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totic behavior, repair density and life distributions may be easily obtained. The
problems of defining p.d.f. of forward recurrence time, of number of repairs and
total safe time are also afforded. In other words, results are sought which may be
used for the solution of a series of problems commonly encountered in the practice
of repairable systems. These results find a thorough correspondence with develop-
ments already offered by the literature for renewal processes. Simple renewal
processes would consist of the recurrent superposition of acts of failure and restora-
tion both starting as new after each transition.

The code AVACOM-ETARP (Availability Computation-Element Transient
and Asymptotic Repair Process) allows computation of availability, of repair
density and of failure density accounting any continuous time dependence of
failure and restoration rate. Numerical results are shown with regard to a few
practical situations.
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ABSTRACT
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Simple repair processes then deal with a two-state alternating policy resulting from
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Sct, 1 Introduction

Let us consider that a unit U entails the stochastic
process {x(t), ty, €t < +a0} where the random variable
x(t) takes values in an arbitrary abstract space )( . By unit
or element ,or component we mean an undecomposable part of a system, as
well as any device whose reliability characteristics are
studied independently of the characteristics of its com-
ponent parts. Let )(== XSLJ Xf s XS and Xf representing
a mutually exclusive and exhaustive seb of events, and
define x as follows, x(t) = j with j = s or f, 1if the
unit is in the state X, at time t. Suppose X (to) = s,
Furthermore, if x(T) = j and x(t) = kwith t > t, then say that
the unit has made at least one transition Xj —_ Xk_xvithim1 the

interval (t , t).

Processes we deal with will assume alternatingly the

1 1t 1 "
states XS, X Xs’ Xf, XS,....Denote T, T T 2,’72

7'3, cen
the states X  and X.. {T'n} and ﬂf”n} , with n=1,2,3,...,

are sequences of non-negative random variables ( 1'O= T”O=O).

f’
the times or life lengths spent successively 1in

>

If XS represents the state under work or the safe state of the

unit and Xf denotes the state under restoration or the fail-

ed state, we may call the instants,

. r = + t 4 ll+...+ t tv=
(1.1) tro= oty T& T *rn , t
the failures of the unit and the instants,

(1.2) t" o=t o+ Y+ T”+“'+TH+VB’ t" =t

the restorations. During the intervals t”n—l <t <t'n we



think of a failure act or process defined by a failure hazard
rate
A =A{ . " 1
(1.31) n n(t, tho s g e to) ,
in such a way that the product 'Xh dt 1s the probability
that the unit fails from t to t + dt, given that the unit
is safe at time t. On the other hand, during the intervals
t'n <t <:t”n we consider a restoration act or process cha-

racterized by a restoration hazard rate

(1.32) J (t; t' o, t"n_l, ey to).

The product/ﬂndt 1s the probability of a restoration occur-
ring from t to t + dt provided that the unit is failed at

the instant t. In the mathematical expressions for ’ln and
M the dependence upon t may allow for the aging of U, whe-
reas the dependence upon t'n, t'n-l’ tﬂ-l’
policies whose distinctive characteristics rely on a discrete

etc. may allow for

number of (passed) instants of failure and/or restoration.

A basic role in the theory of non-preventive maintenance
is played by those policies where after the failure the unit
is replaced by a new one which starts its life taking on all
its original properties. Then life lengths of U result inde-

pendent and equally distributed. The equations

A= A(t -

n

/n

n—l)’
/kb(t - t'n) ’

(1.4)

define what is called a simple renewal model or a simple
recurrent process.

However, if after each failure the unit is restored to
the working state and a progressive aging is admitted both

for the failure and the restoration process, equations

A (1)

n ’

e (t) ,

(1.5) A



characterize a non-homogeneous Markov process henceforth re-
ferred to as a real-time (or simple) repair process. Conversely,
let A depend upon the total amount of time ¢ the unit 1is on
during its calendar life and 1et/p4depend on the time ﬁ the

unit is down during the same life. The constitutive equations

of an effective-time repair process would then read

).n= ;L(O() s (O(-n_lgcx- <0<n) ’
(1.6)
fkn—/u(ﬁ) ’ (Pn—lsr5< n) ’
= T = " "
where an 1' + .. F %'n s @n ’fl ST S
with n = 1,2,... and o = {50=o.

A multitude of different models could be imagined so as
to match arrangements occurring in the operation and mainte-
nance practice of engineered systems. In the case of thorough-
ly constant failure and restoration rates any model entailed
by the set (1.3) would obviously degenerate to a two-state
homogeneous Markov process. Undoubtedly more intricated pro-
cesses are needed for interpreting situations commonly found
in plant operation,or for describing the behavior of human
operators. Mathematical models thus involved may be on their
side complicated and almost untreatable by means of direct
analytical techniques. Montecarlo method and simulation would
then play an essential role. Under many circumstances, how-
ever, simple renewal and repair processes represent a sort
of starting point for the theory. These two processes can be
actually treated in all their analytical aspects so as to
throw some light on more intrigued trends and problems.

Renewal processes have found an extensive consideration
in the literature concerned with reliability methods and
application5[1—4]. But in our knowledge only sparse authors
had the will or the need to consider repair processes., Although
many results are a direct consequence of the general theory
of Markov processes, it is now among the scopes of this study

to fill a sort of a gap and try to solve for repair processes
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quite a few practical problems which have been already
afforded as for renewal processes. In other words, the
emphasis is on results that can be used to answer specific
questions rather than on proofs of theorems under conditions

of the largest generality.



Sct. 2 Definitions and nomenclature

Even though we do not believe a comprehensive set of
definitions is required for understanding the developments
to follow, it may be of some value to present a unified
treatment of the various concepts and quantities involved.
This treatment will hold whichever the type of the process
concerned.

Let us first assume the possibility of a complete knowled-
ge of each statistical variable. Then define the pointwise
absolute probability P, (t) = ga{x(t) = k} as the probabili-
ty that the unit U is in the state Xk at a given instant of
time t > t_ . For the two-state unit henceforth considered
we have k = s,f as long as U is in its safe or in its failed

state, respectively. Since the two events are non-compatible,

(2.1) %Pk(t) = P_(t) + Pg(t) = 1

We find also convenient to introduce the probability of tran-
sition as the pointwise conditional probability Pk j(tlf) =
ga{x(t) =k |x (t) = j}], expressing the probability that U

is in the state X, at t with t > t, given that U is in the sta-
te Xj at t. We have P, (t) = Pkls (t)t,) =q3{x(t) = k|x (t.) =s }
In order to gain generality it is also possible to introduce
the notion of higher transition probabilities PE{?—“I) (t|t).
We then mean the probability that starting from the state Xj

we find U in the state Xk after n visits (or jumps, or

steps) of the type Xh-—»Xi .Unless otherwise stated, situations
will be only considered where n(h—i) = n(j —k) = n. Rela-

tions of consistency hold as follows

(2.2) Zk Pklj (t1t) =1 Pk‘j(t}t) = Bjk ,

(2.3) PL(t) = D Pi(B) Py (t]D),
¥
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and
(2.4 0,1,...00 N i }
E;; Pklj(t]t) = Py (011)
Let furthermore NJ k] (E t{E) with t < t denote the

number of visits fr0n1>( to Xk during (t,t) given that the
unit enters (or, equlvalently, starts from) the state X. at
k(i (t,t|t) will denote the number of
visits from Xj to X, within (t,t), provided that the unit

k

1 in th tate X. at t. N. . d N. . d
ays in e state a [ an § k15 are random

forward numbers. We may similarly define the backward random
tit). In

t. Conversely, N

numbers of visits NJ K1k (t,t|t) and N k| k¥ (t

any case 1t results % &t tit) = 0. With regard to N X1 ] (pa-
j—- k13" ’NJ—’klk ’
etc.) probabilities obey rules of the form

rallel considerations would apply to N

(2.5) P {Nj_*_k‘j (t,t1t) < n} =EP{_Nj_*_k[j(E,t[E)s n-1}

= f){ Ni gy t1t) » n} =1 —?{NJ klj(E,t|E)>n—1}
(2.6) TWNJ*kU(tJ]a } { 5k ] ﬁ,uE)<nu}

