

LIBRARY

EUROPEAN ATOMIC ENERGY COMMUNITY - EURATOM

SOLUBILITY OF TERPHENYLS AND OM₂ MIXTURES IN PURE AND TECHNICAL SOLVENTS

by

G. MOSSELMANS and J. NIENHAUS

1969

Joint Nuclear Research Center Ispra Establishment - Italy

Protection

LEGAL NOTICE

This document was prepared under the sponsorship of the Commission of the European Communities.

Neither the Commission of the European Communities, its contractors nor any person acting on their behalf :

Make any warranty or representation, express or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this document, or that the use of any information, apparatus, method, or process disclosed in this document may not infringe privately owned rights; or

Assume any liability with respect to the use of, or for damages resulting from the use of any information, apparatus, method or process disclosed in this document.

This report is on sale at the addresses listed on cover page 4

at the price of FE 7	FB 70 -	DM 5.60	L# 870	FI 510
at the price of 11 7.	TD 70.~	DM 5.00	Lit. 870	14. 5.10

When ordering, please quote the EUR number and the title, which are indicated on the cover of each report.

Printed by SMEETS Brussels, April 1969

This document was reproduced on the basis of the best available copy.

UR 4228 e

EUROPEAN ATOMIC ENERGY COMMUNITY - EURATOM

EUR 4228 e

SOLUBILITY OF TERPHENYLS AND OM2 MIXTURES IN PURE AND TECHNICAL SOLVENTS by G. MOSSELMANS and J. NIENHAUS

European Atomic Energy Community - EURATOM Joint Nuclear Research Center - Ispra Establishment (Italy) Protection

Luxembourg, April 1969 - 56 Pages - 70 FB

The solubility of terphenyls and OM_2 mixture in pure and technical solvents is studied.

Results are presented on curves where the weight percent terphenyl or OM_2 versus temperature is plotted.

EUR 4228 e

SOLUBILITY OF TERPHENYLS AND OM2 MIXTURES IN PURE AND TECHNICAL SOLVENTS by ${\rm \acute{G}}$. MOSSELMANS and J. NIENHAUS

European Atomic Energy Community - EURATOM Joint Nuclear Research Center - Ispra Establishment (Italy) Protection Luxembourg, April 1969 - 56 Pages - 70 FB

The solubility of terphenyls and OM_{2} mixture in pure and technical solvents is studied.

Results are presented on curves where the weight percent terphenyl or OM_2 versus temperature is plotted

Joint Nuclear Research Center Ispra Establishment - Italy

Protection

MIXTURES 2 ENTS

ABSTRACT

The solubility of terphenyls and OM_2 mixture in pure and technical solvents is studied.

Results are presented on curves where the weight percent terphenyl or ${\rm OM}_2$ versus temperature is plotted.

The results allow some considerations about the influence of the structure and the nature of functional groups on the solvent ability.

Finally a selection of solvent is made for decontamination purposes.

KEYWORDS

SOLUBILITY TERPHENYLS SOLVENTS DIAGRAMS DECONTAMINATION

CONTENTS

Abstract

- 0. Scope of investigation
- 1. Solubility of pure terphenyls
 - 1.1. Solvents and organics used
 - 1.2. Determination of the solubility
 - 1.3. Results
 - 1.4. Discussion of experimental results
 - 1.5. Choice
- 2. Solubility of O M_2 Mixtures
 - 2.1. 0 M_2 used and method
 - 2.2. Results
 - 2.3. Discussion of experimental results
- 3. Conclusion
- 4. Acknowledgements
- 5. Bibliography.

Solubility of Terphenyls and OM₂ Mixtures in Pure and Technical Solvents. (*)

Scope of investigation.

The organic compounds thought of until now as coolants in nuclear reactors are polyphenyls, usually a mixture of terphenyls.

These materials present serious difficulties for decontamination as they are little soluble, chemically stable, and melt only at elevated temperatures. Literature data (1) (2) on terphenyl solubility are rather scarce; the results given (3) do not furnish more than a base for the development of decontamination procedures. Consequently and in order to find a reliable base for the decontamination methods to be prepared, the solubility of terphenyls had to be examined systematically. The investigation has intentionally been made as broad as could reasonnably be justified even if some of the solvents might probably find no use in later decontamination techniques.

This method allowed not only to get information but also helped to solve the following question : how do the solvent properties change within homologue series or when introducing new functional groups into the solvent molecule ?

