EUR 3643 e

EUROPEAN ATOMIC ENERGY COMMUNITY - EURATOM

211mm次間11000000

LUPO - A PROGRAM FOR PREDICTION OF STEADY-STATE TEMPERATURE, FLOW RATE AND PRESSURE DROPS IN A CLOSED PRESSURIZED WATER LOOP WITH OR WITHOUT BOILING

by

G. GAGGERO* and B. PANELLA**

* Euratom

** Politecnico di Torino

1967

EIBRARY COPY

Joint Nuclear Research Center Ispra Establishment - Italy Scientific Information Processing Center - CETIS

and Politecnico di Torino, Impianti Nucleari

LEGAL NOTICE

This document was prepared under the sponsorship of the Commission of the European Communities.

Neither the Commission of the European Communities, its contractors nor any person acting on their behalf :

Make any warranty or representation, express or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this document, or that the use of any information, apparatus, method, or process disclosed in this document may not infringe privately owned rights; or

Assume any liability with respect to the use of, or for damages resulting from the use of any information apparatus, method or process disclosed in this document.

This report is on sale at the addresses listed on cover page 4

at the price of FF 15.—	FB 150	DM 12	Lit 1870	Fl. 11.—

When ordering, please quote the EUR number and the title, which are indicated on the cover of each report.

Printed by SMEETS Brussels, November 1967

This document was reproduced on the basis of the best available copy.

EUR 3643 e

EUROPEAN ATOMIC ENERGY COMMUNITY - EURATOM

LUPO - A PROGRAM FOR PREDICTION OF STEADY-STATE TEMPERATURE, FLOW RATE AND PRESSURE DROPS IN A CLOSED PRESSURIZED WATER LOOP WITH OR WITHOUT BOILING

by

G. GAGGERO* and B. PANELLA**

* Euratom

** Politecnico di Torino

1967

Joint Nuclear Research Center Ispra Establishment – Italy

Scientific Information Processing Center - CETIS and Politecnico di Torino, Impianti Nucleari

SUMMARY

A method is described for predicting steady-state bulk fluid temperature, void fraction, pressure drops and mass flow rate in a closed pressurized water loop, operating at forced or natural circulation. The model treats the one-dimensional transfer of mass, momentum and energy throughout the whole liquid, subcooled boiling and bulk boiling regions of the coolant using semiempirical heat transfer and pressure drop correlations developed by other investigators. A representation of subcooled boiling, based upon the model proposed by Bowring in HPR-10, is used.

Variations in heat transfer and hydraulic characteristics of the coolant due to changes in temperature and state are handled by continuously calculating local values of thermodynamic and physical properties (specific heat, density, quality, viscosity, thermal conductivity, etc.).

The method has been programmed for the IBM 7090 and IBM 360/65 computers by using FORTRAN IV language. The code, named LUPO, is described in this report, along with the numerical treatment and calculation procedure.

In Appendix 4 a comparison with experimental data is presented.

Work performed by the authors under an agreement between Politecnico di Torino (financed by CNR) and Euratom-CETIS.

KEYWORDS

COOLANT LOOPS WATER COOLANT LIQUID FLOW CONVECTION PRESSURE TEMPERATURE MASS HEAT TRANSFER PROGRAMMING COMPUTERS

Forced convection, natural convection, flow rate, L-codes, Fortran, IBM 7090

Contents

1. Introduction	page 5
2. Description of the Facility	6
3. Derivation of a Physical Model	7
3.1 General Consideration	י ק
3.2 Bowring Model and Void Fraction Prediction	, 0
3.3 Elevation Head	, , , , , , , , , , , , , , , , , , ,
3.4 Acceleration Pressure Drop	13
3.5 Friction Pressure Drops	14
3.6 Local Pressure Drops	19
4. Description of a Numerical Method	
4.1 Division of the Loop	19
4.2 Working Equations	19
4.3 Flow Rate Calculation Mathed	20
	2 2
5. The LUPO Code	23
5.1 Structure of the Program	23
5.2 Flow Chart	24
5.3 Listing and Sample Print-out	38
5.4 FORTRAN Nomenclature	91
5.5 Possible Future Development of the Program	94
Nomenclature	05
References	92
Appendices:	
1. The Lottes-Flinn Model	100
2. Expansion Losses in Two Phase Flow	100
3. Comparison with Experimental Results	103
4. Analytical Formulation of Martinelli-Nelson Multiplier	102
-	· • •

List of Figures

- Fig.1 Hydraulic loop scheme
- Fig. 2 Section of the heated channel of the loop at Polytechnical School of Turin
- Fig. 3 Void fraction versus channel length and bubble radius at detachment versus pressure from Ref. [2]
- Fig. 4 Parameter β versus pressure from Ref. [2] and Shape of curves representing the elevation head and the total pressure drop versus flow rate
- Fig. 5 Comparison between results of the calculation and experimental results
- Fig. 6 Schematic representation of the loop at Polytechnical School of Turin

LUPO - A PROGRAM FOR PREDICTION OF STEADY-STATE TEMPERATURE, FLOW RATE AND PRESSURE DROPS IN A CLOSED PRESSURIZED WATER LOOP WITH OR WITHOUT BOILING⁽⁺⁾

1. INTRODUCTION

In the design and operation of nuclear power reactors it is necessary to predict the heat transfer and hydraulic behavior of the coolant over a wide range of conditions. Analysis often includes the case in which the coolant enters the heated channel as a subcooled liquid and leaves as a two-phase mixture with bulk boiling.

One of the limitations to the increase of the power is the tendency towards hydrodynamic instability displayed by a boiling water reactor when power is increased. This is particularly true in the operation of natural circulation systems.

The mechanism of boiling and two phase flow is so complex that even for steady-state calculation it is difficult to obtain accurate results. All the attempts published up to now to describe the behavior of boiling water loops have been based on several assumptions and approximations. The choice of the equations to be used for computing heat transfer, void fraction and pressure drop in the nucleate and bulk boiling regions is complicated by the presence in the literature of several methods for treating this phenomenon and by the lack of experimental information of general validity.

The group of the heat transfer laboratory of the Polytechnical School of Turin has been working for some years on the natural and forced circulation in a closed loop with pressurized water.

Much of the information contained in the published literature has been reviewed and a theoretical model derived in such a form that many assumptions and approximations can be eliminated or limited.

Accuracy and consistency of theoretically and experimentally derived equations for each of the several coolant conditions occuring in a system have been previously examined.

Manuscript received on August 29, 1967.

The physical model includes a representation of all liquid, subcooled boiling and bulk boiling conditions. Special care has been used in treating the subcooled boiling region, which has been divided into two sub-regions, following the Bowring model, the highly subcooled and the slightly subcooled region. Having in mind to prepare a tool to predict steady-state bulk fluid temperature, void fraction, pressure drops and mass flow rate in a closed loop, a representation of the hydraulics of all the components of a typical loop (riser, heat-exchanger, cold leg, pump) has been introduced in our model. A description of the loop, as it has been assumed, is given in Section 2 of this Report. The physical model is described in details in Section 3. It differs from a previous one developed at the Polytecnic School of Turin, and described in Ref.[1], mainly for the fact that bulk boiling has been included, but also by the introduction of Bowring representation of subcooled boiling.

The analytical method, derived by the physical model, is presented in Section 4. It has been programmed for IBM 7090 and IBM 360/65 to reduce the large computing effort usually required to obtain solutions. The code, named LUPO, has been written in Fortran IV language.

2. DESCRIPTION OF THE FACILITY

A schematic representation of the hydraulic circuit considered is given in Fig. 1 and a semplified section of the heated channel in Fig. 2

It consists of an heated channel AB that discharges through a fitting BC into a riser CD. From here the water (or water and steam) flows to a collector E. Between two collectors E and F there is a heat exchanger consisting of a variable number of pipes in parallel. The water in F is returned to the inlet M by a downcomer GH, which feeds the pump I.

An inlet fitting MA is situated at the bottom of the heated channel.

It is thought that most present-day off-pile water loops could be adequately represented by this general circuit. Pump I is optional and any component of the circuit between B and A can effectively be eliminated by specifying zero length for it.

The number of pipes of the heat exchanger is an input quantity as well as the localized pressure drop coefficients K_i , introduced to account for elbows, flanges, fittings and valves eventually present in each of the main components of the circuit.

A different diameter may be specified for test-section (heated channel, AB), riser CD, heat exchanger pipes EF, cold leg GM.

The pressure rise across the pump I is determined from a specified pump characteristic.

The geometric dimensions and hydraulic variables, which must be specified as input data are listed in Section 5.

3. DERIVATION OF A PHYSICAL MODEL3. 1 General Considerations

In this section the thermohydraulic equations describing a general hydraulic circuit are presented and discussed.

The circuit may be divided into components each of which has uniform flow area along its length and shows particular thermohydraulic characteristics. The coolant, flowing along the circuit, passes through different zones, suggested by the way in which heat transfer occurs, by the physical state of the fluid or, finally, by the practice of evaluating pressure drops in them.

Five regions, at least, may be defined:

- a) <u>Isothermal single-phase</u> region, in which the physical properties of the fluid are constant both across and along the channel.
- b) <u>No-local boiling (heated)</u> region, in which the fluid temperature is below the saturation temperature and convection is the only heat-transfer mechanism. Fluid and wall temperatures rise along the channel.

- c) Local boiling region, in which the fluid temperature is below the saturation temperature, but the wall temperature is above it so that local boiling may start. Bubbles, generated at the wall, grow, leave the surface and collapse after a short distance in the subcooled liquid.
- d) <u>Bulk-boiling</u> region, in which the fluid has reached the saturation temperature with steam production.
- e) <u>Adiabatic</u> region, in which the two-phase fluid flows without mass exchange between the phases, in non-heated channels.

Region c), also called subcooled boiling region, may, in turn, be subdivided into "highly subcooled" and "slightly subcooled" regions. Two-phase fluid is present in regions c) to d).

It is very important to be able to correctly evaluate pressure drops in all the above cited regions, if reliable values of the flow rate are desired from the calculation.

Simply stated, the loop steady state flow rate is that value, which satisfies the equation:

$$\sum_{\text{loop}} \Delta \mathbf{P}_{\text{fr}} + \sum_{\text{loop}} \Delta \mathbf{P}_{\text{acc}} + \sum_{\text{loop}} \Delta \mathbf{P}_{\text{elev}} + \Delta \mathbf{P}_{\text{pump}} = 0 \quad (1)$$

where:

 $\sum_{\substack{\text{fr}\\\text{loop}}} \Delta P_{\text{fr}} = \text{frictional pressure drop around the loop including losses}$ from entrance and exit flanges, orifices and elbows (form losses).

 $\Sigma \quad \Delta P_{acc}$ = acceleration pressure drop around the loop.

 $\sum_{\text{loop}} \Delta P_{\text{elev}} = \text{difference in the elevation head between hot and cold legs} \\ \text{of the loop.}$

 $\Delta P_{pump} = pressure generated by the pump in forced circulation loops.$

Both frictional pressure drop and elevation head are strongly related to the voidage in the circuit, because the friction coefficient and the fluid density in the hot portion of the loop are very sensitive to the voidfraction.

In the following sections a method will be described for evaluating the voidage distribution along the test-section and the riser when two-phase fluid is present, and the related pressure drops. The method is based on the Bowring theory.

Each term in equation (1) will be discussed and various available correlations will be examined.

3.2 Bowring Model and Void Fraction Prediction

The Bowring theory (Ref. [2]) rests upon the subcooled voidage model. In previous models voidage in the subcooled region has been assumed to be a wall effect. There are a first region, at high degrees of subcooling, where the voidage is small, and a second, at low degrees of subcooling, where the void fraction increases rapidly with decreasing subcooling.

The difference in the new model lies in taking into account the bubbles detachment in the slightly subcooled region. At low degrees of subcooling, bubbles detach from the heated surface and are swept downstream, recondensing slowly as they move through the subcooled region. In short the void fraction in this region is basically a "bulk fluid" effect.

In Fig. 3 the transition point B represents the condition for bubbles to leave the surface and the rapid increase in void fraction as in the bulk boiling region.

The complete voidage picture is made of:

1. highly subcooled region, where voidage is a wall effect and it is usually negligible.

2. slightly subcooled region, where voidage is a free bubble effect; there is in addition a local wall voidage arising from bubbles before detachment from the wall.

3. bulk boiling region: this may be calculated in the normal way.

9

Of course there are some differences between the build-up of voids in the slightly subcooled and bulk boiling regions: in the subcooled region bubbles are in a bulk of subcooled water so that they collapse after a short distance; part of the heat flux raises the bulk temperature of the water and part produces void, whereas in the bulk boiling region all the heat is used in the production of steam; finally the transition between regions I and II (Fig. 3) is governed by different and more complex criteria than that one between the II region and bulk boiling region.

Transition points are calculated by transition subcoolings:

a) $\vartheta_{scb} = \frac{\Phi}{\lambda} - \beta \Phi^{1/4}$ gives the condition for subcooled boiling to start, by using the Jens - Lottes equation (Ref. [2]). In our units β is given by the following relation

$$\mathbf{\beta} = 62,745855 \ \mathrm{e}^{-0.0163(\mathrm{p-1})} \tag{2}$$

b) $\vartheta_d = \eta \frac{\Phi}{v}$ relates the subcooling at which bubbles can detach to the heat flux and velocity. The equation (and the value of η) were obtained from experimental subcooled void data.

Heat is removed in the test section: as latent heat content of bubbles (Φ_e) , by convection caused by bubble agitation of the boundary layer (Φ_a) , by single phase heat transfer between patches of bubbles (Φ_{sp}) :

$$\Phi = \Phi + \Phi + \Phi + \Phi$$

By introducing the empirical parameter ε , defined as:

$$\varepsilon = \frac{\Phi}{\Phi} = \frac{\Phi}{e}$$

and by considering $\Phi_{sp} = 0$ (Ref.[2]), Φ_e is given by:

$$\Phi_{\rm e} = \frac{\Phi}{1+\varepsilon}$$
.

Then the subcooled void equation will be:

1) in the bulk boiling region all the heat is used in the production of the steam, and the weight fraction is related to heat flux by the equation:

$$\mathbf{x} = (\mathbf{P}/\rho \, \mathrm{AV}\,\lambda) \, \cdot \, \int_{\mathrm{ML}}^{\mathbf{z}} \Phi \, \mathrm{dz} \tag{3}$$

where **P** is the wetted perimeter and ML is the lenght of the channel at which bulk boiling begins.

2) in the slightly subcooled region, the equation of the rise of local weight fraction may be written as:

$$\mathbf{x}_{b} = (\mathbf{P} / \rho \mathbf{A} \mathbf{V} \boldsymbol{\lambda}) \int_{z_{d}}^{z} \frac{\Phi}{(1 + \varepsilon)} dz$$
(3)

Then the void fraction is expressed by following equation:

$$\alpha = \frac{\mathbf{x}}{\mathbf{x} + \mathbf{S}_{\mathbf{r}} \frac{\rho_{\mathbf{g}}}{\rho_{\mathbf{f}}} (1 - \mathbf{x})}$$
(4)

The whole voidage is the sum of the free bubble voidage and the wall voidage.

The wall voidage (Ref. [2]) is given by the relation:

$$\alpha_{\rm w} = \mathbf{P} \frac{\mathbf{\delta}}{\mathbf{A}} \tag{5}$$

where δ is the effective thickness of the steam film and it is the lesser of:

 $\delta = 0.066 R_d$ $\delta = \frac{Pr \cdot K \cdot V}{1.07 \cdot \eta \cdot \lambda^2}$

where Pr is Prandtl number and K is the thermal conductivity.

3.3 Elevation Head

The loop elevation pressure drop, or thermal driving head (in natural circulation) is given by:

$$\sum_{\text{loop}} \Delta P_{\text{elev}} = \int_{0}^{L} \rho_{cl} dz - \int_{0}^{L} \rho_{hl} dz$$
(6)

where subscripts 'cl' and 'hl' mean respectively cold and hot leg.

The single-phase densities in equation (6) are easily evaluated from the fluid static pressure and temperature. When boiling occurs in the hot leg, the exact evaluation of the density requires the knowledge of void distribution along the channel.

If only local boiling takes place, it is customary to regard the void as a wall phenomenon and, consequently, to evaluate the density from the mean liquid temperature.

In the present model, this has been done only for the highly-subcooled region. In the slightly-subcooled region, the void distribution has been first evaluated following Bowring's model, and then the density

$$\rho = (1 - \alpha)\rho_{f} + \alpha \rho_{g}$$
⁽⁷⁾

according to the momentum equation.

This assures the applicability of the model to channels of small size also.

Whenever bulk-boiling region is present the density of the two-phase fluid may be given by equation (7) or by

$$\rho = (1 - x_{\mathbf{v}})\rho_{\text{fsat}} + \rho_{g} x_{\mathbf{v}}$$
(8)

according to the energy equation.

The meaning of the symbols used in equations (7) and (8) is the following:

$$x_{\mathbf{v}} = \frac{V_{g}A_{g}}{A_{g}V_{g} + A_{f}V_{f}} = \frac{S_{r}\alpha}{S_{r}\alpha + (1 - \alpha)}$$
(9)

S_s = slip ratio.

The use of equation (8) in the present model is justified, because it has been recognized, Ref.[3], that the elevation head must be evaluated by using the energy equation instead of the momentum equation, which, in turn, applies to transient problems.

3.4 Acceleration Pressure Drop

The total acceleration pressure drop is obtained by summing the acceleration pressure drops due to changes in area and density around the loop.

If negligible terms are omitted, one can write:

$$\sum_{\text{loop}} \Delta P_{\text{acc}} = \frac{w^2}{2g A_{\text{ts}}^2} \left[\chi_{\text{ts-ex}} - \chi_{\text{cl}} \right] \cdot \left[1 - \frac{A_{\text{ts}}}{A_{\text{exc}}} \right]^2$$
(10)

2

where:

$$\chi = \frac{1}{\rho} \text{ for nonboiling regions}$$

$$\chi = \left[\frac{(1-x)^2}{1-\alpha} + \frac{x^2}{\alpha} \frac{\rho_f}{\rho_g} \right] \frac{1}{\rho_f} \text{ for two-phase regions}$$
(11)

Subscripts "ts-ex", "cl" and "exc" refer respectively to test-section exit, cold-leg and heat-exchanger.

Equation (11) is valid under the condition of slip-flow. If the fog-flow model is considered, the following relationship applies:

$$\chi = \left[(1-x) + x \frac{\rho_{\rm f}}{\rho_{\rm g}} \right] \frac{1}{\rho_{\rm f}}$$
(12)

Equation (12) predicts values of acceleration pressure drop which are higher than those given by equation (11).

The true value, probably, lies between these two limits. In the absence of any experimental data, the use of equation (12) could be advisable because it results in a conservative prediction of the pressure drop. Equation (10) is derived in Ref. [4].

For the special case in which the heat-exchanger consists of n exc pipes in parallel, the following new relationship has been derived and introduced in the present model:

$$\sum_{\text{loop}} \Delta P_{\text{acc}} = \frac{G_{\text{ts}}^2}{2g} \left[\chi_{\text{ts-ex}} - \chi_{\text{cl}} \right] \cdot \left[1 - \frac{1}{n_{\text{exc}}^2} \left(\frac{D_{\text{ts}}}{D_{\text{exc}}} \right)^4 + \frac{\frac{n_{\text{exc}}^2 - 1}{n_{\text{exc}}^2} \left(\frac{D_{\text{ts}}}{D_{\text{ris}}} \right)^4 \right]$$
(13)

3.5 Friction Pressure Drop

Several types of flow must be considered.

a) Isothermal turbulent flow of single-phase fluid.

Pressure drop is given by the expression:

$$\Delta P_{f} = f_{iso} \frac{L}{D} \frac{G^{2}}{2\rho g}$$
(14)

where the friction factor f_{iso} is given by the Colebrook relation for the transition and turbulent regions or by:

$$f_{iso} = 0.0055 \left[1 + \sqrt[3]{20000 \frac{\epsilon}{D} + \frac{10^6}{Re}} \right]$$
 (15)

for full turbulence region.

Equation (15) is valid when the diameter D is expressed in centimeters and has been derived from Ref. [5].

b) Non-isothermal turbulent flow of single-phase fluid.

Equation (14) becomes:

$$\Delta \mathbf{P}_{f} = \mathbf{f}_{iso} \cdot \left(\frac{\mathbf{f}}{\mathbf{f}_{iso}}\right) \cdot \frac{\mathbf{L}}{\mathbf{D}} \frac{\mathbf{G}^{2}}{2\rho g}$$
(16)

where (f/f_{iso}) is a correction factor which accounts for the variation along the radius of the temperature and consequently of the physical properties of the fluid. The coefficient f_{iso} , in equation (16) must be evaluated by using the average temperature. Many semiempirical correlations are reported in the literature in order to evaluate the correction factor (f/f_{iso}) :

$$\left(\frac{f}{f_{iso}}\right) = \left(\frac{\mu_w}{\mu_B}\right)^{0.13}$$
 Reference [6], Kreith and Summerfield (17)

$$\left(\frac{f}{f_{iso}}\right) = \left(\frac{\mu_{B}}{\mu_{w}}\right)^{-10 f_{iso}} \cdot \left(\frac{\rho_{B}}{\rho_{w}}\right)^{-0.5}$$
Reference [7],
Maurer and Le Torneau (18)

$$\left(\frac{f}{f_{iso}}\right) = 1 - 0.0018 \frac{\Phi}{\lambda}$$
 Reference [1] (19)

where
$$\lambda$$
 is calculated from Dittus-Boelter correlation:
 $\lambda = 0.023 \frac{K}{D} \operatorname{Re}^{0.8} \cdot \operatorname{Pr}^{1/3}$
(20)

 Φ = heat flux expressed in units coherent with λ so that the ratio Φ/λ results a temperature measured in ^oC.

