphocytes favour the attachment of the virus to these cells and 

the replication of the pathogen within these cells. Thus the development of drugs 

blocking the gp120-CD4 interaction was reasonable and these drugs could not come 

at a better time to prevent this replication to take place. The idea to prevent HIV 

replication enables the production soluble CD4 (sCD4) as oppose to cell-associated 

CD4. This molecule could mimic the CD4 function hence could favour the binding of 

the HI Virus and stop further infection of healthy human cells.  

Though the clinical administration of sCD4 to HIV patient failed to inhibit replication 

of the virus (Daar et al., 1990), it nonetheless establish the baseline for the 

manufacturing of a class of sCD4 derivatives which include PRO-542 CD-IgG2 

tetramer fusion protein, and the NBD-556 and NBD-557 compounds (Arthos et al., 

2002; Martin et al., 2003; Schon et al., 2006). Other compounds from this group are 

the BMS-378806 and BMS-488043, which are small-molecule inhibitors. These small 

molecules could either compete with sCD4 for binding to gp120 (Ho et al., 2006) or 

they execute their activity by preventing gp120 to undergo conformational changes 

once CD4 is bound to gp120 (Si et al., 2004). The last approach was to utilise 

antibodies to target the binding between gp120 and the CD4 molecule. This antibody 

was the humanized antibody ibalizumab (TNX-355), which binds to the D2 domain of 

CD4 and disables the conformational change of gp120 (Moore et al., 1992).  

Though most of the molecules in these groups look promising to inhibit the 

replication of HIV within the patient, they have not been granted approval by the 

FDA, thus more research have to be conducted, to optimise the treatment regimens so 

as to produce a non-toxic and safe product.   

1.2.3.5.2. Drugs blocking the gp120-coreceptor interaction 

In addition to the method mentioned above, another strategy to design an entry 

inhibitor was to block the next step in HIV infection, which is to prevent the viral 

gp120 from binding to the co-receptor, either CCR5 or CXCR4. Thus, the drugs 

blocking the gp120-coreceptor interaction were developed. 
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A number of compounds have been produced, which can stop HIV infection. Such 

compounds include CCL3 (MIP-1α), CCL4 (MIP-1β) and CCL5 (RANTES) (Cocchi 

et al., 1995). The main function of these compounds was to avoid the binding of the 

viral gp120 protein to the CCR5 co-receptor, by stimulating the internalisation of 

CCR5 from the cell surface (Alkhatib et al., 1997). However, the activities of these 

molecules have developed an undesirable agonistic effect against CCR5. 

Aplaviroc (GW873140), Vicriviroc (SCH-D, SCH-417690), cenicriviroc (SCH-C) 

and Maraviroc (UK-427857) are groups of small molecules developed to have 

antagonist function against HIV replication. Whilst the first compound was 

discontinued in phase IIb clinical trials in 2005, because it was reported to induce 

idiosyncratic hepatotoxicity in treated patients (Nichols et al., 2008), the second 

compound is still in phase III clinical trials and was derived from the third compound, 

since this compound was also found to have serious side effects on the treated patients 

during the clinical trials and was terminated (Strizki et al., 2005). The last compound, 

on the other hand, has received FDA approval in 2007 and is used as a treatment 

regimen for HIV-infected patients who have become drug resistant to the primary 

HIV regimens (Dorr et al., 2005). 

Another class of compounds used to prevent gp120 binding to CCR5 co-receptor are 

made from antibodies rather than the chemically synthesised molecules. PR-140 is an 

example of a compound developed from the humanised mouse anti-CCR5 antibody 

and which role is to counteract the ability of gp120 to interact with CCR5; however, 

this molecule does not block CCR5 to exercise its binding activity to gp120 (Jacobson 

et al., 2008).   

Whilst other drugs were directed towards CCR5 co-receptor, compounds such as T-

22, T-134, T-140, and ALX40-4C were also developed from polypeptides, to prevent 

gp120 binding to CXCR4 co-receptor. These compounds act as an antagonist by 

mimicking the natural ligand of CXCR4 co-receptor, CXCL12 (SDF-1) and therefore 

these compounds bind the co-receptor thus preventing gp120 binding to CXCR4 

(Arakaki et al., 1999; Doranz et al., 2001). Besides the polypeptides activities, other 

small-molecule antagonists are in the developmental stages and they include 

AMD3100 and ADM070. Both molecules were discontinued because of the side 

effects such as cardiac abnormalities and liver histological changes in preclinical 
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studies and the first compound was unable to considerably reduce HIV replication 

(Hendrix et al., 2004; Stone et al., 2007).   

1.2.3.5.3. Drugs blocking gp41-mediated membrane fusion 

The last group of entry inhibitor is composed of compounds that can block gp41-

mediated membrane fusion. This group of entry inhibitors attempt to block gp41 to 

get into contact with the host membrane hence this group of compounds is mostly 

called fusion inhibitors. The FDA fusion inhibitor Enfuvirtide (T-20) was approved in 

2003 for the treatment of HIV-infected patients. It is made up of a 32 amino acid 

peptide, whose sequence is similar to that of the HR2 region of gp41, hence 

preventing HR2 region by competitive binding with the HR1 region (Wild et al., 

1993). Though this compound has shown potential to inhibit HIV replication in 

clinical trials (Kilby et al., 2002; Lalezari et al., 2003), other derivatives of the 

molecules are under development so as to improve the pharmacodynamics and 

efficacy of the parental compound, enfuvirtide (Dwyer et al., 2007). As opposed to 

other treatment regimens that are given orally to patients, Enfuvirtide, on the other 

hand, is given as an intravenous injection to the patients twice per day (Volberding 

and Deeks, 2010).      

1.2.4. Entry Inhibitor based peptide: a sub-class of HAART from Antimicrobial 

Peptides and a way forward to treat HIV 

Despite the progress made over 30 years of scientific research in finding potential and 

non-toxic HIV treatment regimens, two main directives have been implemented to 

design HAART medications. Medications that attempt to inhibit HIV replication 

within the host cells which includes NRTIs, NNRTIs, PIs and INSTIs; and the 

medications that inhibit HIV replication and prevent its entrance into the host cells, 

which are composed of entry inhibitors. While the medications that inhibit HIV 

replication within the host cells is of great importance to tackle the disease 

progression, they, however, exhibit a high level of side effects towards the human 

body (Volberding and Deeks, 2010; Dimock et al., 2011). Another problem is that it 

is difficult to kill the infected cells, as other healthy human cells are also affected; and 

the human defense mechanism responsible for neutralising infectious pathogens will 

destroy the HIV-infected cells thus reducing the number of CD4+ T cells. 
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The entry inhibitors on the other side have shown to be a favourite route for the 

design of alternative treatment regimens for HIV infection. This is primarily due to 

their low toxicity as compared to the other treatment regimens cited above and also, 

because their condition of administration is well established and understood 

(Volberding and Deeks, 2010). Secondly, their methods of preventing HIV infection 

do not allow for the entry of the virus into the host cell but rather tackle the virus 

before it gets into the human cells. This concept is ideal as fewer cells will be infected 

and the host immune system will be able to defend itself against the pathology. Also, 

because the internalization of HIV or any pathological organism into the host cells 

makes it difficult for the host cell to establish a good clearance mechanism, hence the 

persistent presence of HIV reservoirs in the body (Cossart and Sansonetti, 2004; 

Pizzaro-Cerda and Cossart, 2006a). Thirdly, the minor side effects (irritation of the 

skin) encountered by some entry inhibitors-based peptides are of little concern, which 

is due to the intravenous administration of the medication and the unavailability of an 

oral dosage. Nonetheless, researchers still believe that the development of peptide 

inhibitors to prevent the fusion of HIV with the host cells is the gold standard for the 

design and development of a drug to treat HIV infection. Prospective solutions are 

already underway to design oral bio-available peptide-based drugs to prevent HIV 

entrance into the host cells (Welch et al., 2007). Though other peptide-based drugs 

are either FDA approved (Kilby et al., 2002; Lalezari et al., 2003) or under clinical 

trials (Dwyer et al., 2007), more peptides ought to be screened to develop a potent 

anti-HIV entry inhibitors treatment regimen.  

1.3. Antimicrobial Peptides 

The interest of using antimicrobial peptides (AMPs) to develop peptide-based drugs 

to inhibit HIV infection is that AMPs are sourced and/or similar in sequence from 

natural occurring defense peptide molecules. In addition, they have less cytotoxicity 

effects and are not proned to immunogenicity (Eckert et al., 2006). Most of these 

peptide molecules are found in the human body and are used either as a primary 

human defense mechanism against pathogen invasion or are used as a secondary 

defense system (Ganz, 2003). Also, some of these peptides have proven to have 

versatile antimicrobial activity against gram-positive and gram-negative bacteria, 

protozoa, fungi, virus and particularly HIV (Andreu and Rivas, 1998; Brodgen, 2005; 
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Wang et al., 2010). Thus these molecules stand a good chance to advance into clinical 

trials hence the search for putative anti-HIV AMPs. 

1.3.1. AMPs, primary defence line of many organisms 

The majority of molecules in charge of the organism’s immune defence systems are 

made up of proteins and peptides. Though huge proteins such as immunoglobulin are 

the principal antibodies to defend the human body, there are other defence systems 

such as the human neutrophils, the human defensins, the gamma-defensins 

retrocyclins, etc., which play an important role in the protection of the human body 

against microbial invasion (Fritig et al., 1998; Soderhall and Cerenius, 1998; Du 

Pasquier and Flajnik, 1999; Ganz, 2003). 

From this statement, it can, therefore, be said that antimicrobial peptides and 

antibodies play a major role in the first line of defence of human and many organisms, 

such as the innate immunity of many plants, invertebrates and vertebrates species 

(Wong and Ng, 2003; Wang and Ng, 2005a). Experimental research on some 

antimicrobial peptides extracted from these organisms showed that they have activity 

against gram-positive and gram-negative bacteria, fungi, eukaryotic parasites as well 

as viruses (Shai, 2002). Furthermore, these antimicrobial peptides have proven to 

inhibit HIV replication using various mechanisms of suppressing the virus (Wang et 

al., 1998; Munk et al., 2003; Wang et al., 2004).  

Antimicrobial Peptides are a particular class of protein aptamers of relatively small 

size of approximately 6 to 100 amino acid residues. They are generally positively 

charged with charges varying from +2 to +9. An additional element that makes these 

biomolecules special is their high hydrophobic amino acid content, hence a 

hydrophobicity percentage of more than 30 % (Giuliani et al., 2007). Furthermore, the 

positive charge, the high hydrophobicity are some of the elements that enable all 

antimicrobial peptides to fold properly into their three-dimensional structure and bind 

selectively to the negatively charged membrane of the microbe (Andreu and Rivas, 

1998). 

Despite their characteristic elements, one may think that antimicrobial peptides are 

originated from a common ancestry, they are however of diverse origin. The fact that 

these molecules constitute the defence system of various organisms may constitute the 
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reason for them to exhibit the same characteristics to fulfil their functions, which is to 

impart the host with adequate immunity to counter foreign attacks.  

1.3.2. Physicochemical properties of AMPs 

The computation of the physiochemical properties of a putative antimicrobial peptide 

shed light on the expectation of a biomolecule being a true antimicrobial peptide and 

exhibiting potent activity against an infectious microorganism with low toxicity. 

These physicochemical properties may include the charge, the hydrophobicity, their 

boman index, instability index, and the structural conformations just to name a few.  

1.3.2.1. Charge 

Though most antimicrobial peptides are of small size ranging between 6 to 100 amino 

acids and are expressed naturally from diverse origins, these biomolecules are 

positively charged with +2 to +9. These charges are favoured by the presence of a 

high number of positively charged amino acid residues such as lysine, arginine and 

histidine that are included in these AMP sequences (Hancock and Chapple, 1999). 

Also, negative charged AMPs exist and they are majorly constituted of residues such 

as aspartic acid and glutamic acid. The inhibitory activity of these AMPs is stabilized 

with the incorporation of zinc or calcium ions, which act as cofactor (Brogden et al., 

1997).  

The reason behind the positive charge carried by AMPs is due to the fact that most 

microbial membranes are composed of phospholipid biomolecules including 

cardiolipins, lipopolysaccharides and phosphatidylglycerols. Therefore, the microbe 

membranes will be harbouring a negatively charged surface. The difference in charge 

will allow for an electrostatic attraction to take place between the pathogens 

negatively charged membrane and a potential AMP, which has activity against it 

(Matsuzaki et al., 1995; Matsuzaki, 2009).  

Although the positive charge transported by AMPs is an advantage to defeat the 

microbes, the excess number of positive charges could be detrimental to the activity 

exerted by the AMP, thus may reduce its activity or increase the peptide toxicity 

towards the host cell. Example to illustrate this is the AMP Magainin, for which a 

charge of +5 was found to intensify the peptide activity, however an increase in the 
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peptide charge to +7 changes the microbial activity of the peptide by increasing the 

haemolytic activity of the peptide (Powers and Hancock, 2003).    

1.3.2.2. Hydrophobicity 

Hydrophobicity is also an important physicochemical property that characterizes 

potency of a peptide to possess antimicrobial activity against pathogenic organisms. 

The computation of this property using an algorithm can give an idea on the potential 

activity of the AMP (Thomas et al., 2010). A peptide predicted to have a 

hydrophobicity of 30 % or more are expected to have neutralizing activity (Giuliani et 

al., 2007). This property is crucial for an AMP since it imparts to the biomolecule the 

ability to effectively penetrate the microbial lipid bilayer and lyse the microbe by 

membrane disruption (Brogden, 2005). 

1.3.2.3. Structure  

The folding of proteins and peptides into their secondary and three-dimensional 

conformation is essential for these biomolecules to be able to bind to the microbe 

receptor and exercise their biological function. As such, the antimicrobial peptides 

will have to enter into their final conformation and display their expected activity, in 

addition to their positive charged and high hydrophobicity. Such conformations may 

be the α-helix, the β-sheet, irregular or extended and loop conformations.  

1.3.2.3.1. The α-helical class of antimicrobial peptide 

This structure is mostly common with the AMPs and is made of helical conformations 

because either they lack or they have a little number of cysteine amino acid residues 

to form bridges. The structure is favoured by the presence of amino acids such as 

alanine, lysine, leucine, phenylalanine, tyrosine, tryptophan, cysteine, methionine, 

asparagine and valine. However, this structure is prohibited by the presence of serine, 

isoleucine, threonine, glutamic acid, aspartic acid, glycine, proline and hydroproline 

amino acid residues. AMPs with α-helical conformations are Magainin, Cecropin A, 

Andropin, Moricin, Ceratotoxin, Melittin, Cecropin P1 just to name a few examples. 

Although they present the same conformation, these peptides are originated from 

different organisms hence the diversity of AMPs (Zhang et al., 1999; Anderson et al., 

2003; Brogden, 2005). 
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1.3.2.3.2. The β-sheet class of antimicrobial peptides 

The β-sheet conformation of the peptide is illustrated by the presence of anti-parallel 

and/or parallel β-sheet structure, held together by 2-6 disulphide bridges. These 

bridges are mainly formed due to the presence of cysteine amino acid residue within 

the peptide sequence. The relevance of having a β-sheet structure may be an 

advantage for proper folding of the peptide and to hold structural integrity of the 

biomolecule. It also enhances the binding of the peptides to its receptor on the 

microbe, in order to inactivate the pathologenic microbe. Also, it enables the peptides 

to resist proteolysis attack as compared to their counterparts from the α-helical 

peptides (Scott et al., 2008). The importance of this structure has been well illustrated 

with the AMP Tachyplesin, where a considerable reduction of antibacterial and 

antiviral activity was noticed when the peptide was linear (Tamamura et al., 1993), 

and the peptide was less effective to penetrate a membrane model (Matsuzaki et al., 

1993). Research have shown that Defensins and other potent AMPs playing a role in 

the innate immunity in various organisms are rich in cysteine amino acids and, mostly 

formed β-sheet structures (Charlet et al., 1996, Derua et al., 1996, Ganz, 2003). The 

β-sheet structure may sometimes be alternated with α-helical structure, forming a mix 

conformation.   

1.3.2.3.3. The extended structure  

The extended structure is also called the irregular structure, as it is composed of 

neither the alpha nor the beta structure. It is usually depicted by the presence of one or 

more amino acids of the same residue. These amino acid residues could be histidine, 

tryptophan, proline and glycine; and well know AMPs having the extended structure 

are comprised of Histatin, Indolicidin, PR-09, Prophenin and Tritrpticin (Gallo et al., 

1994; Gao et al., 2001; Selsted et al., 1992). These AMPs have displayed potent 

activity and are able to cross the lipid membrane of the microbe (Rozek et al., 2000; 

Zhang et al., 2001).  

1.3.2.3.4. The loops structure  

The loops structure of antimicrobial peptides are predominantly illustrated with the 

presence of macrocyclic cysteine knots, thus the peptides of this structure will contain 

cysteine amino acid residues and will form either one or multiple disulphide bonds. 

The single disulphide bond is the most important feature as it enhances the formation 
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of a cysteine knotted motif in the peptide and the cyclic backbone (Cornut et al., 

1994; Powers and Hancock, 2003). AMPs known to have this structure are Kalata, 

Circulin A and B, Cyclopsychitride, Thanatin (Tam et al., 1999; Fehlbaum et al., 

1996); and these peptides have proven to inactivate the replication of viruses and most 

especially HIV (Gustafson et al., 1994).  

 

Figure 1.8: Antimicrobial Peptides represented by various structural conformations 
The figure was taken from Peters et al., 2010. 

1.3.2.4. Boman index 

The boman index is a computational algorithm designed by late Prof. Hans G. 

Boman, to predict the potential of an antimicrobial peptide to interact or bind to 

different receptors of a pathogen. This prediction could be realized in an experimental 

laboratory environment and inactivate the intended pathogen. The index is defined as 

the sum of the free energies of the amino acid residue side chains divided by the total 

number of amino acid residues (Boman, 2003). Based on experimental data, it can be 

extrapolated that an antimicrobial peptide with a Boman index value lower or equal to 

1 kcal/mol signified that the peptide will likely exhibit high antimicrobial activity 

with no side effects. However, peptides with Boman index value of 2.50 to 3.00 

indicate that they have a multifunctional activity with hormone-like activities 

(Boman, 2003). 
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1.3.2.5. Instability index 

Same as the Boman index, the introduction of computational biology and 

programming language have aided in the fast analysis of biological data through the 

utilization of mathematical predictions. As such, physicochemical of proteins and 

peptides could be computed. The instability index of AMP could predict if the 

biomolecule will be stable or unstable in an in vivo environment since it is known that 

protein-protein or protein-peptide interaction requires the biomolecules to be in their 

three-dimensional conformation, hence they have to be in a stable form. Using this 

index, it was proven that unstable proteins and peptides have an instability index of 

greater than 40, whereas proteins with an instability index smaller than 40 indicates 

the molecule is stable (Guruprasad et al., 1990; Wang and Wang, 2004). 

1.3.3. Therapeutic ability of AMPs 

There is no doubt about the potential role that antimicrobial peptides play in the 

innate immunity of many organisms and in some cases in their adaptive immunity 

(Du Pasquier and Flajnik, 1999; Goldsby et al., 2003). The majority of these peptides 

have been shown to have activity against many pathogenic microorganisms, ranging 

from bacteria, fungi, protozoa, cancer, spermicide activity and viruses (Zhang et al., 

1997; Stolzenberg et al., 1997; Edgerton et al., 1993; Soballe et al., 1995; De Waal et 

al., 1991; Qu et al., 1996; Aboudy et al., 1994; Wachinger et al., 1992; Wang et al., 

2010). 

The need for new therapeutic molecules due to drugs resistance experience in the 

health sector has encouraged the translation of these potent molecules into clinically 

available drugs. This new class of therapeutic agents has made a major contribution to 

the pharmaceutics research since the molecules are originated from natural sources, 

are components of the organism's defence system and are not easily predispose to 

proteolysis. In this regard, many antimicrobial peptides have made their way through 

clinical trials and some are daily used to treat certain disease conditions (Fjell et al., 

2012). 

The progress made in clinical research of therapeutics antimicrobial peptides can be 

presentated as follow. Pexiganan, is a peptide derive from the frog Xenopus, which 

activity indicates that this peptide could prevent or cure impetigo and diabetic foot 
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ulcers. Others peptides that have reached phase III clinical trials are the Omiganan 

variants, originated from cattle Indilicidin, where CD-226 or MX-226/MBI-226 is 

used as a topical antiseptic, catheter infections and; CLS001 or MX-594AN which are 

used in severe acne and rosacea (Hancock and Sahl, 2006; Fjell et al., 2012). Another 

known therapeutic peptide that has passed clinical trial and is FDA approved is 

Enfuvirtide. This drug is used as a treatment regimen for HIV infection (Kilby et al., 

2002; Lalezari et al., 2003). However, many AMPs are still at phase I and/or II 

clinical trials, but it is a matter of time before they progress into the later stage of 

testing (Silva et al., 2011; Fjell et al., 2012).    

1.3.4. AMPs, potential anti-HIV molecule  

The hunt for additional therapeutic agents for diseases due to drug resistance for 

diseases was not only limited to bacteria, protozoa, and fungi; it was also expanded to 

simple viruses such as HIV.  

Members of the β-defensins, HBD2 and HBD3 showed dual anti-HIV activities 

similar to HNP 1, i.e. through direct interactions with the virus and indirectly by 

altering the target cell (Quinones-Mateu et al., 2003, Sun et al., 2005). However, the 

condition under which it was investigated was different from those for HNP1. One 

condition used mimics the oral mucosal environment, with low salt concentrations 

and the absence of serum (Quinones-Mateu et al., 2003) and another condition used 

had high salt concentrations and the presence of serum (Sun et al., 2005). Using 

electron microscopy, Quinones-Mateu et al., 2003, showed the interaction between 

HBD2 and HBD3 with cellular membranes as well as HIV virions, although 

membrane disruption was not apparent. HBD2 does not affect cell-cell fusion but 

instead inhibits the formation of early reverse-transcribed HIV DNA products (Sun et 

al., 2005).  

Studies from Sun et al., 2005 and Quinones-Mateu et al., 2003 showed conflicting 

results on the down-regulation of HIV co-receptors by β-defensins. Sun et al., 2005, 

reported HBD1 and HBD2 not to modulate cell-surface HIV co-receptor expression 

by primary CD4+ T cells whereas Quinones-Mateu et al., 2003, in contrast, showed 

HBD2- and HBD3-mediated down-regulation of surface CXCR4 but not CCR5 

expression by peripheral- blood mononuclear cells (PBMCs) at high salt conditions 

and in the absence of serum. The contrasting evidence might be a result of the 
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differences in the source of the defensins used and/or the experimental conditions 

under which the experiments were carried out (that is, the presence or absence of 

serum). Interestingly, HBD2 expression is diminished in HIV-infected individuals but 

is constitutively expressed in the healthy adult oral mucosa (Sun et al., 2005).  

The θ-defensins Retrocyclins, and RTD1, RTD2 and RTD3, function as lectins and 

can inhibit HIV entry (Munk et al., 2003, Wang et al., 2004). In addition, they inhibit 

several HIV-1 X4 and R5 viruses, including primary isolates (Munk et al., 2003, 

Wang et al., 2004). Retrocyclin does not seem to inactivate the HIV virion directly 

unlike α- and β-defensins, however, it binds to HIV gp120 as well as CD4 with high 

affinity. This observation is consistent with inhibition of viral entry (Munk et al., 

2003). Retrocyclin’s high-affinity binding for glycosylated gp120 and CD4+ is 

mediated through interactions with their O-linked and N-linked sugars (Wang et al., 

1998). Serum strongly reduces the binding of retrocyclin to gp120 (Wang et al., 

2004). It remains to be determined whether the interactions with HIV glycoproteins 

are similar to those reported with influenza virus glycoproteins (Leikina et al., 2005). 

Nevertheless, studies on retrocyclin-1 analogues indicate that modification of this 

peptide can enhance its potency against HIV in-vitro (Owen et al., 2004), indicating 

the therapeutic potential of such analogues. 

Besides the defensins family of AMPs, other AMPs have shown similar actions 

against HIV. Antimicrobial peptides such as Cecropin A from insects, Aurein 1.2 

from frog, Mellitin from insect, Dermaseptin S1 from leaf frog, Circulin A from plant, 

Cycloviolin A-D from plant are just few peptides that have shown to have potential 

inhibitory activity against HIV replication in-vitro (Van Compernolle et al., 2005; 

Wang et al., 2010; Wachinger et al., 1998; Daly et al., 1999; Ireland et al., 2007).  

1.3.5. AMPs as Entry Inhibitors of HIV 

The need for additional therapeutic regimens for HIV infection has allowed some 

peptide-based drugs to see the light. Even though fewer drugs made from this class of 

molecule have received FDA approval, there is hope that screening for new molecules 

and to optimize the existing anti-HIV AMPs might enable the output of additional 

drugs. 
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1.3.5.1. Examples of EIs or FIs derived from AMPs 

The screenings of anti-HIV AMPs due to their physicochemical advantages and 

stability have yield potent peptide-based drugs, which are used as HAART regimen 

currently. Enfuvirtide (T-20) is a good example of a peptide-based drug that proved to 

have potent antiviral activity in the early 1990’s (Wild et al., 1992; Jiang et al., 1993). 

The molecule later received FDA endorsement to treat HIV infection in clinical trials 

(Kilby et al., 2002; Lalezari et al., 2003). Though the drug is not recommended as a 

primary treatment regimen, it is however implemented at the later stage of the 

treatment when other treatment regimens have failed, thus this regimen might prevent 

further HIV invasion of the human host cells. The developments of other variants of 

Enfuvirtide are underway because the original parental molecule could not be 

administered orally. The new family of improved Enfuvirtide show better 

pharmacodynamics and efficacy to tackle HIV infection (Dwyer et al., 2007; Lalezari 

et al., 2005b). 

Other major groups peptide-based drugs have been experimented to tackle HIV at a 

different stage of its evolution. Peptides including T-22, T-134 and T-140 and 

ALX40-4C were designed to mimic CXCR-4 receptor, CXCL-12. Though the initial 

activity proved to be non-effective and high side effects, subsequent testing revealed 

that these peptides have activity for patients who have CCR5-tropic strains of HIV 

(Doranz et al., 2001). Optimization of these molecules to interact with the desired 

receptor will aid in the production of additional drugs to inhibit and/or prevent HIV 

infection.  

1.3.5.2. Mechanism of action of EIs or FIs and the way forward for future 

peptide-based drugs  

The mechanism of action of antimicrobial peptides was designed as entry inhibitors 

because the molecular mechanisms of HIV entry and fusion with host cells are well 

established and understood. Depending on the various stages of HIV infection, crucial 

steps have been highlighted and they include: gp120-CD4+ interaction, gp120-

CCR5/CXCR4 interaction, and gp41 conformational change and membrane fusion. 

Also, the mechanism of action of some compounds to prevent HIV entry and fusion 

with the host cells has been well explained in sections 1.2.3.5.1, 1.2.3.5.2 and 
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1.2.3.5.3. Following the same principle, potent peptide-based compounds could be 

screened to tackle a single step or multiple steps of HIV infection.  

To develop a more potent and non-cytotoxic peptide-based drugs, good pharmaceutics 

practice for drug discovery and development ought to be implemented so as to avoid 

the mistakes observed in the design of T-22, T-134 and T-140 (Doranz et al., 2001). 

Such preliminary practice would include understanding the disease and steps of 

infection; choose a molecule to be targeted with the peptide, test the molecule activity 

on the target to confirm its role in the disease progression, find a promising molecule 

that could become a drug, early safety tests and lead optimization (Innovation, 2007; 

PhaRMA, 2015). Only after these first two steps have been achieved can a lead 

compound be accepted and the research would proceed to early safety testing.     

The baseline set with the understanding of HIV infectious steps and the possible 

target points have encouraged researchers to believe that a good pharmacological 

practice of antimicrobial peptides would make AMPs potential lead compound for 

novel HIV regimens. Also, current anti-HIV AMPs could be optimized for oral intake 

and improved their pharmacodynamics and efficacy (Welch et al., 2007). 

1.4. Rationale of the research     

The gaps in the literature regarding the treatment of HIV-1 and HIV-2 are the major 

consequence of raising the questions of additional therapeutic agents to slow the viral 

progress and its eradication, taking into account the importance of AMPs in many 

organisms defence system, the current published data on anti-HIV activity, and the 

prediction of putative AMPs binding to gp120 protein (Tincho et al., 2016), thus the 

rationale for this study. These unfold as follows:  

 AIDS is a disease that attacks the human immune system and is caused by the 

Human Immunodeficiency Virus (HIV). HIV can be transmitted to a healthy 

individual through body fluids or via mucosal surfaces. Viral entry is made 

possible by the interaction of the viral envelope glycoprotein 120 (gp120) to 

the cell surface on the CD4+ T lymphocytes and a chemokine receptor (either 

CXCR4 or CCR5) on the host cell surface (Chinen and Shearer, 2002). The 

disease interferes with the human immune system, exposing the patient to 

opportunistic infections and tumours. 
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 The disease is a major health problem in many parts of the world and is 

considered a pandemic (Kallings. 2008). The UNAIDS reported in 2009 that 

since the discovery of the disease in 1981, some 60 million people have been 

infected, with 30 million deaths, 34 million people living with HIV/AIDS, and 

14 million orphaned children in Southern Africa alone as reported in 2009 

(Wang et al., 2010). This figure has now risen to 40 million people living with 

the disease, with 60 % of infected people in Sub-Saharan Africa alone. 

Swaziland has shown the worlds largest prevalence rate of 25.9 % whereas 

South Africa has the world largest HIV-infected population estimated at 5.6 

million (Kendall, 2012). 

