
Learning Strategies for Evolved
Co-operating Multi-Agent Teams in

Pursuit Domain

Gina Grossi

Submitted in partial fulfilment

of the requirements for the degree of

Master of Science

Department of Computer Science

Brock University
St. Catharines, Ontario

c©Gina Grossi, 2017

Abstract

This study investigates how genetic programming (GP) can be effectively used in a

multi-agent system to allow agents to learn to communicate. Using the predator-prey

scenario and a co-operative learning strategy, communication protocols are compared

as multiple predator agents learn the meaning of commands in order to achieve their

common goal of first finding, and then tracking prey. This work is divided into three

parts. The first part uses a simple GP language in the Pursuit Domain Development

Kit (PDP) to investigate several communication protocols, and compares the preda-

tors’ ability to find and track prey when the prey moves both linearly and randomly.

The second part, again in the PDP environment, enhances the GP language and fit-

ness measure in search of a better solution for when the prey moves randomly. The

third part uses the Ms. Pac-Man Development Toolkit to test how the enhanced GP

language performs in a game environment. The outcome of each part of this study

reveals emergent behaviours in different forms of message sending patterns. The re-

sults from Part 1 reveal a general synchronization behaviour emerging from simple

message passing among agents. Additionally, the results show a learned behaviour

in the best result which resembles the behaviour of guards and reinforcements found

in popular stealth video games. The outcomes from Part 2 reveal an emergent mes-

sage sending pattern such that one agent is designated as the “sending” agent and

the remaining agents are designated as “receiving” agents. Evolved agents in the Ms.

Pac-Man simulator show an emergent sending pattern in which there is one agent that

sends messages when it is in view of the prey. In addition, it is shown that evolved

agents in both Part 2 and Part 3 are able to learn a language. For example,“sending”

agents are able to make decisions about when and what type of command to send

and “receiving” agents are able to associate the intended meaning to commands.

Acknowledgements

I would like to thank my supervisor, Dr. Brian Ross, for his guidance and insight

throughout our work on this research. I would also like to thank my external examiner,

Dr. Joseph Brown and my thesis committee members, Dr. Beatrice Ombuki-Berman,

and Dr. Michael Winters, for their valuable feedback. Finally, I would like to thank

every member of my family, and close friends for their endless support and encour-

agement during the entire time of my graduate studies. This accomplishment would

not be have been possible without you.

Contents

1 Introduction 1

1.1 Overview of Project Goal and Results 2

2 Background 4

2.1 Genetic Programming . 4

2.1.1 Strongly Typed GP . 6

2.2 Multi-Agent Evolution . 8

3 System Design 14

3.1 System Overview . 14

3.2 GP Tree Structure . 14

3.3 Message Buffer System . 17

3.3.1 Integration of GP Tree and Message Buffer System 19

3.4 Pursuit Domain . 19

3.4.1 Integration of Pursuit Domain with GP 20

3.5 Ms. Pac-Man SDK . 22

3.5.1 Integration of Ms. Pac-Man SDK with GP 24

4 Evolved Communication Protocols 27

4.1 Problem and Environment . 27

4.1.1 Learning Strategy . 28

4.1.2 Communication Strategy and Communication Channel 29

4.1.3 Communication Protocols . 30

4.2 Experiment Details . 30

4.2.1 GP Language . 31

4.2.2 Training and Testing Methods 34

4.2.3 Fitness Function . 34

4.3 Results . 35

4.3.1 Statistical Analysis . 37

4.3.2 Emergent Behaviour . 40

4.3.3 Summary of Results . 57

5 Learning the Meaning of Commands 59

5.1 Problem and Environment . 59

5.1.1 Learning Strategy . 60

5.1.2 Communication Strategy and Communication Channel 60

5.1.3 Communication Protocols . 61

5.2 Experiment Details . 63

5.2.1 GP Language . 63

5.2.2 Training and Testing Methods 66

5.2.3 Fitness Function . 66

5.3 Results . 68

5.3.1 Send22 Protocol . 68

5.3.2 SendAll Protocol . 69

5.3.3 Statistical Analysis . 69

5.3.4 Emergent Sending Patterns 72

5.3.5 Learning the Meaning of Commands 76

5.3.6 Summary of Results . 91

5.4 Influence of Prey Movement Type in Training and Testing on Send22

Protocol . 92

5.4.1 Training and Testing Types and Methods 93

5.4.2 Discussion of Results . 95

5.4.3 Summary of Results . 102

6 Agent Evolution in Ms. Pac-Man Environment 105

6.1 Problem and Environment . 105

6.1.1 Learning Strategy . 107

6.1.2 Communication Strategy and Communication Channel 107

6.1.3 Communication Protocols . 108

6.2 Experiment Details . 109

6.2.1 GP Language . 109

6.2.2 Training and Testing Methods 111

6.2.3 Fitness Function . 113

6.3 Results . 114

6.3.1 Statistical Analysis . 114

6.3.2 Qualitative Analysis . 116

6.3.3 Summary of Results . 123

7 Conclusion 125

7.1 Summary of Main Results . 125

7.2 Future Work . 127

Bibliography 133

Appendices 134

A Additional Experimental Analysis 134

A.1 ANOVA Hypothesis . 134

A.2 Evolved Communication Protocols: ANOVA Results 134

A.3 Learning the Meaning of Commands Part A: ANOVA Results 135

A.4 Learning the Meaning of Commands Part B: ANOVA results 135

A.5 Agent Evolution in Ms. Pac-Man Environment: ANOVA Results . . . 137

List of Tables

2.1 Pseudocode for Evolution in a GP System 6

2.2 Multi-Agent Learning Strategies [1] 9

2.3 Multi-Agent Communication Strategies [1] 9

3.1 Example of Strongly Type Language 15

3.2 Pseudocode for Root Node Evaluation 20

4.1 Communication Protocols . 31

4.2 GP Parameters . 32

4.3 Strongly Type Language . 32

4.4 Terminal Set . 33

4.5 Function Set . 33

4.6 Test Fitness Summary Linear Prey (20 runs). 36

4.7 Test Fitness Summary Random Prey (20 runs). 39

4.8 Tukey Comparisons for Communication Protocols (Linear Prey) . . . 40

4.9 Tukey Comparisons for Communication Protocols (Random Prey) . 40

4.10 Message Sending Patterns (Prey Linear Movement) 41

4.11 SendAll Staircase Pattern: Agents Message Buffer Contents 41

4.12 Send22 Staircase Pattern: Agents Message Buffer Contents 45

4.13 Guard Behaviour Message Sending Pattern 46

4.14 Guard Behaviour: Agents Message Buffer Contents 47

4.15 Guard Behaviour Time Line . 51

4.16 SendK Linear: GP Agents Possible Moves for Best Run (Run 20) . . 52

4.17 SendK Message Sending Pattern, Cycles 14-21 52

4.18 SendK: Agents Message Buffer Contents 55

4.19 Message Sending Patterns (Prey Random Movement) 57

4.20 SendAll Synchronized Message Pattern: Agents Message Buffer Con-

tents . 57

4.21 Send22 Agents Message Buffer Contents 58

5.1 Communication Protocols . 62

5.2 GP Parameters . 63

5.3 Strongly Type Language . 64

5.4 Terminal Set . 64

5.5 Function Set . 65

5.6 Send22 Fitness Summary (20 Test Runs) 69

5.7 SendAll Fitness Summary (20 Test Runs) 69

5.8 Tukey Comparisons for Send22 Protocols 72

5.9 Tukey Comparisons for SendAll Protocols 72

5.10 Message Sending Patterns for SendAll 73

5.11 Message Sending Patterns for Send22 74

5.12 Learning Meaning of Commands: Send22C1orC2 Run 13 Time Line 90

5.13 Send22C1orC2 Test Run 13 Message Buffer 91

5.14 Prey Movement Types in Training and Testing 93

5.15 Fitness Summary Linear Training (20 Test Runs) 94

5.16 Fitness Summary Random Training (20 Test Runs) 95

5.17 Fitness Summary Linear-Random Training (20 Test Runs) 96

5.18 Tukey Comparisons for Training Movement Types 98

5.19 Tukey Comparisons for Testing Movement Types 99

6.1 Communication Protocols . 108

6.2 GP Parameters . 110

6.3 Strongly Type Language . 110

6.4 Terminal Set . 111

6.5 Function Set . 112

6.6 Send22 Fitness Summary (20 Test Runs) 115

6.7 Tukey Comparisons for Send22 Protocols 116

6.8 Sending Patterns for Send22C1, Send22C1orC2, and Send22PvA . . . 118

6.9 Send22C1orC2 Test Run 7 Message Buffer 123

A.1 ANOVA Hypothesis . 134

A.2 Prey Linear Movement ANOVA results 134

A.3 Prey Random Movement ANOVA results 135

A.4 Send22 Protocol Types ANOVA results 135

A.5 SendAll Protocol Types ANOVA results 135

A.6 Training: Prey Linear Movement Types ANOVA results 136

A.7 Training: Prey Random Movement Types ANOVA results 136

A.8 Training: Prey Linear/Random Movement Types ANOVA results . . 136

A.9 Testing: Prey Linear Movement Types ANOVA results 136

A.10 Testing: Prey Random Movement Types ANOVA results 137

A.11 Testing: Prey Linear/Random Movement Types ANOVA results . . . 137

A.12 PacMan Testing: Send22 ANOVA results 137

List of Figures

2.1 Example of a GP Parse Tree . 5

2.2 GP Tree Before Crossover . 7

2.3 GP Tree After Crossover . 7

3.1 Legend used for GP Tree Diagrams 16

3.2 Example of GP Tree using Strongly Typed Language 16

3.3 Major Components of Message Buffer System 17

3.4 GP and Message Buffer System Integration 21

3.5 Example of Pursuit Domain Simulator 21

3.6 GP and Pursuit Domain System Integration 23

3.7 Example of Ms. Pac-Man Simulator 24

3.8 GP and Ms. Pac-Man System Integration 26

4.1 Pursuit Domain Environment . 28

4.2 Top-level GP Structure . 29

4.3 Prey Linear Movement - Training Fitness for all Communication Types 36

4.4 Prey Linear Movement - Training Fitness for Top Performers 37

4.5 Prey Linear Movement - Training Fitness for Best and Worst Performers 38

4.6 Prey Random Movement - Training Fitness for all Communication Types 39

4.7 Staircase Pattern: SendAll Agent 1 & 3’s branches 42

4.8 Staircase Pattern: SendAll (Agent 1 (purple)) 43

4.9 Staircase Pattern: SendAll Cycle 11 44

4.10 Staircase Pattern: SendAll Cycle 12 44

4.11 Staircase Pattern: Send22 (Agent 3 (green)) 45

4.12 Guard Behaviour GP: Example of Agent 2’s C1 branch 46

4.13 Guard Behaviour GP: Example of Agent 1’s C1 branch 48

4.14 Guard Behaviour: Agent 2 Sends out Messages. 49

4.15 Guard Behaviour: Agent 1 uses LRM data. 49

4.16 Guard Behaviour Cycle 13. 50

4.17 Guard Behaviour Cycle 15. 50

4.18 Guard Behaviour Cycle 17. 51

4.19 SendK GP Sub-tree Example . 53

4.20 SendAll Random GP Sub-tree Example 56

5.1 Top level GP Structure . 60

5.2 Send22 - Training . 68

5.3 SendAll - Training . 70

5.4 Send22 SendAll - Training . 71

5.5 Common GP Structure . 74

5.6 SendAllC1 Run 2 Agent 0 . 76

5.7 SendAllC1 Run 2 Agent 1 . 76

5.8 SendAllC1 Run 2 Agent 2 . 77

5.9 SendAllC1 Run 2 Agent 3 . 77

5.10 Common GP Structure to Decide To Send Specific Commands 79

5.11 SendAllC1C2 Agent 0 Sub-tree, Run 15 79

5.12 Send22C1C2 Agent 2 & Agent 3 Sub-trees, Run 12 81

5.13 SendAllC1orC2 Agent 0 & Agent 1 Sub-trees, Run 19 82

5.14 SendAllC1orC2 Agent 2 & Agent 3 Sub-trees, Run 19 83

5.15 Send22C1orC2 Agent 0 & Agent 1 Sub-trees, Run 13 84

5.16 Send22C1orC2 Agent 2 & Agent 3 Sub-trees, Run 13 85

5.17 Deciding Which Command to Send: Send22orC1C2, Run 13 86

5.18 Understanding Received Commands: Send22orC1C2, Run 13 86

5.19 Learning the Meaning of Commands: Send22C1orC2 Run 13, Cycle 1 87

5.20 Learning the Meaning of Commands: Send22C1orC2 Run 13, Cycle 9 87

5.21 Learning the Meaning of Commands: Send22C1orC2 Run 13, Cycle 11 88

5.22 Learning the Meaning of Commands: Send22C1orC2 Run 13, Cycle 13 88

5.23 Learning the Meaning of Commands: Send22C1orC2 Run 13, Cycle 17 89

5.24 Learning the Meaning of Commands: Send22C1orC2 Run 13, Cycle 22 89

5.25 Send22 Protocol - Linear Training (L L, L R, L LR) 94

5.26 Send22 Protocol - Random Training (R L, R R, R LR) 95

5.27 Send22 Protocol - Linear/Random Training (LR L, LR R, LR LR) 96

5.28 Send22C1 L L Agent 0 & Agent 1 Sub-trees, Run 8 100

5.29 Send22C1 L L Agent 2 & Agent 3 Sub-trees, Run 8 101

5.30 Send22C1orC2 L L Agent 0 & Agent 1 Sub-trees, Run 17 103

5.31 Send22C1orC2 L L Agent 2 & Agent 3 Sub-trees, Run 17 104

6.1 Agents’ FOV in Ms. Pac-Man Environment 106

6.2 Agents’ Starting Positions in Ms. Pac-Man 113

6.3 Send22 - Training for C1, C1orC2, PvA 115

6.4 Decision Sub-trees for Send22C1, Send22C1orC2, and Send22PvA . . 119

6.5 Send22C1 Typical Behaviour . 119

6.6 Send22C1orC2 Typical Behaviour . 120

6.7 Send22PvA Typical Behaviour . 120

6.8 Send22C1orC2 Agent 0 & 1 C0 & C2 Branches 121

6.9 Send22C1orC2 Run 7, Cycles 130 - 147 122

Chapter 1

Introduction

In artificial intelligence (AI), an agent is known as an entity that exhibits autonomy,

and performs actions based on feed back from the environment [1]. An environment

containing more than one agent is known as a multi-agent system. In this type of

system, agents with limited information about their world interact with one another to

complete a task [1]. Evolving co-ordinating behaviour strategies for agents is a central

issue in multi-agent systems research. It has been found that evolved strategies can

be applied to many real world applications in which agent coordination is necessary

(e.g. robots working together to complete a task) [2]. Recently, there is growing

interest in research using evolved behaviour strategies to aid in the development of

scripted enemy AI for commercial games [3].

As seen in the work by Reverte et al. [2], an appropriate test bed for multi-agent

systems is the predator-prey pursuit problem (the pursuit domain). The pursuit

domain contains multiple agents, known as “predators”, who have the job of working

together to chase and capture an agent, known as the “prey”. The job of the prey is

to evade the predators (not be captured). A typical scenario consists of an infinite,

discrete world in the form of a toroidal grid containing 4 predators and 1 prey. Agents

move sequentially and are not allowed to occupy the same cell [2]. Using several

variants of the pursuit domain, early work by Haynes et al. [4] and Denzinger and

Fuchs [5] show that agents can successfully learn to co-ordinate movements.

Research has shown that communication is effective in multi-agent systems where

little information about the environment is known. Using the pursuit domain, Iba

[6], and Kam-Chuen and Giles [7] demonstrate that multiple predator agents can

successfully learn to use a new simple command language in order to capture a prey

agent. Iba [6] also shows that communication is effective in co-ordinating robot

navigation. In earlier work, Yanco and Stein [8] develop an adaptive communication

1

CHAPTER 1. INTRODUCTION 2

protocol for co-operating mobile robots. In more recent work, case based reasoning

is used by Kou et al. [9] in a predator-prey scenario in which each “predator” agent,

using limited communication, must learn to capture the evader.

Previous work using genetic programming (GP) shows that complex behaviour

can emerge from simple interactions among agents. Tanev et al. [10] demonstrate

the emerging surrounding behaviour of agents developed from proximity defined in-

teractions of predator agents in the pursuit domain. In other work, Zhang and Cho

[11] explore the idea that realistic complex tasks require more than one type of emer-

gent behaviour to solve a problem and implement a robust fitness measure (“fitness

switching”) to encourage the emergence of multiple behaviours.

In addition to the pursuit domain, learning strategies in game environments have

also been studied. Luke et al. [12] present a competitive learning strategy using

genetic programming to co-evolve agents that are members of a soccer team. Also

in a simulated soccer game, Kou et al. [13] use a predefined language to allow a

“coach” agent to co-ordinate movement of “player” agents. In the game of Ms. Pac-

Man, Ms. Pac-Man and ghost team controllers are co-evolved by Cardona et al. [14]

and GP is used by Alhejali and Lucas [15] to evolve Ms. Pac-Man behaviours using

training camps. Research by Kadlec [16] uses genetic programming to optimize non

player characters’ (NPCs) behaviour in “Death Match” and “Capture the Flag” game

modes in the commercial game of Unreal Tournament 2004 (UT) [17].

1.1 Overview of Project Goal and Results

The goals of this research are to investigate how well genetic programming can evolve

predator agents that can learn a language consisting of generic commands, and how

well they can communicate using this language in order to learn the behaviour of

tracking prey. These goals are achieved by focusing on the following communication

and learning strategies in a predator-prey scenario.

The communication strategy in this study uses a learned language [1]. The lan-

guage consists of at most 3 generic commands, C0, C1, and C2. Commands, along

with simple environment data, are sent from one agent to another through a message

passing communication channel. An agent learns to associate a meaning to each com-

mand through evolving branches of its GP sub-tree. Depending on the experiment,

each agent has 2 or 3 child branches (command trees) where each branch is associ-

ated with one command. The evaluation of an agent’s child branch relies on whether

the agent has received a message and the type of command (C1 or C2) within the

CHAPTER 1. INTRODUCTION 3

message.

The learning strategy uses a fully co-operative implementation with a global fitness

measure [1]. The predator agents work together to complete their common goal of

first finding, and then following a prey (as closely as possible). The global fitness

measure is a minimization function which calculates the total distance between all

predator agents and the prey over a limited period. The motivation for this fitness

function is to compare how different communication protocols perform in allowing the

predators to track the prey’s movement. Agents collaborate to minimize the global

fitness value using a heterogeneous team based learning strategy such that each agent

uses its own learning algorithm to evolve [1].

Similar to Reverte et al. [2], predator agents have little knowledge of the envi-

ronment. They do not know the location of the prey unless they are in field of view

(FOV) of the prey and they do not know the location of other predators. However,

similar to robot agents in Iba [6], they do know the relative (nearest, second nearest

and farthest) direction of other predator agents. Predator agents can send messages

(that may contain prey information if they are in FOV of prey) to other predator

agents at any time.

The following gives a brief outline of the organization of the remainder of the

thesis. Chapter 2 gives a brief background of research and terminology used in this

paper. Chapter 3 describes the major systems used throughout this research and

gives an explanation of how they are integrated.

Chapter 4 examines different communication protocols 1 used for predator agents

evolved to learn a language within the Pursuit Domain Development (PDP) Toolkit

[19]. Two experiments are performed. The first experiment, Prey Linear Movement,

tests the ability of predator agents to find and follow a linear moving prey. The

second experiment, Prey Random Movement, tests the ability of predator agents to

find and follow a random moving prey.

Chapter 5 focuses on an enhanced GP language and fitness measure for the Prey

Random Movement problem from Chapter 4 and is divided into two parts. Part one

focuses on the top performing protocols found in Chapter 4. Part two determines

whether or not the success of predator agents is affected in test runs that use a

different prey movement pattern than used in training.

Chapter 6 tests the GP language defined in Chapter 5 in the “real world” game

environment of Ms. Pac-Man[20].

The final chapter reviews the results of the thesis and suggests future work.

1This chapter gives a more detailed explanation of the work presented in CIG 2017 [18].

Chapter 2

Background

2.1 Genetic Programming

The goal of genetic programming (GP) is to search a set of potential computer pro-

grams which, when executed, produce desired behaviour [21]. GPs can be thought of

as a subset of genetic algorithms (GA). To define population members, genetic algo-

rithms use individual structures represented as fixed strings. In contrast, population

members for GPs are computer programs. The computer programs are arranged in

a hierarchical tree structure which can evolve and can vary in size, shape and com-

plexity [21]. To measure fitness, GPs execute the computer program for the specific

population member. As shown in Figure 2.1, the structure of a genetic program is

represented as a parse tree. Internal tree nodes represent functions (e.g. add (Add)

or subtract (Sub)...) needed to solve the problem and leaf nodes represent data for

these functions (e.g. variables and constants). According to Eberhart and Shi [21],

in order to define a genetic program the following five steps must be performed:

1. Specify the Terminal Set: The terminal set consists of the data or variables

to be used as input for the functions in the GP. An example could be location

and/or direction as input for a problem dealing with movement of an agent.

2. Specify the Function Set: The function set consists of the set of functions

which can be used to solve the problem. Functions can have one or more inputs.

The inputs can be results of other functions or terminals (see Figure 2.1). Some

examples could be arithmetic operators (addition, subtraction etc...) or Boolean

operators (AND, NOT, etc...). Other examples could be more complex (having

up to four inputs or more) such as if-then-else statements.

4

CHAPTER 2. BACKGROUND 5

Figure 2.1: Example of a GP Parse Tree

3. Specify the Fitness Measure: The fitness measure is used to measure the

performance of a GP individual. An example of a fitness measure could be the

score a program receives in a game.

4. Select the Control Parameters: Two main control parameters include the

population size and the maximum number of generations. In addition, the

following parameters could be used as well: reproduction probability, crossover

probability and maximum depth of tree allowed.

5. Specify the Termination Conditions: The termination condition is usually

determined by the maximum number of generations control parameter. After

all generations are complete, the best individual is determined by the one which

scored the best using the fitness measure.

Table 2.1 shows the pseudocode for the steps in evolution using a GP system as

described by Poli et al. [22]. Through an Initialize() function the first step initializes

a random population of GP individuals. For each generation, until a maximum gen-

eration value (MaxGen) (or another terminating condition) is reached the following

steps occur.

Each member of the population is evaluated through the Evaluate() function.

This function determines the fitness score of each GP individual and returns the

best performing individual found so far. Either 1 or 2 individuals are selected for

reproduction based on their fitness score and a probability setting using the SelectIn-

dividualsForReproduction() function. Reproduction uses genetic operators (crossover

or mutation) to create new members of the population. Based on another probability

CHAPTER 2. BACKGROUND 6

Table 2.1: Pseudocode for Evolution in a GP System

Evolve(){

Initialize();

int generation = 0;

GPIndividualType bestIndividualSoFar = null;

Loop {

bestIndividual = Evaluate();

SelectIndividualsForReproduction();

CreateNewIndividuals();

generation++;

if (generation > MaxGen) then break;

}

return bestIndividualSoFar;

}

setting, the CreateNewIndividuals() function performs either crossover or mutation

on the selected individuals.

Crossover is performed by using the selected individuals as 2 parent computer

programs. A point in the tree structure of each parent is chosen as a crossover point.

The crossover points can be either the root, function or terminal nodes. The crossover

exchange involves swapping the crossover root point (along with its entire sub-tree)

of one of the parent trees with the crossover root point (along with its entire sub-tree)

of the other parent tree (see Figures 2.2 and 2.3). If mutation is selected to create a

new individual, then a new child program is generated by randomly changing a part

of 1 selected parent program. Weaker individuals of the population are replaced with

new individuals created after crossover and mutation[22].

The evolution process is repeated for each generation until the maximum num-

ber of generations is reached or until a terminal condition has been met. The best

individual (based on fitness score) is returned.

2.1.1 Strongly Typed GP

According to Montana [23], strongly typed GP is used to apply constraints to genetic

programming. It is particularly useful in controlling the tree structure of a GP. This is

done by a applying a type to each terminal and by applying a type to every argument

and return value of each function defined in the GP language. Creation processes

such as initialization, random expressions, crossover and mutation, generate GP trees

CHAPTER 2. BACKGROUND 7

Figure 2.2: GP Tree Before Crossover

Figure 2.3: GP Tree After Crossover

so that the types of each terminal, function arguments, and function return types are

not violated.

For example, as stated in [23] and [22], suppose a GP system has 2 types: numeric

and Boolean. The GP language would have terminals and functions that return

either a numeric value or a Boolean value. An example could be a getDistance()

function which returns the numeric distance to a prey and ifPreyAhead() function

which returns true if the prey is within view or false if the prey is not within view.

A third function, if(Boolean,numeric,numeric) has 3 arguments. The first argument

is a Boolean type, and the second and third values are numeric types. This function

returns a value with a numeric type. If the first argument evaluates to true, it returns

the first numeric value otherwise it returns the second numeric value. Suppose the GP

system generates a new GP individual using crossover and the crossover point is the

CHAPTER 2. BACKGROUND 8

Boolean argument of the if(Boolean,numeric,numeric) function on the first parent.

The crossover point on the second parent must be a terminal or function that returns

a Boolean (e.g. the ifPreyAhead() function) so that the return value matches the

type of the crossover point in the first parent [22]. In this way, using strongly typed

GP gives the programmer control over GP structures created by the GP system.

2.2 Multi-Agent Evolution

Multi-agent learning and communication has been studied for years. The work in [24]

provide real world practical examples of uses for multi-agent systems. At first glance,

it is sometimes difficult to sort out the differences between multi-agent learning,

(co-operative vs competitive) and communication. The following provides a more

detailed background of some of the research in multi-agent evolutionary learning and

communication.