In the present model equation (19) has been adopted, which is valid for pressures in the range between 50 and 120 Kg/cm².

c) Local Boiling.

No sufficient experimental and theoretical work has been carried out up to now on pressure drops in local boiling region.

Semiempirical correlations have been proposed by Reynolds and Rohde, based on experiments on horizontal and vertical circular channels, performed by Reynolds and Buchberg respectively, Ref. [5]. Mendler, Ref.[4], performed calculations of local boiling pressure drops with water at 800 to 2000 psia, by means of the following correlation for $(f/f_{iso})_{LB}$:

$$\left(\frac{f}{f_{iso}}\right)_{LB} = 1 + \left[\left(\frac{f}{f_{iso}}\right)_{sat} - 1\right] \cdot \frac{\overline{t} - t_{scb}}{t_{sat} - t_{scb}}$$
(21)

where $(f/f_{iso})_{sat}$ is equal to the value of Φ_{LO}^2 at 4, 2 per cent quality and may be evaluated by means of correlation, Ref. [5]:

$$\left(\frac{f}{f_{iso}}\right)_{sat} = 19.579 \text{ p}^{-0.5931697} \cdot \left[1 + 0.095868 \text{ G}^{-0.919337}\right]$$
 (22)

t is the temperature at which local boiling starts, and may be calculated as:

$$\mathbf{t}_{scb} = \mathbf{t}_{sat} + \Delta \mathbf{t}_{sat} - \frac{\Phi}{\lambda}$$
(23)

or, following Bowring:

$$t_{scb} = t_{sat} + \beta \Phi^{1/4} - \frac{\Phi}{\lambda}$$
(23')

where β is given by relation (2) of Sect. 3.2, and Δt_{sat} by one of the following two empirical correlations:

$$\Delta t_{sat} = 62.62096 \, \Phi^{1/4} e^{-\frac{p}{61.2414}}$$
(24)

$$\Delta t_{sat} = 145.7 \ \Phi^{1/2} \ e^{-\frac{P}{87.89}}$$
(25)

Both equations (24) and (25) have been included in the present model and the choice is left to the user.

We note that equation (23), in which Δt_{sat} is evaluated by means of (24), and equation (23^t) give the same results.

In the present model, the local boiling region has been **divided**, following Bowring theory, into a highly subcooled and a slightly subcooled region.

In both regions the relation (16) is valid, but the correction factor $\left(\frac{f}{f_{iso}}\right)_{LB}$ has to be calculated in a different manner.

In the highly subcooled region, in which voidage is a wall effect, $(f/f_{iso})_{LB_1}$ is evaluated by means of relation (21). In the second region, where voidage is mainly a bulk effect, the multiplier $(f/f_{iso})_{LB_2}$ is evaluated by using the Lottes-Flinn relation (see Appendix 1), i.e.:

$$\left(\frac{f}{f_{iso}}\right)_{LB_2} = \frac{1}{3} \left[1 + \frac{1}{1 - \alpha_{ex}(1 - S_r \frac{\rho_g}{\rho_f})} + \frac{1}{\left[1 - \alpha_{ex}(1 - S_r \frac{\rho_g}{\rho_f})\right]^2}\right]$$
(26)

where α_{ex} is the void fraction at the end of the slightly subcooled region given by equation (4).

The validity of Lottes-Flinn correlation applied to the local boiling region has been proved by the experimental results by Sher, Ref.[11], which have shown that local boiling pressure drop may be predicted by means of bulk boiling correlations if local void fractions are known.

We note that equations (26) and (21) does not give the same value at the boundary between highly and slightly subcooled regions: equation (26) gives $(f/f_{iso})_{LB_2} = 1$ and equation (21) gives

$$\left(\frac{f}{f_{iso}}\right)_{B_{1}} = \left[\left(\frac{f}{f_{iso}}\right)_{sat} - 1\right] \frac{t_{d} - t_{scb}}{t_{sat} - t_{scb}}$$

To avoid discontinuity on pressure drop we corrected equation (26) by adding the following term:

$$\left(\frac{f}{f_{iso}}\right)^{\mathbf{H}} = \left[\left(\frac{f}{f_{iso}}\right)_{sat} - 1\right] \frac{t_{d} - t_{scb}}{t_{sat} - t_{scb}}$$

Another way to get over the difficulty consists in the adoption in both regions of equation (26). The two options are present in the digital program, but the first one seems to give results in better agreement with experiments carried out at the Polytecnical School of Turin.

d) Bulk Boiling

Two-phase friction pressure drop correlations reported in the literature are of two types:

- 1) a friction factor method in which the friction factor is computed considering a homogeneous mixture of the two phases, is used;
- 2) a non-dimensional ratio, obtained by dividing the two-phase friction pressure drop by the liquid-phase friction pressure drop, evaluated at the total flow rate, is correlated with quality, pressure and mass flow rate.

The first approach does not give results in agreement with experiments The most widely accepted correlation of the second type is that by Martinelli and Nelson, Ref. [16]. It is presented in graphical form and no analytical expression for it is available, except the one derived in Appendix 4. Moreover it does not take into account a dependence on mass flow rate. Also Sher and Green, Ref.[17], present their correlation of experimental measurements in a graphical and numerical form.

Only three analytical correlations for the two-phase multiplier $(f/f_{iso})_{bb}$, are available in the literature: the one by Levy, Ref. [18], the one by Marchaterre, Ref. [19], and the one by Lottes and Flinn, Ref. [20]. Levy proposes for the two-phase multiplier the following expression:

$$\left(\frac{f}{f_{iso}}\right)_{bb} = \frac{\left(1-x\right)^{1.80}}{\left(1-\alpha\right)^2}$$
(27)

in which $(f/f_{iso})_{bb}$ is related to quality and pressure since the "momentum model" correlation between quality and void fraction is dependent on pressure through the ratio (ρ_{fsat}/ρ_g) , but not to mass flow rate. Marchaterre proposes the expression (for vertical upflow):

$$\left(\frac{f}{f_{iso}}\right)_{bb} = \frac{\left(1-x\right)^2}{1-\alpha} + \alpha \frac{2g(\rho_f - \rho_g)\rho_f D}{f_{iso} \cdot G^2}$$
(28)

Comparison of this relation with experimental results does not appear to be very satisfactory. Lottes and Flinn propose the correlation:

$$\left(\frac{f}{f_{iso}}\right)_{bb} = \frac{1-x}{1-\alpha} = 1 + x \left(\frac{\rho_f}{\rho_g} \cdot \frac{1}{s} - 1\right)$$
(29)

in which S_r is the slip ratio.

Comparison of this relation with experimental results obtained at Argonne is fairly satisfactory, Ref. [5].

In the present model Lottes-Flinn correlation has been used with the assumption of constant slip-ratio along the channel. The average value of the two-phase multiplier is given by:

The average value of the two-phase multiplier is given by:

$$\left(\frac{\overline{f}}{f_{iso}}\right)_{bb} = \frac{1}{l_{ts} - z_{bb}} \int_{z_{bb}}^{1} \left\{1 + \frac{1}{\rho_{g}} - 1\right) \left[x_{ex} - \frac{\pi D_{ts}}{W \cdot r} \Phi(l_{ts} - z)\right]^{2} dz$$

$$S_{r} \frac{\rho_{g}}{\rho_{out}} \qquad (29^{1})$$

Derivation of equation (29^{t}) is shown in Appendix 1.

3.6 Local Pressure Drops

In the loop there are several local pressure drops, due to:

test section entrance and exit fittings, valves and nozzles, bends

In a turbulent flow system, losses can be visualized in terms of kinetic energy of the fluid, using the velocity-head concept (Ref.[8]). The general expression for local pressure drops is:

$$\Delta p_{loc} = K \frac{G^2}{2 \rho g_c}$$
(30)

where K is the loss coefficient, which assumes different values for enlargement, contraction and the like. Single phase pressure drop coefficients may be calculated as in "Mauro 1" (Ref. [12]), according to Ref. [8], [13], [14], [15].

The exit local pressure drop, when slightly subcooled or bulk boiling occurs at the end of test section is given by the Romie relation, based on Richardson hypothesis (Ref. [9]), further corrected by an expression which makes for $\alpha = 0$ the drop so calculated equal to the value given by hydraulic relation. The final relation (derived in Appendix 2) is:

$$\Delta P_{\text{loc, exit}} = \frac{G_{\text{ris}}^2}{g_c (\rho_{\text{out}}^+ \rho_{\text{ris}})} \left[K_{\text{out}} - 2 \frac{D_{\text{ts}}}{D_{\text{ris}}} \left(1 - \frac{D_{\text{ts}}}{D_{\text{ris}}} \right) \right] + \frac{G_{\text{ts}}^2}{g_c \cdot \rho_{\text{out}}} \left(\frac{D_{\text{ts}}}{D_{\text{ris}}} \right)^2 \left[1 - \left(\frac{D_{\text{ts}}}{D_{\text{ris}}} \right)^2 \right] \left[x^2 \frac{\rho_g}{\rho_f \cdot \alpha} + \frac{(1 - x)^2}{1 - 1} \right]$$
(31)

4. DESCRIPTION OF THE NUMERICAL METHOD

4.1 Division of the loop

The loop is first of all divided into four components:

- a) test section
- b) riser
- c) exchanger
- d) downcomer

Only test section and riser are further divided in short axial lumps (up to 350) so that the calculation is there done by using linearized forms of the working equations. In each lump the enthalpy and fluid properties are computed, as shown in chapter 4.2. Because fluid properties change from all liquid to highly subcooled region and after to slightly and to bulk boiling, changes are made in working equations, by using Bowring model to determine the region boundaries. The number of mesh points in the heated channel and in the riser are specified by the user.

4.2 Working equations

Working equations are derived from mass and energy conservation equations.

a) Conservation of mass:

the steady state mass flow rate is constant througout every section of the loop.

b) Conservation of energy and heat balance:

for given inlet temperature (t_{in}) , heat flux (Φ) , heat transfer coefficient (λ_{in}) , the wall temperature at the entrance of test section is:

$$t_{w,in} = t_{in} + \frac{\Phi}{\lambda_{in}}$$
(32)

For every lump of the test section the heat balance gives:

$$h_{out}^{j} = h_{in}^{j} + 4 \frac{\Phi \cdot \Delta z_{j}}{G_{ts} \cdot D_{ts}}$$
(33)

For every lump of the riser the heat balance gives:

$$h_{out}^{j} = h_{in}^{j} - \lambda_{ris} \cdot S_{ris} \cdot (\overline{t}^{j} - t_{a}) \frac{1}{W}$$
(34)

where subscript "a" refers to air, and λ_{ris} is the overall heat loss coefficient of the riser.

Temperatures are calculated from enthalpies by means of the expression:

$$t = h - A$$

where A is given by the following relation:

$$A = 1.6634 + 1.5323 \cdot 10^{-10} \cdot h^{4.4229448}$$
(35)

which results from numerical interpolation of table values. Equation (35) is valid for pressures in the range between 20 and 100 Kg/cm^2 and for temperatures greater than 40 $^{\circ}$ C. Enthalpy must be expressed in units Kcal/Kg.

The mean temperature of the downcomer is obtained by adding to the test section inlet temperature Δt_{cl} degrees. Δt_{cl} is an input quantity predetermined by experiments.

The exchanger mean temperature is assumed to be the average between riser and downcomer mean temperatures. From the knowledge of temperature distribution around the loop it is possible to determine the coordinates of the boundaries of all regions and, then, to compute fluid properties in each of them. Equations used to evaluate thermodynamic properties of water are those listed in Ref.[1].

The equation for the enthalpy of water, h, is derived from Ref.[10]. Specific heat capacity, c_p , at constant pressure is calculated by the differential of the enthalpy equation with respect to temperature. The equation for the thermal conductivity, K, of water has been derived from values listed in Table VII of Ref. [10]. Density of water is calculated from an equation put forward by M. Tratz, which is available from Ref.[10].

In general, several regions are determined in the loop (see section 3.1) and in each region the mean properties are evaluated.

c) Conservation of momentum.

The equation (1) in section 3.1 is integrated to the whole loop. In each region pressure drops are computed with mean values of properties by relations, which are in sections 3.3, 3.4, 3.5 and 3.6. In the test section lump temperature is compared continuously with Bowring's model boundary values, so dividing the test section into different regions. Different relations for pressure drops are, then, used in each of them. In the riser, if the outlet temperature is equal to the saturation value, the equation (34) allows in every lump to calculate the enthalpy, which must be compared with the saturation value. If it is greater or equal, the quality is found by the relation:

$$x = \frac{h - h_{sat}}{h_g - h_{sat}}$$
(36)

and, calling \bar{x} the smooth value in every lump, the friction pressure drop two phase multiplier is given by:

$$R_{is} = \frac{1}{n_{ris}} \sum_{j=1}^{n_{ris}} \left(\frac{f}{f_{iso}}\right)_{j}$$
(37)

where $\left(\frac{f}{f_{iso}}\right)_j$ is given by the following equation:

$$\left(\frac{f}{f_{iso}}\right)_{j} = \left[1 + \left(\frac{1}{\rho_{g}} - 1\right)\right]^{2} \overline{x}^{2}$$

$$S_{r} \frac{\rho_{g}}{\rho_{j}}$$
(38)

4.3 Flow rate calculation

The steady state flow rate calculation is done by solving the equation (1) of Section 3.1 implicitely, that is by using an iterative procedure. This procedure is the "method of halving". At each calculation step, (i.e. at each flow rate value), all pressure drops are evaluated along with the "relative error" $\varepsilon = (\Delta p_{mot} - \Delta p_{res})/\Delta p_{mot}$, (where $\Delta p_{mot} = \Delta p_{elev} + \Delta p_{pump}$ and $\Delta p_{res} = \Delta p_{fr} + \Delta p_{acc}$), and a new flow rate value is chosen depending on the sign of ε . As many steps are performed as they are necessary to make ε less than a prescribed value.

Precisely an interval of flow rates is give, in which we presume to find the solution; this interval is divided in four parts, and for the five flow rate values the relative error is calculated.

In the subinterval where the relative error changes sign the midpoint is chosen and this flow rate value is used for a new calculation cycle until the relative error is less than a fixed value.

Fig. (4) shows the shape of curves, representing the gravitational driving force and the total pressure drop, versus the flow rate.

5. THE LUPO CODE

5.1 Structure of the Program

The program includes a "Main Program", six "Subroutines" and eleven "Functions", called by the "Main Program".

a) Main Program.

First statements are of input data reading and printing. Then the Code computes constant quantities (non-depending upon the flow rate) and clears several variables. At pages 9, 10and11 there is the mean properties and friction pressure drops calculation, in every test section region. Then the code computes temperatures, mean properties and friction pressure drops in the riser, in the exchanger and in the cold leg. At page 12there is the local pressure drops, the acceleration and the elevation pressure drops calculation.

Then the program computes and prints the relative error, and in accordance with this value, it decides what it will make: to continue iterations or to read restart input data; however, it prints results. Restart input data are inlet temperature or thermal power; if they are not the program stops.

b) Subroutines

Six subroutines must be used in addition to the Main Program. These subroutines are:

PUMP	TRIST
DROP	DPEL
COTES	FLOW

PUMP - SUBROUTINE PUMP computes the driving force of a pump in the forced circulation

DROP -SUBROUTINE DROP computes friction pressure drops in two phase regions.

23

- COTES SUBROUTINE COTES is used to integrate by means of Cotes formula the expression derived from Lottes-Flinn model for the friction two-phase multiplier calculation.
- TRIST SUBROUTINE TRIST computes the temperature distribution, mean properties and the friction multiplier in the riser.
- **DPEL** SUBROUTINE DPEL computes the elevation head.
- FLOW SUBROUTINE FLOW computes at each iteration step the new value of flow rate according to the numerical treatment, described in Section 4.3.
 - c) Functions

The LUPO Code includes eleven FUNCTIONS

The FUNCTIONS: ENTALP, DENSIT, VISCOS, CSP, COND, SAT, ACCA compute the fluid enthalpy, density, viscosity, specific heat capacity, thermal conductivity, saturation temperature, heat transfer coefficient, respectively.

FUNCTIONS: DP, DPL, DPLU compute acceleration, local pressure drops and local two phase pressure drops at the exit of the test section, respectively. FUNCTION COMP computes the two phase multiplier, derived from the Lottes-Flinn model.

5.2 Flow Chart

At following pages the flow chart of the program is shown. For symbols see the nomenclature at the end of report.

5.3.1 Listing and sample Print-out

The listing in FORTRAN language follows. The "Main" is the first; SUBROUTINES and FUNCTIONS follow it.

For the FORTRAN nomenclature see the following section. At the end of listing there is a sample print-out with input data and results of a typical calculation.

*** L U P Calculati (June,28,	O *** A PROGRAM FOR SINGLE AND TWO-PHASE PRESSURE DROPS ON IN PRESSURIZED WATER CLOSED LOOPS. 1967) G.GAGGERO,B.PANELLA
* * * * *	* * * * * * * * * * * * * * * * * * * *
★ ★ INPUT	DATA
TITLE IMAX NEXC NZETA INDL	PROBLEM TITLE (ANY ALPHAMERIC CHARACTER STRING) MAXIMUM NUMBER OF ITERATIONS NUMBER OF EXCHANGER PIPES IN PARALLEL NUMBER OF EXCHANGER PIPES IN PARALLEL RUBER OF TEMPERATURE CALCULATION PARAMETER INDL=1 RISER TEMPERATURE COMPUTED BY SUBROUTINE TRIST
IPRINT	INDL=0 RISER TEMPERATURE = TOUT-XIRIS PRINTING PARAMETER IPRINT=0 SHORT OUTPUT (LAST ITERATION RESULTS ONLY)
IDT	IPRINT=1 FULL OUTPUT DELTAT-SAT CALCULATION PARAMETER IDT=0 FORMULA (25) IS USED
ккк	IDT=I JENS-LOTTES FORMULA IS USED HIGHLY SUBCOOLED REGION CALCULATION PARAMETER KKK=0 (F/FISO) COMPUTED ACCORDING TO MENDLER THEORY KKK=1 (F/FISO) COMPUTED ACCORDING TO LOTTES-ELINN METHOD
P EMAX DPPUMP	PRESSURE OF THE SYSTEM (KG/CM**2) MAXIMUM RELATIVE ERROR PUMP HEAD (KG/CM**2) TE DRUMP LESS THAN ZERO IS SPECIFIED DRUMP IS
TSLT CLLT EXLT RIL1 FIL1	EVALUATED BY SUBROUTINE PUMP TEST SECTION LENGTH COLD LEG LENGTH EXCHANGER LENGTH RISER LENGTH OUTLET FITTING LENGTH
TSD CLD EXD RID ROUGTS ROUGL	TEST SECTION INTERNAL DIAMETER (CM) COLD LEG INTERNAL DIAMETER (CM) EXCHANGER INTERNAL DIAMETER (CM) RISER INTERNAL DIAMETER (CM) TEST SECTION ROUGHNESS COEFFICIENT LOOP ROUGHNESS COEFFICIENT
SLIPR DELTA EPSI RD RLANDA RDG EDUTES	SLIP RATIO ANGLE OF LOOP WITH RESPECT TO HORIZONTAL RADIANT) ROWRING PARAMETER FOR LOCAL QUALITY CALCULATION BUEBLE AVERAGE RADIUS AT DETACHMENT EVAPORATION HEAT KCAL/KG) SATURATED STEAM DENSITY (KG/CM**3) SATURATED WATER ENTHALPY (KCAL/KG)

FORTRAN IV G LEVEL O, MOD O

CETIS

I

- C. C. R. ISPRA

EURATOM

MAIN

DATE = 67233

15/28/49

	000000000000000000000000000000000000000	EOUTGSATURATED STEAM ENTHALPY (KCAL/KG)BKINTEST SECTION INLET LOSS COEFFICIENTBKCLCOLD LEG LOSS COEFFICIENTBKEXEXCHANGER LOSS COEFFICIENTBKRIRISER LOSS COEFFICIENTBKRIRISER LOSS COEFFICIENTBRTEST SECTION OUTLET TWO PHASE LOSS COEFFICIENTNUMER CORRELATIONTEMPERATURE AND INFETTEMPERATURE, TIN(CELSIUS DEGR.)XTRISDIFFERENCE BETWEEN OUTLET TEMPERATURE AND RISER MEANTEMPERATURE CELSIUS DEGR.)TEMPERATURE CELSIUS DEGR.)CC(I)PUMP CHARACTERISTIC COEFFICIENTSDD(1)NUMBER OF RISER AXIAL LUMPSDD(2)RISER OVERALL HEAT TRANSFER COEFFICIENT (KCAL/CM**2 SEC DEGR)DD(3)RISER SURFACE (CM**2)
	000000	DD 4) AIR TEMPERATURE (CELSIUS DEGR) POWKW THERMAL POWER SUPPLIED TO SYSTEM (KW) WMIN MINIMUM VALUE OF FLOW RATE (KG/SEC) WMAX MAXIMUM VALUE OF FLOW RATE (KG/SEC)
0001 0002 C003 0004 0005 0006	C	COMMON P,G,ROUGTS,CR,ACCG,DPPUMP,DELTA,RO COMMON /DAT1/PSI1,HFI,XE COMMON/DAT2/D,EXCN,BR COMMON /DAT3/XL,ZLB,ZD,ROSR,ROLB COMMON/FLOWC/WMIN,WMAX,DE,EMAX,MIMI,KIND,ICN COMMON/FLOWC/WMIN,WMAX,DE,EMAX,MIMI,KIND,ICN COMMON/FLOWC/WMIN,WMAX,DE,EMAX,MIMI,KIND,ICN
0007	С	<pre>*,POUGL DIMENSION TITLE(18),T(5),D(4),XL(4),RO(5),CK(5),CP(5),AMU(5),CC(6) 1,G(4),REYN(4),FISO(4),DPFRIC(4),DPLOC(5),LABEL(12),BK(5),TT(250),T 1M(250)</pre>
0008	C	EQUIVALENCE(T(1),TIN),(T(2),TCL),(T(3),TEXC),(T(4),TRIS),(T(5),TOU 1T),(D(1),TSD),(D(2),CLD),(D(3),EXD),(D(4),RID),(XL(1),TSLT),(XL(2) 2,CLLT), XL 3),EXLT),(XL(4),RILT),(BK(1),BKIN),(BK(2),BKCL),(BK(3), 3BKEX),(BK(4),BKRI),(BK(5),BKOUT)
0009 0010	<mark>с</mark> ссс	DATA LUPU/4HLUPU/ DATA LABEL/4HTEST,4H SEC,4HTION,4HCOLD,4H LEG,4H ,4HEXCH, * 4HANGE,4HR ,4HRISE,4HR ,4H / READ INPUT DATA