 Though many advances have been made in HIV research to date, neither a 

cure, nor an HIV vaccine have been found and the disease can only be 

managed by using High Active Antiretroviral Therapy (HAART), which can 

only slow the course of the disease and reduce both deaths and new infections 

(Dybul et al. 2002). Besides reducing the mortality and disease progression, 

the antiretroviral therapy have several side effects such as microalbuminuria, 

dyslipidaemia, insulin resistance, Hepatotoxicity, Hyperglycemia, impaired 

glucose tolerance and increase risk of cardiovascular disease (Volberding and 

Deeks, 2010; Dimock et al., 2011); and the patients have to adhere to the 

treatment for the rest of their lives. 

 The need for a non-toxic therapeutic treatment has brought about the necessity 

for the discovery of additional HIV treatment regimens to lower mortality 

rates and avoid lifelong adherents to HIV treatment regimens. Antimicrobial 

Peptides (AMPs) are components of the first line of defense for prokaryotes 

and eukaryotes and have a wide range of activities against gram-negative and 

gram-positive bacteria, fungi, cancer cells, protozoa as well as viruses (Andreu 

and Rivas, 1998); and have been proven to be promising therapeutic agents 

against HIV (Wang et al., 2010). The use of AMPs as promising anti-HIV 

molecules for therapeutic intervention of HIV are due to the fact that most 

AMPs have a net positive charge and are mostly hydrophobic molecules. This 

permits targeting of the net negatively charged pathogen membrane targets 

(protein or DNA). The unique mechanism of action and the diversity of these 

peptides may also be used as the basis to design peptide-based compounds or 
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backbone compounds to block the attachment and binding of HIV protein 

gp120 to the CD4+ molecules of T cells; and could form a novel class of 

HAART drugs, termed Entry Inhibitors (EIs). 

 Previous in-silico docking and predictions of several putative AMPs have 

shown that some of these Antimicrobial Peptides bind to the gp120 HIV 

protein, at the area where the CD4+ T cells interact with the gp120 protein 

(Tincho et al., 2016). Using these anti-HIV AMPs might prevent infection of 

the T cells by HIV, bearing in mind that the contact between the gp120 and 

the CD4+ T cells favour the entry and infection of new human cells by HIV 

(Wilkinson, 1996). Blocking the interaction between the gp120 and CD4+ T 

cells can be a preventive measure to stop HIV contamination, thus paving an 

excellent opportunity for a promising therapeutic approach. This method could 

enable the eradication of the virus within the body since adhesion of 

pathogens to host cells is a key step during the establishment of an infection or 

contamination (Pelkmans and Helenius, 2003). Hence, the molecular 

validation of the in-silico prediction will be the focus of this research, to 

confirm earlier findings. This might be a way forward for an accurate drug 

design to eradicate HIV. These experimental validated anti-HIV AMPs might 

act as entry inhibitors and form a new class of HAART to block gp120 

attachment and binding to CD4+ molecules. Therefore, the aims deriving from 

the rationale are as follow:  

i. Optimize and increase the ability of the peptides to bind gp120 protein, 

ii. In-vitro validation of the activity of the in-silico predicted anti-HIV AMPs as 

therapeutic agents, 

iii. Determination of the range biological activities exhibited by the putative 

AMPs.  

The objectives enumerated below will help improved some gaps encountered in the 

literature and they are as follow: 

1) Perform mutation (s) on the initial putative anti-HIV AMPs, to increase the 

binding capacity between the peptides and gp120 protein, thus improve the 

HIV activity.  
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2) Perform the binding study of the putative anti-HIV AMPs and the recombinant 

protein gp120,  

3) Study the effective concentration of the anti-HIV AMPs on HIV-1 

pseudotypes (HIV-1 PV), 

4) Perform binding activity between the putative AMPs and gp120 protein, using 

a molecular method, 

5) Study the toxicity of these anti-HIV AMPs and cell viability of the host cells, 

6) Study the activity of these putative antimicrobial peptides on various 

microorganisms (Gram positive and gram negative bacteria), 

7) Study the activity of these putative antimicrobial peptides on various cancer 

cell lines. 
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CHAPTER TWO: IN-SILICO OPTIMIZATION OF 

PUTATIVE ANTI-HIV PEPTIDES VIA SIDE-DIRECTED 

MUTAGENESIS 

 

2.1. Introduction  

The rising problem of drugs resistance, the lack of available and/or novel antibiotics 

to combat the current diseases have encouraged the exploration of new opportunities 

to search for future molecules that can serve as a lead compound for the development 

of potent antibiotics. Since the discovery of the first Antimicrobial Peptide (AMP) 

more than three decades ago (Rinaldi, 2002), the amount of discovered Antimicrobial 

Peptides has grown exponentially, due to their high potentiality against many 

pathogens. Furthermore, experimental data have proven that isolated AMPs could 

inhibit various pathogens from gram-negative, gram-positive bacteria, fungi, 

protozoa, cancer cells as well as viruses (Powers and Hancock, 2003). In addition, 

these AMPs have shown low toxicity, with minimal resistance been developed by the 

pathogenic organisms toward the AMPs, whilst these AMPs killed the target microbes 

rapidly (Jenssen et al., 2006). AMPs have also been shown to have activity against the 

HI Virus and could stop viral replication, using different mechanisms (Chang et al., 

2003; Quinones-Mateu et al., 2003; Wang et al., 2004; Sun et al., 2005).  

Besides their potential being shown in experimental assays, the need for novel AMPs 

pushed for further research toward identifying these molecules since most AMPs 

occur naturally in many organisms, either in eukaryotes or in prokaryotes. Also, 

AMPs have been found to play a crucial role in the defence mechanisms of many 

organisms (Wong and Ng, 2003; Wong and Ng, 2005a; Wong and Ng, 2005b; Wang 

and Ng, 2002; Wang and Ng, 2005). The ability of these AMPs to carry out their 

activities mainly resides in the fact that most of these molecules are positively 

charged and are generally hydrophobic (Pushpanathan, et al., 2013); consequently, 

the AMPs could bind to negatively charged receptors on the target microbe by 

electro-static interaction (Wang et al., 2010).   
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The current molecular techniques utilized for the discovery, identification and 

characterization of these molecules have proven to be costly and time-consuming and 

make the availability of the drugs rare thus delaying the treatment and/or the 

eradication of some diseases. To satisfy the high demand for more potent therapeutic, 

less toxic and non-resistant molecules, additional cost-effective techniques ought to 

be put in place to satisfy these needs. Fortunately, the developments in Computational 

Biology and Bioinformatics have enabled rapid discovery of compounds of biology 

and therapeutic importance with the help of predictive tools such Quantitative 

Structure Activity Relationship (QSAR) (Torrent et al., 2012), Linear Discriminant 

Analysis (LD), Support Vector Machine (SVM) and Random Forest (RF) (Thomas et 

al., 2010), Sliding Window (SW) (Juretić et al., 2011), profile Hidden Markov 

Models (HMMER) (Fjell et al., 2007; Brahmachary et al., 2004), Gap Local 

Alignment of Motifs 2 (GLAM2) (Fjell et al., 2009). Furthermore, sophisticated 

algorithms have been designed to predict the physical and chemical properties of 

compounds, the 3-D structures of these molecules, their possible receptors and, their 

capacity to interact and bind to various receptors. 

2.1.1. Tools utilised to predicted in-silico 3-D structures 

In the past decades, conventional biophysical techniques such as Circular Dichroism, 

Nuclear Magnetic Resonance spectroscopy, X-ray crystallography, dual polarization 

interferometry and cryo-electron microscopy were utilized to determine the Three-

Dimensional (3-D) structures of most proteins, peptides, DNA and RNA. However, 

the development of computational biology has also been marked by the design of 

sophisticated algorithms, which predict, with high accuracy the structures of these 

molecules. These computational tools implemented to predict these in-silico 

structures utilized methods that include: (1) the “fold recognition and threading” 

methods, (2) the “integrative” or “hybrid” methods, (3) the “comparative” or 

“homology” modelling approach and (4) the “de novo” or “ab initio” methods 

(Schwede et al., 2008).  

To describe an in-silico method for proteins and peptides 3-D structures prediction, 

the “de novo” or “ab initio” method will best suit this purpose as the molecules used 

in this work do not have defined structures. The Iterative Threading ASSembly 

Refinement (I-TASSER) server is a predictive server, which utilised the principle 
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underlined by the de novo method, to predict the 3-D structures of proteins and 

peptides based on their simple amino acids sequences (Wu et al., 2007; Zhang, 2008; 

Roy et al., 2010). The de novo method uses principles of physics that governs protein 

folding and/or using information derived from known structures but without relying 

on any evolutionary relationship to known folds. This tool completes its task by 

implementing a prediction of multiple alignments of the target sequence to look for a 

suitable and available template, followed by iterative structural assembly simulations, 

to generate a final structure (Schwede et al., 2008). 

The resultant 3-D structures predicted by the server generate various parameters, 

which aid in the results analysis and evaluation. These include the C-score, the TM-

score and the Root Means Square Deviation (RMSD). The C-score given by the I-

TASSER software is a confidence score, which estimates the quality of predicted 

models and ranges from -5 to 2. A C-score cut-off superior to -1.5 indicates that the 

model has a correct fold. The TM-score is a scale to measure the structural similarity 

between the predicted 3-D structure and the template structure used for this 

prediction. A TM-score greater than 0.5 indicates a model has a correct topology, 

however, a TM-score lower than 0.17 means a random similarity (Roy et al., 2010). 

The Root Means Square Deviation (RMSD) measures the distance between atoms of 

superimposed proteins hence there are a strong correlation between the TM-score and 

the RMSD. An RMSD inferior to 1 Å is considered ideal as it indicates an identical 

structure. Nonetheless, an RMSD value around 2Å or above show that there was less 

distance between atoms of the proteins/peptides and the templates that were used for 

their 3-D structure prediction (Wei et al., 1999; Carugo and Pongor, 2001). The 

number of Decoys represents the number of structural decoys that are used in 

generating each predicted 3-D model. Conversely, the cluster density is defined as the 

number of structure decoys at a unit of space in the SPICKER cluster (Zhang, 2008; 

Roy et al., 2010). 

2.1.2. Computational tools used for in-silico protein-protein interaction 

Similar to the 3-D predictive tools, a swift shift has been applied for the screening of 

potential compounds of biological interest by performing an interaction to their 

various receptors using computational tools, to save time and money, and other 

factors that are demanding in molecular techniques. In-silico methods such as 
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PatchDock and SymmDock (Schneidman-Duhovny et al., 2005), GRAMM-X 

(Tovchigrechko and Vakser, 2006), RosettaDock (Lyskov and Gray, 2008), PepSite 

(Petsalaki et al., 2009), HexServer (Macindoe et al., 2010), Haddock (Dominguez et 

al., 2003), ClusPro (Comeau et al., 2004) and ZDOCK (Chen et al., 2003) have been 

highly utilised in this exercise. Though these tools aim to achieve the same objective, 

various principles are implemented in these servers, such as the FFT-based docking in 

GRAMM-X (Tovchigrechko and Vakser, 2006), ClusPro (Comeau et al., 2004), 

ZDOCK (Chen et al., 2003) and HexServer (Macindoe et al., 2010); and the 

geometric hashing in PatchDock (Schneidman-Duhovny et al., 2005), RosettaDock 

(Lyskov and Gray, 2008) and Haddock (Dominguez et al., 2003) servers. These 

differences raise the questions of the effectiveness of each of tool and the advantages 

one may get from using one over the other. However, the protein’s interaction result 

would be valuable if additional information is provided to explain how good the 

binding affinity is during the virtual screening of the receptors/targets and their 

ligands in drug discovery, diagnostics, or enzymatic reactions. As such, a scoring 

system ought to be added to each tool to make the prediction valuable. Yet, this 

characteristic is still posing a problem in the interpretation of various protein-protein 

interaction predictions (Kitchen et al., 2004). 

Taking the scoring system as an essential element for a good docking predictive tool, 

Patchdock server will be a good example as an in-silico predictive tool to accomplish 

protein-protein or protein-peptide interaction. Besides using a geometric hashing 

algorithmic system, the server is based on a rigid-body, which works on the principle 

of molecular shape complementarities between the 3-D structures of the two proteins 

or the protein-peptide involved in the complex formed. The tool performs a fast 

transformation, to search the six-dimensional transformational spaces created by the 

formation of the complex (Schneidman-Duhovny et al., 2005).  

2.1.3. Computational tools utilised for in-silico site-directed mutation 

The interaction of two proteins or a protein-peptide interaction is made possible by 

the individual amino acids that contribute towards the binding affinity within the 

interaction formed by the complex. Such binding affinity and/or binding capacity 

might be impossible or disrupted if a single amino acids contributing to the complex 

formation is substituted or altered. These phenomena could enable the increase in 
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binding affinity in a complex formation by changing key amino acids in the 

interaction area (Schubert et al., 2002).  

To facilitate the possible effect of an amino acid residue on a given protein-protein or 

protein-peptide complex, computational tools in structural bioinformatics have also 

enabled a fast prediction of the consequences the substituted residue(s) might have in 

the binding affinity or in the orientation of the ligand on the receptor. Such in-silico 

tools include the Knowledge-based FADE and contacts (KFC) server 

(https://kfc.mitchell-lab.biochem.wisc.edu/KFC_Server/upload.php) (Darnell, et al., 

2007; Zhu and Mitchell, 2011).  This server serves the purpose of site-directed 

mutagenesis, as the primary step of the tool is to determine residues that are essential 

for the complex formation and that keep the ligand at the right orientation with its 

receptor. However, amino acids residues called “hotspots” found at the interface of 

the complex formation of the protein or peptide are sensitive to mutation and as such 

cannot be mutated during the site-directed mutagenesis process because their 

substitution might alter the orientation of the ligand. Thus, only amino acids residues 

with no influence on the ligand orientation should be changed so as to increase the 

binding affinity of the ligand within the complex with its receptor. 

2.1.4. Previous study 

The putative anti-HIV AMPs were identified using an in-silico mathematical 

algorithm called Profile Hidden Markov Models (HMMER). During this process, 

experimentally validated anti-HIV AMPs were retrieved from various publicly 

available AMP databases, Antimicrobial Peptide Database (APD) (Wang and Wang, 

2004; Wang et al., 2009), Collection of Anti-Microbial Peptides (CAMP) (Thomas et 

al., 2010), Bactibase (Hammami et al., 2007), Uniprot Knowledgebase (UniprotKB) 

(Uniprot, 2009) and Dragon Antimicrobial Peptide Database (DAMPD) 

(Sundararajan et al., 2011), and the peptides sequences classified according to super-

families. Hidden Markov Model (HMMER) profiles were built for each super-family 

of anti-HIV AMPs. Following the scanning of proteome sequence databases using the 

trained profiles, 30 putative anti-HIV AMPs were identified.  

The identified putative anti-HIV AMPs were ranked based on their E-values with 

only the 10 best AMPs with the lowest E-values used for the rest of the study. The 

putative anti-HIV AMPs physicochemical properties including: (i) the number of 
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basic residues, (ii) acidic residues, (iii) net charge, (iv) the Isoelectric point, (v) the 

Boman Index (or protein binding potential), (vi) Hydrophobic residues, (vii) the 

instability index of the proteins (Hammami et al., 2007; Hammami et al., 2010), (viii) 

the number of arginine (Arg) or lysine (Lys) residues, (ix) the presence of cysteine 

(Cys) residue of the putative anti-HIV AMPs and HIV protein gp120 were calculated 

using the prediction interface of Bactibase and APD. Following the prediction of the 

peptides physicochemical properties, their 3-D structures were predicted using I-

TASSER, and the modelled AMPs were docked against the HIV protein gp120 using 

the PatchDock online server and the binding complexes visualized using PyMOL 

software, version 1.3.  

Docking analysis of putative AMPs against HIV protein gp120 showed that only 

Molecules 1, 3, 7, 8 and 10 firmly binds the HIV protein gp120 at the point where this 

viral protein interacts with CD4+ of T cells, macrophages/monocytes and dendritic 

cells. Since the interaction of the viral protein gp120 to CD4+ of the host cells is vital 

for HIV to gain entry into the human cells and to replicate and proliferate (Kwong et 

al., 1998; Zhou et al., 2007; McLellan et al., 2001), the implementation of the 

identified molecules to prevent this interaction could prevent the attachment of the 

virus to the host cells via their CD4+ surface molecules. Additionally, the binding 

affinity of the putative anti-HIV AMPs could be strengthened if the positive charged 

and/or hydrophobicity percentage of these peptides are increased by an amino acid 

substitition. Thus, this chapter aims to derive additional putative anti-HIV AMPs from 

the five parental anti-HIV AMPs, through an in-silico substitution of specific amino 

acids to increase the binding affinity of these AMPs to gp120. The specific objectives 

arising from these aims will be to: 

 Identify mutation sensitive amino acids or “hotspot” amino acid residues, 

 Complete an in-silico site-directed mutagenesis of the putative anti-HIV 

AMPs, 

 Generate 3-D predictive structure of the derived AMPs, and complete an in-

silico protein-peptide interaction of the derived putative anti-HIV AMPs and 

the HIV protein gp120, 

 Analyse and visualize the in-silico binding studies using PyMOL, to confirm 
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that the binding of the complex is unchanged and the peptide still binds at the 

expected area. 

2.2. Methods 

2.2.1. Preparation of biological samples 

To develop mutated anti-HIV AMPs, parental AMPs predicted to have anti-HIV 

activity in our previous work (Tincho et al., 2016) was utilized. Additionally, the HIV 

protein gp120 was used as receptor, to which the mutated AMPs will be docked to, to 

confirm their presumed activity. 

2.2.1.1. Selection of the peptides 

The AMPs selected for the site-directed mutagenesis were those peptides which were 

predicted to have anti-HIV AMPs due to the fact that these AMPs bind the HIV 

protein gp120, at the point where gp120 interacts with the surface protein CD4+ 

found at the surface of T cells, macrophages/monocytes and dendritic cells. These 

AMPs include Molecule 1, Molecule 3, Molecule 7, Molecule 8 and Molecule 10 

(Supplementary material, Table A.1; Tincho et al., 2016). These peptides were 

considered most relevant since they could prevent the binding of the viral gp120 

protein to the host CD4 surface protein, by blocking this interaction. Thus these 

putative anti-HIV AMPs were good candidates for development as future entry 

inhibitor compounds 

2.2.1.2. Selection of the HIV protein and extraction of gp120 sequence 

The HIV protein gp120 was chosen as potential receptor during the conceptualization 

and development of entry inhibitors based peptides since this protein, which is a viral 

surface protein mediates the attachment and entrance of HIV into the host cells, and 

favours its replication and proliferation during the infection process (Kwong et al., 

1998). 

The HIV protein gp120 utilized in this study was retrieved from the Protein Data 

Bank (PDB), previously solved with the X-ray crystallography technique (Zhou et al., 

2007). The gp120 protein 3-D structure was solved in complex with CD4 and 17b 

antibody, with PBD ID 2NXZ with the complex deposited into the Protein Data Bank 
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(PBD: http://www.rcsb.org/pdb/explore.do?structureId=2NXZ). The full sequence of 

the HIV protein gp120 sequence was downloaded from this database and this protein 

represents the chain A of the 2NXZ PBD file.  

2.2.2. Optimization of the putative anti-HIV AMPs 

2.2.2.1. Search for “Hotspot” residues on the parental putative anti-HIV AMPs 

The site-directed mutagenesis performed on peptide molecules, to increase their 

binding affinity for a specific receptor, can only be possible if the substitution of an 

amino acid on the ligand does not alter its position and the orientation of its receptor. 

The substitution should also strengthen the electrostatic attraction between the two 

molecules in their complex formation so as to increase the binding affinity as 

compared to that of the parental peptide. Implementing this concept, crucial amino 

acids intervening in this complex affinity ought to be identified so the ligand does not 

shift after the mutation. These amino acids are termed “hotspot” residues, and are 

sensitive to substitution of amino acid residues due to the fact that they generate the 

forces and free energy responsible for maintaining the interaction between the ligand 

and the receptor in their complex formation (Darnell, et al., 2007; Zhu and Mitchell, 

2011). To identify the potential “hotspot” amino acids in the complex formed between 

the parental putative anti-HIV AMPs and gp120, the task was achieved by uploading 

the complex formed between the individual parental putative anti-HIV AMPs and 

HIV protein gp120 from the previous study (Tincho et al., 2016) into the Knowledge-

based FADE and contacts (KFC) online server (https://kfc.mitchell-

lab.biochem.wisc.edu/KFC_Server/ upload.php) (Darnell, et al., 2007; Zhu and 

Mitchell, 2011). The outputs of this task generated the list of amino acid residues that 

contributes mostly to the interaction of gp120 and the putative anti-HIV AMPs, with 

the “hotspot” residues amongst these amino acid residues being highlighted in yellow 

colour (Table 2.1).  

2.2.2.2. In-silico prediction of site-directed mutagenesis 

Following the identification of “hotspot” residues within the interface of the 

interaction of the parental anti-HIV AMPs and gp120, in-silico site-directed 

mutagenesis could be carried out on the amino acid residues, which were not 
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considered as being crucial “hotspot” residues for maintaining the ligand in its right 

orientation when interacting with the gp120 protein.  

The substitutions of amino acids introduced into the parental anti-HIV AMP 

sequences were done in consideration of the physicochemical properties of the 

individual amino acid changed. We also had to make sure that the introduced amino 

acid(s) still conserve their position and their role on the peptide, and increase their 

binding affinity when bound to gp120. Characteristics such as longer R-group amino 

acid residues of the same amino acid class, positive charged, hydrophobic amino 

acids were used in the mutation experiment. The sequences of the mutated AMPs, 

after in-silico site-directed mutagenesis are represented in the supplementary material 

(Table A.2). 

2.2.2.3. Physicochemical characterization of the mutated AMPs 

Several parameters such as: (i) the number of basic residues, (ii) acidic residues, (iii) 

net charge, (iv) the Isoelectric point, (v) the Boman Index (or protein binding 

potential), (vi) Hydrophobic residues, (vii) the instability index of the proteins (Wang 

and Wang, 2004); (viii) the number of arginine (Arg) or lysine (Lys) residues, (ix) the 

presence of cysteine (Cys) residue (Wang et al., 2010; Wang et al., 2011) were 

utilized to predict the physicochemical properties of the mutated putative anti-HIV 

AMPs and the HIV protein go120. Predictive online tools such as: Bactibase 

(http://bactibase.pfba-lab-tun.org/physicochem) (Hammami et al., 2007 and 

Hammami et al., 2010) and Antimicrobial Peptides Database 

(http://aps.unmc.edu/AP/design/design_improve.php) (Wang and Wang, 2004) were 

used to determine these parameters for the mutated AMPs. 

2.2.2.4. De novo prediction of the mutated AMPs and gp120 3-D structure 

The mutated anti-HIV AMPs and the HIV protein gp120 3-D structures were 

predicted using I-TASSER (Iterative Threading ASSembly Refinement) server, which 

is an example of a de novo method to predict the structure of unsolved peptides and/or 

proteins molecules, using in-silico predictive methods. I-TASSER server is a free 

online tool, (http://zhanglab.ccmb.med.umich.edu/I-TASSER/) and it is held at the 

University of Michigan, USA (Schwede et al., 2008, Zhang, 2008).  
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The 3-D structures of the derived (mutated) anti-HIV AMPs and that of HIV protein 

gp120 were predicted by uploading each sequence onto the I-TASSER website. The 

user enters their email address to which the results link is sent. After naming the 

uploaded sequence, the menu “Run I-TASSER” was selected.  

2.2.2.5. Prediction of protein-peptide interaction of the AMPs and gp120 

The docking of the individual derived anti-HIV AMP to the HIV protein gp120 was 

performed using PatchDock Beta, version 1.3. PatchDock is a free online web-server 

that allows for protein-protein and protein-small ligand molecule docking and is 

available at http://bioinfo3d.cs.tau.ac.il/PatchDock/.  

Docking was done by uploading the PDB files of the respective putative anti-HIV 

AMPs and that of the HIV protein gp120 onto the PatchDock server website, after 

which the user enters an email address. The cluster RMSD was set to 4.0 Å and the 

complex type was selected as “protein-small ligand”. The task was submitted by 

selecting “Submit Form”. The docking results were sent via an email notification, 

containing the web link to the docking results. The result provided the highest scoring 

complexes between the HIV protein gp120 and the respective anti-HIV AMP as a 

PDB output file (Schneidman-Duhovny et al., 2005). Interaction analysis of the 

complex formation between the HIV protein and the putative anti-HIV AMP was 

done using PyMOL software, version 1.3. 

2.3. Results 

2.3.1. “Hotspot” identification 

The submission of the previous docking studies performed by the interaction of 

putative anti-HIV AMPs and gp120 protein into the Knowledge-based FADE and 

contacts (KFC) online server has enabled us to determine the important amino acid 

residues, which are indispensable to maintain the binding interaction of these putative 

anti-HIV AMPs) to the gp120 receptor. By doing so, we could effectively increase the 

binding affinity of the AMPs to gp120, and still keep these mutated AMPs at their 

right orientation with gp120 protein. The “hotspot” residues selected after uploading 

the initial complexes formed by the parental anti-HIV AMPs bound to gp120 into 

KFC online server are represented in Table 2.1, and are highlighted with a yellow 
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colour. However, the other amino acid residues not selected as “hotspot” residues are 

those that are not highlighted with the yellow colour (Table 2.1), on which mutation 

can be performed without affecting the shifting and/or change is the orientation of the 

mutated peptide or decreasing the binding affinity of the peptide. 

Table 2.1: Hotspot residues at the interface of the interaction between the parental 
anti-HIV AMPs and gp120 protein. The amino acid residues highlighted in yellow 

colour represent the “hotspot” residues, whilst the amino acids residues not 
highlighted in yellow are the residues not selected as “hotspots” residues.    

Molecule 1          

 Cys1 Leu2 Arg3 Tyr4 Lys5 Lys6 Pro7 Glu8 Cys9 

 Ser11 Asp12 Gln14 Cys15 Pro16 Gly17 Lys18 Lys19 Arg20 

 Cys30 Leu31 Asp32 Pro33 Val34 Asp35 Thr36 Pro37 Asn38 

 Pro39 Arg41 Arg42 Lys43 Pro44 Gly45 Lys46 Cys47 Pro48 

 Arg71 Asp72 Lys74       

Molecule 3          

 Arg1 Trp2 Lys3 Leu4 Phe5 Lys7 Ile8 Lys10 Val11 

 Asn14 Val15 Arg16 Gly18 Leu19 Ala22 Pro24 Ala25 Ile26 

 Ala27 Val28 Ile29 Gly30 Gln31 Ala32 Lys33 Ser34 Leu35 

 Lys37         

Molecule 7          

 Arg1 Trp2 Ile4 Phe6 Ile8 Glu9 Met11 Gly12 Ile15 

 Arg16 Ile19 Val20 Gly23 Pro24 Ala36 Ile26 Val28 Leu29 

 Gly30 Ser31 Ala32 Lys33 Ala34 Ile35 Gly36 Lys37  

Molecule 8          

 Cys1 Lys3 Ser4 Gly5 Val11 Phe12 Cys13 Pro14 Arg15 

 Arg16 Tyr17 Lys18 Gln19 Ile20 GLy21 Thr22 Cys23 Gly24 

 Leu25 Pro26 Lys29 Cys30 Lys32 Lys33 Pro34   

Molecule 10          

 Trp1 Asn2 Pro3 Lys5 Glu6 Leu7 Lys9 Ala10 Gly11 

 Gln12 Arg13 Val14 Arg15 Ala17 Pro23 Ala24 Val25 Asp26 
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 Val27 Val28 Gly29 Gln30 Ala31 Thr32 Ala33 Ile34 Ile35 

 Lys36         

2.3.2. Site-directed mutagenesis prediction 

After determining the amino acid residues that should not be substituted as they 

formed the binding affinity “hotspot” residues, mutation(s) of specific amino acid 

residues of the parental anti-HIV AMPs sequences were ready to be carried out. The 

criterion to mutate an amino acid was based on the group similarity of the substituted 

amino acid with that of the parental molecule because these amino acids have the 

same physicochemical property as the expectation was for the AMPs to remain at the 

same binding area of gp120, following site-directed mutagenesis. 

Following the criteria mentioned above, amino acids with a high hydrophobic 

property could be used if the predictive percentage hydrophobicity of the AMP was 

less than 37 % as it has been established that the hydrophobicity will impact on the 

ability of a peptide to interact with its receptor (Biro, 2006). Besides the 

hydrophobicity percentage, positively charged amino acid was used because it is well 

known that most AMPs are positive charged and the positive charge is one of the 

elementary principles of selecting a good AMP. This property enables AMPs to have 

selective activity toward the pathogen rather than the host (Lee et al., 2011). In 

addition, amino acids with longer R-group could be used to reduce the distance and 

the area between the anti-HIV AMPs and gp120 protein; as it is said to strengthen the 

interaction between the ligand and the receptor, in this case, the interaction between 

the anti-HIV AMPs and gp120 protein (Biro, 2006).    

From the concept enumerated above about the R-group length, shorter R-groups 

within the parental AMPs were substituted with longer R-groups for Molecule 3 

(V28L) and Molecule 10 (V25L) (Table 2.2). Molecule 1.1 (F62W) mutation was made 

by substituting the phenylalanine residue of the parental peptide with tryptophan 

amino acid. The introduced amino acid has the advantage of increasing the 

hydrophobicity of the mutated AMP. Molecule 7 was mutated by replacing the 

hydrophobic amino acid tryptophan with a positively charged and more hydrophobic 

amino acid residue namely histidine (Table 2.2). The last mutation was carried out on 

Molecule 8 where phenylalanine was replaced with histidine, at position 12 of the 

parental anti-HIV AMP (F12H) (Table 2.2). 
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Table 2.2: Table displaying the position of each amino acid on the parental Molecule 
and the amino acid substitution on that same AMP.  