Pannait and Luke [1] provide an early survey of multi-agent based research and

give a good explanation of the differences between multi-agent learning strategies and

communication strategies. They also show how co-operative and competitive strate-

gies contribute to multi-agent learning. Tables 2.2 and 2.3 provide a brief summary

of their findings. More recent work by [25] focuses on critically reviewing interaction

protocols for multi-agents.

As shown in Table 2.2, multi-agent evolutionary learning strategies can involve

one or more learning agents having individual (local) and/or common (global) fitness

goals. The agents’ learning can take place as part of a team or happen concurrently.

Team based learning can be homogeneous or heterogeneous. Team members of a

homogeneous team use the same learning algorithm to evolve, while team members

of a heterogeneous team use their own learning algorithm to evolve. Concurrent

learning can happen in either a fully co-operative scenario, where agents work together

to complete a goal, or in a competitive scenario where agents compete against each

other (co-evolution) to achieve a goal. Concurrent learning can also happen in a

hybrid version of the scenarios in which learning can occur both in an individual

scenario and in a co-operative scenario.

Communication strategies, as seen in Table 2.3, are concerned with the actual

language (commands) used to communicate and the communication channel. The

language can be direct or indirect. Direct language can use hard-coded commands or

a learned language. In the case of hard coded commands, agents learn commands that

have pre-defined meanings. In the case of a learned language, agents learn to associate

CHAPTER 2. BACKGROUND 9

Table 2.2: Multi-Agent Learning Strategies [1]

Learning Description Number of Individual Common
Strategies Agent Learners Fitness Fitness

Team Homogeneous 1 No Yes
Heterogeneous 1 or more No Yes

Concurrent Fully co-operative: 1 or more No Yes
agents always
work together

Partially co-operative: 1 or more Yes Yes
agents sometimes

work together

Competitive: 1 or more Yes Yes
agents compete
with each other
(Co-evolution)

Table 2.3: Multi-Agent Communication Strategies [1]

Communication Types Communication
Strategies Channel

Direct Hard Coded: Message Board or
use pre-defined commands

Learned Language: Message Passing
learn meaning of commands

Indirect Implicit transfer of information: Footstep trail
from agent to agent through Breadcrumb trail

modification of the environment. Hints through
Inspired by insects social use of object placement

pheromones.

meaning to commands through various trials. Indirect communication is inspired by

insects use of pheromones and involves the implicit transfer of information from agent

to agent through the modification of the environment.

The communication channel, shown in Table 2.3, involves the mechanism used to

communicate commands. Using direct communication, can involve a central message

board, such as a blackboard, in which all agents can read/write commands to a

CHAPTER 2. BACKGROUND 10

global post, or it can involve message passing, in which individual agents directly

send and receive messages to/from each other. Using indirect communication, the

communication channel can involve leaving footsteps, bread crumb trails, or placing

hints in the environment.

Iba [6] made early observations in the evolutionary learning of communicating

agents. He used genetic programming to evolve a learned language separately in both

a robot navigation scenario and predator-prey scenario. In both scenarios a mes-

sage passing system was used to send and receive commands between agents. In the

robot navigation scenario, the following three experiments were performed to control

robots’ navigation through a grid: a heterogeneous team of agents with communica-

tion, a heterogeneous team without communication and a homogeneous team with

communication. Team fitness was used to measure how quickly a team of agents

could move to its goal. The results demonstrated that a heterogeneous team with

communication outperformed a heterogeneous team that did not use communication.

However, a homogeneous team with communication performed almost as well as the

heterogeneous team with communication.

In the predator-prey scenario Iba [6] used a homogeneous team with common

goals of “distance to the prey” and “capture the prey” to measure fitness. In this

scenario, he used three experiments to study the importance of a learned language.

The experiments involved teams that used no communication, teams that learned

commands through communication and teams that learned communication within a

field of view (that is, only team members within a certain range could communicate

with each other). An overhead cost for communication was applied to the fitness

measure. The results of this scenario showed that teams with learned communica-

tion commands were superior in fitness. However, the average number of successes

(capturing of prey) were similar in all three experiments for the following reasons.

The team without communication could capture prey in some cases because the prey

moved about the grid in a random fashion, however in most cases they could not cap-

ture the prey. The teams with communication could close in on the prey quickly but

were stopped once they were very close to the prey (due to the burden cost of com-

munication). This scenario showed that communication is necessary when predators

are far from the prey, but once they are near and in view of the prey, communication

is not necessary and the communication cost often becomes a burden.

Kam-Chuen and Giles [7] used a genetic algorithm to compare the influence the

message length has on an agent’s ability to learn a pre-defined language in the

predator-prey scenario. Each predator agent evolved individually using a fitness based

CHAPTER 2. BACKGROUND 11

on the average performance of all predators. A message board was used to communi-

cate commands and information such as bearing/distance of prey and actions (move

North, East, South and West). The first experiment evolved new strategies compar-

ing the message lengths of 0 (no communication), 1 (1 command in message) and

2 (2 commands in message). In the second experiment, new strategies were grown

from successful strategies. In this experiment, strategies using a message length of

2 were evolved from successful strategies created from message lengths of 1. The

results demonstrated that new strategies (which evolved on their own) with message

lengths of 1 performed just as well as strategies that were grown from successful

strategies (therefore, growing the length of the message from 1 to 2 did not increase

the performance).

Reverte et al. [2] applied neuro-evolution to evolve a co-ordination protocol for

predator agents in the predator-prey scenario. Each agent evolved separately using

a neural network to determine the next best move for the agent. Communication

was done through a hard-coded set of commands using message passing. However,

message passing was limited to agents within each other’s field of view. A global

fitness uses the number of collisions (i.e. two agents try to occupy the same spot on

the grid) and the number of cycles it takes to capture the prey, to measure fitness.

The results showed that using neuro-evolution significantly reduces the number of

collisions compared to trials that did not use neuro-evolution.

Luke et al. [12] present a competitive learning strategy using genetic programming

to co-evolve agents that are members (players) of a soccer team. This research was

entered in the first RoboCup workshop in 1997. In this study, each agent learned

individually using 2 action trees. In order to perform an action, the program for each

agent used a set of state rules to decide which tree to use. The first tree consisted

of simple actions such as making a kick. The second tree consisted of moving a

player. In this research, two experiments were conducted to test the performance

of a homogeneous team (each player uses the same set of two trees) against the

performance of a heterogeneous team (each player uses its own set of two trees).

Agents had limited communication with other team members. Fitness evaluation

used the performance of the entire team (number of wins). The researchers reported

that although they believed that the heterogeneous teams would out perform the

homogeneous teams, they could not complete the heterogeneous team trials (due to

time constraints) before the RoboCup challenge.

Yanco and Stein [8] developed an adaptive communication protocol for co-operating

mobile robots. The co-operative task was to learn a language to co-ordinate move-

CHAPTER 2. BACKGROUND 12

ment of the robots. Learning was done by all agents, however, one agent was given

the role as a leader while the remaining agents were given the roles as followers. The

leader was aware of task specification (environmental cues) and communicated com-

mands to the followers. Followers were only aware of the commands sent to them.

Fitness was team based so that all members of the team (both followers and leaders)

were expected to perform the appropriate actions. The leader was tasked with learn-

ing to interpret environmental cues in order to give the appropriate commands to the

followers. The followers were tasked with learning to interpret the commands sent

to them in order to perform the appropriate action. Commands sent by the leader

robot were determined to be appropriate if and only if the follower robots took the

appropriate action when that signal was received. Results demonstrated that robots

were easily able to develop a shared language. Robots were also able to adapt to a

changing environment in a time that was comparable to the original learning environ-

ment. The results also showed that increasing the language size (in a range starting

from 2 commands up to a size of 20 commands) increased the learning time exponen-

tially. Increasing the team size from 2 to 3 members also increased the learning time

significantly.

Barrett et al. [26] present (to the best of their knowledge) one of the first solutions

that create autonomous agents capable of demonstrating ad hoc teamwork in an open

complex teamwork domain. Members of an ad hoc team can effectively cooperate with

multiple teammates on a set of collaborative tasks [26]. This work studies a range of

algorithms for on-line behavior generation in which a single agent must collaborate

with a range of teammates in the pursuit domain.

As described earlier, there is a strong research interest in the opportunities of

using learning algorithms in video games. In May 2012, leading experts met in Schloss

Dagstuhl in Saarland, southern Germany, to discuss future research directions and

challenges in the field of artificial and computational intelligence in commercial video

games [3]. The purpose of the two day seminar was to bring together academic

researchers and game developers to discuss challenges in computational intelligence

and to identify areas of potential future research. The seminar was divided into

the following areas of research: Search in Real Time Video Games, Pathfinding in

Games, Learning and Game AI, Player Modeling, Procedural Content Generation,

General Video Game Playing, Developing a Video Game Description Language and

Artificial and Computational Intelligence for Games on Mobile Devices. Based on

their research interest and expertise, members of the seminar discussed the challenges

within each specific area in the Dagstuhl Reports [3]. Later, follow ups were written

CHAPTER 2. BACKGROUND 13

in each specific area. The Learning and Game AI follow up report listed several

opportunities for learning algorithms in commercial games [27].

One of the opportunities found by Muñoz-Avila et al. [27] is a learning algorithm’s

ability to make timely decisions. A difficult challenge for AI in games is based on

two issues: game AI is normally given little CPU time compared to other game

systems (e.g. pathfinding), and the time to develop game AI is relatively short (other

development tasks such as graphics and level design take precedence) [27]. Machine

learning offers the possibility of improvement. For example, analyzing game logs of

game traces allows the possibility of machine learning techniques to tune the game AI.

Using this strategy, as stated by Muñoz-Avila et al. [27], Tesauro [28] created a system

capable of producing game play strategies that were considered highly competent and

LeeUrban et al. [29] created a learning system for a squad of bots that adapts to the

opposing teams strategy. The Dagstuhl seminar and follow up reports are important

because they show that along with commercial games becoming increasingly popular,

there is also a growing interest in research to understand how learning algorithms can

benefit the commercial games industry.

Chapter 3

System Design

3.1 System Overview

This research, in different experiments, uses the Pursuit Domain Development Toolkit

[19] and the Ms. Pac-Man Development Toolkit [20] to create predator and prey

agents in the pursuit domain. Genetic programming, in the Java Evolutionary Com-

putation (ECJ) [30] environment, is used to evolve predator agents so that they learn

how to find and follow a prey agent. Predator agents are allowed to communicate

using a message buffer system developed in ECJ using Eclipse [31]. The following

sections describe the systems and their integration for use in this work.

3.2 GP Tree Structure

This study uses the Java programming language and the Java Evolutionary Compu-

tation (ECJ) Toolkit [30] to conduct GP experiments. In order to create a hetero-

geneous team of predator agents, a strongly typed language [22] is used so that each

predator agent evolves its own sub-tree. Table 3.1 shows an example of the strongly

typed language used as a base to build the varying GP languages in this study. The

following list describes the types in the language.

• ROOT: This type acts as the root node of the GP tree. It requires 4 SIM

types as input.

• SIM: The SIM type serves as a command tree for a specific agent. It represents

an agent’s sub-tree and requires, at the basic level, two EXPR types as input.

The number of input nodes can vary depending on the experiment. An agent

14

CHAPTER 3. SYSTEM DESIGN 15

Table 3.1: Example of Strongly Type Language

ROOT ::= (SIM, SIM, SIM, SIM)

SIM ::= CommandTree(EXPR,EXPR)

EXPR ::= Left | Right | Up | Down | Stay |
::= IfGrtEql(NIL,NIL,EXPR,EXPR)
::= Send(EXPR)

NIL ::= North | South | West | East |
::= Goal | LRM
::= Add(NIL,NIL)

evaluates only one of the EXPR sub-trees resulting in one movement step for

the agent.

• EXPR: This type represents one branch of an agent’s sub-tree. It contains the

expressions used to determine a movement for the agent. EXPR Functions can

have EXPR or NIL types as input and will evaluate only one of its EXPR

inputs. For example, the IfGrtEql expression shown in Table 3.1 calculates the

length of the first two NIL input vectors. If the first length is greater than the

second length, then the function evaluates the third EXPR input expression

otherwise, it evaluates the fourth EXPR input expression. The Send function

is used to send messages and has only one EXPR type as input. This input

type is evaluated after a message is sent. The language is structured to ensure

that the evaluation of the top-level EXPR type results in one terminal EXPR

movement type (i.e. Up, Down, Left, Right, or Stay).

• NIL: The NIL type represents a directional vector on a 2D (x, y) grid. Examples

of terminal expressions are the directional vectors North, South, West, East and

Stay terminals nodes. Other examples include the Goal and LRM terminal

expressions which hold directional information to the prey. NIL Functions

accept only NIL types as input (see Add function in Table 3.1).

Figure 3.1 shows a legend for GP tree structure diagrams used throughout this

document. Rectangular nodes represent the non terminal EXPR type in the lan-

guage. Circle nodes represent the terminal EXPR (i.e. Up, Down, Left, Right, or

Stay) type and hexagonal nodes represent the NIL type.

CHAPTER 3. SYSTEM DESIGN 16

Figure 3.1: Legend used for GP Tree Diagrams

Figure 3.2: Example of GP Tree using Strongly Typed Language

Figure 3.2 shows the top level of the GP tree structure using the language defined

in Table 3.1. This figure shows 4 SIM type agents as children (inputs) to the root

node. Each SIM agent has at least 2 or more EXPR type children. The evaluation

of an EXPR child results in one movement step for the agent. For example, Figure

3.2 shows that the second SIM node (from the left) has the IfGrtEql expression as its

second child. The evaluation of the IfGrtEql expression results in the agent moving

either Right or Up. The GP tree is structured so that each evaluation of a SIM child

node ends at a movement node (i.e. Up, Down, Left, Right, or Stay). The SIM agent

chooses to evaluate only one of its EXPR children. This results in each SIM agent

moving one step for each evaluation.

CHAPTER 3. SYSTEM DESIGN 17

Figure 3.3: Major Components of Message Buffer System

3.3 Message Buffer System

Communication between predator agents is achieved through the message buffer sys-

tem. This system is implemented in ECJ [30] for easy integration with GP sub-tree

classes. Figure 3.3 shows the major components of the message buffer system.

The MessageContainer class holds all the data for one message. The data is

explained below:

• int toAgentID: Holds the ID of the agent receiving message.

• int fromAgentID: Holds ID of the agent sending message.

• CommCommandType messageType: Holds the message type (enumerated

type).

• CommandDataType messageData: Contains all data for a message includ-

ing a 2D directional vector variable.

The MessageBufferSystem class is the main class. It contains a list of message

buffers (one for each agent) and gives the ability to create, send and receive messages

CHAPTER 3. SYSTEM DESIGN 18

to the message buffers through the CreateMessage, SendMessage and ReceiveMessage

functions listed below.

• CreateMessage(int to, int from,

CommCommandType inMessageType,

CommandDataType inMessageData): Creates and returns a message (of

type MessageContainer) with necessary data to send the message.

Parameters:

– to: agent to send message,

– from : agent which is sending message,

– inMessageType : the message command to send,

– inMessageData : the data to send in the message.

• SendMessage(MessageContainer message): Sends message to agent de-

fined in message.

Parameter:

– message : message containing the sending agent, receiving agent, message

command and message data.

• ReceiveMessage(int agentID): Removes and returns first message from an

agent’s message buffer.

Parameter:

– agentID : specifies which agent’s message buffer the message should be

removed from.

The information for each agent’s message buffer is stored in the MessageBuffer

class. The message buffer is a list of type MessageContainer and operates as a queue.

When a message is sent to an agent’s message buffer (via the MessageBufferSys-

tem.Send function) the message is added to the end of the message buffer. When

a message is received (via the MessageBufferSystem.Receive function) a message is

removed from the front of the message queue. Although the size of the message buffer

can be dynamic, in this study the maximum number of messages it can hold is fixed

to 4. If the message buffer is full when a message is added, then the first message in

the list is removed (since it is the oldest message) to make room for the new message.

CHAPTER 3. SYSTEM DESIGN 19

3.3.1 Integration of GP Tree and Message Buffer System

The integration of the GP Tree and Message Buffer System is seen in Figure 3.4. The

evaluation of a GP tree begins at the root node. The root node evaluates each of

the four agent sub-trees consecutively always starting with Agent 0 and ending with

Agent 3.

Before the evaluation of its sub-tree, an agent uses the MessageBufferSytem.Receive

function to remove the next message in its message queue. If there is a message then

a global data variable which holds the last received message (LRM) for the agent

is updated with the message data and the corresponding branch, determined by the

message type (C1 or C2), is evaluated. If there is no message in the agent’s message

queue, then the LRM global variable and message type are set to default values and

the C0 branch of the agent is evaluated. Table 3.2 shows the pseudocode in the

Evaluate function for the root node of the GP tree.

Steps 1 to 3 in Figure 3.4 show what happens when one agent sends a message

to another agent. Agent 2, upon evaluation of its Send node sends a message (with

directional information as the message data and the C1 command as the message

type) to Agent 1. This places a message in Agent 1’s message buffer (see Step 1).

On Agent 1’s next turn, before evaluating its sub-tree, it will use the MessageBuffer-

Sytem.Receive function to remove the message from its buffer and to update its LRM

global data (see Step 2). The message type in the message data determines what

branch will be evaluated. In this case, the message type is C1 therefore Agent 1

evaluates its C1 branch (see Step 3).

3.4 Pursuit Domain

Experiments in Chapter 4 and Chapter 5 use the Pursuit Domain Package (PDP)

by Kok and Vlassis [19]. According to Reverte et al. [2], PDP is a toolkit which

simulates the predator-prey problem. It includes one prey agent and four predator

agents and allows the modification of parameters to instantiate different experimental

scenarios. Its environment consists of a grid in which agents are allowed to move to

any adjacent cell (9 possible options) in one time step. This research uses this toolkit

to allow predators to learn commands in order to find and follow the prey. Figure 3.5

shows an example of this environment.

In this study a 20 x 20 grid is used, where 1 cell = 1 unit of distance. Predator

agents have a field of view (FOV) = 2 cells, shown as the grey square around each

CHAPTER 3. SYSTEM DESIGN 20

Table 3.2: Pseudocode for Root Node Evaluation

Evaluate() {

int i = 0;

Loop {

LRM[i] = MESSAGE_DEFAULT;

CommCommandType type = C0;

MessageContainer message = MessageBufferSystem.ReceiveMessage(i,0);

if(message) then

{

LRM[i] = message.messageData;

type = message.messageType;

}

evaluate(Agent[i].SubTree[type]);

i++;

if (i > 3) then break;

}

}

agent in Figure 3.5. All four predator agents and the prey can move to only one

cell (Up, Down, Left, Right or Stay) in 1 time cycle. The grid is toroidal such that

if any agent’s next move is outside of the grid boundary, then it will move to the

next cell on the opposite edge (i.e. the movements are wrapped at the edges). There

are no collisions in the environment. Predator agents are allowed to share the same

cell as the prey agent, however if a predator agent moves to a cell that is occupied

by another predator agent then both predator agents are penalized by being placed

at their original starting positions. In order to allow predator agents to find and

follow the prey agent, they are given a specific number of movements (update cycles).

Predator agents are always given the full number of update cycles even if predators

share the same cell (i.e. “capture”) as the prey.

3.4.1 Integration of Pursuit Domain with GP

The integration of the Pursuit Domain Toolkit and the GP environment is done

through the class PDPGameWorld. This class is shown as the center box in Figure

3.6. The PDPGameWorld class is responsible for initializing the Pursuit Domain

simulator and acts as a wrapper class between the GP environment and the Pursuit

Domain simulator, giving both systems access to required data and functions. The

UpdateAgents function in this class is used to signal the update of the position of

CHAPTER 3. SYSTEM DESIGN 21

Figure 3.4: GP and Message Buffer System Integration

Figure 3.5: Example of Pursuit Domain Simulator
Prey Agent (orange), Predator Agent 0 (light blue), Predator Agent 1 (purple)

Predator Agent 2 (dark blue), Predator Agent 3 (green)

agents in the simulator.

The Agent class (see bottom boxes in Figure 3.6) in the Pursuit Domain simulator

CHAPTER 3. SYSTEM DESIGN 22

controls the behaviours of agents. This is done through the DetermineMovement

function in this class. The purpose of this function is to update the agents in the

simulator by moving them one cell on the grid.

A second message buffer system object is used for direct communication between

corresponding agents in the GP environment and agents in the simulator (see top

box in Figure 3.6). Using this second message buffer system, when an agent (in the

GP environment) evaluates a movement terminal node such as “Up” then a message

is sent to the corresponding agent’s message buffer in the simulator environment

(see Step 1 in Figure 3.6). After all agents have evaluated their sub-trees, the GP

evaluate function calls the UpdateAgents function from the PDPGameWorld class

(see Step 2 in Figure 3.6). The UpdateAgents function calls the SimulatorUpdate

function which is responsible for updating the prey agent and predator agents in the

simulator (see Step 3 in Figure 3.6). The SimulatorUpdate function does this by

calling the DetermineMovement function first for the prey agent and then for the

predator agents (see Steps 4 & 5 in Figure 3.6). The DetermineMovement function

checks the message buffer for the simulator agent and moves the agent in the direction

defined in the message.

3.5 Ms. Pac-Man SDK

To further investigate results found using the Pursuit Domain, a popular simulator

of the game Ms. Pac-Man is used in Chapter 6. This simulator, developed for the

Ms. Pac-Man vs Ghost Team Competition [20], has been widely used in research as a

test bed for evolving both Ms. Pac-Man (prey agents) and Ghosts (predator agents)

(see Fig 3.7). Some of this research, such as the work by Cardone et al. [14], uses

competitive co-evolution strategies to evolve both Ms. Pac-Man and Ghosts. Others,

such as Shrum and Miikkulainen [32], and Alhejali and Lucas [33] [34], focus on

investigating different learning strategies to evolve controllers solely for Ms. Pac-Man.

This research uses the Ms. Pac-Man simulator to evolve behaviours for the predator

Ghosts. The Ghosts in this study will need to learn the meaning of commands in order

to find and follow the prey (Ms. Pac-Man) as it moves randomly in the environment.

The Ms. Pac-Man environment is in the shape of rectangular grid with dimension

of 28 (width) x 30 (height) cells. Each cell contains a pill and the four corner cells

contain power pills. The goal of the game is for Ms. Pac-Man to collect as many

pills (points) as she can without getting caught (entering the same cell as one of the

Ghosts). If Ms. Pac-Man collects a power pill then the game changes from chase

CHAPTER 3. SYSTEM DESIGN 23

Figure 3.6: GP and Pursuit Domain System Integration
The evaluation of the GP tree updates one frame of the simulator

CHAPTER 3. SYSTEM DESIGN 24

Figure 3.7: Example of Ms. Pac-Man Simulator
Agent 0 “Blinky” (red Ghost), Agent 1 “Pinky” (pink Ghost)

Agent 2 “Clyde” (orange Ghost), Agent 3 “Inky” (blue Ghost)

mode to retreat mode. In chase mode, Ghosts chase Ms. Pac-Man and can destroy

Ms. Pac-Man if they catch her. In retreat mode, Ghosts retreat back to the center

of the grid (to their lair). In this mode if Ms. Pac-Man catches a Ghost then the

Ghost is destroyed. Retreat mode lasts for a set amount of time. Most of the game

is played in chase mode.

The Ms. Pac-Man environment has many collisions (walls) that block agents’

movements. To keep agents within the grid, all edges are blocked with walls except

for 2 specific grid spaces on the vertical edges of the grid. Agents can use these spaces

to wrap around the opposite side of the grid. Ghost agents may occupy the same grid

cell without any penalties.

In order to allow predator Ghosts to find and follow Ms. Pac-Man, the game is

limited to chase mode. The Ghosts continue to pursue Ms. Pac-Man (even if one

Ghost “catches” Ms. Pac-Man) within a defined period. In this study Ms. Pac-Man

does not die when it occupies the same cell as a Ghost.

3.5.1 Integration of Ms. Pac-Man SDK with GP

The class that integrates the GP system with the Ms. Pac-Man ToolKit is called

PacManToECJ and is represented in the center box in Figure 3.8. This class is

responsible for initializing the Ms. Pac-Man environment and is used as a wrapper

class between the GP environment and the Ms. Pac-Man simulator, giving both

CHAPTER 3. SYSTEM DESIGN 25

systems access to required data and functions. This class is also used to hold the

movement actions set by the GP tree for each agent in an array called “Direction”.

Additionally, it contains the function AdvancePacManSimOneFrame used to update

agents’ data from the GP environment to the Pac-Man simulator. This function is

called after the evaluation of all the agents’ sub-trees is complete in the root node

evaluate function.

Developers have access to Ms. Pac-Man and Ghost behaviours by overriding the

controller classes (PacManControllerBase and GhostControllerBase) in the Ms. Pac-

Man Toolkit (see bottom right boxes in Figure 3.8). The purpose of the controller

classes is to update the movement action data for the Ghosts and Ms. Pac-Man. In

this study, the actions for the Ghosts’ controller are determined by the GP tree. The

Tick function for the Ms. Pac-Man controller sets the movement action for this agent

and is called before the game update function, AdvanceGame. The AdvanceGame

function is called from the game update function in the simulator class (PacManSim-

ulator) (see bottom left box in Figure 3.8). Using agents’ action data, this function

updates game variables and the positions of the Ghosts and Ms. Pac-Man in the

game world.

Steps 1 to 6 in Figure 3.8 show the process of how the GP environment interacts

with the PacManToECJ class and the Ms. Pac-Man simulator in order to move a

Ghost in the “Up” direction. When an agent evaluates a terminal movement node

such as “Up” then it sets the corresponding slot (using the agent’s number) in the Di-

rection array to “Up” (see Step 1). This results in the Direction array containing the

next movement action for each agent after all agents have evaluated their sub-trees.

