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PROPAGATION OF COHERENT ELECTROMAGNETIC 

RADIATION IN THE ATMOSPHERE 

by 

Gerd BLAESSER 

Introduction 

This repor t gives a s u m m a r y of the p resen t s tate of knowledge con­

cerning the propagation of v is ib le , inf rared and microwave radiat ion 

in the a tmosphere . Its scope is of in t roductory o r " tu to r ia l " c h a r a c ­

t e r , so that par t icu la r theore t ica l details and calculat ions were omitted; 

the l i s t of references is far from complete , but includes a number of 

review ar t i c les where m o r e specific re fe rences can be found. 

In the first chapter the c ha r a c t e r i s t i c s of coherent wave fronts a r e 

d i scussed for the th ree specia l cases of plane waves , spher ica l waves 

and Gaussian b e a m s . Since l a s e r beams cor respond well to the d e s c r i p ­

tion by Gaussian beam waves and s ince , on the other hand, the p r o p e r ­

t ies of such beam waves a r e usually not famil iar to the newcomer in 

this field, they a r e t r ea t ed in more detai l h e r e . 

The absorption bands of the main consti tuents of the a tmosphere 

l imit the t r ansmi s s ion of e lec t romagnet ic energy essent ia l ly to a num­

ber of "windows" on the frequency s ca l e . Within these t r a n s m i s s i o n 

windows and in the absence of select ive ( resonance) absorpt ion by i m ­

pur i t i e s , the effect of absorpt ion on the t r a n s m i s s i o n of radiat ion is 

usual ly smal l compared to that of sca t t e r ing , the main features of which 

a r e outlined in chapter II. 

The index of refract ion of the a tmosphere exhibits s tochast ic fluc­

tuations due to a tmospher ic turbulence, and also sys temat ic var ia t ions 
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caused by l a r g e - s c a l e changes in the profi les of p r e s s u r e , t e m p e r a ­

tu re and humidity. These variat ions of the index of re f rac t ion along 

the path of propagation a r e responsible for ampli tude and phase f luc­

tuations in communicat ion l inks, for l o s se s in coherence , for s c a t ­

t e r ing or even "beam s teer ing" (deviation of the path of the whole 

beam) . These phenomena constitute the ma in topic of th is repor t ; 

they a r e d i scussed in chapters III, IV and V. 

Final ly , chapter VI summar i ze s exper imenta l r e s u l t s of pa r t i cu l a r 

impor tance to the genera l understanding of these propagat ion effects . 
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Chapter I ­ ELECTROMAGNETIC WAVE FIELDS 

­> 

In a source­ f ree medium (div E = 0) with constant index of r e f r a c ­

tion n = *7ε and unit permeabi l i ty μ= 1 Maxwell 's equations for the 

e lec t romagnet ic field a r e equivalent to the wave equations for the 
- + - > 

e lec t r i c (E) and magnetic (H) fields: 

(1) Δ2 = (n'A
2
) "4 E AH = (n

2
/c

2
)^tî 

dt dt 

A / \ 2 

where Δ is the Laplace opera to r (Δ= / —r in Ca r t e s i an coordinates 
, i=l x. 

The fields E and H, solutions of (1) a r e re la ted to each other by 

­* 3 ­» 
( la) rot E = ­ ~~ Η 

co t 

F o r monochromatic radiat ion of frequency ω, i . e . if 

^ = ^ ( 0 ^ * e x P ( ­ J w t ) Η = ñ ω (χ . ) . exp(­j cut) 

the wave equations (1) and the condition ( la) become, respect ive ly 

(10 Δ Ε ω + ^ Ε Ϊ ω = 0 ΔΗ-ω + ^ Ϊ Ϊ ω = 0 

( laO η . r o t ë w = j k l · ^ 

where the "wave number" k is defined by k = ηω/c = 2 π / λ . 