FORTRAN	IV G LEVEL	0, MOD 0	MAIN	DATE = 67233	15/28/49
$\begin{array}{c} 0011\\ 0012\\ 0013\\ 0014\\ 0015\\ 0016\\ 0018\\ 0020\\ 00221\\ 00223\\ 00225\\ 00225\\ 00226\\ 00227\\ 00226\\ 00227\\ 00226\\ 000227\\ 000312\\ 000312\\ 000334\\ 00035\\ 00036\\ 00037\\ 0038\\ 00008\\ 00008\\ 0008\\ 0008\\ 00008\\ 0008\\ 0008\\ 0008\\ 0008\\ 0008\\ 0008\\ 0008\\ 0008\\ 0008\\ 0008$	1 2 11	READ 5,1001) READ (5,999) READ (5,1002) READ (5,1002) CONTINUE IF(INDL-FQ.0) READ (5,1002) CONTINUE READ (5,1002) READ	(TITLE(I),I=1,18 IMAX,NEXC,NZETA,I P,EMAX,DPPUMP TSLT,CLLT,EXLT,R TSD,CLD,EXD,RID ROUGTS,ROUGL,SLID EPSI,RD,RLANDA,R(BKIN,BKCL,BKEX,BI XTCL,XTRIS ,2 (CC(I),I=1,6) GO TO 11 (DD(I),I=1,6) POWKW,TIN,WMIN,WM .2388 ETA *5 GO TO 1400 D) IGMA SIGMA*(1.0-SIGMA)	NDL, IPRINT, IDT, KKK ILT, FITLT PR, DELTA DG, EDUTFS, EQUTG (RI, RKOUT, BR	
0039 0040 0041	C1400	CONTINUE KIND=1 MIMI=0 PRINT INPUT DA	NT 4		
C042 0044 0045 C046 0047 C047 C049 0050 C051 C0552 C0552 C0554	Č 5 6 7	WRITE (6,2001) WRITE 6,2002) WRITE (6,2003) IF(IMAX.LE.1) WRITE (6,2004) GO TO 7 WRITE (6,2004) GO TO 7 WRITE (6,2005) CONTINUE WRITE (6,2006) N=1 DO 8 K=1,4 WRITE (6,2007)	(TITLE(I),I=1,18 GO TO 6 NZETA,NEXC,IMAX, LABEL(N),LABEL(IPRINT,INDL,IDT,KKK N+1),LABEL N+2),XL K),D) қ)

C. C. R. ISPRA - CETIS

ı

EURATOM

4I

	FORTRAN IV	G. LE	VEL	0, MCD 0	MAIN	DATE = 67	233 15/28/49
	0055 0056 0057 0058 0059 0060	ſ	8	N=N+3 WRITE (6,200 WRITE (6,200 WRITE (6,201 WRITE (6,201 WRITE (6,201	8) DELTA 9) P,PDWKW,TIN,WMIN, 0) ROUGTS,ROUGL 1) (BK(I),I=1,5),BR 2) SLIPR,EPSI,RD,RLA	WMAX	RIS,EQUTES,EQUTG
		Č		COMPUTE CONS	TANT QUANTITIES		
EURATOM - C.C.R. ISPRA - CETIS	0061 0062 0063 0064 00665 00667 00669 0070 00773 00774 00776 00778 00776 00778 00776 00778 00778 00778 00778 00780 00881 00882 00884 00885 00885 00887 00885 00887 00991 00992 00994	C	33 34 10	CALL FLOW WX WXX = WX KIND=2 PGRK=3.14159 HS=0.2 ACCG=981.0 CR=1.0/3.0 ALFAW=0.264* TA=(14.0+0. FI=POWER/(PG TSAT=SAT(DUM ROSAT=DENSIT GAMSAT=RCG/R DROS=ROSAT-R DTIN=TSAT-TIN DTSAT=62.620 BETA=62.7458 GO TO 34 DTSAT=145.7* ECNTINUE TWSCB=TSAT+D TCL=TIN+XTCL EIN=ENTALP(T WRITE (6,203 DO 1C I=1.2 RO(I)=DENSIT CY I)=CSP T AMU(I)=VISCO CONTINUE IF IPRINT.NE WRITE (6,204	<pre>) 26 RD/TSD 1*P)*4.187E+3 RK*TSLT*TSD) MY) (TSAT) 0SAT 0G N G0 T0 33 957*(FI**0.25)*EXP(- 55*EXP(- P-1.0)/61.3 (FI**0.5)*EXP(-P/87. XP(-P/87.89)*FI**0.2 TSAT IN) 0) TSAT,EIN,DTSAT,FI (T(I)) (I)) S(T(I)) .0) G0 T0 100 5)</pre>	P/61.2414) 2497) 899) 55	
	0.005	C C	1.0.5	START INTERN	AL LOOP		
	0095 0096		100	FFISSR=0.0			

	FCRTRAN	IV (S LEVI	EL O	, MOD	0	MAIN	DATE = 67233	15/28/49
	$\begin{array}{c} 0097\\ 0098\\ 00990\\ 0101\\ 0102\\ 0102\\ 0104\\ 0105\\ 0106\\ 0106\\ 0108\\ 01108\\ 01108\\ 01112\\ 01118\\ 01118\\ 01122\\ 011223\\ 011223\\ 011225\\ 0125\\ 0125$			FIRZERZZAAAXDDPPPPRRERRAAABSCILCODGIIC	FISLB102000B= • FASE MC=002000B= • FASE MC=00000B= • FASE MC=00000B= • FASE MC=00000B= • FASE MC=0000B= • FASE MC=0000D= • FASE MC=00000D= • FASE MC=0000D= • FASE MC=00000D= • FASE MC=000000D= • FASE MC=00000D= • FASE MC=000000D= • FASE MC=00000D= • FASE MC=00000D= • FASE MC=00000D= • FASE MC=00000D= • FASE MC=0000D= • FASE MC=000D= • FASE MC=0000D= • FASE MC=000D= • FASE MC=00D= • FASE	=0.0 =0.0 =0.0 =0.0 =0.0 =0.0 =0.0 =0.0	4,3 X,CC,DPPUMP) RK*D(I)**2)*4.0 (I)=G(I)/EXCN		
	0127 0128 0129 0130		C C		JMPUT EYN 1 IN=AC WIN=T F(TWI	E TWJ)=G 1 CA(RE IN+FI N.GT.	N)*D(1)/AMU(1) YN(1),AMU(1),CP(1),CK(1),T /HIN TWSCB) TWIN=TWSCB	SD)	
•			CC	C	OMPUT	E TD			
	0131 0132 0133		ι c	V D T	=G (1) TD = E T D = T SA	/R0(1 A*FI/ T-DTD) V		
				C	OMPUT	E LIQ	UID TEMPERATURE DISTRIBUTI	ON IN TEST-SECT	ION
	0134 0135		C	Ę	INT1= T(1)=	EIN TIN			

EURATOM - C.C.R. ISPRA - CETIS

	FORTRAN	IV G	LEV	EL	O, MCD	0	MAIN	DATE = 67233	15/28/49
ETIS	$\begin{array}{c} 0136\\ 0137\\ 0138\\ 0139\\ 0141\\ 01442\\ 01443\\ 01445\\ 01445\\ 014467\\ 01446\\ 01446\\ 01551\\ 01552\\ 01552\\ 01553 \end{array}$		ſ	49 16	BP=FI* IF(TWI JI=1 ZLB=0.TSCB=T DISCB=T BTTR=RN TB=TIN B=1.0 ZD=0.0 ROTD=R TD=TIN GO TO A=1.0 GO TO CONTIN	DELTAZ/(N.LT.TWS D WSCB-FI/ TSAT-TSC (1) .LT.TD)G D(1) 18 19 JE	G(1)*TSD)*4.0 CB) GO TO 16 HIN 8 O TO 49		
- C. C. R. ISPRA - CI	0155 01556 0157 0158 0159 0161 0162 0166 0166 0166 0166 0166 0166			40	ALL LI AL = 1.0 DD 40 EOUTI=: TT(J+1 TM(J)= EINTI=: CKZ=CO CKZ=CS AMUZ=V REYNZ=: IF(TWA CONTIN GD TO	QUID REG J=1,NZFT EINT1+BP)=EOUT1- (TT J)+T EOUT1 ND(TM(J) P TM J)) ISCOS(TM G(1)+D(1 IM J)+FI LL .GE.TW UE 60	ION TEMPERATURE A (1.6634E+0+1.53 T(J+1))/2.0) (J)) /AMUZ /ACCA(REYNZ,AMU SCB) GO TO 46	S CALCULATION 23E-10*(EOUT1**4.4229448)) Z,CPZ,CKZ,TSD)	
EURATOM	0168 0170 0171 0172 0173 0173 0174 0175 0176 0177		čc	45	HIGHLY A=J TSCB=T TB=TSCB=T TB=TSCB=T ROTB=D J1=J+1 ZLB=DE IF(J1. ZLB=TSI A=0.0	SUBCOOL M(J) TSAT-TSC B NSIT(TS LTAZ*(A- LE•NZETA LT	ED LOCAL BOILIN B CB) 0.5) J GO TO 19	G REGION TEMPERATURES CALC	ULATION

	FOR TR AN	I۷	G	LEVEL	0,	MOD O	MAIN		DATE = 67233	15/28/49
	0178 0180 0181 0182 0183 0184 0185 0186 0187			19 48		TO 60 NTINUE 48 J= (J+1)= (J+1)= (J)=(T)= (TM(J) NTINUE TO 60	J1,NZETA NT1+8P EOUT1-(1.6634F+0 T(J)+TT(J+1))/2. UT1 -TD)48,51,51	+1.5323E 0	-10*【EOUT1**4.4229448))
				Č	SL	IGHTLY	SUBCODLED LOCAL	BOILING	REGION TEMPERATURES	CALCULATION
0 I L I	C188 O189 O190 D191 O192			51	8= J1 ZD IF ZD	J =J+1 =DELTA {J1.LE =TSLT	Z*(B-0.5) •NZETA) GO TO 18			
PRA - CI	0193 0194 0195 0196 0197 0198 0199			18	B G C Z D C Z D C Z D C Z C C Z C C Z C C Z C C Z C C Z C C Z C C Z C C Z C C Z C C Z C C C Z C	0.0 TO 60 NTINUE ZD 52 J= UT1=EI Z+DELT	J1,NZETA NT1+8P AZ			
· C. C. R. ISI	0200 0202 0202 0203 0204 0205 0206 0207 0208			52		= PGRK* UTF= E (J+1)= (J)=(T NT1=E0 (TM(J) NTINUE B=TSLT T0 60	TSD/(WX*RLANDA*(DUTI-EOUTG*XX)/(EOUTF-(1.6634+1. (J)+TT(J+1))/2. UT1 -TSAT}52,54,54	1.0+EPSI 1.0-XX 5323E-10 0))*FI*(Z-ZD) *(EOUTF**4.4229448))	
Σ				C C	BU	LK BOI	LING REGION TEMP	ERATURES	AND MEAN DENSITY CAL	CULATION
EURATO	0209 0210 0211 0212 0213 0214 0215 0216 0217 0218			54	CTMJ18 J1 ZBFB=CCC	J =NZETA =J+1 B=DELT (J1.LE B=TSLT 0.0 TO 60 NTINUE	AT -J AZ* C-0.5) •NZETA) GO TO 35			

	FORTRAN IV	GLI	EVEL	O, MCD	0	MAIN	DATE = 67233	15/28/49
	0220 0221 0222 0223 02224 0225 0225 0226 0227 0228	ç	55	DC 55 J ECUT1=E XXB= EC XXV=XXB TM(J)=T ROMB=RC CONT1=E CONT1NU ROMB=RC	=J1,N7ETA INTI+BP DUTI-EOUTES)/ /(XXB*(1.0-G SAT MB+ROSAT-XXV DUTI WB/AJ	DENT AMSAT) +GAMSAT) *DROS		
		Č		ALL LIQ	UID REGION C	ALCULATION		
C. R. ISPRA - CETIS	0229 02331 02332 022334 022334 022345 022336 022337 022389 022441 022441 022444 022444 022444 022445 022467	č	60 62 61	TOUT=TM ROUT=TM ROUT=ED IF(AL.EE IF(AL.EE IF(AL.EE IFCB=TO ROTB=TSL TMM=(TSS ROTB=CSC TMM=(TSS ROTB=CSC AMSR=(A AMSR=(CCCKSR=CCCCKSR=CCCCCKSR=CCCCCCKSR=CCCCCCCCCC	(j) ENSIT TOUT) UT1 Q.0.0) GO TO .0.0] GO TO .0.0] GO TO .0.0] GO TO .0.0] GO TO .0.0] GO TO .0.0] GO TO .0.1] NSIT(TSCB) T CB+TIN)/2.0 NSIT(TMM) O(1)+ROTM+RO SCOS(TSCB) MU(1)+ROTM+RO SCOS(TSCB) MU(1)+AMTB)/2 ND TSCB) K(1)+CKTB)/2 (1)*D(1)/AMS	27 61 TB)/3.0 2.0 .0 .0 RCPSR CKSR TSD)		
ATOM - C.	02449 02449 0250 0251 0252 0253 0254	С	27	FISDSR= FFISSR= DROPSR= PFRICT= IF(ZLB. IF(A.EQ IF(B.GT	A RETSR, AMSR 5.5E-3*(1.0+ 1.0-1.8E-3*F (FISOSR*FFIS PFRICT+DROPS EQ.TSLTJ GO .0.0) GO TO .0.0) GO TO	(ROUGTS*2.0E+4+1.0 I/HSR SR*G(1)**2*ZLB/TSD R TO 600 28 190	E+6/REYSR)**CR))/(2.0*ACCG*RASR)	
JR.		Č C		HIGHLY	SUBCOOLED BO	ILING REGION CALCU	LATION	
Ч	0255 0256 0257 0258 0259 0260	-	300 190	TD=TOUT ZD=TSLT RCID=DE TMLB=(T ROLB= R AMTD=VI	NSIT(TD) D+TB)/2.0 OTB+ROTD)/2. SCOS(TD)	0		

	FORTRAN IV	G LEVEL	O, MOD O	MAIN	DATE = 67233	15/28/49
СПТ I G	0261 0262 0263 0264 0265 0266 0267 0268 0269 0270 0271 0273 0271 0273 0277 0277 0277 0277 02778 02778 02778 0279	770 771 28	AMLB = (AMTB+AMTD) REYLB=G 1)*D 1)/ FISOLB=5.5E-3*(1 IF(KKK.EQ.0)GO GAMMAD=RCG/ROTD PSID=SLIPR*GAMMA PP=1.0/(1.0-ALFA FFISLB=CR* 1.0+P GD TD 771 FFISLB=1.0+FFIS XFSLB=(FFISAT-1. CONTINUE ZO=ZD-ZLB DROPLB=(FISOLB*F PFRICT=PFRICT+DR IF(ZD .EQ.TSLT) IF(B.EQ.0.0)GO IF(C.GT.0.0)GO	/2.0 AMLB .0+(ROUGTS*2.05 TD 770 W*(1.0-PSIG)) P+PP**2) ***(-0.5931697)) AT-1.0)*(TMLB-T 0)*(TD-TSCB)/D1 FISLB*G(1)**2* GPLB GD TD 500 TD 29 TD 21	*(1.0+0.95868E-1*G(1)**(SCR)/DTSCB SCB Z0 /TSD)/(2.0*ACCG*R0LB)	(-0.919337))
- KA - 0	0280 0281 0282	C C 22 21	SLIGHTLY SUBCOOL ZB3=TSLT XB3=PGRK*TSD/(WX GAMMA1=RUG/RD(5)	ED BOILING REGI *RLANDA*(1.0+EP	ON CALCULATION SI))*FI*(ZBB-ZD)	
EURATOM - C.C.R. ISF	0283 0284 0286 02887 02887 02887 02887 02887 02890 02991 02991 02991 02993 02995 02995 02995 02995 02995 02995 02996 02997 02999 02999 02999 02990 02901 02993 02993 02995 02900 02900 02900 02900 02000 02000 02000 02000 02000 020000 000000	772 773 Ç	PSI1=SLIPR*GAMMA ALFABB=XLFABB+AL ALFABB=ALFABB+AL ALFABB=ALFABB+AL ALFAM1= ALFABB+AL ALFAM1= ALFABB+AL ROM1=(1.0-ALFAM1 XBW=XBB/2.0 XBV=XBM/(XBM*(1. ROMS=R01-XBV*(RO IF(KKK.EQ.O) GO PP=1.0/(1.0-ALFA RMOLT1=CR*(1.0+P GO TO 773 PP=1.0/(1.0-(ALF RMOLT1=XFSLB+CR* CONTINUE TM1=(TOUT+TD)/2. Z1=ZBB-Z0 CALL DROP(TM1,Z1 PFRICT=PFRICT+PD IF(ZBB-EQ.TSLT)	1 PST1*(1.0-XBB)) FAW LFAW)/2.0 /2.0)*RD1+ALFAM1*RC 0-GAMMA1)+GAMMA 1-RDG) TO 772 BR*(1.0-PST1)) P+PP**2 ABB-ALFAW)*(1.0 (1.0+PP+PP*PP) 0 .RMOLT1,ROM1,TS RDP1 GD TD 400	PG 1) -PSI1)) D,PDROP1,FIS1)	

	FORTRAN	IV.	GL	EVEL	0,	MOD	0	MAIN	DATE = 67233	15/28/49
			ſ							
	0304		C	29	СO	NTIN	IUF			
	0305			<u>2</u> 3	ŽŽ	=T SL	Ť- Z	3		
	0306				HE	IFPG	RK *	SD*FI/(WX*RLANDA)		
	0307				XE	5(24	<u> -</u>	UUTEST/LEUUTG-EOUTES)		
	0309					2= 80	153			
	ČŠĬĆ				AĽ	FAE=	XÉ/	XE + PSII * (1, 0 - XE)		
	0311				RŌ	nüŦ=	(1.)	-ALFAE) *RO2+ALFAE*ROG		
	0312				AL	FA M2	= { AI	FAE+ALFABB)/2.0		
	0313				RU	M2=(1,0	ALFAM2)*RO2+ALFAM2*ROG		
	0315				TE	172-	2.0	45)24,24,25		
	0316			24	ŘМ	οίτ2	'≞iči	MP(7BB) + COMP(TS(T))/2.0		
	0317				GO	TO	26			
	0318			25	CA		OTES	(ZBB, TSLT, HS, RMOLT2)		
F	0319			24	RM	ULIZ		12772 TSAT 72 DHOLT2 DOM2 TCD		
Ш	0321			20	PF	RICT	=PEF	ISAT,ZZ,RMULIZ,RUMZ,ISU ICT+PDROP2	, MOROPS, F1221	
U	Č322				ĠĊ	Ťč	700			
I	0323			400	RO	0UT=	1.(-ALFABB)*RO(5)+ALFABB*R	DG	
	0324				XE	X = XB	8			
< ~	0325				AL	FAEX	= AL1	4 88		
L.	0327			500	RU	៣រំភ្ន	ROT			
и 10	0328			200	GŎ	Ťo	700			
_	0329			600	RC	OUT=	ROT			
	0330			700	çp	NTIN	UE	A) AA TA 13		
<u>م</u>	0332						L.G.	O GU IU IZ		
.:	0333				ŤĒ	XC = 1	TRIS	hTC11/2=0		
0	0334				ΰĎ	<u> 820</u>	I =	5		
ບ່	0335				СK	(I) =	CON	(T(I))		
-	0336				СP	<u>[]</u> ;	CSP			
	0338				A M I F		= V I			
Σ	0339				ŔD	$(1)^{=}$	DF N			
0	0340			820	СŎ	ŇŤÍN	ŪĒ			
Ē.	0341				RC	MR = R	.0_4)			
<	0342			12	ĞΫ	10	13			
R	0344			12	PS	T1 = R		1/51*CI TOP		
2	0345				ĊĂ		RISI	(INDL .RORIS.ROMR. FISD(4)))	
ш	0346				ŔÓ	(4) =	RORI		• •	
	0347				TE	XÇ = (ŢRIS	TCL1/2.0		
	0340				UU CK	12-	1=34) T / I \ \		

