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Abstract

To increase the availability of a power plant means also to invest more money
in the plant. A criterion to weigh the improved availability against the in-
creased plant cost is therefore needed. For this rcason. the annual loss func-
tion of a power plant is introduced: the minimum of this function gives the
best balande between improved availability and increased plant cost. The safety
requirement is a constraint to the problem of finding the minimum 6f ;he func~
tion. The mathematical expressions to calculate the annual loss function are
derived; and a numerital example is also included. Some general probabilistic

considerations on reactor containers are also discussed.
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1. Introduction

One of the problems, with which the designer of electric power plants is faced,
is that of constructing the plant in such a way that it can function safely
and economically. To increase the degree of safety of a plant is paid always
by making it to function less economically. In fact the safest plant is that

vwhich is always in shut down, which means that it does not function at all.

During normal operation, it can happen that the plant, due to the failure of
one of its parts, goes to shut down, and does not produce electricity during
the time in which is being repaired. This results in a loss of money for the
company which owns the plant. This consideration should drive the designer to
design a better plant; in which the failure probability of its parts is reduced.

But to design a more reliable plant nreans also to invest more money in it.

From what we have said, one can already conclude that the designer must weigh
the improvement obtained in the plant availability against the increased plant
cost. Scope of this report is to give the criteria vhich allow to find this

optimum value of the plant availability, and, at the same time, to satisfy the

safety requirements given by the safety committee.




2. Fundamental concents. Different types of failures.

From an operational point of view, we can think that a plant consists of two

systems: the “Functional System” and the “Safety System’.

The "Functional System” is that part of the plant which performs the function
of the plant, that is to produce electricity. The 'Functional System' includes
those parts of the plant (such as reactor, pumps, heat exchanpers, etc.), vhich

all together allow the plant to produce electricity.

The "Safety System" is that part of the plant vhich protects the "Functional

System' against accidents.

For this reason, signals coming from the "Tunctional System’ are comntinuously

detected by the "Safety System" (fir. 1).

If the signals indicate that a dangerous situation exists, the Safety Systenm
will shut the plant dowm.

le shall call "Functional Subsystem” any part of the functional system which,

if it fails, does not allow the plant to perform its function at all, or at
least in a safe way. To illustrate this definition, we shall make two examples.
Let us take the case of a nuclear power plant. The pump of the primary coolant
circuit (fig. 13) is driven by an electric motor vhich is fed from a pover
supply. If the power sunply fails, the pump stops, the coolant flow decreases,
and the reactor is not cooled any more. The consequence vill be that the heat

is not converted into electricity, which means that the functional systen does
not perform its function any more. In addition, since the reactor is not cooled,
the heat produced remains inside it and, if the plant is not shut down, there

will be a "disaster" or a big accident” (core melt dowm).

The power supply is therefore a functional subsystem, because its failure does
not allow the plant to function. Let us suppose now that we have two rower
supplies, one working and the other in stand-by, connected in such a way that,
if the first fails, it is automatically switched off, while the second is
automatically switched into operation. In this case the functional subsystem
is made of both the power suprlies, and each of them will be called “unit”.

The functional subsystem fails, if both the units fail.

The second example refers also to the primary coolant circuit of a nuclear
power plant. The bearings of the primary coolant pump (fiz. 13) are cooled

vith oil, which is maintained in circulation by means of an oil pump. If the




oil pump fails, the functional system can continue still for some time to pro-
duce electricity, but not in a safe way. In fact, if the primary coolant pump
is not switched off, the bearings will jam and the pump will fail (loss of
coolant flow accident). The oil pump is also a functional subsystem and, as

for the case of the power supply, ve can have an "oil numps subsystem’ vhich
consists of two or more oil pumps, that is of two or more units. The functional
subsystems have only one type of failure. This does not mean that they can fail
only in one way, but that their failures have only one consequence, namely that

they bring the plant in a so dangerous situation, that plant shut down is required.

Let us take, for example, a “power suprlies subsystem” consistin> of one unit
only. The modes of failure of the power supply are many, but the consequence is
only one: the motor of the primary coolant pump is not driven any more. The units
of the functional subsystems :rill be characterized by only one averace failure
rate, Ops which takes into account all the failure modes of the unit. If we

indicate with "h (t)" the total failure probability demsity distribution of the

O, |
T h,(t)at
1 o B

9% = mean time between two failures = Op Op (1)
0. 1—/[ . hw(t)d%}+Jf - thF(t)dt
- o

unit, we have (Appendix 1)

2]

o}

where

time

"t
]

0,, = maintenance period, that is time interval between two

preventive replacements (or repairs) of the unit.

If no preventive maintenance is planned (9.,=»), eq. 1 becomes:

o = ! 2)

" o
J{ t b, (t)dt

0

The average failure rate, A, of a functional subsystem depends upon the charac-

Fi

teristics of the units vhich form the subsystem and unon the way in which these

units are connected (strategy). The calculation of “A_" as function of thte unit
7

characteristics for different strategies is showm in paragraph 5.4.

The plant will be shut down from time to time to carry out the maintenance of the




big components. This maintenance is called "routine plant maintenance’.

The mainterauce period ”@F" of a unit belongine to a functional subsystem can
be shorter then that of the "routine plant maintenance", if the functional
subsystem consists at least of two units. In fact, in the case in which the
functional subsystem consists of one unit only, in order to carry out the

preventive maintenance of the unit, it is necessary to shut the plant down.

The safety system too can be divided in “Safety Subsystems™. For a better under=
standing, we shall illustrate a particular case. Fig. 2 shows a schematic block
diagram of some safety subsystems, which protect the reactor of a nuclear powver

plant against accidents. In a safety system we can distinguish three types of
subsystems and exactly

Subsystems 811, §12, S13. They measure some parameters (such as

power, temperatures, pressures, etc.) of the functional system,
and, on the basis of these measurements, decide wether or not

toc shut the plant dowvm.

Subsystem Sl4. It is an intermediate relays network, which receives

the dicision taken by the previous subsystems, and transmit it to

the following subsysten.

Subsystem S15. It is a structure of actuators. The actuators are the

organs, which carry out the decision received from the relays net-
work. In the case of a nuclear reactor. the actuators would be the
safety rods and its associated mechanisms. In the case of a pump,

the actuators would be the electric switches which connect the pump

motor to the power supply.

With reference to fie. 2, let us suppose that the power supplies subsystem (which:

feeds the motor of the primary coolant pump) fails. The loss of voltage to the

L}
511

such a way that, if at least "kS!lw out of the nnSll“ units measure the loss of

voltage correctly, the dacision to shut the reactor down will be given to €14.

motor will be measured by the "n meaguring channels which are connected in

This means that at least ”kc!]" units, at-the time of the loss of voltage accident,
(™)

Bust not have alrealy failed in such a way that they cennot detect the accident
any more. We shall call with failure type "a" that type of failure which makes
the unit (of a safety subsystem) unable to function correctly when the accident

occurs., The subsystem S14 ocperates in a similar way. When S14 receives the shut

i 14

£ 11
out of the nSl4

units (relays)

dovm decision from S11 (or 812 or 813), if ”k814




operate correctly, it will transmit this decision to subsystem S15. Finally, if
"kCIS" control rods will drop inside the reactor, no big accident will take place
and the reactor will be shut down. If instead, at the time of the loss of voltage

accident,

m = +1 -k 3)

st1 - st S1t

out of the "nS]l" units don't measure the loss of voltage correctly, no decision
to shut the reactor dowm is given to subsystem S14. In this case, since the
primary coolant pump will stop, the primary coolant flow will decrease, and

this will be detected by the measuring channels of subsystem S12, which operates
in a way similar to S11. If also subsystem 512 fails to shut the reactor down,
the reactor outlet coolant temperature will increase, and this will be detected
by the measuring channels of subsystem S$13, which operates in a way similar to
S11 and S12. If also subsystem 513 fails to shut the reactor down, there will

be a big accident (core melt down).

The big accident (or "disaster') will take place also in the cases in which
subsystems S14 and £15 fail to operate correctly, when they are required to shut

the reactor doim.

It can also happen that "k811“ out of the ”n°ll“ units detect the loss of voltage
to the pump motor, vhen no loss of voltage exists (failure type b). In this case

the reactor would be erroneously shut down (false trip).

From what we have said above, we can conclude that the units of a safety sub-

system can have two types of failures: failure type "a" and failure type "b".

Failure type "a" is that type of failure, which makes the unit unable to operate

when it is asked to operate.

Failure type "b" is that type of failure, which makes the unit to operate, when

it is not asked to operate.

For a relay mounted in such a way, that its contacts are asked to open when
there is a danger, the failure type "a" would occur if the relay becomes unable
to open its contacts vhen it is asked to do it. The failure type "b" would in-

stead take place, if the relay contacts open without being asked to open.

The units of the safety subsystems will be therefore characterized by two averaze
failure rates one, pg» related to failure type “a" and the other, o,, to failure
Pl

type "yt




In order to find out that a unit of a safety subsystem is failed with failure
type "a", it is necessary to test it from time to time. Let us indicate with
"TS" the checking period (that is the time interval between two tests), with
hé(t) the failure type "a" probability density distribution of the unit and

with h;(t) the failure type “b" probability density distribution of the unit.
Je have (Appendix 2)

1
O5(1+85/75) £(1+65/14)
hé(t) 1-.JC h;(t)dt dt
_Jo
es 1- hS(t)dt’ + t hs(t)dt
o o
and
it
Og(1+65/7) £(14+83/74)
hg(t) l~“}’ hé(t)dt dt
: o !
0
g = (5)
S OS _ OS )
0. | I- ho(t)dt | + t ho(t)de
] o o] o P
vhere
OS = maintenance period, that is time interval between two preventive
replacements (or repairs).
] -
GS = const.
62 = const.

h(t)= total failure probability density distribution given by eq. 5 in
Appendix 2.

Fig. 3 shows the qualitative behaviour of P and o, as functions of "0_." and "t_".

S S S
It is understandable that the shorter is O, and the longer is Tgs the smaller

are oS and pS°

A safety subsystem is characterized by two parameters
(1) the reduction coefficient “Ké'for failure type "a"

and (ii) the average failure rate "A." for failure type "b''.

[




If a functional subsystem fails (for example the power supplies subsystem),

there is a certain probability that one of the safety subsystems which should

cooperate to shut the reactor dowmn (for example S14) has already failed with

n,n ?

failure type "a". This would happen if "m," out of the ”ns'

to the safety subsystem) have failed with failure type "a". If ”AF" is the

units (belonging

failure rate of the functional subsystem, the rate of occurrence ''v" of the
event, that, the safety subsystem fails before the functional subsystem does,

is given by (Appendix 3)

v = KSAF (6)
where
ul
S
'
- (0 (pgtg -
1 -m_)!
S (msﬂ).(nS ms).
and
Py = unit average failure rate for failure type "a" given by eq. &
ng = number of the units belonging to the safety subsystem
mg = nunber of the units which must fail in order to make the

safety subsystem to fail (failure type "a”)

o~
[

o = checking period.

Figs. 4, 5 and 6 show the reduction coefficient "KS” as function of "psg'

for different values of ”nq"

and "m.".
If we now ask for the rate of occurrence "v", of the event that two safety
subsystems (i and j) fail before the functional subsystem fail, we have

(Appendix 3)

= H 7
v = Hgy.55%s1Fs50r (%)
wvhere
¥g; = reduction coefficient of the safety subsystem A
KSj = reduction coefficient of the safety subsystem “*j"

HSi;Sj = coupling coefficient




..l]-.

b4

‘8159 is given by

2
2

(n,+1) (. +1)
Bsiiss = Torm 5 9
’ Si " Sj

For the case of "N" safety subsystems we have
Iy

e B T (10)
i=1
1
wvhere 1 ﬁﬂoi+1)
. i=y °
Us1;825.. .81 = T (1
1 + .Z mSi
i=]

The failure rate "AS” for failure type "b" of a safety subsystem is given by
(Appendix 4)

’s
}‘S = £.~1 i n, (12)
o l{MsYy 2 (g=1-1)!
e
i=o |'95" gen _-g #1413 U

wvhere

0o = unit average failure rate for failure type "b" given by eq. 5

w

=
[}

g = number of units which must fail (failure type ") in order to

make the safety subsystem to fail.

Hg = average repair rate of a unit, equal to the reciprocal of the

mean time needed to repair the unit. (defined by eq. 13)

U, = 1 (13)

j te.(t)dt
fo) a

vhere gs(t) is the repair probability density distribution of a unit.

Since us/cs is usually extremely larce, eq. 12 can be written as follows

(14)

wn
”~~
=]
1
=
w
A
~]tn
>0
]
—
o’
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For safety subsystems like structures of measuring chanhels or relays networks,

we have always

b = kg = nc+lmmg (15)

For the safety actbators subsystems, we can have either eq. 15 or

Lg ¢ k. (16)

sl

In tHe case of the reactor actuators subsystem (515 in fig. 2), if ome control

rod alone is sufficient to reduce the reactor power to a low value, we have

ZS!S = ] an

and therefore from eq. 12

*s15 = 2515 %815 (12)
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3. A simple model. The annual loss function ‘'Z7.

In order to understand the type of problem which we intend to solve, let us

start to consider a very simplified model of the electric plant.

At a given time the plant can be only in one of the following states

State ‘'O" The plant is in "normal operation” which means

i i
Norm e sy s .
ormal Operation that it is preducing electric power.

State 17 The plant is in "shut down”, which means that
1 1"

Shut Dowm it is not producing electric power, but that

it can be repaired and started up again.

State "2% The nlant is in the “disaster” state which means
"Disaster”
that it is so heavily damazed (as a consequence
of a big accident), that it cannot be repaired

any more.

Tig., 7 shows a schematic flow diagram of the various states of the plant.
The plant, as seen in paracraph 2, consists of the "functional system” and
of the "safety system”. A failure of the “functional system” leads to a 'bi~

accident”, if the safety system does not shut the plant down.
The plant goes from state 0" to state 1" in the two followins cases:

a) failure of the “functional system’” followed by a correct action

of the safety system.

b) false trip, due to a failure of the safety system. This means
that the safety system shuts the plant dowvm while the functional
system is operatine correctly. 'le have called this type of failure

of the safety systen failure type "'b",

The plant goes from state 0" to state 27 (disaster) vhen the functional systen
fails and the safety system does not shut the plant dom. e have called this

type of the failure of tihe safety system fatlure type “a',

tle introduce nov the following symbols

Qo(t) = nrobability that the system is in state “0" at tine “t”

1}

Ql(t) probability that the system is in state 17 at time "'t"

Qz(t) probability that the system is in state 27 at time "'t”

AF = failure rate of the functional system




0-14..