%
—S(){NJ__kU(t t)t)<nj f(){ J—"k[J(t tit) > } -

'T{ Nj—"k]j (E,t\t—:)? n+1} ’

and so on. Cumulative distributions (2.6) allow in their turn
the computation of the expected number of steps j—=k occuring

within a finite interval of time (t,t),

(2.7) MJ *k(gyt)EE{NJ_'_k(E’t) } -

1, o000

= Ei HT{N}*ﬂEJ)=n§,

n
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whereas the second-order central moment would result

(2.8) Iggk(ﬂﬂ = @{%g«(mﬂ}=
1,...°<>2 2 - 2 =
= Z n g) {NJ—Fk(t’t) = n} - M]-—'—k (t’t)'

I
The time derivative of (2.7},
? M. ___k('E,t)

T = ]
(2'9) mj-——-k(t’t) ’at ]

is referred to as the (forward) jump density function.
A notable interest is attached to the difference

- _ 1 if x(t) € X,
(2.10) N, __(t,t) - Nj—-j (t,t) = {

J 0 otherwise.

Indeed, taking expected values of both sides, we are led to

(2.11) P (t|t) = M k(E,t) - Mj_*.j(t,t)

kyj j—
If we think of U with x(t) ¢ X, , the sequence of time

intervals spent alternatively 1in XS and Xf will be written
3 ~ nrt ™ 1 (¥ N~

(z.11) Z(®), TN, TR, TMigy, L.,

When t = t'we would have g(t'n) =0, fort = t " it would

be g Uﬂ%& = %'1(tn") . On the other hand, thinking of U with

x(t) € X life lengths are

f’
(2.11,) g, v, T, Yy,
Note, further, that according to Sct. 1, E(to) = 0, g(to) =

='Cl'(to) = ’tl" 't"l(to) = t'&,.... Any term or sum of terms
in (2.11) is a statistical variable representing a life excerpt
of U. Particular life excerpts are the amount of time the

unit is on and the amount of time the unit is down during
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(E,t), denoted as ‘f(%,t) and ’Y(E,t), respectively. Clear-
ly additive properties hold as follows

(2.12) P (T,t) + Y (1)

1t
-+

i
-+

+

(2.12,) f(E,1) = P(E,0) + F(E,1) , etc.

We may also express simple relations bectween number of vi-

sits and life excerpts. As for Ny g We ha.e in fact

(2.137) P{ Ny g5 (t,t1%8) » n | =

= PUTE 2 TP ® v r V(D) s eeE ),
(2.13,) PN, P (t,tlt) » nj =

- q>{ g(f) + T,l"(f) + ... F ”C'n(f} < t—?}

Moreover, for conditional probabilities PE j we find

(2.14) PR (t[T) =f(>{ TE) ¢ TR e z'n(E)s t-t <

fis

c (E) ) ¢ s (D) e (D)) 5 Pl () B (DS

< -t} SPla o+ f D) s T

n — N . - — . d ey
(2.14,) PS!S(t]t) -—'f_;LLl*(t) U () s T (BTN ) 2 t-T <

<UL B U )

+ @n(f) < t-?’},

and so on.
offen

A problem v encountered consists of the determination of
ff’{f(%,t) < & (or T{«r(%,t)oy} ), where t-t3d> 0
(t —t?‘f>0)<.—3

Because of (2.121) we see that

i}
._,Ls
—
X
3
~
s
.
+
>
=
~,
y
—
i
[
i
—
S
i
0
J
A
S
—
-
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(2.15) [P{w('{,t)svf} =1 - f’{ P (E,t) < t-t-¥].

A useful connection with pointwise availability Ps(t) has
the form

i s t-t ‘
(2.16 E{“ﬁ(t,t)} = j Ps(u) du=J CP{L((Q)dc‘p ,
t o :
VP <8}
h f = .
where y (¢) 3%

Finally, if ty denotes the random instant at which the total
operating time attains the value ¢ we will have

(2.17) Plrt,0s8)=T{ t= t5} .
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Sct. 3 Irreversible change

In the present section we shall consider both the ope-
ration of a unit until its first failure and the maintenan-
ce until its first restoration. In other words, failure and
restoration are thought of as irreversible or absorbing sta-
tes; from a formal point of view they will find thoroughly
similar analytical treatments.

Suppose that the unit starts to operate at the instant
to. The probability of failure free operation during (to,t)
will be denoted

(3.1)  R(t_,t) = P_ . (tlt) =:(’{’t' >t-t ) =

@ =

ﬂ( { Ns-—ﬁf (to’t) 0 }

R(to,t) is called the reliability (function) of the unit.

Because of its physical meaning, this function should be real-valued,

continuously differentiable and decrease monotonically from lim

R(t,, t) =1 to lim R(t_,t) = 0. The complementary value ™%
to the unit t—=ee
(3.2,) F(t_,t) =1 - R (t_,t) , dF = -dR,

represents the probability of failure during (to, t) or the

failure (cumulative distribution) function. The time deriva-

tive/
dF(tO,t)
(3.2,) £(t ,t) = —7—

stands for the failure probability density function (p.d.f.)

Now A(t) A t + O (At?) is the probability of failure
occurring during (t,t +4t), given the absence of failure in
(to,t). By O(Ar) we will mean a function of A which has the pro-

. T
perty lim 0(a™) _ nethe theorem on compound probabi-
a0t A ITI_—O for ?’)(0-(5 p

lities, in the 1limit At —+dt we have




(3.3) R(t,,t) A(t) dt = d (1 - R(t,,t)) = - dR(tO, t).

Namely a linear differential equation fully replaceable by

the integral form

t
(3.4) R(t_, t) = 1 - / R (t_, u) () du
t
In terms of X(t) the solutionoof (3.3) or (3.4) is
t
(3.5) °  R(t_,t) = exp (- Alu)  dw)
o ) ‘LO u u

and the failure density (3.2) results
(3.6) £(ty,t) = A(t) R(t, t)

Life length to failure 7' is a statistical variable ranging from toto oo,

Its expected value mt. and its variance 0';‘.’% are obtained as

(3.71) m,t;, = i{@'} = ft(t-%)f(to,t) dt = ft R(‘co,t)dt ~ty
0 0
2 _— > PR 2 _
(7)ol = uys [ m )t g, 0 -
- 2
= ZL(t~t°)R(to,t) dt -( m., te)
0
Clearly the expression
_ R(t,, t) t
(3.8) R(t,t) = D) = exp (—j% A(u) du) ,
o’ :

where t g tgt, _

is the probability of absence of failure in (t,t) given no
failure during (t_,t). Thus R(t,t) A (t) dt signify the
probability of failure within (t,t +dt) provided the ab-
sence of failure in (to,t). But the unconditional probability

of failure in (t,t) reads



t -—
g{ £(t ,u) du = R(t_,t) - R(t_,t) =

(3.9) F(t,t)

R (tO,E) [ 1 - R (t,t) ].