Putative anti-HIV AMPs Mutation 

Molecule 1.1 F62W 

Molecule 3.1 V28L 

Molecule 7.1 W2H 

Molecule 8.1 F12W 

Molecule 10.1 V25L 

 

2.3.3. Physicochemical properties of the derived putative anti-HIV AMPs 

The physicochemical properties of the derived anti-HIV AMPs were predicted so as 

to ascertain that these AMPs retained the same physicochemical properties as the 

parental AMPs and would still bind selectively to gp120 protein. The parameters used 

to determine the physicochemical properties of the mutated AMPs indicated that these 

findings correlated well with previous AMPs showing potent anti-HIV activity, as 

suggested by previous studies (Wang and Wang, 2004; Wang et al., 2010; Wang et 

al., 2011).  It could be observed from Table 2.4 that the parameters predicted for the 

derived anti-HIV AMPs are not different from that of the parental anti-HIV AMPs 

(Table 2.3). 
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Table 2.3: Characterisation of the different parameters of the five putative anti-HIV AMPs 
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Molecule 1 8903.716 Da Cys: 16 11.39 6.33 16 8.37 +6 34 % 43.71 2.17 kcal/mol 1.2 hour SLPI: 68.22 % 

Molecule 3 4040.889 Da Lys: 18.92  18.92 8.11 0.00 11.86 +8 43 % 27.80 1.37 kcal/mol 1 hour Hyphancin IIIF: 81.08 % 

Molecule 7 4073.94 Da Lys: 18.92  18.92 8.11 0.00 11.46 +7 43 % 61.88 1.45 kcal/mol 1 hour Cecropin B: 94.59 % 

Molecule 8 3670.552 Da Cys: 17.65  14.71 5.88 17.65 9.60 +8 38 % 48.28 1.07 kcal/mol 1.2 hour hBD2: 82.92 % 

Molecule 10 3908.564 Da Ala: 16.67 11.11 5.56 0.00 10.33 +2 47 % 7.89 1.33 kcal/mol 2.8 hour Cecropin D: 80.55 % 

Table 2.4: Characterisation of the different parameters of the five mutated putative anti-HIV AMPs 
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Molecule 1.1 8942.752 Da Cys: 16 11.39 6.33 16 8.37 +6 34 % 44.30 2.18 kcal/mol 1.2 hour SLPI: 67.28 % 

Molecule 3.1 4054.916 Da Lys: 18.92  18.92 8.11 0.00 11.86 +8 43 % 27.80 1.35 kcal/mol 1 hour Hyphancin IIIF: 78.37 % 

Molecule 7.1 4024.868 Da Lys: 18.92  18.92 8.11 0.00 11.46 +8 40 % 58.00 1.64 kcal/mol 1 hour Cecropin XJ: 97.29 % 

Molecule 8.1 3660.516 Da Cys: 17.65  14.71 5.88 17.65 9.60 +9 35 % 48.28 1.29 kcal/mol 1.2 hour hBD 2: 80.48 % 

Molecule 10.1 3922.591 Da Ala: 16.67 11.11 5.56 0.00 10.33 +2 47 % 12.06 1.30 kcal/mol 2.8 hour Cecropin D: 77.77 % 
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2.3.4. Three-dimensional structure prediction of the derived AMPs and gp120 

The output from the I-TASSER server contains statistical parameters used to interpret 

the docking results. These statistical parameters are important indicators, which 

provide an estimate of accuracy scoring of the predicted derived AMPs and gp120 

proteins 3-D structure. These statistical parameters are based on the C-score, TM-

score, and RMSD (Roy et al., 2010). The results of the predicted 3-D structures of the 

five mutated anti-HIV AMPs showed that these peptides have C-score values, which 

ranged from -1.96 to 0.68, with Molecule 1.1 having the lowest C-score and Molecule 

8.1 having the highest C-score. It could be observed from Table 2.5 that all the 

peptides had C-score values higher than -1.5, except for Molecule 1.1, which had a C-

score of -1.96. Whilst the TM-score of the five mutated AMPs oscillated between 

0.48 and 0.81 all their TM-score values were above 0.5 except again for Molecule 1.1, 

which had a TM-score of 0.48. It should be noted that only mutated AMP Molecule 

8.1 had a RMSD score that was less than 1Å. Whilst Molecule 3.1, Molecule 7.1 

predicted 3-D structures had RMSD scores higher than 1.4 to 2.0 Å; Molecule 1.1 

RMSD value was above 4 Å and was reported to be 7.6 Å (Table 2.5). 

Although the 3-D structure of HIV protein gp120 was already solved, an in-silico 

prediction of this protein structure was performed to confirm that the in-silico tool 

used for the prediction of the AMPs 3-D structures was indeed accurate and those 

predicted structures satisfied the basis profiling of structure determination (Schwede 

et al., 2008). The C-score of gp120 protein was reported to be 2, which is the highest 

value that can be obtained for C-scoring. Additionally, the TM-score was observed to 

be 0.99 and the RMSD of gp120 was less than 2Å and reported to be 1.7 Å.  

Table 2.5: The mutated anti-HIV AMPs structure prediction and scoring  

Putative AMPs C-score  Exp. TM-score Exp. RMSD (Å) 

Molecule 1.1  -1.96 0.48 ± 0.15 7.6 ± 4.3 

Molecule 3.1  0.43 0.77 ± 0.10 1.4 ± 1.3 

Molecule 7 .1 0.15 0.73 ± 0.11 1.8 ± 1.5 

Molecule 8.1  0.68 0.81 ± 0.09 0.8 ± 0.8 

Molecule 10 .1 0.01 0.71 ± 0.11 2.0 ± 1.6 

gp120 protein 2.00 0.99 ± 0.03 1.7 ± 1.5 

 

Besides the statistical results from the structures prediction, a full-length secondary, 

as well as the tertiary structure prediction of each AMP, was generated. The 
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visualizations of these 3-D structures PDB files were done using the PyMOL 

software, version. 1.3. The mutated AMPs exhibited various secondary structures, 

represented by extended or loop structure with α-helical secondary structure 

(Molecule 1.1), anti-parallel and parallel β-sheeted secondary structure mix with a 

loop structure (Molecule 8.1) and α-helical structure (Molecule 3.1, Molecule 7.1 and 

Molecule 10.1). Besides the perfect C-score recorded for gp120 protein, the predicted 

secondary structure of gp120 protein was also noted to be the same as the solved 

structure because it is composed of the same number of α-helical, anti-parallel and 

parallel β-sheeted, and extended or loop structures (Figure 2.4).  

	                                   

Molecule 1                                                              Molecule 1.1 

Figure 2.1: Displays the predicted 3-D structure of the parental Molecule 1 and the 
derived Molecule 1.1. It was observed that the derived Molecule 1.1 is now 
displaying an extended partial α-helical structure, which was not present in the 

parental Molecule 1.   

	                                        

Molecule 8                                                         Molecule 8.1 

Figure 2.2: Displays the predicted 3-D structure of the parental Molecule 8 and the 
derived Molecule 8.1. It was observed that the derived Molecule 8.1 is now 

displaying an extended partial antiparallel β sheet structure, which was not present in 
the parental Molecule 8.  
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              Molecule 3.1                         Molecule 7.1                       Molecule 10.1 

Figure 2.3: Displays the predicted 3-D structure of the derived of Molecule 3.1, 
Molecule 7.1 and Molecule 10.1. The derived AMPs have the same α-helical 

secondary structure as their parental counterparts AMPs, which are Molecule 3, 
Molecule 7 and Molecule 10 (Supplementary material Figure A.1).  

 

Figure 2.4: Cartoon representations of the 3-D structures of HIV protein gp120, 
predicted using I-TASSER server. The protein consists of α-helices, antiparallel and 

parallel β-sheets, and loop structures.  

 

2.3.5. Protein-peptide interaction studies of gp120 and putative anti-HIV AMPs 

Predicting the capacity of the derived anti-HIV AMPs to bind HIV protein gp120 

using PatchDock server could provide insight into the potential roles of these AMPs 

to inhibit HIV replication using in-vitro studies. The results generated geometric 

scores of the binding affinity of the individual mutated anti-HIV AMP with gp120 

protein, and these scores ranged from 14236 to 12140. From the results it was 

observed that the binding of the derived anti-HIV AMPs to gp120 had very high 

binding scores (Table 2.6). At closer examination of the binding predictions, it was 

observed that the binding of certain parental AMPs was higher than their mutated 
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counterparts. The binding affinity of Molecule 1.1 and that of Molecule 3.1 was 

reduced as compared to the binding affinity of the parental AMPs (Molecule 1 and 

Molecule 3), bound to gp120 (Table 2.6). Conversely, the binding affinity of the 

parental AMPs of Molecule 7, Molecule 8 and Molecule 10 compared to that of their 

mutated AMPs were positive, with Molecule 8.1 having the highest binding 

difference of all, thus Molecule 8.1 could be expected to have the best anti-HIV 

activity. 

Table 2.6: Binding affinities, position of parent AMPs and derivative AMPs on HIV 

protein gp120 and percentage increase or decrease 

AMPs Mutation Parental AMPs 

binding score 

Derived AMPs 

binding score 

Binding 

difference 

% Increase 

Molecule 1.1 F62W 14926 14236 - 690 -4.6 % 

Molecule 3.1 V28L 13686 12548 -1138 -8.3 % 

Molecule 7.1 W2H 13648 13338 310 2.3 % 

Molecule 8.1 F12H 11086 12140 1054 9.5 % 

Molecule 10.1 V25L 12208 12276 68 0.6 % 

 

Besides the geometric scoring generated by PatchDock server, we had to study the 

position of the derived anti-HIV AMPs bound to HIV protein gp120 and their spatial 

arrangement in the three-dimensional coordinates.  

The spatial arrangement of the docked molecules represents the position of the 

interaction space, in three-dimensions when they are placed at the coordinates X, Y 

and Z. The transformation gives the position of the complex in the (X), (Y) and (Z) 

axes (Table 2.7). The area reported in Table 2.7 represent the surface covered during 

the interaction of the mutated anti-HIV AMPs and gp120; and the force that 

contributed to the interaction of these two molecules are calculated from the various 

individual atoms that forms Hydrogen bonds, van der Waal’s Forces, hydrophobic 

interactions and ionic interactions (Salt Bridges). The total force of this interaction is 

calculated to generate the Atomic Contact Energy (ACE), and Table 2.7 depicts the 

ACE of each interaction, of the mutated anti-HIV AMP and gp120. 
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Table 2.7: The area cover and the ACE’s from the docking the gp120-Mutated-anti-
HIV AMP using the PatchDock docking server. 

 gp120 

 Area (Å2) ACE Transformation coordinates 

Molecule 1.1  1948.40 332.53 -0.19 -0.36 2.18 86.57 -2.78 -38.62 

Molecule 3.1 1760.20 -157.17 -2.72 0.05 -1.02 -31.93 62.17 40.00 

Molecule 7.1 1741.40 38.07 0.44 -0.49 -2.46 49.50 47.26 -50.38 

Molecule 8.1 1563.10 2017.21 -1.82 0.81 1.57 36.38 -61.29 -9.24 

Molecule 10.1 2216.90 -283.32 -1.70 0.58 -032 -62.81 -22.42 33.32 

 

This visual check of the interacting structure was to confirm that these AMPs in 

addition to their high binding score truly binds to gp120, at the point where gp120 

binds CD4+ surface molecule to invade and attack the human T cells, 

macrophages/monocytes, and dendritic cells.  

The PDB files from the docking study of the mutated AMPs and gp120 using 

PatchDock server were visualized using PyMOL software, version 1.3. The analysis 

of the cartoon representation of gp120 interaction with the derived AMPs proves that 

Molecule 1.1, Molecule 3.1, Molecule 7.1, Molecule 8.1 and Molecule 10.1 bind 

gp120 at various areas of the protein (Figure 2.5, Figure 2.6, Figure 2.7, Figure 2.8 

and Figure 2.9). The binding of these mutated anti-HIV AMPs to various positions of 

gp120 and these various interactions to gp120 protein might have different 

implications on the ability of HIV to replicate and might regress through interacting 

with either of these AMPs.   
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Figure 2.5: gp120-Molecule 1.1 complex formation during the anti-HIV-gp120 
interaction. The cartoon representation in purple colour is the HIV protein gp120 and 
the derived anti-HIV AMP (Molecule 1.1) is represented in light grey colour.  

 

 

 

Figure 2.6: gp120-Molecule 3.1 complex formation during the anti-HIV-gp120 
interaction. The cartoon representation in purple colour is the HIV protein gp120 and 

the derived anti-HIV AMP (Molecule 3.1) is represented in light grey colour.  
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Figure 2.7: gp120-Molecule 7.1 complex formation during the anti-HIV-gp120 
interaction. The cartoon representation in purple colour is the HIV protein gp120 and 

the derived anti-HIV AMP (Molecule 7.1) is represented in light grey colour.  

 

 

Figure 2.8: gp120-Molecule 8.1 complex formation during the anti-HIV-gp120 

interaction. The cartoon representation in purple colour is the HIV protein gp120 and 
the derived anti-HIV AMP (Molecule 8.1) is represented in light grey colour.  
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Figure 2.9: gp120-Molecule 10.1 complex formation during the anti-HIV-gp120 
interaction. The cartoon representation in purple colour is the HIV protein gp120 and 

the derived anti-HIV AMP (Molecule 10.1) is represented in light grey colour.  

 

2.4. Discussion 

The world has still not recovered from the havoc caused by HIV since the discovery 

of the virus. This was mostly due to the poor information about the virus routes of 

infection and the predispositions to get infected with this deathly pathogen. Though 

tremendous efforts have been made to understand the pathogenesis and the 

mechanisms of HIV infection, many strategies have been used to design therapeutic 

regimens to inhibit the virus replication at any stage of its life cycle. However, these 

therapeutic regimens are still unable to eradicate the virus from the human body. 

Entry inhibitors of HIV ought to be used to stop the virus to get into the host’s cells 

through more specific avenues. Recent research has identified Antimicrobial Peptides 

(AMPs) that could help prevent or stop HIV entrance into T cells, 

macrophages/monocytes, and dendritic cells, by binding gp120 at the area where 

gp120 interacts with CD4+ of these cells (Tincho et al., 2016). These putative anti-

HIV AMPs could now also permit the development of derivative anti-HIV AMPs 

from these initial AMPs with a higher and more potent anti HIV activity. 

Mutating the parental anti-HIV AMPs could increase their binding affinity to the HIV 

protein gp120. In this regard, the Knowledge-based FADE and Contacts (KFC) online 

 

 

 

 



 64 

server were used to select possible amino acid residues, which could be subjected to 

mutation. From the results generated from the KFC server, “hotspot” amino acid 

residues were identified which are the main residues responsible for the binding 

affinity between the AMPs and gp120, at a specific area of interaction. Thus these 

residues ought not to be changed during the site-directed mutagenesis exercise, which 

aims to increase the binding affinity of these AMPs to gp120. The non-“hotspot” 

residues can thus be subjected to mutation, to increase the binding affinity between 

the derived anti-HIV AMP and gp120, without expecting any major change of the 

anti-HIV AMPs initial binding position (Darnell et al., 2007; Zhu and Mitchell, 

2011). 

Following the determination of the parental anti-HIV AMPs “hotspot”, site-directed 

mutation of these peptides were performed using specific amino acid residues, and 

each amino acid used in the substitution exercise can be justified from a 

physicochemical property point of view i.e. the derived AMPs have similar properties 

as their mutated counterparts.  To this end, mutations of the parental anti-HIV AMPs 

to generate mutated peptides: Molecule 1.1, Molecule 3.1 and Molecule 10.1 were 

performed using amino acids of longer R-group but of the same amino acid class. 

This decision was based on the fact that longer R-group amino acids could be used to 

reduce the distance and the area between the anti-HIV AMPs and gp120 protein, thus 

strengthening the interaction between the peptide and gp120 protein (Biro, 2006). 

Nonetheless, the geometric binding score of Molecule 1.1 interacting with gp120 

protein, and Molecule 3.1 bound to gp120 seem to deviate from the aim to increase 

the binding affinities as the binding scores for the mutated AMPs showed a decrease, 

when compared to the binding affinities of their parental molecules to gp120.  

Binding affinity of Molecule 10 bound to gp120 compared to Molecule 10.1 bound to 

gp120 gave a net positive difference (increased binding affinity) (Table 2.2). The 

unexpected result that Molecule 1.1 binding affinity to gp120 did not show an 

increase as compared to his parental AMP since it is well known that the tryptophan 

amino acid residue has been proven to be relevant in increasing the binding affinity of 

AMPs (Chan et al., 2006). The inconsistency in results could be due to the fact that 

that the use of a hydrophobic amino acid residue to replace the previous amino acid 

found in the parental sequence for Molecule 1 did not have the desired effect. Thus, 

additional mutations could be employed making use of a positively charged and 
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hydrophobic residue such as the amino acid histidine so as to increase the charge of 

this AMP, thus increase the binding affinity of Molecule 1 to gp120 protein (Lee et 

al., 2011). The same emphasis will be placed when performing additional mutations 

to Molecule 3 and Molecule 10, where more hydrophobic and positively charged 

amino acid will be used as substitutes.  

Besides the substitutions performed on the Molecule 1, Molecule 3 and Molecule 10, 

mutations done on Molecule 7 and Molecule 8 were achieved by introducing amino 

acids which have a greater hydrophobicity and positively charged such as histidine. 

For Molecule 8.1, the change of phenylalanine to histidine was to strengthen the 

electrostatic interaction of this mutated peptide and gp120, without shifting the 

peptide from its original point of interaction, with a net positive percentage of 9.5 % 

obtained when calculating the binding difference between the parental peptide and the 

derived one (Table 2.6). Furthermore, the effect of the positively charged amino acid 

histidine introduced into Molecule 7 to generate Molecule 7.1 resulted in a noticeable 

increase in its interaction with gp120. The substitution of a tryptophan residue to a 

histidine residue also showed an increase in the binding affinity of the derived AMP 

to gp120, when compared to the binding affinity of the parental AMP, bound to 

gp120 for the same molecule (Table 2.6). The significance of introducing a histidine 

amino acid finds its usefulness in increasing the binding affinity of the peptide to its 

target (Yeaman and Yount, 2003). 

After the substitution of amino acids performed on the five parental AMPs, the next 

step was to determine that the mutated versions were not similar to any existing AMP 

and that these AMPs had no altered activity following mutagenesis, by characterising 

their physicochemical properties. It was confirmed following alignment of the 

mutated peptides sequences that none of the mutated AMPs sequences were similar to 

known AMPs sequences in any of the antimicrobial peptide databases (Table 2.4), 

thus these AMPs have not yet described as AMP and/or implicated in the inhibition of 

HIV. 

The AMPs properties could only be considered meaningful if certain characteristics 

are taken into consideration during the determination of their physiochemical 

properties. As such, the computation of the mutated AMPs net charged showed that 

all the mutated anti-HIV AMPs had the same net positive charge as observed for the 
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parental anti-HIV AMPs except for Molecule 7.1 and Molecule 8.1 which have an 

additional + 1 charge as compared to the parental peptides, Molecule 7 and Molecule 

8 (Table 2.3 and Table 2.4). This additional charge to both AMP compounds was due 

to the additional positive amino acid histidine residue introduced during the 

substituting exercise. This increase in the positive charged has repercussions on the 

ability of Molecule 7.1 and Molecule 8.1 to bind gp120 with high binding affinity, as 

compared to the parental peptides, Molecule 7 and Molecule 8 that binds to gp120 

with a lower binding affinity (Table 2.6). It could thus be deduced that positive 

charged amino acids are crucial for AMPs binding to their targets and could exhibit 

their activity with high performance. Another very important element considered 

during thus characterisation was the hydrophobic percentage of each mutated AMP. 

Despite the mutations performed on the parental AMPs, it was observed that the 

hydrophobicity percentage, another major contributor of an AMP binding ability to its 

target and its mechanism of action has not majorly increased in all the mutated AMPs. 

On the contrary, the introduction of the hydrophobic and positively charged histidine 

amino acid residue did not seem to increase the hydrophobic percentage of Molecule 

7.1 and Molecule 8.1, the introduction of this residue rather contributed to the 

decrease of the hydrophobic percentage of these two AMPs (Table 2.3 and Table 2.4). 

However, all the mutated AMPs had a hydrophobic percentage higher than 30 %, the 

minimum hydrophobicity value required for a peptide to be a good AMP, to carry out 

its biological activity (Hancock and Diamond, 2000; Hancock and Sahl, 2006). 

Another characteristic to take in consideration for a good AMP is the Boman Index of 

the mutated peptides. The Boman Index is the assessment of a peptide to firmly bind 

their receptor (proteins, DNA or RNA), and it is calculated as the sum of free energies 

of all amino acid residue side chains divided by the total number of amino acid 

residues (Boman, 2003). To put this parameter into perspective, it has been 

demonstrated that AMP with a Boman Index value lower or equal to one (≤ 1) could 

suggest that this particular AMP is likely to have higher antimicrobial activity without 

many side effects. Whilst, AMPs having Boman Indices less than zero could only 

have antibacterial activity, AMPs with higher Boman Index value (2.50-3.00) could 

signify that these peptides have multifunctional roles, with hormone-like activities 

(Boman 2003). There were no major changes in the Boman Indices of the mutated 

peptides as compared to the parental peptides despite the mutations carried out on the 
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parental peptides. Nevertheless, Molecule 7.1 and Molecule 8.1 have some 

considerable shifts in their Boman Indices as compared to their parental peptides, 

Molecule 7 and Molecule 8 (Table 2.3 and Table 2.4). The Boman Indices of the 

mutated anti-HIV AMPs were appreciated since their values were less than 2.5 

kcal/mol, demonstrating that these AMPs have the likelihood to individually bind 

gp120 protein and prevent the binding of gp120 protein to CD4 and thus inhibiting 

the virus replication. 

The other parameter that is essential for an AMP to harbour anti-HIV activity is the 

presence of cysteine amino acid residue in their sequence. The results depicted in 

Table 2.4 showed that only Molecule 1.1 and Molecule 8.1 have cysteine residue in 

their sequence. Thought all of the AMPs have been predicted to bind HIV gp120, at 

the area where gp120 interacts with CD4 surface protein of the hosts, not all of them 

had the presence of cysteine amino acid residues (Tincho et al., 2016). This residue 

has however been proven to be essential for the folding of the peptide sequence and 

enhances the ability of the AMP to exhibit proper anti-HIV activity in-vitro (Wang et 

al., 2011). 

The binding of the mutated AMPs to HIV protein gp120 could only be possible if the 

AMPs and gp120 protein have taken on their 3-D structure conformations. As such, 

their structures were predicted using the I-TASSER server. The statistical results 

proved that the predicted structures of all the mutated AMPs except for Molecule 1.1 

had C-scores higher than -1.5, implying that the predicted structures have the correct 

fold. However, the C-score of Molecule 1.1 which was lower than the expected C-

score could signify that its structure was randomly predicted and that a proper 

template was not available to gather the necessary details for an accurate 3-D 

structure prediction (Roy et al., 2010). A C-score of 2 was obtained when gp120 3-D 

structure was predicted using I-TASSER lending credibility in using this tool for 3D 

structure prediction (Table 2.5). This score could be justified by the fact that the 

structure of gp120 has been solved already (Kwong et al., 1998; Zhou et al., 2007) 

and this solved structure was utilised as a template for the in-silico prediction of 

gp120 structure, thus the perfect C-score obtained. 

The other statistical parameter to evaluate the relevance of the predicted structures 

was to evaluate the TM-score of the mutated AMPs. All the five mutated AMPs had 
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TM-score above 0.5, except for Molecule 1.1, with a TM-score of 0.48. The TM-

scores being superior to 0.5 signify that the predicted 3-D structures of the mutated 

AMPs were similar to the templates utilized for the prediction of their conformation. 

The low TM-score obtained for Molecule 1.1 meant that the template used for its 

structure prediction was not similar to the peptide which structure was to be predicted 

(Zhang, 2008; Roy et al., 2010).  

The Root Mean Square Deviation (RMSD) of the mutated AMPs generating scores of 

2 Å or below signifying that there were fewer distance differences between atoms of 

the putative peptides and atoms of the templates which were used for their 3-D 

structure prediction (Wei et al., 1999; Carugo and Pongor, 2001). This parameter was 

however very high for Molecule 1.1, meaning that there was huge atomic deviation of 

this peptide as compared to its template. Whilst predictive results could be obtained 

either for the structures well predicted with good templates or those structures 

predicted with less accuracy due to the lack of a proper template, observation would 

be made that there is a strong correlation between the C-score, the TM-score and the 

RMSD of the predicted AMP structures (Roy et al., 2010). The same observations 

were made by Roy and co-workers who showed that their predicted structures showed 

a strong correlation between these three algebraic parameters (Roy et al., 2010). This 

strong correlation between the TM-score and the RMSD is a key element that permits 

the generation of good topologies observed in the predicted 3-D structures of the 

mutated AMPs and the HIV protein gp120.  

The secondary structures generated during 3-D prediction of the five mutated AMPs 

displayed different conformation ranging from the α-helical, antiparallel and parallel 

β-sheeted, the extended and the loop structures proving that AMPs despite being 

diverse in origin and conformation could exhibit the same biological activity. The 

presence of α-helical conformation in Molecule 1.1 was observed which could be 

justified by the introduction of tryptophan amino acid residue in the parental AMP. 

The presence of this amino acid has been proven to favour the presence of α-helical 

conformation, thus the presence of a α-helical conformation in the structure of 

Molecule 1 following its mutation (Lee et al., 2011). An additional β-sheeted 

conformation was also present in Molecule 8.1 with the introduction of the amino 

acid histidine into the parental AMP, Molecule 8 thus having a combination of 

parallel and antiparallel β-sheeted in its mutated version Molecule 8.1. However, the 
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same β-sheeted was not visible in Molecule 7.1 despite the introduction of the same 

histidine amino acid residue in the parental AMP, after the site-directed mutagenesis. 

The confirmation that the mutated AMPs would still prevent the interaction of gp120 

of HIV to the CD4+ of T cells, macrophages/monocytes, and dendritic cells could be 

shown if predictive experiments are performed to demonstrate their binding to this 

particular area. As such, the geometric score obtained from docking of HIV protein 

gp120 to the five mutated AMPs yield good prediction despite the fact that the score 

was decreased for Molecule 1.1 and Molecule 3.1 as compared to the parental AMPs 

Molecule 1 and Molecule 3, bound to gp120 (Table 2.6). 

Despite the substitution of amino acid residues in Molecule 1, Molecule 3 and 

Molecule 10 with amino acid residues with longer R-group, the decrease in binding 

score could be explained by the fact that the substituted amino acids were not 

positively charged, even though these three AMPs carried the recommended 

hydrophobicity percentage (Table 2.4). On the contrary, an increase in binding 

affinity was obtained for Molecule 7.1 and Molecule 8.1 when these AMPs were 

bound to gp120, signifying that the histidine amino acid plays a huge role in the 

AMP’s ability to bind the protein gp120. Furthermore, the role of this particular 

amino acid residue has been proven to increase the interaction of AMPs to their 

receptors during binding (Chan et al., 2006). The recommendation should then be 

made that further site-directed mutagenesis has to be performed using positively 

charged amino acid residues so as to increased the net charge of the AMP. 

Although the geometric score of the binding of the mutated AMPs and HIV protein 

gp120 looks promising, the probability of the mutated AMPs to prevent the binding of 

HIV protein gp120 to CD4+ surface molecule of T cells, macrophages/monocytes and 

dendritic cells still require close examination. It was observed from the binding results 

that Molecule 3.1, Molecule 7.1 and Molecule 10.1 did not bind HIV protein gp120 at 

the point where this protein interaction with CD4+ of the host cells: T cells, 

macrophages/monocytes and dendritic cells (Figure 2.6, Figure 2.7 and Figure 2.9) as 

compared to the parental AMPs (Supplementary material, Figure A.3, Figure A.4, 

Figure A.6). However, Molecule 1.1 and Molecule 8.1 bind gp120, at this point 

(Figure 2.5 and Figure 2.8), as was observed for the parental compounds 

(Supplementary material, Figure A.2, Figure A.5).  
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The Atomic Contact Energy (ACE) generated during this interaction could also justify 

the results obtained in the visual representation of the complex formed after the 

docking of gp120 and the mutated AMPs. It was noticed that only Molecule 1.1 and 

Molecule 8.2 showed a rise in the ACE parameter as compared to the ACE generated 

for the interaction of the same protein and the parental AMPs, Molecule 1 and 

Molecule 8 (Supplementary material, Table A.2). Conversely, Molecule 3.1, 

Molecule 7.1 and Molecule 10.1 showed a decrease in ACE as compared to the 

interaction of their parental AMPs with gp120. The rise in ACE for Molecule 1.1 and 

Molecule 8.1 is as a consequence of introducing more hydrophobic and positively 

charged residues into the parental AMPs (Table 2.2). Nonetheless, the same rise was 

not observed for Molecule 7.1, which was obtained by introduction of a histidine 

residue. Another explanation of the appropriate binding of the mutated AMPs to 

gp120 could be justified by the presence of cysteine amino residue in Molecule 1.1 

and Molecule 8.1, whose role in inhibiting HIV has been proven (Wang et al., 2011). 

Since it is well demonstrated that the interaction of HIV protein gp120 to CD4+ 

surface of T cells, macrophages/monocytes and dendritic cells are an advantage for 

HIV to penetrate the host cells (Kwong et al., 1998; Zhou et al., 2007; McLellan et 

al., 2001), the results obtained during docking of Molecule 1.1 and Molecule 8.1 with 

gp120 protein is unique following the concept that HIV inhibition could be stopped 

by preventing the interaction of gp120 to CD4+ of the host cells. Thus, only Molecule 

1.1 and Molecule 8.1 should be considered as potential candidates to be utilized as 

future anti-HIV compounds, to prevent the binding of HIV protein gp120 to their 

preferential host receptors, T cells, macrophages/monocytes and dendritic cells. 

Implementing this concept with the usage of AMPs is more advantageous since these 

peptides are able to selectively bind to the pathogens molecules than the host cells or 

components. 