As a result of a demand from our medical service, some oils which might be useful for human skin decontamination have been included in the study. After having chosen some solvents among those tested

on terphenyls, a study is made on the behaviour of the "OM₂" mixture used in reactors.

The possibility to produce an emulsion of the polyphenyls either by treating them with a solvent emulsion or an appropriate solvent shall also be examinated as well as the solubility behaviour of the high boilers, built in the OM₂ under reactor operation. Results on these investigations will be reported later.

(*) Manuscript received on 4 November 1968.

1. Solubility of pure terphenyls.

1.1. Solvents and organic products used.

The terphenyls used were the isomers pure from Merck A.G. with the following purity qualifications :

0. Ø 3 99,9 % 0. - Ø 3 m. Ø 3 97 - 98 %m. - Ø 3 (3-2 % - Ø 3) p. Ø 3 99,9 % p. - Ø 3 (for scintillation use)

m. Ø 3 was not purified any further, as the solubility of the mixture as indicated above does not differ from that of pure m Ø 3 ; indeed the two components cannot be separated by fractional cristalliastion from any solvent in the concentration region (5). The choice of solvents has to be determined technologically, after their solvent ability has been tested, from their conventional behaviour (boiling point, flash point, explosivity, toxicity) and their price. The eventual corroding properties of a solvent have not been taken into account, as the items to be decontamined will be too different chemi-

cally, so that the choice of an appropriate solvent will have to be made on the spot. As the fouling process is certainly influenced by chlorine (4) the use of chlorinated solvents is not possible for materials which have to be used in reactor loops or experiments. Characterisation of tested solvents is given in the following tables.

TABLE 1

- General characteristics of all solvents tested

- Pure solvents We give only the quality that we have used
- Technical solvents The semi-quantitative composition is given.

Table	1
-------	---

Soiveni	Manufacturaled by	Type - composition
GROUP		
ALIPHATICS		
n- HEXANE OCTANE ISOPAR G ISOPAR K ISOPAR M	MERCK ESSO CHIMICA """ ""	FOR CHROMATOGRAPHY PETROL FRACTION C.SATURATED.95 % PARAF- FINES PETROL FRACTION C.SATURATED.12 % C9, 56 % C10, 32 % C11 PETROL FRACTION C.SATURATED. 26 % C10, 60 % C11, 13 % C12. PETROL FRACTION C.SATURATED: all C12
VASELINE OIL	CARLO ERBA	DAB 6
GROUP <u>ALICYCLICS</u> CYCLO- HEXANE DECALIN	MERC K	FOR CHROMATOGRAPHY FOR SYNTHESIS
GROUP AROMATICS		
BENZENE	MERCK	CRISTALLIZABLE
TOLUENE	11	P.A.
XYLENE SOLVESSO 100	" ESSO CHIMICA	LAB. REAGENT AROMATIC PETROL FRACTION = 11º/0 C ₈ , 85 % C ₉ , 3 % C ₁₀
SOLVESSO 150	ESSO CHIMICA	AROMATIC PETROL FRACTION : 1 % C ₉ , 73 % C ₁₀ , 23 % C ₁₁
H A N	" "	AROMATIC PETROL FRACTION = $5 \% C_9$, 14 % C_{10} , 30 % C_{11} , 29 % C_{12} 13 % PARAFFINES
H B 40	MONSANTO	HYDROGENATED TERPHENYIS MIXTURE 18 % 0 - Ø 3, 82 % Ø 3 - H
THERMIP P2	ESSO CHIMICA	AROMATIC PETROL FRACTION FROM REFORMING= 69 % , - METHYLNAPHTHALENE, 8% NAPH- THALENE, 23 % ALKYLNAPHTHALENE + \emptyset 2

Table 1

Solveni	Manufacturaled by	Type — composition
THERMIP LOURDE	ESSO CHIMICA	SIMILAR TO THERMIP P2 AROMATIC PETROL FRACTION FROM REFORMING PHENANTHRENE, FLUORENE, PYRENE + ALKY- LATED PH, F., P.,
GROUP : <u>HETERO-</u> <u>CYCLICS</u> TETRAHYDRO- FURAN PYRIDINE	MERCK "	PURE FOR CHROMATOGRAPHY
GROUP : <u>CHLORINATED</u> <u>HYDROCARBON</u> CARBONTETRA CHLORIDE TRICHLORO- ETHYLENE 1.2-DICHLORO BENZ RN E	MERCK CARLO ERBA MERCK	p. A. Pure For ext raction analysis
GROUP : <u>KETONES</u> ACETONE METHYLETHYL KETONE METHYL-i- BUTYLKETONE ACETYL- ACETONE CYCLO- HEXANONE ACETO- PHENONE I- PHORONE	MERCK CARLO ERBA " " MERCK MERCK CARLO ERBA B D H	p.A. PURE PURE PURE PURE PURE LAB. REAGENT