P a r t i c u l a r solutions of the equations (1 *)> ( l a 0 a r e the plane wave, 

the field of a radiat ing dipole and the Gaussian beam: 

a. Plane Wave 

(2) Ε ω = ET exp(jk. r) Ηω = ne χ Ε ω 

with a "wave vec tor" k = ke, where e is a unit vector in the di rect ion 

of propagation, is obviously a solution of (1") and ( l a ^ . The surfaces 

of constant phase a r e planes orthogonal to k. The plane wave solution 
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given by (2) co r responds to an ideal monochromat ic wave with l i nea r 

polar iza t ion (the di rect ion of which is given by the d i rec t ion of E ). 

More rea l i s t i c wave fields can be cons t ruc ted from superpos i t ions of 

waves of this type. Radiation a r r iv ing from a s t a r can be cons ide red 

as a superposi t ion ƒ a(co )E exp(-jcút)dci) of such plane waves with the 

s ame di rec t ion of propagation e. 

If the d i rec t ion of polarizat ion is of no impor t ance , we can wr i t e it 

in the s c a l a r form 

(2 0 E = E exp(jk. r) 

where the s c a l a r amplitude E is given by the express ion E = E . E / i E t . 

b . F ie ld of a Radiating Dipole 

2 2 
(3) Ε ω = ­ e x ( e x p o ) — exp(jkr) Η ω = e x p Q — exp(jkr) 

is the asymptot ic solution (i . e. it sa t is f ies the wave equation (1 0 if 

­2 . 

t e r m s of o rde r r and higher can be neglected) for the case of an o s c i l ­

lating e lec t r i c dipole of moment np = np exp(­jü)t). e = r / j r | is the unit 

vec tor that points radial ly from the source to the obse rva t ion point r*. 

If we a r e not in te res ted in the polar iza t ion, we can r ewr i t e eq. (3) in 

t e r m s of the amplitude 

k 2 p 
(3 0 E = (—K o. s in*)(exp( jkr) / r ) = A( θ) exp( jk r ) / r 

where ■& is the angle between the d i rec t ions of ρ and of e. 
2 

The intensity I = ( ο / 8 π ) η | Ε | of this wave exhibits the well known angu­

2 
l a r dependence on sin θ and the total energy radia ted by the dipole p e r 

unit t i m e , dW/dt , is obtained integrat ing the intensi ty over the sur face 

of a l a rge sphere cen te red at the dipole 

(4) d W / d t = r 2 | l d n = ^ 2 = ^ ^ ­ 4 c p 2 
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T h i s i s the λ ­ r e l a t i o n s h i p for the e n e r g y e m i s s i o n by a n e l e c t r i c 

d ipo l e wh ich is a l w a y s va l id if the l i n e a r d i m e n s i o n s of the d ipole a r e 

s m a l l c o m p a r e d wi th the w a v e l e n g t h of the e m i t t e d r a d i a t i o n . 

In c o m m u n i c a t i o n s y s t e m s , t h e a n g u l a r r e l a t i o n s h i p b e t w e e n " t r a n s ­

m i t t e r " and " r e c e i v e r " i s u s u a l l y f ixed, i . e . one i n v e s t i g a t e s the d e p e n ­

d e n c e of the field s t r e n g t h on d i s t a n c e r for po in ts on t h e s a m e " r a d i a l " 

Q- = c o n s t , so t h a t t he f a c t o r Α(φ) in (3 0 c a n be c o n s i d e r e d a s a c o n s t a n t . 

