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Abstract

Non-photorealistic rendering (NPR) is concerned with the algorithm generation of

images having unrealistic characteristics, for example, oil paintings or watercolour.

Using genetic programming to evolve aesthetically pleasing NPR images is a relatively

new approach in the art field, and in the majority of cases it takes a lot of time to

generate results. With use of Cartesian genetic programming (CGP) and graphic

processing units (GPUs), we can improve the performance of NPR image evolution.

Evolutionary NPR can render images with interesting, and often unexpected, graphic

effects. CGP provides a means to eliminate large, inefficient rendering expressions,

while GPU acceleration parallelizes the calculations, which minimizes the time needed

to get results. By using these tools, we can speed up the image generation process.

Experiments revealed that CGP expressions are more concise, and search is more

exploratory, than in tree-based approaches. Implementation of the system with GPUs

showed significant speed-up.
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Chapter 1

Introduction

Evolutionary art [32, 2] is a field in evolutionary computation which uses Darwinian
evolution to automatically generate objects of art. The search for a solution in
evolutionary art is not constrained, but rather, finds unexpected effects on the rendered
images that are evolved. It can be used for generating textures, non-photorealistic
rendering (NPR) effects, and 3D models [6]. It is also used in music, for generating
musical effects and tunes.

NPR is an area of computer graphics which renders images so that they do not look
like photographs. Broadly speaking, many paintings or texture renderings are forms
of NPR. A difficulty, however, is to render images that are aesthetically or artistically
interesting. This is hard due to the subjectivity of the assessment of aestheticity of
images. It is either time-consuming, if performed interactively by a user, or not always
of sufficient quality if performed automatically by the system.

1.1 Goals and Motivations

Cartesian Genetic Programming (CGP) [35] is a graph-based version of genetic
programming (GP) [26] which simplifies program representation and reduces program
bloat problem. Graphic Processing Units (GPUs) [28, 42] are highly efficient hardware
for computational tasks, which allow the parallelization of computations into multiple
threads. If we combine all of these ideas, we can get a simplification and speed-up
NPR processing [54, 16], potentially leading to real-time renderings. This provides us
with opportunity for an improved, faster NPR system.

In this thesis, we develop an NPR implementation with CGP, and make its
computations take less time with the use of GPUs. We borrow some existing approaches
[46, 36, 17] to achieve our results, in order to automate the evolutionary process. Our
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CHAPTER 1. INTRODUCTION 2

system uses multi-objective fitness evaluation and sum of ranks scoring. When
combined with CGP, it leads to an exploratory process, which is extremely beneficial
for artistic applications [49, 14, 38].

We are using CGP to implement NPR, because it solves an important issue tree-
based GP for NPR faced - bloat [5]. The graph is of fixed size and is much smaller than
typical GP trees [5]. This prevents CGP from generating long, ineffective expressions.
Because the CGP graph is evaluated backwards, starting from output nodes, it keeps
expressions concise. CGP does not spend any time evaluating those parts of graphs
which are not connected to output nodes.

To achieve NPR effects, we apply brush strokes to different areas of an image,
which involves calculating pixel values. This is where the efficiency of GPUs helps, as
they boost the speed of calculations, and results are generated faster. With GPUs, we
parallelize the evaluation of the graphs by calculating all pixels’ values inside of one
brushstroke at the same time. However, although possible, we do not use GPUs for
fitness calculations. When considering GPUs, it is always worth evaluating whether
GPUs will benefit a particular application. For example, we need to transfer data
from main memory to the GPU’s memory, and that can involve an overhead. With
smaller data sets, GPUs may be inefficient.

1.2 Thesis Structure

The thesis is organized as follows. Chapter 2 introduces definitions and background
work which this thesis is based on, and discusses evolutionary art and NPR, the
CGP structure and processing, and GPUs and their use. Chapter 3 discusses how
NPR is implemented with CGP. It discusses the architecture of the system, and
how brushstrokes are applied to canvases. It also provides pseudo-code for the paint
function, description of the CGP language, and details of the parameters that are used
for the CGP runs. Chapter 4 provides details on experimental results. It discusses how
CGP behaviour is different from that of tree-based systems, how multi-objective fitness
influences the search process, and comparisons between different strategies. Example
renderings are also given. Chapter 5 investigates how GPUs speed-up the system,
and how the system architecture changes when GPUs are used. It also explains how
data is passed from the CPU to the GPU and how it is processed. Finally, Chapter 6
summarizes the thesis, and discusses what improvements could be made to the system
in the future.



Chapter 2

Background

2.1 Evolutionary computation

Evolutionary computation is a branch of computational intelligence which uses heuristic
search algorithms inspired by Darwin’s theory of evolution. Holland originally proposed
the genetic algorithm in 1975 [23].

The solution to many computational problems can be stated as a task of finding a
string of symbols that describes a solution. Consider the travelling salesman problem
(TSP), which is a well-known problem, which in most cases does not have a tractable
solution. The problem is in finding the shortest path between all the points Ci. The
path starts and ends in the same point. If we label every point in the following way;
C1, C2, C3,..., Cn, then some permutation of this string will be our solution.

The evolutionary algorithm would approach this problem in multiple steps as
follows.

1. Randomly generate an initial population, meaning a number of strings (chromo-
somes) out of labels (might not use all of them) by random permutations.

2. Evaluate each individual in the population and assign appropriate fitness scores
to the individuals, so we could compare these individuals to each other later.
Fitness in this particular problem will be the distance covered by the route
between points. Thus, we are trying to minimize the distance.

3. Based on the fitness scores, the program selects chromosomes to create the next
generation. These selected chromosomes are called ’parents’

4. Individuals produced by ’parents’ are called ’children’. The children are generated
via the reproduction operators such as crossover and mutation. Crossover

3



CHAPTER 2. BACKGROUND 4

generates child from two parts, each of which is inherited from different parent.
Mutation generates child by substituting a part of a parent.

5. Repeat steps 2-4 until solution is found or time limit is reached.

The detailed description of how the further populations generated and possible pitfalls
and solutions to them are described in [35].

2.1.1 Genetic Programming

Genetic programming (GP) is the automatic evolution of computer programs [26]. It
uses a tree-based data structure. Genetic programming is capable of searching the
space of possible solutions to the problem and identifying the fittest solution to the
problem at hand. Generated solutions by GP are rarely the most compact structures.
Usually, they have substructures which do not influence the solution and are left
totally unused [26]. This is called bloat. The problem with this phenomenon is that
chromosomes become larger and larger without any increase in performance (fitness).
Programs have large subexpressions that are redundant and inefficient, moreover,
the execution time of bloated programs is longer. In addition, the solutions that are
generated are hard to understand.

2.1.2 Cartesian Genetic Programming

CGP uses directed acyclic graphs instead of trees, which solves the problem of bloat,
as well as simplifies computations. Each node in a graph represents a function with
multiple inputs and outputs. This way the program is more compact, because it allows
the reuse the values of previously computed subgraphs. The graphs are described by
a two-dimensional grid of nodes. Integer indices represent which nodes are connected
to which, depicting inputs and outputs as well as the operations that a node should
perform on input data. These indices are called genes, and they make up the genotype
of CGP. CGP is decoded backwards, starting from outputs. This means that some
nodes may be ignored, because some node’s outputs are not connected to any inputs
of other nodes, and do not lead to the inputs of the graph. Such nodes are called ’non-
coding’. The program we receive after decoding of genotype is called the phenotype
[35]. CGP cannot suffer from inefficient chromosome growth, because the genotype of
the chromosome is of fixed size. Moreover, when large genotypes are allowed by the
program, the phenotypes remain small [35].
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The types of functional nodes used in CGP are decided by the user and stored in a
look-up table. Each node in the graph represents a function, and this node is encoded
by a number of genes. One gene, which is called a function gene, is an address of the
node’s function in the look-up table. The rest of the genes represent where the node
gets its data from. These genes are called connection genes. Nodes’ inputs are taken
from either nodes in a previous column or from input of a program [35].

Fig. 2.1 shows the general form of a structure of a CGP program. The nO integers
are added to the end of the genotype, respectively to needed amount of program
outputs. Any two nodes in one column cannot be connected to each other. There
are three parameters in CGP which are chosen by the user: number of columns (nc),
number of rows (nr) and levels-back (l). The number of columns and rows determine
the size of the grid, and thus it determines the number of computational nodes, which
CGP graph will generate: Ln = nc ∗nr. This means that this is the maximum amount
of nodes the graph may has. It is worth mentioning that there is a possibility that
CGP might generate fewer nodes than this number specifies. Levels-back determine
the number of previous columns the current node can get input from. If l = 1, a node
can get its input values from a node in the immediate previous column (column with
computational nodes or program inputs), and not further than the previous column.
If the user wishes to allow connectivity between nodes without such constraint, then
l = nc.