Table 1

MERCK MERCK MERCK MERCK MERCK	ABSOLUTE p.A. FOR CHROMATOGRAPHY FOR CHROMATOGRAPHY FOR CHROMATOGRAPHY
MERCK MERCK MERCK MERCK MERCK	ABSOLUTE p.A. FOR CHROMATOGRAPHY FOR CHROMATOGRAPHY FOR CHROMATOGRAPHY
MERCK MERCK MERCK MERCK MERCK	ABSOLUTE p.A. FOR CHROMATOGRAPHY FOR CHROMATOGRAPHY FOR CHROMATOGRAPHY
MERCK MERCK MERCK MERCK	p.A. FOR CHROMATOGRAPHY FOR CHROMATOGRAPHY FOR CHROMATOGRAPHY
MERCK MERCK MERCK	FOR CHROMATOGRAPHY FOR CHROMATOGRAPHY FOR CHROMATOGRAPHY
MERCK MERCK	FOR CHROMATOGRAPHY FOR CHROMATOGRAPHY
MERCK	FOR CHROMATOGRAPHY
	· · · · · · · · · · · · · · · · · · ·
MERCK	p.A.
MERCK	p.A.
MERCK	p.A.
CARLO ERBA	R.P.
ME RC K	p.A.
CARLO ERBA	R.P.
MERCK	FOR CHROMATOGRAPHY
SCHUCHARDT	p.A.
	MERCK MERCK MERCK MERCK MERCK MERCK MERCK

Table 1

.

Solvent	Manufacturaled by	Type - composition
GROUP DIVERSE		
ACETO NITRILE	MERCK	FOR SYNTHESIS
DIMETHYI FORMAMIDE	MERCK	PURE
DIMETHYI SULFOXIDE	врн	LAB. REAGENT
CASTOR OII	CARLO ERBA	DAB6
O L IVE OIL	CARLO ERBA	VICTUALS

TABLE 2

<u>Pure Solvents</u> Conventional properties and cost

Remarks

- 1. Flash range : According ASTM Standard the values are given for "open cup" (OC) and for "closen cup" (CC) 2. Explosive range : The values are given in volume per cent of vapour in air at 20 °C. 3. Toxicity : It is given according to SAX toxic hazard rating code : 0 = Nonel = Slight2 = Moderate3 = HighU = Unknown4. Cost : Also for pure solvent the cost is given for the technical quality 1 U.C. is equivalent to 1 U.S. \$
- 5. Specific weight is given in g/ ml at 20 $\circ C$

Table 2 (PURE SOLVENTS)

B olyand	Specific	Boiling	Fiash	Explosive	Toxicity		Cost	
301 44 ni	Weight	Range °C	Range ¹ C	Range	Skin	In helation	uc/ 100 Kg.	
GROUP : <u>ALIPHATICS</u>								
n- HEXANE	0.66	69	-28 0.0 -22 C.0	1.2-6.9	1	1	35	
GROUP: ALICYCLICS								
CYCLO HEXANE	0.778	79 - 81 ·	17 C.C.	1.3-8.4	Ŭ	2	21	
DECALIN	0.88	186-195	57 C.C.		1	2	80	
GROUP: AROMATICS								
BENZENE	0.88	80	-11C.C.	1.4-8.0	3	3	15	
TOLUENE	0.87	111	+ 4C.C.	1.3-7.0	2	2	15	
XYLENE	0.86	138-144	250.0.	1.1-7.0	1	1	15	
GROUP: <u>METERO-</u> <u>CYCLICS</u>								
TETRAHYDRO- FURAN	0.89	66	-17C.C.	2.3- 11.8	3	3	160	
PYRIDINE	0.99	114-116	20 C.C.	1.8-12.4	2	2	290	
GROUP CHLORINATED HYDROCARBOOS								
CARBONTETR <u>A</u> CHLORIDE	1.59	76-77			3	3	37	
TRICHLORO- ETHYLENE	1.46	87			2	2	30	
TETRACHLOR <u>O</u> ETHYLENE	1.63	120-22			2	2	30	
O- DICHLORO BENZENE	1.30	1 80– 83	77 O.C.		3	2	190	
GROUP:								
KETONES								
ACETONE	0.79	56	-17 CC. - 9 O.C	2.1-13.	01	2	19	
METHYL- E T HYLKETONE	0.80	79-80	-6.0.C. -7 C.C.	1.8- 11.9	1	2	76	