	FORTRAN	I۷	G	LEVEL	0,	MOD	0	MAIN	•		DATE	= 672	233	15/28/49
	0351 0353 0354 03556 03556 03557 0358			15 13	AMI RO COI DO RE IF	J(I) (I.G I)=[NTINI NTINI 30 YN(I (INDI	= V I T • 3 D E U E U E U E U E E • G	COS(T(T)) GO TO 15 IT T(T)) 4 I)*D(T)/AMU(T) •O•AND•T•EQ.4)	GO TO 1	4				
	0359			14	FI)=5 (1)	5E-3*(1.0+(ROUG FISO(I)*(XL(I))	5L*2.0E+ (1(1))*(4+1.0 G(1)*	E+6/RE *2)/(2	EYN(1) 2.0*40)) # # C R) C G # R D (T))	
	0361			30	PF	RIČŤ	= P F	ICT+DPFRIC(I)	~					
	0363			50	DP		ĴP (
n	0365 0366			710	DPI GO		+A) =0. 730	10,110,120						
=	0367			C 720	- CO!		F D IF	ELEV ACCORDING	TO THE	ENERG	Y CONS	SERVAT	TION THEOREM	
ш С)	0368			720	ČAI		PFL	ZO, ZI, Z2, FITLT,	RCMS, RC	IMB, RD	MR, DPE	ELEV)		
	0370			150	DO	50 50	I=1	4						
<	0371 0372			50	DPI COI	LEC() NTINI	[]= JE	PL(8K(1),1)						
Ľ	0373			750	ÎÊ	(TD-	ΪĊυ)750,800,300						
Ŋ	0375			150	DPI	Lộc l	5) =	PLU XEX,ALFAEX,	GAMMAL,	ROOUT)			
. к.	0376 0377 0378 0379			800 900		10 LOC(1 LOCT: RT=D	900 5)= 900 900 900	PL(BK(5),5) OC_1)+DPLOC(2)+ +PFRICT+0PLOCT	DPLOC(3)+DPL	OC(4)+	DPLOC	(5)	
ບ ບໍ	0380 0381 0382 0383				DE CAI IF IF	=(DP) LL FI (TCN) (MIM)	LOW GT	PMUT//DPMUT WX) 0) GO-TO 1100 .IMAX) GO TO 11	80					
Σ Ο	0385 0386 0387			1180			(6, 110 JE	043)						
LKAU	0389 0390 0390					TPTS: ITE LT1,	=DR (6, RMC	PSR+DROPLB+PDRO 044) WXX,TOUT,E T2	P1+PDRC DPMOT,DP	P2 RT,DR	0PT S , [DPLOC ((5),FFISSR,FF	ISLB, P
	Q971			C C	00	10								
				ç	PR	INT	RES	LTS						
	0392			ĭ11 00	CO	NTIN	JE							

0393 C394 0395 O396 C397		WRITE (6,2031) WXX WRITE (6,2032) N=4 DO 222 K=2,4 WRITE (6,2033) IABEL(N),LABEL(N+1),LABEL(N+2),T(K),G K),REYN K),E
C398 C399 O400 O401 O402 O403 O404 O405	222 1251 1252	LISO(K) N=N+3 IF(AL-EQ.0.0) GO TO 1251 WRITE (6,2034) ISCB,RDTB,RCSR,AMTB,AMSR,CPTB,CPSR,CKTB,CKSR WRITE (6,2035) REYSR,HSR,FISOSR,FFISSR IF(A.EQ.0.0) GO TO 1252 WRITE (6,2036) TD,TMLB,POTD,RCLB,AMTD,AMLB,REYLB,FISOLB,FFISLB IF(B.EQ.0.0) GO TO 1253 WRITE (6,2037) ALEAM,TMLALEAM1,ROL,ROM1,FIS1,PMC1T1
0406 0407 0408 0409 0410	1253 1260	IF(C.EO.0.) GO TO 1260 WRITE (6,2038) ALFAM2,RO2,ROM2,FIS2,RMOLT2 CONTINUE WRITE (6,2014)WXX WRITE (6,2014)WXX WRITE (6,2015)
0411 0412 0413 0414 0415 0416		WRITE (6,2018) TWIN, TSCB, T0, TOU WRITE (6,2017) WRITE (6,2018) ZLB, ZO, ZI, Z2 WRITE 6,2019) WRITE (6,2020) XEX, ALFABB, ALFAE WRITE (6,2021)
0417 0418 0419 0420 0421	:	WRITE (6,2022) WRITE (6,2023) DPFRIC(2),DPFRIC(3),DPFRIC(4),DRUPSR,DROPLB,PDROP1, LPDRUP2,PFRICT WRITE (6,2024) WRITE (6,2025) (DPLOC(I),I=1,5),DPLOCT WRITE (6,2026)DPACC
0422 C423 0425 0425 0426 0427 0428 0429 0429 0429 0420		WRITE (6,2028) DPPUMP,DPELEV WRITE (6,2027)DPRT WRITE (6,2039) DPMOT WRITE (6,2039) DE WRITE (6,2040) DD 3315 K=1,NRR NR1=K+NRR NR2=NR1+NRR NR3=NR2+NRR
0431 0432 0433 0434 0435	3315	NR4=NR3+NRR WRITE (6,2041) TM(K),TM(NR1),TM(NR2),TM(NR3),TM(NR4) IF(NSS.EQ.0)GO TO 3316 NR4=NR4+1 WRITE (6,2042) (TM(T) 1-NR4 NZETA)
0436 0437 0438	3316 1150	CONTINUE WXX = WX IF(ICN-EQ.0) G0 TO 100

MAIN

DATE = 67233

15/28/49

50

FORTRAN IV & LEVEL 0, MOD 0

FORTRAN	I۷	G	LEVEL	0, MO	DO	٩	1AIN		DATE =	57233	15/28/49
			C C	READ	RESTAI	RT DATA IF	ANY				
0439 0440			ີ1200	READ	(5,10) N2112	2) POWER2	TIN2,WN	IIN, WMAX			
0441 0442 0443			1262 1250 1280	TIN=T IF(PO POWER	IN2 WER2) =POWE	270,1270,1 2*0,2388	.280				
0444 0445 0446			1270 1300	POWKW IF(TI STOP	=POWE1 N2+POI	(2 VER2)1300,1	300,140	00			
				INPUT	-OUTPI	IT FORMATS					
0447 0448 0449			999 1001 1002	FORMA FORMA FORMA	T (10) T (18) T 6E	5) (4) (2.0)					
0450			2001	FORMA		,30X,23H*),18A4/)	* * L	UPU ≭ ~~ \	**)		
0452			2003	FORMA	T (1H)	,19X,54HST	EADY ST	ATE FLOW	RATE AND	PRESSURE D	ROPS CALCU
0454			2005	FORMA		,19X,29HPF		DROPS CAL) (CM) 137 (
0,55			2000	L (CM)	())		POI DAI		Incentin	(CHI)LOAT	DEDIAMCIEK
0450			2007	FORMA	1 2X T (1HC	3A4,6X,F11 10H ANGLE	•3•13X• =F10	+9.3) 1.5.7H (R			
0458			2009	FORMA 15.5,1 DEGR	T (IHO 2H)/2X	9H PRESSU 9HMIN, FLC	JRE,9X,F X,17HIN JW,9X,F1	16.5.12H ILET TEMPE 5.5.10H	(KG/CM** RATURE,1X (KG/SEC)/	2)/2X,5HPO (,F15.5,17H '2X,9HMAX.	WER,13X,F1 {CFLSIUS FLOW,9X,F1
0459			2010	FORMA		29H TEST	SECTION	ROUGNESS	COEF. ,3	X,F10.6/2X	,26HL00P P
0460			2011	FORMA RANCE	1 X , 7 HK-	0.5/2X,10H RISER,15X,	PRESSU IK-COLD F10.5/2	RE LOSS C LEG,12X,F X,17HK-TE	CEFF.//2X 10.5/2X,1 ST SECT.	(,21HK-TEST 1HK-EXCHAN EXIT,5X,F1	SECT. ENT GER,11X,F1 0.5/2X,18H
0461			2012	FORMA LBUBBLI 2ICN + 3 (KG/I DELTA 5THALP	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0.5,11H SLIP US AT DETA 0.5,11H /1X,9H DEL 18X,F10.5, 10.5,11H	RATIO,1 RATIO,1 KCAL/KG TATCL , 17H (C (KCAL/K	8X,F10.5/ 1X,F10.5)/1X,F10.5 20X,F10.5 ELSIUS DE G)/2X,14H	2X,7HEPS] ,6H [CM] STEAM DEN ,17H (CE GR.)/2X,2 ISTEAM ENT	LON,21X,F1 /2X,17HHEA ISITY ,14X, LSIUS DEGR 24HSATURATE HALPY,14X,	0.5/2X,27H T EVAPORAT F10.5,12H J/1X,11H D WATER EN F10.5,11H
0462			2013	FORMA		,7HNZETA	14,2X,6	HNEXC = 13	,2X,6HIMA	X = I3, 2X, 8	HIPRINT = I
0463			2014	FORMA LH (K	G/SEC)	,10X,39HRE	SULTS	F CALCULA	TION FOR	FLOW RATE	=F10.6,10

EURATOM - C.C.R. ISPRA - CETIS

5T

0464 0465	2015 FORMAT 4HO* *,13H TEMPERATURES,17H (CELSIUS DEGR.)) 2016 FORMAT (1H0,17H INLET WALL TEMP.,7X,E13.6/2X,12HTEMP. AT ZLB.11X,E	
0466	113.6/2X,11HTFMP. AT ZD,12X,E13.6/2X,12HOUTLET TEMP.,11X,E13.6/) 2017 EORMAT (5HO* * , 7HLENGTHS,6H (CM))	
0467	2018 FORMAT(2HO ,22HALL LIQUID FLOW REGION,12X,E13.6/2X,31HHIGHLY SUBCO 10LED BOILING REGION, 3X,F13.6/2X,33HSLIGHTLY SUBCOOLED BOILING REG	
0468	210N, 1X, EL3.672X, 19HBULK BUILING REGION, 15X, EL3.67) 2019 FORMAT (5H0* *, 27HQUALITY AND VOID FRACTION) 2020 FORMAT(2H0, 12HEXIT QUALITY, 29X, EL3.672X, 20HVQID EPACTION AT 788,2	
0.07	11X,E13.6/2X,40HVDID FRACTION AT THE END OF BULK BOILING, 1X,E13.6/ 2)	
0470 0471	2021 FORMAT (5HO* * ,14HPRESSURE DROPS,12H KG/CM**2)/) 2022 FORMAT(2HO,10HFRICTION) 2022 FORMAT(2HO,10HFRICTION)	
0472	2023 FURMAT THU,9H LULU LEG,2IX,EI3.672X, 9HEXLHANGER,2UX,EI3.672X, 9H IRISER,24X,EI3.672X,17HALL LIQUID REGION,12X,EI3.672X,23HHIGHLY SUB 2COULED REGION. 6X.EI3.672X,25HSLIGHTLY SUBCOULED REGION. 4X.EI3.67	
	32X,19HBULK BOILING REGION,10X,E13.6/2X,28HTOTAL FRICTION PRESSURE 4DROP, 1X,E13.6/)	
0473 0474	2024 FORMAT (1H0,8H LOCAL) 2025 FORMAT (1H0,6H INLET, 24X,E13.6/2X, 8HCOLD LEG, 21X,E13.6/2X, 9HEX	
0475	ICHANGER,203,F13.6723, 5HKISER,243,F13.6723, 6HUUILEI,233,F13.6723, 225HT3TAL LOCAL PRESSURE DROP, 43,F13.67) 2026 FORMAT (140.144 ACCELERATION _ 163.613.6)	
0476 0477	2027 FORMAT (1H0,20H TOTAL PRESSURE DROP,9X,F14.6/) 2028 FORMAT (1H0,20H FLUID PRESSURE RISE,9X,E14.6/2X, 14HELEVATION HEAD	
0478	1,15X,E13.6/) 2029 FORMAT (1H0,21H TOTAL ELEVATION HEAD,9X,E13.6/)	
0479	2030 FORMAT 1/// 32H ### CONSTANT OUANTITIES VALUES //IH ,5H ISA; 15X, *1PE13.6/1H ,15H INLET ENTHALPY ,5X,E13.6/1H ,13H (DELTA-T)SAT ,7X #.E13.6/1H ,10H HEAT ELUX ,10X,E13.6/1H ,4H ETA ,16X,E13.6/1H ,5H B	
0480	*ETA (15X,E13.6) 2031 FORMAT (1H1,45H * * * INTERMEDIATE RESULTS FOR FLOW RATE =F13.6,	
0481	*2X,8H(KG/SEC)//) 2032 EORMAT (//23X-1HT-14X-1HG-11X-4HPEYN-10X-4HEISO//)	
0482	2033 FORMAT (2X,3A4,2X,1P4E14.7)	
0483	2034 FURMAT (//22H * * ALL LIQUID REGION // 2X, E14.7,5X,E14.7/2X,20HMU(T *,18X,F14.7/2X,20HMU(TSCB) , RD-MEAN ,2X,E14.7,5X,E14.7/2X,20HMU(T	
	*SCB) , MU-MEAN ,2X,E14.7,5X,E14.7/2X,20HCP(ISCB) , CP-MEAN ,2X,E *14.7.5X.E14.7/2X.20HK(TSCB) , K-MEAN ,2X.E14.7.5X.E14.7)	
0484	2035 FORMÁT (2X,10HREYN-MEAN ,12X,614.7/2X,6HH-MÉAN,16X,E14.7/2X,5HFISD	
0485	2036 FORMAT //36H *. * HIGHLY SUBCOOLED BOILING REGION //2X,2HTD,20X,F1	
	*/2X,16HMU(TD) , MU-MEAN,6X,E14.7,5X,E14.7/2X,10HREYN-MEAN ,12X,E14	
0486	2037 FORMAT (//38H * * SLIGHTLY SUBCOOLED BOILING REGION //2X, 5HALFAW, 1	
	*/X,E14.//2X,6HT-MEAN,16X,F14.7/2X,9HALFA-MEAN,13X,E14.7/2X,14HRO-M *EAN_LIQUID,8X,E14.7/2X,13HRO-MEAN_FLUID,9X,E14.7/2X,4HFISO,18X,E14	

DATE = 67233

15/28/49

52

MAIN

FORTRAN IV G LEVEL 0, MOD 0

C. R. ISPRA - CETIS

ט י

EURATOM

FORTRAN	I۷	G	LEVEL	0,	MOD	0	MAIN	DATE	=	= 67	233	15/28/49
0487			2038	*.7/ FOF *X,1	/2X, RMAT 14HR	6HF (/ 0-M	/FISO,16X,E14.7) /24H * * BULK BCILING EAN LIQUID,8X,E14.7/2X 7/2X.6HE/EISO.16X.E14	REGION //2X ,13HR O-MEAN	, (HAL Lui	EA-MEAN,13X 0,9X,E14.7/	,E14.7/2 2X,4HFIS
0488 0489 0490			2039 2040 2041	FOF	RMAT RMAT RMAT	(1)	HO,15H RELATIVE ERROR, H1,30X,26H TEST SECTIO X,5E15-3)	15X.E13.6) N TEMPERATU	IR	ËS	//)	
0491 0492 0493 0494			2042 2043 2044 2045	FOF	RMAT RMAT RMAT	(6 (1) (1)	5X,F15.3) H0,37H** MAX.ITER.NUMB H0,F10.6,5X,F7.3,3X,4E H1.2X.9HF1 DW RATF.3X.1	ER HAS BEEN 13.5.F9.5.3 OHEXIT TEMP	 (]	REAC 2X,F	CHED★★) 「9・5)) 9HDEL TAPMOT	•4X•9HDE
0495			c	1 L T/ 2-H: ENI	APRE S,2X	S,4 ,9H	X,9HDELTAPFTS,3X,10HDE F/F1SO-SS,2X,9HF/F1SO-	ÉTÁPĒXIT,2X ·BB//)	(, ()HF/	FISD-SR,2X,	9HF7FISD .

CETIS . ISPRA с. в. ΰ I. EURATOM LEVEL 2 FEB 67

0

- C. C. R. ISPR

EURATOM

.

OS/360 FORTRAN H

DATE 67.233/15.32.27

.

COMPILER OPTIONS - NAME= MAIN, OPT=02, LINECNT=50, SOURCE, BCD, NOLIST, DECK, LOAD, MAP, NOEDIT, NOID

ISN	0002	SUBROUTINE FLOW(WX)
		C SUBROUTINE FLOW C COMPUTES AT EACH ITERATION STEP THE NEW VALUE OF FLOW RATE C BY USING THE METHOD OF HALVING C ICN CONVERGENCE INDICATOR C ICN=1 WHEN CONVERGENCE TEST IS SATISFIED
NANANANANANANANANANANANANANANANANANANA	0003 0004 0005 0006 0007 0008 0009 0011 0012 0013 0015 0017 0018 0012 0013 0017 0018 0022 00223 00225 00225 00225 00226 00226 00226 00228 00225 00226 00226 00226 00228 00225 00226 00228 00225 00228 00226 00228 00225 00228 00225 00226 00225 00226 00225 00225 00226 00225 00025 0025 0025 00000000	<pre>DIMENSION W(5), FPR(5) COMMON/FLOWC/WMIN, WMAX, DF, EMAX, MIMI, KIND, ICN ICN=0 MIMI=MIMI&; GO TO 1,2), KIND 1 WX=WMAX DW=-(WMAX-WMIN)*0.25 RETURN 2 CONTINUE IK=MIMI-1 IF(ABS(DE).LE.EMAX)GO TO 100 IF(MIMI.GT.6)GO TO 7 W(IK)=WX ERR(IK)=DE WX=WX5DW IF(MIMI.LT.6)GO TO 3 DO 4 I=1.4 II=I IF(ERR(I)/ERR(I&1))5,4,4 4 CONTINUE ICN=1 WRITE (6,1100) 1100 FORMAT (1H1,2X,52H* * NC ZERO HAS BEEN FOUND BETWEEN WMIN - WMAX 1 ** ///) WRITE (6,1200) (W(K),FRR(K),K=1,5) 1200 FORMAT (10X,E15.7,5X,E15.7) 3 CONTINUE</pre>
150 150 150 150 150 150 150 150 150 150	0031 0032 00333 00335 00356 00356 00356 00356 0039 0041 00442 00443	3 CUNTINUE RETURN 5 CONTINUE DW=DW/2.0 WX=W(II)&DW E1=ERR(II) RETURN 7 CONTINUE IF DE/E1)11,12,12 11 DW=-DW/2.0 GO TO 13 12 DW=DW/2.0 13 WX=WX&DW
I SN I SN	0044	RETURN

.

ISN 0046 100 V ISN 0047 1000 F	WRITE (6,1000) IK FORMAT (1H0,38H* * * SC	OLUTION HAS BEEN OBTA	INED IN =, 15, 2X, 18HITE
ISN 0048 IN ISN 0049 F ISN 0050 F	RATIONS ¥ ¥ ¥ J ICN=1 RETURN END		

LEVEL 2	FEB 67		DS/360 FORTRAN H	DATE	67.233/15.32.39
	COMPI	LER OI	PTIONS - NAME: MAIN, OPT=02, LINECNT=50, SOURCE, BCD, NOLIST, DECK, LOAD, MAP, MAP, MAP, MAP, MAP, MAP, MAP, MAP	NOEDIT,NOID	
ISN C	002	r	SUBROUTINE TRIST(IND,RS,RR,FFRS)		
			SUBROUTINE TRIST COMPUTES TEMPERATURE DISTRIBUTION AND FRICTION MULTIPLIER IN RISER WHEN INDL=1		
			DD 1) = RISER LUMPS NUMBER DD(2) = OVERALL HEAT TRANSFER COEFFICIENT (KCAL/(CM**2.SEC.DEGR.)) DD(3) = TOTAL SURFACE (CM**2) DD(4) = AIR TEMPERATURE (C DEGR.)		
ISN C ISN C ISN C	0003 0004 0005	ί.	COMMON P,G,ROUGTS,CR,ACCG,DPPUMP,DELTA,RD COMMON/DAT2/D,EXCN,BR COMMON/TRISTE/T(5),DD(6),XEX,EOUT,EOUTG,EFSAT,ROG,WX,TSAT,PST1,ROS		
EURATOM - C. C. R. ISPRA - CEJ SURATOM - C. C. R. ISPRA - CEJ SUST SUST SUST SUST SUST SUST SUST SUST	0006 0007 0008 0011 0012 0013 0015 0015 0015 0016 00178 0019 00222 00234 00227 00223 00224 00227 00229 00229 00234 00034 00000000	1.0 2.0 5	<pre>lAT, R0UGL DIMENSION G 4), D(4), RO(5), FR(100) DATA C1, C2, C3/1.6634, 1.5323E-10, 4.4229448/ GO TO (10, 20), IND CONTINUE IND=? GAM=R0G/R0SAT S=DD 3)/DD 1) DEN=EQUITG-FFSAT NLUMP=DD(1)80.5 CONTINUE X1=XEX E1=EOUT T1=T 5) T2M=0.0 FFRS=0.0 RS=0.0 RS=0.0 RS=0.0 RR=0.0 DD 1 I=1,NLUMP E2=E1-DD(2)*S*(I1-DD(4))/WX IF(E2.GT.EFSAT) GO TO 2 X2=0.0 EL=E2 IF(E1.LF.EFSAT) GO TO 3 T2=EL-(C1&C2*(EL*C3)) XM=(X1&X2)/2.0 FR(1)=(1.0&(1.0-PST)/PST1*XM)**2 REYN=G(4)*D(4)/VISCOS(T2) FR(1)=FR(1)*5.5E-3*(1.0&(ROUGL*2.0E&4&1.0E&6/REYN)**CR) ALFAM=XM/(XM&EPST1*(1.0-XM)) RS=1.0-ALFAM**RDG XM=2ND/(XM*(I.0-SAM)&GAM) RR=RCDSAL-XMV*(ROSAT-ROG) GO TO 4</pre>		

2	CONTINUE
	X2 = (E2 - EFSAT) / DEN
	$I_2 = I_2 A I$
	GU 10 5
3	CONTINUE
	12=EL-((12)2*((EL**(3)))
	NRN-RN3 BEVN=C14)*D14)/VISCOS(T3)
	$\frac{1}{1} = \frac{1}{1} = \frac{1}$
4	CONTINUE
•	
	$x\bar{1} = x\bar{2}$
	E1=E2
	T2M=T2M&T2
	RS=RSERRS
•	KK=KK2KKK
. 1	
	1(4) = 12 m (0) (1)
	FFRS=FFRSAFR K)
30	CONTINUE
	FFRS=FFRS/DD(1)
	RETURN
	END

EURATOM - C. C. R. ISPRA - CETIS

ISN 0041 ISN 0042 ISN 0043 ISN 00445 ISN 00445 ISN 00446 ISN 00478 ISN 00050 ISN 00050 ISN 000512 ISN 000555 ISN 000556 ISN 000556 ISN 000560 ISN 000661 ISN 000661 ISN 000664 ISN 00066 ISN 00067

57

-

.