Figure 2.1: General form of CGP program. It is a grid of nodes. The grid has nc

columns and nr rows. The column of inputs ni is on the most left side and the column
of outputs Oi is on the most right side of a figure. Each node can take different amount
of inputs based on the arity of the node a [35].
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The decoding of the CGP genotype into a phenotype is what we are interested
in the most, because that is what gives CGP an advantage over tree-based GP. The
decoding is a recursive process that starts from the outputs, and goes all the way
to the inputs. Because of this, if the node’s output is not connected to any further
node’s input or the output of the program, it will not be added to the phenotype, and
it won’t be considered in the evaluation of the individual at all. Representation of the
decoding process can be found in Fig. 2.2

Crossover operators are not normally used in CGP. Originally, one-point crossover
operator was used in CGP, but later studies of it show that it affects subgraphs within
the genotype and has a detrimental effect on the total performance [34].

Point mutation operator is a mutation operator which is used in CGP. A node on
a randomly chosen position of a gene is changed to another valid random node. It
should be valid in terms of the arity of inputs and outputs as well as the type of the
data it processes. The number of point mutation operations in a single application
of the mutation is defined by the user. Usually, a percentage of the total number of
genes is taken as a value of this parameter. This parameter is called mutation rate
and is described by µr. Fig. 2.3 shows how one mutation can dramatically change the
output of the individual.

A variation on a simple evolutionary algorithm [35] 1+λ is used in CGP programs.
It is common to set λ = 4. It has the following procedure. We select the fittest
individual, which is going to be parent for the next generation. We generate 4 different
mutations of the parent to generate offspring. If an offspring individual has a better
or equal fitness to the parent, then offspring is selected. Else the chromosome of the
parent remains to be the fittest and we go to the next offspring. It is important to
note that in the previous step, we check the fitness of an offspring chromosome to be
better or equal. This way, even though, an offspring has the same fitness, it brings
variety into the population and increases the diversity of search.

As with any type of GP, to find out a good set of values for the program parameters,
one requires some experimentation on the problem being considered. There are some
general suggestions that can be given. The user should set the mutation rate based on
the length of the genotype. As a general rule, it should not go over 1% of mutation
if 100 nodes are used as a maximum value of nodes in genotype. For fast evolution
it is advised to find a mutation rate that it would be a slowly growing function of
the genotype length. Finding optimal mutation rates is beneficial to the speed of a
run of a program, because larger genotypes require fewer fitness evaluations to find a
solution than do smaller individuals. In CGP, small sizes of population are usually
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Figure 2.2: The decoding procedure for a CGP individual (genotype). (a) Output
O1 is connected to the output node 7; move to node 7. (b) Node 7 is connected to
the nodes 2 and 3; move to nodes 2 and 3. (c) Nodes 2 and 3 are both connected
to the program inputs 0 and 1, thus the output O1 is decoded. Decoding output O2.
(d) Output O2 is connected to the output node 9; move to node 9. (e) Node 9 is
connected to the input 0 and the node 5; move to the node. (f) Node 5 is connected
to the inputs of the program 1 and 0, thus output O2 is decoded. Decoding output O3.
Steps (g) and (h) describe decoding of the output O3. After all outputs are decoded,
the genotype is fully decoded [35].

used, and 5 is typical as a value. Because of this, the user should set a large number
of generations to be used, e.g. 2000.

Large genotypes usually lead to more efficient solutions and evolution overall.
The question here would be what values should parameters nr (number of rows,) nc

(number of columns) and l (levels-back) have? If implementing arbitrary directed
graphs is not a problem in a CGP program, then the rule of thumb is to use nr = 1
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(a)

(b)

Figure 2.3: An example of a point mutation operator. (a) is before point mutation is
applied to the CGP genotype, (b) is after point mutation is applied [35].

with l = nc. But, if there are any constraints or limitations, such as in the problem of
generating circuits which are going to be implemented on digital devices, then the
user should choose nc = nr. l in this case is arbitrary and should be tested by the
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user for a specific problem [35].
CGP can represent many computational structures, from digital circuits to mathe-

matical equations. The one of the most interest to us is for evolutionary art. To give
an example: there is a simple way to generate a picture with a CGP. We set the (x,
y) coordinates of the pixel on a canvas as integer inputs to CGP, and declare three
outputs for this pixel, meaning red, green and blue values of it. We should keep the
output values in the range in between 0 and 255, because we need a valid colour value
for the pixel components. Once the value is computed, the pixel is coloured. CGP
continues to process all the pixel coordinates until the whole two-dimensional canvas
is rendered.

2.1.3 Multi-objective Evaluation

There are problems which have single criterion, which means there is a single objective
to satisfy in the fitness evaluation. There are different fitness formulas which could be
used in this case: sum of absolute errors, number of correct examples classified, etc..
However, there are many application problems with several objectives that must be
optimized. This type of problem is divided into two subtypes: multi-objective and
many-objective problems. Multi-objective problems have 4 or fewer objectives. We
can use weighted sum or Pareto rank [15] as fitness formulas to optimize objectives. A
weighted sum combines the separate objective scores into a single score. The weighted
sum approach depends heavily on the weights which we assign to objectives. This can
bias the system to satisfy objectives accordingly to the weights chosen.

Pareto ranking is a popular multi-objective technique. One individual is said to
dominate another if it is better in at least one objective, and is tied in the remaining
objectives [15]. When Pareto ranking is used, diversity becomes an issue, because of
the convergence towards the top rank values. Moreover, Pareto dominance fails with
too many objectives, because then almost all individuals are scored equally. Because
of this, there is no selective pressure, and it becomes more like a random search.

Many-objective problems are those with more than 4 objectives. One strategy for
many-objective optimization is to use normalized sum-of-ranks [7, 12]. Sum-of-ranks
ranks each objective separately for all individuals, then all scores are summed [7, 12].
The smaller score is better. However, there can be a broad range of scores for each
objective, and this can cause some objectives to dominate the overall sum. This is
solved by normalizing the objective values, so that they are all in the range between 0
and 1. Now, after summation of all objectives for each individual, a more balanced
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score arises.
An example of normalized sum of ranks calculations for 5 individuals is in Table

2.1. At first, we assign ranks (R1 to R5) to each individual for each objective (O1

to O5) based on how they scored compared to other individuals. To normalize these
ranks, we divide each rank by the maximum rank for that objective (row with ‘max’
values shows the maximum value for the objective). Finally, we sum all ranks for
individual and end up with values which we can compare and pick the best individual
out of 5 (SR). In our case (Table 2.1) it is the fifth individual.

Objectives Ranks

O1 O2 O3 O4 O5 R1 R2 R3 R4 R5 SR

1) 1.542 0.071 1.406 0.559 0.621 3 2 3 2 4 3

2) 1.579 0.039 1.338 0.567 0.589 5 1 2 3 1 2.6

3) 1.550 0.091 1.168 0.567 0.629 4 3 1 3 5 3.5

4) 1.478 0.166 1.445 0.576 0.603 2 4 5 4 3 4

5) 1.476 0.039 1.410 0.563 0.594 1 1 4 1 2 1.9

max: 5 4 5 4 5

Table 2.1: Objectives and there corresponding ranks for 5 individuals. Low scores are
preferred. SR is the final value for the normalized sum of ranks formula. max is the
maximum value in specific rank.

2.2 Evolutionary Art

Evolutionary art is a technique which is used to evolve aesthetically pleasing images
with evolutionary computation [6]. The biggest difference of evolutionary art in
comparison with other search problems is that it is hard to assess generated individuals
and assign fitness score to them due to highly subjective understanding of what could
be attractive, since this understanding varies from person to person. Instead of
trying to optimize or find an exact solution to the problem, evolutionary art is more
exploratory in nature. There is not one exact solution to be found, nor are there strict
fitness criteria towards what is an artistic image. Diversity of results is one of the
main advantages of evolutionary art applications.
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Karl Sims was a pioneer who used GP to render 2 dimensional art, and his work
affected most of the presently accessible developmental art software applications [51].
William Latham and Stephen Todd used evolution to generate 3D models [55]. Richard
Dawkins showed how evolution could be used to generate a variety of 2D images [13].
In early attempts, evolutionary art did not have automatic fitness functions to assess
the attractiveness of an image, and instead the user interactively provides the fitness
of an image.

Most early evolutionary art programs require a person as a fitness evaluator.
The reason for this is that it is hard to define a selection criteria to automate this
process, because we are dealing with subjective artistic content. Thus, evolutionary
programs require a user to subjectively select individuals and assign them a fitness.
Moreover, some tools allow users to tweak mutation rates to control the variety of
results produced by an application. However, this approach limits the variety of results
and effectiveness of evolution possibilities. Because we have a real person sitting and
selecting images one-by-one, we are risking to exhaust the user, or end up with a
minor amount of diversity in the results.

Automatic texture evolution overcomes this limitation. It eliminates person from
the fitness evaluation process and automates it. Early research using this approach
could detect only simple characteristics of an image such as colour, luminosity and
shape of objects [1, 25, 56, 48]. When the scores for these parameters are calculated
they are compared to the target image, and the fitness scores reflect how close they
are to the target image. The aim is to evolve a solution with characteristics as close
as possible to those of the target.

An even more advanced problem is automating aesthetic texture evolution. There
are a few examples of research that do this [30, 53], and the approach is still making
its way into the evolutionary art field. Baluja et al. [3] were the first who used an
artificial neural network as a fitness evaluation function in their GA program. The
network would be trained by the target images, and then it would evaluate a fitness
score for new individuals. Unfortunately, such an approach does not let us know how
the neural network assessed individuals and what kind of criteria it built. It is also
unclear if it learned any principles to assess aesthetics of a generated individual.