2.5. Conclusion 

The discovery of these novel compounds has not only paved the route for the design 

of peptide-based drugs that could act as entry inhibitors, to prevent the replication and 

spread of the HI Virus, the identification of the AMPs highlight the possibility of 

these molecules to be mutated by introducing amino acid residues that can favour the 

increase in the AMPs binding capacity to gp120. The work conducted previously 

 

 

 

 



 71 

identified putative AMPs, which could block the binding of HIV protein gp120 to 

host cells CD4+ surface protein (Tincho et al., 2016).  

Although site-directed mutagenesis of the parental AMPs was done by performing 

single amino acid substitution, with amino acids with longer R-groups, hydrophobic 

residues and positively charged residues, more mutational studies ought to be 

conducted so as to obtain more AMPs that can bind gp120 protein, at the site where it 

interacts with CD4 surface protein. Nonetheless, mutations performed showed that the 

physicochemical characterization of these mutated compounds could already indicate 

the possibility of the AMPs having good binding affinity towards gp120. 

Furthermore, after predicting the 3-D structure of the mutated AMPs and gp120 and 

performing docking study, the results indicated that the AMPs with a positive binding 

difference are the ones which had an increase in positively charged amino acids as 

shown in the in-silico characterization. Additional confirmation was provided through 

visual image inspection of the complexes formed between gp120 and the mutated 

AMPs during the docking study of this chapter. It could be observed that only 

Molecule 1.1 and Molecule 8.1 bind gp120 at his particular area of interaction with 

CD4+, prompting us to only select these two compounds as potential potent entry 

inhibitors of HIV in a molecular validation study. Further site-directed mutagenesis 

would help identify additional AMPs that can be applied as entry inhibitors 

compounds to block HIV binding to T cells and other host cells.      
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CHAPTER THREE: BINDING CAPACITY OF 

SELECTED PUTATIVE ANTI-HIV AMPS TO HIV 

PROTEIN GP120 

 

3.1. Introduction 

Since the onset of HIV in the late 1980’s, one of the major devotions to reduce HIV 

progression has been the development of potential drugs, which can prevent the virus 

replication so as to stop its spread to other cells and/or infect other healthy 

individuals. These efforts has enabled the appearance of many drugs implemented for 

HIV treatment termed High Active Antiretroviral Therapy (HAART) and includes 

many classes as discussed in section 1.2.3 of Chapter 1 (Delaney, 2006). These 

molecules main objective is preventing viral progression by attacking HIV at various 

stages of the virus life cycle, and to reduce the mortality rate of the infected patients. 

Whilst these molecules slow down virus replication and/or progression, the efficiency 

of HAART are still questionable due to the fact that NRTIs, NNRTIs, INSTIs and PIs 

are used to fight HIV progression when the virus has already penetrated into the 

human T cells, macrophages/monocytes and dendritic cells (Bean, 2005; Pang et al., 

2009; Hare et al., 2010; Volberding and Deeks, 2010). Since the goal was to develop 

therapeutic molecules that would inhibit the virus before it gets into the human cells, 

the design of Fusion or Entry Inhibitors (FIs or EIs) were eminent. 

Though the research on FIs or EIs is still in its developmental stages and that only one 

such molecule has received FDA approval (Kilby et al., 2002; Lalezari et al., 2003), 

efforts ought to be doubled so that more FIs are approved. Thus, the design of 

molecules/peptides that could prevent HIV gp120 protein interaction with the CD4+ 

of the T cells and macrophages/monocytes were developed, using a mathematical 

prediction algorithm. The binding of these peptides to this particular site was 

demonstrated using a structural bioinformatics method (Tincho et al., 2016). The 

selection of these molecules could be relevant due to certain points: Firstly, these 

peptides bind to HIV gp120 protein, at the area where the protein interacts with CD4+ 
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of T cells and macrophages/monocytes. Secondly, the only FIs or EIs that has 

received FDA approval are of peptide origin. 

Although the function of these peptides was demonstrated with in-silico methods, the 

validation of their role(s) should be confirmed using molecular methods. For the 

purpose of showing specific binding of the peptides to gp120, examples of such 

techniques include Isothermal Titration Calorimetry (ITC), Circular Dichroism (CD), 

Surface Plasmon Resonance (SPR), Bio-Layer Interferometry (BLI), Dual 

Polarization Interferometry (DPI), Fluorescence Resonance Energy Transfer (FRET) 

and Microscale Thermophoresis (MST) (Berggård et al., 2007). Whilst the techniques 

cited above are mostly used to demonstrate and confirm protein-protein interaction, 

predicted in an in-silico study, this current study has made use of another technique, 

which demonstrates protein-protein interaction in an on/off experimental setup, where 

the receptor and the ligand are allowed to bind in a Lateral Flow Devise (LFD) set-up. 

The technique has been implemented in a study published by Williams et al., 2016 

related to the interaction of HIV p24 protein with a number of selected AMPs. 

Though the function described here is not the same, the need for such technique was 

to show in a fast and simple experiment putative anti-HIV AMPs binding to HIV 

gp120 protein. This study could serve as a confirmatory method to justify the in-silico 

prediction made in Chapter Two on the interaction of HIV gp120 protein with various 

putative anti-HIV AMPs, and HIV gp120 protein as well as mutated versions of these 

AMPs. The results of a positive interaction are observed as the intensity displayed by 

bands represented in the window of the LFD and are interpreted as Dot-Blot intensity, 

using an in-house colour rating design by Medical Diagnostech (Pty) Ltd, with the 

scale ranging from G1 to G10. Whilst a negative result is the absence of a band in the 

LFD window thus signifying that there was not interaction between the receptor and 

the ligand. 

The major goal of this part of the project was to express and purify a recombinant 

HIV gp120 and to use this protein in an “in house” LFD binding experimental 

disposition, with the putative AMPs and the mutated AMPs, predicted to bind gp120, 

with the work performed in collaboration with our industrial partner, Medical 

Diagnostech (Pty) Ltd.  
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The specific objectives to achieve in this piece of work were to: 

 Express and produce a purified recombinant HIV gp120 protein, 

 Bio-conjugate the putative and mutated AMPs with gold nanoparticles, 

 Perform the interaction study of the HIV gp120 protein and the AMPs, to 

confirm the in-silico prediction. 

3.2. Methods 

3.2.1. Expression of recombinant HIV protein gp120 

3.2.1.1. Designing of the gp120 expression insert 

The HIV gp120 gene sequence was generated using a computational method, by 

translating the gp120 amino acid sequence utilized in the protein-AMP docking study 

(Chapter Two). The gp120 amino acid sequence was taken from the PDB ID: 2NXZ, 

representing the A-chain of this complex (Zhou et al., 2007). The HIV gp120 amino 

acid sequence was reverse-translated into a nucleotide sequence using the online tool: 

Sequence manipulation Suite Reverse translate 

(http://www.bioinformatics.org/sms2/rev_trans.html) (Stothard, 2000). The DNA 

sequence was submitted to GenScript® Company (USA) for optimization so that the 

gene can be expressed in bacterial cells. GenScript® Company cloned the optimized 

insert into a pGEX-6P-2 vector, using the restriction sites Bam H1 and Not I (Figure 

3.1). These restriction sites were selected using the online tool called “WebCutter 

Server”, version 2, which generates all the possible restriction sites that may be found 

within the gene to be expressed. The selected restriction sites were selected since they 

have no recognition sites within the gp120 gene.  
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Figure 3.1: Map of the pGEX-6P-2 vector, utilized for protein expression in E. coli 
BL 21 Gold. The picture was taken from Amersham, 2000.  

3.2.1.2. Preparation of pGex-6P-2-gp120 

The purchased vector was prepared as per the manufacturer instructions. In brief, 

before the vial was opened, the lyophilised plasmid DNA was centrifuged at 6000 x g 

for one minute at 4 °C. after the vial was opened the plasmid DNA was diluted with 

20 μl of sterilized water, then vortexed for an additional minute to reconstitute the 

DNA, and was ready for further use.  

3.2.1.3. Transformation and Expression screening for pGex-6P-2-gp120 

To perform the transformation reaction, the competent E. coli BL 21 Gold cells were 

thawed on ice. After, 100 μl of the competent BL 21 Gold cells were placed into a 

tube with 1 μg of the vector DNA. These components was gently mixed by tapping 

and the tube incubated on ice for 30 minutes. Next, the transformation mixture was 

heat shocked at 42 °C for 45 seconds and incubated immediately on ice for 5 minutes. 

Following incubation, the transformation mix was added to 900 μl pre-warmed Luria 

Broth (LB) containing no antibiotics and was further incubated at 37 °C for one and a 

half hours. To evaluate the transformation reaction, four LB agar plates were prepared 
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in the following disposition: one LB agar only plate and three LB agar + Ampicillin 

plates with a concentration of 100 μg/ml. The transformation mixture (50 μl) was then 

plated onto the LB agar plate and, LB + Ampicillin plates respectively. Furthermore, 

the rest of the transformation mixture (900 μl) was plated on another LB agar + 

Ampicillin plate. The reason to plate such as high volume was to compensate for a 

low transformation efficiency that may arise. The plating of 100 μl of the BL 21 

competent cells on a LB + Ampicillin plate was utilized as a control, to confirm that 

the competent cells did not contain any plasmid DNA before the transformation 

reaction. These plates were incubated overnight at 37 °C using a 211DS Shaking 

Incubator (Labnet). 

Following overnight incubation, three single colonies were picked from the LB + 

Ampicillin plates and were inoculated into 10 ml pre-warmed LB containing 100 

μg/ml Ampicillin. The tubes were incubated overnight at 37 °C shaking at 225 

revolutions per minute (RPM). Thereafter, glycerol stocks of each colony were 

prepared from the overnight culture and were stored at – 80 °C.  

From the overnight culture, 0.5 ml was taken from it and was added to 4.5 ml LB 

containing Ampicillin (100 μg/ml), and the mixture was further incubated for an 

additional hour at 37 °C, in a shaker at 225 RPM. After the one-hour incubation, 1 ml 

was removed from the initial solution mixture and represents the un-induced sample. 

The un-induced sample was centrifuged at 12000 RPM for 10 minutes using a 5415D 

Benchtop Microcentrifuge from Eppendorf. The pellet was subsequently stored at – 

80 °C for further analysis by SDS-PAGE. The remaining 4 ml was subjected to 

protein expression, in which the sample was induced with 1 mM IPTG for 3 hours at 

37 °C, in an incubator shaker at 225 RPM. The induced sample was centrifuged at 

12000 RPM for 10 minutes using a 5415D Benchtop Microcentrifuge from 

Eppendorf, and only the pellet was stored at – 80 °C for further analysis by SDS-

PAGE.  

3.2.1.4. Large-scale expression of gp120 

Once the colony that shows the highest protein expression was selected in the 

screening process, a 1 ml glycerol stock representing this sample was added into 100 

ml LB supplemented with 100 μg/ml ampicillin and the mixture was incubated 
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overnight at 37 °C at 225 RPM. The overnight culture was then added to 900 ml LB 

supplemented with 100 μg/ml ampicillin in a 2 liter Erlenmeyer flask to ensure 

sufficient aeration. The sample was incubated at 37 °C at 225 RPM until an optical 

density (O.D) of 0.5 to 0.6 was reached. Once this O.D range was reached, 10 ml of 

the sample was removed which represented the un-induced sample. This sample was 

then centrifuged and the pellet was stored at - 80 °C for SDS-PAGE analysis. The 

remaining 990 ml was subjected to induction of protein expression with 1 mM IPTG 

and was incubated for three hours at 37 °C, shaking at 225 RPM. The induced culture 

was divided into five equal volumes of 198 ml and placed into 350 ml centrifuge 

bottles, and subjected to centrifugation using a Beckman Coulter centrifuge at 5000 x 

g for 10 minutes. Each pellet was re-suspended in 10 ml Sodium Chloride-Tris-EDTA 

(STE)/lysozyme and the sample mixtures were incubated on ice for 15 minutes. All 

re-suspended samples were combined into a 50 ml tube and one 1 X CompleteTM, 

EDTA-free protease inhibitor cocktail tablet (Roche) was added to the combined 

sample and the tablet was left to dissolve. The sample was later sonicated on ice for 

three cycles (one minute sonication and two minutes rest on ice). This process was 

repeated until the lysate became clear and, it was centrifuged at 5000 x g for 15 

minutes at 4 °C, thereafter. The pellet and supernatant were stored at – 80 °C for 

further evaluation either for protein purification or for SDS-PAGE analysis.  

3.2.2. Purification of recombinant GST-gp120 

3.2.2.1. Column preparation 

To effectively isolate the gp120 protein, a column of 5 ml glutathione agarose was 

prepared by allowing 350 mg of Glutathione agarose to swell in 70 ml distilled H2O 

overnight at 4 °C. After the swelled beads were poured into a 50 ml centrifuge tube 

and the column purification method was used to purify the target protein. The column 

was washed with dH2O and was equilibrated with 10 resin volumes of equilibration 

buffer (PBS-T) and the buffer was discarded.  

3.2.2.2. Purification of gp120 protein 

After the preparation of the column, the protein lysate (10 ml) was added to the 

equilibrated beads (5 ml) and mixed onto the Tube roller (Stuart SRT9dD) for 60 
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minutes at 4 °C. After, the mixture within the tube was allowed to settle, the sample 

was collected as flow through and stored for SDS-PAGE analysis. The beads were 

washed with 5 resin bed volumes of PBS-T and the supernatant was collected, stored 

and denoted as Wash 1. This step was repeated thrice, that is Wash 2 to Wash 4 were 

collected and also stored for downstream analysis. The GST-gp120 protein was eluted 

by addition of one resin bed volume of elution buffer. The elution buffer and GST-

gp120 suspension were mixed at room temperature for 30 minutes to dissociate the 

GST-gp120 protein from the beads. This step was repeated twice to generate Elution 

2 and Elution 3, and these solutions were also collected and stored on ice for analysis. 

The beads were washed with cleansing buffers to remove any excess protein within 

the column and thereafter stored in storage buffer.  

3.2.3. Analysis of extracted samples 

To analyse all samples collected during the purification process, a 12 % SDS-PAGE 

were used as recommended by Laemmli, 1970. The SDS-PAGE solutions were 

prepared as shown in Table 3.4 and cast using a Mini-PROTEAN Tetra Cell, with 

TEMED being added right before the gel was cast. For the sample analysis of the 

expression screening, 10 μl of protein sample was added to 10 μl of 2X SDS sample 

buffer and subjected to 3 cycles of heating at 95 °C for 3 minutes and vortexing for 3 

minutes, respectively. These samples were then centrifuged to sediment debris and 15 

μl of sample was loaded onto the gel. For the samples from the purification, 10 μl of 

sample and 10 μl of 2X SDS sample buffer were mixed and 15 μl of sample were 

loaded onto the gel. The gel was electrophoresed at 150 Volts for 70 minutes. 

Thereafter the gel was stained with Coomassie Brilliant Blue R-250 stain for 15 

minutes and destained overnight. Gel images were viewed and captured by a UVP 

BioSpectrum Imaging System and Canon CanoScan LiDE 120 electronic scanner.  
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Table 3.4: Reagents used for the preparation of 12 % SDS-PAGE.  

Reagents 12 % separation buffer 5 % stacking buffer 

dH2O 4.3 ml 3.65 ml 

1.5 M Tris-Cl pH 8.8 2.5 ml - 

0.5 M Tris-Cl pH 6.8 - 630.0 μl 

10 % SDS 100.0 μl 50.0 μl 

Acry/Bis (40 %) 3.0 ml 400.0 μl 

10 % APS 200.0 μl 50.0 μl 

TEMED 20.0 μl 20.0 μl 

3.2.4. Acquiring of putative anti-HIV AMPs and gp120 recombinant protein 

3.2.4.1. Peptide synthesis 

The seven AMPs utilised for the binding study were composed of the five initial 

putative anti-HIV AMPs taken from previous work (Tincho MSc thesis, 2013) and the 

two mutated AMPs which were found to bind gp120 as demonstrated in Chapter two. 

The chosen AMPs were chemically synthesised by GL Biochem Ltd. (Shanghai 

200241, China) using the solid-phase method and they were purified to > 98 % by 

reverse-phase High-Pressure Liquid Chromatography and the AMPs were shipped in 

a lyophilised form. 

3.2.4.2. Acquiring of recombinant proteins gp120 and CD4 

Due to the fact that the recombinant HIV gp120 protein could not be purified after its 

expression, the binding experiment would be carried out using a commercially 

available protein. Thus, the HIV-1 gp120 protein (group M, subtype CRF07_BC) was 

purchased from Sino Biological Inc. (Biological Solution Specialist), with the catalog 

number 11233-V08H, and the protein was shipped in lyophilised form. In addition, 

the CD4 protein (Human CD4/LEU Protein (HisTag)) was purchased from the same 

company with the product catalog number 10400-H08H, and the product was also 

shipped in lyophilised form. 
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3.2.5. Interaction of gp120 and the putative AMPs 

The reason for purchasing gp120 and CD4 proteins was justified by the fact that the 

scope was to determine if the AMPs could compete with gp120 binding to the CD4 

protein.  

3.2.5.1. Preparation of gp120 protein 

The commercial HIV gp120 and CD4 proteins samples were prepared by dissolving 

the 100 μg of the lyophilized protein in 1 ml PBS and were stored for further 

application. The same was done with the various AMPs, where 1 mg of each peptide 

was dissolved in 1 ml PBS.  

3.2.5.2. Preparation of AuNPs-gp120 and AuNPs-CD4 conjugates 

Stable colloidal gp120 and CD4 conjugates were prepared according to an “in house” 

protocol designed by Medical Diagnostech (Pty) Ltd. CD4 was used in the conjugate 

preparation whereas gp120 was used on the membrane of the LFD. A biotinylation kit 

from Thermo Scientific (EZ-Link NHS-PEG4-Biotinylation kit) was used to 

biotinylated gp120 and CD4 used in conjugates. Biotinylated gp120 or CD4 and 

streptavidin stocks were made up to 0.05 mg/ml. The Biotinylated gp120 or CD4 

were added to 10 μg of streptavidin in the ratio 1:1, 1:2, 1:3, and 1:4. This was 

allowed to complex for 30 minutes. This mixture was conjugated to 2 μg gold 

nanoparticles and allowed to incubate for 15 minutes. Thereafter 500 μl of 10 % BSA 

was added and incubated for a further 15 minutes. The conjugated mixture was then 

centrifuged for 30 minutes at 3300 RPM. The supernatant was discarded and the 

pellet re-suspended in 50 μl of borate suspension buffer. To each of the re-suspended 

conjugates, 1 % casein, 8 % sucrose, 0.75 % Tween 20, and 0.01 % glycerol were 

added. The conjugate was then blotted at 2 μl per stick and run as per test instructions.  

3.2.5.3. Preparation of membranes attachment with gp120 or CD4 proteins  

It is known that gp120 is a surface protein found on the HIV virus particle, and bind 

to the CD4 receptor found on T cell, macrophages and monocytes. In theory, purified 

CD4 should bind to gp120 in an electrostatic manner. Therefore, it was postulated that 

one of the AMPs might bind to the CD4 receptor and therefore compete with gp120 
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for the binding to CD4. Thus, conjugates were made with both CD4 and gp120 with 

both CD4 and gp120 placed on the membrane side of lateral flow strips to determine 

whether gp120 does in fact bind to CD4, and thereafter, adding the peptides into the 

running buffer in order to determine if the peptides can compete with gp120 for 

binding to CD4.  

3.2.5.4. Assembling the strips 

Strips were assembled in accordance with the current “in-house” HIV system created 

by Medical Diagnostech (Pty) Ltd. CD4 or gp120 were blotted onto the nitrocellulose 

membranes in triplicate at a concentration of 100 μg/ml. The successfully produced 

CD4 conjugate and gp120 conjugate were formulated and blotted onto the conjugate 

pads of the strips. Different combinations of the CD4 and gp120 were experimented 

upon to determine the optimal setting pair that would enable the scope of this chapter. 

The strips were then placed into cassettes and the test was run.  

3.2.5.5. Interaction of the recombinant AMPs and AuNPs-gp120 or AuNPs-CD4 

on the LFD 

Before the interaction of the proteins with the peptides could be performed, the right 

combinations of the proteins had to be determined as described in section 3.2.6.4.  

The control standards were established where CD4 and gp120 are used on the 

membrane and conjugate respectively, with the peptides used as positive control. If 

the peptides are used on the conjugate, then either CD4 or gp120 are used as positive 

controls.  

To carry out the interaction study, recombinant AMPs samples were serially diluted, 

and 10 μg/ml was applied to the sample well of the LFD with 120 μl of buffer spiked 

with CD4 or gp120 protein added to the sample well. Negative controls were tested 

with buffer only. The results were read after 15 minutes and results were not 

considered after 30 min.   
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3.2.5.6. Result interpretation 

After performing the testing, a difference in dose response between a negative and 

positive sample could be distinguished as shown in Figure 3.2 below. The visual 

interpretation was done using the in-house G1-G10 colour coded chart to determine 

whether any dose response to the controls was observed.  

                                     

 

Negative                                 Positive 

Figure 3.2: Diagram showing how the results are interpreted on an LFD made by 

Medical Diagnostech (Pty) Ltd. Negative is indicated by the absence of a dot. Positive 
is indicated by the presence of a red dot in the window. NOTE: If there is a significant 
difference between the intensities of the dots between negative and positive, this 

indicates a different in dose response between the negative and positive samples and 
can be viewed as a confirmation result irrespective of whether a faint dot appears or 

not when a negative sample is used. Signal intensities were measured using the MD 
G1-G10 Gold Colour Chart. 

 

3.3. Results and Discussion 

3.3.1. In-silico reverse translation 

To obtain the protein expression of the recombinant protein, the HIV gp120 protein 

amino acids sequence was reverse translated to a nucleotide sequence using the online 

server http://www.bioinformatics.org/sms2/rev_trans.html, and the result is as 

depicted below. 
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ATGGAAGTGGTGCTGGTGAACGTGACCGAAAACTTTAACATGTGGAAAA
ACGATATGGTGGAACAGATGCATGAAGATATTATTAGCCTGTGGGATCA
GAGCCTGAAACCGTGCGTGAAACTGACCCCGCTGTGCGTGGGCGCGGGC

AGCTGCAACACCAGCGTGATTACCCAGGCGTGCCCGAAAGTGAGCTTTG
AACCGATTCCGATTCATTATTGCGCGCCGGCGGGCTTTGCGATTCTGAAA

TGCAACAACAAAACCTTTAACGGCACCGGCCCGTGCACCAACGTGAGCA
CCGTGCAGTGCACCCATGGCATTCGCCCGGTGGTGAGCAGCCAGCTGCT
GCTGAACGGCAGCCTGGCGGAAGAAGAAGTGGTGATTCGCAGCGTGAAC

TTTACCGATAACGCGAAAACCATTATTGTGCAGCTGAACACCAGCGTGG
AAATTAACTGCACCGGCGCGGGCCATTGCAACATTGCGCGCGCGAAATG

GAACAACACCCTGAAACAGATTGCGAGCAAACTGCGCGAACAGTTTGGC
AACAACAAAACCATTATTTTTAAACAGAGCAGCGGCGGCGATCCGGAAA
TTGTGACCCATTGGTTTAACTGCGGCGGCGAATTTTTTTATTGCAACAGC

ACCCAGCTGTTTAACAGCACCTGGTTTAACAGCACCTGGAGCACCGAAG
GCAGCAACAACACCGAAGGCAGCGATACCATTACCCTGCCGTGCCGCAT

TAAACAGATTATTAACATGTGGCAGAAAGTGGGCAAAGCGATGTATGCG
CCGCCGATTAGCGGCCAGATTCGCTGCAGCAGCAACATTACCGGCCTGCT
GCTGACCCGCGATGGCGGCAACAGCAACAACGAAAGCGAAATTTTTCGC

CCGGGCGGCGGCGATATGCGCGATAACTGGCGCAGCGAACTGTATAAAT
ATAAAGTGGTGAAAATTGAATAA 

Figure 3.3: The sequence of HIV gp120 gene with start codon (ATG) and stop codon 
(TAA), after the reverse-translation predicted from its protein sequence, using an 

online in-silico server. 

  

3.3.2. Expression of recombinant GST-gp120 protein  

Due to the fact that the protein expression was supposed to be expressed in a 

bacterium cell, HIV gp120 gene sequence from the reverse translation was optimized 

for this purpose by GenScript® Company (USA). The cloning of the optimized HIV 

gp120 gene into the pGEX-6P-2 vector was carried out by the GenScript® Company 

(USA), and the lyophilized construct used for the protein expression. The result of the 

optimization, the restriction sites predicted by the “WebCutter Server” are also 

included and are as shown in Figure 3.4. 
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Item >1 Gene Synthesis:  

Gene name: GP120_opt, Length: 971 bp, Additional 5' sequence: ggatcc, Additional 

3' sequence: gcggccgc, Start with: GGATCC, 

Sequence:  

ATGGAAGTGGTCCTGGTCAACGTCACGGAAAACTTTAACATGTGGAAAA

ACGACATGGTGGAACAAATGCACGAAGATATTATTAGCCTGTGGGATCA
GAGTCTGAAACCGTGCGTTAAACTGACCCCGCTGTGCGTCGGTGCAGGC
AGTTGTAACACCAGCGTGATTACGCAAGCTTGTCCGAAAGTTTCTTTTGA

ACCGATTCCGATCCATTATTGCGCGCCGGCCGGCTTTGCGATCCTGAAAT
GTAACAATAAAACCTTCAACGGTACGGGCCCGTGCACCAATGTGAGCAC

GGTTCAGTGTACCCACGGCATTCGTCCGGTGGTTAGCTCTCAACTGCTGC
TGAACGGTTCACTGGCGGAAGAAGAAGTGGTGATCCGCTCGGTGAACTT
CACGGACAATGCCAAAACCATTATCGTCCAGCTGAACACGAGCGTGGAA

ATTAATTGCACCGGTGCAGGCCATTGTAATATCGCACGTGCTAAATGGAA
CAATACCCTGAAACAGATTGCGTCTAAACTGCGCGAACAATTCGGTAAC

AACAAAACGATCATCTTCAAACAGAGTTCCGGCGGTGATCCGGAAATCG
TCACCCACTGGTTTAACTGCGGCGGTGAATTTTTCTATTGTAATAGCACG
CAACTGTTTAACTCTACCTGGTTCAATAGCACCTGGTCTACGGAAGGTAG

TAACAATACCGAAGGCTCCGACACCATTACGCTGCCGTGCCGTATCAAA
CAGATTATCAACATGTGGCAAAAAGTTGGTAAAGCGATGTACGCACCGC

CGATTAGCGGCCAGATCCGTTGTTCATCGAACATTACGGGTCTGCTGCTG
ACCCGCGATGGCGGTAATTCAAACAATGAATCGGAAATCTTCCGCCCGG
GCGGTGGCGATATGCGTGACAATTGGCGCTCCGAACTGTATAAATACAA

AGTTGTCAAAATTGAATAA, 

End with: GCGGCCGC, 

Item >2 Custom Cloning: Direct Cloning GP120_opt_pGEX-6P-2: 

Vector name: pGEX-6P-2, 

Vector size (kb): -,Resistance: -, Copy number: High, Cloning site: BamHI-Notl, 

Figure 3.4: The optimization of HIV gp120 gene sequence by GenScript® Company 

(USA), for the expression of recombinant protein in E. coli BL21 Gold since amino 
acids code for different codons in the bacteria, viruses and mammalians.  

 

3.3.2.1. Expression screening of the transformed cells  

The expression screening of three selected transformed colonies showed that the cell 

was able to take up the plasmid and express the protein. The expression screening of 

the isolate are shown in Figure 3.5. 
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Figure 3.5: SDS-PAGE analysis displays the expression screening of 3 isolated 
colonies. Lane 1: 250 kDa Precision plus marker; lane 2: colony 1 induced; lane 3: 

colony 1 un-induced; lane 4: colony 1 supernatant; lane 5: colony 2 induced; lane 6: 
colony 2 un-induced; lane 7: colony 2 supernatant; lane 8: colony 3 induced; lane 9: 
colony 3 un-induced and lane 10: colony 3 supernatant.  

From the SDS-PAGE results as displayed in Figure 3.5, we noticed that the size of 

the protein band on the gel of the sample induced with IPTG represents protein size of 

either colony 1, colony 2 or colony 3, which are of expected size (GST + gp120). This 

is due to the fact that the gp120 gene was tagged with a GST-linker gene, thus the 

expression of this fusion protein (GST + gp120), would have a protein band with the 

expected size around 61 kDa (26 kDa GST + 35 kDa gp120) on the gel. The un-

induced samples for these colonies did not express the protein of interest (Figure 3.4). 

Furthermore, the protein was not shed into the supernatant. After confirming the 

protein expression in either of the colonies, the colony with the highest expression 

was utilized for large-scale protein expression.  

3.3.2.2. Large-scale expression of the recombinant protein GST-gp120 

After confirming the protein expression, the expression had to be done on a larger 

scale. Thus, isolate from colony 2 was grown on an agar plate containing Ampicillin, 

with one colony taken to start the large-scale expression of the protein. No protein 

expression was noticed in the un-induced E. coli BL 21 Gold cells and produced the 

same amount of the protein (Lane 2, Figure 3.5). However, It was noticed that the 

protein was expressed when the E. coli BL 21 Gold cells were induced at 37 °C with 
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IPTG (Lane 3, Figure 3.5), confirming the present of the protein in this fraction, after 

the induction. The same observation was made that the protein was not released into 

the supernatant (LB broth media), after its expression (Lane 4, Figure 3.6).  

 

 

Figure 3.6: SDS-PAGE analysis depicting large-scale expression of the GST-gp120 
fusion protein, for colony 2. Lane 1: 250 kDa Precision plus marker; lane 2: colony 2 
un-induced; lane 3: colony 2 induced; lane 4: supernatant colony. 