T h i s m e a n s that i n s t e a d of the d ipo le s o l u t i o n one s u p p o s e s a " s p h e r i c a l 

w a v e " w h i c h is ­ s t r i c t l y s p e a k i n g ­ n e v e r a t o p o l o g i c a l l y va l id s o l u t i o n 

of t h e w a v e equa t ions of e l e c t r o d y n a m i c s (1 0 and ( l a O but s a t i s f i e s the 

s c a l a r wave equa t ion 

2 
(5) Δ u + k u = 0 . 

c) G a u s s i a n B e a m Waves 

C h o o s i n g the d i r e c t i o n of p r o p a g a t i o n e of a b e a m of l i m i t e d c r o s s 

s e c t i o n a s the z ­ a x i s we m a y t r y to d e s c r i b e it by e x p r e s s i o n s of the 

f o r m 

(6) E = E ( x , y , z )exp( jkz) H = n e x î ? 'ω 0 \ — » / » - / — Γ \ - — / — ω - ω 

w h e r e Ε (χ, y, ζ ) c a n be c o n s i d e r e d a s a s lowly v a r y i n g funct ion of the 

ζ ­ c o o r d i n a t e ( s i nce i t s m a i n ζ ­ d e p e n d e n c e i s a l r e a d y inc luded in the 

, 2 , 2 
e x p o n e n t i a l f a c to r ) , so t h a t t he s e c o n d d e r i v a t i v e 8 E / 3 z can be ne· 

2 ­>· , 2 2­^ , 2 
g l e c t e d in c o m p a r i s o n wi th the q u a n t i t i e s θ E / 3 x a n d 3 E / 3 y . 

T h u s we ob ta in f r o m e q . (1 0 the fo l lowing a p p r o x i m a t e equa t ion for E 

8
2
É 8

2
Ê 82 

(7) —f- ♦ — £ + ^ = 0 
3 x 3 y 

T h i s equa t i on a d m i t s a s o l u t i o n of the G a u s s i a n f o r m 

o 
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(8) go = A e x p ^ ( P ( z ) + ^ - ) ] 

2 * 2 2 

w h e r e A i s a c o n s t a n t v e c t o r , r = χ + y , and Ρ ( ζ ) , q(z) a r e f u n c ­

t i ons to be d e t e r m i n e d . T h e quan t i ty P ( z ) r e p r e s e n t s a c o m p l e x p h a s e ­

shif t r e l a t i v e to t h e p lane wave s o l u t i o n , wh i l e t h e c o m p l e x " b e a m p a ­

r a m e t e r " q c a n be e x p r e s s e d in the f o r m 

(9) I ^ = ^ + J q(z) " R(z) J k w ( z ) ¿ 

with r e a l funct ions R(z) a n d w(z) ;R(z) c a n be i n t e r p r e t e d a s t h e r a d i u s 

of c u r v a t u r e of the wave f ron t t h a t i n t e r s e c t s the a x i s a t z , and w(z) a s 

the " w i d t h " of the G a u s s i a n b e a m c r o s s s e c t i o n , i . e . a s t h e d i s t a n c e r 

a t wh ich the a m p l i t u d e i s d e c r e a s e d to a v a l u e l / e t i m e s t h a t on t h e z ­

a x i s . 

I n s e r t i n g t h e e x p r e s s i o n (8) in to e q u a t i o n (7) a n d c o m p a r i n g t e r m s 

of e q u a l p o w e r in r , one finds 

(10a) * 1 = 1 ( i o b ) ^ = ­ i 
dz dz q 

I n t e g r a t i o n of (10a) g ives q(z) = q + ζ, w h e r e q i s t h e v a l u e of t h e 

c o m p l e x b e a m p a r a m e t e r in the " r e f e r e n c e p l a n e " ζ = 0 . It i s c o n v e ­

n ien t to c h o o s e the r e f e r e n c e p l ane ζ = 0 a t t h e " b e a m w a i s t " w h e r e t h e 

2 
p h a s e f ron t is p l ane (R =oo) so t h a t q = ­ jkw / 2 i s p u r e l y i m a g i n a r y . 

We t h e n have 

kw 

( H ) q ^ ­ j ­ ^ + z 

T h i s i m p l i e s ( c . f. equa t i on (9)) t h e r e l a t i o n s 

(12a) w ( z ) 2 = w 2 ( l + ( 2 z / k w 2 ) 2 ) 

(12b) R(z) = z ( l + ( k w 2 / 2 z ) 2 ) 

i . e . the G a u s s i a n b e a m c o n t r a c t s t o t h e m i n i m u m d i a m e t e r 2w a t t h e 

o 
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waist; the beam contour w(z) is a hyperbola with asymptotes that form 

an angle θ« tan ·&= 2/kw with the axis of propagation. This angle is 

the well known far­field diffraction angle of a Gaussian amplitude dis­

tribution. 