Another approach by Machado et al. [31] is the NEvAr system. The model
assesses aesthetics from two parameters: if an image is visually complex but also easy
to perceive by human and further interpret. There are two corresponding mathematical
measurements: JPEG compression ratio is used to assess image complexity, and fractal
compression ratio is used to assess how hard it is to perceive an image. The results
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of using this model were extremely satisfactory. A study has been used it on a
standardized psychological test called Test of Drawing Appreciation [30].

2.2.1 Non-Photorealistic Rendering

Non-photorealistic rendering (NPR) [54, 16] is a major area of computer graphics which
enables new ways and tools to render visual effects. In particular, NPR algorithms are
meant to create artistic renderings for aesthetic purposes. NPR is less constrained than
photorealistic rendering, because any rendering effect which is not intended to express
realism can qualify as an NPR technique. This could refer to oil paintings, watercolour
effects, pen and/or pencil drawings, 3D rendered objects, abstract computer graphics,
etc.. These all can be separated into two main groups [5]:

• Physical modeling: Modeling of 3D objects, their appearance and physical
properties. This could address construction tools, animal models, medicines,
chemistry and biology elements, etc. Everything that can be and should be
emulated on a computer by representing it as a 3D model is falling under this
category. These models are done with the purposes of simulating properties and
reactions or educational purposes.

• Artistic modeling: Application of artistic tools, such as paint brush or watercolour
or oil to already existing images, or creating and painting from scratch on an
empty canvas. These are done mostly for aesthetic purposes.

Because the aim of this thesis is mainly focusing on the second approach to render
NPR, we will describe it in more detail. It is further divided into three themes which
are commonly seen as a discussion topic in the vast majority of research [5].

• Modeling physical properties: This is almost the same as the first type of NPR
effects presented above, but the difference is that we are considering it in the
context of paintings. This may refer to properties of paint, pens and pencils,
how they move in 3D space or how they are applied to canvas.

• Modeling optical properties: This area discusses how paints change when mixed
together, how oil and watercolour could mix and create visual effects. It can
refer to many more different effects in terms of how they appear on a canvas
and how they change after interfering with each other.
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• Simulating application of brushes: This explores the ways in which humans
work with natural media by applying brush strokes or pencil or pen to the
canvas. This is important because it gives an actual feeling that the image is
not computer rendered, rather drawn by human. The closer we can simulate
this effect, better the resulting effect on final images.

There has been much work in NPR. A few examples are as follows. Hertzmann
[21] generates images with a hand-painted effects using a series of spline brush strokes
onto a canvas. Analyzing source images, he also applied different sized and rotated
brush strokes which led to more pleasing results.

Colton et al. [11] presented the tool called the Painting Fool. The main idea is to
analyze a short video with a person on it, and recognize an emotion with the help of
machine learning. After the emotion recognized, it is mapped to an artistic style. This
style is applied to an image which results in interesting and unexpected NPR effects.

Hertzmann et al. [22] presented a technique called image analogies. The idea
is to use machine learning to render NPR effects. They use an input image and a
generated image with NPR effect on it as a training data. After the tool is trained,
it can reconstruct the transformation of generated image on a different target image.
They observed a good results with the approach.

Shirashi and Yamaguchi [50] presented an efficient method to automatically render
paint strokes on a canvas. The system analyzes an image for colour layouts and details,
and then applies brush strokes, rendering an image as if it was painted by a human.

2.2.2 NPR with CGP

One of the benefits of CGP usage in NPR is in providing valuable domain specific
knowledge to the program. This could be done in two ways: through the input
parameters with pre-calculated values (in case of image processing, it can be the red,
green and blue values of a pixel, or pixel coordinates, etc.); or through the function
set (for example, high-level image processing filters such as mean, standard deviation,
luminosity, etc.)

It should be pointed out that NPR implementations using CGP are not common.
There were two articles related to the topic of NPR with CGP [2, 19].

The work of Harding [19] uses OpenCV image processing functions in the CGP
language. His aim is to show the efficacy of CGP in multiple image processing domains.
One of them is the noise reduction problem. There were two noise reduction problems
on which program was tested: ’salt and pepper’ and Gaussian noise. Both of them
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have been solved by CGP with good results compared to previous research on this
problem. Gaussian noise is a harder problem to solve, and thus CGP showed a little
decrease in performance than with the ’salt and pepper’ noise problem.

For robotics vision, Harding [19] used CGP with MCC based fitness evaluation.
The problem overall is hard, especially when we consider robots in everyday life. There
are different light sources and types of lights. Moreover, objects are not predefined
and angles under which robots may examine the same object are infinite. It is a
different situation in industrial scene, where companies can keep the same lightning
conditions at all times and mark products with data which robots can easily identify.
Here, problem images from the robot’s cameras are passed to CGP for identification
of objects. CGP program is trained with multiple images of the same object from
different angles and with different lightning conditions. The results were successful
and showed that CGP is applicable to vision problems [19].

Representation of the individual is usually a key factor in evolutionary algorithms.
Ashmore and Miller [2] focus on this to achieve artistic evolutionary image generation.
The graph has two inputs which represent coordinates of the pixel on the image (x, y)
and three outputs (red, green, blue) - the colour of this pixel. Thus, CGP generating
the whole image pixel by pixel. In this case, more nodes in the chromosome result
in more complex images. But more diversity in results means more noise, so it is
important to balance the graph size.

Evolution operators such as crossover and mutation are both used in CGP, but
usually we use mutation in CGP than a crossover, because crossover is thought to be
more destructive operator for the graph structure. However, the work in [2] shows that
crossover is useful: sometimes evolved individuals would have a colour from one parent
and shape from another [2]. Another good approach is to use adaptive mutation. It
means that the mutation rate will be higher in the early generations and will decrease
in later generations.

We already pointed out that the biggest problem of evolutionary art is fitness
evaluation. It is time-consuming and hard to automate. But it also might be hard for
a human to choose the best individuals in early generations, if the run is randomly
seeded. This is due to the great randomness of the first generated results. To overcome
this, we may use some kind of predefined fitness functions which target one or another
characteristic of a target image [2], and which pre-select images show to the user.



CHAPTER 2. BACKGROUND 15

2.2.3 Automation of Image Evaluation

The following subsection reviews ideas used in [5, 46, 36] that are used in this thesis
for an automatic image evaluation. In particular, we review Ralph’s aesthetic model
(DFN), as well as colour and shape matching.

2.2.3.1 Aesthetic model

Fitness evaluation of aesthetics and artistic quality is not obvious to implement. It is
due to the fact that aesthetics is very subjective. There is some pioneering research
[46, 17] concerning this problem and they both offer potential solutions to it. Also,
the problem is discussed in detail in [36].

Research shows that human’s response is attracted to changes in colour in an image.
However, the change in colour cannot be drastic (noise), nor be static (uniformity).
Ralph [46] proposed a measurement called Deviation from Normality (DFN) for colour
change in an image. He found that many famous paintings conform to a normal
distribution of colour gradient changes, even though this was probably a subconscious
task of the artists.

DFN can be used as a fitness criteria in evolutionary art [46]. DFN measures
deviation of gradient response from a normal curve distribution [46]. Thus, we are
targeting DFN to be equal to zero, which means that it matches perfectly with normal
distribution. In addition to DFN, Ralph uses mean and standard deviation (SD)
measures as additional parameters for fitness scoring. It was shown that if DFN scores
are less than 3.0, then it is often the case that mean = 3.1, and SD = 0.75 for works
of art. To implement these scores, we minimize the DFN, and guide the mean and SD
towards supplied target values (e.g. 3.1 and 0.75 respectively).

Ralph’s DFN approach was used in numerous works such as evolutionary art
research in texture generation [9, 47], 3D model generation [8], NPR with GP [4]
and image filtering [36]. However, it should be noted that, as with any heuristic
search for aesthetically pleasing art, obtaining a perfectly scoring individual does not
guarantee an amazingly pleasing result. DFN is helpful in a way that it moderates
complexity of an image and keeps it balanced in terms of visual appeal. Finally,
one more advantage of using DFN is that images with lower DFN scores often have
more visible brushstrokes, and thus makes them more interesting results for NPR
applications[36].
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2.2.3.2 Colour matching

Another useful measurement is colour matching. The intent is for generated images
to use the colours close to a provided target image. This is not a perfect colour
matching score, as it does not constrain images to have colours in the same locations
as a target image. A generated image is processed to calculate a quantized colour
histogram (histI ). This is repeats for the target image, resulting in a quantized colour
histogram (histT ) for it [52]. The quadratic distance between the two histograms is
then calculated [5]:

colourDist =
∑
i,j

|histTi − histIi| ∗ sim(i, j) ∗ |histTj − histIj|

where sim(i, j) is the RGB colour distance between the quantized colours in bins i
and j. The formula calculates the quadratic distance between two histograms, where
each of those histograms is a summation of the colour distance between all colours on
an image. Lower scores mean closer images match [4]. This approach to colour fitness
evaluation has two advantages:

1. It can be used to keep generated images to be close to the original one in
colouring (if original image used as a target image for CHISTQ)

2. It can allow mixing colours from different images, resulting in unexpected results
(green sunset, purple buildings, etc.). See example on Fig. 2.4

2.2.3.3 Luminance

Luminance can preserve features of a target image, such as shape, size and positioning
of the objects. CHISTQ and DFN discussed above do not do this, and this is why
luminance is useful. To calculate LUM, the luminance (greyscale image) for the target
image and generated image are computed. Luminance of an image is calculated by
the following formula [57]:

luminosity = 0.299 ∗Red+ 0.5879 ∗Green+ 0.114 ∗Blue

We then compare the pixel differences between the source and target luminance values
pixel-by-pixel. The sum of all the differences becomes the LUM value. When LUM is
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(a) (b)

(c)

Figure 2.4: The original image of horse (a) and the target image for CHISTQ (b).
The result of the best individual (c) of a run.

zero it would mean that we have two identical greyscale images. Of course, we would
not want generated images to be the exact copy of the target image, because that
would eliminate any NPR effect. But when LUM is used along DFN and CHISTQ, it
preserves features of the target image. Otherwise, image details can be lost.