Dual considerations apply, so to speak, to the absorbing re-
storation process. Suppose then that the unit, once failed,
starts to be restored at the instant to. The probability of

maintenance free from restoration during (to,t) may be called
the maintainability(function) of the unit. We write

(3.10) S(t_,t)

0 Pflf (tlto) =:F{ T t—to} -

P{Ne_g (t,0) =0},
lim

admittedly an ever decreasing quantity in (to,t) with %
o)
S(to, t ) =1 and 1lim S(to,t) = 0 . The complementary

. . t — o0
function 1s

(3.11,) Gt ,t) = 1 -8 (t_,t) , dG = - ds

O,
and the restoration probability density function, assumed continuous for

t 2 to’ results

dG(t_,t)
(3.11,) glt_,t) = -

Let/M(t) At + 0 ( Atz) denote the probability of resto-
ration in (t,t +At) given no restoration in (to,t). In the
limit At —+~dt it follows

(3.12) S(to,t)/k(t) dt = d(l-S(tO,tD = -d S(to,t)
so that

t
(3.13) S(to,t) = exp (- f /LOU du ).

t

o}

Analytical expressions for S(t,t), G(t,t) could also be easily
found. Life length to restoration <" 1is a statistical varia-

ble. In complete analogy with {' we may calculate the expected



value

(3.14) m =€ {z"}

and the variance

(3.14,) O:'Z‘ =9 {4} -
: v
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Sct. 4 Transition probabilities

Let us refer to a Markov process of first order with a
finite number of states and assume conditions as follows [5],

1) to each state Xj there corresponds a non-negative con-

tinuous hazard rate function Yj(t) such that

+ = - + 2
(4.1) Pyj (E+Atlt) = 1 - Y (0)at « 0(AtY)

11) to any two different states X. and XP there correspond tran-

sition probabilities’ﬁj_*_k(t) such that

(4.2) Py (E+AEIE) =y () T (t) At + 0 (At

j—k

TTj ()
and.E:k.TTj _.1(t) = 1, expressing the conditional probability

are continuous functions hltzﬁ&dith TTj j(t) =0

of a transition of the system from Xj to Xk during (t,t +At),
given that a transition occurred from Xj within the same time

interval.

If the passage to the limit for At —— 0 holds uniformly in
t>t,we obtain the Kolmogorov's forward system of differen-
tial equations

@Pk]i(tiE) }
(4.3) 3T = oY (8) Py (tlt) o+

v Yy () By (e Ty (1)
j#k
The initial conditions are Pkli (tit) = Sik . On Ehe ofher
hand, as long as the passage to the 1imit for A t— O holds
uniformly inz}towe are also given the Kolmogorov's backward

system of differential equations
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PP, . (tit) S
k| z T t t)
%% B AOGRINGLERAG %?ETTi_..j(t)

(4.3))

Pklj(tlt)

with the corresponding initial conditions Pk|i(t|t) = bik [5,6] .
Both systems (4.3) uniquely determine the transition probabi-
lities Pkli(t’E) and these probabilities result subjected to

the Chapman-Kolmogorov relation

(4.4) Pp; (t1D) = E;:pj‘i (t1t)- Pl (t1t).
| ]

Now the basic hypotheses underlying a two-state simple repair
process are Ys(t) = XN (t), Xf(t) = (T, 1*;__f(t) =1Tf__s(t)=
=1, where the hazard functions A (t) and/u(t) have the same de-
finitions of Sct, 3. Thus, according to (4.31) , the probability

PfIS (t|t) can be assigned as
'DPf‘S(tIE) - -
(4.5) =~ = - p(1) Pfls(tlt) + N(t) Po g (t1E);

a thoroughly similar equation would hold for Pf‘f(tlf). Through
formula (2.3), knowing the distribution {P.(%)} with t >ty
we obtain for the pointwise unavailability (4]

d Pc(t) A
(4.6) ——g— = - F(1) Po(t) + A(1) P (D).

On its turn, equality (2.1) assures the compatibility with
the alternative form for the pointwise availability

dp_(t) | |
(4.7) —Fg— = = A(t) P (1) *+ ju(t) Po(t) = p(t)=( A(£)+p(t))P (1),

dt
Situations where failure is an absorbing state, namely where unit
is not repairable, correspond with/p,= 0. Conversely, the posi-
tion A =0 implies restoration as an irreversible process.
More specifically, with the initial condition Pf(f) the in- -
tegral of equation (4.6) becomes [4]



_ t
(4.8) Pe(t) = Pe(®) exp (- [ (A+ ) du) +
t

+ exp (- + ) du u) exp + dw)du=
t t t /

t
= R (t,t) S(t,t) [pf(i) j Au) du J
t R(t,u) S(t,u)

On its turn equation (4.7) entails

t
(4.9)  P(t) = P_(E) exp (- [ (h+p) aw
t

t

u
) exp ([ (hep) ) du

t
+exp (- [ (A+p) du) /
t

t t

and PS(E) =1 - pf(E).

The next step consists of the calculation of the transition
density functions. We have the failure density function of the
process

(4.19) mg__ g s (t1T) = P o (tIT) A (1)

S <ls

and the restoration (or repair) density

(4.11) %awm(“azpﬂﬂﬂﬂ#“)=%~wm“ﬁL

Thus (4.5) may be rewritten in the form

gpfls

(4.12) T = ms-——{]s - m foesis®

Since the total numbers of failures and of restorations in

(E,t) are defined as

(4.131) Ms_a.f]s(t’tlt) = }% ms—*-f\s(uit) du,
— — t —
(4.13,) MﬂAsBﬁ,ﬂﬂ)=é fo— g s(ult) du =
= (t, tit)
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and P (EIE) = 0 , the integration of (4.12) gives

fis

(4.14) P (t1t) = M (t,tit) - Mf__slS(E,tqi).

fis s— fis

As shown by (2.11) this relation holds independently of the

type of failure plus restoration policy which has been assumed.
An alternative description of repair processes lies entire-

ly on integral equations. With aim at simplicity, we will

hence forth set t = t, P.(t)) = 1 : it does result Psls(t{to)=

=Ps(t). Then, starting from the last repair onwards, we have

t ) l B .
(4.15) Ps(t) = Ps(to) R(to,t) + L; 1nf_*_s‘s(u|to)R(u,?)du=
- . o
= R(to,t) + L: Pf(u)/&(u) R(u,t) du.
o)

This equation should be combined with the one for Pf(t) obtained

starting from the last failure,

. .
(4.16)  P(t) = P(t)) S(t_,t) + }; me__ s (ulty) S(u,t)dus
(o]
t .
- / P_(u) A (u) S(u,t) du.

t
(0]

Now equations (4.15) and (4.16) reduce to equation (4.6) or
(4.7). In fact differentiation of (4.15) (the same procedure
applies to (4.16)) shows o
dPS (t) \ N t -
—S——— = - A1) R(t,t) - (t)/’ Po(u) p(u) R(u,t) du+
¢ .