From equation (10b) for the complex phase shift P(z) at a distance ζ 

from the waist, we obtain 

j . , / , . 2z 
/ J — = J . l n ( l + J — ■ (13) P ( z ) = / ^ = j . l n ( l + j — ­ ) 

j(2w / k ) kw 
o o o 

2 2 2 
= j . In ¡1 + (2z/kw ) ­ arctan (2z/kw ) 

• η w(z) . . 
= J. In — ^ ­ φ(ζ) 

w 
o 

2 
with w(z) given by (12a) and Φ(ζ) = arctan(2z/kw ). Thus we can finally 

write the Gaussian beam in the form 

2 2 
(14) E = A(w /w(z))exp(­r /w(z) )exp 

2, _ 

^"»W + f^)) 

(2) 
According to STROHBEHN this equation describes correctly Gaus­

sian beams as long as z/w << (kw /2) , which is not a strong limitation 

since it gives even for values of w of the order of only a millimeter 

o 
upper limits for ζ of the order of 10 m. 

Gaussian beams are produced by many lasers that oscillate in the 

fundamental mode; their parameters w and R(z) can be varied experi­

mentally by suitable stops and focussing devices (lenses or spherical 

mirrors), respectively. The methods of paraxial ray optics can be ex­

tended to deal with Gaussian beams (c. f. references (1) and (3)). 
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Chapter II ­ ABSORPTION AND SCATTERING OF ELECTROMAGNETIC 

RADIATION BY ATMOSPHERIC CONSTITUENTS AND IM­

PURITIES 

Except in si tuations of ext reme pollution at the wavelengths of s p e ­

cific absorpt ion of the pollutants, the absorpt ion in the a t m o s p h e r e is 

due to i ts pr incipal constituants which a r e Ν , Ο , wa te r vapour and 

CO (at higher al t i tudes a l so O ). Since N_ and O have no dipole m o ­

ment , they show no molecular absorpt ion bands . Thus the main a b s o r p ­

tion effects that influence low alt i tude a tmospher i c communica t ions a r e 

due to water vapour and CO while high al t i tude links such as g round­ to ­

sate l l i te communicat ions , can a lso s t rongly be affected by O a b s o r p ­

tion. 

This absorpt ion precludes the p rac t i ca l use of the pa r t of the s p e c ­

t r u m corresponding to wavelengths above 15μ and up to s e v e r a l m i l l i ­

m e t e r s for the t r a n s m i s s i o n of information. The "ne a r in f ra red" region 

(wavelengths below 15μ ) is divided by some s t rong absorp t ion l ines into 

a s e r i e s of "windows" in which the absorpt ion is re la t ive ly s m a l l and can 

be taken into account by multiplying the intensi ty of the t r a n s m i t t e d r a ­

diation by an averaged t r ansmis s ion factor of the form 

λ+Δλ 

(15) Τ ( λ , χ ) = " 7 / dλ'exp(­oc(λOñ xi 
a Δλ. / a 

λ­Δλ 

where Δλ is the wavelength interval used in the t r a n s m i s s i o n and cen­

t e r e d at λ, α (λ) the absorpt ion coefficient pe r unit concentra t ion of the 

a b s o r b e r , η its mean concentrat ion along the path x . Values for α (λ) 
cl 

for the main a tmospher ic abso rbe r s and rec ipes for the es t ima t ion of 

t r a n s m i s s i o n factors as proposed f i r s t by LANGER can be found in text­

(4) 
books on infrared communications . However , it appea r s from such 

evaluations that for a suitable choice of the rad ia ted wavelength inside 

the infrared t r a n s m i s s i o n windows and in pa r t i cu l a r in the visible pa r t 
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of the spec t rum the a tmospher ic absorpt ion can usually be neglected 

( i . e . Τ ΐΖ 1) while the total t r a n s m i s s i o n factor Τ = Τ Τ becomes N a a s 
equal to the sca t te r ing t r a n s m i s s i o n factor Τ which takes into account 

the reduction of the t r ansmi t t ed intensi ty, due to sca t t e r ing by the mole 

cu la r constituents of the a i r and by ae roso l pa r t i c les suspended in it . 