.

LE	VEL 2 FE	B 67	OS/360 FORTRAN H	DATE	57.233/15.29.41
		COMPILE	OPTIONS - NAME= MAIN, OPT=02, LINECNT=50, SOURCE, BCD, NOLIST, DECK, LOAD, MAP, NOEDI	T,NOID	
	ISN 000	2 C	REAL FUNCTION VISCOS (T)		
			FUNCTION VISCOS(T) COMPUTES VISCOSITY OF LIQUID WATER AS A FUNCTION OF PRESSURE,P AND TEMPERATURE,T P IN UNITS (KG/CM**2) T IN UNITS (CELSIUS DEGR.) VISCOS IN UNITS (KG*SEC/CM**2)		
ה 	ISN 0003 ISN 0004 ISN 0006 ISN 0006 ISN 0006 ISN 0006 ISN 0006 ISN 0006	3 4 5 6 7 8 9 9 0	COMMON P DIMENSION B 4) DATA B /8.0784E&3.1.650E-6.1.369E-8.2.7316E&2/ AMU0=1.0/(-120.0&2.1482*((T-8.435)&SQRT(B(1)&(T-8.435)**2))) TA=B(4)&T VISCOS=AMU0*10.0**(B(2)*P/TA&B(3)*P*ALOG10(TA))*1.0E-3 RETURN END		

LEVEL 2 FEB 67

DS/360 FORTRAN H

COMPILER OPTIONS - NAME= MAIN, OPT=02, LINECNT=50, SOURCE, BCD, NOLIST, DECK, LOAD, MAP, NOEDIT, NOID

ISN	0002	r	REAL FUNCTION DENSIT(T)
		č	FUNCTION DENSIT(T)
		000000	COMPUTES DENSITY OF LIQUID WATER AS A FUNCTION OF PRESSURE,P AND TEMPERATURE,T P IN UNITS (KG/CM**2) T IN UNITS (CELSIUS DEGR.) DENSIT IN UNITS (KG/CM**3)
I SN I SN I SN	0003 0004 0005	C	COMMON P DIMENSION C(15) DATA C /3.122199E&8,1.999850E&5,1.362926E&16,1.500705E&0 1,-2.9411764E-1,1.139706E-4,9.949927E-5,6.537134E-1,7.241165E-5,7.6 276621E-1,1.052358E-11,1.310268E&1,1.5108E-5,-6.244398E&&8,1.19991E&
ISN ISN ISN ISN	0006 0007 0008 0009 C010		SIGMA=P/225.65 TAU=(T&273.16)/647.3 STAU=TAU**2 ETAU=TAU**6 UTAU=3.7E&8-C(1)*STAU-C(2)/ETAU
ISN	0012		$ \begin{array}{l} w=0 \ \text{IAUASSET(1.72*01AU**2&C(3)*(SIGMA-C(4)*(AU))} \\ RR0=(0.417*W**(&C(5))-C(6)&TAU*C(7)&((C(8)-TAU)**2)*(C(9)&C(10)*(C(10)*$
ISN ISN ISN	0013 0014 0015		DENSIT=1.0/PRO RETURN END

LEVEL 2 FEB	67 DS/360 EURTRAN H D	DATE	67.233/15.30.34
(OMPILER OPTIONS - NAME= MAIN, OPT=02, LINECNT=50, SOURCE, BCD, NOLIST, DECK, LOAD, MAP, NOEDIT,	NOID	
ISN 0002	REAL FUNCTION SAT(DUMMY)		
	C FUNCTION SAT C COMPUTES SATURATION TEMPERATURE OF WATER AS A FUNCTION C OF PRESSURE,P C P IN UNITS (KG/CM**2) C SAT IN UNITS (CELSIUS DEGR.)		
ISN 0003 ISN 0004 ISN 0005	COMMON P DIMENSION E(6) DATA E (2,48784)35500 0500)825 2 1 1/200155 (1 00/17		
ISN 0006 ISN 0007 ISN 0008 ISN 0009 ISN 0010 ISN 0011 ISN 0012	117E-7,8.0614939E-10,-6.4499527E-13/,EE/175.2781/ SAT=EE DO 1 I=1,6 IE=I SAT=SAT&E(I)*P**IE I CONTINUE RETURN END		

OS/360 FORTRAN H

19

COMPILER OPTIONS - NAME= MAIN, OPT=02, LINECNT=50, SOURCE, BCD, NOLIST, DECK, LOAD, MAP, NOEDIT, NOID

ISN	0002	r	REAL FUNCTION COND(T)
		JODODOOC	FUNCTION COND(T) COMPUTES THERMAL CONDUCTIVITY OF LIQUID WATER AS A FUNCTION OF PRESSURE,P AND TEMPERATURE,T P IN UNITS (KG/CM**2) T· IN UNITS (CELSIUS DEGR.) COND IN UNITS (KCAL/SEC*CM*CELSIUS DEGR.)
	0003	Ū	COMMON P DIMENSION A 5.6)
ÎŜN	0005		DATA A $/1.6806856E-6, -2.450802E-8, 3.3679544E-10$
			2E-11,-6.5034530E-14,1.0285862E+16,1.0325614E-10,-1.3922641E-11,1.9
			<u>44,1.3140626E-15,-6.4968997E-18,1.04945315-20,6.1230411E-16,-2.5432</u>
			5297E-16,3.9380525E-18,-1.9851484E-20,3.2450692E-23,1.0776624E-18,2 6.5778153E-19,-4.3069694E-21,2.2279553E-23,-3.6928275E-26/
	0006		COND=0.0 DD_1_L=1.6
ISN	0008		IE = I - 1
ISN ISN	0009		CAPPA=A(1,1) DO 2 J=2.5
İŠN	ŏŏįĭ		JE = J - 1
ISN	0012		2 CONTINUE
ISN	0014		GO TO (3,4,3,4,3,3),I
ISN	0016		GO TO 1
	0017		4 COND=COND-CAPPA*T**IE
ISN	0019		RETURN
ISN	0020		END

	Ĺ	ΕV	EL	2	FEB	67	
--	---	----	----	---	-----	----	--

OS/360 FORTRAN H

DATE 67.233715.30.55

COMPILER OPTIONS - NAME= MAIN, OPT=02, LINECNT=50, SOURCE, BCD, NOLIST, DECK, LOAD, MAP, NOEDIT, NOID

ISN 0002	REAL FUNCTION CSP(T)
	C FUNCTION CSP(T) C COMPUTES HEAT SPECIFIC CAPACITY OF WATER AS A FUNCTION C OF PRESSURE,P AND TEMPERATURE,T C P IN UNITS (KG/CM**2) C T IN UNITS (CELSIUS DEGR.) C CSP IN UNITS (KCAL/KG*DEGR.)
ISN 0003 ISN 0004 ISN 0005	COMMON P DIMENSION F(30),C(2) DATA F /-1.9680907E&00.9.9961839E&00,-2.9178681E&1,5.340 19602E&1,-6.2676143E&1,4.5998995E&1,-1.9289733E&1,3.53740874F&0,-6. 2244398E&8,1.19991E&6,-1.2488796E&9,7.19946E&6,1.0226748F&16,1.3629 326E&16,1.500705E&00,9.16522474E&00,-1.7997608E-17,-1.2941176F&00,0 4.58620689E&00,0.416666667E&00,6.1191876F-17,-0.2941176E&00,-7.24116 55E-5,0.6537154E&00,0.7676621E&00,6.1412968E&00,6.9089589E&00,1.052 6358E-11.46.55134EF&00.1
ISN 0006 ISN 0007 ISN 0008 ISN 0010 ISN 0011 ISN 0012 ISN 0013 ISN 0014 ISN 0015 ISN 0016 ISN 0017	7/.FF/1.7211567E-1/ SIGMA=P/225.65 TAU=(T&273.16)/647.3 STAU=TAU**6 DTAU=TAU**10 PTAU=TAU**11 UTAU=3.7E&B-C(1)*STAU-C(2)/ETAU W=UTAU& SQRT(1.72*UTAU*2&F(14)*(SIGMA-F(15)*TAU)) VTAU=F 9)*STAU&F(10)/ETAU SIGMI=FF DO 1 I=1,8 UF=I
ISN 0018 ISN 0019 ISN 0020 ISN 0021 ISN 0022 ISN 0023 ISN 0024	SIGMI=SIGMI&F(I)*TAU**IE 1 CONTINUE DUTAU=F(9)*TAU&F(10)*TAU**(-7) DVTAU=F(11)*TAU-F(12)*TAU**(-7) DWST=1.72*UTAU*DIAU-F(13) DWT=1.72*UTAU*2&F(14)*(SIGMA-F(15)*TAU) DWT=1.72*UTAU*2&F(14)*(SIGMA-F(15)*TAU) DWT=1.72*UTAU*2&F(14)*(SIGMA-F(15)*TAU)
ISN 0025 ISN 0026 ISN 0027	CSPP=W*(F(19)*W-F(20)*(3.4*UTAU-VTAU))&F(13)*TAU-0.72*UTAU*VTAU CSPA=DW*(F(19)*W-F(20)*(3.4*UTAU-VTAU))&W*(F(19)*DW-F(20)*(3.4*DUT 1AU-DVTAU))&F(13)-0.72*(UTAU*DVTAU&VTAU*DUTAU) CSPN=F(23)*(F(24)&TAU)-F(25)*(F(24)-TAU)**8* F 24)&9.0*TAU)&F 24) 1-TAU)*(-F(23)+F(26)*(F(24)-TAU)**7*(F(24)&9.0*TAU)&F(27)*(F(24)-TAU)
ISN 0028 ISN 0029	2U)**8) CSPE=62.5& F 29)&SIGMA/3.0)*SIGMA CSPL=(132.0*(F(30)&PTAU)-22.0*(F(30)&12.0*PTAU))*(F(30)&PTAU)**(-3
ISN 0030	1) CSP=F 16)* F 17)*W**F(18)*DW*CSPP&F(21)*W**F(22)*CSPA&SIGMA*CSPN-F 1(28)*CSPE*SIGMA*DTAU*CSPL)&SIGMI*1.0E&3

EURATOM - C. C. R. ISPRA - CETIS

ISN 0031 ISN 0032

L	EVEL 2	FEB 6	7	OS/360 FORTRAN H	DATE	47 222/15 21 ()
		CO	MPILER	OPTIONS - NAME = MAIN, OPT=02, LINE CNT=50, SOURCE, BCD, NOL IST, DECK, LOAD, MAR, NOEDT		010202010001041
	ISN	0002	c	REAL FUNCTION ENTALP(T)	T P INCLES	
			00000	FUNCTION ENTALP(T) COMPUTES ENTHALPY OF LIQUID AS A FUNCTION OF PRESSURE,P AND TEMPERATURE,T ENTALP IN UNITS (KCAL/KG)		
	I SN I SN	0003	C	COMMON P		
	ÎŜN	ŏŏŏŚ		DATA D $/-9.943553E63, 1.1141047E65, -6.3697257E65, 2.156843$		
				19E 66, 4. 721840E 66, 5. 91440715E 66, -6. 76171126E 66, 4. 25359285E 66, -1. 56 2078055E 66, 2. 54418298E 65, 5. 28535E 63, 6. 1191876E - 17, 0. 294117E 600, 5. 86		
) !				9910E26,0.6537154E&00,7.241165E-5,0.7676621E&00,-1.052358E-11.15		
 	ISN	0006		616,1.500705E600/ 500705E600/ 500705E600/		
	ISN	0007		SIGMA=P/225.65 TAU=(T&273.16)/647.3		
	ISN	0005				
	ISN	0011		$U_{TA} U = 3 \cdot 7E \xi_8 - C(1) + STAU - C(2) / ETAU$		
	ISN	0013		VIAU=D(18)*STAU&D(19)/ETAU ₩=UTAU&SQRT(1.72*UTAU**2&C(3)*(SIGMA-C(4)*TAU))		
	ISN	0015		$D_{0} = 1 = 1,9$		
	ISN	0017		II=I&I ITAU=TTAUAD(II)*TAU**I		
	ISN	0018		$\frac{1}{1} CONTINUE}{TT1=W*(D(14)*W-D(15)*(3.4*UTAU-VTAU))ED(16)*TAU-0.72*UTAU*VTAU}$		
	151	0020		TT2=D[17]&(D(20)-TAU)*(D(21)*(D(20)&TAU)&D(22)*((D(20)-TAU)**3)*(D(20))&TAU)&D(22)*((D(20)-TAU)**3)*(D(20))&TAU)&TAU) = 0		
	15N	0021		ENTAL P= TTAUED(11)*(D(12)/(W**D(13))*TT1&TT2*SIGMA&D(23)*(D(24)&12* 10*PTAU)/((D(24)&PTAU)**2)*(62.5551CMA*(D(25)551CMA&D(23)*(D(24)&12*		
	I SN I SN	0022 0023		RETURN END (127) (

LEVEL 2 FEB 67

OS/360 FORTRAN H

COMPILER OPTIONS - NAME= MAIN, OPT=02, LINECNT=50, SOURCE, BCD, NOLIST, DECK, LOAD, MAP, NOEDIT, NOID

ISN	0002		SUBROUTINE COTES(XA,XB,HS,TCT)
			SUBROUTINE COTES COTES-SIMPSON INTEGRATION SUBROUTINE
<u>инници</u> <u>инници</u> <u>инници</u> <u>инници</u> <u>инници</u> <u>инници</u> <u>инници</u> <u>инници</u> <u>инници</u> <u>инници</u> <u>инни</u> <u>инни</u> <u>инни</u> <u>инни</u> <u>инни</u> <u>инни</u> <u>инни</u> <u>инни</u> <u>инни</u> <u>инни</u> <u>инни</u> <u>инни</u> <u>инни</u> <u>инни</u> <u>инни</u> <u>инни</u> <u>инни</u> <u>инни</u> <u>инни</u> <u>инни</u> <u>инни</u> <u>инни</u> <u>инни</u> <u>инни</u> <u>инни</u> <u>инни</u> <u>инни</u> <u>инни</u> <u>инни</u> <u>инни</u> <u>инни</u> <u>инни</u> <u>инни</u> <u>инни</u> <u>инни</u> <u>инни</u> <u>инни</u> <u>инни</u> <u>инни</u> <u>инни</u> <u>инни</u> <u>инни</u> <u>инни</u> <u>инни</u> <u>инни</u> <u>инни</u> <u>инни</u> <u>инни</u> <u>инни</u> <u>инни</u> <u>инни</u> <u>инни</u> <u>инни</u> <u>инни</u> <u>инни</u> <u>инни</u> <u>инни</u> <u>инни</u> <u>инни</u> <u>инни</u> <u>инни</u> <u>инни</u> <u>инни</u> <u>инни</u> <u>инни</u> <u>инни</u> <u>инни</u> <u>инни</u> <u>инни</u> <u>инни</u> <u>инни</u> <u>инни</u> <u>инни</u> <u>инни</u> <u>инни</u> <u>инни</u> <u>инни</u> <u>инни</u> <u>инни</u> <u>инни</u> <u>инни</u> <u>инни</u> <u>инни</u> <u>инни</u> <u>инни</u> <u>инни</u> <u>инни</u> <u>инни</u> <u>инни</u> <u>инни</u> <u>инни</u> <u>инни</u> <u>инни</u> <u>инни</u> <u>инни</u> <u>инни</u> <u>инни</u> <u>инни</u> <u>инни</u> <u>инни</u> <u>инни</u> <u>инни</u> <u>инни</u> <u>инни</u> <u>инни</u> <u>инни</u> <u>инни</u> <u>инни</u> <u>инни</u> <u>инни</u> <u>инни</u> <u>инни</u> <u>инни</u> <u>инни</u> <u>инни</u> <u>инни</u> <u>инни</u> <u>инни</u>	0003 0004 0005 0006 0007 0008 00010 0011 0012 0014 0015 0014 0015 0014 0015 0014 0015 0014 00018 00018 00018 00021 00022 00022 00022 00022 00022 00022 00022 00022 00022 00022 00022 00022 00022 00023 00025 00026 00022 00022 00022 00023 00025 00026 00022 00022 00022 00025 00026 00022 00022 00025 00026 00022 00025 00027 00025 00027 00022 00025 00027 00027 00023 00025 00027 00027 00027 00023 00027 00000000	3 4 2 1 5 8 97 10	TO T=0.0 NL = ABS XB-XA)/HS NSTEP=NL&1 STEP=NSTEP N3=NSTEPABS(XB-XA)/STEP N3=NSTEP/3 N4=NSTEP-3*N3 X=XA A=3.0*HSTEP/8.0 DELTA=HSTEP FY=COMP(X) DO 1 T=1.N3 SUM=FY DO 2 K=1.3 X=X&OELTA FY=COMP(X) GO TO 4.4.3).K SUM=SUM&FY GO TO 2 SUM=SUM&FY GO TO 2 SUM=SUM&FY*3.0 CONTINUE ENT=A*SUM TOT=TOTENT CONTINUE IF(N4)10.5 HSTEP=ABS XB-X)/2.0 A=HSTEP/3.0 DELTA=HSTEP SUM=FY DO 7 I=1.2 X=X&DELTA FY=COMP X) GO TO (9.8).I SUM=SUM&FY GO TO 7 SUM=SUM&FY SUM=SUM&FY SUM=SUM&FY SUM=SUM&FY*4.0 CONTINUE ENT=A*SUM TOT=TOTEENT RETURN END '

LEVEL 2 FEB 67

CETIS

.

ISPRA

С. Я.

บ่ เ

EURATOM

DS/360 FORTRAN H

•

DATE 67.233/15.30.02

COMPILER OPTIONS - NAME: MAIN, OPT=02.LINECNT=50, SOURCE, BCD, NOLIST, DECK, LOAD, MAP, NOEDIT, NOID

ISN 0002	c	REAL FUNCTION COMP(7)
		FUNCTION COMP(Z) COMPUTES LOCAL VALUE OF THE TWO-PHASE MULTIPLIER ACCORDING TO LOTTES-FLINN CORRELATION
ISN 0003 ISN 0004 ISN 0005 ISN 0006 ISN 0007 ISN 0008 ISN 0009	L	DIMENSION XL(4) COMMON /DAT1/PSI1,HFI,XF COMMON /DAT3/XL,ZLB,ZD,ROSR,ROLB EQUIVALENCE (XL(1),TSLT) COMP=(1.0&(1.0-PSI1)/PSI1*(XF-HFI*(TSLT-Z)))**2 RETURN END

OS/360 FORTRAN H

COMPILER OPTIONS - NAME= MAIN, OPT=02, LINECNT=50, SOUPCE, BCD, NOLIST, DECK, LOAD, MAP, NOEDIT, NOID

ISN	0002	c	REAL FUNCTION DP(ROOUT)
		0000	FUNCTION DP COMPUTES THE ACCELERATION PRESSURE DROP AROUND THE LOOP ACCORDING TO EQUATION(13)
I SN I SN I SN	0003 0004 0005	C	COMMON P.G.ROOUGT .CR.ACCG.DPPUMP.DELTA.RO COMMON/DAT2/D.EXCN.BR DIMENSION G(4).RD(5).D(4)
ISN	0006		EQUIVALENCE(D(1), TSD), (D(2), CLD), (D(3), EXD), (D(4), RID)
15N	0007		10)/EXCN**2*(TSU/RID)**4)*G(1)**2/(2.0*ACCG)
ISN	8000		RÉTURN
I SN	0009		END

LEVEL 2 FEB 67

DS/360 FORTRAN H

DATE 67.234/11.37.38

COMPILER OPTIONS - NAME= MAIN, OPT=02, LINECNT=50, SOUPCE, BCD, NOLIST, DECK, LOAD, MAP, NOEDIT, NOID

ISN 0002	r	SUBROUTINE PUMP(W,C,DPPUMP)
	č	SUBROUTINE PUMP(W,C,DPPUMP)
	č	FLOW RATE,W
	C	W IN UNITS (KG/SEC) DPPUMP IN UNITS (KG/CM**2)
ISN 0003	С	DIMENSION (14)
TSN 0004		DPPUMP=C(6) *W
ISN 0005	1	DO 1 [=],4 DPPUMP=(DPPUMPE((6-I))*W
ISN 0007	L	DPPUMP=DPPUMP&C(1)
ISN 0008 ISN 0009		END

EURATOM - C.C.R. ISPRA - CETIS

LEVEL 2 FEB 67

OS/360 FORTRAN H

DATE 67.233/15.31.10

COMPILER OPTIONS - NAME= MAIN, OPT=02, LINECNT=50, SOURCE, BCD, NOLIST, DECK, LOAD, MAP, NOEDIT, NOID

ISN 0002	r	REAL FUNCTION ACCA(RE, BMU, BCP, BK, BD)
	υσοσοσοα	FUNCTION ACCA COMPUTES HEAT TRANSFER COEFFICIENT BETWEEN THE WALL AND THE LIQUID AS A FUNCTION OF REYNOLDS NUNBER(REYN),VISCOSITY(AMU),HEAT SPECIFIC CAPACITY(CP),CONTUCTIVITY(CK),DIAMETER(TSD) P IN UNITS (KG/CM**2) T IN UNITS (CELSIUS DEGR.) ACCA IN UNITS (KCAL/SEC*CM**2*CELSIUS DEGR.)
ISN 0003 ISN 0004 ISN 0005 ISN 0006 ISN 0007	C C	DATA AA/0.333333333/,BB/2.3E-2/ PRAND=BMU*BCP/BK ACCA=BB*BK/BD*(RE**0.8)*(PRAND**AA) RETURN END