Table 2

<i>k</i>	Specific	Boiling	Flash	Explosive	Toxicity		Cost
Solvent	Weight	Range ¹ C	Range ±C	Range	Skin	Inheletion	u c / 100 Kg.
<u>, ,, , , , , , , , , , , , , , , , , ,</u>							
METHYL-i- BUTYLKETONE	.0.80	114-116	24 O.C. 16 C.C.	1.2-8.0	2-3	2-3	96
ACETYL- ACETON	0.97	139	41 O.C.		2	1	1100
CYCLO- HEXANONE	0.95	156	42 C.C.		2	1	80
ACETO- PHENONE	1.03	199-203	105		1	1	128
i-PHORONE	0.92	215	96 O.C.		3	3	500
GROUP : ALCOHOLS							
ETHYL ALCOHOL	0.79	78	16 0.C. 14 C.C.	3.3-19	1	2	48
i- PROPYL ALCOHOL	0.79	82	22 0.C 12 C.C	2.0-5.2	1	2	410
tert.BUTY ALCOHOL	0.78	83	9.0.0	2.3-8	2	2	64
n-BUTANOL	0.81	118	35 C.C. 40 O.C.	1.4 - 18	2	2	72
BENZYL ALCOHOL	1.04	206	101 C.C.		1	l	108
GROUP ACIDS							
ACETIC ACID	1.05	118	40 C.(3	3	48
GROUP <u>ETHERS</u>							
DI-i-PRO- PYL-ETHER	0.72	68	-28CC	1.4-21	3	2	120
DIOXAN	1.04	101	11 C.C.	1.9-22	2	3	160
ANISOL	0.996	154	52 O.C.		2	3	320

т

Table 2

6	Specific	Boiling	Flash	Explosive	Toxici	'y	Cost	
Solveni	Weight	Range SC	Range 1C	Range	Skin	In halation	u c / 100 Kg.	
GROUP: ESTERS								
ETHYL- ACETATE	0.90	77	-5 C.C. +7 C.C.	7.2-11.5	1-2	2	42	
n- BUTYL ACETATE	0.88	126	23 C.C. 34 O.C.	1,7-15	l	1- 2	80	
i- B UTYL ACETATE	087	1,17	17 C.C.		2	2	160	
GROUP: AMINES								
ANILINE	1.02	1 84	76 C.C.		3	3	140	
GROUP: DIVERSE								
ACETO- NITRILE	0.79	82	6.0.C.		3	3	270	
DIMETHYI FORMAMIDE	° •9 5	152-155	67 O.C	2.2- 15.2	3	2	140	
DIMETHYI SULFOXYDE	1.10	DECOMP 100 °	90 O.C		U	U	400	

TABLE 3

TECHNICAL SOLVENTS

Conventional properties and cost <u>Remarks</u>.

1. Molecular weight :

It is given as the average value

For the explanations of the other columns see table 2

Salvant	Molecular	Specific	Boiling	Flash	Explosive	Toxicily	,	Cost
30174111	Weight	Weight	Range ¹ C	Range °C	Range	Skin	inhalation	uc/ /100 Kg
GROUP: ALIPHATICS								
OCTANE	114	0.73	116-121	< 1 00.	1-6	1	2	35
ISOPAR G	138	0.75	159-179	40 C.C.		1	1	40
ISOPAR K	156	0.76	176-95	52 C.C.		1	1	40
ISOPAR M	177	0.78	206-47	80 C.C.	1	1	1	39
VASELINE OIL	430	0.89	> 360			1	с	60
GROUP: AROMATICS								
SOLVESSO	138	0.87	160-75	48 O.C.	1-6	1-2	1-2	34
SOLVESSO 150	138	0.89	187-212	66 O.C.	1-6	1-2	1-2	34
HAN		0.93	181-281	58 O.C.		1-2	1-2	31
НВ40	~ 245	1.005	345	174 C.C		U	U	71
THERMIP P2	153	0.99	230-60	>100 0.0 >1000.0 1280.0		U	U	32
THERMIP LOURDE		1.006	> 260	> 100		U	U	32
AKP - M	206	1.07	327-72	178 C.C 208 0.C	•	U	U	32
GROUP: DIVERSE								
CASTOR OIL	860	0.97	313	2300.0.		1	1	96
OLIVE OIL	790	0.91		225 0.0		0	0	80