2.3 GPUs

Graphic Processing Units are increasingly popular tools in scientific fields, because of
their powerful computational performance. GPUs were created to efficiently calculate
colours (red, green, blue) for the pixels on the screen, notably in game applications.
Regular video has 60 frames per second, and screens nowadays have 4K (3820x2160
pixels) resolution, which ends up to almost 500 million computations per second,
normally calculated in parallel. That is not the maximum performance bar for modern
GPUs, because new cards have more and more cores, which leads to more parallelized
actions. NVIDIA GPUs [42] can be programmed on almost any computer with the
CUDA [39] programming language (which was also created by NVIDIA) to get the
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most efficiency from the hardware for scientific applications.
It is possible to mount multiple GPUs to one computer, although more than two

GPUs per PC are rare. There are multiple reasons for this, such as physical constraints,
problems with motherboard connections, and power consumption. However, it is
common to see more than two GPUs (usually Tesla - they are the most powerful in
the market in 2017) in many backend systems for artificial network applications [28].

We are using the CUDA language to program GPUs [42]. However, there are
also AMD’s ATI series GPU on the market, which are competitive with NVIDIA’s
GPUs. Despite this fact, almost all recent GP applications use NVIDIA’s graphic
cards and CUDA. There are multiple reasons for this. First, there is a practical library
and coding environment for NVIDIA’s GPUs, which is not present within AMD’s
eco-sphere. Second, modern versions of CUDA SDKs are more advanced in their
implementation and less restrictive; for example, they support recursion and function
pointers.

2.3.1 GPU basics

New GPUs are always increasing the amount of cores which fit into the single streaming
multiprocessor (SM) and how they operate with memory. We are using NVIDIA
GeForce GT 750M [40] with Kepler architecture [41] (features from GK104 and GK110)
which has 192 cores in each SM, compared to Fermi architecture [41] which had only
32 cores per SM. Each SM also has shared memory, cache memory, instructions cache,
load/store units and other components which may wary from model to model. See
Fig. 2.5 and Fig. 2.6 for the full list of components and architecture outline.

2.3.2 CUDA basics

CUDA language is an extension of C language. CUDA programs compile with
NVIDIA’s CUDA compiler which is called nvcc. It can also compile regular C/C++
code. nvcc works with many command line parameters used by the GNU gcc compiler.
We can set conditional switches, or pass custom parameters to the main function of
the program. CUDA works with both 32 bit and 64 bit computer systems. But it is
always necessary to check what kind of library is installed, to be sure that the current
PC supports the CUDA library, and to link the proper library when compiling an
executable program [28].

Fig. 2.7 shows the structure of grids, blocks, and threads when using CUDA. We
specify how many blocks we need for our program and how many kernel launches



CHAPTER 2. BACKGROUND 19

Figure 2.5: Kepler architecture of modern NVIDIA GPUs [43].

we will be doing, and then the GPU sets up the grids based on that. Every block
has unique ID (blockIdx.x), and every thread has unique ID (threadIdx.x) inside the
block. We use this data inside the kernel function to determine which data (dataIndex)
we should process in specific kernel call. We also use the total number of threads in a
block (blockDim.x) to skip thread IDs, if we are not in the first block. It is done with
the following formula: dataIndex = threadIdx.x+ blockIdx.x ∗ blockDim.x.

We will describe some rules of thumb to consider when one is designing a CUDA
application, as well as give an overall introduction into CUDA performance, imple-
mentation, profiling and limitations (see [28, 39] for more info). The best practices for
CUDA programming are as follows:

• The very first question to think about is, how much of the application is going
to be transferred to the GPU? In other words, according to Langdon [28], what
part of the application can be run in parallel? Usually, if it is less than 90%
of application, then it might not be worthwhile to use GPUs. Even if the part
which the user is trying to speed up, could be sped up infinitely, the overall
application speed up would not be tremendous in such cases [28].
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Figure 2.6: SMX of GPU with Kepler architecture [43].

• In GP, and all evolutionary computing, the most resource-intensive step of
applications is fitness evaluation. Fortunately, the fitness evaluation of each
individual in the population could be run in parallel independently, and that is
why this part of an application is perfect for GPU acceleration.

• It is always worth while to try to locate bottlenecks [28]. For example
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Figure 2.7: Structure of grids, blocks, and threads in GPU when using CUDA [45].

– Amount of data which is uploading to GPU.

– Amount of data which is transferring back from GPU to PC.

– Number of interactions between PC and GPU

Trying to code kernel as it would not use the local memory is a good approach.
We are thinking about first three items in this list in terms of flows between
global memory and kernel. With good coding it is relatively easy to get accurate
estimates, but with internal transfers it is more dependent on the details of the
system: effectiveness of caches, threads overlapping computation with fetching
and transferring data.

• Ratio of the volume of PCIe data size to the PCIe’s data buffer size will approxi-
mately determine number of times the operating system has to make a call to PC
code to transfer data. Usually there are a few data instantiations/deinstantiations
and transfers before and after each kernel launch. Typically, the system over-
heads of rescheduling processes and CUDA kernel launches are taking under
a millisecond, nevertheless, if an application is designed to perform thousands
of PCIe input/output operations or kernel launches per second, it is a better
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practice to initiate overhead at the beginning [28].

• If the only bottleneck in the system is low computational speed of GPU, then it
makes sense to keep writing a program on GPU and simply upgrade to the better
GPU when possible. Maybe multiple GPUs are required to achieve appropriate
speed up of the heavy computational program [28].

• If the bottleneck is in bandwidth, then it is worth to check which bus is limiting
the bandwidth. Maybe less data should be passed through the bottleneck, or we
could try to make it wider.

There is a very helpful profiler tool provided by NVIDIA. It can be downloaded
from NVIDIA’s CUDA web page. The CUDA profiler tool consists from two parts.
One part of it monitors the GPU performance right on the GPU. It records the launch
of certain operations and logs time of data-transfers between host and GPU, as well as
times of the launch and the end of kernel operations. The profiler can provide us with
the total number of memory read and write operations. The second part of a profiler
runs on a host computer. It monitors the quality of logging of the first part (which
runs on GPU), holds the results which GPU profiler part transfers to PC, and presents
this information to us. The profiler is a good tool to get a deeper understanding of
what is going on with the program, how the GPU is performing and to see where the
bottlenecks are.

2.3.3 GP using GPUs

Evolutionary programming overall and genetic programming in particular, is known to
be very adoptable to parallelization. This is because the evaluation of every individual
is an independent process and can be run simultaneously for multiple individuals. We
can parallelize genetic program even with a CPU-threaded parallelism, but there are
some drawbacks to it, such as monitoring all the threads and syncing them. Moreover,
the number of threads which can be used is much smaller compared to GPUs. To
get the most power and speed up from GPUs, we should run thousands of parallel
threads. That is due to the wait-times to transfer data to and from GPU. It should
be noted that moving data within the GPU can be even more expensive task than
computing the data after it arrived from host.

Usually GP uses GPUs to run an evolved individual to evaluate it and assign a
fitness score. The selection and all genetic operations such as crossover and mutation,
selection of the fittest individual and generating the individuals are made on a host
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computer. Even though this is not a requirement, since all these operations can be
ported to be run on GPUs, it has been shown that it will not provide a big speed
up. That is due to the fact that the most computationally heavy part of evolutionary
algorithm is the fitness evaluation [27].

We should always be aware of thread divergence. It may happen when a program
has if statements or switch cases. In this case the threads may take different branches
of the program and they will be locked up until the statement from other thread
will be calculated. Whenever the values of all branches are calculated and they are
returned to the thread which waits for these values, it will be resumed and other
thread will run different calculations, and thus parallelism will continue.

2.3.4 CGP using GPUs

Although, there have been multiple implementations of CGP with GPUs, it is still
relatively a new approach to speed up calculations. Mostly it has been used in
bioinformatics applications, and because of this, its development has been limited.

Harding and Banzhaf [18] were the first to run CGP programs on GPUs. They
used Microsoft’s tools based on C# language to compile CGP genotypes into snippets
and run them on a GPU.