KS = reduction coefficient of the safety system
¥ = plant repair rate, that is the reciprocal of the mean
time needed to repair the plant
Ag = rate of occurrence of a false trip.
The rate of occurtence "ud“ that a big accident occurs (safety system fails with

failure type "a" before the functional system fails) will be given by

vy = :SAF (1)

The rate of occurrence "'v', that the plant poes to shut déim as a consequence
P g

of the failure of the functional system, is

v = (1=K)\, (2)
Since "KS" is very small (<IO_5), eq. 2 can be written
v o= AL 3)

Typical values for AF’ AS’ ¥ and KS are the following

Ay = 0.1 # l/year (4)
Ag = 0.01 ¢ 0.05/year (5)
Y =10 : 100/years (6)
Iy < 1677 ¢

From 4 to 7, we get the expression & which holds in the practical cases

¥o> L+ AS » KA 2)

In the following analytical treatment, we suppose that A,, A, and ¥ are constant.
& 1)
This means that failure and repair probability density distributions are supposed

to be exponential.

The following equations can be written (fig. 7)

> _ _(AF+AQ+KOAF)QO+WQ1 )

s (v




s -

dQ]

dt = Og*rgo, -vo, (10)

sz

dt I“::)‘FQo (n

=0, +q +q, (12)
where "t" indicates the time,

Only three of the four equations 9, 19, 11 and 12 are independent. For instance,

€. 11 can be easily obtained from eqs. 9, 10 and 12.
The solution of the System of eqs. 9, 10 and 12 is described in Appendix 5.

Here we write the approximate expression of "Qo" under the condition that the
expression 3 is satisfied

—

v s
QO = "W-A:IX; + m exp { "(‘P"‘)\F‘I’AS)C]]eXp('KS)\Ft) (13)
2 o

Eq. 13 can be written as follous

Q, = AR o
where
+
A= T+A§+AS + ifkgfls exp {'(W+AF+AS)t } (15)
and
R = exp(-KsAFt) (16)

"A" is a function which has the following characteristics

[al,_, =1 (17)
and

lim A = @+AW+A =A_ (13)

te s

Due to the large values of "y (eq. 6), "A" reaches A, in a very short period
of time.




For "R" we have instead

Rl oo = 1 (19)
and

limR =0 (20)

t-0

Due to the very small values of KA, "R" is practically equal to "1" for the
all plant lifetime. We have therefbre that the average plant availability A

during the time interval "t" is given by
A=T:'ondt=
)

For a time interval

t
j Ade = A +(1-A) m;‘:— [-exp{~(¥+ag#rgdel]  (21)
o T s )

-

1
t > (22)
‘1’+)\F+)\S
eq. 21 becomes
Rah = o (23)

7"
© ‘i‘AFAS

“A'" is called point availability and A_ asymptotic availability. "A_" can also

be expressed as follows

-

A = operation time (24)
© operation time + repair time

It is very interesting to notice that the point availability "A", given by eq. 15,
vould be the exact solution of the system of eqs. 9 to 12 in the particular case
KS=O, that is when we suppose that the probability of the plant to be in the
absorbing state (disaster) is equal to zero.

Appendix 6 shows that eg. 23 is valid also in the case in vhich failure and
repair probability density distributions are not exponential. In this case VY,

AF’ AS are only average values.
"1-A_" is called "unavailability” and we shall indicate it with the symbol "U"

A+
U= 1-A F S

w 2N

(25)
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We shall now introduce the annual loss function "2".

When the plant is in shut down, it does not produce electricity. The expected

amount of money lost in a year because of the unavailability of the plant is

PTyU (26)
where
P = power of the élant xm
T= numbef of houts in a year, during wvhich the plant is

planned to be in operation (hrs)

Y = price of the kih minus price of the fuel which prodlices
a kwh.

We shall call the quantity given by-eq. 26: annual unavailability cost.

The value of "y" is very difficult to estimate. It depends upon many factors
such as the possibility to increase the load of other plants, or to buy the
energy from another electricity producer. The price of the kWh, due to the
"unavailability" of the plant occurred during the day, will be different from
that due to the "unavailability" occurred during the night.

The evaluation of "y" is by itself a big problem which exceeds the limits of

this report. We shall suppose that y has been elsevhere already evaluated.

Some money will be lost, to repair and start the plant up after a failure is
occurred. We shall indicate this amount of money with "8". The expected total

amount of money lost in a year for repair and start-up will be

B(AF+AS) 27)

We shall call the quantity given by eq. 27: annual shut down cost.

We shall indicate with "C" the annual subsystems cost. that is the cost per

year of all those parts of the plant which contribute to its "'unavailability'.
Tkis cost will include the capital costs per year for design, construction

and installation, the operation costs, and the maintenance costs.

We can now calculate the expected amount of money lost in a year "Z" (annual

loss function). Taking into account eqs. 26 and 27, and the definition of 'C",

ve can write

Z=PTyU + B(AF+AS) + C (28)




From eqs. 25 and 28 we get finally

=f PTY
Z W+AF+AQ + B8 (AF+AS) + C (29)

N
We notice that the first term (on the right side of eq. 29) is a function vhich

increases with "A_+A.". The term “C" will instead decrease with "A #A.", for

S
the simple reason that the less the parts of the plant will fail, the more

they will cost.

The function "Z", being the sum of two terms, one increasing and the other

decreasing with "AF+A ", will have a minimum. Ve skall indicate with

S
(AF)opt and (As)opt
respectively the values of Ap and AS which give the minimum value of "Z" (Zmin)°
The problem, which the designer must solve; is to find (XF)opt’ (AS)opt and

Zmin' Let us suppose that we have already found these values.

We can now define a second problem. The safety committee requires that, for

safety reasons, the rate of occurrence of a big accident (X, )\_,) should not
w4

114 i1

exceed a value v which is fixed by the safety regulations. e can write
therefore
g = Khp < v (30)

T g
For (AF)opt9 eq. 30 will becone

Umax
K, < —

31
5 (AF)Opt

The safety system must be designed in such a way, that its reduction coefficient
"KS" does not exceed the limit value given by the expression 31. In effect, the
fullfillment of 31 will have a feedback to the evaluation of Zmin because "AS"
depends too on the characteristics of the safety system. Condition 31 must
therefore be regarded as a constraint to the problen to minimize "Z", This will
become clearer with the numerical example which will be shown in the following

paragraph.
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Fig. 9 shows "ZF" as function of "UF" for different values of "nF".
To calculate the curves of fig. 9 we have used the following numerical

values for the known parameters

By = 102/years (1)
fﬁ%—l + 8 = 2:10° D.M. (15)

The "Safety subsystem" (measuring channels) consists of "nS'i units all
in active redundancy. The network is built in such a way that, if the
voltage to the stator fails, and ”ms” out of the ”nS" units also fail
(failure type "a"), the safety system will not shut the reactor down and

there will be a big accident (reactor melt down).

For the "safety subsystem" we have the following expressions (para. 2
eqs. 7, 13)

m
(ns)i(osrs) S

Kg = (ms+l)!(ns-ms)! (16)
£
(nS)! ° : (17)
A, = , "
57 Tagt)! ps(zs_lj
Since we have (eq. 14 of para. 2)
by =ng+ 1 - mg (18)
eq. 17 becomes (
n. +l-m_)
CHINETE
» (19)

s~ (mg-1)! ps(ns-ms)

The symbols of egs. 16 to 19 have the following meaning

DS = unit failure rate for failure type "a"
TS = checking period
gg = unit failure rate for failure type "b"

B = unit repair rate, that is reciprocal of the mean time to

repair a unit after a failure type "b"
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RS = number of units which must fail in order to make the

subsystem to fail (failure type '"b™")

The cost "CS" of the safety subsystem is given by

Cg = ng cg (20)
where
cS = annual cost of a unit
Taking into account eq. 16, the constraint 7 becomes
s
i -
(ns)'(pSTS) Y max 10 9
KS T ) o—m)! - A T (21)
S S 8 F F

For the sake of simplicity, we shall suppose that only one type of measuring

channel is available on the market and that ”TS" has already been chosen.

For the designer therefore, the following values will be fixed

gg = 1/year (22)

pgtg = 1077 (23)
L

Bg = 10 /year (k)

cg = 102 D.M./year (25)

Fig. 10 shows the limit curve

= — (26)

as function of "KF”.

The following two tables give "A /" (eq. 19); Zg (eq. 6) and K (eq. 16)

as functions of ”ms” and ”ns”




Table 1

(D.M./year)

1.5°10°

4.10°

5'102

2

6°10

(D.M./year)

2

2.10 10'3

3.102 | 1.5-107°
2

L+10 2.1072

5:10° | 2.5.107°

From the analysis of figs. § and 10 and of the tables 1 and 2, we can
easily conclude that the designer will obtain the minimal annual loss
"Zminu’ and at the same time will satisfy the constraint given by the
safety committee, if he will take the following decisions:
(1) he chooses, among all the types of power supply units
available on the market, the type No. 2 which is

characterized by
op 0.1/years (27)
and

Sp 11°000 D.M./year (28)




(ii) he decides to have one power supply unit working and the other
in stand~by, that is

n, = 2 (29)
(iii) he decides to have 4 measuring channels so connected that “3%
of them must fail (failure type ") in order to cive a false

tripn.

ng = 4 (30)

m, ® 2 (31)

[ s

Uith the numerical values 27, 22, 29, 30 and 31, we cet

L -4
Ap = 10 /year

Z,, = 22°000 L.'1./year

&

Z, # 400 D.!1./year

[w

Z=ZE+ZS=22°4OO D.il./year

Rohg = Z'IO-lO/year < 10-9/year

It is very interesting to notice from eas. 33 and 34 that

zS <<zF (37)

vhich means that the minimum of the partial annual loss “ZS" of a safety sub-
system is much smaller than that of the partial annual loss “Z," of a functional

subsystem,
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5. The annual loss "Z" as function of the characteristics of the units of the
lant

3

5.1 Generals

The annual loss function "Z" is given by the sum of three terms

Z=PU+32+C (1)

"PTyU" is the "annual unavailability cost”, and represents the exrected
amount of money lost each year, because of the unavailability of
y y ) y

the plant.

A is the "annual shut dovm cost’, and represents tae expected amount
of money needed each year to remalr the rlant any time shut dowm

occurs and to bring it back into normal operatiom.

e is the "annual subsystems cost', and represents the total cost per
year of all the subsystems which contribute to ti:e plant unavaila-
bility. This cost includes the capital. operation and maintenance

costs per year of the subsystems.

In the next para~raphs we skall express "2V as function of the characteristics

of the units of the plant.

5.2 The “plant unavailability', U, as function of the characteristics of the

functional and safety subsystems

In paragraph 3 we have defined three possible states of the plant: nommal

operation, shut dovm, and disaster.

In reality the “shut down" state is not only one state, but a collection of

different states vhich have in common the two following pronerties

(1) wvhen the »lant is in one of these states, no electric power

is produced

(ii) it is possible to rerair the vlant and to brincz it to ‘'mormal

oneration'.

Tig. 11 shows a schematic flow diagram of the various states. They are

Ctate ° normal oneration

Stetes 1 to U shut Jdovm

State O disaster




Each state "i" of the "N" shut down states is characterized by the failure rate

it

i

v, ", the repair rate "Wi" and the shut dowm cost "8,", which is the cost to

i
repair the plant and to bring it back into normal operation.

As seen in paragraph 3, the probability "Qo" that the plant at time "t" is in
state "0" is given by

0, = AR (1)

where

R exp(-udt) (2)

and "A" is the point availability, which is calculated by supposing that the
probability of the plant to be in the absorbing state (disaster state) is

equal to zero.

If we neglect the absorbing state and indicate with "Si" the probability that
the plant at time "t" is in state "i" (i=1;2...1), we can write the following
equations (fig. 11)

b

—
pE

da _ _ , '
EE = A E di + ‘2 ‘I’iSi (4)
i=1 i=1
dSi
5o = YA - Y5, (i=1;2:...0) (5)
and
N
I s, =1-4 (6)
i=1

The above "+2" equations are not all indépendent: one of them can be obtained
q T
from the others "l+1". Since we are interested in the asymptotic availability

"A ", we can solve the equations 4 to 6 by putting all the derivatives equal
to O.

From the equations 5 we get
v

. i .
Qi’:’o = -‘l/_.. A(X) (l=l ,2, i-oN’) (7)
1
where
Sioo = Si(oo) (8)

Putting the eqs. 7 in 6, we obtain

0 Ui
1-A = A X v (9)
i=1 i




and finally

We shall now introduce the symbol "A, " so defined

{o

fo ) (n

"Aim" would be equal to the asymptotic plant availability "A " in the particular
case in vhich the state "1" is the only possible shut down state, that is when

vy =0 (3#1) (12)

vy #0 (13)

Taking into account eq. 11, eq. 10 becomes

A = !

® T 1-A

1+ z

Li°°
A

i=1 Tie

Introducing the "plant unavailability” U, we get finally from eq. 14

N U
g i _

_i=1 Yy

N U
] + Z ...-_i‘._.

i=1 |—ﬁi

U

where ﬁi is called "partial unavailability" and it is given by

V.

- - 1

Uy =1 -4, =559 (16)
i

Eqs. 15 and 16 have been obtained for comstant values of vy and Wi. This corres-
ponds to the case in which the failure probability demsity distribution "fi(t)”
and the repair probability density distribution “vi(t)" are both exponential.
However, due to the conclusions reached in Appendix 6, these two equations

are also valid in the case in which “fi(t)" and "wi(t)" are not exponential.

In this last case "u," and "Wi" are average values given respectively by eqs.

i
5 and 4 of para A6.7.




If ohe thinks to all the possible combinations of failures among functional
and safety subsystems, he would conclude that the number of shut down states
in a plant is tremendously high. For this reason it is convenient to divide

the shut down states ih groups which are chosen with a criterionexplained below.

Ej. 15 can be written as follows

17)

Eq. 17 suggests the idea that, to get the unavailability "Uj" of a group of
"partial unavailabilities', one has to sum the partial unavailabilities in

th2 following way

"j" indicates group "j"

"ji" indicates shut down state "ji" belonging to group "j"

U,, = partial not availability due to shut down state "ji"

ji

M, = number of the shut down states belonging to group "j".