Once this occurs the AdvancePacManSimOneFrame function updates the Ghosts ac-

tions (using the Direction array) in the Ms. Pac-Man simulator (see Steps 2 & 3).

After updating the Ghosts actions, it calls the simulator’s update function: PacMan-

SimulatorUpdateOneFrame (see Step 4). This function is responsible for calling the

Tick function for the Ms. Pac-Man controller (updating the next random action for

Ms. Pac-Man) and to advance the game by one frame by calling the AdvanceGame

function (see Steps 5 & 6).

CHAPTER 3. SYSTEM DESIGN 26

Figure 3.8: GP and Ms. Pac-Man System Integration
The evaluation of the GP tree updates one frame of the simulator

Chapter 4

Evolved Communication Protocols

4.1 Problem and Environment

This study continues the investigation of using GP to evolve emerged behaviours in a

multi-agent system. Using the pursuit domain and a co-operative learning strategy,

multiple predator agents are tasked to learn the meaning of a simple set of commands

with the goal of first finding and then following a prey.

Different communication protocols are compared in two experiments, with each

experiment defining a different type of movement for the prey. In the first experiment,

Prey Linear Movement, all communication protocols are trained and tested in the

pursuit domain environment. The prey, starting from a random position within its

own start area, moves linearly (Up ↑) on the grid. In the second experiment, Prey

Random Movement, the environment is the same however, the prey moves in a random

pattern (Up, Down, Left or Right).

Experiments in this chapter use the Pursuit Domain Package (PDP) by Kok and

Vlassis [19]. This environment consists of a grid in which agents are allowed to move

to every adjacent cell. In this study a 20 x 20 grid is used, where 1 cell = 1 unit

of distance. Predator agents have a field of view (FOV) = 2 and is measured using

euclidean distance. The initial starting position of the prey is chosen at random and

is confined to the prey’s starting area on the grid. The prey’s starting area, as well as

each predator’s starting area, are seen in Figure 4.1. The starting areas are arranged

so that they don’t overlap (similar to Iba [6] and Haynes et al. [35]). Agent 0 is shown

as light blue, Agent 1 is shown as purple, Agent 2 is shown as dark blue, Agent 3

is shown as green and the Prey (triangle) is shown as orange. The green lines on

the grid outline the confined starting areas of the prey and each agent. The yellow

cells on the grid define each agent’s FOV. All four predator agents and the prey can

27

CHAPTER 4. EVOLVED COMMUNICATION PROTOCOLS 28

Figure 4.1: Pursuit Domain Environment

move to only one cell (Up, Down, Left, Right or Stay) in 1 time cycle. The grid is

toroidal such that if the prey’s (or any predator’s) next move is outside of the grid

boundary, then it will move to the next cell on the opposite edge (i.e. the movements

are wrapped at the edges).

Results of this study show emergent behaviour in the top performing communica-

tion protocols in both experiments. Specifically, a synchronized alternating message

sending pattern emerges from simple message passing among predator agents. In ad-

dition, the learned behaviour and collaboration of agents in the best result resembles

the behaviour of guard and reinforcements that can be found in popular stealth video

games (e.g. Metal Gear Solid (MGS)[36]).

4.1.1 Learning Strategy

The learning strategy is fully co-operative such that predator agents work as a hetero-

geneous team using a global fitness measure. The predator agents’ common goal is to

first find, and then follow the prey as closely as possible. A minimization function for

the global fitness measure is used. This function calculates the total distance between

all predator agents and the prey over a limited period. Using different communication

protocols, the motivation for this fitness function is to compare how agents commu-

nicate to achieve their goal of tracking the prey.

CHAPTER 4. EVOLVED COMMUNICATION PROTOCOLS 29

Figure 4.2: Top-level GP Structure

4.1.2 Communication Strategy and Communication Channel

The learned language in this study consists of two generic commands, C0 and C1.

A message passing communication channel is used to send the C1 command, along

with simple environment data, from one agent to another. Agents learn to associate

a meaning to the C0 and C1 commands by evolving corresponding branches of its

GP tree. Each agent has 2 child branches (command trees) where each branch is

associated with one command. The first command, C0, is evaluated when the agent

has no messages in its message buffer. The second command, C1, is evaluated when

the agent has at least one message. Figure 4.2 shows the overall GP structure used

in both experiments for this study.

The communication channel uses a message passing system in which each agent

has its own message buffer queue. Upon evaluation of its command tree, an agent

may send no messages, one message (with C1 command) or many messages (each with

C1 command) to another agent. Once a message is sent it is placed in the receiving

agent’s message buffer. Before evaluation, if there is a message in the agent’s buffer,

the message is removed and a data variable for the agent is updated with the message

data from the removed message. This data contains directional information about

the prey if the sending agent was in FOV of they prey at the time the sending agent

sent the message. A maximum number of 4 messages can be held in each message

buffer. At the time of receiving a message, if an agent’s message buffer is full then

the first message (oldest message) in the buffer is removed and the newly received

message is added to the end of the buffer.

The evaluation of all four agents occurs in 1 time cycle and each evaluation results

in one movement (Up, Down, Left, Right or Stay) on the grid. The GP structure

CHAPTER 4. EVOLVED COMMUNICATION PROTOCOLS 30

consists of a heterogeneous team of agents such that each agent uses its own tree.

4.1.3 Communication Protocols

A communication protocol defines the method by which a sending agent sends a

message to a receiving agent’s message buffer. Seven different types of message passing

are examined including agents sending messages individually, as a leader or as a

member of a team. Table 4.1 defines the communication protocols. In this table,

Agents 1 to 4 are shown as A0, A1, A2 and A3. The description of how message

passing is accomplished for each communication protocol is as follows:

• Send22 : Two teams of two agents. A0 and A1 form one team and A2 and A3

form the other team. Each agent sends to its partner only.

• Send21 : Two teams of two agents. A0 and A1 form one team and A2 and A3

form the other team. A0 sends to A1, A2 sends to A3.

• SendLine : Each agent sends to one other agent only (except for the last agent)

in the form of a line such that A0 sends to A1, A1 sends to A2 and A2 sends

to A3.

• SendLine2D : Each agent sends to two other agents (except for the first and

last agents) in the form of a line such that A0 sends to A1, A1 sends to A0 and

A2, A2 sends to A1 and A3 sends to A2.

• Send13 : The first agent A0 (acting as a leader), sends to all other agents A1,

A2 and A3.

• SendAll : Each agent sends to every other agent.

• SendK : A set of “send” commands (similar to the ones used by robot agents

in Iba [6]) that allow the agent, A, to send to other agents based on proximity.

SendKN0 allows A to send to its nearest agent, SendKN1 allows A to send to

its second nearest agent, and SendKN2 allows A to send to its farthest agent.

4.2 Experiment Details

This section describes the experiment details for two experiments, Prey Linear Move-

ment and Prey Random Movement. Each experiment uses the same settings for the

CHAPTER 4. EVOLVED COMMUNICATION PROTOCOLS 31

Table 4.1: Communication Protocols

Communication Protocols Method of
Message Passing

Send22 A0 ↔ A1
A2 ↔ A3

Send21 A0 → A1
A2 → A3

SendLine A0 → A1 → A2 → A3
SendLine2D A0↔A1↔A2↔ A3

Send13 A0 → A1, A2, A3
SendAll A0 → A1, A2, A3

A1 → A0, A2, A3
A2 → A0, A1, A3
A3 → A0, A1, A2

SendK (similar to Iba [6])
SendKN0 A → nearest agent
SendKN1 A → 2nd nearest agent
SendKN2 A → farthest agent

GP parameters found in Table 4.2. The initial method to create trees uses Koza’s

Ramped half-and-half method made available by [30]. To create trees, the builder

method picks GROW 50% of the time and FULL the other 50% of the time. It

uses a range (Min-Max Tree size ramp) to determine the size of the tree. A random

value within the range is picked and is used as the maximum tree size for the FULL

approach and is used as the tree size for the GROW approach [30].

The fitness function, GP language, testing and training methods are also the same

for the two experiments and are described below. The only difference between the two

experiments lies in the movement of the prey. In the first experiment, Prey Linear

Movement, the prey starts from a random position within its own start area and

moves linearly (Up ↑) on the grid. In Prey Random Movement, the prey moves in a

random pattern (Up, Down, Left or Right) on the grid. All agents move only one step

per time cycle. Both experiments tested each communication protocol individually.

4.2.1 GP Language

The GP language is limited in order to allow high-level behaviours to emerge. The

GP structure in Figure 4.2 is created using the strongly typed language from Table

4.3.

CHAPTER 4. EVOLVED COMMUNICATION PROTOCOLS 32

Table 4.2: GP Parameters

GP Parameter Value
Initial Tree Method Koza’s Ramped half-and-half [30], [22]
Min-Max Tree size (ramp) 4-6
Population size 1000
Generations 125
Selection Tournament, size = 4
Crossover 90%
Mutation 10%
Runs per experiment 20

Table 4.3: Strongly Type Language

ROOT ::= (SIM, SIM, SIM, SIM)
SIM ::= CommandTree(EXPR,EXPR)
EXPR ::= Left | Right | Up | Down | Stay |

::= IfGrtEql(NIL,NIL,EXPR,EXPR) |
::= IfDist(NIL,NIL,EXPR,EXPR) |
::= IfDot(NIL,NIL,EXPR,EXPR) |
::= Send(EXPR)

COM ::= C1
NIL ::= Goal | AgentDir0 | AgentDir1 | AgentDir2 |

::= Add(NIL,NIL) |
::= Sub(NIL,NIL) |
::= Rotate90(NIL) |
::= S2(NIL) |
::= S1/2(NIL) |
::= Reverse(NIL) |
::= North | South | East | West |
::= LRM

Terminal Set

The terminal set used is defined in Table 4.4. Movement commands (Up, Down,

Left, Right and Stay) are sent directly to the agent as a result of the evaluation of

its command tree. The language is typed such that only 1 movement is sent per

evaluation. The direction vectors, North, South, West and East contain the unit

vector of each direction. There are two communication commands, C0 and C1. C0

is used as the default command if no messages have been sent to an agent and C1

is the command used when messages are sent by agents. The Goal terminal gives

the direction to the agent only if the agent is within field of view (FOV) of the

CHAPTER 4. EVOLVED COMMUNICATION PROTOCOLS 33

Table 4.4: Terminal Set

Name Description
Up,Down,Left,Right,Stay move commands: ↑, ↓,←,→
North,South,West,East (0, 1), (0,−1), (−1, 0), (1, 0)

C1 communication command
Goal direction from prey to agent

if agent is within FOV
AgentDir0-2 (similar to Iba [6]) direction from nearest(0))

2nd nearest (1) and farthest agent(2)
LRM Last Received Message

Table 4.5: Function Set

Function Description
Root returns the evaluated value of the entire tree
SimAgent returns the evaluated value of one agent
Add vector addition
Sub vector subtraction
S2 scales vector by 2
S1/2 scales vector by 1/2
Rotate90 rotates vector by 90 degrees
Reverse multiplies vector by −1
IfGrtEql compares the length of two vectors
IfDot calculates the dot product of two vectors
IfDist checks if agent is withing FOV of prey
Send sends a message to another agent

(see Communication Protocols, Table 4.1)

prey, otherwise, it gives a default direction of (40,40). Directions to the nearest,

2nd nearest and farthest agent are given in AgentDir0, AgentDir1 and AgentDir2

respectively (similar to the ones used for robot navigation in Iba [6]). The terminal

node to hold data for the last message removed from an agent’s message buffer is

named Last Received Message (LRM). Before evaluation of its tree, an agent checks

its message buffer. If it contains messages, the first message is removed and its data is

set to the LRM variable to be used for that evaluation cycle. If there are no messages

in its buffer, the LRM node is set to the default vector (40,40).

Function Set

The function set is seen in Table 4.5. Functions include mathematical operations on

two dimensional vectors, logical operations and message sending commands. Each

logical operation consists of at least two child nodes [6]. The result of the logical

CHAPTER 4. EVOLVED COMMUNICATION PROTOCOLS 34

operation will evaluate only one of the child nodes. For IfGrtEql, if the length of the

first input vector is ≥ to the length of the second input vector, then the third child

node is evaluated, otherwise, the fourth child is evaluated. In IfDot, the result of the

dot product of the first two input vectors is calculated. If 0 < result ≤ 1 then the

third child node is evaluated, otherwise, the fourth child is evaluated. For IfDist, if

the agent is within FOV of the prey, then the first child node is evaluated, otherwise,

the second child is evaluated. Finally, the message sending command is listed as Send.

In both experiments, all seven communication protocols, as listed in Table 4.1, are

tested individually. For each test, the Send command is replaced with the specific

communication protocol. For all communication protocols, when an agent issues a

send command it first checks to see if it is within FOV of the prey. If it is within

FOV, the message data sent to the receiving agent contains the direction from the

receiving agent to the prey, otherwise, it contains a default value of (40,40).

4.2.2 Training and Testing Methods

The training and testing of a GP individual consists of cycles and episodes. Training

and testing begin with the agents and prey starting in a random position within

their own area on the grid (see Figure 4.1). In one cycle, all four agents evaluate

their command tree once, one at a time. Each evaluation results in one movement

of the agent, where one movement equates to one (cell) on the grid (and one unit in

distance). After 30 cycles, one episode is complete (i.e. 1 episode = 30 cycles). In

training, each GP individual is given 10 episodes and the positions of the agents/prey

are reset to the original starting position after each episode is complete. The test run

uses the GP individual with the best fitness in training. This GP individual is tested

with 30 episodes instead of 10 and the test run sets a new random start position for

each agent and the prey before a new episode begins.

4.2.3 Fitness Function

Fitness is measured by finding the sum of episode fitness scores. The episode fitness

is the sum of each of the agent’s distance to the prey in 30 cycles, where each cell

on the grid represents 1 unit of distance. GP individuals with better fitness scores

will minimize the distance sum as agents track (keep as close as possible to) the prey.

CHAPTER 4. EVOLVED COMMUNICATION PROTOCOLS 35

Equation (4.1) shows the total distance fitness calculation used in training:

TotDist =

q∑
k=1

m∑
j=1

3∑
i=0

√
(Ai.x− P.x)2 + (Ai.y − P.y)2 (4.1)

Here, Ai represents the location of Agenti, where i = 0...3, P is the location of the

prey, m represents the number of cycles and q is the number of episodes. We set q to

10 in training and to 30 in testing in our experiments. Similar to Equation (4.1), the

test run fitness measures the average distance of all the episodes as seen in Equation

(4.2):

AveDist =
TotDist

q
(4.2)

4.3 Results

This section compares the performance of all communication types. In order to better

understand reasons for differences in performance, the top fitness of the best and worst

communication type are analyzed for each prey movement type (linear and random).

If significant differences are found in the performance between communication types,

the data is further analyzed in search of emergent behaviour.

The training results for linear movement of the prey are seen in Figures 4.3,

4.4, and 4.5. These figures display the average adjusted fitness performance of each

generation in 20 runs, with a total of 125 generations per run. The average fitness

(best fitness in orange colour range and mean fitness in blue colour range) is shown

for each communication type. In order to better identify best and worst performers

in training fitness, Figure 4.4 shows two of the top performers (SendAll and Send22)

and Figure 4.5 shows both the best performer (SendAll) and the worst performer

(SendK) for linear movement of the prey.

The training results for random movement of the prey are seen in Figure 4.6. This

figure displays the average fitness performance of each generation in 20 runs, with a

total of 125 generations per run. The average fitness (best fitness in orange colour

range and mean fitness in blue colour range) is shown for each communication type.

Table 4.6 displays the performance of test runs for a linear moving prey. It shows

the best individual GP found in each training run by listing the minimum fitness, the

maximum fitness, and the average fitness of 20 test runs. In the same manner, Table

4.7 displays the performance of test runs for a random moving prey.

CHAPTER 4. EVOLVED COMMUNICATION PROTOCOLS 36

Figure 4.3: Prey Linear Movement - Training Fitness for all Communication Types
SendAll, SendLine, SendLine2D, Send22, Send21, Send13, and SendK

Table 4.6: Test Fitness Summary Linear Prey (20 runs).

Prey Communication Min Ave Max
Movement Type Fitness Fitness Fitness

of 20 runs of 20 runs of 20 runs
Linear SendAll 707 788 852

Send22 727 789 878
Send21 713 801 876
Send13 712 803 849

SLine2D 747 806 875
SLine 728 804 920
SendK 783 827 868

Fitness is a minimization function. See Equation (4.2).

CHAPTER 4. EVOLVED COMMUNICATION PROTOCOLS 37

Figure 4.4: Prey Linear Movement - Training Fitness for Top Performers
SendAll and Send22

4.3.1 Statistical Analysis

The average test fitness values in Table 4.6 reveal that for linear movement of prey,

SendAll and Send22 are the top performers with scores of 788 and 789 respectively,

and SendK is the worst performer with a score of 827. The results for the random

movement of the prey in Table 4.7 show that there are small differences in the average

fitness values across all communication protocols with an average fitness range from

720 to 739. Again SendAll is seen as the top performer with a score of 720 and inter-

estingly, Send22 is the worst performer with a score of 739. To verify the significance

of the results, the One-Way ANOVA test (using Minitab [37]) with a 95% confidence

interval is used. The ANOVA test uses a two-tailed T-test with seven factors, where

each factor represents one communication protocol including the final test fitness for

CHAPTER 4. EVOLVED COMMUNICATION PROTOCOLS 38

Figure 4.5: Prey Linear Movement - Training Fitness for Best and Worst Performers
SendAll and SendK

each of the 20 test runs. The ANOVA test results for linear movement of the prey

show that the P − V alue < α (see Appendix A) indicating that there is a significant

difference in the fitness results. The ANOVA test results for random movement of

the prey show that the P − V alue > α (see Appendix A) indicating that there is a

not a significant difference in the fitness results for random movement of prey.

To identify which factors have significantly different means in the linear move-

ment of the prey, the Tukey method [38] for multiple comparisons is used for the

communication protocols with results shown in Table 4.8. In these tables, protocols

which do not share the same group letter indicate that their range of difference of

mean does not contain a zero. Thus, protocols labelled with different letter groups

are considered to be significantly different [39]. The top performers (SendAll and

Send22) and the worst performer (SendK) for linear movement of prey do not share

CHAPTER 4. EVOLVED COMMUNICATION PROTOCOLS 39

Figure 4.6: Prey Random Movement - Training Fitness for all Communication Types
SendAll, SendLine, SendLine2D, Send22, Send21, Send13, SendK

Table 4.7: Test Fitness Summary Random Prey (20 runs).

Prey Communication Min Ave Max
Movement Type Fitness Fitness Fitness

of 20 runs of 20 runs of 20 runs
Random SendAll 638 720 776

Send21 683 729 805
SLine2D 682 730 763

SLine 674 735 774
SendK 672 735 772
Send13 673 735 767
Send22 698 739 803

Fitness is a minimization function. See Equation (4.2).

the same letter group. This reveals that there is a significant difference between the

top performers and the worst performer.

CHAPTER 4. EVOLVED COMMUNICATION PROTOCOLS 40

Table 4.8: Tukey Comparisons for Communication Protocols (Linear Prey)

Communication Group Average
Protocol Letter Fitness
SendK A 827
SendLine2D AB 806
SendLine AB 804
Send13 AB 803
Send21 AB 801
Send22 B 789
SendAll B 788

Protocols that do not share the
same letter are significantly different

Table 4.9: Tukey Comparisons for Communication Protocols (Random Prey)

Communication Group Average
Protocol Letter Fitness
Send22 A 739
SendLine A 735
SendK A 735
Send13 A 735
SendLine2D A 730
Send21 A 729
SendAll A 720

Protocols that do not share the
same letter are significantly different

Table 4.9 shows the Tukey method for ANOVA test results in the random move-

ment of the prey. This table verifies that there is not a significant difference in the

results for random movement of the prey because all protocols share the same letter

group.

4.3.2 Emergent Behaviour

The results show that most tests evolved competent agents that are able to find and

follow the prey. Many of the communication protocols did not produce significant

differences in fitness scores or perceived behaviours. However, some experiments did

regularly evolve interesting behaviours that show high-levels of coordination among

agents. These behaviours are highlighted in the remainder of this section.

CHAPTER 4. EVOLVED COMMUNICATION PROTOCOLS 41

Table 4.10: Message Sending Patterns (Prey Linear Movement)

SendAll Run 14
Sender Receivers Description
A0 → A1, A2, A3 (rarely sends)
A1 → A0, A2, A3 (sends with A3 every other cycle)
A2 (never sends)
A3 → A0, A1, A2 (sends with A1 every other cycle)

Send22 Run 15
Sender Receivers Description
A0 (never sends)
A1 (never sends)
A2 → A3 (sends every other cycle)
A3 → A2 (sends every other cycle)

Table 4.11: SendAll Staircase Pattern: Agents Message Buffer Contents

SendAll(Linear) Test Run 14, Cycles 9-13
From Agent 0 From Agent 1 From Agent 2 From Agent 3

Cycle Agent Message Agent Message Agent Message Agent Message
LRM LRM LRM LRM

9 1 (40,40) 1 (40,40)
10 3 (40,40) 3 (40,40) 3 (40,40) 1 (40,40)

1 (40,40)
11 1 (40,40) 1 (40,40)
12 3 (40,40) 3 (40,40) 3 (40,40) 1 (1,-6)

1 (3,-11)
13 1 (-4,-9) 1 (3,-11) 1 (1,-5)

1 (3,-10)

Synchronized Alternating Sending Pattern

Table 4.10 describes the coordination of message passing among top individuals of

the SendAll and Send22 communication protocols. It was created by examining the

contents of the message buffers before each agent evaluated their command tree.

This table demonstrates that SendAll (Run 14) has two agents (Agents 1 and 3) that

almost always send out messages to all other agents and has two agents (Agents 0

and 2) that rarely/never send messages. Table 4.11 shows the message buffer data

for this run. This data shows that Agents 1 and 3 coordinate their message passing

by synchronizing their “sends” so that they send a message to all other agents on the

same cycle, every other cycle. In this table it is seen that Agent1 and Agent 3 have

a message from each other every other cycle.

CHAPTER 4. EVOLVED COMMUNICATION PROTOCOLS 42

Figure 4.7: Staircase Pattern: SendAll Agent 1 & 3’s branches
SendAll Run 14

This synchronization causes Agents 1 and 3 to alternate the evaluation of their

C0 and C1 branch each cycle. This coordination is an advantage for these agents

because the required movement nodes (to achieve their goal of finding the prey) are

divided between both branches.

For example, looking at the GP sub-tree structures for Agent 1 and Agent 3 in

Figure 4.7 for Run 14, it is seen that in Agent 1’s C0 branch, it has nodes to move Up,

Down, and Right, and in its C1 branch has a node to move Right. Based on Agent’s

CHAPTER 4. EVOLVED COMMUNICATION PROTOCOLS 43

Figure 4.8: Staircase Pattern: SendAll (Agent 1 (purple))

1 starting position area in Figure 4.1, Agent 1 must learn to move Right (towards

center of grid) in order to find the prey, and it must learn to move Up in order to

track the prey. The alternating pattern of message receiving allows Agent 1 to use

two directions to find the prey. Switching the evaluation of its C0 and C1 branches

each cycle, causes Agent 1 to move Right (C1 branch) then Down (C0 branch). This

synchronization causes Agent 1 to move in a distinct staircase pattern until it finds

the prey as seen in Figure 4.8. Once it finds the prey it is able to move in the Up

direction to follow the prey (not shown). Figures 4.9 and 4.10 give a good example

of how Agent 1 alternates the evaluation of its C0 and C1 branches to move in a

staircase pattern to find the prey.

Table 4.10 also shows the message sending pattern of all agents in Send22 (Run

15). This data shows that Agents 0 and 1 never send messages to each other. However,

it does show a synchronized alternating sending pattern between Agent 2 and Agent

3. Table 4.12 shows the message buffers for this run. In this table it is seen that

Agent 2 and Agent 3 use alternate cycles to send messages to each other. In turn,

this causes Agents 2 and 3 to evaluate their C0 or C1 branch every other cycle.

Similar to previous tests, this causes Agent 3 to move in a distinct staircase pattern

until it finds the prey. The staircase pattern for this run is shown in Figure 4.11.

Once Agent 3 finds the prey it is able to move in the Up direction to follow the prey

(not shown).

CHAPTER 4. EVOLVED COMMUNICATION PROTOCOLS 44

Figure 4.9: Staircase Pattern: SendAll Cycle 11

Figure 4.10: Staircase Pattern: SendAll Cycle 12

Guard Behaviour through Collaboration

A behaviour found in the video game series Metal Gear Solid (MGS)[36] is a guard

protecting an area. Generally, the guard protects an area by remaining in a defined

area. Once the guard spots an intruder, it begins to follow the intruder and notify

other guards for reinforcement. Upon notification, reinforcement guards track (and

attack) the intruder. The agents from the best test run in the Prey Linear Movement

CHAPTER 4. EVOLVED COMMUNICATION PROTOCOLS 45

Figure 4.11: Staircase Pattern: Send22 (Agent 3 (green))

Table 4.12: Send22 Staircase Pattern: Agents Message Buffer Contents

Send22(Linear) Test Run 15, Cycles 11-18
From Agent 0 From Agent 1 From Agent 2 From Agent 3

Cycle Agent Message Agent Message Agent Message Agent Message
LRM LRM LRM LRM

11 2 (40,40)
12 3 (40,40)
13 2 (40,40)
14 3 (40,40)
15 2 (40,40)
16 3 (-3,4)
17 2 (40,40)
18 3 (-3,-12)

experiment for the SendAll communication protocol, evolved a simple form of this

guard and reinforcement behaviour.