0

+ () Pe(t) = = M(t) P (1) + pu(t) P(t),

However, if the integral equation for Ps(t) is written

moving from the last failure onwards, we obtain the closed

form (7]
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t .
t
(4.17) P_(t) = R(t,t) + I [ms___f(u) f S (u, ) ju(w)
t .
(o] u

du

- R{w,t) dw

t t
=R(to,t) + f [ Ps(u) X(u)‘f S(u,w)/w(w) R(w,t)dw | du.
t
o u
Alternatively, for Pf(t) we may move from the last repair on-
wards thus obtaining
t

(4.18) Po(t) = f R(t,,u) A(u) S(u,t) du +
tO
t t
+j [ mf——-s(u)/ R(u,w). >\(w) S{W,t) dw] du =
t u
(o]

t
=f R(t,,u) A (u) S(u,t) du +

t
(0]

du .

t t
+/ [Pf(u) /u(u)j R(u,w) A(w) S(w,t) dw
t

o u

Both equations (4.17) and (4.18) can be shown to contain the
differential forms (4.6) and (4.7). For instance after diffe-
rentiation of (4.17) we have
dPS(t) t
— = AR, ¢ [ P Aw) [scu,t)ﬁ(t) -
o t s

dt o

-/tS(u,W) ) (- A(DR (w,t)) dw]}du )
u

thenlthrough the repeated use of (4.17) and (4.16))we finally end
to
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dP_ (t)

t t

= - X(t){ R(t,t) +/; [ P (u) A(u)}/ S (u,w) -

dt o .
t)\

O ROnE) ] du )] [P @S t)du | -

R iy

= = A(t) P_(t) +p(t) Pe(t).



Sct. 5 Limiting distributions

Since the number of states of the repair process
{x(t), tog t < +°°} is finite and every state can be reach-
ed from every other state with positive probability, then the
repair process is ergodic [5]. The limiting distribution
{Pk ()} = lim {Pk(t)} is uniquely determined from (4.6)

and (4.7). We have 1lim —%Ek = 0 and
t— t

(5.1) Pf(oo) = 1lim ___>\_££)_ , PS (s0) = 1lim M)
t—-e0 A(t)+p(t) tmeo N(t)+p(t)

g et =me (),
irrespective of {Pk(%)} . If the process is homogeneous, then
A and/p, are constants independent upon t. Integrals (4.8) and
(4.9) become

(5.27) Pg(t) Pf(E) exp[ -(A ﬁ%) (t-%)] +

_r
N

—r—

1 - exp [- (A ) (t”E)J} ,

A
>\+/L~

(5.2,) P_(t) = P (%) exp [—(A+/&)(t-f) J+

{1 exp [~ —ﬁ}},

and the limits (5.1) result self-evident.

More generally, it 1s natural to look for asymptotic
expressions valid usually as t - t,—=oo, Or occasionally as
t - to-—— 0. Let us first refer to Valuest t »>to. Having de-
fined the new independent variable u E./ (A (w) +/u(w)) dw,
equation (4.6) may be written in the form °O

de(u)
(5.3) — I = ¢ @ - P(uw) ,
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with e (u) = 2 (u) , P.(0) = 0 . Now the solution
_ A(w) + aw(u) _
(5.21) gives a hint to an asymptotic sequence of the type
1,2,...
(5.41) Pf(u)m, 2;: Pf’r(u) l-exp(-u) T as

[1 - exp (—u)}—*-o .

Substituting this sequence into (5.3) and equating coefficients

of like powers of [ 1 - exp (-u)] , we obtain

1 de’l(u)
(5'42) Pf’l(u) - C(u)) Pf’z(u)_ 2 du 9y
dp _,(w)
P, (u) = = % il IR
, T T a
u

Had we considered the first order term of (5,41), we would have

found

| t
(5.5,) P(t) = A { l-exp |- / (A (W) () de} + B,
MO A

(o)

A
where the error committed E is numerically less than E =

= | A= N { 1- exp [ —‘ft @) 1) dw ]}. Then, as far as

(A . t,
[ip = X jx s :
exp(-u)~0 mui——aat;Tg—HVO, two conditions which under most prac-

tical circumstances tend to be effective by taking t-to suffi-

ciently large, formula (5.52) becomes

>\ (t) as t-t —— oo
(0]

(5.5,) P.(t) ~
2 £ NORYHO

On the other hand, if it was/& = 0, from equation (4.8) we

would obtain simply

t t
(5.6) Pg(t) =/ A(u) R(u,t) S(u,t)du = / A(WR(u,t)du=F(t_,t).
t 0
0

t
(o]
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This fact suggests the search of an expansion of Pf(t) where
F(to,t) is the leading term. We may indeed consider the ex-
pansion of S(u,t) for small j;/L(W) dw = nz,

¢ 2
S(u,t) = 1 - [ ) aw + 0 (M),
u

and write

t t
(5.7,) Pe(t) = F(ty,t) - r A (WR(u,t) (Ju/u(w) dw ) durom?y.

t
o

Let us calllﬁithe maximum value taken by'ﬁ(t) in (to,t), it re-
sults

t
[ (t-w) A (WRu, ) duro(MP) 2
t

(o)

A

(5-72) Pf(t) 2 F(toyt) -/bl.

> F(tg,t) [1—/l(t—to)] £ 0 ((t-t)D),
so we conclude

(5.8) Pe(t) ~ F(t,,t) as t-t —= 0 .

O,
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Sct. 6 Number of transitions and life distributions

In the present section we explore in more detail the

structure of the repair process, that is the nature of the

distribution functions associated with some typical occur-

rences in the operation of the unit. We begin admitting that
U enters XS at t and we define the ({cumulative) distribution

function of first n cycles to failure starting from Xs’

6.1)  FMED =@ (D s @) V(D) £t

= E(j{ NS__HS(E,tIE) > n} ,

t

|

with ﬂl)(f,t) = F(E,t). We find furthermore convenient to in-

troduce the (cumulative) distribution function of first n cy-

cles to restoration starting from XS, or, what is equivalent,

the distribution of first n repair cycles,

n

(6.1,) HUUGJ)=@{@1ﬁ)+ﬁkﬁ%n”+® ($)+7T

n

=(53{ Nf————sls (E,tﬁ:)zn} =§3{ NS__S)S(E,tIE)zn} .

Limiting conditions will hold as follows

™ (3,t), 1im F)(T,0) -

t— o

(6.2,)  FM(t,1)

1im B (%,1) = 1.

t-—-c0

It is moreover assumed IUO(E) = Tﬂo(i) = 0 and

0 for

(6.2,) F(O)(E,t) = H(O)(Z’t) = 17(1,1) = { 1 for

+

v A
)
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where 1+(E,t) denotes the improper distribution.

The knowledge of (6.1) entails expressions for the expect-
ed number of failures and expected number of repairs in (E,t).
In fact it is clear (consult (2.7)) that

(6.31) MS_*_fIS(E,tIE) ;'z{NS_*_flS(E,tIE)} =

l1,...00

$ ' n ] p(n) (E,t)-F(“+1)(E,t)] -

n

.o .ooF(n) (E’t)

My

n
and
(6.3,) Mg gys (ET1T) = Mg o ((E,t() =
- _ l,...00 -
“E{Ne_ g5 Gt} My,
n

Moments of higher order could also be easily computed. Since
(forward) probability density functions are written as

_ (n) 3 - (n) 7
6.4 £ (E,n = LESN MGy W),

(6.4,) £00) (T.6y = nl9 (%, 1) = St e-Ty

expressions (6.3) lead to

1,.

(6.5,) ms_a_fls(z,t) - E:" £ (T,0
n
_ 1,... )
(6.52) mfh*_s‘s(t,t) = Z; xjh(n) (t,t)

Note that for cases where the unit enters the state Xf at t, we

would have the opportunity of considerhg hbadditional functions,
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(6.6,) 6™ (%, {@ NG IR N S PR CO PR O

(6.6, k(M) O I CS PR AN COPIR LS B

1
=

representing respectively the distribution of first n cycles

to restoration and first n repairs starting from Xf. Hence-

forth the (forward) p.d.f.