Table 3 (TECHNICAL SOLVENTS)

1.2. Determination of the solubility.

A weighted (or measured) amount of solvent is added to a weighted quantity of terphenyl; both are heated together until producing a clear solution which then is cooled.

A preliminary test gives an indication on the temperature where crystallisation begins.

After reheating until a clear solution is obtained (control of weight), cooling is restarted slowly (cooling rate \approx 1 min. $\circ C^{-1}$) while stirring with the thermometer and eventual seeding of single large crystal easily distinguishable.

The temperature where the first crystal appears thus exactly can be determined. This point is the saturation point of the solution at the determined temperature.

The known concentration together with the temperature which has been measured gives one point of the solubility curve.

By addition of further quantities of solvent the concentration changes and a new point of the curve is determined as described above.

One point of the solubility curve is the fusion point of pure terphenyl (c= 100 $\% \ \emptyset$ 3). The curve then down to room temperature (20 °C) is determined experimentally as described above.

The weight per cent versus temperature °C is plotted on the solubility curves. This method is described (7) as the synthetic method to determine solubility : for a known concentration is checked the temperature, where a 2- phase system becomes in 1-phase system etc.. The term weight per cent means g terphenyl in 100 g solution. If the reader wants to get information on the solubility per g terphenyl in 100 g of solvent,-an other usual unit,-he can calculate it using the following formula :

$$S = \frac{g \ \emptyset \ 3}{100 \ g \ solvent} = \frac{\% \ x \ 100}{100 \ - \%}$$
(1)

The amounts used depend on solubility. The mass of terphenyl and solvent together has been chosen large with respect to the thermometer mass; the combined mass further must not be too small in order to get constant cooling velocities. All results have been taken from experiments with at least 100 g total mass. Weights have been determined with a Mettler balance (maximum 800 g), division of scale 0,1 g). The smallest quantity of terphenyl used in case of bad solubility was 3 g. The maximum error of weighing (0,05 g difference are discernible) is thus 1,5 %... The thermometers used (1/1° scale graduation) were calibrated.

1.3. <u>Results</u>.

The curves are given according to the solvent list of table 1.

Solubility curves.

On the solubility curves are platted weight $-\% \not \emptyset$ 3 versus temperature for every solvent tested. Two different scales are used : one for the solubility of o - and m - $\not \emptyset$ 3 up to a "solution" of 100 $\% \not \emptyset$ 3 = melting point of pure $\not \emptyset$ 3 ; another up to 5 or 10 % p- $\not \emptyset$ 3 respectively, due to the very different solubility of the p - $\not \emptyset$ 3.

H8-40

nicavie a urbe

Ì

560 860 Y-FC

120

100

180

翼

TABLE 4

SOLVENTS ARRANGED ACCORDING TO THEIR SOLVENT ABILITY.

Remarks :

An artificial % - solvent ability given in the table (first column) was introduced for the following reason : In several cases the difference of the solubility between near related sclvents considered only at one temperature are in the range of experimental error. Such values cannot be taken as the basis of discussion for solubility rules. To overcome this difficulty and to correct the wrong impression one can have, looking only to one point of the curve and without consideration for the form and the slope of the curves, we tried to classify the solvents by an artificial solubility- number. We took from the curves the solubility-values of o-, m-, and p- \emptyset 3 for every solvent at 25 °C and 50 °C. The sum of this six values for one solvent is our solubility- number with the dimension **S** of g o-, m-, p- Ø 3 at 25 °C and 50 °C in 600 g solution-. We assumed it to be 100 for benzene as reference solvent and received in this manner our %- solvent ability. Practically with this operation we made a first step of integration of the 3 curves and in fact we found it to be sufficient to arrange the solvents in a logical way with respect to their solvent power. With the addition of the values of the 3 terphenyls we can expect a better elimination of the experimental error because it is unlikely that the experimental error is in the same direction for all 3 terphenyls. The addition of the values at two different temperatures takes into account in first approximation also the form and the slope of the curves.