3.3.2.3. Purification of GST-gp120 

 

  

Figure 3.7: SDS-PAGE analysis depicting large-scale expression and purification of 

the GST-gp120 fusion protein, for colony 2. Lane 1: 250 kDa Precision plus marker; 
lane 2: colony 2 un-induced; lane 3: colony 2 induced; lane 4: total protein or lysate; 

lane 5: lysate pellet fraction; lane 6: lysate supernatant fraction; lane 7: flow through; 
lane 8: wash 1; lane 9: elution 1; lane 10: elution 2. 
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After performing the purification step of the fusion protein (GST + gp120) on a large 

scale, the SDS-PAGE results revealed that the fusion protein was not well purified 

(Figure 3.6). Even though the induced protein (Lane 3, Figure 3.7) showed that the 

fusion protein was expressed as compared to the un-induced protein (Lane 2, Figure 

3.7), it was later realized that large amount of the fusion protein was mostly found in 

the lysate pellet fraction (Lane 5, Figure 3.7) and some of the protein was found in the 

lysate supernatant fraction (Lane 6, Figure 3.7). The bands on the gel represented by 

lane 3, lane 4 and lane 5 corresponded to that of the fusion protein GST-gp120, 

signifying that the fusion protein (GST + gp120) was well expressed but the protein 

was not soluble when the sample was spun down to give the various fractions of the 

sample. Furthermore, this notion was confirmed when it was noticed that the bands 

displayed by lane 6, lane 7 and lane 8 (Figure 3.7), emanating from the lysate 

supernatant fraction, did not contain the expected size of the fusion protein. This 

could be explained by the fact that this protein might have been degraded once it 

became soluble thus an alternative method was sought for protein expression that 

would allow it to be soluble and allow for its purification. 

To resolve the protein solubility problem, a detergent named N-lauroylsarcosine or 

sodium lauroyl sarcosinate (INCI) was added to the STE/lysozyme during the protein 

induction and extraction protocol as described in section 3.2.2.4, to solubilize the 

fusion protein found within the lysate. After lysing of the cells and fractionation, the 

lysate supernatant fraction was subjected to purification with the same protein 

purification protocol as described in section 3.2.3.2. From the image of the protein 

analysis displayed below, the result indicated that the protein became soluble with the 

addition of this detergent (Figure 3.8). However, the purification was still not 

successful due to the fact that the expected fusion protein GST+gp120 did not appear 

in lane 7, lane 8 and lane 9. The lack of bands in these lanes (Figure 3.8) could 

indicate that the GST-tagged protein did not bind to the beads, thus not allowing for 

the protein to be purified. This could be explained by the fact that the fusion protein 

was not in its native conformation and did not fold properly to allow the GST-tag to 

bind to the glutathione beads. 
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Figure 3.8: SDS-PAGE analysis depicting large-scale expression and purification of a 
GST-gp120 fusion protein with INCI treatment. Lane 1: 250 kDa Precision plus 
marker; lane 2: colony 2 un-induced; lane 3: total protein or lysate; lane 4: lysate 

supernatant fraction (flow through); lane 5: wash 1; lane 6: wash 4; lane 7: elution 1; 
lane 8: elution 2; lane 9: elution 3. 

 

Despite the fact that the protein was made soluble, the inability to purify this protein 

was corrected by supplementing the extraction solution with 5 mM DTT so that the 

denatured protein could be folded back to its native conformation and allow for the 

protein to be purified. As such, the same expression and extraction protocol were 

followed as described in section 3.2.2.4 and the purification was performed as 

described as in section 3.2.3.2 above.  

The purification result showed that the protein could not be purified once again since 

no bands representing the protein were found in the elution fraction (Lane E7, Lane 

E8 and Lane E9, Figure 3.9). Furthermore, the SDS-PAGE image depicts that the size 

of the protein (lane 4 and lane 5, Figure 3.9) on the gel do not correspond to that of 

the expected size for the fusion protein of 61 kDa, implying the protein may have 

been degraded once it became soluble in solution. The solubility of the GST + gp120 

fusion protein was confirmed by the presence of a band corresponding to the fusion 

protein within lane 3 of Figure 3.8. However, concern was mostly raised that no 

protein bands were observed in the elution fractions (lane 7, lane 8 and lane 9, Figure 

3.9). This concern comes with the knowledge that if the protein were folded back into 

its native conformation with DTT treatment, after denaturation with INCI, the protein 

would bind to the glutathione beads, which would allow its purification. Furthermore, 

   1          2           3           4           5          6           7           8          9               

250 
150 

100 
 

75 
 

 
50 

 
 

37 
 
 

 
25 

 
20 

 
15 
10 

 

 

 

 



 89 

if the protein were being degraded after becoming soluble, the gel image would show 

the presence of the protein in lane 7, lane 8 and lane 9 corresponding to the size of 

GST i.e. 26 kDa. 

 

 

Figure 3.9. SDS-PAGE analysis depicting large-scale expression and purification of a 
GST-gp120 fusion protein with INCI and DTT treatment, with purification performed 

at 4 °C, for 1 hour. Lane 1: 250 kDa Precision plus marker; lane 2: colony 2 un-
induced protein; lane 3: total protein or lysate; lane 4: lysate supernatant fraction 
(flow through); lane 5: wash 1; lane 6: wash 4; lane 7: elution 1; lane 8: elution 2; 

lane 9: elution 3. 

 

The non-binding of the protein to the beads motivated the change of the purification 

protocol, where the incubation of the lysate supernatant with the beads was changed 

from an 1 hour incubation at 4 °C, to incubation at room temperature, for an hour. 

After the incubation and purification, the SDS-PAGE result still exhibits the same 

outcome as previously demonstrated in Figure 3.8, meaning that the fusion protein 

was still not able to bind to the agarose beads and the soluble protein was degraded 

(Figure 3.10).  
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 Figure 3.10: SDS-PAGE analysis depicting large-scale expression and purification 
of a GST-gp120 fusion protein with INCI and DTT treatment, with purification 

performed at room temperature for 1 hour. Lane 1: 250 kDa Precision plus marker; 
lane 2: colony 2 un-induced protein; lane 3: total protein or lysate; lane 4: lysate 
supernatant fraction (flow through); lane 5: wash 1; lane 6: wash 4; lane 7: elution 1; 

lane 8: elution 2; lane 9: elution 3. 

Due to the fact that it was difficult to obtain a soluble protein under the previous 

conditions and that it was possible to solubilize the protein using N-lauroylsarcosine 

as explained above, it was however difficult to purify the fusion protein since the 

GST-tag which is fused to the protein did not bind to the agarose beads to allow the 

purification of the fusion protein as shown on the SDS-PAGE images of Figure 3.7; 

Figure 3.8; Figure 3.9; Figure 3.10). 

Based on the limitation encountered in the above protocol, a new protocol was 

implemented to optimize the expression of a soluble protein. Thus, N-

lauroylsarcosine detergent was replaced by Urea, to denature the fusion protein and to 

allow its solubility so as to facilitate its purification. To achieve this, the same steps as 

described in section 3.2.2.4 were followed and the lysate from these steps was 

separated from the supernatant by centrifugation. The cell lysate was re-suspended 

with Wash buffer (8 M urea, 50 mM Tris, 5 mM EDTA and cOmplete EDTA-free 

protein inhibitor tablet) and was centrifuged for 20 minutes at 5000 x g. The pellet 

from this washing step was dissolved into U-buffer (50 mM Tris, 5 mM EDTA, 5 mM 

DTT and cOmplete EDTA-free protein inhibitor tablet) and the mixture was 

incubated on ice for 2 hours. Following incubation, the mixture was centrifuged for 

20 minutes at 5000 x g, and the supernatant was harvested and 1 % Triton-X100 
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added to the solution. The supernatant was placed into a dialysis bag and was placed 

into PBS/glycerol buffer for 2 hours. Afterwhich, the dialysis bag was transferred into 

PBS/cOmplete EDTA-free Protease Inhibitor and the dialysis reaction was allowed to 

continue overnight. The following day, the contents of the dialysis bag was placed 

into a 15 ml tube and the tube was centrifuged at 5000 x g for 20 minutes, and the 

supernatant containing the fusion protein was recovered. The various samples were 

analysed with SDS-PAGE and the result is depicted below (Figure 3.11).  

 

Figure 3.11: SDS-PAGE analysis depicting large-scale expression after treating pellet 
with U-buffer and dialysis. Lane 1: 250 kDa Precision plus marker; lane 2: colony 2 

un-induced protein; lane 3: colony 2 induced; lane 4: lysate supernatant fraction after 
sonication; lane 5: washing with a wash buffer; lane 6: supernatant after incubation 

with U-buffer; lane 7: supernatant after dialysis.  

The image above shows that the fusion protein is still not found in the supernatant 

following sonication as shown in lane 4, Figure 3.10. The protein becomes visible 

only once the U-buffer was added to the cell pellet, therefore it can be deduced that 

the U-buffer allows the solubility of the protein (Lane 6, Figure 3.11). However, the 

end result did not seem promising due to the fact that the amount of fusion protein is 

minimal as compared to the amount of the fusion protein in Lane 6. Despite the fact 

that the end result was not promising, purification was carried out on the sample 

prepared with the U-buffer before dialysis since the dialysis sample showed little to 

no protein. The column was prepared by cleaning the beads with 1-bed volume of 5 

1               2            3            4           5            6            7           

250 
150 
100 

 
75 

 
 

 
50 

 
 

37 
 
 

 
 

25 
 

 
20 

 
15 

 
10 

 

 

 

 



 92 

M Urea to denature all proteins in the column, followed by 1-bed volume of 10 mM 

of reduced glutathione, and then the beads were washed with distilled water. The 

column was equilibrated with 3-bed volumes of PBS buffer and the supernatant was 

added to the cleaned glutathione agarose column and was incubated at 4 °C on an 

end-to-end rotator for 1 hour, and the purification carried out as described in section 

3.2.3.2 and the sample analysed with 12 % SDS-PAGE. 

 

 

Figure 3.12: SDS-PAGE analysis depicting large-scale expression after treating pellet 
with U-buffer. Lane 1: 250 kDa Precision plus marker; lane 2: colony 2 un-induced 
protein; lane 3: total protein or lysate; lane 4: lysate supernatant fraction (flow 

through); lane 5: wash 1; lane 6: wash 2; lane 7: wash 3; lane 8: elution 1; lane 9: 
elution 2; lane 10: elution 3. 

As observed in figure 3.12, no clear bands could be seen in the elution fraction 

represented by lanes 8, 9 and 10. However, distinct bands of ≈ 35 kDa were observed 

in the wash fractions (lane 4, lane 5 and lane 6, Figure 3.11), and the band size was 

neither that of the fusion protein (61 kDa) nor that of the GST-tag (26 kDa), implying 

the fusion protein was degraded or spliced once it becomes soluble. However, the 

portion of the fusion protein that was being degraded could not be ascertained. It 

could be speculated that the GST-tag underwent splicing rather than the gp120 protein 

since no band was shown in the elution lanes implying the protein could not be 

purified. Due to the inability to purify the fusion protein despite the various protocols 

utilised, and the fact that the fusion protein was spliced once becoming soluble, the 

construct utilised for the transformation was sequenced so as to confirm that the DNA 
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sequence was the correct one as to produce the fusion protein. The result was 

analysed with CLC Sequence Viewer, version 7.7 (QIAGEN Bioinformatics, Aarthus 

A/S). 

ATGGAAGTGGTCCTGGTCAACGTCACGGAAAAYTTTAACATGTGGAAAAA

CGACATGGTGGAACAAATGCACGAAGATATTATTAGCCTGTGGGATCAGA

GTCTGAAACCGTGCGTTAAACTGACCCCGCTGTGCGTCGGTGCAGGCAGT

TGTAACACCAGCGTGATTACGCAAGCTTGTCCGAAAGTTTCTTTTGAACCG

ATTCCGATCCATTATTGCGCGCCGGCCGGCTTTGCGATCCTGAAATGTAAC

AATAAAACCTTCAACGGTACGGGCCCGTGCACCAATGTGAGCACGGTTCA

GTGTACCCACGGCATTCGTCCGGTGGTTAGCTCTCAACTGCTGCTGAACGG

TTCACTGGCGGAAGAAGAAGTGGTGATCCGCTCGGTGAACTTCACGGACA

ATGCCAAAACCATTATCGTCCAGCTGAACACGAGCGTGGAAATTAATTGC

ACCGGTGCAGGCCATTGTAATATCGCACGTGCTAAATGGAACAATACCCT

GAAACAGATTGCGTCTAAACTGCGCGAACAATTCGGTAACAACAAAACG

ATCATCTTCAAACAGAGTTCCGGCGGTGATCCGGAAATCGTCACCCACTG

GTTTAACTGCGGCGGTGAATTTTTCTATTGTAATAGCACGCAACTGTTTAA

CTCTACCTGGTTCAATAGCACCTGGTCTACGGAAGGTAGTAACAATACCG

AAGGCTCCGACACCATTACGCTGCCGTGCCGTATCAAACAGATTATCAAC

ATGTGGCAAAAAGTTGGTAAAGCGATGTACGCACCGCCGATTAGCGGCCA

GATCCGTTGTTCATCGAACATTACGGGTCTGCTGCTGACCCGCGATGGCG

GTAATTCAAACAATGAATCGGAAATCTTCCGCCCGGCSGTGGCGATATGC

GTGACAATTGCCGCTCCGAACTGTATAATACCAAGTTGTCAAAATTGAAT

AA 

Figure 3.13: The sequencing result of the optimised HIV-gp120 construct from 
GenScript® Company (USA) for the expression of the recombinant protein in E. coli 

BL21 Gold 

 

A close examination of the gene sequence produced proves that the sequenced gene is 

the same as that of the optimised HIV gp120 construct, therefore confirming the fact 

that the correct gene sequence was cloned into the vector. This is further confirmed by 

the presence of a protein of expected size from the SDS-PAGE results, which 

corresponded to the size of the fusion protein. With all the information collected 

during the expression and purification of the protein, the inability to obtain a pure 

protein could be explained by the chemical composition of the protein and the host 

utilised for the protein expression.  

The HIV gp120 protein is in fact a glycoprotein, made of a protein backbone with 

associations of carbohydrate chains highly made up of N-linked glycosylation sites 
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and the N-linked glycans (Matthews et al., 1987; Leonard et al., 1990), where the 

glycans residues help in the stabilisation of the protein in its final conformation and 

structure. Using a bacterium such as E. coli to perform the expression and the 

purification of gp120 could be challenging since the bacterium does not undergo post-

translational modification to produce the sugar moieties required to keep gp120 in its 

native conformation once it is released from the bacterium cell into the extraction 

buffer. Even though the original HIV gp120 gene was optimised to be expressed in a 

bacterium cell, since different organisms amino acids residues code differently, the 

protein could not purified since the sugar residues were absent on the gp120 protein 

backbone, to maintain its stability in solution. The fact that the right band size of the 

fusion protein was observed on the SDS-PAGE images (Lane 3 of Figure 3.5 to 

Figure 3.12) confirmed that the protein was expressed but purification failed because 

the protein was not stable due to the absence of sugar residues on its backbone, thus 

the spliced forms of the fusion protein observed on the SDS-PAGE images of Figure 

3.7, Figure 3.9, Figure 3.10 and Figure 3.12.    

Various research have generated opposite results on the role of these glycan residues 

for its interaction with CD4 surface molecules of T cells, macrophages and 

monocytes; however, molecular biologists and structural biologists are certain that the 

overall structure and conformation of HIV gp120 depends on these sugar moieties (Li 

et al., 1993). The importance of these glycan moieties prove that it will be impossible 

to have a stable protein if expressed in a bacterium cell, thus the results obtained in 

the current work. Even though detergent and urea were used to solubilise the protein 

in solution, a pure protein could not be obtained because the expressed gp120 did not 

have sugars moieties in its backbone to maintain the protein in its native form hence 

splicing of the protein (Figure 3.7, Figure 3.9, Figure 3.10 and Figure 3.12). 

Moreover, it will thus prove difficult to unfold this protein with urea and attempt to 

fold it back into its native conformation using dialysis due to the reasons mentioned 

above. An alternative solution should be the optimisation of the extraction protocol 

since the sequence ought to express the correct GST-gp120 size, after purification. 

Additional technique such as Western bloting would be performed subsequently to 

track the protein expression and in downstream purification processing steps. A 

further modification would be to utilise different hosts such as mammalian cells for 

the protein expression. 
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3.3.2.4. Binding studies of HIV gp120 protein with putative anti-HIV AMPs 

Due to the fact that the HIV gp120 protein could not be purified, the protein was 

purchased as mentioned in section 3.2.4.2 and the working stock was made up as 

stipulated in section 3.2.5.1.  

The first experiment was to establish whether gp120 does in fact, bind to CD4 (Figure 

3.14) where gp120 was blotted onto the membrane and a CD4 conjugate was used, 

and vice versa. It was discovered that when gp120 was on the conjugate side and CD4 

was blotted onto the membrane, a dot becomes observable but the same not possible 

when the test was ran with gp120 on the membrane and CD4 on the conjugate side. 

However, It is important to note that it was a challenge to produce a CD4 conjugate.  

 

Figure 3.14: A test run with gp120 on the membrane and CD4 as a conjugate (left of 

the two tests) and a test run with CD4 on the membrane and gp120 as a conjugate 
(right of the two tests).  

 

Thereafter a test with CD4 on the membrane and gp120 on the conjugate was run with 

buffer only as a control and with gp120 spiked into the buffer at a final concentration 

of 8 μg/ml (Figure 3.15). This was done in triplicate and it was found that free-

floating gp120 was able to compete with the gp120 conjugate. The free-floating 

gp120 was, therefore, able to bind to the blot sufficiently to block off the gp120 

binding sites. Hence gp120 conjugates was therefore unable to bind to CD4.  
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Figure 3.15: Picture showing tests run with CD4 on the membrane and gp120 on the 
conjugate. The left test was run using buffer only and the right test was run with 
gp120 spiked into the buffer at a concentration of 8 μg/ml in triplicate.  

In a similar fashion, a test was run with CD4 on the membrane and gp120 on the 

conjugate side and using CD4 as the positive control (Figure 3.16). Observation 

showed that the CD4 was able to bind to the gp120 conjugate, therefore making it 

unable to bind to CD4 on the membrane.  

 

Figure 3.16: Picture showing tests with CD4 on the membrane and gp120 on the 

conjugate. The left test is run with buffer only and the right test was run with buffer 
spiked with CD4 to 8 μg/ml.  

Using the same strip format as above with CD4 on the membrane and gp120 on the 

conjugate side, all the peptides (AMPs) were run after spiking the running buffer with 

each one respectively. The results shown in Figure 3.17 indicate that most of the 

peptides were able to dim the blot compared to the negative control. At this stage, the 

result was promising but still inconclusive since it was later established that the 

peptides contain a buffer that was not compatible with gold particles.  
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Figure 3.17: Test with CD4 on the membrane and gp120 on the conjugate run with 
each of the peptides spiked into the running buffer. From the pictures depicted here, 
(1): Molecule 1; (2) Molecule 3; (3): Molecule 7; (6): Molecule 8; (9): Molecule 1.1; 

(10): Molecule 8.1. 

 

To proceed, the next step was to produce conjugates with the putative AMPs. Out of 

the AMPs used only Molecule 1 and Molecule 7 did not cause the conjugate to 

spontaneously collapse. After successful conjugation, tests were run with CD4 on the 

membrane side, and with Molecule 1 and Molecule 7 on the conjugate side 

respectively, using buffer only to simulate negative controls. For a positive control, 

gp120 and CD4 were spiked into the running buffer respectively, to determine 

whether gp120 and CD4 competed with the AMP for binding to CD4. When 

Molecule 1 was used on the conjugate side, there was very little response, but when 

Molecule 7 was used on the conjugate, there was a significant dose response when 

comparing buffer only and spiked buffer (with CD4 and gp120) (Figure 3.18 a and b). 

  

 (a)     (b)  

Figure 3.18: a) Figure showing test run with CD4 on the membrane and Molecule 1 
on the conjugate and b) picture showing test run with CD4 on the conjugate and 

Molecule 7 on the conjugate. Both were run using gp120 (middle test of each picture) 
and CD4 (right test of each picture) as positive control standards. 
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The experiment using Molecule 7 on the conjugate above was repeated but using 

buffer spiked with a higher concentration of 18 μg/ml (Figure 3.19) It was shown that 

the test spiked with gp120 gave a weaker intensity blot, showing that gp120 may be 

competing with Molecule 7 for CD4 binding, and when the concentration was 

increased to 18 μg/ml, the blot intensity was still weaker.  

 

 

Figure 3.19:  Tests run with CD4 on the membrane and Molecule 7 on the conjugate.  
The left test was run with buffer only. The middle test was run with buffer spiked 

with gp120 to 8 μg/ml. The right test was run with buffer spiked with gp120 to 18 
μg/ml. 

 

The results from different test runs proved to be inconsistent. In one experiment tests 

were run with different concentrations of gp120 spiked into the buffer and compared 

to un-spiked buffer (Figure 3.20a). Even though there appears to be a difference 

between the test not spiked and the test spiked, the difference observed was small. On 

this occasion, there was no difference between the three different concentrations of 

the spiked buffer. In another experiment when the same conditions were run in 

triplicate completely different results were observed (Figure 3.20 b). Tests run with 

CD4 on the membrane and Molecule 7 on the conjugate and gp120 as control 

standard showed one set of tests giving reverse results (no blot on the negative with a 

visible blot on the positive), one set of tests with no delta, and one set of tests with the 

expected result. This occurred about 15 % of the time.  
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Figure 3.20: a) Tests run with CD4 on the membrane and Molecule 7 on the 
conjugate run with buffer only (left test) and different concentrations of gp120 spiked 

into running buffer. b) 3 sets of a test run in triplicate with completely different 
results. 

 

3.4. Conclusion 

The work performed in this chapter has shown that the optimised HIV gp120 gene, 

cloned into pGex-6P-2 vector was able to express the right fusion protein size proving 

that the reverse translation and optimisation of the amino acid sequence was done 

correctly. However, the purification of the protein was problematic either by the 

inability of the bacterium to undergo post-translational modification to produce a full 

gp120 glycoprotein, or instability of the protein to stay in its native form once in 

solution. Nevertheless, the protein was expressed as it was demonstrated with the 

SDS-PAGE results however, could not be purified. 

 

Though the initial concept to bind gp120 with the various AMPs was not proved in 

this work, it can be concluded as shown from the binding results that when CD4 is on 

the membrane and gp120 is on the conjugate side, the conjugate is capable of binding 

to CD4 and this binding generally seems to be inhibited by the presence of free-

floating gp120 and to a certain extent, the AMPs. Conversely, it was possible to show 

that when Molecule 7 was used on the conjugate and CD4 on the membrane, gp120 

was able to dim the blot, indicating some sort of competition with the Molecule 7. It 

is also important to note that making a conjugate with gp120 was straight forward and 

there was nothing in the buffer of the gp120 sample that would interfere with the 

conjugate stability, therefore there was little chance that the dimmer blot was as a 

result of the constituents which make up the buffer and not as a result of gp120 itself. 

It was however impossible to generate conjugates with the putative AMPs except with 

Molecule 1 and Molecule 7 as a constituent within the buffer interacted with the gold 
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particles and caused them to spontaneously collapse, making the bio-conjugation 

impossible. This inability could be attributed to the buffer used to produce these 

peptides thus the buffer constituents should be re-looked in future. In addition, 

incorrect or inconsistent results were obtained for about 15-20 % of the time of test 

performed prompting the need for a more optimised experimental protocol or the use 

of other techniques to perform binding studies such as SPR.  
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CHAPTER FOUR: ANTI-HIV ACTIVITY OF PUTATIVE 

ANTIMICROBIAL PEPTIDES  

 

4.1. Introduction 

More than three decades have passed since the first case of HIV was reported in the 

early 1990’s in the USA. The path leading to the alleviation of the high infection rate 

of HIV spread, the rapid evolution of the disease pathogenesis, an accurate early 

diagnostic system and non-toxic therapeutic regimens have not been easy. However, 

scientific research have enabled the implementation of acceptable HIV therapeutic 

regimens, the first anti-HIV molecule, Zidovudine (AZT) received FDA approval as a 

HIV therapeutic regimen (Bean, 2005; Volberding and Deeks, 2010). 

Although helpful, this drug was found to be very toxic to the patient and had 

unexpected side effects. Nevertheless, many anti-HIV drugs have been developed to 

satisfy the desired activity without causing more harm to the patients, and these 

compounds vary from nucleotide analogue reverse transcriptase inhibitors (NRTIs), 

non-nucleotides analogue reverse transcriptase inhibitors (NNRTIs), protease 

inhibitors (PIs) and integrase inhibitors (INSTIs) (Pang et al., 2009; Hare et al., 2010; 

Volberding and Deeks, 2010). These medications were specifically designed based on 

the HIV life cycle and could act at a particular point in the virus life, to slow and/or 

prevent its replication into the patient body.  

Despite the effort to formulate treatment regimens made of a combination of different 

classes of anti-HIV compounds, hence the name high active antiretroviral therapy 

(HAART), the virus was still not eradicated in the patient. Though major headway 

have been made to tackle this deathly pandemic through various therapeutic 

molecules, these treatment regimens have not yet achieved their intended success 

since these drugs cannot eradicate HIV but could only slow the virus progression. 

These shortcomings might be due to the fact that the virus is already within the human 

cells and HIV reservoir has been formed within the infected person with the virus 

hidden in some parts of the body (Pierson et al., 2000; Pomerantz, 2002; Chun et al., 

2015). 
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Taking into account that the most crucial component of HIV eradication has been to 

develop and provide adequate medication(s) that ought to stop the progression as well 

as viral propagation and prevent its spread to healthy human cells. Further research 

has allowed a new class of anti-HIV drugs termed Entry Inhibitors (EIs) or Fusion 

Inhibitors (FIs) to emerge (Tilton and Doms, 2010). Whilst this class of HIV 

therapeutic regimen is also based on the virus life cycle, the remarkable element of 

the class of HIV drug is that it prevents viral entrance at different stages of HIV 

penetration into the T cells, Macrophages/monocytes, during the infective stage. Thus 

drugs blocking the gp120-CD4+ interaction, gp120-coreceptor interaction, and gp41-

mediated membrane fusion have experimented with great success (Tilton and Doms, 

2010). However, the Food and Drugs Administration (FDA) has approved only one 

drug belonging to this class of anti-HIV therapeutics, which is a peptide-based drug 

(Kilby et al., 2002; Lalezari et al., 2003),   

This result although coming to fruition after many years of research has redirected the 

research for HIV treatments towards the use of peptides as lead compounds to 

develop therapeutic molecules. The implementation of AMPs has yielded substantial 

results to demonstrate their activity against gram-positive and gram-negative bacteria, 

protozoa, fungi, virus and specifically HIV (Andreu and Rivas, 1998; Munk et al., 

2003; Lalezari et al., 2003; Wang et al., 2004; Brodgen, 2005; Dwyer et al., 2007; 

Wang et al., 2010).  

With the broad activity exhibited by AMPs, the search for novel peptides has enabled 

the development and discovery of putative anti-HIV AMPs as they prove to bind HIV 

gp120 protein at the side where this protein interacts with CD4+ surface protein of T 

cells, macrophages/monocytes as demonstrated in Chapter Two, the aim of this 

Chapter was thus to prove the ability of these putative AMPs, to inhibit HIV 

replication. 

The objectives emanating from this aim could be elaborated as follow:  

 Validate the activity of these AMPs as potential anti-HIV molecules, 

 Demonstrate the cytotoxicity of these antimicrobial peptides, 

 Show their broad activities again various HIV-1 pseudotypes,  

 Demonstrate the mechanism of action of these antimicrobial peptides. 

 

 

 

 



 103 

4.2. Methods 

4.2.1. Cell lines utilized  

The cell lines utilized for testing the anti-HIV activity of the putative antimicrobial 

peptides included the HIV-1 pseudotyped virus NL4-3 and the human T cells utilized 

to confirm the cytotoxicity of the same peptides on the host cells. 

4.2.2. Antimicrobial peptides compounds  

The peptides to be tested consisted of five putative anti-HIV AMPs taken from 

previous research (Tincho et al., 2016) and the two mutated AMPs, which were 

shown to bind gp120 as demonstrated in Chapter two. In brief, these peptides were 

chemically synthesized by GL Biochem Ltd. (Shanghai 200241, China) using the 

solid-phase method and they were purified to > 98 % by reverse-phase High-Pressure 

Liquid Chromatography and shipped in a lyophilized form. 

4.3. Biological assays 

4.3.1. Anti-HIV assays of the putative AMPs.  

The anti-HIV activity of the putative AMPs against a HIV-1 pseudotyped virus-based 

assays were performed by the Biomed-Advanced Materials Division, Mintek 

(Pretoria, South Africa), as described in (Montefiori, 2005). In brief, T cells were 

seeded the day before the antiviral testing at 3 x 105 cells/ml. The following day, the 

viability was checked via automated cell count and 2 x 105 cells/ml were placed into a 

50 ml conical tube and HIV-1 NL4-3 stock added. The cells were incubated with the 

virus for 90 minutes. Cells were subsequently washed four times with 0.01 M DPBS 

to remove any unbound virus. A control set of cells were incubated without the virus 

and washed four times with 0.01 M DPBS to replicate the test cells. A total of 10 ml 

of 10 % RPMI media was then added to the cells and 100 μl of cells were added to 

each well of a Corning® Costar® 96-Well Cell Culture Plate (Sigma-Aldrich, USA). 

The plate was placed into a 37 °C, 5 % CO2 incubator to equilibrate for one hour. 

During the incubation, compounds (AMPs) were made up in 10 % RPMI media 

containing 10 % heat-inactivated FCS (Merck, Germany). The compounds were made 

up to the desired concentrations ranging from 12,5 to 150 µg/ml. A total of 100 μl of 

compound solution was added to the wells containing cells and mixed to ensure they 

were homogeneous. The plate was placed into a 37 °C, 5 % CO2 incubator for five 
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days. Following incubation, the microtiter plates were stained with XTT tetrazolium 

dye to evaluate the efficacy of the putative AMPs. The plates were then read on a 

multi-plate reader at 450 nm (xMARKTM, Bio-Rad, USA) to determine the value of 

EC50 (50 % inhibition of virus replication) of each AMP. A concentration of 50 μg/ml 

peptide was used in the screening process of the anti-HIV effect of the putative AMPs 

since the laboratory internal control achieves 50 % HIV inhibition at this 

concentration, and subsequent anti-HIV activity of the peptides for the dose-

dependent effect experiment was done with serial dilutions from 12.5 μg/ml to 150 

μg/ml.  