- (n) _ (n) =
(6.7) ¢M (%4 - 9(jat (1) (Mg ¢y - 'aKat (,t)

Probability distributions of 4'(t) and 4/'(t) are known

(see Sct. 3). Then, since the multiplication theorem of pro-
babilities, we may obtain recurrence relations for F(n)(t t),

H(n)(t t), etc. Let us focus our attention on F( )(t ,t) and
H(n)(t ,t). The result is

o | ) |
6.8,  EF™ (¢ ,1) =/t [h(n'l) (to,u.)/ £(u,w) dw]du -
(o] u
t
- w1y - / R D (e ,w) R(u,t) du,

t
o

(6.#2) B (e ,t) - /t [f(“) (to,u)/t glu,w) dw ] du =

tO ‘ . u
. | o
- F(n)(to,t) -/t £(n) (t,,u) S(u,t) du,
(o]

where n=1,2, .In terms of probability densities we see that

t
6.9 £™(t_,0 =>\(t)/ R D (e w) Reu,t) du,

O

6.9) 1™, 0 /»(t)/ £ (¢_,u) S(u,t) du.

On the other hand, comparison of (6.8) with (2.14) shows
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t
(6.10,) PST;I (t,,t) = /t h(n_l)(to,u) R(u,t) du,
(o]
t
(6.10,) Py T (r 1) - /t f(n)(to,u) S(u,t) du
(o]

-\Ve may therefore assign expressions for the probability density functions

of n-th failure life and n-th restoration life,

_ pnh-1
(6:117) £ () = BUTS (5g,0) A (1),
(6.11.,) g (t,,t) = Pg . (t_,t) K (t)
2= t; 0 fis 0 fb
When equations (6.9) are summed up as in (6.5),it is obtai-
ned
' t
(6.12) Mg 15 (E1E) = ALE) R(t ,1) +)\(t)/t me__ oy 1)
(0]
- R(u,t) du,
t
(6.12,) e gy (tlty) = /»(t)j mg__ g s(ulty) S(u,t) du,
t
o

thus recovering (4.15) and (4.16). The use of distributions
(6.6)would consent the definition of other types of equations.

Noticeable forms are

t t
(6.13,) PO (e 1) =]t [f(to,u) / k(1) 4wy dedu -
(o] . u
t
-/ £eeu) kKPTH (,e) oy,
t
(o]
t
(6.13) f(n)(to,t) =/t £t ,u) K(nfl)(u,t) du,
(0]

and so on.



—33

Let us now find an expression for the (forward) interval
reliability or the probability that the unit is in X_ at t
and operates without failures throughout (t,t+T). Obviously
the event we are interested in is the union of all mutually

exclusive events [3]

_ 11" ~N 1 121 Tt 1
ey =TT L r T St et T T T +T’n+l}

with n=0,1,.... e have successively
P 0,1,...00
(6.14) f{NS,__ fls(t,t+TltO)=O}=f{ Lrjl en} -

0,1,...00 t
= YL: S(D{en} = R(to,t+T) +/to R(u,t+T) dMs*sls(to’ulto)=
= PS]s (tlto) R(t,t+T).

<A result which would have been expected since the hypothe-
ses underlying Markov processes. In the limit T-—-0 we go
back to (4.15). Having defined a new random variable, namely

the forward recurrence time to failure g(i), we will write

(6.15)  P{E)> T} = ?{Ns,_,_“s (t,t+T[t )=}

As opposed to % (t), the probability that x(t) € X; and U ope-
rates without restoration during (t,t+T) is expressed through
the forward recurrence time to restoration E;(t). Relations
hold as follows

(6.16) ?{g(t) > T} =’(P{Nf*_._s‘s(t,t+Tlto)=O}=

= Pg g (tlt)) S(t,t+T)
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The problems thus far afforded may be enlarged so as to
i 2 =
embrace the evaluation of J’{ NS{__f]S(t,t+T|tO) n } and

ga{ Nf{-s]s(t’t+Tlto) = n} . Premise is the knowledge of

probability distributions like
(6.17) ¢ {NS{__fIS(t,t + Tt )>n]=
= P50 « ) ¢ L) sr T s T,

etc. If we put

d P {5 (1) < u}

ié (t,u) = L ,

e (t,u) = df{i{@s'u}
we may write
(6.18)) - @ Nsx___fls(t,t+T\to)>n} -

- IT[ f (t,u) /T k(n_l)(t+ﬁ,t+w)dedu E
0 3 I
= Py g(tity) F(M) (¢, t+1)

and
(6.18,) ‘TT Ner_g) s (E,t+TIE) > ] = Pfls(tlto)G(“)(t,t+T).

Two equations whose roots plunge once more into (4.4).



Sct. 7 Distribution of total on time

Our problem is to find the (cumulative) distribution func-
tion (2.17)

(7.1) ?{up(to,t)g @‘J =P {tstq)}

with t =t , dst-t_.

The event ?(to,t) < & can occur through the following
mutually exclusive ways : at the instant t the system is in
the state Xf and the time interval (to,t) contains n (n=1,2,...)
complete XS intervals with total length c(rlg <@ , or at the
instant t the system is in the state XS and the time interval
(to,t) contains n (n=0,1,2,...) complete Xf intervals with
total length ﬁn > t-t -$ [8]

Consejuently, with the aid of the total probability theo-

rem, 1t results

l,...00
(7.2) PP, &f = LU w gyt
n
+ ’Cn' < & ATy *R e + T < ot <'Cl'+’t"+ +
O,l, [V
+ ft'n+ /t./"n)} + ?{ J (’C" + U+ L.t A—"n?_ t-to-@n
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Now, because of equation (2.14), we may write

1,...

(7.3 Z g){ Ang &) oty +(5n-1é o<y * (bn} )

n

-

B ? f){drﬁls CI)r‘“’(n+1 ¥ (an t—to} B

1,'0000

- Z gD{O(TIS (I) n O(Il+ (%I'lé t-to} ’

-

(7.3,) Z R A R e W P -

-

g Po{Pnz oty - N+ B< et}

0,.

B Z TD {ﬁn?‘t_to_ ¢ N o<n+1 * pné t—to}

n

Thus for 0< § < t we have

(7.4) fltest)< &) =

P |
; TCP °(n+1§<§ N Xp+1? [Bné t-to} -
) f){/inat"to_cE N X1 pnst-to]]_

- Z...oo[qv{dng ¢ N oLyt Pttt -to} -

- O{ﬁn?‘t—to B @ﬂdn ¥ @ns t—to”'
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Evhbnthrga{~f(to,t) < t-to} =1 . Since the theorem on com-

pound probabilities, each term of (7.4) can be separated into
two parts. It is obtained formally

L75) {(){dn+1é¢ﬂdn+l ¥ ﬁ’nSt_tok B

~—
=

+
—

1

iS

8
o]

+
—

+
>
oo}

{1AN
+
|
+
o
!

. ja{cxn+1 * n< t-t } = { n+1_ l (to’t)}'

P
Pltper + Bat )

and other analogous expressions. We end with

(7.6 P{ft,,t)< 3} =
0,...00

i Zn [Pl s @1 )} - PLp 2z ot -8 (2, 0) ]

1/.,.00

.f{dn+1 ¥ (ant_to} ) ; [{f){dn§¢> | (to’t)} -
_(7{ @nz t_to-cb | (to,t)}] : ?{o(n+ 3. < t-to} .