EURATOM - C. C. R. ISPRA - CETI

ŋ

LEVE	EL 2	FEB	67
------	------	-----	----

OS/360 FORTRAN H

DATE 67.233/15.31.20

COMPILER OPTIONS - NAME: MAIN, OPT=02, LINECNT=50, SOURCE, BCD, NOLIST, DECK, LOAD, MAP, NOEDIT, NOID

ISN 0002

ISN 0003 ISN 0004 ISN 0005 ISN 0006 ISN 0007 ISN 0009 ISN 0010 ISN 0011 REAL FUNCTION DPL(BR,I)
FUNCTION DPL
COMPUTES SINGLE PHASE LOCAL PRESSURE DROP AT THE EXIT
ACCORDING TO EQUATION(30)
DIMENSION G(4),RO(5)
COMMON P,G,ROUGTS,CR,ACCG,DPPUMP,DELTA,RO
I=I
GO TO (1,1,1,1,2),I
DPL=BR*G(I)**2/(2.0*ACCG*RO(I))
GO TO 3
2 DPL=BR*G(1)**2/(2.0*ACCG*RO(I))
3 RETURN
END

Ø

.
DS/360 FORTRAN H

71

COMPILER OPTIONS - NAME= MAIN, OPT=02, LINECNT=50, SOURCE, BCD, NOLIST, DECK, LOAD, MAP, NOEDIT, NOID

ISN	0002	r	SUBROUTINE DROP(TX,ZL,R,RO,D,PDR,FIS)
			SUBROUTINE DROP COMPUTES TWO PHASE PRESSURE DROP
ISN ISN ISN ISN ISN ISN	0003 0004 0005 00066 0007 0008 0008 0008		COMMON P,G,ROUGTS,CR,ACCG DIMENSION G(4) REN=G(1)*D/VISCOS(TX) FIS=5.5E-3*(1.0S(ROUGTS*2.0ES4&1.0E&6/REN)**CR) PDR=P*FIS*ZL*(G(1)**2)/(2.0*PO*ACCG*0) RETURN END

LEVEL 2 FEB 67

OS/360 FORTRAN H

DATE 67.233/15.31.53

COMPILER OPTIONS - NAME = MAIN, OPT=02, LINECNT=50, SOURCE, BCD, NOLIST, OFCK, LOAD, MAP, NOEDIT, NOID

ISN	0002	r	REAL FUNCTION DRUCK, ALFA, GAMMA, ROT)
			FUNCTION DPLU COMPUTES EXIT LOCAL PRESSURE DROP ACCORDING TO EQUATION(31)
ISN ISN ISN ISN ISN	0003 0004 0005 0006 0007		DIMENSICN_G(4),RO(5),O(4) COMMON_P,G,ROUGTS,CR,ACCG,OPPUMP,DELTA,RO COMMON/DAT2/D,EXCN,BR EQUIVALENCE (D(1),TSD),(D(2),CLD),(D(3),EXD),(D(4),RID) DPLU=BR* X**2/(ALEA*GAMMA)&(1.0-X)**2/(1.0-ALEA))*G(1)**2/(2.0*ACC 10*PO(5))
I S N I S N	8000 0009		RETURN END

EURATOM - C. C. R. ISPRA - CETIS

OS/360 FORTRAN H

COMPILER OPTIONS - NAME: MAIN, OPT=02, LINECNT=50, SOURCE, BCD, NOLIST, DECK, LOAD, MAP, NOEDIT, NOID

ISN	0002	r	SUBROUTINE DPEL(Z0,Z1,Z2,FITLT,RCMS,ROMB,ROMR,DPELEV)
			SUBROUTINE DPEL Computes the elevation head around the loop According to equation(6)
I SN I SNN I SNN I SSN I SSNN I SSNNN I SSNNN I SSNNNN I SSNNNNNNNNNN	0003 0004 0005 0006 0008 0009 0011 0012 0013 0015 0016 0017 0017 0019 0019 0020	1	COMMON P,G,ROUGTS,CR,ACCG,DPPUMP,DELTA,RO COMMON /DAT3/XL,ZLB,ZD,ROSR,ROLB DIMENSION PO(5),XL(4),G(4) DP1=RO(2)*(XL(4)&XL(1)&FITLT) FIT=FITLT DP2=XL(4)*ROMR IF(Z2.FQ.0.0) GO TO 1 DP2=DP2& FIT&Z2)*ROMB FIT=0.0 IF(Z1.EQ.0.0) GO TO 2 DP2=DP2& FIT&Z1)*ROMS FIT=0.0 DP2=DP2&ZLB*ROSR&Z0*ROLB&FIT*RO(5) DPELEV=(DP1-DP2)*SIN(DELTA) RETURN END

F-LEVEL LINKAGE EDITOR OPTIONS SPECIFIED--MAP TEW0000 PUN NOW ADDED TO DATA SET

,	CONTROL S	FCTION		ENTRY							
	NAME	ORIGIN	LENGTH	NAME	LOCATION	NAME	LOCATION	NAME	LOCATION	NAME	LOCATION
	IHCERXPR*	00 D8	D4	FRXPR=	00						
IJ	IHCSEXP *	148	11E	FDXPD= FXP	D8 1 4 8						
	IHCSSQRT# IHCSLOG *	2C 8 378	AC 10C	SQRT	208						
•	I HC FR XP I *	488	94	ALOGIO Frxpi=	.378 488	AL OG	394				
S P R A	IHCSSCN * IHCUOPT * IHCTRCH *	628 630	104 8 258	COS	520	SIN	530				
Н	IHCLLOG * IHCLEXP *	888 A00	178 1CC		888 A00	DLOG	8A4				
ບ່ ບ່	IHCUATBL* MAIN= VISCOS=	BD0 1208	638 44DC	MATN	1208						
י Σ	DENSIT=	58D C	320	VISCOS DENSIT	5730 5988						
А Т О	SAT= COND=	58F0 508C	18A 2C4		5C28 5E30						
	C SP = ENTAL P=	6048 6738	6EC 48A	CSP	6 1 E O						
	FLOW=	6BC 8	3C 4	FLOW	6870 6000						
	COTES=	769C	386	TRIST	71C8 7700						
	COM P = PUM P =	7A18 7B48	12E D2	СОМР РОМР	7 A30 7 B50	t					

---- MODUI 5 MAP -----

NAME	ORIGIN	LENGTH	NAME	LOCATION	NAME	LOCATION	NAME	LOCATION	NAME	LOCATION
ACCA=	7C 2 0	10.0								
DPL =	7DF0	192	ACCA	7(50						
DROP=	7F88	240	OPL	7 F 1 0						
DPL U=	810.8	146	DRÜP	7 FC8						
	8370	296	DPLU	81F3						
	9610	2,00	OPEL	8383						
	0710	165	DP	8630						
INCELUMN#	8740	FFU	IBCOM=	8740	EDINCS=	88 5C				
IHCFCVTH*	97A C	FF 3	ADCON=	9740	ECV70	9850	ECVAD	0002	ECVI O	0414
IHCFIOSH*	A798	CF2	FCVIN	0.029	FCVEN	ÁÌĊĊ	FČVĆŎ	A3C6		9A1A
\$BLANKCOM DAT1 DAT2 DAT3 FLOWC TRISTE	8490 84DC 84EC 84F8 8518 8538	3C 18 20 1C 54	FINCS=	∆7 93						

EURATOM - C. C. R. ISPRA - CETIS

ENTRY ADDRESS TOTAL LENGTH

1208 8580

EURATOM - CETIS

DATA (Zones de 6 colonnes)

	Ρ	RO	BLE	M			SI	1 A	M	P	L	E		1	N	P	υ	Т	•																		1	DA	T	E		8	1	2:	2,	11	9	6	7	F	PA	GΕ				Ĺ					C	F		L	υ.	P	ō				
	1 2	3	4 5	6	7 8	9	10	11	121	3 1	14 1	51	6 1	71	8	19	202	21	22	23	24	25	26 2	27 2	82	93	d 3	31 :	32	33 :	34	35	36	37	38	39	64	11 4	12	13 4	4 4	5 4	5 47	48	49	50	51	52 5	354	55	56	57 :	58 5	9 60	61	62	63 6	5 4 6'	5 66	67	68	69	707	172	273	74	75	76 7	וקמ	B 79	80
۱						*		*	-	T	ES	5 7	ŗ	C		A	SI	E		F	þ	R	1		J	29	þ				N	A	r	ν	R	A			c	1 1	×اد	: u	1	A	F	1	φ	N			(8	TH	١.	2	2	,	1 :	36	7	5	T	T	T	Γ	Π		-	c -	-0	1
2			20				6			20		2					1					0				C						o																																				(c -	C	2
3						6	0		0										0	0	5										0		0					T		T					Γ							T					T]			T	Τ	Τ	Τ			1	c -	. 0	3
4					2	0	o		0	ł						1	3	1	4		0					Ţ	T		6	1	4		0						Ţ	1	2	12		0							Π	3	2	5			Τ	Τ		Ι		Τ	T	T	Τ		Π	-	c -	. 0	4
5							1		0										5		0						T				2		0							Τ		5	5.	0										Τ										T		Π			c -	. 0	5
ه					ο.	0	0	0	2						0		5	0	0	0	5				Τ						1		5				T			1		5		8						Γ		Τ						T		Γ			T	T	T	Π	Π	(c -	. 0	6
7						1		66	6									0		0	9		T				Ι		3	7	3		4					k	2	. (0	3							2	8	6.	1							6	5	9	. 5	;	Π	Π	(c -	• 0	7
8						0		3	3										2		7										0		0									2		3							0	. (68	1									0	0	,			(c -	. 0	8
9							4	. (0										3		0																																										T	T	T			(2 -	- 0	9
10						2	0	. (0								1		5	-	z						2	0	0	0	0		0								1.1	30		0															Τ						Γ			(c -	. 1	1
n					1	2	0		0									8	0		0								0	•	1	8	0							(2	. 2	20	0													Τ			Ι					T	Π		1	c-	. 1	2
12																	1	5	0		0								0		1	9	0							() .	2	2	0																					Γ			(c -	-	2
13																																																															T	Τ	Τ	Π		BI	LF	AN	ĸ
14																																																																T	Τ						
15										1			1														1																																									Τ	T	T	
16																	_																																																						
17								_																_					_																																										
18																																																																			\square			T	
19																													_																L																						\Box				
20																									ŀ															_																															
21																																																																							
22																																																																							
23																																																																							
24												\downarrow																																																		\Box									
25																																																																							

CET - 004

* * * LUPN ***** * *

* * TEST CASE FOR LUPD , NATURAL CIRCULATION (3TH, 22, 1967)

TYPE OF PROBLEMSTEADY STATE FLOW RATE AND PRESSURE DROPS CALCULATIONNZETA = 200NEXC = 6IMAX = 20IPRINT = 0INDL = 1IDT = 0KKK = 0

*** *** INPUT DATA

		LENGTH (CM)	DIAMETER (CM)
110	TEST SECTION COLD LEG EXCHANGER RISER	200.000 1914.000 614.000 1012.000	1.000 5.000 2.000 5.000
ы U	ANGLE = 1.57080	(RAD)	
PRA -	PRESSURE POWER INLET TEMPERATURE MIN• FLOW MAX• FLOW	60.00000 (K) 120.00000 (K) 80.00000 (C) 0.15000 (K) 0.20000 (K)	G/CM**2) W) ELSIUS DEGR•) G/SEC) G/SEC)
R. 13	TEST SECTION ROUGNES	S COEF. 0.000 COEF. 0.000	1200 1950
ບ່	LOCAL PRESSURE LOSS	COEFF.	
ATOM - C.	K-TEST SECT. ENTRANC K-COLD/LEG K-EXCHANGER K-RISER K-TEST SECT. EXIT BK-TEST SECT. EXIT	E 0.33000 2.70000 0.0 2.30000 0.68100 0.60420	
EUR	SLIP RATIO EPSILON BUBBLE RADIUS AT DET HEAT EVAPORATION STEAM DENSITY DELTATCL DELTATRIS SATURATED WATER ENTH STEAM ENTHALPY	1.5000 1.6600 ACHMENT 0.09000 373.3999 0.0000 4.0000 3.00000 ALPY 286.0998 659.50000	CM) (KCAL/KG) (KCAL/KG) (CELSIUS DEGR.) (CELSIUS DEGR.) (KCAL/KG) (KCAL/KG)

*** CONSTANT QUANTITIES VALUES

TSAT	2.742891E 02
INLET ENTHALPY	8.113780E 01
(DELTA-T)SAT	1.572160E 01
HEAT FLUX	4.560744F-02
ETA	8.373988E 04
BETA	3.402028E 01

FLOW RATE	EXIT TEMP.	DELTAPMOT	DELTAPRES	DELTAPETS	DELTAPEXIT	F/FISA-SR	F/FISO-HS	F/FI SO-SS	E/FISO-BB
0-200000	218.587	0.14249E 00	0.154845 00	0.11021F 00	0.25632E-01	0.81600	1.03678	0.0	0.0
0.195000	221.965	0.14729E 00	0.14881E 00	0.10605E 00	0.25449E-01	0.81257	1.08916	0.0	0.0
0.190000	225.510	0.15242E 00	0.14324E 00	0.10230E 00	0.24295E-01	0.80822	1.14263	0.0	0.0
0.185000	229.221	0.15788E 00	0.13846E 00	0.99294E-01	0.23170E-01	0.80371	1.20261	0.0	0.0
Q . 180000	233.117	0.16375E 00	0.13392E 00	0.96482E-01	0.22077E-01	0.79923	1.25789	0.0	0.0
0.192500	223.717	0.14981E 00	0.14603E 00	0.10418E 00	0.24868E-01	0.81011	1.11885	0.0	0.0
0.193750	222.836	0.148545 00	0.14737E 00	0.10507E 00	0.25157E-01	0.81110	1.10401	0.0	0.0
* * * SOLUTIC	N HAS BEEN O	BTAINED IN =	8 ITERATI	ONS * * *					

- CETIS

C. C. R. ISPRA

ı

EURATOM

	т	G	PEYN	FISO
COLD LEG	8.40000000E 01	9.8994263E-03	1.4580750F 04	2.8122000F-02
EXCHANGER	1.5265356E 02	1.0311902E-02	1.1443273E 04	2.9999629F-02
RISER	2.2130722E 02	9.8994263E-03	4.1254273E 04	2.1632127E-02

* * ALL LIQUID REGION

TSCB RO(TSCB), RO-MEAN MU(TSCB), MU-MEAN CP(TSCB), CP-MEAN K(TSCB), K-MEAN REYN-MEAN H-MEAN FISO F/FISO	213.5308838 0.8514938E-03 0.1247475E-05 0.1088243E 01 0.1571943E-05 0.1028621E 06 0.4368189E-03 0.1866737E-01 0.8120655E 00	0.9161232E-03 0.2405995E-05 0.1043219E 01 0.1597055E-05
<pre>* * HIGHLY SUBCOOLED ID T-MEAN RO(TD) , RO-MEAN MU(TD) , MU-MEAN REYN-MEAN FISO FISO</pre>	BOILING REGION 222.3996582 217.9652100 0.8401994E-03 0.1193062E-05 0.2028125E 06 0.1691100E-01 0.1096585E 01	0.8458465E-03 0.1220268E-05

RESULTS OF CALCULATION FOR FLOW RATE = 0.194375 (KG/SEC)

***** * TEMPERATURES (CELSIUS DEGR.) INLET WALL TEMP. 0.205970E 03 TEMP. AT ZLB TEMP. AT ZD OUTLET TEMP. 0.213531E 03 0.222400E 03 0.222400E 03 * * LENGTHS (CM) ALL LIQUID FLOW REGION 0.186500E 03 HIGHLY SUBCODLED BOILING REGION SLIGHTLY SUBCODLED BOILING REGION 0.135000E 02 9 0.0 _ BULK BOILING REGION 0.0 F. Ы υ * * QUALITY AND VOID FRACTION EXIT QUALITY VOID FRACTION AT ZBB VOID FRACTION AT THE END OF BULK BOILING 0.0 < 0.0 Ľ 0.0 ۵., S * * PRESSURE DROPS (KG/CM**2) -Ľ FRICTION υ COLD LEG 0.553391E-03 EXCHANGER 0.544179E-03 υ RISER 0.259847E-03 ALL LIQUID REGION HIGHLY SUBCOOLED REGION SLIGHTLY SUBCOOLED REGION BULK BOILING REGION L 0.963386E-01 0.923964E-02 Σ 0.0 0 0.0 TOTAL FRICTION PRESSURE DROP 0.106936E 00 < Ľ LOCAL ы INLET 0.105749E-01 COLD LEG 0.138796E-03 EXCHANGEP 0.0 RISER 0.136501E-03 OUTLET 0.253026E-01 TOTAL LOCAL PRESSURE DROP 0.361528E-01 ACCELERATION 0.502542E-02FLUID PRESSURE RISE 0.0 ELEVATION HEAD 0.147914E 00 TOTAL PRESSURE DROP 0.148114E 00 TOTAL ELEVATION HEAD 0.147914E 00 RELATIVE ERROR 0.135035E-02

.

F

TEST SECTION TEMPERATURES

AA A A (100 16.	126 220	147 175	105 505
80.084	109-101	128 • 229	101+115	172.005
80.535	109.889	139.055	167.891	196.205
81.270	110.621	139,781	168.606	196.904
	111 252	140 506	160 321	197.603
82.005	111.000	1940.0000	107.025	100 201
82.741	112.085	141.231	170.055	120+201
83.476	112.816	141.956	170-749	198.999
84 211	113.548	142-581	171.463	199.696
04 044	112 270	143 404	172 176	200.393
84.940	114+217	143.400	172 100	201 000
85.681	115.010	144.130	172.890	K01.003
86.416	115.742	144.854	173.602	201.785
87 150	116.473	145.578	174,315	202.480
	117 202	146 202	175 027	203.175
81.002	117.003	1470 0.002	175 720	202 640
88.620	117.934	147.0227	112+125	203.007
89.354	118.665	147.748	176+450	204.553
00.030	119,395	148,471	177.161	205.256
00.000	1201125	140 104	177.871	205.948
90.023	1201122		170 605	206 661
91.558	120-822	149.915	170.002	200.541
92.292	121.585	150.639	179.291	201-332
93-026	122.315	151.361	180.001	208.023
03 761	123.045	152.082	180,710	208-714
73+F0L	100 776	162 007	191 410	200 403
99.492	122+114	102.004	1010 717	210 002
95.229	124.504	153.525	182-127	210.095
95,963	125.233	154.246	182.835	210.782
96 696	125,962	154,967	183.542	211.470
67 620	124 401	155 497	184 250	212.157
97.450	122+071	154 407	104 054	515 624
98.154	121.420	120.407	104.720	212+044
98.897	128.148	157.127	185.662	213.231
99-631	128.877	157.847	186.368	214.217
100 364	129 605	158.566	187,074	214,902
101.004	120 222	150 795	197 770	215 587
101.098	120.222	1270202		517 571
101.831	131.061	150.004	188.484	210.271
102.564	131.788	160.722	189.188	216.954
103.297	132-516	161.441	189.891	217.637
106 020	122 2/2	162 158	190.595	218,319
104+020	100+240	1/2 07/	101 200	510 001
104.163	133.9(0	102.010	191.290	217.001
105.495	134.698	163.593	TAS • 000	518+985
106.228	135.424	164.310	192.702	220.362
106 061	136 151	165.027	193.404	221.042
107 (02	136 077	145 762	104 105	221 721
107+695	130.8/1	100 • 14 *	104 005	2220161
108.425	137.604	100 + 400	194.805	222.400

* * * LUPO * * *

* * TEST CASE FOR LUPO , NATURAL CIRCULATION (8TH,22,1967)

TYPE OF PROBLEM STEADY STATE FLOW RATE AND PRESSURE DROPS CALCULATION

NZETA = 200 NEXC = 6 IMAX = 20 IPRINT = 0 INDL = 2 IDT = 0 KKK = 0

* * INPUT DATA

	LENGTH (CM)	DIAMETER (CM)
TIS	TEST SECTION 200.000 COLD LEG 1914.000 EXCHANGER 614.000 RISER 1912.000	1.000 5.000 2.000 5.000
E	ANGLE = 1.57C80 (RAD)	
PRA -	PRESSURE 60.00000 (KG/CM**2 POWER 120.00000 (KW) INLET TEMPERATURE 150.00000 (CELSIUS MIN. FLOW 0.19000 (KG/SEC) MAX. FLOW 0.22000 (KG/SEC)) DEGR.)
R. IS	TEST SECTION ROUGNESS COEF. 0.000200 LCOP PIPES POUGNESS COFF. 0.000050	
ບ່	LOCAL PRESSURE LOSS COFFF.	
TOM - C.	K-TEST SECT. ENTRANCE 0.33000 K-COLD LEG 2.70000 K-EXCHANGER 0.0 K-FISER 2.30000 K-TEST SECT. EXIT 0.68100 BK-TEST SECT. EXIT 0.60420	
EURA	SLIP RATIO 1.50000 EPSILON 1.66000 RUBRLE RADIUS AT DETACHMENT 0.09000 (CM) HEAT EVAPORATION 373.39990 (KCA STEAM DENSITY 0.00000 (CFL DELTATCL 4.00000 (CFL DELTATRIS 3.00000 (CFL SATURATED WATER ENTHALPY 286.09985 (KCA STEAM ENTHALPY 659.50000 (KCA	L/KG) STUS DEGR.) STUS DEGR.) STUS DEGR.) L/KG) L/KG)
	*** CONSTANT QUANTITIES VALUES	