4.3.2. Cell viability assay.  

In-vitro cytotoxicity test of putative anti-HIV peptides were performed by 3-(4,5-

dimethylthiazol-2-yl)-5-(3-carboxymethoxy-phenyl)-2-(4-sulfophenyl)-2H 

tetrazolium) (MTS) procedure (Cory et al., 1991). Briefly, 100 μl of human T cell 

lines were seeded into 96-well plates at a density of 1 x 106 cells/ml the day of the 

experiment, and was incubated in 5 % CO2 atmosphere at 37 °C, during which, test 

compounds were made up in 10 % RPMI media to the desired concentrations ranging 

from 12,5 to 150 µg/ml. A total of 100 μl compounds was added to the wells 

containing the cells and mixed to ensure the solution was homogeneous. The plate 

was placed in a humidified 37 °C incubator with 5 % CO2 atmosphere for five days. 

Following 5 days incubation, 10 μl of MTS was added and mixed. The plate was 

further incubated for a further four hours at 37 °C in a humidified, 5 % CO2 

atmosphere, and the absorbance was recorded at 450 nm (xMARKTM, Bio-Rad, 

USA). 

4.3.3. Statistical analysis 

Absorbance results were exported into an Excel file, where they were transformed 

into a percentage, in a process called Normalizing, using Microsoft Excel. The 

normalized results from the anti-HIV assays and cell viability assays were analysed 

using the statistic algorithm GraphPad Prism Software, version 7 (GraphPad software, 

San Diego, CA, USA). The data were expressed as mean ± SD (Standard deviation) 

of the normalized values from the three experiments.  
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4.4. Results 

4.4.1. Anti-HIV activity of the putative AMPs 

The putative antimicrobial peptides from the docking prediction, during gp120-AMP 

interaction, were subjected to the screening process with a fixed dose of 50 µg/ml, 

and only those AMPs with significant inhibition were carried to the dose response 

experimental reactions.  

4.4.1.1. Experimental screening of the putative anti-HIV AMPs 

The evidence that the predicted AMPs could exhibit anti-HIV activity was proven 

through well-elaborated methods. HIV type 1 based assays with T cells were utilized 

to demonstrate the anti-HIV effect of the putative AMPs and their mutated 

counterparts. The results revealed that Molecule 7, Molecule 8, Molecule 10 and 

Molecule 8.1 could prevent the replication of the NL4-3 virus in the preliminary 

experimental setup, as compared to all other putative anti-HIV AMPs tested (Figure 

4.1). 

 

Figure 4.1: Preliminary screening of the putative AMPs against HIV-1 NL4-3 using a 

single dose. The inhibition of HIV-1 NL4-3 by the putative AMPs was measured by 
using 50 μg/ml. Only Molecule 7, Molecule 8, Molecule 10 and Molecule 8.1 showed 
some inhibition of the virus replication, by preventing their entry into the host cell to 

multiply. Thus Molecules 7, 8, 10 and 8.1 could block the binding of HIV gp120 to 
CD4+ of T cells to allow the virus replication. At this concentration, the Kn2-7 

(positive control) showed approximately 93.63% inhibition whilst Mucroporin-S1 
(negative control) showed no inhibition of the virus. All the data represent the mean 
values for three independent experiments and are reported as mean ± SD of the three 

replicated samples of each Molecule.  
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4.4.1.2. Dose-response to determine the effective concentration of the anti-HIV 

AMPs  

Subsequent dose-dependent experiments revealed that only Molecule 7, Molecule 8 

and Molecule 8.1 were able to significantly inhibit the HIV-1 NL4-3 replication as 

compared to Molecule 10, with Molecule 7, Molecule 8 and Molecule 8.1 showing 

the highest anti-HIV percentage inhibition against HIV-1 NL4-3 (Figure 4.2). It was 

possible to extrapolate from the dose-response curve represented in Figure 4.2 that 

Molecule 7 and Molecule 8 had effective concentrations (EC50) of 37.5 μg/ml and 

93.75 μg/ml respectively. Hence, these molecules potentially pave the way for the 

development of an entry inhibitor drug using these peptides as the lead compound. 

Consequently, Molecule 7 and Molecule 8 were selected to continue the peptides anti-

HIV testing and to clarify their mechanisms and application. However, Molecule 8.1 

effective concentration (EC50) could not be determined and additional experiments are 

underway, where peptide with lowest concentrations will be used to determine the 

EC50 of Molecule 8.1. However the dose response results thus far show that this AMP 

may have an EC50 less than 12.5 μg/ml, thus a more promising result. Conversely, the 

inhibitory ability of Molecule 10 was not convincing since concentration up to 150 

μg/ml was unable to inhibit more than 30 % of the virus (Figure 4.2). 

 

Figure 4.2: The dose-dependent effects of Molecule 7, Molecule 8, Molecule 10 and 

Molecule 8.1 against HIV-1 NL4-3. The EC50 of Molecule 7 was 37.5 μg/ml and that 
of Molecule 8 was 93.75 μg/ml. We could not calculate the EC50 of Molecule 10 due 

to the fact that even at a concentration of 150 μg/ml it did not inhibit 30 % of the 
virus. However, the EC50 of Molecule 8.1 could be lesser than 12.5 μg/ml since more 
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that 50 % of HIV cells were still viable at this concentration. The data represent the 
mean values for six independent experiments and are reported as mean ± SD of the 

six replicated samples of each Molecule. 

4.4.2. Cell viability assay and the selective effect the anti-HIV AMPs 

The ability of the putative AMPs to exhibit anti-HIV activity was confirmed by 

carrying out a non-selective cytotoxicity assay on the AMPs that showed strong anti-

HIV activity, that is Molecule 7, Molecule 8, Molecule 10 and Molecule 8.1. This 

experiment was performed on T cell lines to establish the selective potential of these 

compounds, by treating the T cell lines with different concentrations of the AMPs for 

5 days and measuring the viability of the cells by taking the absorbance at 450 nm, on 

an ELISA plate reader (xMARKTM, Bio-Rad, USA). The “Statistical Package for the 

Social Sciences” (SPSS) was used to calculate the Cytotoxic Concentration (CC) 

values and Figure 4.3 showed the CC50 of the three molecules achieved with various 

doses of the peptides. Even thought the CC50 was not established, it should be noted 

that at 150 μg/ml 80 % of T cells was still not inhibited by any of the peptides. 

Therefore, increasing the peptides concentration in our next step of experiments 

would help determine the CC50 of each compound hence should enable the 

determining their individual Therapeutic Index (TI) or Selective Index (SI). 

 

Figure 4.3: Cytotoxicity of Molecule 7, 8, 10 and 8.1 on T cell lines. All the data 

represent the mean values for six independent experiments and are reported as mean ± 
SD of the six replicated samples of each Molecule.  
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4.5. Discussion 

The possibility to prove that the putative AMPs and the two mutated ones have anti-

HIV properties is a crucial step in the design of AMPs that would serve as lead 

compounds for the development of potent drugs against HIV. The confirmation of the 

activity of the seven putative anti-HIV AMPs against HIV-1 NL4-3 virus during the 

screening process demonstrates that only Molecule 7, Molecule 8, Molecule 10 and 

Molecule 8.1 could inhibit HIV replication with the concentration of 50 μg/ml of each 

peptide (Figure 4.1). At a closer look an observation was made that at this 

concentration, the percentage of the HIV NL4-3 cell inhibited by Molecule 1 is more 

than its mutated counterpart (Figure 4.1). This result correlated well with that 

observed in the in-silico prediction made in Chapter Two which showed that there 

was a decrease in the binding score of Molecule 1.1 when it was docked to HIV 

gp120 (Table 2.6). The inverse observation was noticed for Molecule 8.1, which 

percentage inhibition of HIV NL4-3 cell was higher than the parental peptide 

Molecule 8, which showed an increase in its binding score during the docking of the 

mutated peptide to HIV gp120 protein (Table 2.6). This preliminary result could 

imply that the binding of the AMPs to gp120 protein would play an important role in 

preventing the interaction of HIV gp120 protein to the surface molecule CD4+ of T 

cells, macrophages/monocytes, and dendritic cells.   

The subsequent reaction of the dose-dependent response assays was performed to 

determine the EC50 of the AMPs, which were found to have anti-HIV activity in the 

screening assays. During this process, it was demonstrated that Molecule 7 and 

Molecule 8 showed inhibitory capacity against HIV-1 NL4-3, with EC50 values of 

37.5 μg/ml and 93.75 μg/ml respectively (Figure 4.2). This outcome corroborates with 

the previous results obtained during the screening process. Nonetheless, Molecule 8.1 

EC50 was not determined due to the fact that the working concentration ranges used 

was not below 12.5 μg/ml. However, at a concentration of 12.5 μg/ml, Molecule 8.1 is 

inhibiting 54.85 % of HIV NL4-3 cells. Thus the concentration ought to decrease for 

the EC50 of this peptide to be determined. Molecule 8.1 EC50 could be less than 12.5 

μg/ml. Furthermore, this result demonstrates the significance of mutating amino acids 
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residues in this putative anti-HIV AMP sequences, to either increase their biological 

activity or change their binding orientation with their receptor; if we want to compare 

the EC50 of Molecule 8 and his mutated peptide, Molecule 8.1 and the effect of 

substituting an amino acid in the parental peptide. The use of positively charged 

amino acid in increasing the binding affinity of the AMP to their receptors and to 

ultimately increase the biological activity of AMPs to their target pathologies needs to 

be evaluated and confirm the significance of using amino acids of this class (Lee et 

al., 2011). The same can be applicable to the hydrophobic amino acid residues, which 

are said to ameliorate the binding and biological activity of AMPs (Chan et al., 2006). 

The lack of inhibition observed during the treatment of NL4-3 by Molecule 1.1 

despite the substitution of a short R-group (phenylalanine) with a long R-group 

(tryptophan) could be due to the fact that the replaced amino acid residue was of the 

same charged as the previous residue. The length of the R-group did not contribute to 

any increase binding affinity of the mutated AMP to its receptor, HIV gp120 protein 

as it was initially extrapolated during the physicochemical characterization and the 

parameters to consider for the mutations (Biro, 2006). Rather than reducing the space 

between the interaction of Molecule 1.1 with HIV gp120, and to generate a higher 

binding score during the docking, the binding score was reduced due to the length 

addition of a five-carbon ring group, increasing the distance between the two 

compounds; thus the reduction in the binding score (Chapter Two). This observation 

could be the major contributing element that has affected the negative activity 

generated by Molecule 1.1 after the treatment of HIV NL4-3, with this compound 

(Figure 4.1). The EC50 of Molecule 10 could not be determined despite the fact that 

Molecule 10 concentration used for the HIV treatment was up to 150 μg/ml. The use 

of an increase concentration for the peptide was not considered for treatment as this 

increase might lead to increase toxicity to the host cells. 

Overall, the experimental validation of the activity exhibited by these AMPs 

highlights the necessity to utilize suitable predictive tools for the design of 

compounds that would serve as a lead compound for the inhibition and/or prevention 

of infectious organisms. Hence, the anti-HIV assays confirmed and prove that the 

utilization of the HMMER algorithm to design and discover new putative AMPs, to 

either target HIV or any particular infectious disease, using experimentally validated 
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AMPs, aiding in the construction of predictive profiles would enable the search for 

novel AMPs, with activity against this pathology (Brahmachary et al., 2004; Fjell et 

al., 2007). Predictive tools that simulate peptide structures and their capacity to 

interact with other molecules have enabled the screening of potentially new 

compounds through their docking to selected receptors, making these computational 

tools essential and crucial for predictions as to make the right decision and selection 

during the screening procedure. Such techniques could, therefore, pave the way for 

more cost effective methods and reduce the time utilized during the biological search 

of the same lead compounds.   

After determining the anti-HIV activity of the AMPs, the need to establish their 

cytotoxicity to human cells was imperative. Even though the EC50 seem to be of a 

high dosage to inhibit viral growth, it has to be taken into account that the various 

cytotoxicity concentrations (CC50) of Molecule 7 and Molecule 8 could still not 

inhibit 80 % of T cells, at a concentration up to 150 μg/ml (Figure 4.3). This 

experiment further establishes the selective toxicity of these peptides. The AMPs 

would thus not disturb the immunological capacity of T cells in the human defence 

system, to properly stimulate other cells to regulate the bodies defence mechanism 

since no toxicity to these cells was observed when treated by the various anti-HIV 

AMPs. These AMPs further prove their ability to prevent the binding and attachment 

of HIV gp120 to CD4+ of T cells, macrophages/monocytes, and dendritic cells, 

without damaging these cells function to defend the human immunological capacity. 

However, these peptides rather demonstrated and affirmed their anti-HIV activity and 

their selective toxicity toward HIV NL4-3. Additionally, establishing the CC50 of 

these AMPs would help determine their therapeutic index (TI) or selective index (SI = 

CC50/EC50), which could be within an acceptable range (Becker, 2007). The 

therapeutic ability of Molecule 7 and Molecule 8 would be able to inhibit the viral 

replication and could prevent the invasion of healthy T cells and 

macrophages/monocytes by directly blocking gp120 contact and interaction with the 

CD4+ of these cells (Chan et al., 1997; Kowalski et al., 1987).  
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4.6. Conclusion 

The reduction of HIV pandemic would only be achieved if the fight against the HIV 

pathology leads to a considerable decrease in the progression of the disease through 

increased research to identify adequate therapeutic compounds that would prevent the 

virus replication and clear the body from various sources of reservoirs. Several 

putative AMPs were tested in this study, where the peptides were rationally designed 

and developed based on their ability to block the binding between HIV gp120 protein 

and the human CD4 surface protein. Conclusive results have shown that three AMPs 

(two parental anti-AMPs and one mutated AMP) inhibit HIV-1 NL4-3 in an in-vitro 

experimental procedure (Figure 4.2), therefore reinforcing the idea that these AMPs 

could block the interaction of HIV gp120 to CD4 surface of T cells, macrophages and 

monocytes. Additionally, this in-vitro results also showed that anti-HIV toward HIV-

1 NL4-3 was achieved with less cytotoxicity to the T cells, thus strengthening the 

implementation of these AMPs for human utilization. The overall data prove that 

these AMPs could serve as a lead compound for the development of peptide-based 

drugs such as microbicide and intravenous cocktail, to prevent further infection of 

healthy human cells, even with an infected individual.  
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CHAPTER FIVE: ANTI-BACTERIAL ACTIVITY OF 

PUTATIVE ANTIMICROBIAL PEPTIDES  

 

5.1. Introduction 

The human body is equipped with a defence mechanism, which enables it to eradicate 

foreign bodies and/or pathogenic organisms (Du Pasquier and Flajnik, 1999; Goldsby 

et al., 2003). However, infection of the human body with the HI Virus is a major 

concern since such invasion has added additional stress to the body immune system. 

The attack of T lymphocytes, macrophages, monocytes and dendritic cells by the 

virus using the CD4+ surface molecule has prevented the human immune system 

from fighting back. Such attack has also caused the human defence mechanism to fail 

in the presence of other pathogens, and this failure is due to the fact that virus 

replication takes place in the same cells that are meant to protect the body from any 

microbial attack (Chinen and Shearer, 2002). The inability of the human defence 

system to fight back, followed by the virus evasion of the immune system will 

ultimately result in complete immunity breakdown, hence give way for the entrance 

of other pathogenic organisms into the body (Smith, 2008; Cheung et al., 2005). This 

stage of HIV progression is termed Acquired Immune deficiency Syndrome (AIDS). 

With progression to AIDS, other diseases and infectious pathogens will gain access 

into the body. Such infectious pathogens may include Staphylococcus aureus, 

Candida albicans, Herpes simplex, Mycobacterium avium complex (MAC), 

Mycobacterium tuberculosis and Pseudomonas aeruginosa just to name a few 

(Kaplan et al., 2000). Staphylococcus aureus and Pseudomonas aeruginosa are two 

examples of bacteria that have serious clinical and medical implications in 

immunocompromised individuals and accounts for the major causes of nosocomial 

infections worldwide (Gould, 2006; Ferroni et al., 1998). In addition, both pathogens 

have been cited as the major causative agents for many infections around the globe. 

These have contributed to broad range infections including skin infections, respiratory 

infections, and other major illnesses. In some instances, these infections can lead to 

life-threatening infections such as pneumonia, meningitis, toxic shock syndrome and 
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bacteremia (Ferroni et al., 1998; Balcht and Smith, 1994; Curran and Al-Salihi, 

1980).  

Besides the fact that the immune system of an HIV-infected individual is at a critical 

point of failure, the currently available antibiotics used to eradicate these pathogenic 

microbes are ineffective. Such ineptitude of the new antibiotics was encountered due 

to microbial resistance towards these therapeutic molecules. Furthermore, 

immunocompetent individuals infected with S. aureus and/or P. aeruginosa has also 

demonstrated low susceptibility to these drugs due to antibiotic resistance genes 

(Jevons, 1961; Poole, 2004; Johnson et al., 2001; Hiramatsu et al., 1997). 

The lack of effective anti-bacterial antibiotics to inhibit the infectious diseases and to 

stop the ability of these microorganisms to replicate have encouraged microbiologists, 

bacteriologists, and clinical pathologists to embark on a journey in search of 

alternative remedies to treat such microbial infections. The antimicrobial peptide has 

proven to be a good candidate as a potential source of anti-bacterial activity (Ngai et 

al., 2006; Andersson et al., 2003; Steiner et al., 1998; Niyonsaba et al., 2002; Pütsep 

et al., 1999; Kubo et al., 1996). A number of them have been commercially developed 

and are available on the market. Such examples include FDA approved Polymixin B-

Collistin-Colomycin (prodrug) and Daptomycin (Cubicin), and which are used to treat 

skin infections (Gupta et al., 2009; Shoemaker et al., 2006). 

In addition to their anti-HIV activity, the main objective of this chapter was to 

determine the potential anti-bacterial activity of putative antimicrobial peptides 

against Methicillin Resistant Staphylococcus aureus (MRSA ATCC 33591) and 

Methicillin sensitive Staphylococcus aureus (MSSA ATCC 25923) as well as 

Pseudomonas aeruginosa (ATCC 10145).  

5.2. Methods 

5.2.1. Preparation of samples 

5.2.1.1. Bacterial strains 

The anti-bacterial activity of the putative antimicrobial peptides was carried out 

against Staphylococcus aureus spp. and P. aeruginosa, obtained from the American 

Type Culture Collection (ATCC). The S. aureus spp. were comprised of ATCC 25923 
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and ATCC 33591 strains where the first strain is susceptible to methicillin and many 

antibiotics, and the second strain is resistant to methicillin. The culture isolates were 

grown in Tryptone Soya agar (TSA) and Tryptone Soya Broth (TSB) (Oxoid Ltd, 

UK). The microtiter broth dilution method was used to determine the minimum 

inhibitory concentration (MIC) of the various AMPs.  

5.2.1.2. Antimicrobial peptide compounds 

The seven AMPs utilised for the antibacterial assay, included five putative anti-HIV 

AMPs taken from our previous work (Tincho et al., 2016) and two mutated AMPs, 

which was found to bind gp120 as demonstrated in Chapter two. The selected AMPs 

were chemically synthesized by GL Biochem Ltd. (Shanghai 200241, China) using 

the solid-phase method and they were purified to > 98 % by reverse-phase High-

Pressure Liquid Chromatography and the AMPs were shipped in a lyophilized form. 

5.2.1.3. Preparation of antimicrobial peptide and positive control concentration 

After the purchase of the AMPs, the lyophilized AMPs were stored at -20 °C for long 

storage. The AMPs were dissolved in sterile distilled water (dH2O) and the various 

AMP working concentrations of the microtiter broth dilution assay were prepared in 

two-fold serial dilutions starting at a concentration of 500 μg/ml to 31.25 μg/ml. 

Ampicillin was utilized as the positive control in this assay and a working solution of 

100 μg/ml was prepared in which lyophilized ampicillin was dissolved in distilled 

water and subsequently filter sterilized.  

5.2.2. Antibacterial susceptibility activity of the antimicrobial peptides 

Various methods have been employed to determine the susceptibility of pathogenic 

microbes to antimicrobial peptides or on other therapeutic compounds. Whilst these 

methods vary from the disk diffusion method, the gradient diffusion method and the 

microtiter also called microdilution method; the most recommended method has been 

the micro-dilution method because it offers a more quantitative result of the bacterial 

susceptibility, rather than a qualitative result that is offered by the other methods 

(Jorgensen and Ferraro, 2009). 
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5.2.2.1. Microtiter broth dilution method 

The microtiter broth method employed to measure the antibacterial activity of the 

AMP’s was performed according to the standards and guidelines as stipulated in the 

Clinical and Laboratory Standards Institute (CLSI) (CLSI, 2012). MRSA ATCC 

33591, MSSA ATCC 25923 and P. aeruginosa isolates were cultured on TSA agar 

and incubated to grow for 24 hours. Following incubation, purified isolates of ATCC 

33591, MSSA ATCC 25923, and P. aeruginosa were inoculated into TSB and were 

grown overnight at 37 °C. The following day, 1 ml of overnight bacterial cultures 

were transferred into 9 ml of TSB and was incubated at 37 °C. In a 96 well flat 

bottom plate, 100 μl of each of the various bacterial strains were seeded once the 

turbidity was in accordance to a McFarland standard. AMPs were serially diluted in 

sterile distilled water and 100 μl of the compound was added to each well. A control 

with the bacterial inoculum and Ampicillin was included in the experiment. Each 

experiment was run in triplicate. The test plates were sealed and incubated in a 

shaking incubator at 37 °C for 24 hours. After 24 hours incubation, 40 μl of INT was 

added to each well and incubated again for three hours. Absorbance readings were 

taken at 620 nm on a microtiter plate reader, 3 hours after adding INT, then after 

every 6 hours subsequently. Absorbance results were exported into an Excel file, 

where they were transformed into a percentage, in a process called Normalizing. 

5.2.2.2. Statistical analysis 

The normalized results from microtiter dilution assays were analysed using the 

statistic algorithm GraphPad Prism Software, version 7 (GraphPad software, San 

Diego, CA, USA). The data were expressed as mean ± SD (Standard deviation) of the 

normalized values from the three experiments.  

5.3. Results 

Since the antimicrobial peptides and the antibiotic Ampicillin completely soluble in 

distilled water, incorporating it into TSB was not a problem. The microtiter dilution 

assay yielded some promising preliminary results.  
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5.3.1. Peptide inhibition of P. aeruginosa using microtiter broth method  

The inhibition activity of the AMPs on P. aeruginosa showed that Molecule 3 and 

Molecule 7 resulted in complete inhibition of this bacterium after 24 hours of 

treatment, with AMP concentrations ranging from 0.5 mg/ml to 0.03125 mg/ml. No 

growth was observed 48 hours post treatment (Figure 5.2 and Figure 5.3). In the 

contrary, Molecule 1, Molecule 8, Molecule 10 and Molecule 8.1 could only inhibit a 

range of 10 % to 30 % of P. aeruginosa after 24 hours treatment, with AMP 

concentrations ranging from 0.5 mg/ml to 0.03125 mg/ml. The same inhibition ranges 

were observed when the treated plates were examined 48 hours post treatment (Figure 

5.1, Figure 5.4, Figure 5.5 and Figure 5.6). However, no inhibition was observed 

when P. aeruginosa was treated with Molecule 1.1, even at the highest peptide 

concentration of 0.5 mg/ml, over the period of 48 hours. Thus Molecule 1.1 does not 

have anti-bacterial activity against this microbe (Figure 5.7). 
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Figure 5.1: The effect of Molecule 1 on the growth of P. aeruginosa after dose and 

time response treatment detected by the microtiter assay. The error bars represent the 
standard deviation (±SD) of triplicates. 
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Figure 5.2: The effect of Molecule 3 on the growth of P. aeruginosa after dose and 
time response treatment detected by the microtiter assay. The error bars represent the 
standard deviation (±SD) of triplicates.  
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Figure 5.3: The effect of Molecule 7 on the growth of P. aeruginosa after dose and 

time response treatment detected by the microtiter assay. The error bars represent the 
standard deviation (±SD) of triplicates.  
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Figure 5.4: The effect of Molecule 8 on the growth of P. aeruginosa after dose and 

time response treatment detected by the microtiter assay. The error bars represent the 
standard deviation (±SD) of triplicates.  
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Figure 5.5: The effect of Molecule 10 on the growth of P. aeruginosa after dose and 
time response treatment detected by the microtiter assay. The error bars represent the 

standard deviation (±SD) of triplicates.  
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Figure 5.6: The effect of Molecule 1.1 on the growth of P. aeruginosa after dose and 

time response treatment detected by the microtiter assay. The error bars represent the 
standard deviation (±SD) of triplicates.  
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Figure 5.7: The effect of Molecule 8.1 on the growth of P. aeruginosa after dose and 
time response treatment detected by the microtiter assay. The error bars represent the 

standard deviation (±SD) of triplicates.  

 

 

 

 

 



 120 

5.3.2. Peptides inhibition of MRSA using microtiter broth method 

The microbial susceptibility of these peptides was also determined for MRSA and 

MSSA. Since MRSA is a leading cause of hospital-acquired infections, treatment of 

MRSA with the various peptides showed that the bacterium was mostly resistant to 

these peptides. Whilst, almost no inhibitions were observed for Molecule 1, Molecule 

8 and Molecule 1.1, even with the highest concentration of 0.5 mg/ml (Figure 5.8, 

Figure 5.12 and Figure 5.13); slight inhibitions were however, observed for Molecule 

3, Molecule 7, Molecule 10 and Molecule 8.1 with concentration ranging from 0.5 to 

0.25 mg/ml, with a percentages inhibition ranging from 20 to 40 % (Figure 5.9, 

Figure 5.10, Figure 5.11 and Figure 5.14). It should also be mentioned that the 

treatment time has no effect on this bacterium, as the percentages of live bacteria 

remained constant across the timeline of treatment.  
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Figure 5.8: The effect of Molecule 1 on the growth of MRSA after dose and time 
response treatment detected by the microtiter assay. The error bars represent the 

standard deviation (±SD) of triplicates. 
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Figure 5.9: The effect of Molecule 3 on the growth of MRSA after dose and time 
response treatment detected by the microtiter assay. The error bars represent the 
standard deviation (±SD) of triplicates. 
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Figure 5.10: The effect of Molecule 7 on the growth of MRSA after dose and time 
response treatment detected by the microtiter assay. The error bars represent the 
standard deviation (±SD) of triplicates. 
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Figure 5.11: The effect of Molecule 8 on the growth of MRSA after dose and time 

response treatment detected by the microtiter assay. The error bars represent the 
standard deviation (±SD) of triplicates. 
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Figure 5.12: The effect of Molecule 10 on the growth of MRSA after dose and time 
response treatment detected by the microtiter assay. The error bars represent the 

standard deviation (±SD) of triplicates. 
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Figure 5.13: The effect of Molecule 1.1 on the growth of MRSA after dose and time 
response treatment detected by the microtiter assay. The error bars represent the 
standard deviation (±SD) of triplicates. 
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Figure 5.14: The effect of Molecule 8.1 on the growth of MRSA after dose and time 

response treatment detected by the microtiter assay. The error bars represent the 
standard deviation (±SD) of triplicates. 
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5.3.3. Peptides inhibition of MSSA using microtiter broth method 

The ability of the peptides to inhibit MSSA was not much different from that of the 

resistant strain of Staphylococcus i.e MRSA. The antibacterial activity of the AMPs 

indicated that only Molecule 1, Molecule 3, Molecule 7, Molecule 8 and Molecule 10 

would inhibit MSSA growth at a peptide concentration of 0.5 mg/ml, with a 

percentage growth inhibition of 37 %, 50 %, 25 %, and 45 % respectively. However, 

no inhibition was observed when the peptide concentrations were reduced from 0.2 to 

0.03125 mg/ml (Figure 5.15, Figure 5.16, Figure 5.17, Figure 5.18 and Figure 5.19). 

Bacterial inhibitions were noticed when the MSSA was treated with the mutated 

peptides, Molecule 1.1 and Molecule 8.1 (Figure 5.20 and Figure 5.21).   

As observed for MRSA, the time response treatment of the bacterium by the various 

peptides did not really slow the bacterial growth. Thus, the percentage growth for 

each peptide treatment remained constant after 24 hours and 48 hours of treatment.  

 

c
o

n
tr

o
l

A
m

p
0

.5
0

.2
5

0
.1

2
5

0
.0

6
2

5
0

.0
3

1
2

5

c
o

n
tr

o
l

A
m

p
0

.5
0

.2
5

0
.1

2
5

0
.0

6
2

5
0

.0
3

1
2

5

c
o

n
tr

o
l

A
m

p
0

.5
0

.2
5

0
.1

2
5

0
.0

6
2

5
0

.0
3

1
2

5

c
o

n
tr

o
l

A
m

p
0

.5
0

.2
5

0
.1

2
5

0
.0

6
2

5
0

.0
3

1
2

5

c
o

n
tr

o
l

A
m

p
0

.5
0

.2
5

0
.1

2
5

0
.0

6
2

5
0

.0
3

1
2

5

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

1 0 0

1 1 0

1 2 0

C o n c e n tra tio n s  (m g /m l)

%
 o

f 
b

a
c

te
ri

a
 g

ro
w

th

2 4 h rs

3 0 h rs

3 6 h rs

4 2 h rs

4 8 h rs

 

Figure 5.15: The effect of Molecule 1 on the growth of MSSA after dose and time 
response treatment detected by the microtiter assay. The error bars represent the 

standard deviation (±SD) of triplicates. 
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Figure 5.16: The effect of Molecule 3 on the growth of MSSA after dose and time 

response treatment detected by the microtiter assay. The error bars represent the 
standard deviation (±SD) of triplicates.     
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Figure 5.17: The effect of Molecule 7 on the growth of MSSA after dose and time 
response treatment detected by the microtiter assay. The error bars represent the 
standard deviation (±SD) of triplicates. 
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Figure 5.18: The effect of Molecule 8 on the growth of MSSA after dose and time 

response treatment detected by the microtiter assay. The error bars represent the 
standard deviation (±SD) of triplicates. 
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Figure 5.19: The effect of Molecule 10 on the growth of MSSA after dose and time 
response treatment detected by the microtiter assay. The error bars represent the 

standard deviation (±SD) of triplicates. 
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Figure 5.20: The effect of Molecule 1.1 on the growth of MSSA after dose and time 

response treatment detected by the microtiter assay. The error bars represent the 
standard deviation (±SD) of triplicates. 