3

Fig. 12 shows a schematic diagram of the major components of a nuclear power
plant. A major component, with associated auxiliary parts to make it to function
anl safety subsystems to protect it against accidents, will be called "block".

A "plock™ is therefore a group of subsystems. A '"block" will be said unavailable,
when 1t does not perform the function for which it has been built. For instance,
the primary coolant pump (block lo. 2) will be not available, if it does not
maintain the primary coolant in circulation. All the partial unavailabilities,
which contribute to the unavailability of a block, will be grouped together to
give the unavailability of the block.

With reference to fig. 12, we can define the following nine blocks

Block MNo.
Block to.

Reactor

Primary Coolant Pump

1

2
Block Mo. 3 Steam Generator
Block Ho. 4

Primary Circuit
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Block Ho. Turbine

Block o, Electric Generator

Block No. ¢
Block io.

5
6

Block No. 7 Condenser
8§ Vater Pump
9

Secondary Circuit

The division of the plant in blocks is a matter of convenience and is somevhat
arbitrary. The designer may find more convenient to divide the plant in blocks
different from those listed above.

The plant unavailability "U" will be given by:
1 U,

1-U [0 1-U,
j=1 h|

vhere '"M" is the total number of the blocks. In the case of fig. 12 we have M=9.
One can also divide the blocks in sub-blocks and these in subsystems.

The "block unavailability" "U," will be a function of the "partial unavailabilities"

3

" according to eq. 18. Ue shall now analyse an example to show how to calcu-

|
Uji
late “Uj".

Fig. 13 shows a schematic diagram of the primary coolant pump [ﬁlock o . 27.

The primary coolant pump is driven by an electric motor, which is fed from the
power supplies subsystem. The pump bearings are cooled with oil, which is
maintained in circulation by means of the oil pumps subsystem. It is important
to point out that this example is made purposely simple, because we intend to
illustrate the principles and not to solve a practical case. Let us now continue
with our example. The safety system has the purpose to save the major components
(reactor, primary coolant pump) against accidents. It is clear that, from safety
point of view, the reactor will have first priority. This means that, if a
choice must be done between reactor and pump, we shall choose to save the reac~
tor first and after the pump. If the oil pressure decreases, (which is dangerous
for the bearings), it will be detected by the "oil pressure measuring channels"
(521), which will first shut the reactor down (throush the intermediate relays
network S14 and the reactor actuators 515) and after will switch the pump drive
motor off (through the intermediate relays network £22 and the pumr actuators
523). This sequence of actions is obtained through a feedback from the reactor

actuators (S15) to the input of the intermediate relays network (522).
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If the voltage to the pump drive motor fails, the pump will stop and this will
produce a big reactor accident (loss of coolant flow accident). For this reason
the voltage is measured by the "voltage measuring channels" (S11), which will

shut the reactor down through S14 and S15.

The safety system includes also two other trips: one for lov coolant flow (S12)

and the other for hiszh reactor outlet coolant temperature (S13).

We shall call "initial event" any failure of a functional subsystem or of a
safety subsystem, which brings the plant to a failed state {shut down or
disaster). For the sake of simplicity, we shall suppose that only some of the
functional subsystems belonging to the block llo. 2 (primary coolant pump) can

fail. They are

[}

Functional Subsystem No. F21 = 0il pumps subsysten

Functional Subsystem o. F22 = 0il circuit subsystem (oil leakage)

[}

Functional Subsystem No. F23 = Power supplies stubsystem

A functional subsystem will be indicated with the letter "I followed by two
or more figures, the first figure being the numbe= of the block to which the

functional subsystem belongs.

The safety subsystems, which belong to the block No. 2, are those which protect

the primary coolant pump and exactly

Safety Subsystem S2] = measuring channels of oil pressure
Safety Subsystem 522 = pump intermediate relavs network
Safety Subsystem 523

pump actuators

A safety subsystem will be indicated with the letter 8" followed by two or
more figures, the first figure being the number of the block to which the

safety subsystem belongs.

The safety subsystem S21 acts on the intermediate relays network S14 and S22,
and protects both primary coolant pump and reactor against accidents. The
safety subsystem 521 can therefore be assigned either to the block llo. 2

(primary coolant pump) or to the block Ilo. ! that is the reactor.

We have thought to assigne the structure of the oil pressure measuring channels
(521) to the block of the primary coolant pump (No. 2), because the oil pressure
is strictly related to the good operation of the pump bearings. In this case

the unavailability of the reactor is a consequence of the not availability of

the primary coolant pump, because the pump is not allcwed to function with




too low oil pressure at the bearings.

The assignément of a safety subsystem to a block instead of another may be a
matter of personal judgement of the designer. But the designer must be very
careful, when he makes the division of the plant in blocks, that he does not
assigne the same shut down state to two different blocks. In order to avoid
this error, he must check thagh%ist of the shut down states grouped in a
block contains only those having as "initial events™ the failures of the

functional and safety subsystems which he has assigned to the block.
The safety subsystems

S11 (measuring thannels of stdtor voltage)

S12 (measuring channels of primary coolant flow)

S13 (measuring channels of reactor outlet temperature)
S14 (reactor intermediate relays network)

515 (reactor actuators)

belong to the reactor block (llo. 1) because they protect only the reactor

against accidents.

Now we can illustrate the procedure to calculate the not availability U2 of
block No. 2, The initial events which must be considered are only those linked
to failures of the subsystems belonging to block llo. 2 and exactly: F21, F22,
F23, S21, S22, S23. For the safety subsystems only the failure type “b" can

initiate a shut down.
The shut down states of block 2 are the following

Shut dowvm State MNo. 21 = 0il pumps subsystem failed
Shut down State o, 22 = 0il circuit subsystem failed
Shut down State lo. 23 = Power supplies subsystem failed

Shut down State No. 24 = Primary coolant pump failed

Shut down State llo. 25 = False Trip (failure type "b' of a safety subsystem).

Ye want to point out that the failure of the primary coolant pump (shut dovm
gtate 24) can be due either to the failure of the oil pumps subsystem, or to
that of the oil circuit. Strictly speaking we should have two different shut
down states with primary coolant pump failed. lowever, since the time needed

to repair the pump is much longer than those needed to repair the oil pumps
p pump % I

and the oil circuit, we can group the two shut down states together in one alone.




The same considerations have guided us in grouping all the false trips in one

state alone (state 25).

In general we can say that all the shut down states, which belong to the same
block, and which are characterized by the same (or almost the same) repair rate
"¥" and shut down cost "B", can be grouped in one state alone. This state will
have the same repair rate and repair cost, and a failure rate equal to the sum
of the failure rates of all the shut dowm states which have been grouped to-

gether.

Fiz. 14 shows the trees to go from the initial events to the shut down states
for block No. 2. Each tree is shown in details from fig. 15 to fig. 19. These
trees give all the minimal paths to go from the initial events to the shut down

state to which the tree refers.

From the analysis of these trees, one realizes immediately that, in order to
go to the shut down state, some subsystems are required to fail and some other
safety subsystems are instead required to function. At the time of the failure
of a functional subsystem, the probability that a safety subsystem (related to
it) has not failed is much higher than the probability that it has already
failed. Ve shall not make therefore any appreciable error in the evaluation of
the failure rate of a minimal path, if we suppose that the safety subsystem,
which is required to function, has a probability equal to 1 to function.

The table of fig. 20 shows all the minimal paths of all the trees belonging to
block No. 2. Here, for each minimal path, only the subsystems which are required
to fail are shown. The minimal paths are shown horizontally: the sign "+" in
the column of a subsystem indicates that the subsystem is required to fail.

n_w

For the safety subsystems we have, as usually, the two types of failure "a

and "b".

We shall indicate with “u" the rates of occurrence (or failure rates) of the
minimal paths, with "AF” the failure rates of the functional subsystems and

with “AS" the failure rates type "'b" of the safety subsystems.

For the shut down state 21 and 22 (fis. 20) we have respectively

Y91 = Va11 = Ap2y (20)

Yoz = Vaa1 = tp22 (21)




Va3 = (22)

Ldoking at fig. 20, one realizes immediately that the rates of occurrence of
the minimal paths 232 and 233 are much smaller than the rate of occurrence of
the minimal path 231

Y232 = K511 Va31 CVa3 (23)

= [

v 115812

K

233 511%812Y231 Va3, (24)

where KSll and KS12 are the reduction coefficients fespectively of the safety

subsystems S11 and S12 and HSII°S!2 is the coupling coefficient betweeh the
safety subsystems 511 and S12. Both these coefficients have been defined i#

para. 2.

Taking into account 23 and 24, eq. 22 becomes

v = v = A

23 231 F23

For the shut down state 24, we notice the following: (fig. 20)

<< Y

Yoss = Kg12 Vous 243

<< v

Vosg = Kg12 Vas47 247

Taking into account 26 and 27, we can urite (fig. 20)

+ v + v + v + v

Y24 ® V241t Vaso Y Vos3 *f Vaus t Vose t Vour

Now we have

= K599 AFZ]
= Kga3 252y

= K591 *r21

= Kg29 Apop
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Yau6 = K23 Aroo (33)

7

247 = Xs21 *p22 (34)

v

where with "Kg'we have indicated the reduction coefficients of the various

safety subsystems.

Taking into account eqs. 29 to 34, eq. 28 becomes

U =

26 = Oy #

Apaa) (Kggp *+ Rgp3 + Kgpp) (33)

For the shut dowm state 25 we notice that (fig. 20)

V54 = Kgpg Vasg <<Vpsg (36)

and

V255 = Kgyp Vgg3 << Vpesq (7

Taking into account the expressions 36 and 37, we can write

v = U

25 = Vps5y * Upgy * Uggg (38)

Since we have (fig. 20)

Y251 = A52) (39)

V252 = Ag22 (40)

Y253 = *g23 (41
eq. 38 becomes

V25 = Agar * M52 * Aga3 (42)

Eqs. 20, 21, 25, 35 and 42 gives the rates of occurrence of the shut dovm

states of block 2 as function of the characteristics of the functional and
safety subsystens.
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Since the not availability of block No. 2 is given by

; Vog
. Va,+Y
g =41 1 72i 24 43)
2 5 UZi
1+ I

i=1 Y2:*¥24

we have to calculate all the repair rates “Wzi“.

The repair rate "WZi“ is the reciprocal of the mean time needed to bring the
power station from shut doun state "2i" back into normal operation (state 0).
This mean time must include the time needed to repair the subsystems which

have failed and that needed to start the plant up again. The repair rates are
therefore also very much dependent upon the way in which the repair actions

are carried out and organized (for example upon the number of the repair crews).
Their values must be obtained by collecting and analysing data coming from
experience gained with the operation of previous power plants similar to that

which the designer takes under consideration.

In general for a block "j" having "Nj" shut down states, ve can write

J v,
5 .
PR VIR L
U - i“l Jl Jl (44)
j N
1+ % i;
i=1 Y1744

5.3 The overlapping coefficient. Its definition and its influence on the

"slant unavailability"

Taking into account that

l 1
Ui = - =t (1
average time interval betwecen two shut down states "i" oi

and

1

average time needed to bring the plant into operation from shut

= (2)

down state 1Y ri
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the partial udavailability 51 (eqs 16 of para. 5.2) can also be written as
follows
t_ .
= ri

toittyi

i
Putting eq. 3 in eq. 15 of para 5.2, we get for the plant unavailability "U"

i tri
-
i=1 toi
U= W tr; (4)
1+ ¢ -—=
i=1 Toi

If we indicate with "TO" a long time interval, we have

) To(l—U)

oi a,
i

t

where "ai" is the expected number of times that the shut down state

"i" occurs in the time interval "To“. Putting 5 in 4, we get finally

1
iil al tri Tr
U= —-—-———-—-—————T = f- (C‘)
o 0

where "Tr” is the total time during which the plant is in shut down. This total
repair time is given, as showm by eq. 6, by summing the lengths of time ”aitri"

" is the total lensth of time spent by the plant in the shut down

wvhere “a.t
i'ri
state "i". This means that, in the model developed in para 5.2, no overlapping
among the individual repair times "aitri" has been taken into account. e have
practically supposed that a failure of a subsystem creates a situation so

dangerous for the plant, that immediate shut down is recuired.

tlany times the failure of a subsystem does not bring the powver station in a
so dangerous situation that immediate shut dowvm is required. In other words,
there are different degrees of danger. Take, for instance, the case of the pres-
sure of the oil which cools the bearings of the primary coolant pump (fig. 13).
If a leakage occurs in the oil circuit, the pressure will start to decrease
and, when it falls beyond a certain value, there will be an alarm. The opera-
ting crev will find out what has caused this alarm, and, on the basis of the

evaluation of the amount of oil vhich is beinc lost from the oil circuit can

4
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decide either to shut the plant dovn and to repair the oil circuit immediately,
or to wait for the next routine maintenance. It may happeh that, while waiting
for the next routine plant maintenance, the oil pressure decreases beyond a
value so low that the safety system shuts automaticaliy the plant down. On the
other hand, it tay also happen that, while waiting for the routine plant mainte-
nance, the failure of another subsystem occurs, which shuts the plant down, and

then both the damages will be repaired at the same time.

The above considerations bring to the conclusion that the repair times for the
various subsystems may overlap one with another. This effect, as already said,
has not been taken into account in the model described in para 5.2. The degree
of overlapping depends upon the type of the plant, the repair policy followed
by the crew which operates the plant etc.

It seems convenient therefore to define an "overlapping coefficient”, 5, to

be determined from operating experience. For the definition of this coefficient
we should refer to the partial unavailabilities ﬁi' Since this would be probably
too complicate because of the large number of shut dowvm states, we shall refer

to the unavailabilities of the blocks.

"s " as follows (according to a defini-

With reference to fig., 12, we shall define s

tion suggested by Dr, Vetter and his coworkeré of the R.W.E. Essen)

1 U, U
jzl -V, T 10
s T H U, U )
T - -
._, 1=-U, 1-U
j=1 j m
where
U = plant unavailability

e
[}

"unavailability” of block "j"

<
1]

unavailability of the block "m” characterized by having the

i

3

maximum among the block unavailabilities "U

(e
=
i

number of blocks (equal to 9 in fig. 12)
From 7 we get

U _ .. ' 3 m
= = (1 Sp) i -t s T (8)
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The overlapping coefficient Su" lies always between O and 1

L

0 <s < 1 9

s =0 (10)

and eq. £ becones

1-U _, =0,
j=1 hj

which is equal to eq. 19 of para 5.2.

The case

= ] 12
Sp (12)

corresponds to complete overlapping.