In the best test run (Run 15), predator agents collaborate through message sending

and learn to rely on data sent by other agents to find and follow the prey. Table 4.13

shows the message sending pattern for all four agents in this run. This table was

created by examining the contents of the message buffers before each agent evaluated

its command tree. It is seen that Agent 0 (A0) and Agent 3 (A3) send a message

to all other agents almost every cycle, Agent 2 (A2) sends multiple messages at once

when it is in view of the prey, and Agent 1 (A1) does not send any messages at all.

Additionally, it is seen in Figure 4.12 that Agent 2’s C1 branch does not send a

CHAPTER 4. EVOLVED COMMUNICATION PROTOCOLS 46

Table 4.13: Guard Behaviour Message Sending Pattern

SendAll(Linear) Run 15
Sender Receivers Description
A0 → A1, A2, A3 (always sends)
A1 (never sends)
A2 → A0, A1, A3 (multiple sends when in view of prey)
A3 → A0, A1, A2 (always sends)

Figure 4.12: Guard Behaviour GP: Example of Agent 2’s C1 branch
Agent 2 sends multiple messages to all Agents when it sees the prey.

message and does not move (Stays) if it is not in view of the prey. However, if it is

in view of the prey, Agent 2 sends out four messages at once to every other agent.

Because Agent 2 is in view of the prey, the data in the message contains the direction

to the prey relative to the receiving agent.

Table 4.14 shows the message buffers for this run. It is seen that the message

buffers for Agents 0, 1 and 3 contain messages from Agent 2 (Cycles 5-17) and the

message data contains directional information to the prey.

The C1 branch for Agent 1 is seen in Figure 4.13. Upon evaluation of Agent 1’s C1

branch, the LRM node will be updated with directional information to the prey (from

the message data). This branch shows that, using the IfDist expression, if Agent 1

is not within FOV of the prey it uses the LRM node with the IfDot expression to

decide to move Right or Left. If it is within FOV of the prey then it moves Up (to

follow the prey). An example of this is demonstrated in Figures 4.14 and 4.15.

The guard and reinforcement behaviour is shown in the cycle time line found in

CHAPTER 4. EVOLVED COMMUNICATION PROTOCOLS 47

Table 4.14: Guard Behaviour: Agents Message Buffer Contents

SendAll(Linear) Run 15, Cycles 4-17
From Agent 0 From Agent 1 From Agent 2 From Agent 3

Cycle Agent Message Agent Message Agent Message Agent Message
LRM LRM LRM LRM

4 3 (40,40) 0 (40,40) 0 (40,40) 2 (-7,6)
3 (40,40) 3 (40,40) 3 (40,40) 2 (-7,6)
3 (40,40) 3 (40,40) 3 (40,40) 2 (-7,6)
3 (40,40) 0 (40,40) 0 (40,40) 2 (-7,6)

5 2 (3,-5) 2 (8,7) 0 (40,40) 2 (-6,7)
2 (3,-5) 3 (40,40) 3 (40,40) 2 (-6,7)
3 (40,40) 3 (40,40) 3 (40,40) 2 (-6,7)
3 (40,40) 0 (40,40) 0 (40,40) 2 (-6,7)

12 2 (3,-11) 2 (1,-6) 0 (40,40) 2 (1,-6)
2 (3,-11) 3 (40,40) 3 (40,40) 2 (1,-6)
3 (40,40) 3 (40,40) 3 (40,40) 2 (1,-6)
3 (40,40) 0 (40,40) 0 (40,40) 2 (1,-6)

13 2 (3,-9) 2 (0,-5) 0 (40,40) 2 (1,-5)
2 (3,-9) 3 (40,40) 3 (40,40) 2 (1,-5)
3 (40,40) 3 (40,40) 3 (40,40) 2 (1,-5)
3 (40,40) 0 (40,40) 0 (40,40) 2 (1,-5)

15 2 (3,-5) 2 (0,-3) 0 (40,40) 2 (1,-3)
2 (3,-5) 3 (40,40) 3 (40,40) 2 (1,-3)
3 (40,40) 3 (40,40) 3 (40,40) 2 (1,-3)
3 (40,40) 0 (40,40) 0 (40,40) 2 (1,-3)

17 2 (3,-1) 2 (2,-1) 0 (40,40) 2 (1,-1)
2 (3,-1) 3 (40,40) 3 (40,40) 2 (1,-1)
3 (40,40) 3 (40,40) 3 (40,40) 2 (1,-1)
3 (40,40) 0 (40,40) 0 (40,40) 2 (1,-1)

CHAPTER 4. EVOLVED COMMUNICATION PROTOCOLS 48

Figure 4.13: Guard Behaviour GP: Example of Agent 1’s C1 branch
Agent 1 uses the LRM node to decide to move Right or Left.

Table 4.15 and Figures 4.16, 4.17 and 4.18. Agent 2 (dark blue) acts a “guard” and

“stays” until it views the prey. When it sees the prey it sends multiple messages to all

other agents. These messages help Agent 1(purple) find and follow the prey. Initially,

Agent 1 is seen moving Right in Cycles 0-12. After Cycle 13, Agent 1 begins to move

Left (see Figures 4.17 & 4.18). Therefore, it seems that Agent 1 is using the LRM

data in its message buffer to decide to move Right or Left and once it is within view

of the prey it moves Up to follow the prey (not shown).

CHAPTER 4. EVOLVED COMMUNICATION PROTOCOLS 49

Figure 4.14: Guard Behaviour: Agent 2 Sends out Messages.

Figure 4.15: Guard Behaviour: Agent 1 uses LRM data.

CHAPTER 4. EVOLVED COMMUNICATION PROTOCOLS 50

Figure 4.16: Guard Behaviour Cycle 13.
Coloured lines show the path of the agent from Cycle 0-13. Agent 2 (dark blue) is

in FOV of prey and sends messages notifying agents of the prey’s location. At Cycle
13, Agent 1 (purple) using LRM data, changes direction and begins to move left.

Figure 4.17: Guard Behaviour Cycle 15.
Coloured lines show the path of the agent from Cycle 0-15. Using LRM data sent
from Agent 2 (dark blue), Agent 1 (purple) stops moving left and waits for prey.

CHAPTER 4. EVOLVED COMMUNICATION PROTOCOLS 51

Figure 4.18: Guard Behaviour Cycle 17.
Coloured lines show the path of the agent from Cycle 0-17.

3 agents are in FOV of prey and follow prey in the next cycles (not shown).

Table 4.15: Guard Behaviour Time Line

Time Line Cycle(s) Description
Event

0 0-4 Agent 0 moves Down,
(not shown) Agent 1 moves to the Right,

Agent 2 waits in position,
Agent 3 moves to the Left

1 5 Agent 2 enters FOV of prey, floods all other agents’
(not shown) message buffers with prey location data

2 5-12 Agent 0 continues to move Down,
(not shown) Agent 1 continues to moves to the Right,

Agent 2 follows prey and sends messages,
Agent 3 continues to move to the Left

3 13 Using LRM data from Agent 2
(see Fig. 4.16) Agent 1 begins to move Left and Agent 3 Stays,

Agent 0 continues to move Down,
Agent 2 follows prey and sends messages

4 15 Using LRM data from Agent 2
(see Fig. 4.17) Agent 1 and 3 wait to be in FOV of prey,

Agent 0 continues to move Down,
Agent 2 follows prey and sends messages

5 17 Agent 1, 2 and 3 are all in FOV
(see Fig. 4.18) of prey and follow prey in the Up direction

CHAPTER 4. EVOLVED COMMUNICATION PROTOCOLS 52

Table 4.16: SendK Linear: GP Agents Possible Moves for Best Run (Run 20)

Agent 0 Agent 1 Agent 2 Agent 3
SendK C0 C1 C0 C1 C0 C1 C0 C1
Run 20 D S U D R U S U D R S U S L R S L R

U = Up, D = Down, L = Left, R = Right or S = Stay

Table 4.17: SendK Message Sending Pattern, Cycles 14-21

Sender Receivers
A0 − > SendKN0, SendKN2 A2, A3
A1 − > SendKN0 A2
A2 − > SendKN0, SendKN1 A0,A1
A3 − > SendKN0, SendKN1, SendKN1 A0,A1,A2
Agent 0 (A0), Agent 1 (A1), Agent 2 (A2), Agent 3 (A3)
The sender’s receiver depends on the closest (SendKN0),

2nd closest (SendKN1), and farthest agent (SendKN2) at send time.

Prey Linear Movement Worst Performer: SendK

It has been shown that the SendK protocol is the worst performer when the prey

moves in a linear pattern. This section analyzes the best run (Run 20) of the SendK

protocol to determine reasons for its poor performance.

Table 4.16 shows the possible movements for each agent based off the GP tree

for Run 20. This data shows that Agent 0’s C0 (no message) branch and C1 (mes-

sage) branch allows for the possibility for movement in the Down/Stay (C0) and

Up/Down(C1) directions. This is good because due to its start position, Agent 0

must move in the Up or Down direction in order to find and follow the prey in its

linear movement pattern. Similarly, the GP structures for the remaining agents show

that they all have the possibility of moving in their required directions. Thus, based

off the GP structure alone, all agents in SendK’s best run have the possibility of

moving in the proper direction to achieve their goal of finding and following the prey.

Table 4.17 shows the message sending pattern for all four agents for Run 20. This

table was created by examining the GP structure of the agents for Run 20 and by

examining the content of each agent’s message buffer before the agent’s tree was

evaluated in each cycle. This table shows that messages are sent to the nearest,

second nearest and farthest agent at the time a message is sent. In Cycles 14 -21,

Agent 0 sends to its nearest and farthest agents, Agent 2 and Agent 3. Agent 1 sends

to its nearest agent, Agent 2. Agent 2 sends to its nearest and second nearest agents,

Agent 0 and Agent 1. Agent 3 sends to all agents, Agent 0, Agent 1 and Agent 2.

CHAPTER 4. EVOLVED COMMUNICATION PROTOCOLS 53

Figure 4.19: SendK GP Sub-tree Example
SendK Run 20, Agents 1 & 2

An example of the message buffer contents can be found in Table 4.18 and exam-

ples of sub-trees for Agent 1 and Agent 2 can be seen in Figure 4.19. Cycles 14-20 of

the message buffers in Table 4.18 show that Agent 2 is in FOV of the prey and sends

messages (containing relative directional data to the prey) to Agent 1 (see Agent 1’s

message buffer contents). Looking at Figure 4.19, it is seen that Agent 1’s C1 branch

does not contain an LRM node so it is unable to use the information sent to it by

Agent 2.

The message buffer shows that Agent 1 and Agent 2 send LRM data to each other

CHAPTER 4. EVOLVED COMMUNICATION PROTOCOLS 54

from Cycles 16 - 20. However, neither of the agents use this data because they do not

have the LRM node in their C1 branches. The only advantage they have in receiving

a message from one another is that their C1 branch contains the proper nodes (IfDist)

to allow them to follow the prey (if they do come within of the prey).

It is seen in Run 20 that most agents in SendK are able to follow the prey once

they come into view of the prey. Receiving messages indirectly helps agents follow

the prey, but because no agents have the LRM node, receiving messages does not

help them find the prey. This may be one of the reasons SendK did not perform as

well as SendAll and Send22.

Prey Random Movement

The solutions in the Prey Random Movement experiment did not perform as well as

they did in the Prey Linear Movement experiment. This section analyzes the results

to determine the reason for the poor performance. Table 4.19 shows the message

sending pattern for all four agents for the top performing protocol, SendAll. Figure

4.20 shows the sub-trees for Agent 0 and Agent 3 of Run 12 and Table 4.20 shows

the message buffer contents for this run.

Table 4.19 shows that Agent 1 and Agent 2 rarely send messages at all. However,

Agent 0 and Agent 3 send one message to all other agents every other cycle so that

Agents 1 and 2 always have a message in their buffer and Agents 0 and 3 have a

message in their buffer every other cycle. Table 4.20 shows that the message buffers

for Agent 0 and Agent 3 contain messages from each other every other cycle causing

them to evaluate their C0 and C1 branches every other cycle.

Unlike previous examples, this synchronization does not help Agent 3 because

as seen in Figure 4.20, its C0 and C1 branches combined contain only 2 (Left and

Right) of the 4 required movements to follow the prey. Similarly, Agent 0’s C0 and

C1 branches contain only 2 (Up and Left) of the 4 required movements. Thus, Agent

1 and Agent 3 can find and follow the prey only as the prey moves in 2 directions.

When viewing all episodes in the video playback for test Run 12, it is seen that some

of the agents are able to find and follow the prey using 2 or 3 directions. However,

in most cases agents fail to continue to follow the prey when the prey moves in a

direction that is not included in either its C0 or C1 branch.

Table 4.19 shows the message sending pattern of all agents in Send 22 (Run 3).

This table shows that Agent 0 and Agent 1 rarely send messages to each other. Agents

2 and 3 often send messages to each other every other frame, similar to the alternating

synchronized sending pattern that is seen in previous experiments.

CHAPTER 4. EVOLVED COMMUNICATION PROTOCOLS 55

Table 4.18: SendK: Agents Message Buffer Contents

SendK (Linear) Test Run 20, Cycles 14-20
From Agent 0 From Agent 1 From Agent 2 From Agent 3

Cycle Agent Message Agent Message Agent Message Agent Message
LRM LRM LRM LRM

14 2 (-1,-4) 3 (40,40)
3 (40,40) 1 (40,40)

0 (40,40)
1 (40,40)

15 3 (40,40) 0 (40,40)
2 (-1,-3) 1 (40,40)
3 (40,40) 0 (40,40)

1 (40,40)

16 2 (-1,-3) 0 (40,40) 0 (40,40)
3 (40,40) 1 (40,40)
2 (-1,-2) 3 (40,40)

1 (1,0)

17 3 (40,40) 3 (40,40) 1 (40,40)
3 (40,40) 2 (-1,-2) 3 (40,40)

2 (-1,-1) 1 (1,0)
1 (1,0)

18 3 (40,40) 2 (-1,-2) 1 (1,0)
2 (-1,-1) 1 (1,0)
2 (-1,-1) 3 (40,40)

1 (1,0)

19 2 (-1,-1) 1 (1,0) 0 (40,40)
2 (-1,-1) 3 (40,40)
2 (-1,-1) 1 (1,0)

3 (40,40)

20 1 (-2,-2) 2 (-1,-1) 3 (40,40)
3 (40,40) 2 (-1,-1) 1 (1,0)
3 (40,40) 2 (-1,-1) 3 (40,40)

CHAPTER 4. EVOLVED COMMUNICATION PROTOCOLS 56

Figure 4.20: SendAll Random GP Sub-tree Example
SendAll Run 12, Agents 0 & 3

In this case, alternating the message “sends” does not seem to help Agents 2 and

3. The test run playback, along with the message buffers, show that when Agent 3 is

in view of the prey, it stops sending messages to Agent 2.

Table 4.21 shows the message buffers for Run 3. Cycles 20 - 22 and Cycles 27

- 28 show the Agent 2 and Agent 3 have a message from one another every other

cycle. For a short time, from Cycles 23 - 26, Agent 3 is in FOV of the prey and stops

sending messages to Agent 2. Thus, the fact that Agent 3 sees the prey is lost to its

CHAPTER 4. EVOLVED COMMUNICATION PROTOCOLS 57

Table 4.19: Message Sending Patterns (Prey Random Movement)

SendAll Run 12
Sender Receivers Description
A0 → A1, A2, A3 (sends every other cycle)
A1 → A0, A2, A3 (rarely sends)
A2 → A0, A1, A3 (rarely sends)
A3 → A0, A1, A2 (sends every other cycle)

Send22 Run 3
Sender Receivers Description
A0 (rarely sends)
A1 (rarely sends)
A2 → A3 (sends every other cycle)
A3 → A2 (sends every other cycle)

Table 4.20: SendAll Synchronized Message Pattern: Agents Message Buffer Contents

SendAll(Random) Run 12, Cycles 17-22
From Agent 0 From Agent 1 From Agent 2 From Agent 3

Cycle Agent Message Agent Message Agent Message Agent Message
LRM LRM LRM LRM

17 3 (40,40) 3 (40,40) 3 (40,40)
18 0 (40,40) 0 (40,40) 0 (40,40)
19 3 (-2,-2) 3 (7,-3) 3 (1,-1)
20 0 (40,40) 0 (40,40) 0 (40,40)
21 3 (-2,-2) 3 (6,-2) 3 (2,-2)
22 0 (40,40) 0 (40,40) 0 (40,40)

partner. The unpredictable random movement of the prey causes the agents to easily

move out of view of the prey. Agents do not remain in FOV for a long period of time

and may make it difficult for evolving agents to learn how to notify other agents.

4.3.3 Summary of Results

This chapter continues the research of using GP in a multi-agent system. Using the

pursuit domain and a co-operative learning strategy, multiple predator agents learn

the meaning of communication commands in order to achieve their goal of finding

and following a prey. A number of different communication protocols are examined

in two different experiments, Prey Linear Movement and Prey Random Movement.

The outcome of this chapter reveals an emergent behaviour of a synchronized alter-

nating sending pattern among predator agents. This synchronized behaviour helps

CHAPTER 4. EVOLVED COMMUNICATION PROTOCOLS 58

Table 4.21: Send22 Agents Message Buffer Contents

Send22 (Random) Run 3, Cycles 20-28
From Agent 0 From Agent 1 From Agent 2 From Agent 3

Cycle Agent Message Agent Message Agent Message Agent Message
LRM LRM LRM LRM

20 2 (40,40)
21 3 (40,40)
22 2 (40,40)
23 2 (40,40)
24 2 (40,40)
25 2 (40,40)
26 2 (40,40)
27 3 (40,40)
28 2 (40,40)

the coordination of agents in the top performing communication protocols in the Prey

Linear Movement experiment. The Prey Random Movement experiment provides a

more difficult problem and results show that the synchronized message sending is not

as effective. Top performers in the Prey Linear Movement experiment are successful

in achieving the goals of this research. Agents are able to locate and track the prey

using commands and message data sent by other agents. In addition, the best result

shows the learned behaviour and collaboration of agents resemble the behaviour of

guards and reinforcements that can be found in popular stealth video games (e.g.

Metal Gear Solid (MGS)[36]).

Chapter 5

Learning the Meaning of

Commands

5.1 Problem and Environment

This chapter focuses on finding a better solution for the Prey Random Movement

problem discussed earlier in Section 4.3.2. It was shown that the characteristics

of the environment for the Communication Protocols experiment were not sufficient

enough to allow the predator agents to follow the prey when it moved randomly in

all four directions (either Up, Down, Left or Right). The solution for this experiment

focuses on the Send22 and SendAll protocols and uses the same settings as found

in Section 4.2 for the Pursuit Domain environment [19]. However, it augments the

GP Language, the fitness measure and the type of messages that can be sent to each

agent. The goal is to see if the agents can learn the meaning of commands in order

to track the prey.

The results show an emergent message sending pattern in both protocols. The

emergent behaviour is such that one agent is designated as the “sending agent” and

all other agents are designated as “receiving” agents. It is found that in most cases

receiving agents are able to associate meaning to commands received from the sending

agent. Using a more enriched language than seen previously, top performers use a

common sub-tree that influence the agents in achieving their goal of finding and

following the prey. Other solutions, although not among the top performers, are able

to produce more complex trees with common sub-trees that allow for decision making

by the sending agent. In these solutions receiving agents are able to associate specific

meaning to sent commands as well as successfully use message data.

59

CHAPTER 5. LEARNING THE MEANING OF COMMANDS 60

Figure 5.1: Top level GP Structure
C0, C1 and C2 are command branches, only one branch is evaluated each cycle

5.1.1 Learning Strategy

Similar to Section 4.1.1, the learning strategy uses a fully co-operative implementation

with a global fitness measure. The predator agents work together towards the common

goal of following the prey (as closely as possible). The global fitness is a minimization

function calculated over a limited time period. The sum of the distance between all

predator agents to the prey is used for fitness. A base penalty value for each predator

agent that is not within FOV of (and not following) the prey is added to the fitness

sum. If an agent is within distance of the prey and moves in the same direction as

the prey for a defined period of time then that agent does not receive a penalty. The

motivation for this fitness function is to compare how well the Send22 and SendAll

protocols perform in allowing the predators to first find, and then track, the prey’s

random movement. Agents collaborate to minimize the global fitness value using a

heterogeneous team-based learning strategy such that each agent uses its own evolved

strategy.

5.1.2 Communication Strategy and Communication Channel

The communication strategy in this study uses a learned language similar to the one

used in Section 4.1.2. However, one additional command is added for a total of three

generic commands. The commands are C0, C1 andC2. The C1 and C2 commands,

along with simple environment data, are sent individually from one agent to another

through a message passing communication channel. An agent learns to associate a

meaning to each command through evolving branches of its GP tree.

Figure 5.1 shows the top-level of the GP structure. The root node contains 4

child nodes each representing a GP tree for one agent. Each agent node contains its

CHAPTER 5. LEARNING THE MEANING OF COMMANDS 61

own message buffer and either one, two or three child branches (depending on the

protocol), C0, C1 and C2. The order of evaluation for agents is from left to right,

starting at Agent 0 and ending with Agent 3. At the time of an agent’s evaluation,

the message buffer is checked. If the message buffer contains one or more messages

then the agent checks the type of the command in the latest message. If the command

is C1, then the agent evaluates its C1 child; if the command is C2, then the agent

evaluates its C2 child; otherwise, if there is no message in the buffer, the agent

evaluates its C0 child. The evaluation of agents occurs in 1 time cycle and results

in one movement per agent (Up, Down, Left, Right or Stay) on the grid. The GP

structure consists of a heterogeneous team of agents such that each agent uses its own

tree.

5.1.3 Communication Protocols

A communication protocol defines the method by which a sending agent sends a

message to a receiving agent’s message buffer. Three different message types are

examined for Send22 and SendAll and each is listed in Table 5.1 as their own commu-

nication protocol. Message passing for Send22 and SendAll is the same as described

in Chapter 4 with the addition of message types.

• Send22: Two teams of two agents. Agent 0 and Agent 1 form one team and

Agent 2 and Agent 3 form the other team. Each agent sends to its partner only.

• SendAll: Each agent sends to every other agent.

The message types are C1, C1C2, and C1orC2. Depending on the protocol, agents

can send only one of the following types of command:

• C1: Sends only C1 commands.

• C1C2: Sends C1 and C2 commands each at different times.

• C1orC2: Sends either a C1 or C2 command (depending if agent is within FOV

of prey at each send).

In the C1 protocol, only one send message is used to send a message with the

C1 command. Similar to the experiments in Chapter 4, if the agent is within FOV,

the message data sent to the receiving agent contains the direction from the receiving

agent to the prey, otherwise it contains a default value of (4000, 4000). For the

C1C2 protocol, two send message commands are used. SendC1 is used to send the

CHAPTER 5. LEARNING THE MEANING OF COMMANDS 62

Table 5.1: Communication Protocols

Communication Description
Protocols

Send22C1 One send command only.
Agents send C1 command.

Message Command(s) C1
Message Data ifagent <= FOV then send dir to prey

else send default dir
Send22C1C2 Send commands: Send22C1 and Send22C2.

Agents send C1 command on Send22C1.
Agents send C2 command on Send22C2.

Message Command(s) C1, C2
Message Data ifagent <= FOV then send dir to prey

else send default dir
Send22C1orC2 Agents send either C1 or C2 command.
Message Command(s) C1 or C2
Message Data ifagent <= FOV then send dir to prey with C2

else send default dir with C1

SendAllC1 One send command only.
Agents send C1 command.

Message Command(s) C1
Message Data ifagent <= FOV then send dir to prey

else send default dir
SendAllC1C2 Send commands: SendAllC1 and SendAllC2.

Agents send C1 command on SendAllC1.
Agents send C2 command on SendAllC2

Message Command(s) C1, C2
Message Data ifagent <= FOV then send dir to prey

else send default dir
SendAllC1orC2 Agents send either C1 or C2 command.
Message Command(s) C1 or C2
Message Data ifagent <= FOV then send dir to prey with C2

else send default dir with C1

C1 command and SendC2 is used to send the C2 command. For both of these send

commands, if the agent is within FOV, the message data sent to the receiving agent

contains the direction from the receiving agent to the prey, otherwise it contains a

default value of (4000, 4000). In the C1orC2 protocol, one send message command

is used (SendC1orC2) to send either a C1 command or a C2 command. If the agent

is within FOV, the message data sent to the receiving agent contains the direction

from the receiving agent to the prey with the C2 command, otherwise the message

CHAPTER 5. LEARNING THE MEANING OF COMMANDS 63

Table 5.2: GP Parameters

GP Parameter Value

Initial Tree Method Koza’s Ramped half-and-half [30], [22]

Min-Max Tree size (ramp) 7-12

Population size 1000

Generations 125

Selection Tournament, size = 4

Crossover 90%

Mutation 10%

Runs per experiment 20

data sent contains a default value of (4000, 4000) with the C1 command.

5.2 Experiment Details

All GP parameters can be found in Table 5.2. Each experiment uses the same settings

for the GP parameters as seen in Section 4.2 with the exception of the Min-Max

Tree size (ramp). This parameter is increased to allow for larger tree sizes and to

better accommodate the top level structure of the GP (containing 3 levels on its own)

including the root node at level one, the agents’ nodes at level two, and finally the

command nodes at level 3 (see Figure 5.1). The fitness function, GP language, testing

and training methods are described below. In this experiment, the prey moves in a

random pattern (Up, Down, Left or Right) on the grid. Both agents and prey move

only one step per time cycle. Each communication protocol is tested individually (see

Table 5.1).

5.2.1 GP Language

In order to construct the GP structure as shown in Figure 5.1 the strongly typed

language from Table 5.3 is used.