Chitty [10] used NVIDIA’s tools instead of Microsoft’s ones [27]. Since 2007, there
were CGP implementations written using different programming languages and on
different OSs. Regression and Boolean problems were the first ones to be implemented
on GPUs and they have shown the acceleration of the calculations, comparing it to the
CPU based implementations. The paper used the Microsoft Accelerator framework,
which is a .Net library for the GPU [20]. In 2011, Harding and Banzhaf used CUDA.net
library to program CGP to use the NVIDIA GPUs [35]. They faced challenges for
example, the CUDA compiler did not process long expressions, and functions with
too many input variables causes the compiler to fail. Workarounds for these issues
were eventually found [35].
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CGP implementation of NPR

Our CGP implementation of NPR is based on Baniasadi’s work [5]. She implemented
NPR with tree-based GP. We are using CGP. On the one hand, because we changed the
structure of individuals (from tree-based to graph-based), we had to adjust multiple
functions, terminals, and the way we retrieve results after genotype is evaluated. On
the other hand, graph-based GP brought a viable speed-up to the overall performance
of the GP runs and kept individuals concise. In this chapter we discuss how our CGP
system is constructed, the parameters, NPR language and brushstroke application.

3.1 Architecture

The following are the steps our system executes:

1. Set the values for GP parameters such as mutation rate, number of generations
and individuals inside of each generation.

2. Upload source image and colour target image. There 2 sizes of source and target
images. One is small for faster processing by GP during training. Another larger
image is used for generating a high-resolution image of evolved solutions at the
end of the run.

3. We convert each pixel on an image into a data object, which we store in the
system. This is used by CGP.

4. We process the target image to calculate static values of image characteristics,
such as luminance, and other image filters.

5. We launch GP processing.

24
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6. When results are ready, the system runs the best individual on the large target
image.

Now, we will discuss each of the steps in more detail and depth.

3.2 Paint stroke application

The GP process is run in a loop, iterating through the population of individuals over
many generations. The initial step in this loop process is initialization of the canvas.
This could be done in 2 different ways, depending on the user:

• We copy original image to the canvas.

• We initialize canvas of the same dimensions as the image, and apply one solid
RGB colour to it.

In this research, we used the second option, and chose a white colour as a background
for it. This eliminates effects like “image” filters, and produces stronger NPR results.

The next step involves choosing which pixels on the canvas we are going to work
with. To aid in the proper brushstroke application, we maintain a Boolean value for
each pixel of the canvas, which represents whether this pixel has been coloured before
or not. Initially, all values are false. Moreover, there are multiple ways our system
could go through the canvas and apply brushstrokes to it.

1. Go through the whole canvas processing pixel-by-pixel This approach means
that a lot of brushstrokes would cover each other, and this effect may be wanted
or may be not, thus should be used with caution. It is also very time consuming.

2. Picking random pixels and checking if it was painted before [37]. If pixel has
not been painted before then we process it in an ordinary fashion; otherwise we
skip to the next loop iteration.

3. Picking random pixels and checking if it was painted before [37]. If pixel has not
been painted before then we process it in an ordinary fashion; otherwise we go
through the canvas and look for the next unpainted pixel, and assign it as the
one we work with. It should be pointed out that steps 2 and 3 can be limited to
finite number of tries or continue until all pixels have been selected. This gives
2 options for steps 2 and 3.
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Through trial-and-error, we decided that we should use random selection with
finite number of pixels to be coloured, and if we land on pixel which has been selected
before, we should look for the next “available” pixel. The number of pixels to be
selected is a user option. It is based on the dimensions of brushstrokes in ratio to
the dimensions of the canvas, and personal preference to how many brushstrokes are
wanted. We also use two different values, for small and large size canvases.

Every pixel which is selected is the centre of the brushstroke, which is going to
be applied to the canvas. After it is picked, we calculate values for mean, standard
deviation, minimum and maximum of nxn squares around pixel at the same (x, y)
coordinates on original image. We calculate these values for 5 different squares: 5x5,
7x7, 9x9, 11x11, 13x13. We store them in variables which are to be used in the CGP
graph as terminals (inputs). Along with these values, we also pass luminance values
for the whole input image, ephemeral, and RGB values for the current pixel on original
image as well as on canvas. Three more values which we pass to CGP as inputs are x
and y coordinates of pixel, and the opacity on a corresponding brushstroke bitmap.
Examples of brushstrokes bitmaps are in Fig. 3.1

Figure 3.1: Examples of brushstroke bitmaps.

When the CGP individual is first executed, we receive outputs with values. We
extract three values: scale, rotation and brushstroke bitmap image number. Even
though there are more outputs, we ignore them initially, because they are used in
pixel colouring (which we discuss below). We pass these parameters, along with the
pixel data (both coordinates and RGB colour of the pixel) and CGP expressions, to
a function which applies the brushstroke to the canvas. The paint function has the
following declaration:
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applyBrushStrokeFunction(bitmapNumber, scale, rotation, pixelData, CGPExpressions)

where bitmapNumber, scale, and rotation are the first, second and third arguments of
CGP output, respectively. pixel variable is the pixel we are currently working with.
This pixel is the center of the brushstroke which is going to be applied to the canvas.

The steps undertaken to apply a brush stroke are as follows. First, we determine
and select the proper bitmap image of a brushstroke based on the first argument
(bitmapNumber). Then we determine the proper positioning of the brushstroke on the
canvas, taking into account scale (second argument) and rotation (third argument)
values generated by CGP. Once the brushstroke is placed over the canvas, we re-
evaluate the CGP graph for every pixel on the brushstroke bitmap. This involves
taking the opacity value of the brushstroke pixel and assigning it to CGP input’s
array. We re-calculate spatial filter values and evaluate the graph again. This time,
we read forth, fifth, and sixth output from evaluated outputs. They represent red,
green, and blue values for pixel’s colour respectively. In such way we receive RGB
values for the pixel, and we colour it to those new values. This process repeats every
pixel on brushstroke, and for all brushstrokes on a canvas.

Algorithm 1 Brush stroke application function
1: procedure applyBrushStroke(int bitmapNumber, float scale, float

rotation, PixelRecord pixel)
2: bitmap← retrieve bitmap based on bitmapNumber
3: scale the bitmap appropriately
4: rotate the bitmap appropriately
5: find (x, y) coordinates for all 4 corners of the rectangle of the bitmap
6: for x = minimumX; x < maximumX; x++ do
7: for y = minimumY; y < maximumY; y ++ do
8: if bitmap.opacity ! = 255 then
9: data← collect data about pixel on (x, y) coordinate

10: execute CGP graph on the data
11: RGB← outputs from CGP
12: apply RGB to the pixel

After the canvas is painted according to the individuals’ genotype, we evaluate it
with multi-objective processing, and assign fitness scores to the individual.

At the end of the GP run, the fittest individual is selected from all generations,
and is used to render a larger sized version of the target image. The result with the



CHAPTER 3. CGP IMPLEMENTATION OF NPR 28

larger image is always a little different from what is seen in the smaller version for the
same individual. However, the similarities in style can be seen as well (e.g. Fig 3.2).

(a) (b)

Figure 3.2: Two images generated by CGP program. (a) is a small canvas to which
we applied fitness, and (b) is a bigger canvas done at the end of the run. See original
image in Fig. 2.4(a)

3.3 Parameters

The ECJ [29] system is used in this research to implement GP. It is extended by the
CGP framework [44] to support CGP processing.

Parameter Value

Generations 5000

Population size 5

Max. number of nodes 100

Mutation probability .04

µ+ λ 1+4

Table 3.1: Typical values which were used in setup for CGP run.

Table 3.1 shows typical parameters which were used for runs. The population size
is kept small as discussed in Chapter 2, as well as mutation probability, and µ+ λ.
The number of generations is a parameter which we changed a lot in different runs,
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and it ranged from 500 up to 7000. The number of nodes is the maximum number of
nodes which can reside in the CGP genotype.

3.4 Language

We use float for the data type. Values of the data can have any single-precision
float value. Table 3.2 and 3.3 show of all terminals and functions used. Overall we
use 31 terminals and 22 functions. Terminals are CGP inputs, and functions are
functional nodes. We also have 6 outputs. First three outputs are used for rotation,
scale and bitmap number, other three outputs are used for RGB value of the pixel on
a brushstroke bitmap (see section earlier).

Inputs (terminals) Description

x, y Coordinates of the pixel

opacity Greyscale of the brushstroke’s pixel

original RGB,
canvas RGB

RGB of the pixel on input image
and canvas image respectively

meanKxK Mean of KxK square centered at the pixel with (x, y).
K is one of 5, 7, 9, 11, 13

stdKxK Standard deviation of KxK square centered at the pixel
with (x, y). K is one of 5, 7, 9, 11, 13

minKxK Minimum of KxK square centered at the pixel with (x, y).
K is one of 5, 7, 9, 11, 13

maxKxK Maximum of KxK square centered at the pixel with (x, y).
K is one of 5, 7, 9, 11, 13

luminance Sum of greyscale values from all pixels of input image

ERC Ephemeral random float generated once per run.
Range is (0, 1)

Table 3.2: Inputs (terminals).

The coordinates of the pixel to paint are (x, y) inputs. Opacity is how dark or
bright a pixel is on a brushstroke bitmap. We also pass RGB values of this pixel from
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both original image and the canvas. We pass a canvas value, because if current pixel
has been coloured before, it can have a different value from white. The ephemeral
value is randomized between 0.0 and 1.0 at the start of the run, and stays the same
till the end.