 

c
o

n
tr

o
l

A
m

p
0

.5
0

.2
5

0
.1

2
5

0
.0

6
2

5
0

.0
3

1
2

5

c
o

n
tr

o
l

A
m

p
0

.5
0

.2
5

0
.1

2
5

0
.0

6
2

5
0

.0
3

1
2

5

c
o

n
tr

o
l

A
m

p
0

.5
0

.2
5

0
.1

2
5

0
.0

6
2

5
0

.0
3

1
2

5

c
o

n
tr

o
l

A
m

p
0

.5
0

.2
5

0
.1

2
5

0
.0

6
2

5
0

.0
3

1
2

5

c
o

n
tr

o
l

A
m

p
0

.5
0

.2
5

0
.1

2
5

0
.0

6
2

5
0

.0
3

1
2

5

0
1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0

1 0 0
1 1 0
1 2 0
1 3 0
1 4 0
1 5 0
1 6 0
1 7 0
1 8 0
1 9 0
2 0 0
2 1 0
2 2 0

C o n c e n tra tio n s  (m g /m l)

%
 o

f 
b

a
c

te
ri

a
 g

ro
w

th

2 4 h rs

3 0 h rs

3 6 h rs

4 2 h rs

4 8 h rs

 

Figure 5.21: The effect of Molecule 8.1 on the growth of MSSA after dose and time 
response treatment detected by the microtiter assay. The error bars represent the 
standard deviation (±SD) of triplicates.   
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5.4. Discussion 

The medical and pharmaceutical industry is in the race to develop and discover novel 

drugs that can serve as potent antimicrobials. Time is a major factor since few new 

antibiotics have been developed in the past decade, and the problem is compounded 

by the increase in bacterial resistance to available antimicrobials. Whilst the bacterial 

resistance may be due to misuse of these antibiotics, concern has also been raised on 

the fact that there is no correlation at the speed at which amount of molecules to fight 

these pathogens are developed and the number of microbial pathogens being 

discovered. Due to these shortcomings, the only option is to develop more antibiotics 

molecules to counter the increase in antibiotics resistant attacks of the pathogens.  

The experimental procedures for screening for potent anti-bacterial AMPs have not 

yielded promising anti-bacterial results using the microtiter dilution method. Whilst 

concern might be raised on the choice of using this method to screen for anti-bacterial 

activity, the disc-diffusion method lacks the ability of being a quantitative method 

because the disc-diffusion method only tells us if the bacterium is susceptible to a 

particular compound but does not tell us the percentage of bacterium killed in the 

process, as compared to the initial input bacterium (Jorgensen and Ferraro, 2009). 

Additionally, the microtiter dilution method is the most appropriate and standard 

method to test for susceptibility on fast growing bacteria such as Staphylococcus spp. 

and P. aeruginosa (CLSI, 2012).  

Since the AMPs were soluble in distilled water, it was not necessary to use other 

solvents to check the solubility of these peptides. Unlike solvents such as DMSO, 

ethanol, methanol, n-butanol, chloroform, ethyl-acetate, acetone, water does not have 

any negative impact on the experiment procedure nor does it affect the growth of 

bacteria (Dahiya and Purkayastha, 2012; Jastaniah, 2014). 

Although the quest for novel antibiotics is an urgent matter, only two antimicrobial 

peptides were able to completely inhibit the growth of P. aeruginosa, even at the 

lowest AMP concentration of 0.03125 mg/ml (31.25 μg/ml) with the microtiter 

dilution method. Various concentrations of the seven AMPs, ranging from 0.5 to 

0.03125 mg/ml were not able to inhibit up to 50 % of Staphylococcus spp. even for 

the methicillin-sensitive Staphylococcus aureus. Nonetheless, we noticed that 

Molecule 1, Molecule 8, Molecule 10 and Molecule 8.1 were able to inhibit growth of 
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Staphylococcus aureus by 10 % to 30 % after 24 hours treatment, with AMP 

concentrations ranging from 0.5 mg/ml to 0.03125 mg/ml (Figure 5.1, Figure 5.4, 

Figure 5.5 and Figure 5.6).  

Inhibitions of MRSA by Molecule 3, Molecule 7, Molecule 10 and Molecule 8.1 was 

shown to inhibit around 20 to 40 % of MRSA 24 hours post-treatment with AMPs 

concentration ranging from 0.5 to 0.25 mg/ml (Figure 5.9, Figure 5.10, Figure 5.11 

and Figure 5.14). On the other hand, only Molecule 1, Molecule 3, Molecule 7, 

Molecule 8 and Molecule 10 could inhibit 37 %, 50 %, 25 % and 45 % MSSA 

respectively, with a peptide concentration of 0.5 mg/ml 24 hours after the treatment 

with these peptides (Figure 5.15, Figure 5.16, Figure 5.17, Figure 5.18 and Figure 

5.19). 

The addition of more peptides into each well after 24 hours could inhibit the bacterial 

growth; however, the higher peptides concentration ranges could have toxic effects 

(Chapter Four). Many antimicrobial peptides have been proven to have anti-bacterial 

activity, on selected pathogenic microbes (Kubo et al., 1996; Steiner et al., 1998; 

Pütsep et al., 1999; Niyonsaba et al., 2002; Andersson et al., 2003; Ngai et al., 2006; 

Cao et al., 2012), hence the current work yields promising anti-bacterial activity 

despite having two of the peptides showing anti-bacterial activity out of seven 

peptides tested. This result was excepted since the AMPs were developed based on 

HIV receptor (Tincho et al., 2016). Nevertheless, testing the anti-bacterial activity of 

these peptides was to examine the possibility of the AMPs having additional 

biological activity besides the anti-HIV. Dual biological activities have been 

demonstrated by certains AMPs (Pan et al., 2007; Pan et al., 2009; Tharntada et al., 

2009; Shang et al., 2009; Chen et al., 2011; Cao et al., 2012; Wang et al., 2012), thus 

the results obtained here is conviencing and promising. 

The mechanism of action in which Molecule 3 and Molecule 7 used to exhibit their 

anti-bacterial activity has not yet been established. It could be speculated that their 

activity is carried out using the Barrel-stave mechanism, the carpet mechanism 

(Giuliani et al., 2007), or the toroidal pore mechanism (Brogden, 2005). The barrel-

stave mechanism could be the appropriate mechanism of choice since most of our 

peptides are α-helical, β-sheet peptides, extended with α-helical structure, extended 

with β-sheet structure; and it has been found that most α-helical or β-sheet AMPs use 
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this mechanism to exert their activity on pathogens (Breukin and Kruijff, 1999). 

However, this mechanism of action needs to be established so as to confirm the real 

route in which these peptides inhibit the bacterial growth.  

5.5. Conclusion 

The mixed results obtained in this search for potential antibiotics remains a challenge 

in the field of drug development and discovery. The microbial screening of novel 

AMPs against Staphylococcus aureus spp. (S. aureus MSSA ATCC 25923 and 

MRSA ATCC 33591) and P. aeruginosa revealed that Molecule 3 and Molecule 7 

could individually inhibit the growth of P. aeruginosa at the lowest concentration of 

0.03125 mg/ml thus could form a good platform to develop a potent antibiotic drug. 

However, these peptides were not developed for this purpose but the preliminary data 

suggests that we may have a potential compound, which can be used to develop a 

potent antibiotic. 

The future work should focus on determining the MIC that inhibits 50 % of P. 

aeruginosa 24 hours after treatment with the peptides. Furthermore, more drugs 

resistant pathogens should be tested against these anti-bacterial peptides, to expand 

the list of bacteria that are inhibited by the peptides. In conclusion, the exact 

inhibitory mechanism of action of these peptides must be determined as it could add 

more knowledge about the way these AMPs function in order to destroy susceptible 

and resistant bacteria.   
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CHAPTER SIX: CYTOTOXICITY ABILITY OF 

PUTATIVE ANTIMICROBIAL PEPTIDES WITH 

POTENTIAL ANTI-CANCER ACTIVITY  

 

6.1. Introduction 

The world has always been confronted with many deathly pathogenic microbes 

including viruses, bacteria, fungi and many other infectious microbes that have 

decimated our populations in a rapid and exponential rate (Pacini, 1854; Gallagher, 

1990; Kuhnke, 1990; Khaled, 1993; Bruns, 2000; Marr and Cathey, 2013; Miller, 

2005; Pike, 2007; WHO, 2008; UNAIDS, 2010). The high mortality rates following 

these epidemics could either be explained by the inability of the human immune 

system to fight the microbial invasions or due to the lack of adequate medications, to 

suppress the pathogens. Whilst the scientific community is more concerned with the 

development of tools to fight the infectious pathologies we face daily, more deathly, 

non-infectious or non-communicable diseases are making their way into our societies 

at a slow rate but in an irreversible manner (Manton, 1988; WHO global report on 

non-communicable diseases, 2014). 

Non-communicable diseases in this category may include pathologies such as obesity, 

diabetes, cardiovascular diseases, chronic respiratory diseases and cancers. Although 

the first five non-communicable diseases were not major problems in the past 

decades, the incidence of these diseases are rising as a result of our changing 

lifestyles, infrastructure development, poor quality diets and the lack of physical 

activity (Popkin et al., 1995; Popkin, 1998; Popkin et al., 1996; UN, 1999; WHO, 

2009). These conditions might have tremendous effects on how the human body’s 

innate immune system will respond to the invasion of other infectious pathologies. 

However, the conditions may be reversed either by implementing certain measures 

such as changing our eating practices and lifestyle; or by the use of medicaments and 

medical procedures (Popkin et al., 1995; WHO, 1998). 
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Whilst the first four non-communicable diseases listed above might be managed and 

reversed, via several methods, another non-communicable disease such as cancer 

could also be developed due to lifestyle, some types of cancers may occur due to the 

presence of communicable diseases related to viral infections. Well known illustrated 

examples of cancer that can be acquired as a result of communicable diseases include: 

cervical cancer, which develops as a result of 90 % HPV infection in females (Kumar 

et al., 2007); and liver inflammation or viral hepatitis, caused by viral infections such 

as Herpes simplex virus, Yellow fever, Cytomegalovirus, Epstein-Barr virus, 

Varicella-zoster virus (Xiong, 2010; Okano and Gross, 2012; Anderson et al., 1994). 

Furthermore, most cases of liver inflammation may result in liver cancers and this 

situation may not be possible to reverse, as it is the case with obesity and being over-

weight or diabetes, which can be managed. 

Cancers can be combatted more efficiently if these diseases are diagnosed at an early 

stage and the disease progression can be remediated through the use of different 

treatment regimens/methods including chemotherapy, radiotherapy and surgery. 

Whilst radiotherapy and surgery seem promising, there is a need for the patient to 

seek specialized treatment. Hence, the patients ought to visit specialized facilities, 

which are mostly located in urban areas. However, with the few facilities being 

available in developing countries, the waiting list become long and the patients die 

even before their first visit to the hospital, thus the high mortality rate in 

underdeveloped countries (Kent, 2010).  

Due to the shortcomings encountered with a shortage and availability of highly 

specialized equipment and facilities to treat cancer patients, a better resolution will be 

the use of chemotherapeutic drugs. However, these drugs are rare, less effective and 

have many side effects such as anaemia and neutropenia. The most effective 

chemotherapeutic drug used for the treatment of many types of cancers include 

Cisplatin (Perilongo et al., 2012; Waggoner, 2003; US FDA, 2006); therefore, the 

quest for additional drugs is eminent, to suppress the cancer onset and progression. 

Antimicrobial peptides have been proven to be potent anti-cancer compounds (Chen 

et al., 2009; Lin et al., 2009; Lin et al., 2010; Hsu et al., 2011; Wang et al., 2012; 

Huang et al., 2013) and many anti-cancer AMPs have advanced to clinical trial phase 

and are implemented as potent cancer drugs (Jemaa et al., 2010; Shore and Cowan, 

2011; Denmeade et al., 2012; Engel et al., 2012). Thus, this chapter was to determine 
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whether the putative AMPs shown to have anti-HIV and anti-bacterial activities as 

describe in previous chapters, could also be utilized as potential anti-cancer 

compounds. And if the cytotoxicity on cancers cells could not be obtained as 

expected, the end purpose of this chapter was to confirm the specificity of these 

putative AMPs, to harbour HIV activity, a function that has been demonstrated in 

chapter four of this thesis.   

6.2. Methods 

6.2.1. Human cell lines utilized  

The cell-lines utilized to determine the anti-cancer activity of the putative 

antimicrobial peptides included the CHO (Chinese Hamster Ovary) cells, MCF-7 

(breast cancer cell line), HeLa (human cervix adenocarcinoma cell line) and HT-29 

(Caucasian colon adenocarcinoma grade II human cell line). MCF-7 was obtained 

from the American Type Culture Collection (ATCC), the CHO cell lines was kindly 

provided by Prof Jasper Rees (Sir William Dunn School of Pathology, Oxford 

University, United Kingdom). HeLa and HT-29 were kindly provided by Prof Denver 

Hendricks (Department of Clinical and Laboratory Medicine, University of Cape 

Town, South Africa). The MCF-7, HeLa and HT-29 cell lines were maintained and 

grown in Dulbecco's modified Eagle's medium containing 10% foetal bovine serum, 

and 1% penicillin–streptomycin in a 37 °C humidified incubator with 5 % CO2 

saturation. However, CHO lines were maintained and grown in Hams F-12 Nutrient 

Mixture, containing 10 % foetal bovine serum, and 1 % penicillin–streptomycin in a 

37 °C humidified incubator with 5 % CO2 saturation. 

6.2.2. Antimicrobial peptides compounds  

The AMPs used in this chapter are the same as already mentioned in chapter three, 

chapter four and chapter five. These peptides are composed of five putative anti-HIV 

AMPs: Molecule 1, Molecule 3, Molecule 7, Molecule 8 and Molecule 10 (Tincho 

MSc thesis, 2013) and the two mutated AMPs (Molecule 1.1 and Molecule 8.1), 

which was found to bind gp120 as demonstrated in Chapter two, In brief, these 

peptides were chemically synthesized by GL Biochem Ltd. (Shanghai 200241, China) 

using the solid-phase method and they were purified to > 98 % by reverse-phase 

High-Pressure Liquid Chromatography and the AMPs were shipped in a lyophilized 

form. 
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6.3. Cell culture  

6.3.1. Cell thawing and seeding  

Vials containing cell lines were stored at -150 °C in a freezer. The vials were placed 

in a 37 °C water bath until just thawed. Cells were then removed from the vials 

transferred to a 15 ml conical tube containing 5 ml complete media (containing serum 

and antibiotics). Cells were then centrifuged for 2 minutes at 800 x g to pellet them, 

and the cell pellets were resuspended in 5 ml of their respective complete media and 

transferred to a 25 cm2
 

cell culture flask. Cells were incubated at 37 °C in a 

humidified incubator at 5 % CO2.  

6.3.2. Media replacement  

Since all the cell lines used were adherent cell lines, spent media was simply removed 

after 48 hours by aspiration and discarded. Fresh complete media was added to cells 

before additional incubating at 37 °C in 5 % CO2.  

6.3.3. Morphological analysis  

Throughout the growth and treatment process, the cells morphology was monitored 

with the use of a Nikon microscope at 20 X magnifications, fitted with a Leica digital 

camera.  

6.3.4. Sub-culturing of cells  

Once the cell cultures reached confluency, they were detached by trypsin digestion. 

Trypsin (1 X) was added to the cells CHO, MCF-7, and HeLa; and each flask was 

incubated for 2 minutes at 37 °C in 5 % CO2. However, HT-29 cells were trypsinised 

by incubating them in 2 X trypsin and incubated for 3 minutes at 37 °C in 5 % CO2. 

The cells were then transferred to an appropriately sized sterile tube and centrifuged 

at 800 x g for 3 minutes to pellet cells. The cell pellets were then re-suspended in 

complete media and sub-cultured in 25 cm2 culture flasks.  

 

 

 

 

 

 



 135 

6.3.5. Cryopreservation of cells  

Once trypsinised, cell pellets were re-suspended in complete media containing 10 % 

DMSO, cell suspensions representing each cell line were transferred to cryo-vials at 

volumes of 1.5 ml per vial. These vials were then stored at -150 °C freezer until 

further use.  

6.3.6. Cell count 

The CountessTM
 

automated cell counter from Invitrogen was used for accurate cell 

counts, using the manufacturer procedures to perform the count. 

6.4. Cytotoxicity assays  

6.4.1. Preparation of antimicrobial peptide and positive control concentration 

After the purchase of the AMPs, the lyophilized AMPs were stored at -20 °C for long-

term storage. The AMPs stock solutions were prepared by dissolving the respective 

AMPs in sterile distilled water (dH2O) since the peptides were soluble in this 

medium. Various working concentrations of the AMPs for use in the MTT assay were 

prepared in a two fold serial dilution starting at a concentration of 100 μg/ml going 

down 25 μg/ml. DMSO (at a concentration of 6 % v/v) was utilized as the positive 

control for the MTT assay. 

6.4.2. Measurement of anti-cancer activity using the MTT assay 

The in-vitro anti-cancer activity of the AMPs was performed using the 3-[4,5-

dimethylthiazol-2-yl]-2,5- diphenyltetrazolium bromide (MTT) assay as described by 

Freimoser et al., 1999. Once the various cell lines reached confluency in a 25 cm2 

flask, they were trypsinised and were seeded in a 96 well plate, with each cell lines 

seeded at 3 x 104 cell/well for CHO, HeLa, and HT-29; and 5 x 104 cell/well for 

MCF-7. Each cell line was seeded in triplicate and the cytotoxicity of each peptide 

toward each cell line was repeated three times. The plates were placed in an incubator 

at 37 °C in CO2. Upon reaching 80-90 % confluency, various concentrations of the 

peptides (25 μg/ml, 50 μg/ml, 75 μg/ml and 100 μg/ml), were prepared and were 

made up in either complete DMEM for MCF-7, HeLa and HT-29, or complete Ham 

F-12 for CHO. A 6 % DMSO was also prepared which served as the positive control 
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for the experiment. A total of 100 μl of the peptide solution, as well as the positive 

control, was added to the wells containing the cells. The plates were placed incubated 

at 37 °C, in 5 % CO2 for 24 hours. A negative control for this experiment consisting 

of cells left untreated for 24 hours was also included. 

Following treatment with the peptides, the plates were stained with 5 mg/ml MTT 

tetrazolium dye (20 μl per well) to evaluate the efficacy of the putative AMPs on the 

cell lines, and the plates were incubated again for three hours in an incubator with 5 % 

CO2 at 37 °C. After, the media was removed and dimethyl sulfoxide (DMSO) (100 μl 

per well) was added to the cells. The plate was again incubated in a shaker at 37 °C, 5 

% CO2 incubator for 10 minutes. The absorbance for all the wells in the plates was 

determined using a multi-plate reader (Omega® POLARstar BMG Labtech, USA) at 

570 nm, 600 nm and 630 nm. The final absorbance of the treated cells was done by 

subtracting the background absorbance of the multi-well plate at 630 nm and subtract 

from the 570 nm measurements. The percentage cell viability was calculated using the 

formulae:  

Cell viability (%) = 
(OD570 -OD630 )(Treated.sample)

(OD570 -OD630 )(Untreated.control)
´100  

Absorbance results were exported into an Excel file, where they were transformed 

into a percentage, in a process called Normalizing. The IC50 (Concentration inhibiting 

50% of cancer growth) values of each putative AMP were determined using 

GraphPad Prism software (GraphPad software, San Diego, CA, USA).  
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6.3. Results 

CHO, HeLa, HT-29 and MCF-7 cells were treated with increasing concentrations (25, 

50, 75 and 100 μg/ml) of the AMPs (Molecules 1, 1.1, 3, 7, 8, 8.1 and 10) to 

determine the effective concentration that inhibits 50 % of the cell growth (EC50) and 

to evaluate the toxicity of the peptides towards mammalian cells. 

All 7 peptides induced a dose dependent decrease in the viability of all four-cell lines 

tested in this study. However, only a moderate decrease in cell viability was observed 

for most of the peptides. This study could only determine the EC50 for Molecule 1 and 

Molecule 8, since these were the only peptides that inhibited 50 % of cell growth in at 

least one of the cell lines. Figure 6.1 (A) shows that the treatment of HeLa cells with 

25, 50, 75 and 100 μg/ml of Molecule 1 resulted in cell toxicity of 10 %, 41 %, 44 % 

and 51 %, respectively. Figure 6.1 (E) shows that the treatment of HeLa cells with 25, 

50, 75 and 100 μg/ml of Molecule 8 resulted in cell toxicity of 22 %, 28 %, 40 % and 

48 % respectively. Moreover, treatment of HeLa with Molecule 1.1 with 25, 50, 75 

and 100 μg/ml peptide was also able to inhibit 5 %, 37 %, 39 % and 42 % of HeLa 

respectively. However, Molecule 1, Molecule 1.1 and Molecule 8 did not significantly 

affect the viability of the other cell lines (CHO, HT-29 and MCF7) since the viability 

of the cells varied between 90 % at the lowest dose and 80 % at the highest dose 

(Figure 6.1 (C), Figure 6.1 (D), Figure 6.1 (F) and Figure 6.1 (G)).   
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The analysis of the cancer cell lines CHO, HeLa, HT-29 and MCF-7 treatment with 

100 μg/ml of the various putative AMPs (Molecules 1, 1.1, 3, 7, 8, 8.1 and 10) 

enabled the determination of the effective concentration that could cause the 

inhibition of 50 % of cell growth (EC50) of certain putative AMPs since it was 

impossible to determine the EC50 at the lowest peptide concentrations. This 

concentration also enables the evaluation of the peptides toxicity towards mammalian 

cells. 

The decrease in cell viability was observed for most of the cancer cell lines at the fix 

peptide concentration of 100 μg/ml, for all the AMPs (Molecules 1, 1.1, 3, 7, 8, 8.1 

and 10). As such, it was possible to obtained as much as 20 % cells inhibition across 

the 4 cancer cell lines (CHO, HeLa, HT-29 and MCF-7) for Molecule 1, Molecule 3, 

Molecule 8 with the dose of 100 μg/ml AMPs. Nonetheless, Molecule 7, Molecule 10, 

Molecule 1.1 and Molecule 8.1 at 100 μg/ml AMPs concentration could only inhibit 

the CHO, HeLa and MCF-7 cell lines with 20 % toxicity (Figure 6.2). However, 

observation showed that the treatment of HeLa and CHO with 100 μg/ml of all the 

AMPs resulted in cell toxicity of 20 % of these cancer cell lines (Figure 6.2), thus the 

AMP could be considered as moderately cytotoxic for the various cancer cell lines. 
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Figure 6.2: The toxicity effect of all the putative AMPs against CHO, HeLa, HT-29 
and MCF-7 cell lines, after 100 μg/ml treatment, during the MTT assay. The error 
bars represent the standard deviation (± SD) of triplicates. 
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6.4. Discussion 

The exploration of additional and new medications to combat many diseases, 

especially cancer is the ultimate goal of most research facilities and/or pharmaceutics 

companies around the world. Whilst this journey is a time-consuming process, 

demands a lot of funds, and sometimes end up being rejected at the clinical trial 

stages, due to numerous side effects, it becomes imperative that the lead molecule 

utilized for the development of these drugs are properly designed towards a specific 

disease receptor, that when the lead compound binds to this receptor, it should 

influence the progression of the disease. Nevertheless, some lead compounds have 

been proven to have additional activities and/or functions different from the initial 

function they were designed to execute (Pan et al., 2009; Tharntada et al., 2009; 

Shang et al., 2009; Wang et al., 2012), therefore prompting our evaluation of the 

potential anti-cancer activity of the putative AMPs.  

The AMPs designed in this study were developed for applications in the treatment of 

HIV/AIDS. Specifically, the peptides were selected based on their capacity to bind 

the HIV gp120 receptor and thus prevent the binding of the HIV to CD4 cell surface 

receptor on human T cells, macrophages/monocytes, and dendritic cells. The 

biological activity of these putative AMPs was demonstrated to inhibit HIV 

pseudotype NL4-3 with EC50 varying between of 37.5 μg/ml and 93.75 μg/ml for 

Molecule 7 and Molecule 8 respectively (Tincho et al., 2016). Ideally these AMPs 

should not be toxic to mammalian cells if the AMPs were going to be used as a 

therapeutic agent, which block the interaction between HIV gp120 and CD4. It was 

therefore also important to investigate the general toxicity of the AMPs to mammalian 

cells. It was already shown that these peptides at a concentration of ± 150 μg/ml could 

only cause around 80 % toxicity in normal human T cells (Tincho et al., 2016) and 

should therefore not be toxic to normal human T cells at the EC50 of between 37.5 

μg/ml and 93.75 μg/ml for Molecule 7 and Molecule 8 respectively.  

In the current study, the cytotoxic effects of these peptides (Molecules 1, 3, 7, 8, 10, 

1.1 and 8.1) were investigated on other mammalian cells (CHO, HeLa, HT-29 and 

MCF-7). Three of these cell lines are human cancer cell lines and one is a non-

cancerous murine cell line. In general, the results show that the peptides are not 

cytotoxic to the four cell lines tested. Molecule 1, Molecule 1.1 and 8 were the most 
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cytotoxic peptides and the Hela cell line was more susceptible to the cytotoxic effects 

of the peptides compared to the other cell lines. The EC50 for Molecule 1, Molecule 

1.1 and Molecule 8 was determined to be around 100 μg/ml in Hela cells. The reason 

of having different cell viability across the cancer cell lines used could be due to the 

fact that the cancer cell lines are all from different anatomical regions of the body. 

Moreover, the cancer cell lines might have been subjected to genetic mutations and 

have different gene expression patterns. Additionally, the differential responses of the 

treatments and the toxicity of Molecule 1, Molecule 1.1 and Molecule 8 could be due 

to the hydrophobic nature of these peptides that is within the recommended range 

(Giuliani et al., 2007), the presence of Cysteine amino acid residues and their positive 

charges (Table 2.3 and Table 2.4). These characteristics are major factors that favour 

the toxicity of AMPs, mostly the presence of Cysteine residue that aid in the peptide 

folding and avoid proteolysis of the peptides (Scott et al., 2008; Wang et al., 2010; 

Wang et al., 2011).     

In general, Hela cells were more susceptible to the effects of the peptides and the non-

toxicity of the other peptides could be explained by the reasons stated above. This 

study provides some preliminary data that suggests that the AMPs (in particular 

Molecules 1.1, 3, 7, 8.1 and 10) will not have significant cytotoxic effects on human 

cells. Nevertheless, the current study could have some limitations since the cancer cell 

lines might have been subjected to mutations after repeated cycles of growing the cell 

lines, hence, changing the cancer cell lines original genetic material. Therefore, the 

peptides ought to be performed on non-cancerous cell lines and animal studies needs 

to be carried out to study the real toxic effects of the peptides. 

The intention of these experiments was also to highlight the possibility that these 

peptides may have additional biological activity other than the one that it was 

designed to perform, that is anti-HIV activity. It is possible for a drug to have multiple 

biological activities. For example, Some AMPs used to develop cancer drugs or that 

have been shown to have cancer activities, were later found to have anti-bacterial 

activities (Pan et al., 2007; Pan et al., 2009; Tharntada et al., 2009; Shang et al., 

2009; Wang et al., 2012). Similarly, the Kn2-7 AMP that developed as anti-HIV 

agent also showed anti-bacterial activity (Chen et al., 2011; Cao et al., 2012). The fact 

that some of the AMPs and in particular Molecule 1, Molecule 1.1 and Molecule 8 
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show cytotoxic effects in Hela cells suggest that these peptides may also be 

investigated further for anticancer activities.  

6.5. Conclusion 

The path for the development of potent therapeutic molecules to neutralize cancer 

propagation is still a long journey to complete. Such result could be achieved if 

theoretical measures are applied in the conception of a lead molecule, which will 

serve this purpose. This will demand the design of compounds that are directed 

toward a cancer specific receptor with interaction of the ligand (lead compound) with 

the cancer receptor affecting its progression and/or prevent cancer cell proliferation. 

Whilst the aim of this chapter was to evaluate the possible anti-cancer activity of 

these anti-HIV AMPs, modest toxicity was only observed for Molecules 1, 1.1 and 8 

and most of the AMPs were not toxic to CHO, HeLa, HT-29 and MCF-7 cancer cell 

lines and should therefore be safe to use as a anti-HIV treatment. Though the peptides 

were particularly designed to bind HIV gp120 protein and stop HIV infection, the 

cancer toxicity result might seem negative due of its initial design. However, an AMP 

might have activity against a specific target, the same AMP could have a different 

activity against many pathogenic organisms. Thus, the second activity displayed by 

this AMP does not discredit the main activity for which the AMP was designed to 

display, but could also show additional activity of the same AMP.  
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CHAPTER SEVEN: GENERAL DISCUSSION AND 

CONCLUSION  

 

7.1. Introduction 

The scientific community has embarked on a journey for the development of proper 

therapeutic molecules to fight various diseases. To this end, scientific research has 

facilitated the development of many drugs that could combat HIV at various stages of 

the virus lifecycle, from the binding of the virus to human cells, fusion of DNA and 

production of viral proteins (Pang et al., 2009; Hare et al., 2010; Volberding and 

Deeks, 2010). Though used in an individual treatment regimens, these therapeutic 

molecules could however, be more effective if they are to be used in combination 

with other molecules and this method of therapeutic regimens has helped reduce HIV 

replication. 