Terminal Set

The terminal set used is defined in Table 5.4. Movement commands (Up, Down,

Left, Right and Stay) are sent directly to the agent as a result of the evaluation of

its command tree. The language is typed such that only 1 movement is sent per

CHAPTER 5. LEARNING THE MEANING OF COMMANDS 64

Table 5.3: Strongly Type Language

ROOT ::= (SIM, SIM, SIM, SIM)

SIM ::= CommandTree(EXPR,EXPR,EXPR)

EXPR ::= Left | Right | Up | Down | Stay |
::= MoveForward |
::= MoveInDir(NIL) |
::= IfGrtEql(NIL,NIL,EXPR,EXPR) |
::= IfDist(NIL,NIL,EXPR,EXPR) |
::= IfDot(NIL,NIL,EXPR,EXPR) |
::= Send(EXPR)

NIL ::= Goal | AgentDir | AgentDir0 | AgentDir1 | AgentDir2 |
::= Add(NIL,NIL) |
::= Sub(NIL,NIL) |
::= Rotate90(NIL) |
::= Reverse(NIL) |
::= North | South | East | West |
::= LRM

Table 5.4: Terminal Set

Name Description

Up,Down,Left,Right,Stay move commands: ↑, ↓,←,→
North,South,West,East (0, 1), (0,−1), (−1, 0), (1, 0)

Goal direction from prey to agent

if agent is within FOV

AgentDir the direction the agent is currently facing

AgentDir0-2 (similar to Iba [6]) direction from nearest(0))

2nd nearest (1) and farthest agent(2)

LRM Last Received Message

MaxDist returns a large distance value (4000)

MoveForward moves agent one step in current direction

evaluation. The direction vectors, North, South, West and East contain the unit

vector of each direction. The Goal terminal gives the direction to the agent only

CHAPTER 5. LEARNING THE MEANING OF COMMANDS 65

Table 5.5: Function Set

Function Description

Root returns the evaluated value of the entire tree

SimAgent returns the evaluated value of one agent

Add vector addition

Sub vector subtraction

Rotate90 rotates vector by 90 degrees

Reverse multiplies vector by −1

IfGrtEql compares the length of two vectors

IfDot calculates the dot product of two vectors

IfDist checks if agent is withing FOV of prey

MoveInDir moves in direction of input vector

and sets current agent’s direction

SendC1, SendC1C2, SendC1orC2 (see Communication Protocols, Table 5.1)

if the agent is within field of view (FOV) of the prey, otherwise it gives a default

direction of (4000, 4000). The AgentDir terminal node holds the current direction

the agent is facing (either North, South, East or West). Directions to the nearest,

2nd nearest and farthest agent are given in AgentDir0, AgentDir1 and AgentDir2

respectively (similar to the ones used for robot navigation in Iba [6]). The terminal

node to hold data for the last message removed from an agent’s message buffer is

named Last Received Message (LRM). Before evaluation of its tree, an agent checks

its message buffer. If it contains messages, the first message is removed and its data is

set to the LRM variable to be used for that evaluation cycle. If there are no messages

in its buffer, the LRM node is set to the default vector (4000, 4000). The MaxDist

node holds a constant value of 4000 representing a large distance value and finally

MoveForward is a movement command and results in the agent moving one step in

its current direction.

Function Set

The function set is seen in Table 5.5. Functions include mathematical operations

on two dimensional vectors, logical operations and message sending commands. The

functions are the same as the ones used in Section 4.2.1 with the addition of the

movement function, MoveInDir. Message sending commands are listed as SendC1,

SendC1C2,and SendC1orC2. The communication commands are C0, C1 and C2.

CHAPTER 5. LEARNING THE MEANING OF COMMANDS 66

C0 is used as the default command if no messages have been sent to an agent and

C1 and C2 are the commands used when messages are sent by agents. The type of

command that is sent to an agent depends on the protocol that is being tested, C1,

C2, and C1orC2. For example, the Send22C1 protocol will send the C1 command to

its partner. If the sending agent is within FOV then the message data will contain

the direction to the prey otherwise it will contain the default direction value (4000,

4000). For a more detailed description see Table 5.1.

5.2.2 Training and Testing Methods

The training and testing of a GP individual consists of cycles and episodes. The

training and testing methods for this experiment are the same as listed in Section

4.2.2. As seen earlier, training and testing begin with the agents and prey starting in

a random position within their own area on the grid (See Figure 4.1). In one cycle, all

four agents evaluate their command tree once in sequence, one after the other. Each

evaluation results in one movement of the agent, where one movement equates to one

(cell) on the grid (and one unit in distance). After 30 cycles, one episode is complete

(i.e. 1 episode = 30 cycles). In training, each GP individual is given 10 episodes and

the positions of the agents/prey are reset to the original starting position after each

episode is complete. The test run uses the GP individual with the best fitness in

training. This GP individual is tested with 30 episodes instead of 10 and the test run

sets a new random start position for each agent and the prey before a new episode

begins.

5.2.3 Fitness Function

The total fitness value is measured by accumulating sums from cycles to episodes. In

each cycle of an episode, the sum of two fitness values is used as a fitness measure for

that cycle. The total sum of each cycle fitness is used as the episode fitness. Finally,

the total sum of each episode fitness score is used as the final fitness value for each

individual GP.

The first fitness value calculated for each cycle is the sum of each of the agent’s

distance to the prey, where each cell on the grid represents 1 unit of distance. Equation

(5.1) calculates each agent’s distance to the prey where A is the agent’s position and

P is the prey’s position.

fAgentDist(A) =
√

(A.x− P.x)2 + (A.y − P.y)2 (5.1)

CHAPTER 5. LEARNING THE MEANING OF COMMANDS 67

The second fitness value used in the cycle fitness measure is the total base penalty

value. This value represents a specific penalty (10 points) for each predator agent in

each cycle. For example, in any given cycle, each agent that is not within FOV of the

prey or chooses not to move in the same direction as the prey is penalized by adding

10 points to the total base penalty value for that cycle. If the agent is in FOV of the

prey and moves in the same direction as the prey then it is not penalized. Thus, if all

four agents choose to move in the same direction as the prey and are in FOV of the

prey, the total base penalty value for that cycle would be zero. However, if none of

the agents were in FOV of the prey or if none of the agents chose the same direction

as the prey then the total base penalty value for the cycle would be 40.

Equation (5.2) shows how the total base penalty value is calculated in each cycle

where lpMove is the prey’s last move (Up, Down, Left or Right), aMove is the move

chosen by the agent in that cycle and FOV is a function that returns true if the agent

is within view of the prey.

fBasePenatly(lpMove, aMove) =

0 if (lpMove == aMove)&&(FOV)

10 otherwise.
(5.2)

Equation (5.3) shows the total distance fitness calculation used in training. Here,

APosi represents the location of Agenti, where i = 0...3, m represents the number

of cycles and q is the number of episodes. We set q to 10 in training and to 30 in

testing in our experiments.

TotF it =

q∑
k=1

m∑
j=1

3∑
i=0

(
fAgentDist(APosi) + fBasePenatly(lpMove, aMovei)

)
(5.3)

Similar to Equation (5.3), the test run fitness measures the average distance of all

the episodes as seen in Equation (5.4).

AveDist =
TotF it

q
(5.4)

CHAPTER 5. LEARNING THE MEANING OF COMMANDS 68

Figure 5.2: Send22 - Training

5.3 Results

In this section the performance results of the communication protocols Send22 and

SendAll with different message types (see Table 5.1) are shown. Using random move-

ment for the prey for each protocol, the training results are first displayed followed

by the testing results.

5.3.1 Send22 Protocol

The training results for Send22C1, Send22C1C2 and Send22C1orC2 are shown in

Figure 5.2. This figure displays the average fitness performance of each generation in

20 runs, with a total of 125 generations per run. The average fitness (best fitness in

orange colour range and mean fitness in blue colour range) is shown for each protocol.

Here it is seen that the best performer in training is Send22C1.

Results for test runs are shown in Table 5.6. This table displays the performance

CHAPTER 5. LEARNING THE MEANING OF COMMANDS 69

Table 5.6: Send22 Fitness Summary (20 Test Runs)

Communication Type Min Fitness Average Fitness Max Fitness
Send22C1 1681 1805 1964
Send22C1C2 1721 1883 2031
Send22C1orC2 1609 1850 2032

Fitness is a minimization function. See Equation (5.4).

Table 5.7: SendAll Fitness Summary (20 Test Runs)

Communication Type Min Fitness Average Fitness Max Fitness
SendAllC1 1641 1790 2023
SendAllC1C2 1701 1905 2094
SendAllC1orC2 1734 1842 1974

Fitness is a minimization function. See Equation (5.4).

of test runs for the best individual GP found in each training run by listing the

minimum fitness, the maximum fitness and the average fitness for 20 test runs.

5.3.2 SendAll Protocol

The training results for SAll22C1, SendAllC1C2, and SendAllC1orC2 are shown in

Figure 5.3. This figure displays the average fitness performance of each generation in

20 runs, with a total of 125 generations per run. The average fitness (best fitness in

orange colour range and mean fitness in blue colour range) is shown for each protocol.

Here it is seen that the best performer in training is SendAllC1.

Results for test runs are shown in Table 5.7. This table displays the performance

of test runs for the best individual GP found in each training run by listing the

minimum fitness, the maximum fitness and the average fitness for 20 test runs.

5.3.3 Statistical Analysis

In this section the statistical performance results are discussed. In each section the

training results are first discussed followed by testing results.

In Figure 5.2 it is seen that for training in the Send22 communication protocols,

the Send22C1 (dark orange line for average of best fitness, dark blue line for aver-

age of mean fitness) outperformed all other types. Send22C1C2 and Send22C1orC2

training fitness values are fairly equal throughout the generations with Send22C1orC2

finishing just slighlty above Send22C1C2 in the final generations. Training fitness for

the SendAll communication protocols is seen in Figure 5.3. This data shows that

CHAPTER 5. LEARNING THE MEANING OF COMMANDS 70

Figure 5.3: SendAll - Training

SendAllC1 (dark orange line for average of best fitness, dark blue line for average

of mean fitness) finished first in performance while SendAllC1orC1 finished second

clearly above SendAllC1C1.

Figure 5.4 compares the top performers in training for Send22 and SendAll com-

munication protocols. Here is is seen that Send22C1 outperforms SendAllC1. Figure

5.4 also shows the second best performers in their own categories, Send22CC1orC2

and SendAllC1orC2. The training graph shows that Send22C1orC2 initially per-

forms just as well as SendAllC1orC2 in early generations, but at around generation

31 SendAllC1orC2 begins to outperform Send22C1orC2.

The test results show a correlation with the training results for each protocol

type. Table 5.6 shows that Send22C1 has the lowest average fitness of 1805 of all

the Send22 communication types with Send22C1orC2 finishing second with a score of

1850. Test results in Table 5.7 show that, similar to the training results, SendAllC1

CHAPTER 5. LEARNING THE MEANING OF COMMANDS 71

Figure 5.4: Send22 SendAll - Training

also outperforms all other SendAll types with the lowest average fitness score of 1790

and SendAllC1orC2 finishes second with a score of 1842.

To verify the significance of the test results the One-Way ANOVA test (using

Minitab [37]) with a 95% confidence interval is used. The ANOVA test uses a two-

tailed T-test with 3 factors, where each factor represents one communication protocol

including the final test fitness for the 20 test runs. In the Send22 protocol, the ANOVA

test results in the P−V alue < α (see Appendix A) indicating that there is a significant

difference in the test results for Send22C1, Send22C1C2 and Send22C1orC2 as shown

in Table 5.6. Similarly, the ANOVA test results for the SendAll protocol show the

P − V alue < α indicating that there is also a significant difference in the test results

for SendAllC1, SendAllC1C2 and SendAllC1orC2 as shown in Table 5.7.

In order to identify which factors have different means the Tukey method [38] for

multiple comparisons is used for both the Send22 and SendAll protocols with results

shown in Table 5.8 and Table 5.9 respectively. In these tables, protocols which do not

CHAPTER 5. LEARNING THE MEANING OF COMMANDS 72

Table 5.8: Tukey Comparisons for Send22 Protocols

Communication Group Average
Protocol Letter Fitness
Send22C1C2 A 1883
Send22C1orC2 AB 1850
Send22C1 B 1805

Protocols that do not share the same
letter are significantly different

Table 5.9: Tukey Comparisons for SendAll Protocols

Communication Group Average
Protocol Letter Fitness
SendAllC1C2 A 1905
SendAllC1orC2 AB 1842
SendAllC1 B 1791

Protocols that do not share the same
letter are significantly different

share the same group letter indicate that their range of difference of mean does not

contain a zero. Thus, protocols labelled with different letter groups are considered to

be significantly different [39].

For the Send22 protocol, Table 5.8 shows that the mean for factor Send22C1 is

significantly better than the mean for Send22C1C2 because they do not share the same

letter group. However, Send22C1 is not significantly different than Send22C1orC2

because they are in the same letter group [37]. The SendAll protocol shows the same

pattern in the Tukey test in Table 5.9. Here it is seen that the factor SendAllC1

is significantly better than SendAllC1C2 because they are not in the same letter

group. Again, it is seen that SendAllC1 is not significantly better than SendAllC1orC2

because they share the same letter group [39].

5.3.4 Emergent Sending Patterns

This section discusses the qualitative aspects such as GP tree structure, message

sending patterns, and playback of some of the best test runs in order to understand

why top GPs are able to outperform others. This examination reveals an emergent

pattern in message sending that is seen at least once in almost all the communica-

tion protocols. Also, it reveals that although the statistical analysis of the test data

determined that the C1 and C1orC2 protocols (in both Send22 and SendAll) are not

significantly different, the C1orC2 protocol is seemingly more successful in allowing

CHAPTER 5. LEARNING THE MEANING OF COMMANDS 73

Table 5.10: Message Sending Patterns for SendAll

SendAllC1 Run 2
Sender Receivers Description
A0 (never sends)
A1 (never sends)
A2 → A0, A1, A3 (sends 3 C1 commands

when not in FOV of prey)
A3 (never sends)

SendAllC1C2 Run 15
Sender Receivers Description
A0 → A1, A2, A3 (always sends C1 command)
A1 (never sends)
A2 (never sends)
A3 (never sends)

SendAllC1orC2 Run 19
Sender Receivers Description
A0 (never sends)
A1 → A0, A2, A3 (almost always sends)
A2 (never sends)
A3 (never sends)

predator agents to learn the meaning of commands through message passing. Like-

wise, although it was shown that the C1C2 protocol (for both Send22 and SendAll)

was statistically worse than the C1 protocol, the evolved agents using the C1C2 pro-

tocol seem to be more successful in learning meaning of commands compared to the

C1 protocol.

An emergent sending pattern is found at least once among the top 3 performers

of each protocol. The common pattern is such that one agent is responsible for

sending messages (i.e. it does not receive messages) while the remaining agents are

responsible for only receiving messages (i.e. they do not send messages). Examples

of this emergent message sending pattern for each protocol are shown in Tables 5.10

and Table 5.11.

Table 5.10 shows that Agent 2 is the only agent sending messages in the SendAllC1

protocol, Agent 0 is the only agent sending messages in the SendAllC1C2 protocol,

and Agent 1 is the only agent sending messages in the SendAllC1orC2 protocol.

Table 5.11 shows that Agent 0 is the only agent sending messages in the Send22C1

protocol, Agent 3 is the only agent sending messages in the Send22C1C2 protocol,

CHAPTER 5. LEARNING THE MEANING OF COMMANDS 74

Table 5.11: Message Sending Patterns for Send22

Send22C1 Run 17
Sender Receivers Description
A0 → A1 (almost always sends)
A1 (never sends)
A2 (never sends)
A3 (never sends)

Send22C1C2 Run 17
Sender Receivers Description
A0 (never sends)
A1 (never sends)
A2 (never sends)
A3 → A2 (always sends)

Send22C1orC2 Run 11
Sender Receivers Description
A0 (never sends)
A1 → A0 (sends to A1

when not in FOV of prey)
A2 (never sends)
A3 (never sends)

Figure 5.5: Common GP Structure
This GP structure allows agents to

find and follow the prey on their own.

and Agent 1 is the only agent sending messages in the Send22C1orC2 protocol.

By interpreting the data, the agents mentioned in the tables above are designated

as sending agents because they do not receive messages from any other agents. In

each protocol, all other agents are designated as receiving agents because they do not

send messages.

CHAPTER 5. LEARNING THE MEANING OF COMMANDS 75

A GP structure that is influential to the agents in reaching their goal is typically

found in one of the receiving agents command trees (either C0, C1 or C2 sub trees).

This structure is shown in Figure 5.5. Upon evaluation of this sub-tree, an agent first

checks if it is within FOV of the prey using the IfDist expression. If it is within range

of the prey then it moves in the direction of the prey using the MoveInDir expression

with the Goal vector node as input (MoveinDir(Goal)) (note: the Goal node will only

have valid direction to the prey if the agent is within FOV of the prey). If the agent

is not within FOV of the prey then the agent chooses another direction to move (in

any one of the four possible directions of Up, Down, Left or Right).

In many cases the test runs show that this sub-tree is all that is needed for an

agent to achieve its goal of finding and following the prey. Using the enriched GP

language, the predator agents seem to learn that they will succeed in their task by

assigning one agent as the “sender” agent (which sends the same command) and

assigning the remaining agents as “receiver” agents each having this sub-tree in the

corresponding command branch (either in C1 or C2).

An example of a typical GP showing this emergent sending/receiving pattern is

shown in Figures 5.6 to 5.9. These figures represent each agent’s GP structure for the

best run using the SendAllC1 protocol. Figures 5.6 and 5.7 show that Agent 0 and

Agent 1 both have the influential sub-tree (see Figure 5.5) as part of their C1 branch.

Figure 5.8 displays the GP structure for the sending agent, Agent 2. It is seen that

Agent 2 sends 3 messages (with the C1 command) to the receiving agents, Agent 0,

Agent 1, and Agent 3, when it is not in FOV of the prey. Finally, Figure 5.9 shows

that Agent 3’s tree does not contain the influential sub-tree.

This section shows an emergent sending pattern in both the Send22 and SendAll

protocols. The top agents are able to simplify message sending so that even agents

using the SendAll protocol (which allows all agents to send to every other agent) learn

that an efficient method to achieve their goal is to have one “sending agent” that sends

the same command to “receiving agents”. In addition, most of the “receiving” agents

have the corresponding command branch (sent by the sending agent) which contains

the influential sub-tree found in Figure 5.5 to help it follow the prey. On a very

basic level, receiving agents are applying a meaning to the C1 command. But in

many cases, agents’ contain the influential expression MoveInDir(Goal) in more than

one command sub-tree (see Figures 5.6, 5.7 and 5.8). Therefore, it seems that this

expression is essential in the success of the Send22C1 and SendAllC1 protocols.

CHAPTER 5. LEARNING THE MEANING OF COMMANDS 76

Figure 5.6: SendAllC1 Run 2 Agent 0
This “receiver” agent evaluates its C1 branch
when it receives C1 commands from Agent 2.

Figure 5.7: SendAllC1 Run 2 Agent 1
This “receiver” agent evaluates its C1 branch
when it receives C1 commands from Agent 2.

5.3.5 Learning the Meaning of Commands

The previous section showed that, through an emergent sending/receiving pattern,

agents were able to associate a meaning to a command that was sent by another agent.

The Send22C1 and SendAllC1 protocols were able to outperform the the C1C2 and

C1orC2 protocols in test runs. However, this section shows that the GP trees created

CHAPTER 5. LEARNING THE MEANING OF COMMANDS 77

Figure 5.8: SendAllC1 Run 2 Agent 2
This “sender” agent sends 3 C1 commands

when it is not in FOV of prey.

Figure 5.9: SendAllC1 Run 2 Agent 3
This “receiver” agent evaluates its C1 branch
when it receives C1 commands from Agent 2.

CHAPTER 5. LEARNING THE MEANING OF COMMANDS 78

using the C1C2 and C1orC2 protocols are more complex than the trees created by

the C1 protocols and in some cases are better able to associate specific meaning to

commands and use information sent by other agents.

As seen in the previous section the SendAllC1 protocol typically creates simple

sub-trees for receiving agents (see Figures 5.6 to 5.9). These sub-trees are able to

apply a meaning to the command C1. Upon receipt of a C1 command, receiving

agents use the common GP structure found in Figure 5.5 to move in the direction of

the prey (if the agent is in FOV of the prey). In general, agents’ tree structures are

simple because they do not require decision making about what types of commands

to send and they do not require message data (through the LRM node) in order find

and follow the prey.

Agents’ trees created using the C1C2 and C1orC2 protocols are more complex and

seem to be able to make decisions on what types of command to send and when to

send them. Receiving agents are able to apply meaning to received commands and are

able to successfully use received message data (through the LRM node). To demon-

strate this, an example from each of SendAllC1C2, SendAllC1orC2, Send22C1C2,

and Send22C1orC2 are examined.

C1C2 - Deciding Which Command to Send

A typical example of decision making found in a sending agent’s sub-tree in the C1C2

protocol is seen in Figure 5.10. This sub-tree allows an agent to decide whether to

send a C1 command or a C2 command. Using the IfDist expression the decision is

based off whether the agent is within FOV of the prey. If the agent is within FOV

of the prey, then it sends a C1 command (using SendAll or Send22, depending on

the protocol) with message data containing information about the relative direction

to the prey. As explained previously, the message data is stored in the LRM node

upon receipt of the message. If the agent is not within the FOV of prey, then the

sending agent sends a C2 command with message data containing a default direction

of (4000, 4000).

This common structure is found in Agent 0’s C2 branch in one of SendAllC1C2’s

top runs, Run 15. Figure 5.11 shows Agent0’s GP sub-tree. Unfortunately, because

Agent 0 never receives any messages, it never gets the chance to evaluate the C2

branch and therefore does not actually make a decision on which command to send.

Instead, it sends C1 messages to all the other agents every cycle by evaluating its

C0 branch. Despite this, this example is shown to demonstrate that SendAllC1C2

creates complex sub-trees that have the potential for decision making when sending.

CHAPTER 5. LEARNING THE MEANING OF COMMANDS 79

Figure 5.10: Common GP Structure to Decide To Send Specific Commands
Allows agents to send specific commands (C1 or C2).

Figure 5.11: SendAllC1C2 Agent 0 Sub-tree, Run 15
A0...A2 = AgentDir0...AgentDir2 Terminals

A top performer, Run 12, in Send22C1C2 protocol is actually able to make de-

cisions when sending commands. Figure 5.12 shows the sub-trees for Agent 2 and

Agent 3 in this run. In Figure 5.12, the C0 branch for Agent 2 (the sending agent)

allows Agent 2 to decide which command to send based on whether it is in FOV of

the prey. Similar to the explanation above, a C1 command (with relative directional

data about the prey) is sent when Agent 2 is in FOV of the prey and a C2 command

CHAPTER 5. LEARNING THE MEANING OF COMMANDS 80

(with default data) is sent when Agent 2 is not in FOV of the prey. The sub-tree for

the receiving agent, Agent 3, is also seen if Figure 5.12. Depending on the message

type sent to Agent 3, it will evaluate either its C1 or C2 branch. Figure 5.12 shows

that the C1 branch for Agent 3 contains the LRM node (which upon receipt of the

C1 command will contain relative directional information about the prey). Thus by

using the LRM node in C1, Agent 3 has learned to associate a meaning to the C1

command. This is of interest because the sending agent, Agent 2, through its decision

making gives a meaning to the C1 command by sending this command only when it

is in FOV of the prey. In turn, the receiving agent is able to understand the meaning

of C1 and uses the LRM node only in its C1 branch. Ideally, the C1 branch of Agent

3 would use the MoveInDir expression with the LRM as input (MoveInDir(LRM))

but it is encouraging that the C1 branch evolved to use the LRM node.

C1orC2 - Understanding The Meaning of Received Commands

The C1orC2 results for both SendAll and Send22 show that receiving agents are able

to apply meaning to the C2 command and are able to successfully use the LRM data

to move in the direction of the prey. In the C1orC2 protocol, decision making on what

command to send is handled in the GP language via the Send function. If the sending

agent is within FOV of the prey, then the send function will send a C2 command with

relative directional data to the prey, otherwise it will send a C1 command with default

directional data.

Agents’ sub-trees for a top performer, Run 19, in the SendAllC1orC2 protocol is

shown in Figures 5.13 and 5.14. In this run, Agent 1 is the sending agent. As seen in

Figure 5.13, in its C0 branch, Agent 1 uses the SendAll expression to send a message

to every other agent each cycle. Either a C1 or C2 command will be sent, as described

above.

Receiving agents, Agent 2 and Agent 3, shown in Figure 5.14, use their C1

branches to move in a specific direction if they are not within FOV of the prey

but, if they are in FOV they use the MoveInDir(Goal) expression. Thus, these agents

are associating the C1 command with moving in the direction of the goal (not using

the LRM data which, based on the send criteria, would not have useful information

in this branch).

The remaining receiving agent shown in Figure 5.13, is Agent 0. It uses the

MoveInDir(LRM) expression in its C2 branch. This agent learns to associate its C2

branch with having relative directional information to the prey via the LRM node.

When Agent 0 receives a C2 command it may move in the direction of the prey

CHAPTER 5. LEARNING THE MEANING OF COMMANDS 81

Figure 5.12: Send22C1C2 Agent 2 & Agent 3 Sub-trees, Run 12
A2 = AgentDir2 Terminal

(depending on other conditions in its C2 sub-tree).

Figures 5.15 and 5.16 show agents’ sub-trees for one of the best examples of an

agent learning the meaning of commands. This example usese the Send22C1orC2

(Run 13). In this example, a sending agent makes decisions about when to send

specific commands and a receiving agent is able to associate specific meaning to those

commands.