Finally, mean, standard deviation, minimum and maximum terminals are spatial
filters on canvas image. They are calculated before an individual is evaluated. All
the values are stored, separately for each dimension and provided as inputs when
necessary. When we calculate mean, we convert image to black and white. We do it
with the luminance formula provided above.

The function set is divided into two parts. There are simple mathematical and
logical functions, such as +, -, sin, cos, min, abs, iflez, etc.. The iflez function means
‘if a is less than b then do c else do d ’.

There are also functions which work with the pixel’s colour information. The
last 7 functions in the Table 3.3 work with a pixel’s intensity, opacity, brightness
and darkness. The brightening, darkening and overlay blending functions demand 2
arguments, meanwhile the burning, dodging, normal blending and difference blending
require 3 arguments. All of these functions manipulate their arguments through the
number of mathematical formulas and return value in range of 0 and 255.

3.5 Fitness Evaluation

We use the following 5 objectives: deviation from normality (DFN), mean, standard
deviation (SD), colour matching (CHISTQ), luminance (LUM). We also utilize nor-
malized sum-of-ranks [7, 12] approach to score individuals. We use multi-objective
fitness over the weighted sum technique, because in the case of the latter, weights
would introduce bias to one or another objective and that would degrade quality of
results and limit the exploratory power of evolution.
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Functions Description

+, -, *, / Mathematical functions

neg Negative function. Multiplying value by -1

abs Absolute function

round Rounding value

avg, min, max Calculating average, minimum or maximum value
between two values, respectively

sin, cos Trigonometric functions

exp Exponential function

log Logarithmic function with base 10

iflez Logical function.
if a is less than b then do c else do d

Brightening Brightening the pixel using intensity

Darkening Darkening the pixel using intensity

Burning Burning darkens a pixel by blending two layers of pixels

Dodging Dodging lightens a pixel by blending two layers of pixels

Normal blend Blending two layers of pixels with normal blend mode

Difference blend Blending two layers of pixels with difference blend mode

Overlay blend Blending two layers of pixels with overlay blend mode

Table 3.3: Functions.



Chapter 4

Experiments

This chapter gives examples of the CGP NPR system in use. Results are presented
along the discussion of what lead CGP to produce these images. The chapter examines
some of the differences between CGP and tree-based evolution. We also briefly
experimented with two different evolution strategies (µ + λ and population-based
search), and compared their results. For detailed examination of fitness and NPR, see
[5]. Note that we are not focused on rigorous statistical analyses in these experiments.

4.1 CGP Results

(a)

(b)

(c)

Figure 4.1: These are the original input images that have been used in experiments.

Implementation of NPR with CGP showed us that the execution of NPR effects
with graphs instead of trees leads to different results. For detailed results and study
of NPR with tree-based GP refer to [5]; it compares runs with different parameters,

32
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(a) (b) (c)

Figure 4.2: These are some of the interesting results we received from our experiments
with CGP.

language subsets, and fitness formulas. Our experiments are focused on identifying
how CGP results are different from tree-based GP results. Fig. 4.1 shows original
input images that have been used for experiments throughout thesis. See a selection
of interesting examples of the CGP results in Fig. 4.2

The biggest difference between the CGP and tree-based [5] implementations is
that CGP has smaller and more concise expressions. In the tree-based system the
paint function could be executed multiple times per paint stroke evaluation of the
tree. With CGP, only one paint stroke is applied. CGP keeps expressions small, by
encoding all required parameters for a single brushstroke application. For example,
here are rendering expressions which we would typically see in CGP:

• R = nBld (round redInput) (neg greenCanvas) min9x9

• G = min std7x7 (round blueInput)

• B = + max5x5 (* redCanvas mean11x11)

All of these are small, and use very little inputs and functions. But the expressions
do change between generations. They do not change a lot in structure (unlike trees),
but they change often. Usually, either one function or input gets switched to some
other and that influences the outcome of each generation. It is possible to see bigger
expressions at early generations, but they usually reduce in size.

It is also interesting how CGP tries to satisfy multiple fitness objectives at the same
time. It is important to note, that we are using 5 objectives with the sum-of-ranks
fitness evaluation. The 5 objectives can be in conflict with each other. This means that
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when an individual has a good score for one objective, some other score becomes worse.
For example, LUM and DFN are always in conflict; LUM tries to match the images
perfectly, but DFN tries to apply brushstrokes, which blurs the shape. The CGP
search will fluctuate in terms of which objective(s) are optimized at different times in
the run (see Fig. 4.3). This effect is not as noticeable in tree-based many-objective
NPR [5], where there is a more steady convergence of objectives during a run.

(a) (b) (c)

Figure 4.3: Examples from a single run. (a) Individual from generation 3386 has
very high LUM objective match. (b) Individual from generation 3387 starts to satisfy
a different objective. (c) Individual from generation 3786 has better colour match
(CHISTQ), more visible brushstrokes (DFN), and a legible shape of cherries (LUM),
thus satisfying more than one objective compared to (a) and (b).

CGP uses µ+ λ evolution, which means it does not use tournament selection and
crossover (see Table 3.1 for parameters used in runs). Thus, it favors exploration,
and not strong convergence as in tree-based GP. The CGP system is therefore more
exploratory, which is appropriate for an evolutionary art application. The performance
graphs in Fig. 4.4 to Fig. 4.6, represent averages of each objective’s scores. Fig. 4.4
shows average values per generation in one run. Fig. 4.5 shows average scores among
7 runs with 800 generations averaged by 10 generations. The graph in Fig. 4.6 shows
all 5 objectives in one graph, for easier comparison, but all scores are normalized from
previous 5 graphs, so they fit the scale of 1. 800 generations is not enough to obtain
optimized results, but it is viable to illustrate how CGP acts in terms of convergence
and many-objective fitness. We can observe that some objectives are getting higher
scores (higher scores mean worse performance), but others are improving at the same
time. It clearly shows the tradeoff of how CGP tries to satisfy one objective, but at
the same time, fitness for the other objective becomes worse. The system will try to
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optimize fitness scores for all objectives in the long term, and that is why we require
at least 5000 generations.

Another important point we can see from the graphs is how scores are chaotic
in CGP with many-objective fitness. This is due to how mutation produce constant
change between individuals.

(a) (b)

(c)

(d) (e)

Figure 4.4: Mean, SD, DFN, CHISTQ and LUM scores in 1 run with 800 generations
and averaged per generation.

This seems to be a characteristic of µ+λ evolution on many-objective optimization
problems using the sum-of-ranks scoring. Because the CGP search is frequently
changing the objective which is being optimized, the results of the CGP change
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(a) (b)

(c)

(d) (e)

Figure 4.5: Mean, SD, DFN, CHISTQ and LUM scores in 7 runs with 800 generations
each and averaged per every 10 generations.

dramatically through the run. The sum-of-ranks is unstable with a population of 5
individuals, and it is difficult to satisfy all scores simultaneously. There is more study
required to examine whether the population is too small which leads to more chaos
throughout the run. Moreover, there is more study required to identify if sum-of-ranks
is a good optimization tool with µ+ λ evolution strategy, even though it is good for
art exploration. It also means that the best individual of the run is not necessarily
the best NPR image from an aesthetic or subjective standpoint. This means that
the best ranked individual from all generations is not necessarily the most desirable
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Figure 4.6: The graph with scores for all 5 objectives, averaged on 7 runs with 800
generations, then averaged over a moving window of 10 generations, and normalized
so they all appear in one scale from 0 to 1.

image (see Fig. 4.7 and Fig. 4.8). Our preferred strategy was to examine solutions
throughout the run. The system could greatly benefit from an interactive GUI in this
case, described in Chapter 6).

(a) (b)

Figure 4.7: (a) The best individual out of all generations, but not the most aesthetically
pleasing. (b) Not the fittest individual, but arguably a preferable result in which the
shape of a cherry is clearly visible.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 4.8: (a)-(f) are 6 images which show the best individuals selected by the system
out of 5000 generations from 6 different runs. (g)-(l) are 6 hand picked images by the
user from the same 6 runs. (g) is from generation 1753, (h) - 1369, (i) - 3322, (j) -
1200, (k) - 3884, (l) - 40.
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(a) (b) (c)

Figure 4.9: Results from the run with images with a non-white background.

(a) (b) (c) (d)

(e)

Figure 4.10: (a) is the first individual (285) in the run which has a shape of the
cherries visible. The graph (e) shows how fitness improved once the shape became
visible. (b) is the later individual (293) in which the shape of the object is not visible
and the graph (e) shows a spike in the fitness. Same goes with (c) (362) and (d) (433),
where the former one has the visible shape again, and the later one does not have
cherries on it. The correspondent drops and spikes are shown in the graph (e).
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In Fig. 4.2(a, b), and Fig. 4.3(a), notice how precisely CGP preserves the content
of the target image. It still applies brushstrokes to it, but it does not always draw
them outside of the shape. The luminance objective is responsible for this result,
because evolved expressions can easily exploit the white background of target images,
in order to optimize LUM scores (see Fig. 4.9 for examples of images without white
backgrounds). In these cases, the system still tries to preserve details from the target
image, but brushstrokes are applied everywhere else as well. It becomes harder for the
system to identify what is background and what is the main object, and thus CGP
is having difficulty preserving the target image. To show how LUM is important to
preserve details from the target image, consider four individuals from the different
stages of the run (see Fig. 4.10). Examining the plot for the LUM objective, we can
observe that when the shape is matched closely to the original, the LUM objective
is satisfied better. After the program switches to satisfy a different objective, LUM
scores are becoming worse, and the rendered image does not match the target image.
Note that if LUM is removed, then target image details are unlikely to be preserved.
We also tried two different experiments. One run used the LUM objective and another
run did not use it. In the later experiment, the cherry shape is never preserved.