TSAT	2.742891E 02
INLET ENTHALPY	1.518917E 02
(DELTA-T)SAT	1.572160E 01
HEAT FLUX	4.56C744E-02
ETA	8.373988E 04
PETA	3.402028E 01

FLUW RATE	EXIT TEMP.	DELTAPMOT	DELTAPRES	OFLTAPFTS	DELTAPEXIT	F/FISD-SR	F/FISD-HS	F/FISD-SS	F/FISO-BR
0.220000	266.816	0.16833E 00	0.26042E 00	0.18915E 00	0.37144E-01	0.86354	1.47856	2.11903	0.0
0.212500	269.075	0.186385 00	0.26333F 00	0.18946E 00	0.37438E-01	0.85965	1.48697	2.22749	0.0
0.205000	271.508	0.33713E 00	0.26687E 00	0.19050E 00	0.37649E-01	0.85513	1.49414	2.34382	0.0
0.197500	274.142	0.47312E 00	0.27218E 00	0.19347E 00	0.37777F-01	0.85042	1.50360	2.47637	0.0
0.190000	274.289	0.57511E 00	0.28629E 00	0.19636E 00	0.41347E-01	0.84549	1.51193	2.52145	2.57180
0.208750	270.384	0.24528E 00	0.26349E 00	0.18381E 00	0.37388E-01	0.85740	1.48962	2.27575	0-0
0.206875	270.937	0.29316E 00	0.26573E 00	0.19020E 00	0.37521E-01	0.85618	1.49359	2.31279	0-0
0.207812	270.665	0.26958E 00	0.26430E 00	0.18919E 00	0.37456E-01	0.85690	1.49074	2.29242	0.0
0.208281	270.408	0.25725E 00	0.26533E 00	0.189995 00	0.375886-01	0.85703	1,49105	2.29250	0.0
0.208047	270.532	0.26315F 00	0.26481F 00	0.189595 00	0.375215-01	0.85690	1.49089	2.29246	0.0
* * * \$OLUTIO	N HAS BEEN D	BTAINED IN =	11 ITERATI	ONS * * *			• • • • • • • •	6 + 2 · 2 · 4 0	UeU

•

	* * * INTERME	DIATE RESULTS	FOR FLOW RATE	= 0.207929) (KG/SEC)
	COLD LEG EXCHANGER RISER	T 1.5400000E 02 2.1414453E 02 2.7428906E 02	G 1.0589760E-02 1.1030991E-02 1.0589760E-02	RFYN 2.9662348E 04 1.7741031E 04 5.5806102E 04	FIS0 2.3441497E-02 2.6712004E-02 2.3663830E-02
	★ ★ ALL LIQUID F	REGION			
RA - CETIS	ISCB RO(TSCB), RO-/ MU(TSCB), MU-/ CP(TSCB), MU-/ K(TSCB), CP-/ K(TSCB), CP-/ K(TSCB), K-MI REYN-MEAN H-MEAN H-MEAN FISO F/FISO	217 MEAN 0.846 MEAN 0.122 MEAN 0.107 EAN 0.156 0.173 0.572 0.172 0.856	•8010254 1210E-03 0691E-05 8742E 01 2520E-05 1594E 06 7692E-03 5985E-01 6729E 00	0.8838917E-03 0.1528902E-05 0.1051428E 01 0.1603848E-05	
S L	* * HIGHLY SUBC	DOLED BOILING	REGION		
- C. C. R. I	TD T-MEAN RO(TD) , RO-MEA MU(TD) , MU-MEA REYN-MEAN FISO F/FISO	261 239 AN 0.783 AN 0.100 0.238 0.165 0.149	0209961 04110107 57010E-03 01468E-05 32761E 06 58947E-01 02542E 01	0.8149110E-03 0.1111080E-05	
Σ	* * SEIGHTLY SU	BCCOLED BOILIN	IG REGION		
EURATC	ALFAW T-MEAN ALFA-MEAN RO-MEAN LIQUID RO-MEAN FLUID FISO F/FISO	0.237 265 0.141 0.775 0.670 0.163 0.225	75909E-01 5.8093262 12225F 00 54713F-03 01937E-03 86476E-01 95896E 01		

	* * TEMPERATURES [CELSIUS DEG	R.)
	INLET WALL TEMP. 0.236 TEMP. AT ZLB 0.217 TEMP. AT ZD 0.261 GUTLET TEMP. 0.270	044F 03 801E 03 021E 03 598E 03
	* * LENGTHS (CM)	
ETIS	ALL LIQUID FLOW REGIUN HIGHLY SUBCODIED BOILING REGI SLIGHTLY SUBCODIED BOILING RE BULK BOILING REGION	0.103500E 03 0N 0.710000E 02 GION 0.255000E 02 0.0
ΰ	* * QUALITY AND VOID FRACTION	
PRA -	EXIT QUALITY VOID FRACTION AT ZBB VOID FRACTION AT THE END OF B	0.176911F-01 0.259685E 00 ULK BOILING 0.0
l S l	<pre>* * PRESSURE DROPS (KG/CM**2)</pre>	
R	FRICTION	
ATOM - C. C.	COLD LEG EXCHANGER RISER ALL LIQUID REGION HIGHLY SUBCOOLED REGION SLIGHTLY SUBCOOLED REGION BULK BOILING REGION TOTAL FRICTION PRESSURE DROP	0.559936E-03 0.597838E-03 0.389400E-03 0.618509E-01 0.770654E-01 0.510686E-01 0.0 0.191532E 00
EUR	LOCAL INLET COLD LEG EXCHANGER RISER OUTLET TOTAL LOCAL PRESSURE DROP	0.128176E-01 0.163479E-03 0.0 0.186994E-03 0.374884E-01 0.506615E-01
	ACCELERATION	0.2295925-01
	FLUID PRESSURE RISE ELEVATION HEAD	0.0 0.266390E 00
	TOTAL PRESSURE DROP	0.265153E 00
	TOTAL ELEVATION FEAD	0.266390E 00
	RELATIVE ERROR	-0.464638E-02

TEST SECTION TEMPERATURES

150.110 150.558 151.233 151.908 152.583 153.257 153.257 155.951 155.9525 157.9782 157.9782 157.9782 157.9742 157.9742 159.9879 159.9879 162.0012 162.001 162.001 162.0723 164.0833 166.0323 166.038 166.038 166.038 168.038 169.3661 168.038 169.3661 168.038 169.3661 172.703 172.0365 174.021 174.021	176.696 177.361 178.689 179.352 180.016 181.341 182.065 182.6341 182.6671 182.649 183.984 185.969 185.9629 185.9629 187.9664 187.9664 1887.946 1889.929 1991.2393 1991.293 1994.5161 1995.8279 1994.5161 1995.8279 1997.7838 1997.7838 1998.430 1999.7423 2001.042 2001.044	202.994 203.643 204.292 204.940 205.587 206.235 206.881 207.528 208.174 208.819 209.464 210.108 210.752 211.395 212.681 213.323 213.964 215.245 215.245 215.245 215.8824 217.163 217.801 219.712 220.348 220.9849 222.253 222.887 222.887 222.887 222.887 222.887 222.887 222.887 222.887 222.887 222.887 222.887 222.887 222.887 222.887 222.887 222.887 222.95416 222.887 222.877 222.877 222.877 222.877 222.877 222.877 222.877 222.8777 222.8777 222.87777777777	$\begin{array}{c} 228.564\\ 229.192\\ 229.819\\ 230.446\\ 231.072\\ 231.097\\ 232.522\\ 233.569\\ 233.55969\\ 233.55969\\ 233.55969\\ 233.55969\\ 233.55057\\ 244.5505\\ 2$	253.151 253.39447 2554.5140 2554.5140 2554.5140 2556.73304 2556.73304 2559.2559.2559 2560.84642 2661.260178 2662.50179 2663.37098 2663.37098 2664.44.81738 26665.8220 2666.9847 2668.889 2669.87 2669.77 2669.87 269.8
174.701 175.366 176.031	201.044 201.694 202.344	226.677 227.307 227.936	251•348 251•950 252•551	269.511 269.873 270.236 270.598

EURATOM-CETIS

	4	2 3	4	5	6	7	8	2	19	11	42	12	14	T H	5 11	5 17	74	1.1	20	24	55	23	24	25	26	27	28	29	30	31	32	33	34	31	5 38	137	23	39	40	41	42	43	44	45	46	47	43	49	50	51	52	535	4.5	556	57	585	96	951	162	63	69	65	560	671	684	637	707	147	127	137	471	571	671	78	79	80
4		1	T	T							1		T	Τ	T	T	T	ſ	ſ	T	I	Т	L	E																																								Ц									k	_	0	1
2	I	MA	X	ſ	Γ	N	E	x	C	Γ	N	z	Ë,	PA	Ť	I	h	D	L	I	P	RI	N	Т		I	Ð	Т			ĸ	ĸ	ĸ																					-						Ŀ				Ц						\downarrow			t		0	2
3		Ť	T		P				_		Γ		T	ſ	E	-	16	X									Ð	P	P	υ	M	P																																Ц									t	1	0	3
4		Ť	τ	S	L	T					Γ		T	T	c	1		Π	1								E	X	L	Т									R	I	L	T									F	1	۲L	.		_								Ц					\downarrow	\perp			c	-	0	4
5	Π		Π	S	D				_						c		.]]										E	X	D										R	I	D																						Ц	Ц					\downarrow	1		L	C	Ŀ	2	5
6	Π	F	G		G	Т	S								3	20		G	ما								S	Ľ	ī	P	R								Þ	E	L	T	A							_			-				\downarrow						Ц	H			\downarrow	\downarrow		1	\downarrow	L	C	Ŀ	0	6
7	Π		E	P	s	I					_				ī	21											R	i.	H	N	T	A							R	Φ	G										E	φ	JU	F	S			⊥	\downarrow		E	\$	υ	m	G	_	\downarrow	\downarrow	-l	4	\downarrow	\downarrow	<u>k</u>		থ	7
8	Π		F	×	I	N									E	3/1	$\langle \langle \rangle$. L									P	ĸ	Ε	X									B	κ	R	I								_	B	ĸ.	<u>pli</u>	T		_	_	Ļ	Ļ	-	B	ƙ	Ц	Ц		_	\downarrow	\downarrow			∔	+	Ę	Ŀ	기	8
٩	\Box		×	1	Ċ	L									þ	ti	1	I	s																												_	_	_		_	-	1	\downarrow		_+	_	-		L			μ	⊢┤	\rightarrow	\downarrow	\downarrow	4	_	┦	∔	╞	¢	-	2	키
10	\Box		c	c	(1	2			_		Ĺ			C	:k	: (2	\mathbf{b}	L							ť			3	2					L			c	2	Ĺ	÷	Z	-			_			_	<u>:</u>	<u>1</u>	(5	\downarrow		_	_	Ļ		L	Ű	Ê	Ц	6	기	_	\downarrow	\downarrow		4	+	╞	ピ	-	쇠	괴
11			I	Þ	4	1	$\boldsymbol{\lambda}$								1		<u>,</u>	2	Þ	 _							9	ĩ	5	3	2					L			P	Ð		4	Ż				_			_	\downarrow	_	+	\downarrow		_	\downarrow	╞				Ц	H	\vdash	\rightarrow	4	\downarrow	Ļ	\downarrow	\downarrow	∔	╞	Ľ	Ŀ	4	4
12			P		1	ĸ	¥					L			7	I	1	1	\downarrow								ŵ,	{r;	ł	11				L		L			v!	Þ.	4	X								_	4	\downarrow	\downarrow	-			+		L	┞		\mid	Н	H		-+	4	\downarrow	+	╇	╞	╞	12	4	4	2
13											B	L	F	1	1	<u>(</u>	k	A	R	D																		Ļ			L	L								-	_	_	_	\downarrow		_	_	+		Ļ		Ц	μ	\vdash	_	╡	\downarrow	\downarrow	4	\downarrow	╇	╞	¢	H	4	4
14	•	١E	<u>s</u> .			L					 																	_	L.				Ì															_			\downarrow	-	+	1			_			_	Ľ	Ц	Ц	\vdash		\downarrow	\downarrow	4	\downarrow	\downarrow	\downarrow	╞	<u> </u>	Ц	\downarrow	┛
15	1)	I	F		Ð	Ρ	P	υ	m	٢		2		5			4	c	Þ	N	S	Т	3	N	T		ŝ	R		Ζ	E	<u>F</u>	à		P	U	۴.	r		H	ï	A	۵	2		c	A	R	D	-	1		m	υ	5	rļ	M	1	Т	\lfloor	E	E		٤	<u>_</u>	<u>p</u>	뱌	4	ιŧ	<u>.</u>	4.	-	Ц	\downarrow	┛
16	2		s	υ	P	9	L	Y		ค	s		ŀ	E	1	: Y	4	c	A	R	D	Ş		ф	F		T	Y	F	E		C	-	4	2		A	S		M	Ĥ	N	۲		۴	R	Ŧ	E	-	E		sļ	_ 1	2		в	E	1	4	N	Ŀ	Ц	$\mid \downarrow \downarrow$	\vdash	_	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	╞	\downarrow	Ц	4	_
17														+				-		_							_						_	L		-		_									_			_		_	-	╞			_	-	╞	-	\square				_	4	\downarrow	\downarrow	+	╇	╀	╞	-	Ц	\downarrow	4
18															ŀ	\perp			_														_					-		_							_	_		4	\downarrow	_	_	╞			+	-	╞	L	\square	Ц	\vdash	H	_	_	_	\downarrow	\downarrow	\downarrow	4	╞		Ц	\downarrow	4
19											-		-				 		_		_								L-			L	L	1_		L		ļ				_					_	_	-		-+	\downarrow	+	+-			-	+-	\downarrow	Ļ	μ	$\mid \downarrow \downarrow$	$\left - \right $	\vdash		4	\downarrow	+	+	╀	╀	╀	\downarrow	$\left - \right $	\downarrow	-
20									_				1_	<u> </u>	1	-			L														Ļ	-		╞	-	_										_	_	_	_	_	╀	╞		_	+		╞	╞	\mathbb{H}	$\left \right $	┝╌┥	\vdash	\downarrow	+	+	+	+	╀	╞	╞	$\left \right $	H	+	-
21		1							_	_		-						-	1													-	-	-		1		Ļ							 	_				_	\downarrow			╞		-	+	+	┞	┢	μ	$\left \right $	┝┥	\vdash	_	4	-	\downarrow	+	╀	╇	╞	μ	Н	\downarrow	4
22	Ц				1						-	Ļ	-		4	1	-	-	L	L															-	ļ	-	-				\vdash	-					_		_	+	4	+	╞	\vdash		+	+	-	╞	μ	$\left - \right $	┢╍┨	⊢┤		-	4	+	+	+	+	\vdash	μ	μ	+	4
23												 _	1	1	4	\downarrow	-		-	 					_									Ļ	\downarrow	-	Ļ	-				Ļ							4	\downarrow	\downarrow	\downarrow	+	╞		_	+	+	╞	╞	μ	Н	Н	⊢┤	4	-	\downarrow	+	+	+	+	╀╴	μ	H	+	4
24	\mid	_		1								-		1	4-	+	+	+	╞		ļ												-		\downarrow	L	L	L	\square								_	4	_	-	+	-	+	╀	$\left \right $		+	╞	╞	╞	μ	Н		⊢┤	\neg	4	4	\downarrow	+	╀	╀	╞	μ	\mid	+	4
25						{							ļ						ł														1																																											

5.3.2 Input Data

Card	Columns	Format	Name	Description
1	1 - 72	12 A6 (for 7090)		Columns 2-72 are printed as a title.
		18 A4 (for 360)		l in Col. l causes an initial page skip.
2	1 - 5	15	IMAX	Maximum number of iterations to be performed by using the method of halving.
	6 - 10	15	NEXC	Number of exchanger's pipes in parallel.
	11 - 15	15	NZETA	Number of test section lumps.
	16 - 20	15	INDL	Indicator for the riser temperature calculation. When INDL = 1 the main calls subroutine TRIST which computes the riser temperature by balances of enthalpy; when INDL = 0 the mean riser temperature is computed by subtracting an empirical value XTRIS to the outlet temperature.
	21 - 25	15	IPRINT	Indicator for the results print. When IPRINT = 0 the code prints all results only of last iteration. When IPRINT = 1 the code prints all results in the output for each iteration.
	26 - 30	15	IDT	Indicator for the calculation of ΔT For IDT = 0 the code uses the re- lation (25). For IDT = 1 it choices the Jens and Lottes formula.
	31 - 35	15	KKK	Indicator for the calculation of (f/f_{iso}) in the highly subcooled region. For KKK = 0 (f/f_{iso}) is computed in accordance with Mendler theory; for KKK = 1 (f/f_{iso}) is computed by the Lottes - Flinn relation for the two-phase fluid.
3	1 - 12	E12.0	Р	Pressure of the system.
	13 - 24	E12.0	EMAX	Maximum relative error, $(\Delta p_{mot} - \Delta p_{res})/\Delta p_{res}$.
	25-36	E12.0	DPPUM	Head of pump, if the circulation is forced. If DPPUMP is negatif, the head is calculated by a polinomial whose coefficients are in card 10, which depends upon the flow rate.

Card	Column	Format I	N Name De	escription
4	1 - 12	E12.0	TSLT	Test section length.
	13 - 24	E12.0	CLLT	Cold leg length.
	25 - 36	E12.0	EXLT	Exchanger length.
	37 - 48	E12.0	RILT	Riser length.
	49 - 60	E12.0	FITLT	Fitting between test section and riser length.
5	1 - 12	E12.0	TŚD	Test section in diameter.
	13 - 24	E12.0	CLD	Cold leg in diameter.
	25 - 36	E12.0	EXD	Exchanger in diameter.
	37 - 48	E12.0	RID	Riser in.diameter.
6	1 - 12	E12.0	RØUGTS	Test section roughness coefficient.
	13 - 24	E12.0	RØUGL	Loop roughness coefficient.
	25 - 36	E12.0	SLIPR	Slip ratio.
	37 - 48	E12.0	DELTA	Angle of loop with respect to horizontal.
7	1 - 12	E12.0	EPSI	Bowring's model parameter for the local quality (see Ref. 2)
	13 - 24	E12.0	RD	Bowring's model parameter for
				α_w calculation . See pag.11 and fig. 7
				where RD is plotted versus pressure
	25 - 36	E12.0	RLANDA	Evaporation heat.
	37 - 48	E12.0	RØG	Steam density.
	49 - 60	E12.0	EØUTFS	Saturated water enthalpy.
	61 - 72	E12.0	ЕØUTG	Saturated steam.
8	1 - 12	E12.0	BKIN	Loss coefficient at the test section inlet.
	13 - 24	E12.0	BKCL	Loss coefficient of the cold leg.
	27 - 36	E12.0	BKEX	Loss coefficient of the exchanger.
	37 - 48	E12.0	BKRI	Loss coefficient of the riser.
	49 - 60	E12.0	вкфит	Loss coefficient at the exit of test
				section.
	61 - 72	E12.0	BR	Two phase loss multiplier at the exit of test section, because the continuity of two regions, at the boundary between single phase and two phase regions. It is calculated when it is given zero in input.

Card	Columns	Format	Name	Description
9	1 - 12	E12.0	XTCL	Empirical value, which must be added to inlet temperature for the calculation of the cold leg mean temperature.
	13 - 24	E12.0	XTRIS	Empirical value, which must be subtracted to outlet temperature for the calculation of the riser mean temperature, when INDL = 0.
10	1 - 72	E12.0 I = 1,6	CC(I)	Coefficients of a polynomial, which represents analytically the charac- teristic of the pump in forced circulation. The card exists if DPPUMP is negative in input.
11	1 - 12	E12.0	DD(1)	Number of riser axial meshes.
	13 - 24	E12.0	DD(2)	Over-all heat transfer coefficient of the riser.
	25 - 36	E12.0	DD(3)	Heat transfer surface of the riser.
	37 - 48	E12.0	DD(4)	Air temperature.
12	1 - 12	E12.0	РØ WKW	Thermal power supplied to the system
	13 - 24	E12.0	TIN	Inlet temperature.
	25 - 36	E12.0	WMIN	Minimum value of flow rate interval,
				in which the solution exists certainly.
	37 - 48	E12.0	WMAX	Maximum value of the flow rate in- terval in which the solution exists certainly.

If there are many values of power and inlet temperature, the card 12 will be followed by as many cards with new values of power or of inlet temperature, or of both. It could be opportune sometimes, for large variations of these values, to change the flow rate interval.

5.3.3 Operating Informations

LUPO Code runs on IBM 360/65 computer under O.S. control or on IBM 7090 computer under IBSYS control. The running time for a typical problem is about:

20 seconds on IBM 7090

10 seconds on IBM 360/65

The LUPO Fortran deck is available at the CETIS EURATOM PROGRAM LIBRARY.

5.4 FORTRAN Nomenclature

Input Data

FORTRAN Language	Symbol	Meaning
BKCL	к _{с1}	Loss coefficient of the cold leg
BKEX	K	" of " exchanger
BKIN	K _{in}	" at test section inlet
BKOUT	K	" outlet
BKRIS	K _{ris}	" of the riser
BR	K _{out, TPF}	Two phase loss coefficient at test section outlet
CLD	D _{c1}	Cold leg inside diameter
CLLT	1 1	'' '' lenght
DD(1)	nris	Number of riser lumps.
DD(2)	λ_{ris}	Over-all heat transfer coefficient of the riser
DD(3)	S _{ris}	Heat transfer surface of the riser
DD(4)	ta	Air temperature
DELTA	δ	Angle of loop with respect to horizontal
DPPUMP	Δp _{pump}	Head of pump
EMAX	ε _{max}	Maximum relative error
EOUTFS	h 1. sat	Saturated water enthalpy
EOUTG	hg	Saturated steam "
EPSI	ຣິ	Bowring's model parameter for the local quality
EXD	D _{exc}	Exchanger inside diameter
EXLT	1 exc	Exchanger length
FITLT	¹ fit	Test section fitting length
IMAX	m	Maximum number of iterations
IDT	/	Indicator for the ΔT_{sat} calculation
INDL	/	" for the riser temperature calculation
IPRINT	/	Indicator for the results print
ККК	/	" for the calculation of (f/f_{iso}) in the highly subcooled region
NZETA	ⁿ ts	Test section lumps number
NEXC	nexc	Number of exchanger pipes in parallel.