In Figure 5.15, it is seen that Agent 0 and Agent 1 have quite simple sub-trees

and do not communicate at all with each other. However, in Figure 5.16 it is seen

that Agent 2 and Agent 3 communicate such that Agent 2 is the sender and Agent 3

is the receiver.

CHAPTER 5. LEARNING THE MEANING OF COMMANDS 82

Figure 5.13: SendAllC1orC2 Agent 0 & Agent 1 Sub-trees, Run 19
Agent 1 is the sending agent and sends messages every cycle.

Agent 0 is a receiving agent and moves in direction of prey using LRM node in C2.
A0...A2 = AgentDir0...AgentDir2 Terminals

Despite the fact that the Send command is programmed to decide which command

to send, Agent 2 uses the IfGrtEql expression to send a command only when it is

in FOV of the prey. Using this expression ensures that Agent 2 will only send a

command (the C2 command) when it is in view of the prey and it will never send a

C1 command. Thus, Agent 2 decides when to send the C2 command. Figure 5.17

CHAPTER 5. LEARNING THE MEANING OF COMMANDS 83

Figure 5.14: SendAllC1orC2 Agent 2 & Agent 3 Sub-trees, Run 19
Agent 2 and Agent 3 are receiving agents and evaluate their C1 or C2 branch each cycle.

A0...A2 = AgentDir0...AgentDir2 Terminals

shows how Agent 2 decides to send messages to Agent 3 using its C0 branch. It also

shows that the message buffer for Agent 3 contains useful information about the prey

(sent from Agent 2).

Agent 3 will evaluate its C0 branch when it does not have a message from Agent

2 and it will evaluate its C2 branch when it does have a message. As seen in Figure

5.16, the C2 branch for Agent 3 contains the MoveInDir(LRM) expression as part of

its sub-branches. The LRM data will contain relative directional information to the

prey. Therefore, Agent 3 associates the C2 command with moving in the direction

of the prey. Figure 5.18 shows how Agent 3 uses the contents of its message buffer

CHAPTER 5. LEARNING THE MEANING OF COMMANDS 84

Figure 5.15: Send22C1orC2 Agent 0 & Agent 1 Sub-trees, Run 13
Agent 0 and Agent 1 do not communicate.

A0...A2 = AgentDir0...AgentDir2 Terminals

and its C2 branch to move towards the prey. Together Figure 5.17 and 5.18 are of

interest because they show how Agent 2 specifically makes the decision to send the

C2 command only when Agent 2 is in FOV of the prey and Agent 3 learns to give

the correct meaning to the C2 command by using the message data to move towards

the prey.

The communication between Agent 2 and Agent 3 can be seen in more detail by

examining images from the playback for Run 13 and by examining the message buffers

CHAPTER 5. LEARNING THE MEANING OF COMMANDS 85

Figure 5.16: Send22C1orC2 Agent 2 & Agent 3 Sub-trees, Run 13
Agent 2 is the sender and Agent 3 is the receiver.

A0...A2 = AgentDir0...AgentDir2 Terminals

of these two agents. Figures 5.19 to 5.24 show the playback images from Cycles 0 -

22 from an episode in test Run 13. In these figures, coloured lines show the path of

the agent from their starting position to the current cycle. Table 5.12 describes the

actions of the agents in these figures as events in a time line. Table 5.13 shows the

contents of the message buffers for these two agents during the same time period.

Figures 5.19 shows the starting positions of the agents at Cycle 0. Here no agents

CHAPTER 5. LEARNING THE MEANING OF COMMANDS 86

Figure 5.17: Deciding Which Command to Send: Send22orC1C2, Run 13
Agent 2 decides to send ONLY when in FOV of prey and

sends C2 commands to Agent 3.

Figure 5.18: Understanding Received Commands: Send22orC1C2, Run 13
Agent 3 evaluates C2 branch and uses LRM to move in direction of prey.

CHAPTER 5. LEARNING THE MEANING OF COMMANDS 87

Figure 5.19: Learning the Meaning of Commands: Send22C1orC2 Run 13, Cycle 1
Agents at starting positions. Agent 0 (light blue),

Agent 1(purple), Agent 2 (dark blue), Agent 3(green)

Figure 5.20: Learning the Meaning of Commands: Send22C1orC2 Run 13, Cycle 9
Agent 2 is in FOV of the Prey and begins to send messages to Agent 3.

Agent 3 uses the message data from Agent 2 to move in direction of Prey.
Agent 0 (light blue), Agent 1(purple), Agent 2 (dark blue), Agent 3(green)

CHAPTER 5. LEARNING THE MEANING OF COMMANDS 88

Figure 5.21: Learning the Meaning of Commands: Send22C1orC2 Run 13, Cycle 11
Agent 2 stays within FOV of Prey and continues to send messages to Agent 3.

Agent 3 uses the message data from Agent 2 to move in direction of Prey.
Agent 0 (light blue), Agent 1(purple), Agent 2 (dark blue), Agent 3(green)

Figure 5.22: Learning the Meaning of Commands: Send22C1orC2 Run 13, Cycle 13
Agent 2 stays within FOV of Prey and continues to send messages to Agent 3.

Agent 3 uses the message data from Agent 2 to move in direction of Prey.
Agent 0 (light blue), Agent 1(purple), Agent 2 (dark blue), Agent 3(green)

CHAPTER 5. LEARNING THE MEANING OF COMMANDS 89

Figure 5.23: Learning the Meaning of Commands: Send22C1orC2 Run 13, Cycle 17
Agent 2 stays within FOV of Prey and continues to send messages to Agent 3.

Agent 3 uses the message data from Agent 2 to move in direction of Prey.
Agent 0 (light blue), Agent 1(purple), Agent 2 (dark blue), Agent 3(green)

Figure 5.24: Learning the Meaning of Commands: Send22C1orC2 Run 13, Cycle 22
Agent 2 stays within FOV of Prey and continues to send messages to Agent 3.

Agent 3 uses the message data from Agent 2 to move in direction of Prey.
Agent 0 (light blue), Agent 1(purple), Agent 2 (dark blue), Agent 3(green)

CHAPTER 5. LEARNING THE MEANING OF COMMANDS 90

Table 5.12: Learning Meaning of Commands: Send22C1orC2 Run 13 Time Line

Time Line Cycle(s) Description
Event

0 1
(see Fig. 5.19) Agents at starting positions

1 2-8 Agent 0 moves Up. Agent 1 moves to the Right.
(not shown) Agent 2, not in FOV (doesn’t send messages),

moves Left then Down. Agent 3 waits.
2 9 Agent 2 enters FOV of prey, sends message to

(see Fig. 5.20) Agent 3 (message contains prey location data).
Agent 3 moves towards the direction of prey.

3 10-11 Agent 0 continues to move Up. Agent 1
(see Fig. 5.21) continues to move to the Right. Agent 2

follows prey and sends message to Agent 3.
Using LRM data from Agent 2, Agent 3
moves in the direction of prey.

4 12-13 Agent 0 continues to move Up. Agent 1
(see Fig. 5.22) continues to move to the Right. Agent 2

follows prey and sends message to Agent 3.
Using LRM data from Agent 2, Agent 3
moves in the direction of prey.

5 14-17 Agent 0 continues to move Up (wraps around
(see Fig. 5.23) grid). Agent 1 continues to move to the

Right (wraps around grid). Agent 2 follows
prey and sends message to Agent 3.
Agent 3 moves in the direction of prey.
Agent 3 reaches prey at Cycle 17.

6 18-22 Agent 0 continues to move Up. Agent 1
(see Fig. 5.24) continues to move to the Right. Agent 2

follows prey and sends message to Agent 3.
Using LRM data from Agent 2, Agent 3
moves in the direction of prey.

have messages in their buffers and their moves are made by evaluating their C0

branches. Figure 5.20 displays the path each agent takes from Cycles 0-9. At Cycle

9, Agent 2 (dark blue) is in FOV of the prey and remains in view of the prey until

Cycle 30.

At Cycle 9, Agent 2 begins to send messages to Agent 3. Table 5.13 shows that

the contents of Agent 3’s message buffer contains one message from Agent 2 in each

cycle (from Cycle 9 to Cycle 22). Each message contains the message command C2

CHAPTER 5. LEARNING THE MEANING OF COMMANDS 91

Table 5.13: Send22C1orC2 Test Run 13 Message Buffer

Agent 2 Agent 3
Cycle(s) Message Message

From Type and From Type and
Agent LRM data Agent LRM data

0-8

9 2 C2
(-7,1)

10-11 2 C2
(-5,1)

12 2 C2
(-4,2)

13 2 C2
(-2,2)

14 2 C2
(-3,1)

15 2 C2
(-2,0)

16 2 C2
(-1,1)

17-19 2 C2
(0,0)

20-22 2 C2
(-1,1)

Agents’ Message Buffer Contents at each cycle. (Cycles 0-22)
All agent buffers are empty except for Agent 3’s buffer.

and message data (LRM) with relative directional data to the prey. From Cycles

9-22 Agent 3 evaluates its C2 branch causing it to move in the direction of the prey.

This movement can be seen in Figures 5.20 to 5.24. Looking at the GP structure,

message buffers and playback of the test runs show that the Send22C1orC2 protocol

is successful in allowing agents to associate meaning to commands and message data

that allow them to achieve their goal of finding and following the prey.

5.3.6 Summary of Results

Statistical analysis shows that the C1 protocol outperforms the C1C2 protocol and it

peforms equally as well as the C1orC2 protocol. Qualitative analysis shows that there

is an emergent behaviour in message passing that produce “sender” and “receiver”

CHAPTER 5. LEARNING THE MEANING OF COMMANDS 92

agents across all protocols. The qualitative analysis also shows that the C1C2 and

C1orC2 protocols produce more complex sub-trees for the predator agents than the

C1 protocols. The success of the simpler GPs created by the C1 protocol is influenced

by the MoveInDir(Goal) expression. The success of the more complex GPs created

by the C1C2 and C1orC2 protocols is based on their ability to create “sender” agents

that make decisions on which type of command to send and “receiver” agents that

are able to associate the correct meaning of the sent command. Although there is

room for improvement (i.e. not all agents learn to communicate or associate mean-

ings to commands), the C1C2 and C1orC2 protocols show promise when it comes to

the ability of agents to learn the meaning of commands. Future work could investi-

gate whether increasing the grid size from 20x20 to 40x40 would affect the emergent

behaviour in message passing or if it would affect the influence of MoveInDir(Goal).

5.4 Influence of Prey Movement Type in Training

and Testing on Send22 Protocol

The previous sections in this chapter examined the ability of evolved predator agents

to learn the meaning of commands with the goal of finding and following a random

moving prey. The results showed that the C1 and C1orC2 protocols performed equally

as well. The C1 protocol produced simple GP sub-trees that were influenced by the

MoveInDir(Goal) expression and the C1orC2 protocols produced more complex sub-

trees that were able to associate specific meanings to commands of which the meaning

was determined by sending agents.

This section, using the Send22C1 and Send22C1orC2 protocols and the same ex-

periment details described earlier in this chapter, investigates whether changes in

the prey’s movement in training and testing influence the predator agents’ ability to

achieve their goal. For example, some of the questions asked in creating this exper-

iment were: How does training predator agents with a linear moving prey affect the

test results when the prey moves linearly, randomly or uses both types of movement

(i.e. switching from linear movement only to random movement only) in the test

runs? Likewise, how does training predator agents with a random moving prey affect

the test results when the prey moves with linear movement, random movement or

switches from one to the other in testing? Finally, how does training predator agents

with a prey that switches from linear movement to random movement affect the test

results when the test runs use a prey that moves linearly only, randomly only or

CHAPTER 5. LEARNING THE MEANING OF COMMANDS 93

Table 5.14: Prey Movement Types in Training and Testing

Training & Training Episodes (10 total) Testing Episodes (30 total)
Testing Types Prey Movement Type(s) Prey Movement Type(s)
SendC1 L L 10 episodes = linear 30 episodes = linear

SendC1 L R 10 episodes = linear 30 episodes = random

SendC1 L LR 10 episodes = linear 1st 15 episodes = linear &
15 episodes = random

SendC1 R L 10 episodes = random 30 episodes = linear

SendC1 R R 10 episodes = random 30 episodes = random

SendC1 R LR 10 episodes = random 1st 15 episodes = linear &
2nd 15 episodes = random

SendC1 LR L 1st 5 episodes = linear & 30 episodes = linear
2nd 5 episodes = random

SendC1 LR R 1st 5 episodes = linear & 30 episodes = random
2nd 5 episodes = random

SendC1 LR LR 1st 5 episodes = linear & 1st 15 episodes = linear &
2nd 5 episodes = random 2nd 15 episodes = random

The Send22 and Send22C1orC2 protocols are examined using
the above prey movement types in training and testing runs.

switches from one movement type to the other type of movement?

5.4.1 Training and Testing Types and Methods

Table 5.14 gives a description of all the training and testing combinations of prey

movement types examined in this experiment. The training and testing methods

are the same as listed in previous sections of this chapter. The fitness function and

the total number of cycles and episodes in training and testing are also the same as

discussed previously. However, depending on the type of training and testing being

examined, the number of episodes dedicated to the prey’s linear movement and the

prey’s random movement are different and are found in Table 5.14. The training

results for linear, random and linear-random training are shown in Figures 5.25, 5.26

and 5.27 respectively. The testing results for linear, random and linear-random testing

are shown in Tables 5.15, 5.16 and 5.17 respectively.

CHAPTER 5. LEARNING THE MEANING OF COMMANDS 94

Figure 5.25: Send22 Protocol - Linear Training (L L, L R, L LR)

Table 5.15: Fitness Summary Linear Training (20 Test Runs)

Communication Type Min Fitness Average Fitness Max Fitness
Send22C1 L L 1618 1791 1959
Send22C1 L R 1918 2025 2190
Send22C1 L LR 1747 1932 2120
Send22C1orC2 L L 1620 1823 2010
Send22C1orC2 L R 1916 2020 2196
Send22C1orC2 L LR 1757 1919 2159

Fitness is a minimization function. See Equation (5.4).

CHAPTER 5. LEARNING THE MEANING OF COMMANDS 95

Figure 5.26: Send22 Protocol - Random Training (R L, R R, R LR)

Table 5.16: Fitness Summary Random Training (20 Test Runs)

Communication Type Min Fitness Average Fitness Max Fitness
Send22C1 R L 1917 2099 2338
Send22C1 R R 1681 1805 1964
Send22C1 R LR 1717 1957 2120
Send22C1orC2 R L 1980 2151 2432
Send22C1orC2 R R 1609 1850 2032
Send22C1orC2 R LR 1757 1964 2163

Fitness is a minimization function. See Equation (5.4).

5.4.2 Discussion of Results

This section discusses both the statistical and qualitative aspects of the best and

worst results from above.

CHAPTER 5. LEARNING THE MEANING OF COMMANDS 96

Figure 5.27: Send22 Protocol - Linear/Random Training (LR L, LR R, LR LR)

Table 5.17: Fitness Summary Linear-Random Training (20 Test Runs)

Communication Type Min Fitness Average Fitness Max Fitness
Send22C1 LR L 1732 1918 2239
Send22C1 LR R 1758 1929 2149
Send22C1 LR LR 1790 1907 2147
Send22C1orC2 LR L 1794 1941 2262
Send22C1orC2 LR R 1718 1912 2052
Send22C1orC2 LR LR 1750 1932 2182

Fitness is a minimization function. See Equation (5.4).

Statistical Analysis

Figure 5.25, shows the linear training results for Send22C1 and Send22C1orC2. This

graph shows that the performance of the best fitness (orange range) are fairly equal

CHAPTER 5. LEARNING THE MEANING OF COMMANDS 97

across all protocols in training except for protocol SendC1orC2 L LR which appears

lower on the graph (light orange colour). Figure 5.26 shows that the best fitness

(orange range of colours on graph) and mean fitness (blue range of colours on graph)

results of the Send22C1 protocol outperforms the best of the Send22C1orC2 protocol.

Finally, Figure 5.27 show that all protocols perform equally as well in later generations

except for SendC1 LR R and SendC1orC2 LR L.

The test run results shown in Tables 5.15 and 5.16 show that the average fitness

value for the Send22C1 L L type (1791) outperforms all other types when the prey

moves in a linear direction in training and that the average fitness value for the

Send22C1 R R type (1805) outperforms all other types when the prey moves in a

random direction in training. Similarly, the test run results for Table 5.17 show that

the average fitness value for the Send22C1 LR LR type (1907) outperforms all other

types when the prey moves first moves in a linear direction and then in a random

direction in training.

To verify the significance of the test results the One-Way ANOVA test (using

Minitab [37]) with a 95% confidence interval is used. The ANOVA test uses a

two-tailed T-test with 6 factors, where each factor represents one training/testing

type of each communication protocol (i.e. 3 training/testing types for each protocol,

Send22C1 and Send22C1orC2). In linear training (see Table 5.15), the ANOVA test

results in the P − V alue < α (see Appendix A) indicating that there is a significant

difference in the data. Similarly, the ANOVA test for random training (see Table

5.16) shows the P −V alue < α indicating that there is also a significant difference in

this data. However, the ANOVA test results in P −V alue > α for the linear/random

training types (see Table 5.17) do not show a significant different in the results.

Additionally, ANOVA tests were run on the same data above but the data was

regrouped into testing prey movement types instead of training prey movement types.

This data was organized such that all test runs with linear prey movement type were

in the first group, all test runs with random prey movement type were in the second

group and finally all test runs with linear and random prey movement were in a

third group. An ANOVA test was performed on each group. For example, the

ANOVA test for the testing random prey movement group included: Send22C1 L R,

Send22C1orC2 L R, Send22C1 R R, Send22C1orC2 R R, Send22C1 LR R, and

Send22C1orC2 LR R.

The ANOVA results for the testing prey movement types were similar to the

results for the training prey movement types. That is, there is a significant difference

in testing prey movement types for linear movement only and random movement only.

CHAPTER 5. LEARNING THE MEANING OF COMMANDS 98

Table 5.18: Tukey Comparisons for Training Movement Types

ANOVA Communication Group Average
Groups Types Letter Fitness

Send22C1 L R A 2025
Send22C1orC2 L R A 2020

Training Send22C1 L LR B 1931
Linear Send22C1orC2 L LR B 1918
Movement

Send22C1 L L C 1790
Send22C1orC2 L L C 1822

Send22C1 R L A 2098
Send22C1orC2 R L A 2150

Training Send22C1 R LR B 1957
Random Send22C1orC2 R LR B 1963
Movement

Send22C1 R R C 1805
Send22C1orC2 R R C 1850

Send22C1 LR L A 1918
Send22C1orC2 LR L A 1941

Training
Linear & Send22C1 LR R A 1929
Random Send22C1orC2 LR R A 1911
Movement

Send22C1 LR LR C 1906
Send22C1orC2 LR LR C 1931

Types that do not share the same letter are significantly different.

But there is not a significant difference in test runs when the prey moves in both a

linear and random movement (see Appendix A).

In order to identify which factors in the ANOVA tests have different means the

Tukey method [38] for multiple comparisons is used for both the training prey move-

ment and testing prey movement types. The results are shown in Tables 5.18 and

5.19 respectively. In these tables, types that are similar share the same group let-

ter. Types that are significantly different (i.e. their interval (range of difference of

mean) does not contain a zero) do not share the same group letter [39]. These tables

show that in both the training prey movement and testing prey movement types the

L L types for both Send22C1 and Send22C1orC2 share the same group letter. The

L R types for both Send22C1 and Send22C1orC2 share another group letter and

the L LR types for both Send22C1 and Send22C1orC2 share their own group letter.

CHAPTER 5. LEARNING THE MEANING OF COMMANDS 99

Table 5.19: Tukey Comparisons for Testing Movement Types

ANOVA Communication Group Average
Groups Types Letter Fitness

Send22C1 R L A 2098
Send22C1orC2 R L A 2150

Testing Send22C1 LR L B 1918
Linear Send22C1orC2 LR L B C 1941
Movement

Send22C1 L L D 1790
Send22C1orC2 L L C D 1822

Send22C1 L R A 2025
Send22C1orC2 L R A 2020

Testing Send22C1 R R B C 1805
Random Send22C1orC2 R R C D 1850
Movement

Send22C1 LR R B 1929
Send22C1orC2 LR R B 1911

Send22C1 LR LR A 1918
Send22C1orC2 LR LR A 1941

Testing
Linear & Send22C1 LR LR A 1929
Random Send22C1orC2 LR LR A 1911
Movement

Send22C1 LR LR C 1906
Send22C1orC2 LR LR C 1931

Types that do not share the same letter are significantly different.

The same pattern is found across all movement combinations. That is, significant

differences are found in how the groups are arranged in training/testing movement

types. As seen in the test data earlier, the best of these types (with the lowest fit-

ness value) is in the Send22 L L in linear training/testing tests and Send22 R R in

random training/testing tests. Although the Send22C1 LR LR type outperformed

the others in the training/testing tests, there was not a significant difference found

in these results.

Qualitative Analysis

The statistical analysis shows that the Send22C1 L L protocol is the best performer

(in average fitness value) in both the training prey movement and testing prey move-

CHAPTER 5. LEARNING THE MEANING OF COMMANDS 100

Figure 5.28: Send22C1 L L Agent 0 & Agent 1 Sub-trees, Run 8
Agent 0 uses C1 branch to send to Agent 1 when in FOV of prey.
Agent 1 uses the LRM node in C1 branch to move towards prey.

A0...A2 = AgentDir0...AgentDir2 Terminals

ment types. It also shows that the best performers for each group type were the ones

which used the same prey movement type for both training and testing. For example,

the linear training group showed that the L L types (linear movement in training

and testing) were the best of their group, the random training group showed that the

R R types (random movement in training and testing) were the best of their group

and the LR LR types all did equally as well in the linear/random training group.

The GP structures and message buffers of the top performers for the Send22C1 L L

CHAPTER 5. LEARNING THE MEANING OF COMMANDS 101

Figure 5.29: Send22C1 L L Agent 2 & Agent 3 Sub-trees, Run 8
Agent 2 uses C1 branch to send multiple times to Agent 3 when in FOV of prey.

Agent 3 uses the LRM node in C1 branch to move towards prey.
A0...A2 = AgentDir0...AgentDir2 Terminals

and Send22C1orC2 L L show that these types produce trees that allow predator

agents to communicate, make decisions and associate meaning to commands as well

as use message data that is sent to them. Figures 5.28 and 5.29 show the GP tree for

the best run, Run 8, for Send22C1 L L and Figures 5.30 and 5.31 show the GP tree

for the best run, Run 17, for Send22C1orC2 L L. These figures, as well as the mes-

CHAPTER 5. LEARNING THE MEANING OF COMMANDS 102

sage buffers, demonstrate that all predator agents communicate with their “partner”

except for Agent 3 in Send22C1orC2 L L.

It is seen in Figure 5.28 that Agent 0 uses the IfDist expression to send a message

to Agent 1 only if it is in FOV of the prey. Agent 1, upon receipt of the C1 command

from Agent 0, will use its C1 branch to move in the direction of the prey (using the

MoveInDir(LRM) expression). Similar to Agent 0, Agent 2 sends multiple messages

to Agent 3 only if Agent 2 is in FOV of the prey (see Figure 5.29). These messages

will have directional information to the prey. Agent 3 uses this information in its

C1 branch to move in the direction of the prey (again using the MoveInDir(LRM)

expression). Thus, receiving agents are able to associate the proper meaning of the

command determined by the sending agents.

The same type of communication and association of commands is found in Figures

5.30 and 5.31 for Send22C1orC2 L L. Figure 5.30 shows that Agent 1 sends six mes-

sages to Agent 0 (flooding its message buffer, similar to the guard behaviour found

in Section 4.3.2) if Agent 1 is in FOV of the prey. The C2 branch for Agent 0 con-

tains the MoveInDir(LRM) expression. Like previous examples, this will help Agent

0 reach the prey if it is not already in FOV of the prey. Figure 5.31 demonstrates

that Agent 2 only sends a message to Agent 3 if Agent 2 is in FOV of the prey. This

allows Agent 3 to evaluate its C2 branch only when there is valid data in the LRM

node. This C2 branch does contain the MoveInDir(LRM) expression, therefore the

messages sent to Agent 3 by Agent 2 help Agent 3 find the prey if it is not in FOV

of the prey. Again in this communication type, receiving agents are able to associate

the correct meaning of the command (and data) determined by the sending agents.

5.4.3 Summary of Results

The data shows that the L L types for Send22C1 and Send22C1orC2 both create

GPs that allow agents to communicate successfully. Sending agents make decisions

on when (and what type of command) to send. Receiving agents are able to associate

meanings to the commands and are able to use the message data to help them find

the prey. The results also show that training is important and does influence the

success of test runs. For example, training agents with a linear moving prey does

not help agents when the prey moves randomly, or linearly/randomly in test runs.

Likewise, training agents with a random moving prey does not help the agents when

the prey moves linearly or linearly/randomly in test runs.

CHAPTER 5. LEARNING THE MEANING OF COMMANDS 103

Figure 5.30: Send22C1orC2 L L Agent 0 & Agent 1 Sub-trees, Run 17
Agent 0 uses the LRM node in C2 branch to move towards prey.

Agent 1 sends 6 messages to Agent 0 when in FOV of prey.
A0...A2 = AgentDir0...AgentDir2 Terminals

CHAPTER 5. LEARNING THE MEANING OF COMMANDS 104

Figure 5.31: Send22C1orC2 L L Agent 2 & Agent 3 Sub-trees, Run 17
Agent 2 uses C0 branch to send to Agent 3 when in FOV of prey.
Agent 3 uses the LRM node in C2 branch to move towards prey.