With complete overlapping we mean the case, in which the repairs of the blocks
would be all carried out within the repair time of the block which has the

maximum unavailability Um°

In this case eq. 3 becomes:

U
U _ m
=0 = 1-0 (13)
his |

5.4 The average failure rate of a functional subsystem as function of the

characteristics of its units for different stratecgies

In paragraph 5.2 we have showm how the "plant unavailability "U" can be expressed

as function of the failure rates "AF" and "Ag" of the functional and safety

subsystems and of the reduction coefficients "K.”" of the safety subsystems. Ve
~

want now to express the failure rate "A_" of a functional subsystem as function

F
of the characteristics of its units. The failure rate "AF" depends also upon
the type of strategy which is adopted. Here we give the results only for a
limited number of strategies. The details of the mathematical developments

are given in Appendix 7.
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5.4.1 Strategy 1: Functional subsystem consisting of a unit only

The subsystem fails if the unit fails we have simply

GF
f hF(F)dt

Ap = 0, = o (n

3 F @F oF
GF l-fo hF(t)dt +]; thF(t)dt

where
t = time
Or, = average failure rate of the unit
hy(t) = failure probability density distribution of the unit
@F = maintenance period

In the case in which no preventive maintenance is planned (6, = =), eq. 1

becomes

A =0, = ! (2)

F F o
‘ f t hF(t)dt
0

5.4.2 Strategy 2: Functional subsystem consisting of two units one working and

the other in stand-by. No preventive maintenance.

If the working unit fails, it is automatically switched off, while the stand-by
unit is at the same time automatically switched into operation. The failed unit,
after repair, is connected again as stand-by unit. The subsystem fails if the

unit, which is working, fails before the repair of the other unit has been

completed.
We have
o
Ap = £ 1 (3)
1 + ¥
1 - 1lim (hF-GF)
520
where

GF(t) = repair cumulative probability distribution of the unit =

t
= j gF(t)dt (4)

o
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gF(t) = repair probability density distribution of the unit
o, = ! (5)
F -]
J t hF(t)dt
(o]
s = complex variable of the Laplace domain

"%" indicates Laplace transformation

For the particular case in which the failure rrobability distribution is

exponential

hp(t) = o exp(-ot) (6)

eq. 3 becomes

g
A = £ (7

i ]

1 - JL gF(t) eXp(-OFt)dt

If also gF(t) is exponential

gF(t) = Hp exp(-ugt) (8)
we have
o
F
o T TG )
F''F
vhere
U, = repair rate of the umit
Since uF/oF is usually very large, eq. 2 can be written as follows
2
Ap = S—-F—- (10)
F

It is very interesting to remind that eq. 10 holds approximately also in the
case in whicth(t) is not exponential, In this case

Mn = average repair rate of the unit = ] (11)

t g.(t)dt

&

o}

The demonstration is given in Appendix 7




5.4.3 Strategy 3: Functional subsystem consisting of two units, one working and

the other in stand~by. Preventive maintenance.

It is similar to strategy Ho. 2 with the difference that the working unit is

also preventively replaced after having been used a period of time "0,".

We have
p
AF ~ ] (12)

1 -~/C gF(t) exp(—th)dt

eF
hF(t)dt
o]

op = (13

OF OF
GF i 1= hF(t)dt + t hF(t)dt
o] (o}

The follewing expression holds, only approximately, in the case that gF(t) is

where

any arbitrary distribution

2
o
P
A, = — 14
s (14)
where
Op is defined by eq. 14
and U, is defined by eq. 11

5.4.4 Strategy 4: Functional subsystem consisting of "nF" units: "kF" of these

"nF—kv" are in stand-by. lNo

units are working and the others

preventive maintenance.

If one of the working units fails, it is automatically switched off, while the
first of the stand-by units is at the same time automatically switched into

operation. If a second unit fails, the second of the stand-by units comes into
operation and so on. The falled units, after repair, are mounted again as stand-

by units.

The subsystem fails if nw-kF+l vnits are failed. e have solved this case only

with hF(t) and gF(t) being both exronential functions. We obtain
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k.0
FF
>\ - ) - (15)
F ng kF+l " (nF &F+1 i)
F
L i s
i=1 “F°F
In the pnarticulatr case kF=l (oniy one unit working), eq. 15 becomes
o
A, = z (16)

e
y n

T u
5o EE
1’_=] hd

&

nF-i)

Since uF/oF is usually very large, we have also that eq. 15 can be written

approximately
(nF-kF+l)
(kp02)
>‘T<‘ = - lz -k ) (l7)
y fp7¥p
Hp
In the case kF=]’ eq. 17 becomesg
o or
¥
Ap * _“?E;:TS' (18)
Mr

5.4.5 Strategy 5: Functional subsystem consisting of "nF“ units: "kF" of these
units are working and the others "nF—kw" are in stand-by. Pre-

ventive maintenance.

It is similar to strategy No. 4 with the difference that the vorking units are

also preventively replaced after having been used a period of time "o,.".

He have
(n,~k.+1)
Gpop)
p = (np-kF) (19)
ey
where Op and Hp are given respectively by eqs. 11 and 14.
For k=1 eq. 19 becomes
oF
A, = (20)
T (nF-l)

Hp
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5.5 The teduction and coupling coefficients and the average failure rate of a

safety subsystem as function of the characteristics of its units

The parameters of the safety subsystems have already been defined in para. 3,
vhere they are given as function of the characteristics of the units which make
the subsystems. Here we repeat only these expressions. The mathematical develop-

ments to obtain them are given in the Appendices 3 and 4.

For the reduction coefficient ”KS” of a safety subsystem we have

fg
(ns)!(osrs)

KS = (mS+l)!(nS-mS)! m

where

ng = number of the units which belong to the safety subsystem

8
#

g number of the units which must fail in order to make the unit

to fail (failure type "a')

-
]

S checking period

average failure rate (failure type "a'") of a unit and is given

by eq. 4 of para. 2

Pig. 3 shows qualitatively "ps" as function of "0." and "TS". Figs. 4, 5 and
6 shou "KS" as function of the parameter "p.T." for different values of "ms"
and "nS". To obtain a smaller value of "Kq", one can think to reduce "TS"

(figs. 4, 5 and €). But if one reduces "TS", Pg increases (fig. 3), which means

that the units fail more often. The designer will be compelled to make a

compromise between these two competing effects.

For the intercoupling coefficient "H" among "iI'' safety subsystems, we have

i}

d5y,62,...,80 = T (2)
I+ I (m.,)
L Pt

The failure rate "AS" due to false trip (failure type "b") of a safety subsystem
is given by

3)




where

numbar of the units which must fail in order to make

the uwnit to Zail

average failure rate (failure type "5") of a unit and

is given by eq. 5 of para. 2

Mg T average repair rate of a unit

Fig. 3 shows qualitatively "cs" as function of ”OS" and "TS".

"us" is given by the following equation

where

g.(t) = repair probability density distribution for a unit.

Since us/cS is usually very large, eq. 3 becomes

ZS
o
(ns-zs)
He

W

following relation may hold

5.6 The annual shut down cost "B"

The second term of the annual loss function "Z" is “R"  yhich represents the
expected annual cost to repair and to start the plant up after shut down. As
we have done for the plant unavailability (para. 5.2), we can also in this
case associate to each block the corresponding annual cost for repair and

start—-up
(1)

where Bj is the start-up cost related to block "j", and " is the number of
the blocks.
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If we indicate with "y " the number of shut down states which have been associated
to block "j", we have

B, = 1 3B, (2)

where ﬁji is the annual shut down cost associated to shut down state "3iv.

Finally if we indicate with "Uji" the rate of occurrence of shut down state "ji"

and with "Sji" the shut down cost associated to shut dom state "ji", we have

Bji = Bji Uji 3)

Taking into account eqs. 2 and 3, eq. 1 becomes

h|
, El (Bji uji)' (4)

5.7 The annual subsystems cost e

As already done for the plant unavailability and the shut down cost, we can write
M
C= 1 ¢ (1)

where

Cj = annual cost of the subsystems belonging to block "j"

M = number of the blocks

If we indicate with "CFji" the annual cost of the functional subsysten "j1i" and

with "Csji" that of the safety subsystem "31i" both belonging to block "7, we

have
L A

hj J
C. = ¢ + I C (2)

Cr
by My

where "Lj" and "Aj" are respectively the number of functional and safety sub-~
systems belonging to block "iv,




5.7.1 Functidnal Subsystems

The annual cost of a functional subsystem is given by

3

annual capital cost of subsystem "Fji". This cost includes
the design, construction and installation costs divided by
the number of years during which the plant isrexpected to be
in operation. The annual interests of the invested capital

nust be also included.

annual operating cost of subsystem "Fji"

31

annual maintenance cost of subsystem ”Fji

N ; 1 4 S
Now we shall express the costs EFji’ VFji and XFji as functions of the costs of

the units which belong to the subsystem "Fji”.
For the sake of simplicity, let us drop the subscript "ji".
Je have

S | - 1
kovg * (nF kF)vF (5)

&

v 62‘ gyl + v ] (6)

<

total number of units belonging to the functional subsysten
annual capital cost of a unit

number of the working units

annual operating cost of a working unit

annual operating cost of a stand-by unit

maintenance period (years)

cost of a non preventive replacement (or repair)

cost of a rreventive replacement (or repair)

expected number of non preventive replacements in the time

interval "0 ",
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it

xF” is given by the following equation which has been obtained in Appendix 8

0 %
df L hF(s)
X, = L —— | dt ")
¥ )

1-hi(s)

where

L_1 indicates antitransformation from the Laplace to the time domain
"x'" indicates Laplace transformation

s = complex variable of the Laplace domain

hy (s)

hF(t)

Laplace transform of h(t)

failure probability density distribution of a unit

5.7.2 Safety Subsystems

The annual cost of a safety subsystem is given by

where

ESji = annual capital cost of subsystem "Sji"'
This cost includes the design, construction
and installation costs divided by the number
of years during vhich the plant is expected
to be in operation. The annual interests of

the invested capital must be also included

<
1]

511 annual operating cost of subsystem "sji"

YSji annual maintenance cost of subsystem "Sji"

Now we shall express the costs ESji’ VSji and YSji as functions of the costs of

the units which belong to the subsystem "2ji".

Also here, for the sake of simplicity, we drop the subscript "ji’.

We have

(9)

=
[#2]

il

=]
(€3]

]
wl

(10)
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n - —
S |
ig = A Xgyg + Ys7 (11)

!

-

where
R, = total number of the units which belong to the safety subsystem
€g = anhual capital cost of g unit

Vg = annual operating cost of a unit

@
it

g = maintenance period
Y¥g = cost of a non preventive replacement (or repair)
Yg = cost of a preventive replacement

Xg = expected number of non preventive replacements in the time
interval "Gs".

"xs" is given by the following equation which has been obtained in Appendix 9

% -1 ﬁ;(s,T )
Xg = L dt (12)
fo) ]

-
L1 - hs(s,rs)

where

Tg = checking period

‘* -
hs(s,TS) = Laplace transform of hs(t,rs)

ﬁs(t,TS) is the total failure probability density distribution and is given
by the following equation

8! ) §t i f"t(,"'G'S/Tq)—
ho(t,1.) = 1+—S>.h' t 1+—§\‘?’ 1- h"(t)d; +
s'€Tg s/ s s\t S
/ i w ot L (o] J
i -
' s r" 6"\7 i t(]+6‘!§/TS)
S | S l oo
e = hg It I +== 1~ | hg(t)at (13)
\ S ! OJ ) 4‘
where L B
hl(t) = failure probability density distribution (failure type "a")
S
hg(t) = failure probability density distribution (failure type '"b")
6§ = const.

ég const,
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6. The rate of occurrence "Ud” of a "disaster” as function of the characteristics
of the units of the plant

The rate of occurrence "Ud" of a disaster (big accident) is obtained by summing
the rates of occurrence of all the minimal paths to go from “normal operation"
(state 0) to the "'disaster state" (fig. 11)

a D)

c

18
B~ =

C

i=1

where

]

Ugi = rate of occurrence associated to the minimal path Hyn

H

number of the minimal »paths

Strictly speaking, eq. 1 is valid only approximately. One should really sum the
probabilities of all the mutually exclusive events, which bring to the “disaster

state', to get the total probability ”Qd".

From this total probability one should calculate V4

de/dt
v, = - — (2)
d ]‘L:d

Fowever, since Qd is extremely small, one does not make any appreciable error if

one instead uses the more simple eq. 1.

As dore for the plant unavailability, here too we shall illustrate the calculation
of the rate of occurrence "ud" for the particular case of the scheme shown in

fig. 13. Ve shall suppose that only the subsystems F21, F22, ¥23, 511, S12, S13,
S14, S15, 521, 522, S23 can fail.

The "Disaster Tree", with all the minimal paths to go from the initial events
to the "Disaster State", is shown in fig. 21. We have also supposed that the
feedback from subsystem "515" to "S22" is 100 Z reliable. From the analysis
of this tree, one realizes that some subsystems are required to fail and some

other safety subsystems are instead required to function.

At the time of the failure of a functional subsystem, the probability that a
safety subsystem (related to it) has not failed is much higher than the proba-
bility that it has already failed. e shall not make therefore any appreciable
error in the evaluation of the failure rate of a minimal path, if we chall supvose

that the safety subsystem, which is required to function, has probability equal
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to 1 to function. Fig, 22 shows all the minimal paths: only the subsystems which
are required to fail have been included.

From fig. 22 we get
vg =t Vi (2)

where "Udi" 1s the rate of occurrence of the minimal path "i",

From fig. 22 we obtain also

a1 = Kgp4 Apy (3)
Yaz = Kgy5 Apyy (4)
“a3 = 512,513,521 %12 %13 Kooy Pegg )
Yas = Xgp4 Apop (6)
Yas = X515 Apap ™)
Va6 = H512,513,321'K512 %513 Rs21 Apag (@)
Ya7 = %514 Apa3 ©)
Yas = X515 Apas (10)
"9 * "s11,512,513 %511 ¥s12 F13 Apgs (n
Ya10 = Kg151522 (12)
Yann T Rgp4ts22 (13)
Yar12 = Fs11,512"%s11 Koo 222 (14)
Ya13 T %515 Ag23 (13)
Ya14 = X514 203 (16)
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v 2}

a15 = Bg11,512'%s11 Key2 223 (17

wherd the reduction factors and the coupling coefficients of the safety subsystems
have been indicated respectively with "KS" and "H", and the failure rates of the
various subsystems have been indicated with "A". The equations to calculate the

“KS" and "H" coefficients are given in the paragraphs 2 and 5.5.