FORTRAN Language	Symbol	Meaning
Р	р	Pressure
POWKW	P	Thermal power
RD	R _d	Bowring's model parameter for α_{w}
RID	Dris	Riser's inside diameter
RILT	l ris	Riser's length
RLANDA	r	Evaporation heat
ROG	ρ	Steam density
ROUGL	(ε/D)	Loop roughness coefficient
ROUGTS	$(\varepsilon/D)_{ts}$	Test section roughness coefficient
SLIPR	Sr	Slip ratio
TIN	t _{in}	Inlet temperature of test section
ZETA	nts	Test section lumps number
WMAX	Wmax	Maximum value of the flow rate
WMIN	W _{min}	Minimum value of the flow rate

Variables in the Program

.

A, B, C	/	Number of the boundary lump
ALFABB	α _{bb}	Void fraction at the end of the "slight
		subcooled region"
ALFAE	ex	Void fraction at the exit
ACCG	g	Gravity acceleration
AMU	μ	Dynamic viscosity
CP	с р	Heat specific capacity
СК	κ _t	Thermal conductivity
D	D	Diameter
DE	Δε	Relative error
DELTAZ	ΔZ	Length of test section lumps
DPACC	∆p _{acc}	Spatial acceleration pressure drop
DPFRIC	Δp _{fr}	Friction pressure drop in the lo op
DPLOC	Δp_{loc}	Local pressure drop
DPLOCT	$\Delta p_{loc.tot}$	Total local pressure drop
DPRT	Δp_{res}	Total resisting pressure drop
DPMOT	Δp_{mot}	Driving force

FORTRAN Language	Symbol	Meaning
EIN	h	Inlet enthalpy of test section
EOUT	h	Outlet enthalpy "
FI	Φ	Thermal flux
FFISLB	$(f/f_{iso})_{LB}$	Pressure drop multiplier in local boiling region
FISOLB	$(f_{iso})_{LB}$	Isothermal multiplier in local boiling region
FFISSR	$(f/f_{iso})_{sr}$	Pressure drop multiplier in the "all liquid region"
FISOSR	(f _{iso}) _{sr}	Isothermal multiplier in the "all liquid region"
FISO	f.	" in loop's components
G	ρV	Mass velccity
ICN	/	Indicator for the cycle restart
ккк	/	Indicator for (f/f_{iso}) relation
KIND	/	" for a new flow rate
KPUMP	/	Pump indicator
нх	λ_{sr}	Heat transfer coefficient in the all liquid region
PDROPI	Δ _{P1}	Pressure drop in the "slightly subcooled" region
PDROP2	Δ _{p2}	Pressure drop in the "bulk boiling" region
PFRICT	$\Delta \mathbf{p}_{fr}$	Friction pressure drop
POWER	P	Thermal power
REYN	$^{ m N}_{ m Re}$	Reynolds number
RMOLT1	R ₁	Two phase multiplier in subcooled boiling
RMOLT2	R ₂	" " in bulk boiling
RO	ρ	Density
ROLB	ρ _{LB}	Average density in the highly subcooled region
ROM1	ρ ₁	Average density in the slightly subcooled region
ROM2	ρ ₂	Average density in the bulk boiling region
ROMB	ρ 2. v	Average density in the bulk boilong region
	_, ,	computed by volumetric quality
ROMS	ρ _{1,v}	Average density in the slightly subcooled region computed by volumetric quality
ROMR	ρ_{ris}	Average density in the riser

FORTRAN Language	Symbol	Meaning
ROSR	psr	Average density in the all liquid region
ROSAT	ρ f. sat	Saturate water density
Т	t	Temperature
TSAT	tsat	Saturation temperature
TD	t _d	Temperature at which slightly subcooled boiling starts
TWALL	t	Wall temperature
TWIN	t w.in	W all inlet temperature
TWSCB	t w.scb	$t_{sat} + \Delta t_{sat}$
TSCB	t scb	Temperature at which highly subcooled boiling starts
V	v	Velocity
WX	w _x	Flow rate
XBV	x _v	Volumetric quality
XE, XEX	X _{ex}	Outlet quality
XFSLB	1	Term of the two phase multiplier in the slightly subcooled boiling
XL	1	Loop components length
ZO	Zo	All liquid re gion length
Zl	Z ₁	Highly subcooled region length
Z2	z z	Slightly subcooled region length
ZD	Zd	Test section length up to the end of highly subcooled region
ZLB	z_{LB}	Test section length up to the end of all liquid region

5.5 Possible Future Developments of the Program

Possible developments may consist in the usage of some relations expressing the variability, versus input data, of some quantities, assumed constant in the code. Among these slip ratio and parameter ε are important. The slip is variable versus the void fraction and the pressure; ε varies versus the subcooling.

Moreover some equations can be substituted by other equations, if the last ones were in best accordance with experimental results. Another future development may be the extension of the calculation until

to regions near critical point; in that case the program must use other relations for the properties calculation.

Nomenclature

Symbol	Meaning	Dimension
C	Specific heat capacity	[H/M.T], (Kcal/Kg _m . ^o C)
D D	Diameter	[L], (cm)
^f iso	Isothermal pressure drop multiplier	/
(f/f _{iso})	Local boiling pressure drop multiplier	/
g	Gravity acceleration	$[L/\vartheta^2]$, (cm/sec^2)
G	Mass velocity	$[M/\vartheta, L^2], (Kg_m/sec.cm^2)$
h	Enthalpy	[H/M], (Kcal/Kg _m)
К	Loss coefficient	/
К _b	Thermal conductivity	[M/ 9. T. L], (Kcal/ cm. sec. ^O C)
1	Length of loop's components	[L], (cm)
N _{Re}	Reynold's number	/
p	Pressure	$[F/L^2]$, (Kg_p/cm^2)
Р	Thermal power	[H/ϑ], (K αl/sec)
r	Evaporation heat	[H/M], (Kcal/Kg _m)
R	Two phase multiplier	/
S	Slip ratio	/ 2
S	Area	$[L^{2}], (cm^{2})$
t	Temperature	[T], ([°] C)
v	Velocity	$[L/\vartheta]$, (cm/sec)
x	Steam quality	/
Z	Length from the test section in	nlet $[L]$, (cm)

Greak letters

α	Void fraction	/
β,η,ὲ	Bowring's model parameters	/
δ	Angle of loop	radi a nt
Δp	Pressure drop	$[F/L^2]$, (Kg_p/cm^2)
$\Delta \epsilon$	Relative error	/ P
$\hat{\boldsymbol{\varepsilon}}/\mathrm{D}$	Roughness coefficient	/
λ	Heat transfer coefficient	[H/L ² . 0.T], (Kcal/ cm ^{2.0} C.sec)
Ļ	Dynamic viscosity	$[M/L\vartheta]$, (Kg _m /cm.sec)
p	Density	$[M/L^3]$, (Kg_m/cm^3)
Φ	Heat flux	$[M/\vartheta.L^2], (Kcal/sec.cm^2)$

Subscripts

a	Air
acc	Acceleration
bb	At the end of "slightly subcooled"
cl	Cold leg
d	At the end of "highly subcooled"
elev	Elevation
ex	At the exit of test section
exc	Exchanger
fr	Friction
fit	Fitting
g	Steam
in	Test section inlet
iso	Isothermal, single phase
f	Liquid
LB	Local boiling
loc	Local
mot	Driving
res	Resisting
ris	Riser
sat	Saturated
scb	At the beginning of "highly subcooled"
sr	Only heated region
t	Thermal

Symbol	Meaning
tot	Total
ts	Test section
T.P.F.	Two phase flow
v	Volumetric
w	Wall
0	Highly subcooled region
x	Unkwown value
1	Slightly subcooled region
2	Bulk boiling region

Aknowledgements

The authors wish to thank Prof. C. A.Arneodo for his precious suggestions in the model discussion. The authors are also grateful to Ing. P. Gregorio for his help in the pressure drops calculation, and to Mr. L. Magnone for the drawing of flow chart.

References

- [1] C.Arneodo, G.Gaggero, P.Gregorio "Mauro-2 A Program for Temporal Analysis in a Closed Pressurized Water Loop" PTIN 23 (oct. 64)
- [2] R.W.Bowring "Physical Model, based on Bubble Detachment, and Calculation of Steam Voidage in the Subcooled Region of a Heated Channel"HPR-10 (Dec. 1962)
- [3] L.Silvestri et al. "Evaluation and Interpretation of the Experiments on Adiabatic Two-Phase Flow Performed at CISE under the CAN-1 Program"

CISE Report R-43 (May 1962)

- [4] O.J. Mendler et al. "Natural Circulation Tests With Water at 800 to 2000 Psia Under Nonboiling, Local Boiling and Bulk Boiling Conditions"
 - ASME Trans. Journal of Heat Transfer (August 1961) p. 261 - 273
- [5] P.Gregorio "Le cadute di pressione bifasi con particolare riferimento alle misure in circuiti fuori pila"

Politecnico di Torino, Report PTIN 25 (Ottobre 1965)

[6] F.Kreith, M.Summerfield "Heat transfer to Water at high Flux

Densities with and without Surface Boiling"

ASME Trans. 71, n.7, p. 805

- G.W.Maurer, B.W.Le Tourneau "Friction Factors for Fully Developed Turbulent Flow in Ducts with and without Heat Transfer" ASME Paper n. 63 - WA - 98
- [8] W.H.Jens, P.A.Lottes "Hydrodynamics" (Water-cooled Systems)
- [9] P.A. Lottes "Expansion Losses in Two-Phase Flow"

Nuclear Science and Engineering: 9, 26-31 (1961)

[10] "VDI - Wasserdampftafeln"

Sechste überarbeitete und erweiterte Auflage von Ernest Schmidt VDI

Springer - Verlag, R. Oldenburg , 1963

[11] H.C.Sher "Estimation of Boiling and Non-Boiling Pressure Drop in Rectangular Channels at 2000 psia"

WAPD-TH-300 (March 1957)

[12] C.Arneodo, G.Gaggero, P.Gregorio "Mauro-1. A Program for Pressure Drops and Flow Rate Calculation in Natural Circulation Loops" PTIN-21 (October 1964) [13] C. R. A. N. E. "Flow of Fluids through Values, Fittings and Pipes" [14] K.H.Beij "Pressure Losses for Fluid Flow in 90 Degree Pipe Bends" [15] R.V.Giles "Fluid Mechanics and Hydraulics" Schaum Publishing Co. New York (June 1962) [16] R.C. Martinelli, D.B. Nelson "Prediction of the Pressure Drop During Forced Circulation Boiling of Water". Trans. ASME, vol. 70, p. 693 (1948) [17] N.C.Sher, S.J.Green "Boiling Pressure Drop in Thin Rectangular Channels". Chem. Eng. Prog. Symp. Series, N. 23, vol. 55, p. 61, (1959)[18] S. Levy "Steam Slip - Theoretical Prediction from Momentum Model" Journal of Heat Transfer, Trans. ASME, vol.82, **p.** 113, (1960) [19] J.F.Marchaterre "Two-phase Frictional Pressure Drop Prediction from Levy's Momentum Model" Journal of Heat Transfer, Trans. ASME, vol. 83, p. 503 (1961) [20] P.A. Lottes, W.S. Flinn "A Method of Analysis of Natural Circulation Boiling Systems" Nucl. Sci. Eng. (Dec. 1956) [21] B. Panella "Estensione al Caso delle Cadute di Pressione Bifasi del Mauro-2" Tesis, Polytechnic School of Turin (1966)

Appendix 1

The Lottes-Flinn Model

Lottes and Flinn model for annular two phase flow in uniformely heated channels supposes the pressure losses increase is due to the liquid velocity increase. By giving the subscript "in" to the inlet and the subscript "f" to a generic section, the respective velocities are defined by:

$$v_{in} = \frac{W}{\rho_{in} \cdot A}$$
, $v_{f} = \frac{w_{f}}{\rho_{f} \cdot A_{f}} = \frac{(1-x) \cdot w}{\rho_{f}(1-\alpha) \cdot A}$ (1)

and by supposing $\rho_{in} = \rho_f$ (rigorously true in bulk boiling):

$$\frac{\mathbf{v}_{f}}{\mathbf{v}_{in}} = \frac{1-\mathbf{x}}{1-\alpha} = 1 + \left(\frac{\rho_{f}}{\rho_{g}} \frac{\mathbf{v}_{f}}{\mathbf{v}_{g}} - 1\right)\mathbf{x}$$
(2)

The mean value of pressure drop multiplier R is given in general by the relation:

$$\overline{R} = \frac{1}{L_2 - L_1} \int_{L_1}^{L_2} \frac{(dp/dz)_{TPF}}{(dp/dz)_0} dz = \frac{1}{L_2 - L_1} \int_{L_1}^{L_2} \left(\frac{v_f}{v_{in}}\right)^2 dz$$

By using the eq. (2):

$$\overline{R} = \frac{1}{L_2 - L_1} \int_{X_1}^{X_2} \left[1 + \left(\frac{\rho_f}{\rho_g} \frac{v_f}{v_g} - 1 \right) x \right]^2 dx$$
(4)

In the slightly subcooled boiling $(X_1 = 0)$, by introducing the void fraction:

$$\overline{R} = \frac{1}{3} \left[1 + \frac{1}{1 - \alpha_e(1 - \psi)} + \frac{1}{\left[1 - \alpha_e(1 - \psi) \right]^2} \right]$$
(5)
$$= \frac{v_g}{v_f} \frac{\rho_g}{\rho_f}$$

where

In the bulk boiling $(X_1 = X_{bb})$, the integral (4) has been solved by Cotes formula, or by arithmetic average, when the integration length is less than 0.4 cm.

Appendix 2

Expansion Losses in Two-phase Flow

When a flowing mixture of vapor and liquid expands because of a change in flow area, a static pressure change may be observed across the expansion.

Since the pressure losses are proportional to the square of the local liquid velocities, it seems that regions of highest losses are the regions of highest void fraction and liquid velocity.

Romie calculated this loss by writing an equation for the momentum balance across an abrupt expansion as follows: (see fig. 1)

$$p_{1}A_{2} + \frac{w_{f_{1}}v_{f_{1}}}{g} + \frac{w_{g_{1}}v_{g_{1}}}{g} = p_{2}A_{2} + \frac{w_{f_{2}}v_{f_{2}}}{g} + \frac{w_{g_{2}}v_{g_{2}}}{g} + \frac{w_{g_{2}}v_{g_{2}}}{g}$$
(1)

This equation assumes that pressure p_1 also acts on area A_2 , just after the expansion.

From material balances and the continuity equation, it can be shown that $(\sigma = A_1/A_2 \text{ and } W_o \text{ the total flow rate flowing as liquid})$

$$w_{f_2} = w_{f_1} = w_o(1-x) = \rho_f V_o A_1(1-x) = \rho_f V_o \sigma A_2(1-x)$$
 (2)

$$\mathbf{w}_{g_2} = \mathbf{w}_{g_1} = \mathbf{x} \mathbf{W}_{o} = {}_{f} \mathbf{V}_{o} \mathbf{A}_{1} \mathbf{x} = \boldsymbol{\rho}_{f} \mathbf{V}_{o} \boldsymbol{\sigma} \mathbf{A}_{2} \mathbf{x}$$
(3)

$$v_{f_1} = \frac{v_o(1-x)}{1-\alpha_1}$$
, $v_{f_2} = \frac{\sigma v_o(1-x)}{1-\alpha_2}$ (4)

$$\mathbf{v}_{g_1} = \frac{\mathbf{v}_{o} \cdot \mathbf{x}}{\alpha_1} \frac{\rho_f}{\rho_g} , \qquad \mathbf{v}_{g_2} = \frac{\sigma \mathbf{v}_o \mathbf{x}}{\alpha_2} \frac{\rho_f}{\rho_g}$$
(5)

By combining eqs. (1) through (5) the static pressure change is found to be:

$$p_{2} - p_{1} = \frac{G^{2}}{2g\rho_{f}} \cdot 2\sigma \cdot \left[x^{2} \frac{f}{\rho_{g}} \left(\frac{1}{\alpha_{1}} - \frac{\sigma}{\alpha_{2}} \right) + (1 - x)^{2} \left(\frac{1}{1 - \alpha_{1}} - \frac{\sigma}{1 - \alpha_{2}} \right) \right]$$
(6)

Because Richardson found no change in α across the expansion, in eq. (6) $\alpha_1 = \alpha_2$.

In the LUPO there is in addition the following term because of the continuity between the single phase and two-phase pressure losses:

$$\begin{bmatrix} K_{out} - 2\frac{D_{ts}}{D_{ris}} \left(1 - \frac{D_{ts}}{D_{ris}}\right) \end{bmatrix} \frac{G^2}{g_c(\rho_{out} - \rho_{ris})} = \begin{bmatrix} K_{out} - 2\sigma(1 - \sigma) \end{bmatrix} \frac{G^2}{g_c(\rho_{out} - \rho_{ris})}$$
(7)

Therefore the two-phase exit pressure drop is given by:

$$\Delta p_{\text{out, TPF}} = \frac{\sigma(1-\sigma)}{\rho_{\text{out}} \cdot g_{\text{c}}} \cdot G^2 \left[\frac{x^2}{\alpha} \frac{\rho_{\text{f}}}{\rho_{\text{g}}} + \frac{(1-x)^2}{1-\alpha} \right] + \left[K_{\text{out}} - 2\sigma(1-\sigma) \right] \frac{G^2}{g_{\text{c}}(\rho_{\text{out}} - \rho_{\text{ris}})}$$
(8)

Appendix 3

Comparison between calculations and experiments

The calculation results have been composed with experimental results of natural circulation loops built at the Polytechnic School of Turin. A description of the loop (fig. 6) and the experimental results obtained up to date, have already been published in many reports. Here we show several points, obtained in various tests, with pressure $p = 60 \text{ Kg/cm}^2$ and thermal power P = 80 KW. Truly the thermal power is kept constant hardly, during the test.

However, there is a fairly good correspondence between calculations and experiments (fig. 5), for large void fraction also.

Appendix 4

Analytical formulation of Martinelli-Nelson multiplier

In their famous work of 1948 Martinelli and Nelson gave a plot (p. 698, fig. 4 of Ref. 16) of the two-phase multiplier R versus the pressure p; the steam quality x is the parameter of the various curves. A numerical table also is given. In his thesis at Polytechnic of Turin in 1966 (Ref. 21) B. Panella derived a formula from this table, by the last squares method. Using the following relation:

$$R = 1 + a x^b$$

and by iterating the least squares method, the following expression for a and b have been computed:

$$a = 44.38 \cdot e^{-0.01688p}$$

 $b = 0.7878 - 0.4762 \cdot 10^{-3}p$

where the pressure p must be given in Kg/cm^2 . The range of validity (with errors less than 5%) is between 40 and 140 Kg/cm^2 .

Fig. 1 Hydraulic loop scheme

Fig. 2 Section of the heated channel of the loop at Polytechnical School of Turin

I06

I07

Fig. 5 Comparison between results of the calculation and experimental

Fig. 6 Schematic representation of the loop at Polytechnical School of Turin

. .

.

.

NOTICE TO THE READER

All Euratom reports are announced, as and when they are issued, in the monthly periodical EURATOM INFORMATION, edited by the Centre for Information and Documentation (CID). For subscription (1 year: US 15, £ 5.7) or free specimen copies please write to:

or

Handeisblatt GmbH "Euratom Information" Postfach 1102 D-4 Düsseldorf (Germany)

Office central de vente des publications des Communautés européennes 2, Place de Metz Luxembourg

To disseminate knowledge is to disseminate prosperity — I mean general prosperity and not individual riches — and with prosperity disappears the greater part of the evil which is our heritage from darker times.

HH

Alfred Nobel

SALES OFFICES

All Euratom reports are on sale at the offices listed below, at the prices given on the back of the front cover (when ordering, specify clearly the EUR number and the title of the report, which are shown on the front cover).

OFFICE CENTRAL DE VENTE DES PUBLICATIONS DES COMMUNAUTES EUROPEENNES

2, place de Metz, Luxembourg (Compte chèque postal Nº 191-90)

BELGIQUE — BELGIË MONITEUR BELGE 40-42, rue de Louvain - Bruxelles BELGISCH STAATSBLAD Leuvenseweg 40-42, - Brussel

DEUTSCHLAND

BUNDESANZEIGER Postfach - Köln 1

FRANCE

SERVICE DE VENTE EN FRANCE DES PUBLICATIONS DES COMMUNAUTES EUROPEENNES 26, rue Desaix - Paris 15°

ITALIA

LIBRERIA DELLO STATO Piazza G. Verdi, 10 - Roma

LUXEMBOURG

OFFICE CENTRAL DE VENTE DES PUBLICATIONS DES COMMUNAUTES EUROPEENNES 9, rue Goethe - Luxembourg -----

日本

NEDERLAND STAATSDRUKKERIJ Christoffel Plantijnstraat - Den Haag

UNITED KINGDOM H. M. STATIONERY OFFICE P. O. Box 569 - London S.E.1

> **EURATOM — C.I.D.** 51-53, rue Belliard Bruxelles (Belgique)