A0...A2 = AgentDir0...AgentDir2 Terminals

Chapter 6

Agent Evolution in Ms. Pac-Man

Environment

6.1 Problem and Environment

The goal of this experiment is to see if predator agents, using a similar GP language

as in Section 5.2, can learn to find and follow the prey as it moves randomly in the

Ms. Pac-Man game environment [20]. The solution for this experiment focuses on

the top protocols, Send22C1 and Send22C1orC2, found in Chapter 5. A new version

of the Send22 protocol type, Send22PvA is also examined. The results show that the

GP Language does not allow the predator agents to follow the prey as well as it did

in the Pursuit Domain simulator [19]. However, agents are able to learn the meaning

of commands and an emergent pattern in the agents’ sub-trees reveals there is one

ghost agent (of 4 ghosts) that is able to make decisions (similar to evolved agents in

Section 5.3.5) and only sends commands to its partner when it is in FOV of the prey.

The Ms. Pac-Man environment is shown in Figure 6.1. In this environment,

ghosts act as the predator agents and Ms. Pac-Man acts as the prey. There are a

few differences in the Ms. Pac-Man environment compared to the Pursuit Domain

environment. They are:

1. The Pursuit Domain is toroidal along all grid spaces of all the edges of the

grid. This means when agents move off of a vertical or horizontal edge they

can “wrap” from the current edge to the opposite edge. The Ms. Pac-Man

environment has this characteristic only in 2 specific grid spaces on the vertical

edges of the grid (see Figure 6.1).

105

CHAPTER 6. AGENT EVOLUTION IN MS. PAC-MAN ENVIRONMENT 106

Figure 6.1: Agents’ FOV in Ms. Pac-Man Environment
Agent 0 “Blinky” (red ghost), Agent 1 “Pinky” (pink ghost)

Agent 2 “Clyde” (orange ghost), Agent 3 “Inky” (blue ghost)

2. The Pursuit Domain in this study has no collisions thus, agents can move once

to any grid space in the Up, Down, Left or Right directions per time step. The

only rule to this is predator agents are penalized if two agents try to occupy

the same grid space in the same time step. If this happens the two agents

are reset to their original starting positions on the grid. The Ms. Pac-Man

environment has many collisions (walls) that block agents’ movements. In this

study, if agents attempt to move into a grid space containing a collision then

they do not move on that time step. However, agents may occupy the same

grid cell without any penalties.

3. In the Pursuit Domain, agents start in random positions in their own areas of

the grid with the prey’s area in the center. In the Ms. Pac-Man environment,

predator agents (ghosts) start in the same position in their own area (lair) at

the center of their grid and the prey (Ms. Pac-Man) starts in the same spot

below the agents’ area.

4. The Pursuit Domain in this study uses a grid size of 20 x 20 cells. The Ms.

Pac-Man grid size is 28 (width) x 30 (height) cells.

5. The visible range for agents in the Pursuit Domain is 2, where the distance unit

CHAPTER 6. AGENT EVOLUTION IN MS. PAC-MAN ENVIRONMENT 107

of measure is 1 pixel (approximately 1x1 pixels = 1 cell on grid). The visible

range for agents in the Ms. Pac-Man environment is 16 and is shown as grey

circles around each ghost in Figure 6.1. The distance unit of measure is 1 pixel

(distance between dots on grid is approximately 4 pixels).

In order to keep the Ms. Pac-Man environment similar to the Pursuit Domain,

the Ms. Pac-Man and ghost agents are limited to Chase Mode, in which the ghosts

continue to pursue Ms. Pac-Man (even if one ghost “catches” Ms. Pac-Man) within a

defined period. Thus, in this version Ms. Pac-Man does not die when it occupies the

same cell as a ghost and the entire 200 cycles are always completed in one episode.

The outcome of this experiment shows that the solution used in Chapter 5 in the

Pursuit Domain environment is not as successful in the Ms. Pac-Man environment.

It is found that collisions in the Ms. Pac-Man environment may contribute to the

agents’ shortcomings in learning. However, similar to the results in Section 5.3.5,

a successful result in this chapter shows that agents are able to learn the meaning

of commands and an emergent pattern in the agents’ sub-trees reveals that in each

protocol experiment there is at least one agent that learns to make decisions about

when and what type of command to send.

6.1.1 Learning Strategy

Similar to previous experiments in this study, the learning strategy uses a fully co-

operative implementation with a global fitness measure. The predator agents work

together towards the common goal of following the prey (as closely as possible). The

global fitness is a minimization function calculated over a limited time period. The

total distance between all predator agents is used for the fitness measure. A base

penalty value is added for each agent that is not within distance of the prey for a

defined time period. The motivation for this fitness function is to compare how well

the protocols perform in allowing the ghosts to first find, and then follow, the prey’s

random movement. Agents collaborate to minimize the global fitness value using a

heterogeneous team based learning strategy such that each agent uses its own learning

algorithm to evolve.

6.1.2 Communication Strategy and Communication Channel

The communication strategy in this study uses a learned language exactly as seen

in Section 5.1.2. As a reminder, the commands are C0, C1 and C2. The C1 and

CHAPTER 6. AGENT EVOLUTION IN MS. PAC-MAN ENVIRONMENT 108

Table 6.1: Communication Protocols

Communication Protocols Description
Send22C1 One send command only.

Agents send C1 command.

Message Command(s) C1

Message Data ifagent <= FOV then send dir to prey
else send default dir

Send22C1orC2 Agents send either C1 or C2 command.

Message Command(s) C1 or C2

Message Data ifagent <= FOV then send dir to prey with C2
else send default dir with C1

Send22PvA Agents send either C1 or C2 command.

Message Command(s) C1 or C2

Message Data ifagent <= FOV then send dir to prey with C2
else send dir to sending agent with C1

C2 commands, along with simple environment data, are sent individually from one

agent to another through a message passing communication channel. An agent learns

to associate a meaning to each command through evolving branches of its GP tree.

Each agent has 1, 2, or 3 child branches (command trees) depending on the protocol.

The first command, C0, is evaluated when the agent has no messages in its message

buffer. The second command, C1, is evaluated when the agent has at least one C1

message. The third command, C2, is evaluated when the agent has at least one C2

message.

6.1.3 Communication Protocols

A communication protocol defines the method by which a sending agent sends a

message to a receiving agent’s message buffer. Three different protocols are exam-

ined, Send22C1, Send22C1orC2, and Send22PvA with descriptions listed in Table

6.1. Message passing for Send22 is the same as described previously (Send22: Two

teams of two agents). Agent 0, “Blinky” (red ghost), and Agent 1, “Pinky” (pink

ghost), form one team and Agent 2, “Clyde” (orange ghost), and Agent 3, “Inky”

(blue ghost), form the other team. Each agent sends only to its partner.

CHAPTER 6. AGENT EVOLUTION IN MS. PAC-MAN ENVIRONMENT 109

Message types are C1, C1orC2, and PvA. Depending on the protocol, agents can

send only one of the following types of command: 1) only C1 commands, and 2) either

a C1 or C2 command (depending if an agent is within FOV of prey).

In the Send22C1 protocol, only one send message is used to send a message with

the C1 command. Similar to earlier experiments, if the agent is within FOV of the

prey, the message data sent to the receiving agent contains the direction from the

receiving agent to the prey, otherwise, it contains a default value of (4000, 4000).

In the Send22C1orC2 protocol, one send message command is used to send either

a C1 command or a C2 command. If the agent is within FOV of the prey, the message

data sent to the receiving agent contains the direction from the receiving agent to the

prey with the C2 command, otherwise, the message data contains a default value of

(4000, 4000) with the C1 command.

The Send22PvA protocol functions the same way as the Send22C1orC2 protocol

except for the message data that is sent. If the agent is within FOV of the prey, the

message data sent to the receiving agent contains the direction from the receiving

agent to the prey with the C2 command, otherwise, the message data contains the

direction from the receiving agent to the sending agent with the C1 command.

6.2 Experiment Details

Each experiment uses the same settings for the GP parameters as seen in Section 5.2

and are repeated in Table 6.2. The fitness function, GP language, testing and training

methods are described below. In this experiment the prey moves in a random pattern

(Up, Down, Left or Right) on the grid. Both agents and prey move only one step per

time cycle. Each communication protocol is tested individually (see Table 6.1).

6.2.1 GP Language

This experiment uses the strongly typed language shown in Table 6.3.

Terminal Set

The terminal set is a scaled down version of the one used in Section 5.2, and is defined

in Table 6.4. Movement commands (Up, Down, Left, Right) are sent directly to the

agent as a result of the evaluation of its command tree. The language is typed such

that only 1 movement is sent per evaluation. The direction vectors, North, South,

West and East, contain the unit vector of each direction. The Goal terminal gives

CHAPTER 6. AGENT EVOLUTION IN MS. PAC-MAN ENVIRONMENT 110

Table 6.2: GP Parameters

GP Parameter Value

Initial Tree Method Koza’s Ramped half-and-half [30], [22]

Min-Max Tree size (ramp) 7-12

Population size 1000

Generations 125

Selection Tournament, size = 4

Crossover 90%

Mutation 10%

Runs per experiment 20

Table 6.3: Strongly Type Language

ROOT ::= (SIM, SIM, SIM, SIM)

SIM ::= CommandTree(EXPR,EXPR,EXPR)

EXPR ::= Left|Right|Up|Down|
::= MoveForward(EXPR)|
::= MoveInDir(NIL,NIL,NIL,NIL)|
::= IfGrtEql(NIL,NIL,EXPR,EXPR)|
::= IfDist(NIL,NIL,EXPR,EXPR)|
::= IfDot(NIL,NIL,EXPR,EXPR)|
::= Send(EXPR)|

NIL ::= Goal|AgentDir|
::= Add(NIL,NIL)|
::= Sub(NIL,NIL)|
::= Rotate90(NIL,NIL)|
::= Reverse(NIL,NIL)|
::= North|South|East|West|
::= LRM

the direction to the agent only if the agent is within field of view (FOV) of the prey

otherwise, it gives a default direction of (4000, 4000). AgentDir holds the current

direction of the agent. The Last Received Message (LRM) terminal node holds data

for the last message removed from an agent’s message buffer. Before evaluation of

CHAPTER 6. AGENT EVOLUTION IN MS. PAC-MAN ENVIRONMENT 111

Table 6.4: Terminal Set

Name Description

Up,Down,Left,Right move commands: ↑, ↓,←,→
North,South,West,East (0, 1), (0,−1), (−1, 0), (1, 0)

Goal direction from prey to agent

if agent is within FOV

AgentDir the direction the agent is currently facing

LRM Last Received Message

MaxDist returns a large distance value (4000)

its tree, an agent checks its message buffer. If it contains messages, the first message

is removed and its data is set to the LRM variable to be used for that evaluation

cycle. If there are no messages in its buffer, the LRM node is set to the default vector

(4000, 4000). The MaxDist node holds a constant value of 4000 representing a large

distance value.

Function Set

The function set, seen in Table 6.5, is primarily the same as the one found in Section

5.2. Functions include mathematical operations on two dimensional vectors, logical

operations and message sending commands. Message sending commands are listed as

SendC1, SendC1orC2,and SendPvA. MoveForward is a movement command which

takes an expression as input. It results in the agent moving one step in its current

direction only if it can move in that direction. If the agent can’t move in its current

direction then the MoveForward evaluates its input expression. MoveInDir is also

a movement command which takes in four vectors as input. It results in the agent

moving one step in the direction of the first available cell as defined by the input

vectors.

6.2.2 Training and Testing Methods

Similar to previous experiments, the training and testing of a GP individual consists

of cycles and episodes. The training and testing methods in this experiment are for

the most part the same as in Section 5.2.2. Training and testing begin with the

ghosts and Ms. Pac-Man starting in their own areas on the grid. Figure 6.2 shows

the ghosts and Ms. Pac-Man in their starting positions. In this figure, Agent 0 is the

CHAPTER 6. AGENT EVOLUTION IN MS. PAC-MAN ENVIRONMENT 112

Table 6.5: Function Set

Function Description

Root returns the evaluated value of the entire tree

SimAgent returns the evaluated value of one agent

Add vector addition

Sub vector subtraction

Rotate90 rotates vector by 90 degrees

Reverse multiplies vector by −1

IfGrtEql compares the length of two vectors

IfDot calculates the dot product of two vectors

IfDist checks if agent is withing FOV of prey

MoveInDir Moves in direction of the first available

spot as defined by four input vectors

MoveForward moves one step in agent’s direction

if it can else evaluates input expression

SendC1, SendC1orC2, SendPvA (see Communication Protocols in

Table 6.1)

red ghost“Blinky”, Agent 1 is the pink ghost “Pinky”, Agent 2 is the orange ghost

“Clyde” and Agent 3 is the blue ghost “Inky”. All ghosts start in the same area

(lair) in the center of the grid while Ms. Pac-Man’s starting position is just below

the lair. In one cycle, all four agents evaluate their command tree once in sequence,

one after the other. Each evaluation results in one movement of the agent, where one

movement equates to one pixel on the grid. Instead of 30 cycles (as seen in other

experiments), an episode is complete after 200 cycles (i.e. 1 episode = 200 cycles). In

training, each GP individual is given 10 episodes and the positions of the agents/prey

are reset to the original starting position after each episode is complete. The test run

uses the GP individual with the best fitness in training. This GP individual is tested

with 30 episodes and positions of the agents/prey are reset to the original starting

position after each episode is complete.

CHAPTER 6. AGENT EVOLUTION IN MS. PAC-MAN ENVIRONMENT 113

Figure 6.2: Agents’ Starting Positions in Ms. Pac-Man
Agent 0 “Blinky” (red ghost), Agent 1 “Pinky” (pink ghost)

Agent 2 “Clyde” (orange ghost), Agent 3 “Inky” (blue ghost)

6.2.3 Fitness Function

The fitness function is the same as the one used in Section 5.2 with some small

differences. The total fitness value is measured by accumulating sums from cycles to

episodes. In each cycle of an episode, the sum of two fitness values is used as a fitness

measure for that cycle. The total sum of each cycle fitness is used as the episode

fitness. Finally, the total sum of each episode fitness score is used as the final fitness

value for each individual GP.

The first fitness value calculated for each cycle is the sum of each of the agent’s

distance to the prey, where each pixel on the grid represents 1 unit of distance.

Equation (6.1) shows the calculation of each agent’s distance to the prey where A is

the agent’s position and P is the prey’s position.

fAgentDist(A) =
√

(A.x− P.x)2 + (A.y − P.y)2 (6.1)

The second fitness value used in the cycle fitness measure is the total base penalty

value for the cycle. This value represents a penalty value (25 points) for each predator

agent. In any given cycle, each agent that is not within FOV of the prey is penalized

by adding 25 points towards the cycle fitness sum. Thus, if all four agents are in FOV

CHAPTER 6. AGENT EVOLUTION IN MS. PAC-MAN ENVIRONMENT 114

of the prey, the total base penalty value for that cycle would be zero. However, if

all agents are not in FOV of the prey then the total base penalty value for the cycle

would be 100. Equation (6.2) shows how the total base penalty value is calculated in

each cycle where A is the agent’s position on the grid.

fBasePenalty(A) =

0 if fAgentDist(A) <= 16,

25 otherwise.
(6.2)

Equation (6.3) shows the total distance fitness calculation used in training. Here,

APosi represents the location of Agenti, where i = 0...3, m represents the number

of cycles and q is the number of episodes. We set q to 10 in training and to 30 in

testing in our experiments.

TotF itness =

q∑
k=1

m∑
j=1

3∑
i=0

(
fAgentDist(APosi) + fBasePenalty(APosi)

)
(6.3)

Similar to Equation (6.3), the test run fitness measures the average distance of all

the episodes as seen in Equation (6.4).

AveDist =
TotF itness

q
(6.4)

6.3 Results

In this section the performance results of the communication protocols Send22C1,

Send22C1orC2, and Send22PvA are shown. Using random movement for Ms. Pac-

Man for each protocol, the training results are first displayed in Figure 6.3 followed

by the testing results in Table 6.6.

6.3.1 Statistical Analysis

In Figure 6.3 it is seen that for training, the average of best fitness for Send22C1 (dark

orange line) outperforms the other best fitness averages (SendC1orC2 (yellow line)

and Send22PvA(green line)) across all generations. Send22C1orC2 and Send22PvA

best fitness values are fairly equal. Interestingly, in the mean fitness values, Send22C1

(dark blue line) and SendC1orC2 (grey line) are very similar throughout all the gen-

erations outperforming Send22PvA(light blue line).

The test results are shown in Table 6.6. It is seen that Send22C1orC2 has the

CHAPTER 6. AGENT EVOLUTION IN MS. PAC-MAN ENVIRONMENT 115

Figure 6.3: Send22 - Training for C1, C1orC2, PvA

Table 6.6: Send22 Fitness Summary (20 Test Runs)

Communication Type Min Fitness Average Fitness Max Fitness
Send22C1 48507 53747 57149
Send22C1orC2 50808 53047 55865
Send22PvA 49037 53925 58480

Fitness is a minimization function. See Equation (6.4).

lowest average fitness value of 53047 with Send22C1 finishing second with a score of

53747 and Send22PvA finishing third with an average fitness value of 53925. Thus,

Send22C1orC2 outperforms both Send22C1 and Send22PvA.

To verify the significance of the test results the One-Way ANOVA test (using

Minitab [37]) with a 95% confidence interval is used. The ANOVA test uses a two-

tailed T-test with 3 factors, where each factor represents one communication protocol

including the final test fitness for the 20 test runs. The ANOVA test results in the

P − V alue > α (see Appendix A) indicating that there is not a significant difference

CHAPTER 6. AGENT EVOLUTION IN MS. PAC-MAN ENVIRONMENT 116

Table 6.7: Tukey Comparisons for Send22 Protocols

Communication Group Average
Protocol Letter Fitness
Send22PvA A 53925
Send22C1 A 53747
Send22C1orC2 A 53047

Protocols that do not share the same
letter are significantly different

in the test results for Send22C1, Send22C1orC2, and Send22PvC shown in Table

6.6. The Tukey method [38] for multiple comparisons results are shown in Table 6.7.

In this table all protocols share the same group letter indicating that their range

of difference of mean does contain a zero. Protocols labelled with the same letter

groups are considered to not be significantly different [39]. Thus, although the test

results show that SendC1orC2 is the best performer with the lowest fitness average,

it is found that there is not a significant difference among the results and the three

protocols perform equally as well.

6.3.2 Qualitative Analysis

This section discusses the qualitative aspects such as GP tree structure, message

sending patterns and playback of test runs in order to understand how the ghost

agents in each of the protocols, Send22C1, Send22C1orC2, and Send22PvA learn to

achieve their goal of finding and following the prey. The top performers in each of the

protocols produce larger tree structures compared to the ones in previous chapters.

This makes it more difficult to understand the structure of each of the C0, C1, and

C2 command branches. Reflections on the data are made by examining the playback

of the test runs, specific sections of command branches, and portions of the agents’

message buffers.

The playback of the test runs show that, unlike the experiments in the Pursuit

Domain, there is no stand out protocol that allows the ghost agents to follow Ms.

Pac-Man. Each protocol allows agents to follow Ms. Pac-Man some of the time (in

specific moments within their 200 cycle time allowance) but not all of the time. A

typical scenario is that some ghosts find the prey and follow the prey for a specific

time period and then lose the prey. A possible reason for this might be the fact that

the Ms. Pac-Man environment has collisions. Thus, in order to follow Ms. Pac-Man,

ghosts must learn to move around obstacles. Discussions in the following sections

CHAPTER 6. AGENT EVOLUTION IN MS. PAC-MAN ENVIRONMENT 117

focus on situations where one or more ghosts are within proximity of Ms. Pac-Man.

Similar to Section 5.3.5, this analysis reveals all protocols create sub-trees that

allow sending agents to give meaning to the commands they send. An emergent

sending behaviour found in each of the protocols reveals there is one ghost agent (of

4 ghosts) that only sends commands to its partner when it is in FOV of the prey.

Emergent Sending Patterns and Behaviours

Message sending patterns for top performers in each of the protocols are seen in Table

6.8. This table shows that each protocol has at least one sending pattern in which

there is an agent that sends messages to its partner only if it is in FOV of the prey. In

order to do this an agent’s sub-tree uses the IfDist expression to check its proximity

to the prey. If it is in FOV then the agent sends a message. Examples of this for each

protocol are seen in Figure 6.4.

Figure 6.4 shows that for the Send22C1 protocol, Agent 2 (Clyde) sends a message

only if it is in FOV of Ms. Pac-Man using the IfDist expression in its C0 branch.

The sub-tree for Agent 0 (Blinky) in the Send22C1orC2 protocol shows that Blinky

uses the IfDist expression to check if it is within view of Ms. Pac-Man. If it is in

view 3 messages are sent to Agent 1 (Pinky). The Send22PvA protocol demonstrates

the decision making for Agent 3 (Inky). Again, it is seen that Inky uses the IfDist

expression to check its proximity to Ms. Pac-Man, if it is within range it sends a

message to Agent 2 (Clyde).

The top performers of these protocols all have one agent that decides when to

send a message. This is especially interesting for the Send22C1orC2 and Send22PvA

protocols since they are programmed with the ability to send either a C1 command or

a C2 command depending on the sending agent’s proximity to the prey. The agents,

sending only when in FOV of Ms. Pac-Man, ensure that the message will be sent

with the C2 command along with useful directional information to Ms. Pac-Man.

The same decision making behaviour for the Send22C1orC2 protocol was also seen

earlier in Section 5.3.5.

Figures 6.5 to 6.7 show typical behaviours revealed in the playback runs for the

top 3 runs in each protocol. Figure 6.5 shows that the Send22C1 ghost behaviour is

such that the ghosts follow each other in a line in search of Ms. Pac-Man. Typical

ghost behaviour for the Send22C1orC2 protocol is seen in Figure 6.6. Here, 2 of the

4 ghosts (Inky (blue) and Clyde(orange)) wait in the same spot for Ms. Pac-Man to

enter their FOV, while 2 other ghosts (Blinky (red) and Pinky (pink)) search for Ms.

Pac-Man. Finally, Figure 6.7 shows that the Send22PvA common behaviour is such

CHAPTER 6. AGENT EVOLUTION IN MS. PAC-MAN ENVIRONMENT 118

Table 6.8: Sending Patterns for Send22C1, Send22C1orC2, and Send22PvA

Send22C1 Run 14
Sender Receiver Description
A0 (never sends)
A1 → A0 (frequently sends)
A2 → A3 (sends message

only when in FOV of Ms. Pac-Man)
A3 → (rarely sends)

Send22C1orC2 Run 7
Sender Receiver Description
A0 → A1 (sends 3 messages

only when in FOV of Ms. Pac-Man)
A1 (never sends)
A2 → A3 (frequently sends)
A3 → A2 (frequently sends)

Send22PvA Run 16
Sender Receiver Description
A0 → A1 (frequently sends)
A1 → A0 (frequently sends)
A2 (never sends)
A3 → A2 (sends message

only when in FOV of Ms. Pac-Man)

that 2 ghosts (Blinky (red) and Pinky (pink)) wait in different spots, while 2 other

ghosts (Inky (blue) and Clyde(orange)) search for Ms. Pac-Man.

The reason for this typical behaviour for each of the protocols may be the fact

that although Ms. Pac-Man chooses random movements in both training and testing,

the starting position of Ms. Pac-Man is always the same at the beginning of each

episode. This is because in the Ms. Pac-Man game, Ms. Pac-Man always starts at

the same position. Future work should include training runs that have Ms. Pac-Man

starting at different positions at the beginning of each episode (similar to the Pursuit

Domain experiments).

Evidence of Communication

The previous section showed that the Send22C1, Send22C1orC2, and Send22PvA

protocols can produce sub-trees for agents which allow them to make decisions on

when (and what command) to send. This section analyzes the playback for one of

CHAPTER 6. AGENT EVOLUTION IN MS. PAC-MAN ENVIRONMENT 119

Figure 6.4: Decision Sub-trees for Send22C1, Send22C1orC2, and Send22PvA

Figure 6.5: Send22C1 Typical Behaviour
Ghosts follow each other in a line in search of Ms. Pac-Man.

CHAPTER 6. AGENT EVOLUTION IN MS. PAC-MAN ENVIRONMENT 120

Figure 6.6: Send22C1orC2 Typical Behaviour
Inky (blue) and Clyde (orange) wait in the same spot for Ms. Pac-Man,

while Blinky (red) and Pinky (pink) search for Ms. Pac-Man.

Figure 6.7: Send22PvA Typical Behaviour
Blinky (red) and Pinky (pink) wait in different spots for Ms. Pac-Man,

while Inky (blue) and Clyde (orange) search for Ms. Pac-Man.

the top test runs (Run 7) for the Send22C1orC2 protocol. Looking at portions of the

GP structure, images from the test run at specific cycles, and corresponding sections

of the message buffers it is seen that in certain cycles, agents communicate in order

to help each other follow the prey.

As shown in Table 6.9, Agent 0 (Blinky) in test Run 7 for the Send22C1orC2

protocol sends 3 messages (with the C2 command) to Agent 1 (Pinky) when it is in

FOV of the prey. Pinky does not send messages to Blinky at any time. Thus, Blinky

always evaluates its C0 command branch and Pinky evaluates its C2 branch when it

receives the C2 commands.

CHAPTER 6. AGENT EVOLUTION IN MS. PAC-MAN ENVIRONMENT 121

Figure 6.8: Send22C1orC2 Agent 0 & 1 C0 & C2 Branches
Ghost Agent 0 (Blinky) sends 3 messages

to Agent 1 (Pinky) only when in view of Ms. Pac-Man

Figure 6.8 shows the C0 branch for Blinky and the C2 branch for Pinky. The C0

branch for Blinky is used to send 3 messages with LRM data containing relational

directional information to Ms. Pac-Man. The C2 branch for Pinky shows that the

LRM data is used in two input vectors for the MoveInDir expression. The dotted

lines in the diagram indicate that there are more nodes in the tree that could not

be included due to space limitations. Although, it is not clear how the MoveInDir

uses the LRM node (because the trees are large and difficult to interpret), it is clear

that the LRM node is used in movement expressions for the second and fourth input

vectors for the MoveInDir expression. Although this is not as straight forward as the

CHAPTER 6. AGENT EVOLUTION IN MS. PAC-MAN ENVIRONMENT 122

Figure 6.9: Send22C1orC2 Run 7, Cycles 130 - 147

MoveInDir(LRM) expression that we have seen in the previous chapter, it does show

that this sub-tree is indirectly associating the use of the LRM data to the C2 branch

(as was communicated by the sending ghost, Blinky).