At this point through the equations (6.8) we know how to
e el . > _ IR -
compute probabllltlesrf {dn&1+ ﬁné:t tOS anduj.{u%+ ﬁn <t to}-
On the other hand, we may infer the cumulative distributions
5){ oa < P | (to,t)} and {P{ﬁnzt"to' d | (to,t)} from density

f tions f and as given b 6.11).
unctions £ ., and g ., as given by (6.11). —

Although computations seem cumbersome we may say that the pro-

blem of calculating (7.6) is at least in principle solved.
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Sct. 8 Immediate repair

Immediate repair processes correspond with practical situa-
tions where the unit afterits failure is restored to its work-
ing state within such a short interval of time that life to re-
storation may be neglected and thus set equal to zero.

More explicitly, the state X¢ for which/L =00 is called a

reflecting or unstable state. We have
- + - 0 for t<t ,
(8.11) G(t,t) =1 (t-t) = { _
1 for t>t ,
(8.1,) g(t,t) = 07 (e-1) -
Hence
= O, =
(8-2) m,l\;” /C" O

Pointwise availability and unavailability take the forms

n

(8.3) P (tit)

s|s

_ 0] for t <t
L(t-t)) = {

1 for t >t

(8.3,) Pf\s (tit) 1 - 1'(t-t0)

whereas equations (4.10) and (4.11) reduce themselves to
(8.4) M f(s (tit) = mf_.sis(tlt) =X (t)
Clearly, by definitions (6.1) it 1is

(8.5) £(n) (t.,t) = b (0

and recurrence relations (6.9) become

( t
(8.6) £ e L0 Ly (t)j g(n-1) (t,,u) R(u,t) du

t
(0]

for n=1,2,....



Now according to (6.5) it is possible to sum up and henceforth
obtain ¢
(8.7) m__g(t) = A(t) R (t,,t) + )\(t)] m, _ (WR(u,t)du,
_ v "
0

an equation apparently solved by (8.4).
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Sct. 9 Numerical computations

Our task is that of computing a series of probability
charcteristics of the repair process. They will consist
essentially of Ps(t) or Pf(t). It has been shown in fact
that many problems can be solved in terms of these two
functions. As a premise for numerical computations it is as-
sumed that values of A (t) and/AL(t) are assigned for all
t > to. The characteristics of the irreversible processes,
R(to,t) and S(to,t), are then be obtained according to the
equations of Sct. 3. An alternative starting point may be
offered by the initial specification of R(to,t) and S(to,t)
or by the related hazard p.d.f., f(to,t) and g(to,t). It
this is the case,the problem to be solved first is that of
inferring the hazard rates A (t) and M (t).

In complete generality we may begin with the evaluation of
Pf(t) as given by (4.8). When compared with (4.16) or (4.18) this
expression has in fact the substantial advantage of consenting
direct computations thus avoiding the resort to cumbersome tech-
niques. Henceforth for each time interval (t,t+-At),through the
use of a Gauss integration, (4.8) results in a discrete form as

follows
4{..m

(9.1) P(t+ At) = P_(t) exp {— AZE— Z Ai[/L(t+u; Aty +
i
1

S !
+/.L(t+u’;_ At)]} + Azt Z Ai ),(t+ui At) exp(—%(l-u’j‘_ )

i

1,...n

. ¥* * * * ® ¥ 2
ZJ Aj I:l(t+(ui o —u’{ uj)At) +A(t +(u] ul uiu’;) At)]}w(At )

A and u* are quantities inherent to the particular method of
numerical integration. More specifically, having adopted a

six-points Gauss-Legendre formula, we have m=n=6 and Ai=Aj '
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ui = ug for i=j. In each time segment (t,t+ At) expression

(9.1) then requires the calculation of 27 nodal points which
implies an estimate of Pf(t) sufficiently accurate for most
purposes.

Computations carried on the whole time domain t;:to are
however faced with two types of difficulties. First,6 an effi-
cient subdivision of the time axis into sub-intervals (t,t+[3t)
has to match the actual time shapes of A(t) and‘P(t). The incre-
ments Z}t should then be established on the ground of some dy-
namic criterion. An adaptive choice oflﬁt which grants the
fastest convergence is described elsewhere [9]

On the other hand, in the two extreme cases of small and
large values of t-—tO the simple use of (9.1) becomes redundant
and unduly time wasting. Computations can be sped up with the
help of asymptotic formulae. To this end the time domain (to,t)
has been divided into three parts. Let (to, t P(I)) denote

ax
the initial or unresolved region, Pf(t) is herewith computed
from (5.72). Time taXP(I) is fixed according to the error
criterion

(9.21) P - Pfax < EPe .

Here £ stays for a conveniently small positive gquantity and

Pfax means the asymptotic expression for Pf. If Pfax is not
too £ r from Pf, we may also prescribe '

(9.25) |Pe = Peay| < EPgay -

This signifies that the solution Pfax(I)(t) = F(t_,t) can be
accepted for taXP(I)¢5 t , Where

A A ‘
)L(t-to) F(tolt) = £,
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Next let (t P(I), t P(II))
ax ax

val, Pf(t) will be then evaluated as from (9.1). On the con-
P(II)

stand for the transient inter-

trary in the equilibrium region (tax ,00 ) use could be

made of (5.5). More explicitly we write

A (t) S (I1) S
(9.3) P_(t) = + O0P_(t) = P (t) +oP_(t) ,
£ o) + o £ fax £
where ' | '
. ) : | )
SPf (t) = = —-exp {— /t (/1+)1.) dw ] + E with |E| ¢E =
o

UJ . t

= Jj&ﬁLiaﬁgL {l—exp -)/ “lfPJ dw].}. Agreeing with (9.22)
(l+—y) t

o

N
P(ID) is assumed sup [tl, %2 ]. We take

the limiting time t
ax

A
for tl A

t ' !
1
exp [—]( (X+JL) dw] = R(t_, %l) S(t ’%l) = r§
t

o

A
and for t2 the largest root of

L&}b"flibl
X(:X+,P)2

A proper choice of r, it has to be Ogr 1, may help to keep

= (1l-r) ¢ .

tgill) as low as possible. When ;X and‘P.are constants, we
A
obtain t2 =t , r=1 and
o)
m m_,,
Ql =t + 1 InL -+ 4 T'+ i3 in L |
o) ),+-}L £ o m,+ m, £

qﬂﬂ$£w we always admitted the full knowledge of l(t) and
th). Assume now that we are given the p.d.f. f(to,t) and
g(to,t). We get
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f(t_,t)
(9.4) A(t) = 2 ,
1—/’ £(t_,u)du
£ (@]
(@]
g(t_,t)
yxt) = e
t
l—/ g(to,u) du
t
(@]

and the proofs proceed immediately from (3.3), (3.12). We must
however say that the numerator and the denominator of both
(9.4) tend to zero as t—» oo thus originating for large values
of t-to a critical form. Again computations are eased up by
means of asymptotic expressions. Differentiation of (9.4)

gives in fact

| df (t_,t) bt
_ o) 1 d A(t) _
(9.5,) Ae) = (€, t) at NS at =
= A0+ dlb),
dg(t_,t) .
(9.5, ple) = ——2 o 4+ de Lo) =
g(to,t) dt }Lﬁﬂ

).Lax (t) + E).L(t).

The time values tax and tax , beyond which errors S:X(t) and
gyit) are negligible, are determined according to error cri-
teria of the type (9.2). Table 9.1 shows the asymptotic be-
haviour of a few hazard p.d.f. commonly employed.