Even though the combined therapies are effective, individual molecules still need to 

be developed. A well-suited example of such an anti-HIV drug would be a molecule 

that would prohibit viral entrance into the human cells and to reduce reservoir pockets 

in an infected patient. This new class of HAART was termed entry inhibitors or 

fusion inhibitors due to their action. Enfuvirtide is the only anti-HIV peptide-based 

drug of this class of HAART, which has received approval from the FDA (Dwyer et 

al., 2007). Although other peptide-based drugs are either FDA approved (Kilby et al., 

2002) or are under clinical trials (Dwyer et al., 2007), additional AMPs should be 

screened for to develop additional potent anti-HIV entry inhibitors to stop HIV ability 

to enter cells and help formulate new therapeutic regimens. 

In the quest to search for novel therapeutic compounds, previous work has enabled 

the design of putative AMPs which could block the attachment of the HI Virus to the 

T cells, macrophages, monocytes by preventing HIV gp120 protein binding to CD4 

surface protein (Tincho et al., 2016). Thus the current project is aimed to confirm the 

activity of the previously identified peptide against HIV pseudotypes, after optimising 

the performance of the parental AMPs using in-silico site-directed mutagenesis, so as 
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to increase the binding affinity of the mutated AMPs to the HIV gp120 target. 

Furthermore, the anti-HIV activity and additional biological functions of these 

peptides were examined using various molecular methods. 

7.2. In-silico optimisation of putative anti-HIV peptides via side-directed 

mutagenesis (Chapter two) 

Whilst the need to design additional compounds for the development of HIV 

regimens are imperative; these compounds could be optimised so as to increase their 

biological function and make these compounds more specific and accurate towards 

their target molecule(s). The parental peptides identified to bind HIV gp120 protein, 

at the area where gp120 interacts with CD4 of T cells, macrophages and monocytes 

were subjected to site-directed mutations after “hotspot” residues for these peptides 

were determined. Knowing that these “hotspot” residues are very crucial to maintain 

the ligand on the receptor, discrete site-directed mutagenesis were performed on 

“non-hotspot” residues so that the mutated AMPs position on the HIV gp120 protein 

will not change significantly during the interaction process (Darnell, et al., 2007; Zhu 

and Mitchell, 2011).  

The inclusion of different R-groups in the respective AMPs during the site-directed 

mutagenesis process showed that the physicochemical properties of the mutated 

AMPs did not change significantly except for Molecule 7.1 and Molecule 8.1 which 

net positive charge increased to a + 1 thus affecting their hydrophobic ratio (Table 2.3 

and Table 2.4). Furthermore, the substitution of a phenylalanine residue to that of a 

tryptophan amino acid residue allowed the introduction of a α-helical conformation to 

the mutated AMP, Molecule 1.1 (Figure 2.1). The same change was observed for 

Molecule 8.1, where the substitution of phenylalanine to histidine residue added a β-

sheet to the mutated peptide (Figure 2.2). These conformational changes had a 

dramatic effect on the AMPs interaction with the HIV gp120 protein. Hence, only 

Molecule 1.1 and Molecule 8.1 were able to bind HIV gp120, at the point where HIV 

gp120 interacts with CD4 of human cells demonstrated using in-silico docking studies 

(Figure 2.5 and Figure 2.8). The binding score of gp120 bound to Molecule 1.1 was 

diminished as compared to the binding score of gp120 bound to Molecule 1. 

Conversely, the binding score of gp120 bound to Molecule 8.1 increased as compared 

to the binding of gp120 to Molecule 8 (Figure 2.6). Despite the opposite results on the 
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binding score of the mutated peptides, only these two AMPs will be included in the 

list of peptides to be tested for anti-HIV activity. It should be noted that the result 

obtained in Figure 2.6 was later confirmed during the anti-HIV activity screening 

process (Figure 4.1). 

7.3. Binding capacity of selected putative anti-HIV AMPs to HIV protein gp120 

(Chapter three) 

This chapter was aimed at expressing HIV gp120 protein and demonstrate that 

identified putative AMPs and their mutated counterparts could bind to recombinant 

HIV surface protein gp120. The first part was carried out utilising an in-silico method 

for the design and optimisation of the gene responsible for expressing the HIV gp120 

protein. The success of using this technique was justified by the expression of the 

fusion protein, with its size corresponding to that of the expected fusion protein size 

(Figure 3.5 to Figure 3.12).  

Whilst the purification of the fusion protein seems problematic, it could not be 

attributed to the method utilised to design the construct, but this failure could rather 

be explained by the fact that the host utilised to express this protein was not able to 

express the full protein. The phenotype of the bacterium did not allow for post-

translational modification, thus, the host could not express the sugar moieties that 

make up the protein backbone. The presence of N-Linked glycosylation sites are 

responsible for keeping the protein in its native conformation (Matthews et al., 1987; 

Leonard et al., 1990), hence the loss of these sugar moieties could be the elements 

responsible for destabilizing the protein structure, causing its cleavage hence 

preventing purification. The use of detergents to solubilise the protein could not 

enable the purification of this protein because of the host utilised, hence the inability 

to obtaining a pure recombinant protein. Nevertheless, the deglycosylation of HIV 

gp120 protein has not been affected by the ability of the protein to bind CD4 of T 

cells, macrophages and monocytes (Matthews et al., 1987; Leonard et al., 1990). 

However, this evidence was in opposition with other research, which proved that the 

sugar moieties are essential for the proper binding of gp120 and CD4 surface 

molecule (Li et al., 1993).  

Despite the problems encountered during the protein purifucation, a commercially 

available recombinant gp120 protein was utilised to conduct the binding study, to 
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determine if the putative AMPs could compete with gp120 for its interaction with the 

CD4 surface protein. The work carried out in this chapter was able to generate 

reasonable answers to demonstrate that certain peptides could block the interaction of 

gp120 and CD4 by utilizing a lateral flow platform. Results showed that this blocking 

was possible only when CD4 was on the membrane and gp120 were on the conjugate 

side (Figure 3.14 and Figure 3.15). Therefore, results illustrated in Figure 3.17 proved 

that the peptides were able to prevent gp120 protein binding to CD4 protein, 

demonstrating that these peptides could be used as potent entry inhibitors to stop HIV 

spreading to healthy cells, even in the case of an infected individual.  

Although the results seem to be inconsistent when the peptides were conjugated, the 

two peptides (Molecule 1 and Molecule 7), which were conjugated to gold nano-

particles successfully, proved to still prevent the binding of gp120 protein to CD4 

surface molecule, hence showing conclusive competitive binding of Molecule 1 and 

Molecule 7. These two peptides could exhibit excellent biological functions, to 

prevent the entry of HIV into human T cells, macrophages and monocytes. However 

considerable effort ought to be undertaken for the remaining five peptides to produce 

a proper conjugated peptide, either by looking at the buffer or at the stability of the 

peptides. Besides the conjugate problem encountered in this chapter, the strength of 

the interaction could not be measured and the results interpretation has to rely 

strongly on the signal generated during the interaction using a lateral flow platform. 

Nevertheless, other binding techniques such as SPR, ITC, CD and BLI could be used 

to confirm the current results and to measure the strength of the interaction. 

7.4. Anti-HIV activity of putative antimicrobial peptides (Chapter four) 

Demonstrating that the AMPs interact with the CD4 protein and prevent the binding 

of HIV gp120 to CD4 was the first step to show that these peptides could exhibit 

excellent biological functions, to prevent the entry of HIV into the human T cells, 

macrophages and monocytes. This however would only remain speculation unless the 

activity of the putative anti-HIV is examined and proven. In this regard, the 

preliminary screening of the putative AMPs against HIV-1 NL4-3 showed that these 

AMPs have anti-HIV activity. Further dosage response experiments demonstrated that 

the inhibition of the virus increased when the amount (concentration) of the peptide 

was also increased during the test, proving that the activity of the peptides functions 
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in a dose-dependent manner. Molecule 7, Molecule 8 and Molecule 8.1 showed potent 

anti-HIV activity using a dose-response, which was used to establish the EC50 of 

Molecule 7 and Molecule 8, which were found to be 37.5 μg/ml and 93.75 μg/ml 

respectively (Figure 4.2). Unfortunately, the EC50 of Molecule 8.1 was not determined 

since the concentration of 12.5 μg/ml could not inhibit 50 % of the viral cells hence 

the concentration of the peptide ought to be increased so that 50 % inhibition can be 

achieved.   

Although not all the putative AMPs have been shown to possess anti-HIV activity as 

extrapolated from the in-silico method, that the peptides binds to gp120, where gp120 

interacts with CD4 protein of T cells, macrophages and monocytes. The three AMPs 

with anti-HIV activity could prove to be the solution to preventing the interaction of 

gp120 and CD4, thus preventing the infection of healthy cells; and ultimately stop the 

replication of the virus in an infected individual.  

Observations during the HIV testing showed that Molecule 1.1 activity was reduced 

as compared to the parental peptide Molecule 1, whilst an increase in activity for 

Molecule 8.1 was shown as compared to its parental peptide Molecule 8 (Figure 4.1). 

This result was corroborated by the in-silico method, utilised for the peptide 

optimisation, in which the binding score of gp120’s interaction with Molecule 1.1 was 

reduced as compared to the binding of gp120 to Molecule 1; and the binding score of 

gp120 interaction with Molecule 8.1 was increased as compared to binding of gp120 

to Molecule 8 (Table 2.6). These observations provides justification for the use of 

computational biology and bioinformatics as a key component for the evolution of 

molecular biology and structural biology to ease the workload and speed the results 

outcome to find solutions to the problems facing our humanity especially in the health 

sector.   

7.5. Anti-bacterial and anti-cancer activities of putative antimicrobial peptides 

(Chapter five and Chapter six) 

Whilst it will be reasonable for the AMPs to only exhibit anti-HIV activity since the 

peptides were designed to interfere with the interaction of gp120 with CD4 protein, 

and prevent possible entrance of HIV to the human cells (Tincho et al., 2016), one 

would thus expect that these peptides should not have any other biological activities. 

Nevertheless, their anti-HIV activity does not mean that these putative AMPs would 
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exclusively harbour anti-HIV activity since evidences have shown that AMPs could 

possess multiple biological functions (Pan et al., 2007; Pan et al., 2009; Tharntada et 

al., 2009; Shang et al., 2009; Chen et al., 2011; Cao et al., 2012; Wang et al., 2012), 

thus the reason for looking for other biological activities that could be exhibited by 

these peptides. Seeking additional biological functions of these peptides could also be 

justified by the rising problem of drug resistance, which call for the search of new 

lead compounds that can serve as the backbone for the design of potent drugs. This 

chapter attempted to evaluate the possible anti-bacterial and anti-cancer activity these 

putative peptides may display.  

The microtiter dilution method utilised to evaluate the anti-bacterial activity proved 

that Molecule 3 and Molecule 7 completely inhibit the growth of P. aeruginosa, at the 

lowest AMP concentration of 0.03125 mg/ml (31.25 μg/ml) (Figure 5.2 and Figure 

5.3). However, less considerable inhibitions were observed when methicillin-resistant 

Staphylococcus aureus (MRSA) and methicillin-sensitive Staphylococcus aureus 

(MSSA) were treated with the peptides. While this result might be minimised in view 

of the number of peptides that were tested, it should be noted that S. aureus and P. 

aeruginosa are infectious microbes, which have become resistant to many 

conventional antibiotics (Cornelis, 2008) and are mostly opportunistic microbes to 

pathologies such as AIDS. 

Although the cytotoxicity of the putative AMPs to CHO, MCF-7, HeLa and HT-29 

was not significant, the lack of anti-cancer activity could be justified by the specificity 

of the designed peptides. Nevertheless, the additional anti-bacterial activity proves 

that an AMP could display a secondary activity even though it was devised for a 

principal purpose.    

7.7. Conclusion 

The purpose of this project was to establish the anti-HIV activity of five putative 

AMPs, designed through machine learning and computational prediction. Whilst the 

computational site-directed mutagenesis has been achieved successfully selected 

peptides were tested after confirming that these peptides could still bind HIV gp120 

molecule, at the point where the protein interacts with the human cells surface 

molecule CD4. Conclusive results demonstrated that out of the five parental AMPs, 

only two peptides showed potent anti-HIV activity. Moreover, the mutated AMP, 
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Molecule 1.1 that has a low binding affinity with gp120 protein showed lower anti-

HIV activity than that of the parental AMP, Molecule 1. The same correlative result 

was observed for Molecule 8.1, which showed better anti-HIV activity than the 

parental peptide, Molecule 8, prompting the need for more mutations within these 

AMPs to increase HIV activity and screen for a more potent anti-HIV compound. 

Furthermore, the question of exclusive anti-HIV activity was raised since these 

peptides were conceptualised and designed on a particular receptor, hence the need to 

test for other biological activities for these AMPs. It has been demonstrated that a 

particular peptide with a specific activity could exhibit an additional activity or 

function, different from the one it was intended to execute (Pan et al., 2009; 

Tharntada et al., 2009; Shang et al., 2009; Chen et al., 2011; Cao et al., 2012; Wang 

et al., 2012). This concept was proven when Molecule 3 and Molecule 7 were able to 

inhibit the growth of P. aeruginosa after 24 hours of treatment, indicating that these 

AMPs have additional anti-Pseudomonas aeruginosa activity, though low or non-

susceptive activity was observed for both MSSA and MRSA strains in the study. 

However, considerable toxicity was not observed when cancer cell lines treated for 24 

hours with these peptides. However, the ability of the AMPs to bind gp120 at the area 

where this protein interacts with CD4 surface protein still ought to be demonstrated 

via molecular techniques, to exclusively say that the concept and the design of these 

peptides were successfully executed. 

7.8. Future work  

The work accomplished to date for this project needs further experimentation so that 

the full function of these putative AMPs is demonstrated. Thus, the future work will 

include:  

 Introduce further in-silico site-directed mutagenesis on these putative anti-

HIV AMPs, to optimise and increase their binding potential to prevent HIV-1 

gp120 protein interaction to CD4 surface protein. 

 This simulation would be followed by an in-vitro validation of the anti-HIV 

activity of the mutated AMPs. 

 Furthermore, the CC50 of all AMPs should be determined and their individual 

Therapeutic Index or Selective Index should be derived.  
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 The broad anti-HIV activity of these AMPs will be determined by carrying out 

anti-HIV testing on different HIV-1 pseudotyped viruses.  

 Additionally, the mechanism of action of these AMPs will be established and 

will help to determine the application of the molecules, either as 

preventive/prophylactic drugs or therapeutic drugs or gels/films.  

 Finally, the complex formed between gp120 and anti-HIV AMPs will be 

solved using structural biology, to validate the observations made by the in-

silico binding study.  
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APPENDIX A 

 

Supplementary materials for Chapter TWO 

 

>Molecule 1: 

CLRYKKPECQSDWQCPGKKRCCPDTCGIKCLDPVDTPNPTRRKPGKCPVTYG

QCLMLNPPNFCEMDGQCKRDLKCCMGM 

>Molecule 3: 

RWKLFKKIEKVGRNVRDGLIKAGPAIAVIGQAKSLGK  

>Molecule 7: 

RWKIFKKIEKMGRNIRDGIVKAGPAIEVLGSAKAIGK  

>Molecule 8: 

CLKSGAICHPVFCPRRYKQIGTCGLPGTKCCKKP 

>Molecule 10:  

WNPFKELEKAGQRVRDAIISAKPAVDVVGQATAIIK  

Table A.1: The parental sequences of the anti-HIV AMPs sequence obtained after the 

initial docking of the HIV gp120 protein and the putative AMPs, published in Tincho 
et al., 2016.  
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>Mutated Molecule 1 or Molecule 1.1: F62W 

CLRYKKPECQSDWQCPGKKRCCPDTCGIKCLDPVDTPNPTRRKPGKCPVTYG
QCLMLNPPNWCEMDGQCKRDLKCCMGM 

>Mutated Molecule 3 or Molecule 3.1: V28L 

RWKLFKKIEKVGRNVRDGLIKAGPAIALIGQAKSLGK  

>Mutated Molecule 7 or Molecule 7.1: W2H 

RHKIFKKIEKMGRNIRDGIVKAGPAIEVLGSAKAIGK  

>Mutated AMP 8 or Molecule 8.1: F12H 

CLKSGAICHPVHCPRRYKQIGTCGLPGTKCCKKP 

>Mutated Molecule 10 or Molecule 10.1: V25L 

WNPFKELEKAGQRVRDAIISAKPALDVVGQATAIIK  

Table A.2: Mutated AMPs sequence obtained after site-directed mutagenesis of 
parental anti-HIV AMPs, and the position of amino acid residues mutation. 

 

 

            

           Molecule 3                            Molecule  7                           Molecule 10                                                  

Figure A.1: The 3-D structures of the three alpha-helical parental anti-HIV AMPs 
Molecule 3, Molecule 7 and Molecule 10 predicted by I-TASSER server and 

represented in cartoon representation by PyMOL 1.3. Software 
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Figure A.2: gp120-Molecule 1 complex formation during anti-HIV-gp120 

interaction. The cartoon representation in green colour is the HIV protein gp120 and 
the putative anti-HIV AMP (Molecule 1) is represented in light blue colour. The 
purple colour represents the stick representation of gp120 amino acids interacting 

with Molecule 1 amino acid stick representation in dark blue. Each amino acid is 
labelled with the position of their amino acid.  

 

 

 

Figure A.3: gp120-Molecule 3 complex formation during anti-HIV-gp120 

interaction. The cartoon representation in green colour is the HIV protein gp120 and 
the putative anti-HIV AMP (Molecule 3) is represented in light blue colour. The 
purple colour represents the stick representation of gp120 amino acids interacting 

with Molecule 3 amino acid stick representation in dark blue. Each amino acid is 
labelled with the position of their amino acid.  
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Figure A.4: gp120-Molecule 7 complex formation during anti-HIV-gp120 
interaction. The cartoon representation in green colour is the HIV protein gp120 and 
the putative anti-HIV AMP (Molecule 7) is represented in light blue colour. The 

purple colour represents the stick representation of gp120 amino acids interacting 
with Molecule 7 amino acid stick representation in dark blue. Each amino acid is 

labelled with the position of their amino acid.  

 

 

Figure A.5: gp120-Molecule 8 complex formation during anti-HIV-gp120 

interaction. The cartoon representation in green colour is the HIV protein gp120 and 
the putative anti-HIV AMP (Molecule 8) is represented in light blue colour. The 
purple colour represents the stick representation of gp120 amino acids interacting 

with Molecule 8 amino acid stick representation in dark blue. Each amino acid is 
labelled with the position of their amino acid. 
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Figure A.6: gp120-Molecule 10 complex formation during anti-HIV-gp120 

interaction. The cartoon representation in green colour is the HIV protein gp120 and 
the putative anti-HIV AMP (Molecule 10) is represented in light blue colour. The 
purple colour represents the stick representation of gp120 amino acids interacting 

with Molecule 10 amino acid stick representation in dark blue. Each amino acid is 
labelled with the position of their amino acid.  

 

Table A.2: The area cover and the ACE’s from the docking the gp120-putative-anti-

HIV AMP using the PatchDock docking server. These interactions are the results 
generated from the previous work (Tincho et al., 2016). 

 gp120 

 Area (Å2) ACE Transformation coordinates 

Molecule 1 2433.90 281.93 -0.94 0.61 -2.68 14.27 19.05 2.11 

Molecule 3 1926.00 410.28 -1.31 0.66 1.01 -5.19 -9.03 -16.06 

Molecule 7 1906.00 295.00 2.31 1.12 2.99 8.08 -27.26 11.81 

Molecule 8 1564.90 71.02 -1.23 0.07 1.76 9.50 5.77 -10.61 

Molecule 10 1916.20 -34.06 -2.33 0.66 -2.29 9.00 14.84 -0.33 
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APPENDIX B 

 

Supplementary materials for Chapter THREE 

Table B.1: Chemical/Reagents and suppliers 

Material Supplier 

Acetic acid Merck 

40 % 37.5:1 Acrylamide:bis-acrylamide Promega  

Agarose  Promega  

Ampicillin  Sigma 

Ammonium Persulfate (APS)  Sigma  

Bacteriological agar  Merck  

Boric acid  Merck  

Bromophenol blue  Sigma  

Coomassie Brilliant Blue R-250  Sigma  

Dithiothreitol (DTT)  Roche  

Disodium phosphate  Merck  

Ethylene Diamine Tetra-acetic acid (EDTA)  Merck  

Ethanol  Merck  

Ethidium bromide (EtBr)  Promega  

L-reduced Glutathione-S-Transferase Sigma 

Glycerol  Merck  

Glycine Sigma  

Isopropanol  Merck  

Isopropyl β-D-thiogalactopyranoside (IPTG)  Sigma  

Lysosome  Sigma  

Methanol  Merck  
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Monopotassium phosphate  Merck  

cOomplete EDTA-free protease inhibitor Roche 

PageRulerTM Unstained Protein Ladder  Fermentas  

Potassium chloride  Merck  

Sodium acetate  Merck  

Sodium Azide  Sigma  

Sodium Chloride (NaCl)  Merck  

Sodium Hydroxide  Merck  

Sodium dodecyl sulphate (SDS)  Merck  

Urea Merck 

N, N, N', N'-Tetramethylethylenediamine (TEMED)  Sigma  

Tris [hydroxymethyl] aminoethane (Tris)  Merck  

Triton X-100 (iso-octylphenoxypoly- ethoxyethanol)  Sigma  

Tryptone  Merck  

Tween-20 (Polyoxyethylene [20] sorbitan)  Merck  

Yeast Extract  Merck  

Table B.2: Buffers and Solutions 

2 X SDS Sample buffer: 

62.5 mM Tris-HCl (pH 6.8), 2 % SDS, 25 % glycerol, 0.01 % bromophenol blue, 5 % 

β-mercaptoethanol. 

10 X TBE 

0.9 M Tris, 0.89 M boric acid, 0.032 M EDTA stored at room temperature.  

10 X Tris-EDTA (TE) 

10 mM Tris-HCl, 1 mM EDTA, pH 7.5 

10 X Phosphate-buffered saline (PBS) 
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150 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 2.0 mM KH2PO4, pH 7.4.  

DNA Loading buffer 

0.25 % Bromo-phenol-blue, 0.25 % xylene cyanol and 30 % glycerol 

Ampicillin 

100 mg/ml ampicillin in distilled water; filter sterilized. 

Sodium Chloride-Tris-EDTA/lysozyme (Lysis buffer) 

10 mM Tris, pH 8, 150 mM NaCl, 1mM EDTA and 100 μg/ml lysozyme 

Ammonium persulphate (APS) 

A 10 % stock solution was prepared in deionised water. 

Coomassie Brilliant Blue R-250 Staining Solution 

0.25 g Coomassie Brilliant Blue R 250, 50 % ethanol and 10 % acetic acid 

Cleaning buffer 1: 

0.5 M borate buffer, (pH 8.5): 0.5 M NaCl  

Cleaning buffer 2: 

0.1 M acetate buffer, (pH 4.5): 0.5 M NaCl  

Destaining solution 

16.5 % ethanol and 5 % acetic acid. 

Dithiothreitol (DTT) 

A 1 M stock solution was prepared in 0.01 M Sodium acetate, pH 5.2. This solution 

was sterilized by filtration. 

Ethylene diamine tetra acetic acid (EDTA) 

A stock solution was prepared at a concentration of 0.5 M in deionised water, pH 8.0. 
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10 % Sodium dodecyl sulphate (SDS) 10 % SDS in distilled water. 

Elution buffer 

5 mM reduced glutathione, 50 mM Tris- HCl pH 9.0.  

Isopropyl β-D-thiogalactopyranoside (IPTG) 

A 1 M stock solution was prepared in deionised water. The solution was sterilised by 

filtration. 

Luria Agar 

14 g/l Bacteriological agar, 10 g/l Tryptone, 5 g/l Yeast Extract and 5 g/l NaCl 

Luria Broth 

10 g/l Bacto-tryptone, 5 g/l Bacto-Yeast Extract and 5 g/l NaCl 

Lysozyme 

A stock solution was prepared at a concentration of 50 mg/ml in deionised water. 

PBS-T 

150 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 2 mM KH2PO4 and 1 % Triton-X 

100)  

Storage buffer 

2 M NaCl, 1 mM Sodium Azide  

U-Buffer 

8 M Urea, 50 mM Tris, 5 mM EDTA, 5 mM DTT and cOmplete EDTA-free protein 

inhibitor tablet 
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Table B.3: Equipment and suppliers 

Equipment  Suppliers  

211DS Shaking Incubator Labnet 

5415D Benchtop Microcentrifuge Eppendorf  

Centrifuge  Beckman Coulter 

Tube Roller SRT9D  Stuart 

UVP BioSpectrum Imaging System UVP LLC 

Mini-PROTEAN Tetra Cell BioRad 

CanoScan LiDE 120 electronic scanner Canon 

 

 

 

EVVLVNVTENFNMWKNDMVEQMHEDIISLWDQSLKPCVKLTPLCVGAGSC

NTSVITQACPKVSFEPIPIHYCAPAGFAILKCNNKTFNGTGPCTNVSTVQCTHG

IRPVVSSQLLLNGSLAEEEVVIRSVNFTDNAKTIIVQLNTSVEINCTGAGHCNIA

RAKWNNTLKQIASKLREQFGNNKTIIFKQSSGGDPEIVTHWFNCGGEFFYCNS

TQLFNSTWFNSTWSTEGSNNTEGSDTITLPCRIKQIINMWQKVGKAMYAPPIS

GQIRCSSNITGLLLTRDGGNSNNESEIFRPGGGDMRDNWRSELYKYKVVKIE 

 

Figure B.1: Protein sequence of HIV gp120, extracted from the complex of PDB ID 

2NXZ (2NXZ: A|PDBID|CHAIN|SEQUENCE) deposited in the Protein Database 
Bank. 
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APPENDIX C 
 

Supplementary materials for Chapter FOUR  

Table C.1: Chemicals/Reagents and Suppliers 

Material Suppliers 

Dimethyl Sulphoxide (DMSO) Sigma 

Roswell Park Memorial Institute medium (RPMI) Lonza 

Fetal Calf Serum (FCS) Merck 

Dulbecco's Phosphate Buffer Saline (DPBS) Lonza 

2.5 % Trypsin (10X) Gibco 

PEN-STREP Lonza 

2,3-Bis-(2-Methoxy-4-Nitro-5-Sulfophenyl)-2H-

Tetrozlium-5-carboxanilide (XTT) 

Sigma 

3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxy-

phenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) 

Sigma 

Table C.2: Buffers and Solutions 

RPMI Complete 

50 ml Fetal Calf Serum and 5 ml PEN-STREP in 500 ml Roswell Park Memorial 

Institute Medium (RPMI), mix solution to obtain a homogeneous distribution. 

XTT Solution 

5 mg/ml XTT: Dissolve 5 mg of lyophilized XTT in 1 ml distilled water and filter 

sterilize. 

MTS Solution 

5 mg/ml MTS: Dissolve 5 mg of lyophilized MTS in 1 ml distilled water and filter 

sterilize. 
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APPENDIX D 

Supplementary materials for Chapter FIVE  

Table D.1: Chemicals/Reagents and Suppliers 

Material Suppliers 

Tryptone Soya Agar CM0131 (TSA) Oxoid 

Tryptone Soya Broth CM0129 (TSB) Oxoid 

Iodonitrotetrazolium Chloride (INT) Sigma 

Ampicillin Sigma 

Table D.2: Buffers and Solutions 

Tryptone Soya Agar (TSA) 

40 g/l Tryptone Soya Agar CM0131 was prepared, and it contains a pancreatic digest 

of casein 15.0 g; enzymatic digest of soya bean 5.0 g; sodium chloride 5.0 g; agar 

15.0 g. 

Tryptone Soya Agar (TSB) 

30 g/l Tryptone Soya Broth CM0129 was prepared, and it contains a pancreatic digest 

of casein 17.0 g; enzymatic digest of soya bean 3.0 g; sodium chloride 5.0 g; di-

potassium hydrogen phosphate 2.5 g; glucose 2.5 g. 

Iodonitrotetrazolium Chloride (INT) 

A stock solution was prepared at a concentration of 4 mg/ml, by dissolving 4 mg of 

lyophilized INT with 1 ml distilled water and filter sterilized 

Ampicillin  

5 mg/ml lyophilized ampicillin in distilled water and filter sterilized. 
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APPENDIX E 

Supplementary materials for Chapter SIX  

Table E.1: Chemicals/Reagents and Suppliers 

Material Suppliers 

Dimethyl Sulphoxide (DMSO) Sigma-Alrich 

Dulbecco's Modified Eagle's medium (DMEM) Lonza 

Fetal Bovine Serum (FBS) Merck Group 

Dulbecco's Phosphate Buffer Saline (DPBS) Lonza 

2.5 % Trypsin (10X) Gibco 

Penicillin-Streptomycin (Pen-Strep) Lonza 

Hams F-12 Nutrient Mixture (Ham-12) 1X Gibco 

3-[4,5-dimethylthiazol-2-yl]-2,5- diphenyltetrazolium 

bromide (MTT) 

Sigma-Alrich 

 

Table E.2: Buffers and Solutions 

DMEM Complete 

50 ml Fetal Bovine Serum and 5 ml Penicillin-Streptomycin in 500 ml Dulbecco's 

Modified Eagle's Medium (DMEM), mix reagents to obtain a homogeneous solution. 

Ham F-12 Complete 

50 ml Fetal Bovine Serum and 5 ml Penicillin-Streptomycin in 500 ml Hams F-12, 

mix regents to obtain a homogeneous solution. 

MTT Solution 

5 mg/ml MTT: Dissolve 5 mg of lyophilized MTT in 1 ml distilled water and filter 

sterilized. 
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