Table 4

% Solvent		WEIGHT-%					
ability	Solvent	0- 25°C	¢, 50° C	m- 25°C	Ø. 50°C	р 25°С	- Ø 50° C
107.5	TETRAHYDROFURAN	82.0	96.0	55.0	73.0	2.75	5.50
104.3	DIOXANE	80.5	96.0	51.0	72.0	1.60	3.12
101.0	PYRIDINE	79.0	96.0	44.0	71.0	1.80	4.10
100	BENZ ENE	80.5	96.5	43.5	67.5	1.35	3.25
98.8	CYCLOHEXANONE	76.0	94.5	44.5	69.0	1.65	3.70
97.5	DIMETHYLFORMAMIDE	77.5	96.0	41.0	67.0	1.00	2.80
96.6	METHYLETHYLKETONE	76.0	97.0	38.0	69.0	0.88	2.00
93.7	ACETONE	77.0	96.0	30.0	69.0	0.60	1.50
93.4	ANISOLE	75.0	95.5	32.0	66.5	1.40	3.15
92.8	TOLUENE	75.0°	96.5	31.5	65.0	1.16	2.68
90.6	ACETOPHENONE	69.0	93.5	36.5	62.5	1.10	2.50
88.6	ETHYLACETATE	76.5	95.0	25.0	61.0	0.58	1.40
88.3	XYLENE	71.0	95.0	27.5	61.5	0.85	2.27
87.9	ACETYLACETONE	70.0	95.0	27.0	63.0	0.70	1.65
87.7	ANLINE	74.5	95.5	24.5	60.0	0.58	1.60
87.5	i-PHORONE	63.0	92.5	36.0	60.0	1.15	2.35
87.1	THERMIP P 2	70.0	92.0	31.5	57 .5	1.35	2.65
86.6	TRICHLOROETHYLENE	68.0	92.5	31.5	58.5	0.94	2.22
86.5	ACETONITRIL	74.5	97.5	10.5	70.0	0.20	0.54
86.1	METHYL-i-BUTYL- KETONE	70.0	95.0	24.5	60.5	0.50	1.52
85.8	o-DICHLOROBENZENE	67.5	94.0	30.0	56.0	1.10	2.50
84.0	SOLVESSO 100	70.0	94.0	22.5	56.0	0.84	2.00
83.5	n-BUTYLACETATE	68.5	95.0	22.5	56.0	0.66	1.50
82.1	HAN	68.0	92.5	24.0	.53.0	0.75	1.90
81.8	SOLVESSO 150	69.0	93.5	21.5	52.5	0.80	1.95
80.8	THERMIP LOURDE	62.5	92.0	28.0	50.0	1.35	2.60
80.5	i-BUTYLACETATE	67.0	94.0	17.0	56.0	0.50	1.20
80.0	CARBONTETRACHLORIDE	65.0	93.0	20.0	54.5	0.42	1.14
78.0	C YC LOHEX ANE	68.0	96.0	12.0	51.5	0.12	0.70
75.8	AKP-M	55.0	88.5	28.5	45.0	1.90	2.95
74.2	TETRACHLOROETHYLENE	58.5	91.0	19.0	47.0	0.36	1.20
73.4	HB - 40	51.0	87.5	29.5	44.0	0.90	1.83
72.4	DECALIN	61.0	94.0	12.5	43.5	0.26	0.70
72.0	DIMETHYLSULPHOXIDE	51.5	97.0	15.5	45.0	0.54	1.04