A specific example of this communication is seen in images of the playback test

run for Run 7. Figure 6.9 shows Cycles 130 to 147. The corresponding cycles in the

message buffers for the agents are seen in Table 6.9. Here it is seen that in Cycle

130 Blinky (red ghost) is in view of Ms. Pac-Man and Pinky (pink ghost) has 3 C2

messages in its message buffer. The playback images show that Pinky moves towards

the right, bringing it farther (in the horizontal direction) from Ms. Pac-Man. But in

Cycle 133 and Cycle 147 it is seen that Pinky begins to move to the left to get closer

(in the horizontal direction) to Ms. Pac-Man.

The message buffer contents from Cycles 130 to 147 show that Pinky has C2

messages with LRM containing directional data to Ms. Pac-Man. It is not quite clear

if Pinky is using the LRM data to move left but it is clear that C2 is causing the

change in direction from right to left. By Cycle 147, Ms. Pac-Man moves farther

to the right and in later cycles moves out of view from Blinky. Thus, although the

ghosts are not able to follow Ms. Pac-Man for a long period, this shows that there

CHAPTER 6. AGENT EVOLUTION IN MS. PAC-MAN ENVIRONMENT 123

Agent 0 Agent 1
Cycle Message Message

From Type and From Type and
Agent LRM data Agent LRM data

130 0 C2, (-13,21)
0 C2, (-13,21)
0 C2, (-13,21)

133 0 C2, (-12,20)
0 C2, (-11,19)
0 C2, (-11,19)
0 C2, (-11,19)

147 0 C2, (6,12)
0 C2, (6,12)

Table 6.9: Send22C1orC2 Test Run 7 Message Buffer
Agent 0 and 1 Message Buffer Contents. (Cycles 130, 133 & 147)

are specific times in the 200 cycles that Blinky and Pinky are communicating to help

each other track the prey.

One issue that makes the Ms. Pac-Man environment more difficult than the

Pursuit Domain environment is the fact that the ghost agents have to deal with

collisions. In the Ms. Pac-Man environment even if the ghosts have access to the

prey’s information, they have the added problem of needing to move around obstacles

in order to get to the prey. If there is a collision between a Ghost and Ms. Pac-Man

then the Ghost may have to first move away from Ms. Pac-Man in order to move

around the collision. The current GP Language and fitness function do not account

for this and will need to be enhanced in future work.

6.3.3 Summary of Results

The results show that the GP language and protocols are promising in the Pursuit

Domain environment but, could use further refinement in the Ms. Pac-Man game

environment. This analysis reveals that all protocols performed equally as well. Each

protocol creates sub-trees that allow sending agents to decide when to send a com-

mand. An emergent sending behaviour reveals there is one ghost agent (of 4 ghosts)

that only sends commands to its partner when it is in FOV of the prey. The ability

to make decisions on when to send a message is also found as an emergent behaviour

CHAPTER 6. AGENT EVOLUTION IN MS. PAC-MAN ENVIRONMENT 124

in the results in Section 5.3.5. Also, waiting to send messages until the prey is in

view is found in the results in Section 4.3.2, in which evolved agents reveal a guard

and reinforcement behaviour commonly found in stealth games such as MGS [36].

The GP Language does not allow the predator agents to follow the prey as well

as they do in the Pursuit Domain. However, it is seen that communication (in small

segments of the 200 cycle time period) influence an agent’s direction bringing it closer

to the prey. In order to improve the results, future work should focus on enhancing

the GP Language and fitness functions so that they better account for collisions.

For example, the current fitness function is not able to distinguish the difference in

distances in which two predator agents are equal distant from the prey but in one

case the predator agent has a wall between itself and the prey. One way to make the

distances between these two agents distinguishable is to use the Manhattan distance

(instead of the Euclidean distance) as seen in [40]. Also, in this experiment, Ms.

Pac-Man always starts at the same position (as per game rules). Future work should

include training runs in which Ms. Pac-Man starts at random starting positions (in

the top, middle and bottom portions of the grid).

Chapter 7

Conclusion

7.1 Summary of Main Results

Using a variety of different communication protocols, this thesis continues the research

of using GP in a multi-agent environment. The goals of this research are to inves-

tigate how genetic programs can influence predator agents’ in associating meaning

to commands in a predator-prey scenario and to investigate how well agents commu-

nicate in order to learn the behaviour of tracking prey. Fitness is measured in how

closely agents can follow the prey.

This work is divided into three distinct parts. Chapter 4 looks at many different

communication protocols to see which types are better able to allow predators agents

to track the prey using communication in the Pursuit Domain environment [19].

Chapter 5 enhances the GP language used in Chapter 4 in search of a better solution

to experiments in which the prey moves randomly. Finally, Chapter 6 uses the GP

language from Chapter 5 and tests how well it performs in a game environment, the

Ms. Pac-Man simulator [20].

The results show that most tests evolve competent agents that can associate mean-

ing to commands and use message data in order to find and follow the prey. Many of

the communication protocols do not produce significant differences in fitness scores or

perceived behaviours. Generalized, powerful agents are not commonly seen. However,

some experiments do regularly evolve interesting behaviours that show high-levels of

coordination among agents such as the emergence of a synchronized message sending

pattern seen in Chapter 4. Highly specialized evolved agents are shown to be the

most effective and are revealed in the guard and reinforcement behaviours of Chapter

4, and the “sender” and “receiver” behaviours of Chapters 5 and 6. In addition, it

is shown that training is important and choosing the movement type for the prey

125

CHAPTER 7. CONCLUSION 126

significantly influences the performance of evolved agents in test runs.

A synchronized alternating message sending pattern emerges among predator

agents in Chapter 4. Experiments involving two types of prey movement, Prey Linear

Movement and Prey Random Movement, show that agents (regardless of the commu-

nication protocol) learn to send messages on alternating cycles. This pattern allows

agents to evaluate each command branch (C0 or C1) every other frame, resulting in

some agents using a staircase pattern of movement in order to find the prey. This

emergent behaviour is found to be more effective (allowing agents to find and fol-

low the prey) in the Prey Linear Movement experiment than in the Prey Random

Movement experiment. It is found that an enhanced GP language is needed to solve

the Prey Random Movement problem. An additional interesting outcome reveals that

evolved predator agents’ behaviour in the best result resembles the scripted behaviour

of guard and reinforcements that can be found in popular stealth video games (e.g.

Metal Gear Solid (MGS) [36]).

An enhanced GP language is used to improve agent performance in Chapter 5.

This chapter is divided into two parts. The first part focuses on the top performing

protocols, SendAll and Send22, of Chapter 4. The GP language, fitness measure and

message types are augmented. The goal of this experiment is to see if predator agents

can learn the meaning of commands in order to track the prey as it moves randomly

across the grid environment. The results in the first part of this experiment show

an emergent behaviour such that one agent is designated as the “sending agent” and

all other agents are designated as “receiving” agents. It is found that in most cases

receiving agents are able to associate a meaning to commands received from (and

determined by) the sending agent. This allows most agents to achieve their goal of

tracking the random moving prey quite successfully.

The second part of Chapter 5 attempts to answer questions such as: How does

training predator agents with a random moving prey affect test runs with a linear

moving prey or vice versa? Does the movement of the prey in training influence the

test results in which the prey moves in a different movement pattern? These questions

are answered as the results show that the types of training chosen for a problem

are important. For example, there are significant differences and improvement of

performance in test runs when the test runs only include the type of prey movement

that is used in training. For example, when using a random moving prey in training

runs, test runs which include only a random moving prey outperform test runs which

include only a linear moving prey or both (switching from linear to random moving

prey). This is true for training using linear prey movement as well. However, the

CHAPTER 7. CONCLUSION 127

results show that all combinations of having the prey switch from linear movement

to random movement in training and testing performed equally as well.

The Ms. Pac-Man game environment [20] in Chapter 6 is used to further test

the GP language defined in Chapter 5. The goal of this chapter is to see if predator

agents, using a similar GP language as in earlier experiments, can learn to find and

follow the prey as it moves randomly in this new environment. A new protocol

type, Send22PvA along with the top protocols, Send22C1 and Send22C1orC2, from

Chapter 5 are used in this solution. Outcomes of this study reveal that possibly due

to collisions in the environment, agent evolution does not allow the predator agents to

learn to follow the prey quite as well as they do in the Pursuit Domain simulator [19].

Similar to Chapter 5, a successful result in this study shows an emergent message

sending pattern such that “sending” agents are able to make decisions about when

and what type of command to send.

7.2 Future Work

Future work should include more tests using variants of the Pursuit Domain environ-

ment [19]. For example, Iba [6] found that communication is not required (and is a

burden due to the overhead cost of communication) when agents are close together

and communication is most effective when agents are farther apart. Thus, future ex-

periments should include comparing the affects of using the communication protocols

in different grid sizes (40x40, 50x50 or 100x100 etc...) while increasing the number of

cycle and episodes in training/testing.

In Chapter 4, the evolved guard and reinforcement behaviour could be beneficial to

future work specifically related to game production. For example, an agent behaviour

design tool could train predators to respond to scenarios using different states. That

is, an agent could learn to associate one command to a specific state of behaviour

such as tracking or retreating. Similar work was done by Kadlec [16] using the

Unreal Tournament 2004 (UT) [17]. Adding an interactive component to the tool,

designers could interactively train game agents by selecting preferred behaviour during

evolution and test trained behaviours in actual game scenarios.

Currently, there is a strong interest in research to use GP and other learning

algorithms to aid in the development of commercial games [3]. For example, most

game AI existing in commercial games is based on written scripts created at significant

expense by game programmers [41]. An interesting alternative to scripting is the use

of computational intelligence methods in which an agent’s behaviour can be evolved

CHAPTER 7. CONCLUSION 128

through a learning algorithm instead of being scripted by a programmer.

This has interesting advantages as stated by Lucas and Kendall [41]: evolving

the scripts can be financially attractive as it saves expensive programming time,

evolving behaviours may create novel approaches (which may have been overlooked

by programmers) that game players may find interesting, and evolved agents are very

good at finding and exploiting loopholes in the game. Loopholes allow a player to find

a fast way to win a particular level of the game or even the game itself. The ability

to detect loopholes is notable because removing them in a game is a very important

part of the game development life cycle for which developers spend many hours. More

challenges and opportunities for future research and the use of learning algorithms in

games are found in the Dagstuhl Report by Lucas et al. [3].

Tests conducted in Chapter 6 are preliminary, and there is much room for future

work using communicating predator agents (ghosts) in the Ms. Pac-Man simulator

[20]. For example, although the game begins with Ms. Pac-Man starting at the same

position, it would be interesting to see if more robust GPs are created when Ms.

Pac-Man is started at random positions in the envrinoment during training episodes.

The primary goal for this chapter is to see how well the GP language from Chapter

5 performs in a completely new environment. As a result, only minor changes are

made to the GP language. Future work should enhance the language so that it is

better able to handle collisions. For example, the Euclidean distance in the fitness

function is not able to distinguish the difference in distances in which two predator

agents are equal distant from the prey but in one case the predator agent has a

collision between itself and the prey. One way to account for this type of scenario is

to use the Manhattan distance as seen in [40]. In addition, it would be interesting

to add more aspects from the Ms. Pac-Man game to the fitness measure to see how

agent evolution (using communication protocols) reacts to different game elements

such as different game modes (chase and retreat), or including ghosts which track

Ms. Pac-Man and at the same time try to minimize her score (i.e. reducing the

number of pills she consumes).

In conclusion, this research adds to previous work showing that GP-evolved emer-

gent behaviour can be used to help agents learn to associate meaning to commands

and to interpret message data. With this approach, predator agents are evolved to

learn to find and track prey.

Bibliography

[1] L. Pannait and S. Luke, “Cooperative Multi-Agent Learning: The State of the

Art,” Autonomous Agents and Multi-Agent Systems, vol. 11, no. 3, pp. 387–434,

2005.

[2] J. Reverte, F. Gallego, R. Satorre, and F. Llorens, Cooperation Strategies for

Pursuit Games: From a Greedy to an Evolutive Approach. Berlin, Heidelberg:

Springer Berlin Heidelberg, 2008, pp. 806–815.

[3] S. M. Lucas, M. Mateas, M. Preuss, P. Spronck, and J. Togelius, “Artificial

and computational intelligence in games (dagstuhl seminar 12191),” Dagstuhl

Reports, vol. 2, no. 5, pp. 43–70, 2012.

[4] T. Haynes, S. Sen, D. Schoenefeld, and R. Wainwright, “Evolving multiagent

coordination strategies with genetic programming,” Proc. Artificial Intelligence,

Tech. Rep., 1995.

[5] J. Denzinger and M. Fuchs, “Experiments in learning prototypical situations for

variants of the pursuit game.” in Proceedings on the International Conference of

Multi-Agent Systems(ICMAS-1996), 1996, pp. 48–55.

[6] H. Iba, “Evolutionary learning of communicating agents,” Journal of Information

Sciences, vol. 108, no. 1-4, pp. 181–205, 1998.

[7] J. Kam-Chuen and C. Giles, “Talking Helps: Evolving communicating agents for

the predator-prey pursuit problem,” Artificial Life, vol. 6, no. 3, pp. 237–254,

2000.

[8] H. Yanco and L. Stein, An adaptive communication protocol for cooperating mo-

bile robots, H. R. Meyer, JA and S. Wilson, Eds. Cambridge MA: The MIT

Press, 1993.

129

BIBLIOGRAPHY 130

[9] J. Kuo, H. Yu, K. F.-R. Liu, and F. Lee, “Multiagent cooperative learning

strategies for pursuit-evasion games,” Mathematical Problems in Engineering,

vol. 2015, pp. 1–13, 2015.

[10] I. Tanev, M. Brzozowski, and K. Shimohara, “Evolution, generality and ro-

bustness of emerged surrounding behaviour in continuous predators-prey pur-

suit problem,” Genetic Programming and Evolvable Machines, vol. 6, no. 3, pp.

301–318, 2005.

[11] B. Zhang and D. Cho, “Evolving complex group behaviors using genetic pro-

gramming with fitness switching,” Artificial Life and Robotics, vol. 4, no. 2, pp.

103–108, 2000.

[12] S. Luke, C. Hohm, J. Farris, G. Jackson, and J. Hendler, “Co-evolving soccer

softbot team coordination with genetic programming,” in Proceedings of the First

International Workshop on RoboCup, IJCAI-97, Nagoya, Japan, 1997.

[13] J.Y.Kuo, F. Huang, S. Ma, and Y. Fangjiang, “Applying hybrid learning ap-

proach to robocup’s strategy,” The Journal of Systems and Software, vol. 86,

no. 7, pp. 1993–1944, 2013.

[14] A. Cardona, J. Togelius, and M. Nelson, “Competitive coevolution in Ms. Pac-

Man,” in 2013 IEEE Congress on Evolutionary Computation (CEC), Cancun,

Mexico, 2013, pp. 1403–1410.

[15] A. Alhejali and S. Lucas, “Using a training camp with genetic programming

to evolve Ms. Pac-Man agents,” in 2011 IEEE Conference on Computational

Intelligence in Games (CIG), Seoul, Korea, 2011, pp. 118–125.

[16] R. Kadlec, “The Paradox of Overfitting,” Master’s thesis, Charels University,

Prague, Czech, 2008.

[17] (2004) Unreal Tournament. [Online]. Available:

https://www.epicgames.com/unrealtournament/ (Last accessed: 29-Nov-2016).

[18] G. Grossi and B. Ross, “Evolved communication strategies and emerged be-

haviour of multi-agents in pursuit domain,” in 2017 IEEE Conference on Com-

putational Intelligence in Games (CIG), New York City, USA, 2017.

[19] J. R. Kok and N. Vlassis, “The pursuit domain package,” Informatics Institute,

University of Amsterdam, The Netherlands, Tech. Rep. IAS-UVA-03-03, Aug.

2003.

BIBLIOGRAPHY 131

[20] (2011) Ms. Pac-Man Competition. [Online]. Available:

http://dces.essex.ac.uk/staff/sml/pacman/PacManContest.html (Last accessed:

2-Aug-2016).

[21] R. Eberhart and S. Y., Computational Intelligence: Concepts to Implementa-

tions. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2007.

[22] R. Poli, W. Langdon, and N. McPhee, A Field Guide to Genetic Pro-

gramming. United Kingdom: Published via http://lulu.com and freely

available at http://www.gp-field-guide.org.uk, 2008, [Online]. Available:

http://www.gp-field-guide.org.uk (Last accessed: 9-June-2017).

[23] D. J. Montana, “Strongly typed genetic programming,” Evol. Comput., vol. 3,

no. 2, pp. 199–230, Jun. 1995.

[24] Y. Demazeau, F. Zambonelli, J. Rodŕıguez, and J. Pérez, Advances in Practical

Applications of Heterogeneous Multi-Agent Systems - The PAAMS Collection:

12th International Conference, PAAMS 2014, Salamanca, Spain, June 4-6, 2014.

Proceedings, ser. Lecture Notes in Computer Science. Springer International

Publishing, 2014.

[25] R. Singh, A. Singh, and S. Mukherjee, “A critical investigation of agent inter-

action protocols in multiagent systems,” International Journal of Advancements

in Technology, vol. 5, no. 2, pp. 72–81, 2014.

[26] S. Barrett, P. Stone, and S. Kraus, “Empirical evaluation of ad hoc teamwork

in the pursuit domain,” in Proc. of 11th Int. Conf. on Autonomous Agents and

Multiagent Systems (AAMAS), May 2011.

[27] H. Muñoz-Avila, C. Bauckhage, M. Bida, C. B. Congdon, and G. Kendall,

“Learning and Game AI,” in Artificial and Computational Intelligence in Games,

ser. Dagstuhl Follow-Ups, S. M. Lucas, M. Mateas, M. Preuss, P. Spronck, and

J. Togelius, Eds. Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer

Informatik, 2013, vol. 6, pp. 33–43.

[28] G. Tesauro, “Temporal difference learning and TD-Gammon,” Communications

of the ACM, vol. 38, no. 3, pp. 58–68, 1995.

[29] S. Lee-Urban, M. Vasta, and H. Muñoz-Avila, “Retaliate: Learning winning

policies in first-person shooter games.” in Seventeenth Innovative Applications

of Artificial Intelligence Conference (IAAI-07), 2007.

BIBLIOGRAPHY 132

[30] (2010) ECJ 22 A Java-based Evolutionary Computation Research System. [On-

line]. Available: http://cs.gmu.edu/ eclab/projects/ecj/ (Last accessed: 16-Sept-

2015).

[31] (2015) MARS Release. [Online]. Available: https://eclipse.org/mars/ (Last ac-

cessed: 16-Sept-2015).

[32] J. Schrum and R. Miikkulainen, “Evolving multimodal behavior with modular

neural networks in Ms. Pac-Man,” in Proceedings of the Genetic and Evolutionary

Computation Conference (GECCO 2014), Vancouver, BC, Canada, July 2014,

pp. 325–332.

[33] A. Alhejali and S. Lucas, “Evolving diverse Ms. Pac-Man playing agents using

genetic programming,” in 2010 UK Workshop on Computational Intelligence

(UKCI), Sept 2010, pp. 1–6.

[34] ——, “Using genetic programming to evolve heuristics for a monte carlo tree

search Ms. Pac-Man agents,” in 2013 IEEE Conference on Computational Intel-

ligence in Games (CIG), Niagara Falls, ON, 2013, pp. 1–8.

[35] T. Haynes, K. Lau, and S. Sen, “Learning cases to compliment rules for conflict

resolution in multiagent systems.” in Working Notes for the AAAI Symposium

on Adaptation, Co-evolution and Learning in Multiagent Systems, S.Sen, Ed.,

Standford University, CA, 1996, pp. 51–56.

[36] (2004) Metal Gear Solid The Twin Snakes. [Online]. Available:

http://www.konami.jp/gs/game/mgs tts/ (Last accessed: 18-Jan-2017).

[37] (2017) Minitab 17 Support. [Online]. Available: http://support.minitab.com/en-

us/minitab/17/ (Last accessed: 25-May-2017).

[38] (2017) What is Tukey’s Test and Honest Significant Difference? [Online]. Avail-

able: http://www.statisticshowto.com/tukey-test-honest-significant-difference/

(Last accessed: 25-May-2017).

[39] (2017) What is Tukey’s method for multiple comparisons? [Online]. Avail-

able: http://support.minitab.com/en-us/minitab/17/topic-library/modeling-

statistics/anova/multiple-comparisons/what-is-tukey-s-method/ (Last accessed:

25-May-2017).

BIBLIOGRAPHY 133

[40] I. Andersone and A. Nikitenko, Reliable Multi-robot Map Merging of Inaccurate

Maps. Cham: Springer International Publishing, 2014, pp. 13–24.

[41] S. Lucas and G. Kendall, “Evolutionary computation and games,” Computa-

tional Intelligence Magazine,IEEE, vol. 1, no. 1, pp. 10–18, 2006.

Appendix A

Additional Experimental Analysis

A.1 ANOVA Hypothesis

Table A.1 shows the ANOVA hypothesis used for all ANOVA tests in this research.

Table A.1: ANOVA Hypothesis

Hypothesis Description
Null hypothesis All means are equal
Alternative hypothesis At least one mean is different
Significance level α = 0.05

A.2 Evolved Communication Protocols: ANOVA

Results

The following shows the ANOVA results for the Communication Protocols experiment

described in Chapter 4.

Table A.2: Prey Linear Movement ANOVA results

Analysis of Variance
Source DF Adj SS Adj MS F-Value P-Value
Factor 6 20618 3436 2.38 0.032
Error 133 192147 1445
Total 139 212765

P − V alue < α indicating that there is a significant difference in the test results

134

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 135

Table A.3: Prey Random Movement ANOVA results

Analysis of Variance
Source DF Adj SS Adj MS F-Value P-Value
Factor 6 4811 801.8 0.90 0.494
Error 133 117961 886.9
Total 139 122772

P − V alue > α indicating that there is not a significant difference in the test results

A.3 Learning the Meaning of Commands Part A:

ANOVA Results

The following shows the ANOVA results for the first part of the Learning the Meaning

of Commands experiment described in Chapter 5.

Table A.4: Send22 Protocol Types ANOVA results

Analysis of Variance
Source DF Adj SS Adj MS F-Value P-Value
Factor 2 60951 30475 3.27 0.045
Error 57 531399 9323
Total 59 592350

P − V alue < α indicating that there is a significant difference in the test results

Table A.5: SendAll Protocol Types ANOVA results

Analysis of Variance
Source DF Adj SS Adj MS F-Value P-Value
Factor 2 132365 66183 8.90 0.000
Error 57 424055 7440
Total 59 556421

P − V alue < α indicating that there is a significant difference in the test results

A.4 Learning the Meaning of Commands Part B:

ANOVA results

The following shows the ANOVA results for the second part of the Learning the

Meaning of Commands experiment described in Chapter 5.

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 136

Table A.6: Training: Prey Linear Movement Types ANOVA results

Analysis of Variance
Source DF Adj SS Adj MS F-Value P-Value
Factor 2 946936 189387 24.25 0.000
Error 114 890444 7811
Total 119 1837380

P − V alue < α indicating that there is a significant difference in the test results

Table A.7: Training: Prey Random Movement Types ANOVA results

Analysis of Variance
Source DF Adj SS Adj MS F-Value P-Value
Factor 5 1814579 362916 30.89 0.000
Error 114 1339138 11747
Total 119 3153717

P − V alue < α indicating that there is a significant difference in the test results

Table A.8: Training: Prey Linear/Random Movement Types ANOVA results

Analysis of Variance
Source DF Adj SS Adj MS F-Value P-Value
Factor 5 17202 3440 0.26 0.932
Error 114 1485765 13033
Total 119 1502967

P − V alue > α indicating that there is not a significant difference in the test results

Table A.9: Testing: Prey Linear Movement Types ANOVA results

Analysis of Variance
Source DF Adj SS Adj MS F-Value P-Value
Factor 5 2096509 419302 30.47 0.000
Error 114 1568859 13762
Total 119 3665368

P − V alue < α indicating that there is a significant difference in the test results

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 137

Table A.10: Testing: Prey Random Movement Types ANOVA results

Analysis of Variance
Source DF Adj SS Adj MS F-Value P-Value
Factor 5 782784 156557 19.25 0.000
Error 114 927339 8135
Total 119 1710123

P − V alue < α indicating that there is a significant difference in the test results

Table A.11: Testing: Prey Linear/Random Movement Types ANOVA results

Analysis of Variance
Source DF Adj SS Adj MS F-Value P-Value
Factor 5 48118 9642 0.9 0.484
Error 114 1219150 10694
Total 119 1267268

P − V alue > α indicating that there is not a significant difference in the test results

A.5 Agent Evolution in Ms. Pac-Man Environ-

ment: ANOVA Results

The following shows the ANOVA results for the Agent Evolution in Ms. Pac-Man

Environment experiment described in Chapter 6.

Table A.12: PacMan Testing: Send22 ANOVA results

Analysis of Variance
Source DF Adj SS Adj MS F-Value P-Value
Factor 2 8627340 4313670 1.27 0.290
Error 57 194337300 3409426
Total 59 202964640

P − V alue > α indicating that there is not a significant difference in the test results