Now all these arguments and expedients concur to the nume-
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rical code AVACOM -ETARP (Availability Computation-Element
Transient and Asymptotic Repair Process). This code, written
in FORTRAN IVlanguage, gives computations of Pf(t) for t2=tO
whichever the type of failure and restoration p.d.f. assumed.
ms__>f(t) and mf__*s(t) are also deduced through (4,10) and
(4.11). The only limiting hypothesis is that distributions
are continuous and sufficiently smooth..Since either l,o;/L
can be the nul function, R(t ;) and S(t ,t) correspond with
the p051tlons’P,— O and ,X O respectlvely.

Explicit results have been obtained for all the combina-

tions of failure p.d.f. with restoration p.d.f. listed in

Table 9.2. Time coordinate, expected life lengths and standard
- deviations have been formulated in terms of arbitrary time units.
Figure 9.1 maps loglO Pf(t). The initial time t, is placed at
t=0. By the ordered couples EX'-EX", EX'-N",..., N'-EX",N'-N'",...
we mean combinations of failure and restoration, where EX', N',
etc. denote failure p.d.f.'s and EX", N", etc. denote restoration
p.d.f. 's, respectively. It is seen how the combinations EX- 0",
N'-0", LN'- 0", ['-0" and W'-0" which all signify F(0,t) set an
upper limit for Pf(t), a fact anticipated in Sct. 5. Figures (9.2)
and (9.3) display on the other hand the trend followed by 1oglomS
f(t) and 1og10 g (t). The combinations EX'- co" , N'- co",
IN'- 00", T'- oo and W' - oco" now mean Mg e =Mg o= A,

case occurring when restoration is a reflecting event.
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Table 9.1 Asymptotic expressions of the hazard rate for

a few commonly used hazard p.d.f.

p.d.f. asymptotic hazard rate as t—to
E(t_,t) or glt_,t) )ax(t) or p. (t)
i)normal
2
L e { _ttem J oM
2
oy 2 o2 og
ii) lognormal
2 2
1 1 (ln(t—to) m) 1n(t to) O -m
exp |~ 2 ~ 2
g Y217 t-t 2 0%t
iii) gamma
r _ q(t-t )-r+l
-9 (t—to)r lexp [—q(t-to)] ~ Q
[(r) t—to

iv) Weibull

u’fgfj(t—to) P-1 exp [—o('/ﬁ (t—to)/g] ~ o('?j(t—to)ﬁ'l

v) functional gamma

d u(t-t )T
1 o du d 1n u
T X [_u(t_to)] T ~oae T T o -

d du
ac 1" "at




Table 9.2 Failure and restoration probability density functions
considered in the numerical computations.(arbitrary
time units)
i) failure p.d.f. ii) restoration p.d.f.
f(to’t) m 't" UT‘ g(tolt) m frll U n
. ' 6 6 , " 2 2
exponential (EX )| 1O 10 exponential (EX") 10 10
normal (N') 10° | 10° normal (N") 102 10
lognormal (LN') 10° 10° lognormal (LN") 102 10
gamma ( ') lO6 lO5 gamma (") lO2 10
Weibull (W') 10° | 10° weibull (W) 10° 10
absorbing (0") oo -
reflecting (oco") o] 0
















































— 62 —

Sct. 10 Final remarks

In the past sections we studied a real time repair
process that is a model for the operation of a single unit
involving the alternate combination of a failure with a re-
storation process both processes aging continuously with
time. The theory was developped in order to offer a comple-
te and effective basis for affording problems and computa-
tions concerned with repairable units or components. On the
other hand, we tried to set a thorough analogy with the ra-
ther well known theory of simple renewal models.That is with a
class of processes where unit after each transition starts
as new. Now renewal and repair theory look undistinguish-

able when hazard p.d.f. are of exponential type. This situa
tion indeed degenerates to the theory of homogeneous Markov
processes of first order. Nevertheless, under many practical
occurrences hazard rate functions may depend upon time and
the non-homogeneous case so ensuing needs an ad hoc consi-
deration.

Comparing renewal and repair theory the most striking
and apparent differences may be roughly synthesized as fol-
lows. Equations for transition probabilities of repair pro-
cesses can be always reduced to a differential form.
Further, it makes hardly sense to talk of an equilibrium
repalir process. Properties remote (t— oo ) from the origin
(t = 0) are strongly connected with the remote structure of
A andIP . Convolution integrals which express conditio-
nal probabilities for renewal processes are substituted by
plain products.

The idea of an alternating simple repair process can be
generalized. For example we may have ¥V > 3 incompatible
states or events of the component and a matrix Pwi~+j (t)]
of transition probabilities, 1Yi__>j(t) with t > O speci-
fying the probability that a state Xi is followed on tran-

sition by state Xj' A second generalization consists of the
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case of an effective time repair process. Aging then
depends on the time effectively spent by the unit in the
state under consideration. Calendar time should be sub-
stituted by a random variable @ known variously in the
literature as Markov time or stopping time. More explici-
tly, in the case of a two-events component we would set O
equal to o« or /3 when considering the total time passed in
the states XS or Xf, respectively. To some of these argu-
ments and other fundamental problems, still related with
simple repair processes, such as the properties of the
distribution of total on time, we think of devoting further
special attention.
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Appendix Comparison with renewal theory

The previous sections were devoted to an elaboration
of basic concepts and methods of simple repair processes.
In this appendix we present a brief description of several
results obtained for simple renewal processes. Specifically

we deal with a two-state, Xs and X semi-Markov recurrent

fl
model where all life lengths Tn' and 'Yn“ underly failure
and restoration p.d.f. defined as in Sect. 3. In other words,
we assume that the unit starts as new after each transition.

This hypothesis is expressed through the equality

+t-t]t ,

ctll

(A.1) P (tl &) =p (

k{3 k|3

where t ;;to. Or, referring to the number of transitions

Nj-—»k and its expected value,

A.2 N. (E,t ] £) = N (E,e+t-t | T
(3.2,) S gy 5 Eel 5 x5 (E | ®),
(3.2,) k3 (€,t]© = Mj__’klj(t,t + t-T | ©)

We may now investigate the form of the equations for

transition pointwise probabilities Pfls(tIE) and Pfls(tl€).

Intuitively we have
t

(A.3) Pf|S (tlt) =] pg | £(tlw) R (t,u0) Alw) du .

t
However, U starts as new at t, therefore R (t,u) l(u) =
= R(to, tO +u - t) l(to+ u - t). Taking into account (A.1),

equation (A.3) is then rewritten
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t
Pels (t+t - t ! t.) =/ Pf'f(to+t—u|to)

t

Ty \ -
R(to,to+u t) /(to+u t) du,

or, after variables have been changed to t* =t - t and
= u - T,
t*
% x
= t +t t )
(A.4) Peis(tott | t,) f flf o
o
* * *
+
R(t_, t  +u) .,\(to+ u¥) du

An expression which should be combined with the correspon-

ding one
*
¥ _ %__ X .
(3. 4,) Peig(tyt € | t)) = Prig (b + €Uty
© ¥
*- * * Lk
'S(tyrt, ) plegr u) au + Sk, Gt
The knowledge of the distribution {Pl with E ; tO
would consent the determination of P (t ). More particularly,
. _ . * = ¥
if PS(to) = 1, we would have simply Pfls(to+t |to)—Pf(to+t).