Table 4

% Solvent			WEIGHT-%						
ability	Solvent	0 25°C	°-∅, 25°C 50°C		m-Ø, 25°C 50°C		-Ø, 50° C		
66.1	DI-i-PROPYL ETHER	60.0	95.0	7.5	30.0	0.20	0.52		
60.4	BENZYL ALCOHOL	40.0	94.0	10.0	31.5	0.35	0.90		
55.7	n-HEXANE	36.0	97.5	5.5	23.5	0.11	0.56		
52.1	OCTANE	27.5	97.0	5.0	22.5	0.12	0.45		
49.4	ACETIC ACID	32.5	93.5	5.5	17.5	0.14	0.33		
46.3	OLIVE OIL	24.5	77.5	12.0	20.5	0.38	0.65		
45.8	ISOPAR G.	21.0	93.0	4.5	14.0	0.11	0.30		
42.8	ISOPAR K	16.5	92.0	3.5	13.0	0.10	0.25		
41.9	ISOPAR M	15.0	92.0	4.0	11.5	0.08	0.28		
41.6	n- BUTANOL	12.5	93.0	4.0	12.0	0.12	0.30		
<i>4</i> 0.1	ETHANOL	11.5	94.5	3.0	8.0	0.08	0.20		
9.7	t- BUTANOL	9.5	95.0	2.0	9.5	0.08	0.18		
38.0	i- PROPANOL	8.0	95.0	2.0	6.0	0.06	0.16		
33.9	VASELIN OIL	13.0	70.0	4.5	11.0	0.20	0.36		
3 1.9	CASTOR OIL	15.0	52.5	7.5	17.5	0.28	0.52		

1.4. Discussion of experimental results.

In table 4, the compounds are classified according to their solvent ability for terphenyls. These data indicate the following relations between molecular structure and solvent ability.

- a- Benzene is the fundamental aromatic compound.
 We propose thus to adopt his solvent ability to be 100 %
- b- Only heterocyclic compounds solve better than benzene.

example : Tetrahydrofurane - Dioxane - Pyridine.

c- The substitution of hydrogen in the benzene nucleus decrease the solvent ability from little changing to large one according to the following substitutions.

H substituted by an ether group : Benzene Anisole H substituted by (an)alkyl groups: Benzene Xylene H substituted by an chlorine ": Benzene Dichlo benzene H substituted by an amino group : Benzene Aniline

H substituted by an hydroxyl " : Toluene Benzyl alcohol
d- The higher the degree of substitution the more decreases the solvent ability

example : Toluene, Xylene, Solvesso.

e- The hydrogenation of the nucleus results in a decrease of the solvent ability similar to that which occurs by the substitution of H by amino and hydroxyl groups.

<u>example</u> : Benzene - Cyclohexane Thermip - Decalin

f- For aliphatic and alycyclic hydrocarbons the solvent ability generally decreases simultaneously with the molecular weight <u>example</u> : Hexane - Vaseline Oil

Cyclohexan - Decalin

For compounds with a similar number of C. atoms, the alicyclic hydrocarbons solves better than

the aliphatic one example : Hexane - Cyclohexane

g- In comparison to the hydrocarbons of the aliphatic and alicyclic series, the introduction of oxygen increase the solvent ability in the following line :

i) ether boundii) ester bound

iii) Keto bound

The introduction of oxygen as OH group decreases, at least for the low-molecular weight compounds, the solvent ability of the hydrocarbons.

1.5. Choice.

We have selected to test and use for decontamination purposes following solvents

ALIPHATICS	:	ISOPAR G
AROMATICS	:	BENZENE
		THERMIP
		SOLVESSO 150
KETONES	•	ACYCLOHEXANONE
		METHYETHYKETONE
		ACETONE
HETEROCYCLICS	:	TETRAHYDROFURAN
ETHERS	:	DIOXANE
ESTERS	:	ETHYLACETATE

This selection is made on the base of the experimental results in comparison with the conventional properties and the price (table 1 to 3).

If Benzene, Tetrahydrofuran and Dioxane remain in this selection it is only due to their excellent ability to solve terphenyls.

2. <u>Solubility of OM₂ mixtures</u>.

2.1. To complete our investigations for practical decontamination purposes we have determined the solubility of OM₂ mixtures in the solvents selected in part. 1.

The OM_2 mixture we have used were prepared by us from the three pure terphenyls following the average composition of OM_2 :

 p.
 Ø 3
 : 5 %

 m.
 Ø 3
 : 75 %

 o.
 Ø 3
 : 20 %

This procedure we used in order to avoid sampling errors.

The method used to measure the solubility is the same as descripted in part. 1., this means determination of the temperature where crystallization begins.

The measured temperature indicates the point where the mixture solvent- OM_2 is liquid. After the crystallization-point is reached, we have practically a fractional crystallization of the components of OM_2 mixture. This phenomenon 15 of no interest for decontami-

nation work, because we have to work in the total liquid range.

2.2. Results.

Results are presented in the following curves. The values obtained for the "synthetic OM_2 mixture" were controlled using OM_2 technical grade manufactured by PROGIL.

The relative difference in the solubility of two mixtures is in the range of $\frac{1}{2}$ 5 % for temperatures from 25 °C to 80 °C.