The equations for the failure rates of the functional and safety subsystems are
given respectively in paragraphs 5.4 and 5.5.
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7. Final considerations on the anhual loss function "2"

In the preceeding paragraphs we have shown how to express the annual loss "2"

as function of the characteristics of the units of the plant.

The designer can chobse each unit among the different types available on the
market., The best constellation of choices will be that which gives the minimum
value of "Z" and at the same time satisfies the constraint that the rate of

11 1

occurrence "u," of a disaster is smaller than the value "Umax" fixed by the

safety committee.

To develop in details a mathematical method to find the minimum of “Z" is a task

which needs to be solved, but vwhich exceeds the limits of our report.

We shall make here only some considerations on a particular procedure, which

seems to us at the moment to be very convenient,.

Ye shall indicate with EU/(I-U)]?ji the quantity U/(1-U) calculated by putting
in it equal to zero the failure rates and reduction coefficients of all the
safety subsystems and the failure rates of all the functional subsystems with

the exception of the functional subsystem “Fji".

We shall indicate with EU/(I--U)]Sji the quantity U/(1-U) calculated by putting
in it equal to zero the failure rates and reduction coefficients of all the
safety subsystems with the exception of the safety subsystem "Sji". To calculate
u/(1-0) sii one needs therefore to know also the failure rates of the functional

subsystems, which are multiplied by KSji’

In the same way for the annual shut down costs 'B", we define the two quantities

11] 1 11 n
BFji and BSji .

We can now define the functional partial annual loss functions "2, ."

Fii

= (1- R P
ZFji = (1 sp)(l ) {1—UJFji PTY + BFji + CFji @)

where sP" is the overlapping coefficient.

For example, in the case of the functional subsystem F21 (oil pumps subsystem
in fi». 13), we have

Ara1
p21 = (17s)(1-0) PTy v, * By1 *pap * Cpoy (2)

Z

e can also define the safety partial annual loss function "szi"
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(v
Zg51 = (=8, ) (1=0) P1y Tiﬁ]sji * Bsys * Coyy (3)

For example, in the case of the safety subsystem S21 (oil pressure measuring
channels in fig. 13), we have

A 42 A
e ver 72122 $21
ZSZl = (1 sp)(l U) PTy ——-—WEZ—— LD 7, +
* B4 Opa*hpgg) Koy + By5 Mgy + Cs21 )

We shall say that a safety partial annual loss function "szi" is related to a

functional partial annual loss function "Z?xn" if "ZSji" contains the failure

rate of the functional subsystem "Fxn". For instance "ZSZI" (eq. 4) is related

to "ZFZI" (eq. 2) because it contains Apgye

For the functional and safety subsystems, which belong to the block "m" having
the maximum unavailability, we shall instead write

-

U
Zpng = (1°0) PTy |—— +B. . +C (5)
Pt 10 s

and ~
= (1o U
. Smi

Taking into account eq. 8 of para. 5.3, we can write

L, A
(e, s,
U= (1 SP)(I-U) lj= (T:E) T:ﬁ'sj

i=1 Fii  i=1
j#n
Lm Am
G NEERNC=  pa ”
i=1 ™mi  i=] Smi

where

U = plant unavailability

@
[

= overlapping factor

1 = number of blocks

-
[

y = number of functional subsystems belonging to block "j"

Aj = number of safety subsystems belonging to block "j"
and "m" indicates the block having the maximum unavailability.
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Taking into account eq. 7, one can easily prove that

—

b A
T 2z + T Z... (8)

where all the ZFji and szi are given respectively by eqs. 1 and 3 for j#m and

by eqs. 5 and 6 for j=m.

The procedure to find out the minimum of the annual loss function can be now

described. It consists of the following steps:

Step llo. 1 TFrom previous operatins experience we know already what is the

block having the maximum unaveilability "Um". Ye know also the
value of the overlapping coefficient "sn".

Je assume for the plant unavailability an initial value "Uin"

in=0.]) °

We use this value "Uin" in the functional partial annual loss

" defined by eqs. 1 and 5. Ve find the type of

coming from previous operating experience (for instance U

19
functions ZWji

unit, the stratesy and the maintenasnce period of subsystem "Fji'",

which give the minimum of "ZFji"°

For each subsystem "Fji", we get the optimum failure rate A

Fii
" 1] - P,
by which ZFji has the ninimum.
1 il
Step No. 2 Ve use the values AFji in the safety partial loss functions ZSji
defined by eqs. 3 and 6. Tle find the type of unit, the maintenance

period, the checking period, the total number of units and the type

of structure of subsystem Sji’ which give the minimum of "ZSji

It is important to notice that the constraint

U, < U
d max

must be also satisfied.

For each subsystem "Sji" we get the optimum values of the reduction

. Tl n ' £ . N - ity ¥ 131 . 1" "
coefficient KSji and of the failure rate ASji by which szi

has the minimum.

Step Ho. 3 We use the values A;jig Aéji and Kéji to calculate the plant unavaila-
bility (eq. 7).

We get the value U' vhich may be different from ”Uin".
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Step No. 4 1% repeat the steps I, 2 and 3 untii the values of U converge to

a final valye,

In this way we have found Separately the minimals of all the partial annual losg
17

functions "ZFji and "ZSji"' We get the minimum of "zv by using eq. 2.

This procedure is valid only if the "szi" are one or more orders of magnitude

smaller than the related "Z”WX“’ when they are near to their minimals. That ig

szi << Zan (9)

This should be normally the case (see numerical example of para. 4), because
a safety subsystem hag usually a very low value of the reduction coefficient
"KS" (<10-5) and a subsystem annual cost "C." much smaller than that of each of

the functional subsystems which are related to it.

If the conditiong "9v are not satisfied, one has to group together all the ZSji

and ZFnX which are related,

The minimim of each group can then be found9 taking also into account that the

constraint (ud < Umax) must be also satisfied. The mathematical procedure would

be in this case much more complicated.




8. A more general approach to the evaluation of the safety requirements of a

power plant.

In the model described in the preceeding paragraphs we have made the following

two hypothesis for the evaluation of the disaster failure rate

(1) 1t is possible to go to the "Disaster" state only from the

'Normal Operation' state.

(i1) A disaster is alvays caused by combined failures of functional

and safety subsystems.

These two assumptions may not always be valid. A typical example is that of the

"meltdoun accident of a dry and subcritical core due to fission product heat"

in the case of Sodium cooled fast reactors (Bibl. B16). This would be a case,

in which the failure of a functional subsystem (i.e. the vessel subsystem which

contains Sodium and core) would lead directly to a disaster.

For this reason a still more general model can be developed (fig. 27). Ve have
now "I shut down states, and from '"n" of these it is possible to go to the

i

disaster state. Each disaster failure rate “v_." will be given by

ti

e1 = Var ¥ est M

where
Vgq = rate of occurrence of a disaster caused by combined failures

of functional and safety subsystems, startins from state "i".

roy” rate of occurrence of a disaster due to accidents which are
either not detectable or not controllable with the safety
systen, startinc from state "i".

Tor the calculation of "udi” one can use the procedure shown in para. 6.

For the calculation of "AFSi", one has to sum the failure rates of all the
functional subsystems characterized by failures, which bring the plant in a
dangerous situation if the plant is in state "i", and which are either not

detectable or not controllable with the safety system.

le shall indicate with "Qi" the probability that the plant is in state "i"
at time "'t".

Lookinz at fig. 27, we can write the following equatioms
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on IT n 1
LY I ”th LYo (2)

TR L LTI (3)

T T 0% v Ty + v 0 )

=% Ve T Yo Qg (5)

=Y. (6)

n
=— = I v.n0 @)

z Qi + QD =1 ¢3))

We have "I+3" equations with "N+2" unknowns. Only "N+2" equations will be in-

dependent. The last one can be obtained by summing the first "I+2" equations.

According to what we have said in para. 3 and para. 5.2, also here we have that

the following property is satisfied

U, << uy <<y 9)

Taking into account the expression 9, the approximate solution for "Qi" is

given by
0, =8 R (1=0,1,2,...,11) (19)
vhere
"Si" is the solution obtained from the first I+1 equations (egqs. 2
to 6) by puttine all the "Uti" equal to zero
and
R, = exp(-uti t) (11)

The functions "Si" are characterized by asymptotic values S Which are reached




Siw = Sy(=) = ¢ ¢ (1=1,2,...N) (12)

where

§ =e—h o (13)

Note that So°° was indicated in the previous paragraphs with A .

The initial values "Sio" are

00 = SO(O) = 1 (14)
and

§,, = 5,(0) =0 (i=1,2,...,1) (15)

Taking into account eqs. 10 and 11, from eq. 7 we get
n t 4
QD = ¥ Uti.J, SiRidt : (16)
o o

The occurrence rate "UD" of a disaster will be

n
do,./d p v_,S, exp(-u_, t) L vy 84
I LA 1-00 % 5 CON 2 . i=o a7)
Yp © 1-0, T n n
T 8, exp(-v_, t) I S,
1=o el =0 1

If we indicate with "FSji" a functional subsystem whose failure starting from
plant state "i" is not controllable (or detectable) with the safety syskem,

we can write
i=Di

Si T L ‘rsii (%)

where "Di" is the total number of the functional subsystems characterized by
failures which lead directly to a disaster if the plant is in state "i". In

eq. 13 " " is the failure rate of the functional subsystem "FSji".

FSji
“Je can associate to each subsystem "TFSji" its partial annual cost function "2
" 11] 'y : 2 it [}
Each of the ZFSji will be a decreasing function with XFSji .

13
rsji
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The total annual cost "ZFS" of these particular functional subsystems will be

Di
oz
1 |3=1

zZ =
¥
FS 1

1 p

— (19)

LA

In order to reduce the dannerous effects due to a nuclear explosion (disaster),
the teactor may be provided with a containment systém cdpable of absorbing the
explosive energy due to a big accident, once that this has taken plate. Task
of the containment system is also to avoid the spreading of the radioactive

products in the surrounding atmosphere.

It is becoming more and more clear that there is not only one big accident, but
a spectrum of possible big accidents. To each accident one can associate the
correspondent develorable explosive mechanical energy "UI', so that a probability

density distribution of "W" will describe the spectrum of accidents,

e ask now for the probability, KC, that the containment system will fail to
absorb the explosive energy without rupture. For the sake of simplicity we shall
limit ourselves to consider only the shock wave effect. We shall imagine that
the containment system is just a cylinder as shown in fig. 23 A. Fig. 23 B shous

the same cylinder deformed after the explosion has taken place.

The explosive energy will produce the highest stresses at the mid plane of the
cylinder (Bibl. B18). These stresses have a probability distribution, ¢s’ {curve
1 of fig. 24) about the mean value, Esg with a standard deviation, ;s'

On the other side the strength of the material has also a probability distribution,

¢t’ (curve 2 of fipg. 24) about the mean value n, with a standard deviation Ct.

t
The two curves of fig. 24 may overlap and the amount of overlapping gives an
indication of how large the probability "KC" is, that during the explosion the

stress becomes larger than the strencth.

The probability, p, that the strength n is larger than a fixed value Ng is given
by (fig. 24)

p = )[ ¢t(nt)d n, (20)
nS

The probability, I-Kc, that the strength is larger than the stress is the following

$00 +c0
=X, =-}; . ¢S(ns) ’[- ¢(nt)dnt dng 21

g™




If we assume that both ¢S and ¢t are normal distributions, it can be shown that

eq. 21 becomes

h
1-k_ = t s (22)

d) . b
H /(2 4 o
c S C% + Cg

where ¢Ns is the cumulative standardized normal distribution.

Eq. 22 can also be written as follows

h -
K = _t s

From eq. 23, at each value of Kc’ it corresponds a value of

G-
t s (24)
/i + g2

For given values of Ceo T and ;Sg ve get the value of Et/;s’ which is directly
related to the wall thickness of the cylinder.

This procedure may lead to a rational evaluation of the safety factor ;t/;s

and may avoid to overdesign the safety containment system.

The smaller is "Kc", the higher ﬁt/ﬁs will be, and the hicher the thickness of

the safety container will be. We can conclude that the smaller is "Kc"“ the

higher the annual cost "ZC" of the container will be.

The probability of the event that a disaster takes place and that the safety

container does not cope with the explosion is given by

Kc [l-exp(-unt)J * K vyt

with Yp given by eq. 17.

bu the constraint given by the safety committee can be written as follows

KcUD <Umax (26)

The total annual loss function "Z_" will be given by

-
-

Zt=Z+ZFS+Zc
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where

Z annual loss function as defined in para. 7

ZFS= partial annual loss function given by eq. 19

ZC = partial annual loss function associated to the reactor

containment system

The problem has now became that of finding the minimum of the function "Zt“
(eq. 27) with the constraint defined by the expression 26.




9. Apperdix 1l Calculation of the average failure rate of a unit belonging to

a functional subsystem

A. 1.1 Introduction

The subject of this appendix is to calculate the average failure

rate " Op " of a unit belonging to a functional subsystem.

We introduce the following symbols:
"hF(t)“ = failure probability density distribution of the unit

AL time

maintenance period, that is time between two
preventive replacements

The average failure rate "o_" (defined as reciprocal to the meantime

F
to failure) is given by

1
= meantime between two failures

)
F
£ hF(t)dt
. 4 &
# o [1-ofthF(t)dt_7+ O_f: FthF(t)dt

Eq. 1 1s derived in thefollowing paragraph (A 1.2)

Calculation of "Og"

A unit is characterized by its reliability "R}'E',, where
By = P 5 unit is not failed at time "t" ; (2)

Evaluating "RF(t)“ for the first maintenance period we get,
with "hF(t)",

L%
Re(© ) =1 - oth (t)at (3)
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For the interval /o;q '65;7’ i.e. for "q" maintenance periods,

we get, taking into account eq. 3,

¥ )
/[ 1- /f hF(t)dt _/

Ry (a - e,)

where qQ= 1,2,
q ‘QF + ér

Taking into account eqs 4 ang 6, we get

[

We can write t

&
Ryp(t) = /- FhF(t)dt 7 ' [ 1- /hF(t)dt 7

The average failure rate "GF", can be written as follows

1

F J/‘hF(t)dt

where RF(t) is the reliability of the unit

The integral from "o" to "ee" of the function "RF(t)" can be

represented as a sum, i.e.