4.2 µ + λ compared to population-based search

We also briefly compared different evolutionary strategies used in CGP. We compared
µ + λ and the conventional population-based evolutionary algorithm. In case of
µ + λ, we used 1 + 4 evolutionary strategy, and only mutation with probability of
4%. Generations were kept to 5 individuals, and the total run used 5000 generations.
With population-based search we used both crossover and mutation, and we set
number of generations and individuals closer to what is used in tree-based GP: 500
individuals in the population and 60 generations. The results in these runs were
different. Population-based evolution is more stable (see graphs in Fig. 4.14), and
leads to uniformity among results, especially towards the end of the run. It does not
switch between different objectives which it tries to satisfy, because fitness pressure
is stronger, and thus the exploratory advantage of the CGP is gone. See example of
results in Fig. 4.13. It is likely the case that the normalized sum of ranks we use for
many-objective fitness is more stable with a large populations. On the other hand, it
is more chaotic with a population of 5, as used in µ+ λ search. But this chaos means
it is also more exploratory, which is not a bad thing for an art application. Fig. 4.11
shows that individuals by the end of the run with population-based search look the
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same and has similar features, such as style and colour palette. Fig. 4.12, on the other
hand, shows how µ+ λ search keeps individuals diverse even in the latest generations.
It also keeps trying different types of brushstrokes and styles.

(a) (b) (c) (d) (e) (f) (g) (h)

(i) (j) (k) (l) (m) (n) (o) (p)

Figure 4.11: These images are the last 16 individuals from population based run.

(a) (b) (c) (d) (e) (f) (g) (h)

(i) (j) (k) (l) (m) (n) (o) (p)

Figure 4.12: These images are the last 16 individuals from µ+ λ run.

Dynamics of convergence which were observed during the experiments are possible
due to factors such as:

• Small number of individuals in the population with µ+ λ strategy, versus big
populations in population-based strategy (more common in general GP)
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• The sum-of-ranks effect is stronger on smaller generations then the big ones.

• Mutation and crossover operators versus only mutation reproduction operator
with µ+ λ strategy.

More studies are required to identify and understand the effect of all factors that have
an impact on dynamics of convergence.

(a) (b)

(c) (d)

Figure 4.13: (a) & (b) are end of a run solutions from the population-based search
strategy. (c) & (d) are from µ+ λ (1 + 4) strategy.

4.3 Conclusions

CGP system with many-objective fitness evaluation is a good fit for exploratory search
of NPR effects. Due to mutation, and how CGP tries to satisfy multiple objectives at
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(a) (b)

(c)

(d) (e)

Figure 4.14: Mean, SD, DFN, CHISTQ and LUM scores in 1 run with 60 generations,
averaged per generation with population based strategy.

the same time, the system generates a large variety of NPR results. However, more
study is required to identify pros and cons of sum-of-ranks with µ + λ, in problem
outside of NPR applications. It should be noted that we were running each experiment
for 10 runs due to time constraints, but this number of runs is inadequate for definitive
conclusions such as statistical significance of the results. Running the system 30 times
would be preferred for statistical analyses.

To conclude the chapter, Fig. 4.15 and Fig. 4.16 show two favorite results we
obtained with the CGP NPR system.
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Figure 4.15: Cherries.
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Figure 4.16: Blue Jay (CHISTQ target of a rainbow image is used; see Fig. 2.4(b)).



Chapter 5

GPU acceleration of CGP NPR

The main goal of implementing CGP with GPUs is to speed-up program execution,
and in particular, canvas rendering. In Chapter 2, we discussed why GPUs are a good
tool to accelerate genetic programs. In this chapter we will go into further details on
how exactly we take advantage of GPUs and CUDA in our system, and what parts of
the CGP program were enhanced with CUDA.

5.1 Use of GPU

We are not implementing the whole system on the GPU. Instead, we do the following
steps for evaluating a CGP graph:

1. Run CGP on the CPU to obtain the bitmap number, scale, and rotation angle
for the brushstroke we are going to apply.

2. We calculate the brushstroke position on the canvas.

3. We collect all the pixel data which will be covered by the brushstroke on the
canvas.

4. We send all the pixel data and 3 colour rendering expressions to the GPU. These
expressions will calculate the red, green, and blue components of all pixels’
colours.

5. GPU calculates all RGB colours in parallel.

6. GPU returns array of calculated RGB colours to CPU.

7. CPU applies those colours to the canvas.

46
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8. Process is repeated until termination criteria set by user is met (for example,
all pixels coloured, some specific number of pixels is coloured, or some specific
number of brushstrokes is applied).

The first and second steps in this process are described in Chapter 3. Thus, in this
chapter, we will focus on the other steps and explain how we implemented them.

Algorithm 2 is pseudocode, which is similar to Algorithm 1 in Chapter 3.2, but
includes changes to use the GPU. The changes can be seen on lines 8-10, and also the
introduction of new function at line 11. The applyRGB function is the one which is
going to be called after the GPU execution is done for all threads. Details are below.

Algorithm 2 Brush stroke application function
1: procedure applyBrushStroke(bitmapNumber, scale, rotation, pixel)
2: bitmap← retrieve bitmap based on bitmapNumber
3: scale the bitmap appropriately
4: rotate the bitmap appropriately
5: find (x, y) coordinates for all 4 corners of the rectangle of the bitmap
6: for x = minimumX; x < maximumX; x++ do
7: for y = minimumY; y < maximumY; y ++ do
8: aggregatedData← collect data about pixel on (x, y) coordinate
9: add 3 CGP expressions to aggregatedData

10: send aggregatedData to GPU to execute expressions in parallel
11: procedure applyRGB(resultFromGPU)
12: for x = minimumX; x < maximumX; x++ do
13: for y = minimumY; y < maximumY; y ++ do
14: if bitmap.opacity ! = 255 then
15: RGB← unwrap resultFromGPU into RGB colour
16: apply RGB to the pixel

5.1.1 Collecting data and sending it to GPU

As seen in Algorithm 2, we do not evaluate CGP individuals within for loops; rather,
we collect the data about them into arrays. See Table 3.2 for the full list of terminals
which are gathered and sent to a GPU. We instantiate arrays with the number of pixels
which are going to be evaluated on GPU. That amount could be different for different
brushstrokes. This is due to the fact that brushstrokes, after scale and rotation, will
be of different sizes. Sometimes they may go out of the canvas’s bounds, and we will
not process the part of a brushstroke which is out of the bounds of the canvas. The
number of pixels which we are going to process also corresponds to the number of
threads we are going to request from the GPU to execute our task.
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After all the pixel data is gathered into arrays, we need to get expressions from the
CGP genotype and send them to the GPU. We take the CGP genotype, before is it
converted into phenotype of any kind, and convert every sub-expression within it, to
reverse Polish notation. The genotype represents terminals, functions, and connections
between them as integer numbers. We go through the graph connections, from node
to node, and retrieve the number which represents either a terminal or a function. We
save that number into our translated expression which is going to be sent to the GPU.
Terminals are saved with the same index, but incremented by 1. Functions, however,
are saved as a total number of terminals and the index of the function, incremented
by 1. One important thing to note here is that we add 0 to the end of the expression
(we will discuss importance of it in the next section). This way we end up with three
(R, G, B) expressions in reverse Polish notation. These expressions are ready to be
sent to the GPU (see Fig. 5.1).

Figure 5.1: Conversions of genotype into phenotype and genotype into reverse Polish
notation. Note how terminal and function indices are increased by 1 in (3). Also,
note an extra 0 (exit symbol) at the end. (4) is reverse Polish notation with numbers
replaced by terminals and functions, and without exit symbol.
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5.1.2 GPU execution

We use jCuda framework [24] to use CUDA with Java. It is used only to port all code
for setup and preparation of the GPU, and not the actual execution of a GPU code.
The GPU code is written in CUDA on C++. Files with C++ code are saved with the
.cu extension. Since we need to run them in Java, we convert them into .ptx files with
nvcc compiler. jCuda is capable of running .ptx files from the Java environment.

The GPU code implements all functions and terminals from the CGP language.
First, we calculate a unique id, which represents the thread and block we are in. This
id is going to be an index of the data in the arrays we passed to the GPU earlier.
Then we check if the opacity of the bitmap’s pixel is not white. If it is white, we don’t
need to process this pixel, because it lies out of the brushstroke’s bounds, or is a space
within the brush shape itself.