2.3. Discussion of experimental results.

According to the curves the solubility of 0 M_2 mixtures is about the half of the solubility of the pure m. terphenyls. For 0 M_2 we find the same classification of solvent in respect of their solvent ability as given table 4.

3. Conclusión.

From experimental results and in comparison with the conventional behaviours and the price we had finally choosen the following solvents for our decontamination purposes:

ISOPAR G SOLVESSO 150 THERMIP ACETONE METHYLETHYLKETONE

Isopar G is take in account only for his inerty in front of the isolated electrical components. This choice has been confirmed by preliminary decontamination tests with success. Decontamination techniques based on the use of this solvents are under study. For skin decontamination, our medical service recommand the following solvent mixtures =

> 80 % METHYETHYLKETONE + 20 % OLIVE OIL + eventual local anesthetic agent.

4. Acknowledgements.

The authors acknowledge with thanks the discussions with and advice from Mr F.Geiss (Chemistry Department).

Thanks are also due to Mr. Hannaert, Chief of Organic Chemistry Service.

Bibliography. (1) Organic coolant Data book Tech. Publ. Nº AT - 1 July 1958 Mosanto Chemical comp, St Louis. (2) E. E. Mc. Langlin, H.A. Zainal; - Solubility Behaviour of Aromatic Hydrocarbons in benzene. J. Chem. Soc. 1959 p- 863 - 867 - Solubilitues in Carbon Tetrachloride. J. Chem. Soc. 1960 p- 2485- 488 (3) R.T. Keen Solubility of terphenyls at room temperature NAA - SR - Memo 2412 (1958) (4) B. VERSINO ed al. Analisi delle miscelle organiche sostitute dei terfenili (in press) Ispra 1967. (5) H. KIENITZ Bestimmung der Löslichkeit in HOUBEN-WEYL - Band III/ 1p. 219 - 254 General literature. - C. MARSDEN Solvents guide CLEVER - HUNE PRESS 1962 London - N. Irving Sax Dangerous properties of indutrial materials Reinhold Publishing Coproration 1963 New York. - Technical Information about solvents. ESSO CHIMICA - Milano -- HOUBEN WEYL - Methoden der Organischen Chemie THIEME VERLAG 1959 - Stuttgart.

NOTICE TO THE READER

All Euratom reports are announced, as and when they are issued, in the monthly periodical EURATOM INFORMATION, edited by the Centre for Information and Documentation (CID). For subscription (1 year: US\$ 15, £ 6.5) or free specimen copies please write to:

Handelsblatt GmbH "Euratom Information" Postfach 1102 D-4 Düsseldorf (Germany)

or

Office central de vente des publications des Communautés européennes 2, Place de Metz Luxembourg

To disseminate knowledge is to disseminate prosperity — I mean general prosperity and not individual riches — and with prosperity disappears the greater part of the evil which is our heritage from darker times.

Alfred Nobel

SALES OFFICES

All Euratom reports are on sale at the offices listed below, at the prices given on the back of the front cover (when ordering, specify clearly the EUR number and the title of the report, which are shown on the front cover).

OFFICE CENTRAL DE VENTE DES PUBLICATIONS DES COMMUNAUTES EUROPEENNES

2, place de Metz, Luxembourg (Compte chèque postal Nº 191-90)

BELGIQUE — BELGIË MONITEUR BELGE 40-42, rue de Louvain - Bruxelles BELGISCH STAATSBLAD Leuvenseweg 40-42, - Brussel

DEUTSCHLAND BUNDESANZEIGER Postfach - Köln 1

FRANCE

SERVICE DE VENTE EN FRANCE DES PUBLICATIONS DES COMMUNAUTES EUROPEENNES 26, rue Desaix - Paris 15°

ITALIA

LIBRERIA DELLO STATO Piazza G. Verdi, 10 - Roma

LUXEMBOURG

OFFICE CENTRAL DE VENTE DES PUBLICATIONS DES COMMUNAUTES EUROPEENNES 9, rue Goethe - Luxembourg 혅

NEDERLAND

STAATSDRUKKERIJ Christoffel Plantijnstraat - Den Haag

UNITED KINGDOM

H. M. STATIONERY OFFICE P. O. Box 569 - London S.E.1

> EURATOM — C.I.D. 51-53, rue Belliard Bruxelles (Belgique)