= 0

éfRF(t)dt =

80 MO

By partial integration, we get

(%)
(5)
(6

(7)

(8)

(9)

ij (t)at 7 q-ij /1 ]; (t)at Tat
[t 7 ST e[ tsgan

e
S e 7 oo a7 P 0 a
)L mdt Jav < [ g Bpdt/ " - [ Tthoat = 'j hth-‘/‘th t

Taking into account 10, we get from 9_

];; (t)dt =

1

- .
- /1 f Fhas 7

Putting 11 into 8, we get finally

2]

F
(t)dt
I

°r > °r
o 1’1-.4 hp(t)dt 7 + !’ thy (t)dt

e

(10)

4]
L QF/f Fhth - f Fththj (11)

(12)




10. Appendix 2: Calculation of the two average failure rates of a unit belonging

to a safety subsystem.

1 it

The average failure rates "pS: and "0," of a unit belonging to a safety subsystem
will be calculated in this Apnendix. They are obtained in a way very similar to
that used to evaluate the failure rate of a unit belonging to a functional sub-

system. There are however two important distinctions to be made.

(i) It has to be taken into account that there are two types of failures:
a) Failure type "a" (when a safety unit does not function when it should)

b) Failure type "b" (when a safety unit functions when it should not).

(1i) The increased failure rate, causéd by "on-off-cycling" (due to the
periodical testing of the units) has to be taken into account.

Let us indicate with h;(t) and h;(t) the two failure probability density distri-

butions of a unit respectively for failure tyne "a" and failure type "b".

The on-off-cycling has practically the effect to change the time scale of the two
failure probability cumulative distributions.

The coefficients by which the time scale is changed are

for failure type "a“

for failure type "b"

with Gé and Gg being two constants.

Introducing these two coefficients, the two new failure probability density distri-

butions, which take into account the cycling effect, will be respectively

) 5 )
1+ = Rl e(ts =) f (failure tyoe Ma™™) (3)
S o

8 8 1
1+ —_E-—) h" {t(H Tr-'-) ¢ (Fallure type "b") 4)

S

The total failure probability density distribution "ﬁq(t)" will be given by




P o

6" 6" 6' t 5'
o o

+ (1+;§) hg t(1+‘{§)‘ I=(1+ =) | n'Je(+ =D Lge (5)
S S s J, Ts

With a procedure similar to that used in Appendix 1, we can calculate the total
unit failure rate "pg+°s" where "bS" is the failure rate for failure type "a"
and "cs" is that for failure type "b",

g
J{ h,(t)dt
e
0

Pgtog = 5. ) (6)
v S -
es |- )[‘ hS(t)dt +‘J[ t hs(t)dt

vhere

GS' Gé 6" t 6"
h = g " S
hs(t) (1+ -T-:) hé {t(H ?s-)} I - (1+ Z)j h %c(n -T:)}dt +
o

@S = maintenance period of a unit

e can write also the following equations

Oq t -
= 6' 6' (S" 5"
S . S e " )
(1+ ;—0 hS {F(1+ ;~?} 1-(1+ ?-) hs {t(1+ ;—f}dt de
S g 5 9
s _ Lo ° 7
Pg*s %
hs(t)dt
o]
and
0 t
S 6" " 1 L] 6'
O+ =5 widers Syb | =0 =D L onn feae 25y | g, dt
TS T, Tg 8 Tg
...is_.....= o ') o ‘ ~ (8)
pS+OS , GS_
hs(t)dt
(o]

Taking into account eq. 6, eqs. 7 and & become finally
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05 (1+63/7¢) t(1+8g/7g)
m'(t) {1 - h'(t)del dt
o
(e}
- L )
8 0 T (%
o I_J h(t)de [+ t h(t)dt
o o
eS(1+6§/TS) t(|+aé/rs)
h'(e) {1 ..j h"(t)dt]dt
o
) L (19)

0

og = o S
0 [i _,j h(t)dt }+ J h(t)dt
o ©
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11.Appendix 3: Calculation of the reduction and coupling coefficients for

safety subsystems

A 3.1 The reduction coefficient "Kﬁ" of a safety subsystem

Let us suppose we have a safety subsystem "S", which is related to the
functional subsystem "F". This means that when "F" fails, "s" (if not

already failed) will contribute to shut the plant down.

We shall indicate with "k% the average failure rate of the functional

subsystem "BF".

The safety subsystem "S8" is made of "ns"

that, if at the time at which "F" fails "ks" out of the "ns" units

have not already failed (failure type "a"), "S" will operate correctly.

units connected in such a way

We remind here briefly (see para. 2) that the units of a safety sub-

system can have two types of failures:

(i) failure type "a". It occurs when the unit does not

operate when it is required +to operate

(i1) failurs type "b". It occurs when the unit does operate

when it is not asked to operate.

In this appendix we shall deal with failure type "a" only.
Going back to our subsystem "S", we can easily see that "S" will fail
if

mg =ng + 1 - kg (1)

units fail.

To find out that a unit is failed with failure type "a", it is neces-
sary to test it from time to time. We shall indicate with """ the

checking period, that is the time interval between two checks (tests).

We ask now for the probability "PSF(t)" of the event that, at the time
"t" at which "F" fails, "S" has already failed. We indicate with "aSF"
the probability that this event occurs in the time interval "qg" between

two checks. The probability "PSF (qig)", that the event occurs during




the first "q" checking intervals, is

Pop (A7) = 9gp { 1 - Pgp [73(‘4’1}] * PSF[’%(Q-l):\

Applying eq. 2 pewspeatedly, we get

Eq. 3 is valid only when "y" is an entire number.

We can write approximately

Taking into account eq. 4, eq. 3 becomes

-Vt
PSA(t) = 1- e

1g (1-a
vo - ’ZSF
S

Since aSF 1, we get finally from eq. 5

o
\t: Sk
Ty

(eq.17). We have

%has peen calculated in paragraph A 3.2

"%
25y 1 (f5 s )s

“sF ~ quhF (i - m-)'(m +1)!

S S8 )

‘fs = average failure rate of a unit for failure

type "a" defined by eq. 4 of para. D

Taking into account eq. 12, eq. 11 becomes

Y= Ky

o - sy Pss) ®
S (mS+1)!(nS-mS)

"g " is called reduction coefficient.
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Figs. 4; 5 and 6 show "KS" as function of ﬁfé?é"for different values

1 1] ] 1"
of nS and ms .

A 3.2 Calculation of the probability"as ".

We want here to calculate the probability W%gfof the event that the

safety subsystem "S" fails before the functional subsystem "F" in the

time interval "25".

The reliability "RS" of "$", that is,the probability that "s" is
not yet failed at time "t", is given by

ng . 1)
g = I (%Ei) ﬁg (1-Rg) s (1)

1=kS i

=y}
]

where

il

ﬁé reliability of a unit,

The probability "ES" that "S" is already failed at "t" is
g ng) i (nS-i)
Fy = 1-Ry = igm {17/ Hy (1-H) (2)
s

where

il

g = 1-Rg (3)

If "FF" is the failure cumulative probability distribution of the

functional subsystem "F", we get

“sp = V/fgédFF (%)

t=0
We have
_ At
dFp = % Agexp(-Ppt)dt (5)
and
ﬁé = exp (-Jét) (6)
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From eqs. 5 and 6 we obtain

drR A
—[ﬁs -7 )\'F/'g R 3 B

aF, = - £ (M)
F —
R g Ss
From eq. 1 we get
-1) (n kg )
(Ps)! - (kg
(k 1) (o5 %) Rg (1R ° ° Ry (8)
Taking into account eqs. 3 and 7, eq. 4 becomes
1l
A XFASS —
€. = = (1-R,) | R s -
sFT TP | S S R,
Rs(%) L
1 XF
(_._

i

) [1-38 (7, >} [ﬁs (z) J f‘[?é %A-th Z5

Taking into account egs. 2 and 8, we get from eq. 9

[
aSF——['ﬁ (r)} KF/‘?Si_ . S (S)Hs (T)[ HS('Zé)]

(n)' (n -mS)
¥ (m)(n-m)' Hy(%) | » 1Hs(2§)] +

(mS+l) ( -mg -1)
)15 * ) Hm] 15 ( )1 ;
¥ (ns—m )! (m +1)! ERE i ' R

[and

wi=ms+2 ( 7‘(1)!

(10)

Taking into account eq.6, eq.l0 finally becomes

N A A \ _
+ :>> (QSXS( F o+ ns-ms) ..... éﬁg + nS-i-l) [:Hs(zg)}];-ﬂs(2§§ns_i)

-

~
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.
( (m +1)~ (ns-msol) N
%p = *P(-A%) (g- Sj (m ) [ ('zg)_ 1- Hs("”)] d TE +

nS-ms~1 HSCZ' (~ F +ns+l~ms (ns- s)v
+(ms+1)! J.E-l (m +1+j)' [ S ) :

1H(TLG‘£+II +1_J) (n -mg lJ)

+ ng +1-
% 1 | ? S (%)
+ (mgt1)! J-ns My (mgFLHg)! ﬂ‘fﬂ ) [ s J (11)

I (g»:s-ms-ms-d) (%)
Where "™ stands for the "™function"
If
5 @) Ap -2
S_%s 5«10 (12)
3-H5(7g) s «

eq. 11 can be simplified to

~ M (ng)! [: j](ms+1)’ ;}(HS'm +)
o (z) 1-Hy (%)
SF~ Qg (ng-mg )t (mg+1)! 5% L 5% (13)
If we have
ys'zs < 107 (14)
we ean write
5 ¥ 4y ")
and
1—HS(’Z§)': 1 (16)

Taking into account eqs. 15 and 16, eq. 15 can be still simplified

n (ns)! ms
%p >‘F7'§ (ns-ms)!(ms+l)! (‘fs'%) (17)
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A 3.3 CaLpulation of the coupling coefficient

Let us suppose that we have two safety subsystems "S1" and "S2". W

want to calculate the probability "«" that both fail before the

functional subsystem "F" in the time interval "Zé“.

The cumulative probability distribution "F S 82‘",that both
3
S1 and S2 fail in a small time interval "t" is given by

N A () (Bpt) 2
8152 (M51)1(%s1™™s1) (mgp) ! (ngp-mgp)!

(1)

The failure cumulative probability distribution "Fg of the functional

subsystem "F" is

= 1- - -
F, = l-exp ( Agt) (2)
The probability "a", that both "S1" and "S2" fail before "F" in the
small time interval "7ZU", is m
o S1
ftF?é e ()10 (5, 5) ) 2 -
o = =
foo SLiS2 °F (msﬁmszﬂ)(msﬁ (ng, -g V1, FB oM, 7'
Eq.>3 can be written as follows
2 = N¥si¥eollsr g0 (#)
Tg
where m
(ngy)1(85, %) S
Ky, : ‘ (5)
(mSl+l).(n l-mSl)'
(ng,)! (£ gg) 52 ()
2:‘-
(g1 ) ! (g - ) !
and
(m +l)(m +1)
By1,82 = (7)

1+ +1)

(mg
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Hél-se is calleq coupling coefficient

For "yN" safety subsystems we have
N
TT (g ;+1)
HSl;32 +veu38N % et

1 +
151 mSi
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12. Appendix 4: Calculation of the average failure rate of a safety subsystem

Let us suppose that we have a safety subsystem ''S" made of "ns" units so connected

that, if "QS" out of the “nS" units fail with the failure type "b", the sub-
system"S" fails (false trip).

Ye introduce the following symbols

o average fallure rate of a unit defined by eq. 5 of para. 2

5
Mg = average repair rate of a unit, that is reciprocal of the mean
time to repair.

If gs(t) is the repair probability density distribution of a unit, we have

M, = ! - 1

e} oo
J[ t gs(t)dt
)

The safety subsystem can be at time "t" in one of the following states (fig. 25).

WvNumber of Number of
State | working failed Comments
units units

0 | ng o

1 ns—l 1

2 nS—Z 2

i ns-i i
13-2 nS—£S+2 QS-Z
Ra-l ns-ﬂs+l 28-1
ZS sns-ﬂs 2 &g Subsystem failed

LLNCR1

Let us indicate with Qi(t) the probability that the subsystem “S" is in state "i",

We can write the following "RS+1" equations

T = - nSGSQ + uSQl (2)




= 85959, ~ [ag=DogmsT o, + ugo,

(ng=1+1)o0, = Rns'i)"s*“ N ALPLIIS

e
de T (gD, ) - [(“s"zs”)“s"“slqzs-l

(ns-zs+l)°SQ28-l

only "RS" of the "£s+1" equations are independent.
The associated initial conditions are

Q,(0) =1

Qi(O) 0 (i=1929°"99'5) (9)

Taking into account the initial conditions 8 and 9, the Laplace transforms of
the eqs. 2 to 6 are

* *
o= 10
1 (nSGS*-s)Qo + MSQl (10)
¥ * %*
0 = 05950, = Ling-Dogrugrs]a} + ug0 an

*

* *
(g=t+Dog0;_+[ng-togrugrslo] + ugaj,,

* *
= (ng=g+2) %% -2 ~ [agm2g+1)ogtuges] -1

* *
= - - af)
(nS 'Q'SH)GSQQS 1 S""‘JL




s = complex variable of the Laplace domain

"x" indicates Laplace transform

The Laplace transform of the reliability "R." of the subsystem "S" is given by

S

* ___]__ *
Rg =g~ (15)

Taking into account eq. 14, eq. 15 becomes

*
b= (agmigtlog Q-

S

Mow we have

A
lﬂ,s

%
Q, _, = ——
Qsl A

determinant of the coefficients of the first "ls"

equations (eq. 14 excluded)

determinant complementary to the element "alz "

(1st line and "zs"th column) of the determinagt A

The determinant “A", having "2." lines and "Rq" columns, is vwritten below (eq. 18)

S




ﬁm+m1+mbﬁ—+malmﬁvul

Sq

moAN+malmav

(545150 (z451-5w)] -

So(g+53-Su)

So(z-Su)

: ﬁw+m1+moANIwﬁvgl

S

Sy (1-Su)

ﬁm+m 1450 QlwﬁvH_ -




Taking into account eq. 17, eq. 16 becomes

A= (n -2, +1)°SA|28

sl

On the other hand "R;" is also given by

By solving the system of eqs. 10 to 13, we get

- ntt (1)

where "A" is the determinant defined by eq. 18 and "A " is the determinant

14
complementary to the element "ali" (Ist line and "i"th column) of A.