We initialize the stack which will hold the terminals and results from function
computations, which we will interpret in reverse Polish notation. We iterate through
each expression in a while loop. The while loop has a switch condition which decides
what action should be taken based on the integer number. If it is a terminal, it is
going to be pushed into the stack. If it is a function, it is going to pop values from the
stack for its arguments. It is important that implementation of the language on the
device (GPU) is in-sync with CGP implementation on host (CPU), otherwise there are
going to be two different results when program is run on CPU or on GPU. Because we
added 0 to the end of the expression, we will go through the expression in while loop
until we hit that 0, which represents the end of the expression. After this happens,
the stack should hold only one final value. This value is the result of evaluation of the
expression and represents one of reg, green or blue values of the pixel’s colour.

RGB values are collected into the array, which is shared between all threads. We
have our unique id of the thread, and we store values into array according to it. There
is never going to be a situation when two threads write into the same array’s indices.
The array is returned to CPU once all threads are finished. The Algorithm 3 is
pseudocode for the GPU interpreter which was based on Maghoumi’s interpreter for
texture generation [33].

5.1.3 Rendering the RGB data

Once the data is evaluated and the array with RGB values is returned to the CPU,
we copy the calculated colours to the canvas. While we render the colours, we also
record that the pixel has been coloured and should not be selected in the future.
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Algorithm 3 GPU interpreter
1: procedure calculateRGBOnGPU(expressions, data)
2: pixelId← unique id based on threads and blocks
3: if data[pixelId].opacity == 255 then
4: skip this pixel
5: stack← init empty stack
6: for expression in expressions do
7: l = 0
8: while expression[l] != 0 do
9: switch expression[l] do

10: case 1:
11: stack.push(data[pixelId])
12: case 2:
13: a← stack.pop()
14: b← stack.pop()
15: stack.push(b+a)
16: l += 1
17: RGB[pixelId] = stack.pop()

We continue the rendering process until the termination criteria set by user is met.
We use the number of brushstrokes, which should be applied to the canvas, and the
number of pixels, which should be coloured, as the final criteria to stop the rendering
process for the current individual.

5.2 Discussion

Images generated with the GPU have identical characteristics to those from the CPU;
the only visual difference is where the brushstrokes are placed on the canvas, due to
the randomization of brush locations. The main aim of the GPU use is in speeding
up the system, and not generating better quality images.

As seen in the graph on Fig. 5.2, the GPU implementation speeded up our system
6 to 10 times compared to the CPU implementation. With faster GPUs we can expect
even further speed up. There are a couple of parameters which should be taken into
account. First, more cores means more data can be computed in parallel. Second,
wider bridges and better on-device memory management means faster data transfer,
and more data can be transferred without loss in speed.

However, there is an opposite effect when using GPUs with small-sized images.
It takes around an extra 30 minutes to 1 hour to run the system with the same
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Figure 5.2: Estimated speed comparison: GPU versus CPU.

parameters and number of generations on the GPU than on the CPU (ie. 10% longer).
This is due to a data transfer bottleneck (see Chapter 2). This issue can slow down
execution if the GPU is not used properly. Small images have small brushstrokes
applied to them, and that means that there is less data passed to the GPU during
the rendering. When this happens, the CPU is more efficient in calculating this small
amount of data. We do not get a big enough pay off from calculating the data in
parallel, because of the overhead in transferring data to the GPU, and then back to
the CPU, as well as collection of that data. This encourages us to use the GPU with
big images if we want to see a speed up of the system.

Since usage of the GPU shows a sufficient improvement in speed, it has opened
up multiple future advantages we could exploit. First, it is possible for us to run the
system with big canvases for all individuals, and not only for the best ones. This
is very important due to how CGP results are different from tree-based GP - the
best final individual is not always the most aesthetically pleasing one (see Chapter 4).
Second, we can use more varieties of brushstrokes. Because we have bigger images, we
don’t lose details of the brushstrokes. Finally, our DFN fitness became more accurate,
due to the quality and colours which were rendered on the large canvases. These latter
advantages follow from the usage of bigger canvases, and this is only practical due to



CHAPTER 5. GPU ACCELERATION OF CGP NPR 52

use of the GPU. Otherwise, the runs would take too long to execute.



Chapter 6

Conclusion

We have successfully implemented NPR with CGP by porting it from tree-based GP
implementation [5]. We simplified the NPR language without any loss of quality.
Brushstroke application has been successfully implemented. All these elements can be
run on CPU, as well as GPUs to accelerate the whole system. With GPUs we saw a 6
times speed-up, which allowed us to run the system on big images through the whole
run. Overall, the system has been simplified and built as a core, so that it is easy to
extend in the future.

Dozens of experiments were done, and as a result, we have seen a great potential
in CGP’s exploratory way to generate evolutionary art results. In comparison to tree-
based GP [5], it uses simplified expressions and keeps individuals concise. CGP iterates
through generations by mutating individuals, which provides agility in exploring multi-
objective search spaces, and keeping populations diverse. The mutation-based evolution
fits in well as a means of exploratory art generation.

6.1 Future work

There are many ways to improve the system we have created, which are discussed in
detail below.

6.1.1 Further GPU acceleration

As discussed in Chapter 5, we accelerated the application of a brushstroke with GPUs.
However, there are more components of the program which can be parallelized, leading
to even greater improvements in speed.

We could apply all brushstrokes to the image at once. This approach is a very
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good fit for GPU acceleration. Currently, we calculate RGB colour of all pixels inside
of one brushstroke, apply them at once, and move to the next brushstroke. But we
could also calculate all brushstrokes at the same time. This could speed up the whole
process significantly. However, there are a couple of pitfalls in this implementation
which should be thoroughly thought through.

The first point is that it could be too much data to transfer between the CPU
and GPU. This bottleneck could be solved by sending all the data for the source,
target, and canvas images at the beginning of the run, and then calculate proper scale,
rotation and positioning of a brushstroke on the GPU. In this way, we will not need
to collect all the data about pixels on the CPU and send it to the GPU, because it is
collected on the GPU right away. Moreover, after all the data is calculated, we could
apply it to the canvas image on GPU, and afterwards send the final result to CPU for
fitness evaluation.

A second issue is to properly handle the situation when two brushstrokes overlap
on the same pixels. Because pixel colour can be changed after the first brushstroke is
applied, it could render differently with the second brushstroke applied on top of it.
When we do it brushstroke-by-brushstroke, it is no problem, but when all brushstrokes
are applied at the same time, this problem will arise. As a possible solution, we
could suggest monitoring if two brushstrokes overlap, and if necessary, pause those
threads which require waiting for one brushstroke to be applied, and proceed when
that brush is finished. Maybe indices of those threads could be calculated in advance,
so that when the thread is fired, it already knows that it should check if the previous
brushstroke has been applied and if it is safe for it to apply its changes.

Beside accelerating brushstroke application, we could parallelize population evalu-
ation, so that all individuals in the population are evaluated at the same time. If this
approach is combined with other techniques, the speed-up could be even higher. This
seems to be a straight forward idea, as there is not too much data which must be
transferred to the GPU. The hardest part of the implementation would be coordinating
fitness evaluation. Potentially, we could ask the GPU to generate canvases for all
individuals, and then these canvases are sent back to CPU and evaluated as they are
now. Fitness evaluation is not a heavy task, and so we don’t think it will benefit too
much with GPU acceleration. There might be parts of fitness evaluation which could
be parallelized such as spatial filter calculations. Other than that it is hard to justify
using GPUs.

Finally, the speed up of the system with the GPU gives the future possibility to
convert it into an interactive system. This could be a system where the user launches



CHAPTER 6. CONCLUSION 55

a CGP program accelerated with the GPU, and it applies brushstrokes to the canvas
in real time. The user could see how they are applied and where, and also pause the
system, do some manual adjustments, and resume it. This could in an interactive way
to create NPR effects.

6.1.2 Fitness evaluation and solution image rendering

As discussed in Chapter 2, we were utilizing 5 objectives for fitness evaluation:
mean, standard deviation, deviation from normality, luminance, and colour matching.
Although they proved to be a good set of fitness formulas to assess individuals on
being aesthetically pleasing, there is always a room for further exploration in this
field. There might be additional objectives to evaluate shapes on an image, or to
make colour matching more strict, so that it would force colours to be at the specific
locations on the canvas. Also, new experiments might be done with different weights
of fitness objectives, which would lead to different results than we obtained.

Because of the subjective nature of the problem, we could not always rely on the
fitness formula to pick the individual which is indeed the best-looking painting out
of all the run. Moreover, the system selects only one individual as the best one out
of all the run. The user, however, might pick more than one solution as satisfactory.
In future, we can add possibility for the user to select one specific genotype, and
reload it into the system and re-apply it to high-definition canvases. This is especially
important, if system uses small images for training and big canvas only for last final
individual.

6.1.3 Advanced NPR ideas

The NPR techniques used in the CGP system could be enhanced with more ad-
vanced image processing and computer vision. For example, image segmentation and
face/object detection. If we could find faces on an image, we could process them
differently inside of the system. We could use different brushstrokes for the face area,
or different parameters for scale, etc.. We could also assess these areas differently in
the fitness evaluation. Detection of faces/objects is not the only way to apply this
approach to the images, as we could also partition images based on colours, shapes,
sizes, and distances of objects on them. Such technologies as segmentation or saliency
are quite promising to consider. These features could be incorporated into the NPR
system, resulting in higher-level NPR effects.
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