At this point it seems awkward to maintain quantities
referred to an initial time to different from zero. With aim
at a more direct notation we may take tO = 0, t¥= t, W= u

and restate equations as follows [1,3,4]

t
(A.57) Pfl < (t ] 0) f Pfl g (t-u | 0) R(o,u) A(u) du,
0

t
S(0,t) + / P, _(t-ulo) s(o,u)
o fls

JL (u) du

(A.5 (t| o)

2) Pel s
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A thoroughly similar set of equations could be written
for PSIf (t|o), PS'S (t | 0), then for P_(t),
t
(A.6q) Pslf (t]0) =}/ Psls(t - u|o) S (o,u) u (u) du,
0

(A.6,) P (t | 0)

t
s| R (0,t) + }, PS,f (t-u]o0)-
0

‘R(O,u) A (u) du.

We will not attempt to rigorize this approach and obtain ex-

plicit solutions for P (t)orPsﬁﬂ-InsUEﬁqwmﬁbYOfattention are

f
the asymptotic values [1-4],

m
~ "
(A.7) Pf (OO) = ’
m T +m "
m ]
P (OO) = T .
S m + m
,_t,| ,.Un

Two limits which coincide with (5.1) for the case of constant
A and }Pq in other words when hazard p.d.f. are of a sim-
ple exponential type.

The expected number of transitions XS—->.Xf within (O,t)

can be also expressed by means of integral equations. We have

[2]

t
(A.8,) MS_¢f|S(O,th) = F(o,t)+ j Mf_?flf(o,t—u|0)-
0
*R(O,u) )\(u) du,
t
M — - =
(a.8,) “f—+f|f(o’tlo) = J Ms-»fls (0,t uIO) S(o,u))x (u)du
(0]
= M P (0,t| 0).

S—»f,
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Further, with regard to transitions Xf-—+Xs,

t
(A.9l) Mf—*Slf (O,tIO) = G(0O,t) + Jf MS_»SIS(O,t—uloy
0]

'S(O,u)jb (u) du,
t
(A.9,) Mo sls (O,tIO)=J Mo )£ (0,t-u|0) R(O,u)-
0

.A(u) du = M (0, tlo) .

f>s|f

It deserves some interest at this point to reconsider

equations (2.11),

Pf|s(t|0) = MS_¥f|s(O, tjo) - M

(A.10 (0,t|0),

1 S »S|s

(A.10,) Pslf(tIO) = Mf+slf(0,t[ o) - Me flf (0,t|0).

When (A.8) or (A.9) are introduced into (A.10),we go back

to (A.Sl) or (A.6l), respectively. But, using a different
decomposition of events,in place of (A.8) and (A.9) we may
write
t

(A.11,) Ms_,f|s (0,t|0) = F(O,t) +l/ MS_*SIS(O,uIO)

o

R(O,t-u) Axt-u) du,
t
= S -

(A.11,) MS#SIS(O,tIO) /MS_JIS (0,uf0) S(0,t-u)

}L(t-u) du.

Or, owing to a dual treztment,



t
(A.lzl) Mf—rSIf (O,t|o) = G(O,t) +j Mfﬁ_f f(o,u 0)
0
S(0,t-u) (t=u) du,
}L t
(A.l22) Mf—»flf (0,t IO) = )f Mf—»s f(O,u 0) R(0O,t-u)

(0]
l(t-u) du ,

It is seen that the insertion of (A.1ll) and (A.1l2) into

(A.10) generates two new relations,

(A.13,) P (t]o)

t
£ls / S(0,t-w) dM oo (O, u|o),
0

(A.13,) (t]o)

t
Pl / R(£0,t-u) d Mg e (0, u | 0).

0
These are part of an equations set whose structure reminds

of (4.15) and (4.16). We have indeed

t

(A.l4l) Psls (£]0) = R(O,t) +I R(O,t-u) dMS+S|S(o,u|0),
0
t

(A.14,) Pele (t|0) = s(0,t) +] S(0,t-u) M g|¢ (O,u]0),
0

By definition in a renewal process all failure and resto-
ration lives have equal p.d.f.,we may then find an easy defini
tion for the cumulative distribution functionsgD%thtrj(O,t)*}

Il

@Ngt = T 0 (0,t) and 7 <tN, £y} =
n J n-~=

I

,/P{Pn gt}f T 0,t) with t ¢t . It is
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(A.157) F @ (0,t) ET{"["]_ ottt T'nst}=

t
- f’ T (5 t-u) ar(0,u),
. | (0, u

(A-152) E(n) (O,t) E?{Tlll + T"2 + ... + ,fnnst}= |

t o _
/[ Gl (5 t-u) dc(o,u),
0

where nx1, T (0,t) = ¢ (0,t) = 17(t), and
’F(l)(O,t) = F(O,t), 'a(l)(o,t) = G(0,t) . The analog of

recurrence relations (6.8) is

t o _ ~ ’
(A.16,) F® 0,t) = jr c™1) 5 tuy) aF® (0,u) =
0O
t :
=)/ 1" 1) (0,t-u) ar(o0,u),
0 t
(3.16,) (™ (0,t) = ‘/ g™ 0,t-u) aF® (0,u) =
0O

t
=// F(n) (O,t-u) da%n) (O,u) =
(0]

()
= F (O,u) dG(0,t-u)
o]
. (0) - 17
with n>1, H (0,t) =1 (t) . If (A.l6) are summed up
over all n = 1,2,...09,through the use of ( 6.3) we dedu-
ce (A.l1).
Next)having defined the second moment of H(l) (o,t),

o<

S =/ &m0 at,
o)

we can state asymptotic expressions for the expected number

of failures and the expected number of renewals during (O,t)

as follows [1,2]
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'
(A.17,) M ©0,t] 0) v —F——r - i +
1 s _»fl|s
m ’T."+m"f" m ,+m1,,
2
UI it
+ ' ’
2
2 (m ot +mT” )
- t _
(B.17,) Mg o) (0,t] 0) = My s (Ot | 0) ~ 1+
m ftl+matll
O’-?Iorll
+ ot

2 (m T'+ m 1")

as t — oo .

The same definitions and methods of Sct. 6 may be used
with the scope of obtaining equations for the (forward) inter-
val reliability and interval expectance. It is found [1,3]

t
R(O,t+T) +f R (O, t+T-u) dMs—»s S(O,u 0),
0

(A.18,) Pigw >}

Il

t
(A.18,) r@{g(t) > T} I S(0,t+T-u) aM_ . . (0,u 0),
o)

respectively. When comparing with (6.14) and (6.16) products

appear to be substituted by convolution integrals.

An elegant and useful form in renewal processes has the
distribution of the total on or down time. A lemma can be

proved as follows [8]
) P _
(A.19) fr {O(n+l\<¢no<n+l * Pngt} I{F)n>t 2N

%0 /3’n<t}= {F){O‘n+ls¢ﬂ/5n<t - ¢},
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Using (A.19) and the independence of the random variables
O%U Fg with n=0,1,...0Q0, we have from (7.4)

0,...00

@20 Py <ol Z /P[Wnﬂgsb NB <o} -
n
—?{O{n+]§¢ﬂ ntl <F T ¢}=
O)eea00
-3 Pl <o) [Pl <eo) - PlBri<es]-
O0,...00
- Z FO*D) 6 g [ e (g, e-g) - GFD) (o,t—¢)].
n

If O, and (. are finite quantities it can be also pro-

,T/ll
ved that
12
2 2 2 2 3
\:(m’t" U,rll + m,t,u O”L’I ) t /(m T'+m Tll) ]
@
2
~s 1 exp (- —E—) du
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