Puttingz 21 in 20, we obtain

By comparing eqs. 22 and 19, we pet

A-(n +I)GSAIE Rs-l .
= I (-1)7A
=1 11

By extracting the determinant "AIQ " from A (eq. 1%), one obtains

(2 g1

Putting 24 in 23 for s=o, one sets

, (n )
- S

The average failure rate "AS" of subsystem "S" is given by
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S o
J[ Rdt  lim R;
o S0

Taking into account eqs. 22 and 25, we get

[ S
A L g
S=0 S S
Y =T =D 7 =
5 i S i
L (=1) I:Au] $(~1)
i=1 8=0 i=]

By extracting the determinants "Ali

-2 )1
A (nS 28).
o]
$=0

" from 4 (eq. 18), we obtain for s=o

[% ] = (_])(ls-i)c(i~l) ns(ns"l)(ns‘z)---(ns-i-i-Z)
Hs=o 8 (0 ~E )T

(L =1i~1)
+ (ns-i-l)!cq

o

Taking into account eqs. 28, eq. 27 becomes

(o]

A = 2
5 Agml usf“s'i" (0 ~1-i=£)1
D -
-f)1
i=o V§/f=p  (ng=f)1
Introducing the index
q = n,-f
we get finally
ag
A= 5
s™Hm Mg
> _g%) ; (g=1-1)1
=0 (\’s/ qen - +141 9

Since in the practical case uS/OG is very large, eq.

written as follows
!
(ns). g
S (ns-ﬂs)! (28'1)

[ug/og]

Mg + .., +(ns-9,s+l)!osus

(ns—i)! o

+(nS-RS)!u

(26)

(27)

S

(24-1)

S

(29)

(30)

(31)

31 can be approximately

(32)

(zs-i)




The calculation of "A " develoned in this Appendix is strictly rigbrous only in
the case in which the failure and the repair probability distributions are both
exponential. However, due to the conclusions reached in Appendix 6, the result

i{s still valid for any type of distribution if ' ‘ and "u,“ are average values

defined respectively by eq. 5 of para. 2 and eq. l of this appendix.




1%. Appendix 5: Calculation of the point-availability for a simple plant model

The solution of egs. (6), (7), (8) of para.3 will be obtained in this

appendix (see also fig. 7). We have three linear differential equations

with constant coefficienfst

on yV
praliii (Mgt Pl )+ F Q (1)
aQ ,
— = A
& (atrg) o) - Ve (@)
dQ,
2 . A
% - 5% )
Where Q_ = probability that the plant is in state oM
Ql = probability that the plant is in state "1"
Q, = probability that the plant is in state ot

rate of occurrence of the event that the functional

o

gystem falls

KS = reduction factor of the safety system

KSAF: rate of occurrence of a "disaster" i.e. of the event
ihit the functional system fails and the safety system
has already failed before

%S = rate of occurrence of a false trip

repalr rate, i.e. reciprocal to the meantime to repair the

-<

plant
For QO, Ql’ Q2 the following relation holds

Q * 9+ Q, = ! (&)

Therefore only 2 of the 3 egs. 1, 2, 3 are independéht. The initial




conditions are

Q(0) = 15 @,(0) =0, % (0) =0 (5)

They mean that at time t = O the probability that the plant is in

state "O" is equal to 1.

Applying the Laplace transform to egs. (1), (2) we get

-1

% *
- (s+hF+xS+KS%F) Q, + 1V'Q1 (6)

o
fl

(gthg) @ (1) Q,* (7)

Where "s" is the complex variable in the Laplace domain and the

asterisk "¥" denotes the Laplace transform.

We get with Cramer’s rule from the system (6), (7) for Q¥
. o)

-1 1#’
QX o -(s+¥ ]
-(S+>\F+7‘S+KS>\F) : v
(%F+%S) - -(s+Y)
= s+ W =
(s+%ff%S+KSAF) (s+¥P- - (XF+XS)‘Y
- s+ Y (8)

s‘+s(¥f+kF+%S+KkF)-'QrKshF

To antitrasform eq.8 to the time domain, the roots of the characteristic

equation must be found.

sz+s(WF+%F¢%S+KS%F) - q} KS%F = 0 (9)

The two roots are

s1;2 2

2
+N HK N - +N_+K
Y TS TS F + (M uS ) +Fr g (10)
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For practical éaéés, the rate of occurrence of a big accident "KS%F

" and

is very small compared to the ‘sum of the two failure-rates
"%s". They are again small compared ‘to the repair rate M(" The follow-

ing relation therefore holds:

\H\y\ g > Kt Ny B (11)
This is discussed in more . details in para. 3.

With 11 we get also the'felafion

Kt M W << ()\FMS-KL)\F* w (12)

Taking into_account the expressions 1l and 12,-we‘get from eq. 10

(xF+x KAt F) BT L G
and %
52 Y . KS)\F ()

The antitrasform to the time domain of eq. 8 is

V4 S

51782

Q (%) = exp (s,t) + ‘i';;81se exp (s,t) (15)

Taking into account egqs. 1) and 14, eq. 15 becomes

AN _
Q,(t) = }'F\r)"s o + i }\Z P [—t(xFHuSW)J exp(-K ht)
(16)
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14, Appendix 6: Calculation of the point-availability with any type of failure-

and repalr-probability-density-distributions

A.6.1

A 6.2

Introduction

The point-availability "A" of the plant (and likewisé for a sub-
system or a unit) is defined as the probability that the plant

(and likewise, the subsystem and the unit) is up at time "t":

A(t) =P {plant is up at "t" } (1)

In the following treatment we shall suppose that all the failures
are repairable which, is equivalent to say that no "absorbing state"

exists.

Calculation of the Availability "A"

The availability "A(t)" is given by the following expression

- - ~
»* i
-1]1 1 -F 7 (s) {
Al = LS5 I T EE RS ¥ (1)
where
"f“*(s)" = Laplace transform of £(t)
"e(e)" = failure-probability-density-distribution
"w’*ks)" = Laplace transform of w(t)
"w o (t)" = repair-probability-density-~distribution
st = complex variable in the Laplace-domain
"L-l" = antitransformation to the time domain

"#" indicates Laplace transformation

We introduce also the failure probability cumulative distribution
"F"(t) given by

t
F(t) = ‘('f(t)dt (2)
Q

Now we shall show how to obtain eq. 1. The availability A can be cal-
culated by summing the probabilities "ra{ﬁfg' of all the mutually
e
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exclusive events "En" so defined

p (& _ P { the plant has failed "n" times
n n § L . ”
and been repaired "n" times ¥ (3)
We get
3 7 4
A= n=o P {En S (*)

We can write the following expressions for the various P {En}
e (5,1
0.4

p {5 ¢

%
P {the plant has never failed untilt} = 1- ff(t)at (5)
‘. ;

P S:the plant has failed at "tl", has
been repaired at" t2" and has not
failed between "t," and "t 1=

t
_OIIE—F(t-tE):lw (ty-t, ) (b, )at dty (6)

o<xl(té(t

il

The Laplace transforms of egs. 5 and 6 ave

Y- T )

By an iterated application of the convolution theorem for Laplace transforms,
we get for the Laplace-transform of P{En’% defined in (3)

P %{En’;

Substituting P%{En}into eq. (4) we get

-

¥ ¥ n
_ é - _f._éﬂ] -"f (s)w (s) | (9)
_ L -

¥ D=

AT = § P%{En}= -i-[l-f%(s)j):go [f*is)waﬁ(s)]n (1o)

Eq. 10 can be written as follows:

Zor b -
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and finally antitransforming

N N
A(t) = L-l{%- if*é:;ﬁ?(s) } (12)

A 6.3 Calculation of the asymptotic Availability A e

For t-éeO"A(t)h approaches a limit "Age" which is largely used for many

practical cases. It is given by

lim A(t) = Aea = -;;%;;r (1)
t-> e
where
"Ag" =  asymptotic availability
"V "< average failure rate
LN g average repair rate
From eq. 1 para A 6.2 we get for t - oo
w lim ’ 1-f 9“]
lim A = lim L'l{ L e} - S20- (2)
t-> 00 t3ee s(1-r% ) Lim ’ l—gﬁ% ﬁ%]
-0 -
We have
¥ t
lim £ = lim ff(t)dt =1 (3)
S~ 0 t=> @™o
and
t
lim w56 = lim J’w(t)dt =1 (%)
S~ 0 T3 e0 o

Egs. 3 and 4 indicate that de 1’HOpital’s rule has to be used to evaluate
the limit of eq. 2. We have

*
. . df ds
lim A = lim
£-> 00 530 Fdfgéds + PR ®ds (5)




We have

¥ % 1
lim df /ds = - lim ftf(t;)dt =- = (6)
S90 T >0 Y
and
¥ . L 1
lim dw /ds = - lim ftw(t)dt = - = (7)
1> =00 Y
Putting 6 and 7 into 5, we get
H/

Aoo= 1lim A =
e X

TV ®)

A 6.4 Calculation of the instantaneous failure rate "Xf"

We call instantaneous failure rate, "Xf",the quantity defined

Xf.dt,=

P { the plant is up at "t'r}

P -{the plant is up at "t" and fails before "t+dt"?' (1)

We shall calculate ")g" as function of the failure-probability-density-

distribution, "f£(t)", and of the repair-probability-density-distribution

"w(t)". The denominator of eq. 1 is the point availability"A" given by

eq.l cf para. A 6.1.

We have to calculate the numerator of eq. 1, that is the probability of

event "E" so defined

P {E} = P {the plant is up at "t" and fails before "t+dt"[. (2)

To do this, we sum all the probabilities "P{En} of the following mutual-

ly exclusive events

P '{:En} = P Jthe plant has failed n-times and has been
repaired n-times before "t" and fails again
before " t+dt"3r

where n= o, 1, 2, .....

With a procedure similar to that developed in para A 6.2, we can calculate

the probability of the event "En" defined by eq. 3

P {En§= ats1 T {E_f)li(s)w*(s):; n[é ) _f_'ZfLS_lj}

(3)

()
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where the asterisk ¥ denotes the Laplace transform, and e indicates

antitrasformation to the time domain.
We add all terms given by eg. 4 to get P {E}

P (E) = dtL‘l{[-;- - E:lﬁlj g::'E.f*(s)w*(sz! n} (5)

Finally we get

P{E}: dt L-l{é %} (6)

Putting eq. 2 of para A 1.1 (the availability"A") and eq. 6 into equa-
tion 1, we get

¥
X - L (1-?55%:;‘;*(5) ) (7)
i L-l ( -}s. tgﬁsz)}w%(s ))

A 6.5 Calculation of the instantaneous repair rate 'D{:"

We call instantaneous repair rate the quantity "Xw", so defined

P { the plant is down at "¢" and is repaired before" t+dt"}
X +dt = a1
W P {the plant is down at "t }

(1)
We shall calculate "){q" as function of the failure-probability-density-
distribution, "f(t)" and .of the repair-probability-density-distribution
"w(t)". The denominator of eq. 1 is equal to "1-A" (where "A" is the
availability, given by eq. 1 of para. A 6.1).

The numerator of eq. 1 is the probability of the event "E"
P{E}: P {the plant is down at "t" and is repaired
before "t+dt"} (2)

P{E} will be obtained by summation of all the probabilities of the

mutually exclusive events "En" defined as follows:

P{Enz= P {.the plant has failed n-times and has been repaired
(n-1) times before "t" and is repaired again before
" t+dt"} (3)

wheren=1, 2, 3 .........
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With procedure similar to that develovned in para. A 6.2 and A 6.4, we get

P {Enlr at 17t {f%(s)w*{s) l:f*(s)waé(s)]n } (%)

We add all terms givenby eq. U4t and we get

P{E} = dtL-l{E%(S)W%(Szl :gl [_fﬁ%(s)wﬁS)] n} =

. 3K -
arr [iﬁi;vgsgii@ (5)

Taking into account eq. 5 and eq. 1 of para. A 6.2, eq.l becomes

¥ s
" 1L T (L 1-t%(s) }
s 1-PE(s )w#(s)

A 6.6 Calculation of the asymtotic values of " Xf" and " Xw"

From eq. 8 of para A 6.4 we get

pY 4

1lim f )y s)
lim X = 52 OLS 1-£F(s )w* (s)

t‘)“f lim .:']; - -: S
s»ols 1-£F(s)w*(s) ]

(1)

The 1limit at the denominator of eq. 1 has already been calculated in
para A 6.3. We have

¥
1 1-£7(s) v
Hn TG © Wre (2)
where
kS — ()
ftw(t)dt
and
v = 1 (%)

_Fcf(t)dt
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For the numerator we have to apply the rule of dedﬂHSbital. We have

[ %
s 1
lim | £ (s) > = - 1lim -
> o 1-£%(s )Jw¥(s) s | AW, K gpE
L R s ds
S A
- 5)
EY (
Putting eqs. 5 and 2 into eq. 1, we get finally
lim ¢ =V (6)

t->00 f

With analogous procedure it is possible to verify that

m X \T’ (7)

t - w
A 6.7 Conclusions

The conclusions, which we can draw at the end of this appendix, are

very general and very important. If we have a plant (or a subsystem

or a unit) with failure ang repair probability density distributions res-
bectively £(t) and w(t), the asymptotic values of the point availability
"A", of the failure rate ">g" and of the repair rate");“ are the follow-

ing
Lm A = feo- YTV (1)
lim X = (2)
tdoo T
X g
Where

- 1 (4)
¥ fotew(t)dt




1
"-'"V: ARG er .

6}"tf(t)crc

For the unhavailability U we get from eq. 1

4
U = l-Aoeo = 6)
vy (
This means that, for long periods of time (t -> o0 ), any system (plant-
or subsystem or unit) behaves as if it has a failure and repair proba-
bility density distributions both exponential with failure ang repair
rates given respectively vty eqs. 4 and 5.

This broperty of the asymptotic behaviour of the systems allows us
to extend many ‘results obtained with exponential distributions to

cases where the distributions are not exponential.




15. Appendix 7: Calculation of the average failure rate of a functional subsysten

for different strategiles

A 7.1 Punctional subsystem consisting of two units one working and the other in

stand-by - lo preventive maintenance

This case has been called "stratesy 2" in para. 5.4. If we call with "A" and
"B" the two units, the functional subsystem "F'" can be in one of the below
listed states

State "0" "A" in operation and "3" in stand-by or

"A'" in stand-by and "B" in operation

State 1"  "A" in operation and "B" in repair or

"B" in operation and “A" in repair

State "2" Both unit failed and subsystem therefore also failed.

The subsystem start with a unit "A" in operation and the other "B" in stand-by
(State "0"). If "A" fails, it is automatically switched off, while "B" is auto-
matically switched into operation (State 1). The failed unit "A" is repaired
and, when the repair is completed, will be connected as stand-by unit (State 0).
The subsystem will fail if the working unit fails before the repair of the other
is completed (State 2).

The reliability "RF" of the subsystem "T" will be obtained by summing the following

probabilities "P " of the below listed mutually exclusive events

i

P {A is not failed at “t" } (1)

P {A is failed at "t]" and B is not failed at "t" } (2)

0 < t1 <t

P [A is failed at "tl"; A is repaired before B fails;
'B fails at "tz"; A is not failed at "t" (3)

0 < tl < t2 t

P 1 ¢
veces B fails at "ti“; A is not failed at "t"

A is failed at “t,"; A is repaired before B fails
(4)

< < eeeee< t, <
0 t] t2 tl t




We indicate with hF(t) and gF(t) fespectivel

density distributions of each of the two uni
will be

y the failure and repair probability

ts. The two cumulative distributions
t
H.F(t) =.£ hF(t)dt

t
Gp(t) =j; sp(t)dt

We ¢an write

X
l-fo hth =] - HF(t) (7)

t
=.£, hF(tl) []-HF(t-tl)]dt] (8)

t
P, =/0j hyp(t,) [hF(tz-tl)G(tZ—tl )j} [l-HF(t-tZ):I dt,de,

The Laplace transforms of eqs, 7, 8 and 9 are the following

_ hp(s)

8

% .
h, (s) )
¥ ¥*
- s /) hF(S)

*

b ¥ *
"5 [ Bp(hiGL)

§ = complex variable of the Laplace domain

"*" indicates Laplace transform

*
Looking at egs. 10, 11 and 12, one can easily derive for Pi the following

expression

s I i-1 (
P * * 13)

]

n
£




From eq. 14 we have

lim R:

§0
Yow we have

lim hY = 1im | hodt =1
F ¥
S0 £ 0

Taking into account eq. 17, eq. 16 becomes

l*hF

s

1im R; = |1+ i lim

1-lin(h G y¥ | s»o
FT
S0

Applying the theorem of de I'HSpital, we get

ds

l-h; dhy t
1im —— = = lim —— = lim J{ t h.dt
s T
S0 S0 t> <0

where "oF" is the average failure rate of a unit.

Taking into account eqs. 18 and 19, eq. 15 becomes finally

Op
1
1-1im(h G )
S T o

50

1 +

Let us consider the particular case in which hv(t) is exponential

hF(t) =0, exp(—oFt)

Op

Taking into account eq. 21, we can urite
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(hFGF)* =./C Op exp[-t(cF+s)J GF(t)dt (22)

and

% 0

lim (hFGF) = J( O exp(-th)GF(t)dt =

50 ()

[éxp(-oFt)GF(t)]: + j( eXp(-oFt)gv(t)dt =
A i

n

J[ exp(-oFt)gF(t)dt (23)
o

Taking into account eq. 23, eq. 20 becomecs in this particular case

a

Ap = 1 (24)

tef

1-[ exp(-owt)gF(t)dt
o T
If gF(t) too is exponential
sp(t) = Mg exp(-ugt) (25)
we have

o o u
F
j[ exp(-oFt)gF(t)dt = Uy J[ exp[-t(cF+uw)]dt gy (26)
o] - o - FF

Taking into account aq. 26, eq. 24 becomes

g

n
R T (27)
T2+ uF/OF
Since uF/oF 1s usuvally very large, we zet from eq. 27

2
o
F
F Hp

It is very interesting to notice that eq. 28 holds approximately also in the
case in which g_(t) is ot exponential. In this case "u_" is defined as average
L‘ \:|

repair rate

= ‘ (29)

Hp =
/ t g.(t)at
o A
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We have, developing exp(*oFt) in a Taylor series

[><] [ [+
- - 2 2
J[ exp( th)gF(t)dt 1 Og }C t gF(t)dt + 05 J; t gF(t)dt + ... (30)

If we stop the series at the first term, we get from eq. 30

w . o
| L. _oF .
,[ exp( GFt)gF(t)dt = 1 o {31)
(i F
Putting 31 in eq. 24, we get
o
i
F 1+ uF/oF
and, for uF/cF very large,
o
AF = i (33)

A 7.2 Functional subsystem consisting of two units, one vorking and the other

in stand-by. Preventive maintenance.

This case has been called strategy 3 in para. 5.4.

Eq. 24 of para. A 7.1 is approximately valid where "o_." is the average failure

¥
rate defined by eq. 1 of para. 2.

Eq. 33 of para. A 7.1 can also be used, where "uF" is the average repair rate
defined by eq. 29 of para. A 7.1.

n
F,
working and the other nF—kn are in stand-by (Strategies 4 and 5 of para. 5.4

“

A 7.3 Functional subsystem consisting of "n " units: "k." of these units are

o

If one of the working units fails, it is automatically switched off, while the
first of the "n-k_ " stand-by units is at the same time automatically switched
into operation.‘Thé failed unit is repaired, and then connected as last of the
stand-by units. 1If a second unit fails, the second of the stand-by units is

switched into operation, and so on.

The subsystem fails if np_kw+l units are failed. The subsystem can be at time

"t" in one of the below listed states (fig. 26).




Number of Number of Number of

working stand-by failed
units units

0

1

Subsystem failed

We shall suppose that the failure and repair probability density distributions
are both exponential

hy = op exp(-th) (1)

with GF and uF both consteant,
We indicate with Qi(t) the probability that the

subsystem "F" is in state "i",
We can write the following "n_-
7

sF+2" equations

 kpopQ, + g0,

kFcFQO - (kFoF+uF)O] * 0,

KppQ -~ Cpoptup) g

i+]




only "n_-k _+1" of the "n_-k_+2" equations are independent.
LA s F °F ,

The associated initial conditions are

QO(O) 1 (9)

Qi(O) 0 (i=]’2"'"'9nF-kF+l) (10)

Taking into account the initial conditions 9 and 10, the Laplace transforms of

eqs. 3 to 7 are

¥
'(kF°F+S)O: + 00 (1)

= P~ (12)
=k GF (kﬂcF+up+s)0 + vy

. ° o L] ° .

k.0 (k +uF+s)0

¥
rorc 1 1 *upQy4

*
k ch + (kFUF+uF+S)QnF—kF

l
*
k0,0
" n

where

complex variable of the Laplace domain

indicates Lanlace transform
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The Laplace transform of the reliability "RF" of subsystem "F" is given by

¥ 1 *
Rp=<-0" (16)
T s np kF+1
Taking into account eq. 15, eq. 16 becomes
*
- 0
P &
P'F = 5 =z (17)
Now we have
A .
x I;(nF-kF+l)
% -k, = A (18)
FF

where

A = determinant of the coefficients of the first ”nF—kF+l" equations

(eq. 15 excluded)

1:(n

A = determinant complementary to the element "a
l;(nF-kF+l)
B (1st line and ”nF-kw+l"th column) of the detemm

12
F—k +1) ?
inant A%,

The determinant A, having "nF—kF+l" lines and n =k +! columns, is written below

(eq. 19).
-(kFGF+S) uF LA a)] 0 0
- - L e ° o ° * [ s O
kpop (kgopruprs) g 0 0
0 kFOF -(kF0F+uF+s),... 0 0 0
O 0 I{F GF a a ° » Ll » 2 . L] o o o L) ) ° L] - - ) L] ®
A= (19)
0 0 O ¢ v o o ¢ o @ kFOF -(kFG‘+uF+S) Hp
0 0 O o ¢ o o o o » 0 RFUF -(kFUF+uF+s}

Taking into account eq. 13, eq. 17 becomes

-k o A
8 = kyop 13 (np=k+1)

*
P\F = SA (20)
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On the other hand "Rﬁ" is also given by

np.kv+]
% = *
R, = I 0 (21)
S i .

i=0

By solving the system of eqs. 11 to 14, we get

A

* 18

Yy 2
where “A" is the determinant defined by eq. 19 and "Ali" is the determinant

complementary to the element "a,." (lst line and "i"th column) of 4.

1i
Putting 22 in 21, we obtain
nF—kF+l
r nla
i
¥ = 121 (23)

Rg :

By comparing eqs. 21 and 20, we get

A= kg% Aok 41)  PTCF .
Py L — (24)

I
™
~

i
—
~
jexg

s i

By extracting the determinant A from A (eq. 19), one obtains

(=1
l,(nF &F+l)

(n~k_+1) (n_=k.)
o F T F T
AI;(nF-kFH) = (~1) (kFoF) (25)

Putting 25 in 24 for s=0, one 3ets

n_~k_+1 (o =k +1)
W =0 T e T T (26)

The average failure rate "A_." of subsystem "F" is given by

T

A, = 1 = 1 QN

® *

$=>0

Taking into account eqs. 23 and 26, we ret
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(n_-k,)
}\ [A] S$=0 nT?-ka"..- 1 (kUOF) nr ;
= — = (-1) ° ~ —- (28)
F nF kF+l . nF kF+| .
b -1) [}1;] I 0! [a,
i=1 s=0 i=} s=0

By extracting the determinants "Ali" from A (eq. 19) ve obtain for s=o

- D~k _+l=~i n=k +1-i
o F (i-1) T F
[A,i] = (-1) (kg0,) (k0,) +
8=0
n_-k _-i (np=k -1)  (n_~k_+1-i)
F T I F O O
+ (kFcF) ]JF + °°‘+(kFGF)uF +UF (29)
Taking into account eq. 29, eq. 28 becomes
. . kFUF (30)
F nF-kF+] u xnF-kFH—i
z o
i=] r%F /

In the particular case szl (only one unit working), eq. 30 becomes

O

A =

Fong g (nF‘i)
I i P
i=1 F

Since UFIGF is usually very large, we can have the two following approximate

(31

expressions derived from egs. 30 and 31

n,_ ~k_+1
FF
Gpr) (32)
Ap ¥ e 32
F (nF"kF)
Up
and for kF=l
g
5 T
_F
‘g = n.~1 (33
Up

For analogy with what we have found for the case of two units in para. A 7.1,
eqs. 32 and 33 should be valid also in the case in which "cF" is an average

failure distribution given by eq. 1 of para. 2 (with any type of failure distri-
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bution), and e is given by

b, = ! (34)

I 4]
J t gF(t)dt
40

with gF(t) being also hot essentially exponential.
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16. Appendix 8: Calculation of the expected number of non preventive replacements

(or repairs) carried out in one maintenance period of a unit

belonging to a functional subsysten.

In this appendix we want to ¢alculate the expected number ”xF" of non preventive
replacements (or repairs) cartied cut in one maintenance period “0_." of a unit

belonging to a functional subsystem {eq. 7 of para. 5.7).
We indicate with hF(t) the failure probability density distribution of a unit.

We indicate with Pi(t) the probability that "i" units have failed (and therefore

replaced) before time "t” and that the "i+1" unit is working.

tle have
t
Po = I- J{ ho(£)dt M
o
rt
0 < t! <t
t t2
Py =jo fo hp(t)) hplt,=t)) []_HF(t'tz)]dtldtz (3)
0 < tl < t2 <t
where
t
) P
The Laplace transforms of eqs. 1, 2 and 3 are
E3
hn(s)
A 5)
(o] s S
- *
h_(s)
x 11 _F * .
Pl - s 8 hF(S) (0>
*
h_(s) 2
* 1 F *
= [ - - — ;
2l Pl [hgcsﬂ -

where "x" indicates Laplace transform, and "s” is the complex variable of the

Laplace domain.
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Looking at the eqs. 5, 6 and 7, we can easily derive the following equation

{} or :S)} ﬁx( )] (8)

Antitranéfbfming eq. 8 to the time domain, we get
PR TR i * i+i
p =11 [hF(S)] i e (o] )
i L s S

where L-'l indicates antitransformation to the time domain.

The expected number "xF(t)” of failed units at time "t'' is given by

*
> a1 ( i ¥, b i %, qit] -1 {1 Bp(®
x(t) = £ 1P, = 5 L 32[n(s)] ~-=[h.(s) }=L Jl_ LI (10)
F i=o i e {'s [ ¥ s - F ] s l-h;(s)

Eq. 10 can be written as follows

t ¢
XF(t) =f L — dt an
o 1 ¥

For t= e Ve get finally

% _ | np(
XF = L -—-—-—;——' dt (12)
) l-hF(s)
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17. Appendix 9: Calculation of the expected number of non preventive replacements

(or _repairs) carried out in one maintenance period of a unit

belonging to a safety subsystem.

e indicate with hé(t) and hg(t) the two failure probability density distri-
butions respectively for failure type "a" and type "'b".

The two modified fallure ptobability distributions, which take into account the

on-off-cycling due to the checks with checking periods "TS", are respectively

(eqs; 3 and 4 of Appendix 2)

Sq o
G+—T—;>hs t(1+«’ j (n

1 O
[, ] t0§~

and 5! -
1+ hy e+ —=
TS b

6"
(2)

where "t" is still the real time and Gé and 63 are two constants.

Taking into account eqs. ! and 2, the total failure probability density distri-
bution E(t,rs) will be

} 8\ 62 [ peassgleg
= — \ 2 T 1 1
h(t,TS) 1+ rq/)hs el 1+ 1 . hs(t)ut +

P

6" 5“ T t(]+6;/Tq)~

S , g s

+ T)hg t(]"’ -{_—— ]"j hé(t)dt (3)
s/ ° \ S L o

Taking into account eq. 3, with procedure similar to that developed in Appendix 8,

+

we get the expected number "xg" of units failed in one maintenance period "GS"

(eq. 12 of para. 5.7)

% -1 E;(S,T )
xg = L — dt (4)
[o] 1 - h (S’TS)

where

L_'l indicates antitransformation to the time domain

"%'" indicates Laplace transformation

"s' is the complex variable of the Laplace domain.
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Flow diagram of plant states

Fig. 11




Eleétric Generator (6 )

Steam Generator (3) Turbine (5)

Primary circuit (4)

[

Reactor

(1)

Condenser (7)

water Pump (8)

Secondary circuit (9 )

Primui’y coolant pump (2)

Schematic diagram of the blocks of a nuclear pOWer plant

Fig. 12
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Fig. 23 Schematic reactor container
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FIG. 25

Flow diagram of the states of a safety subsystem

(failure type'b)
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State 0 = Normal Operation

States 1 to n =Shut Down with possibility

to go to the disaster state

States n+1"to"N" =Shut Down
State D =Disaster

- Fig. 27 Flow diagram of plant states