E la s t i c sca t ter ing by molecu les , a lso cal led "Rayleigh sca t t e r ing" , 
-4 

va r i e s 'with wavelength as λ , i . e. blue light is s ca t t e r ed m o r e s t rong­
ly than red light - a fact which accounts for the blue colour of c l ea r sky. 

_4 
This λ -law i s , however , typical for al l sca t te r ing p r o c e s s e s invol­
ving s c a t t e r e r s of l inear dimensions much s m a l l e r than the wavelength 
of the sca t te red radiat ion. It follows s imply from the fact that the inci ­
dent radiation gives r i s e to a fluctuating dipole moment which rad ia tes 
( i . e . s ca t t e r s ) energy according to eq. (4). 

The scat ter ing of e lec t romagnet ic waves by d ie lec t r ic spheres of 
(5) 

a r b i t r a r y size was t r ea t ed r igorously by MIE . His methods w e r e ex­

tended by others to par t ic les of other shapes; the main resu l t s of this 
(6) theory a r e summar ized in the monograph of VAN DE HULST . Within 

this theore t ica l f ramework one can d i scuss the main c ha ra c t e r i s t i c s of 

the sca t te r ing by a e r o s o l s , which is usually r e f e r r e d to as "Mie s c a t t e r ­

ing" . Of course , if the dimensions of the ae roso l par t ic les become much 

s m a l l e r than the wavelength of the radiat ion, the Mie theory yields the 
-4 

λ - law. Thus Rayleigh sca t te r ing - in the mathemat ica l sense - is a 
l imit ing case (and not something different) from Mie sca t t e r ing . F o r 

example , it applies to the extinction of cm-waves by sca t te r ing on ra in ­

drops in strong showers . The mos t d ramat ic features in Mie sca t te r ing 

occur , however, when the l inear dimensions of the s c a t t e r e r s a r e of 

the s ame order as the wavelength; in such situations one may encounter 

pronounced resonance sca t t e r ing . Final ly , when the par t ic le s ize is 

much l a r g e r than the wavelength, the sca t te r ing becomes r a the r indepen-
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dent of the wavelength (c . f. the white colour of vapours and clouds 

consis t ing of liquid drops of dimensions >>λ); in these s i tua t ions we 

deal with o r d i n a r y reflection of light by mac roscop ic bod ies . The a n ­

gular d is t r ibut ion of the reflected light depends on the sur face p r o p e r ­

t ies of the ref lector ; for optically rough surfaces L a m b e r t ' s law 

(I ÖCcos­θ, where θ is the angle between the surface n o r m a l and the 
S 

di rec t ion in which one observes the s c a t t e r e d intensi ty I ) gives a 
S 

r a t h e r good descr ip t ion of the obse rved sca t t e r ing . 

A r igorous mathemat ica l calculation of the t r a n s m i s s i o n factor for 

sca t te r ing under r e a l a tmospher ic conditions is imposs ib le main ly 

for two r e a s o n s : 

1) In ae roso l s the s ize distr ibution of the s c a t t e r e r s is not uni form 

(and often not even known). Also, the i r geometry might not be known; 

in the case of suspended liquid drople ts they can be a s s u m e d to be 

spher ica l because of the effect of sur face tension, but dust p a r t i c l e s , 

ice c rys t a l s e tc . can have about any shape . Thus , the effective c r o s s 

sect ion, i . e . the resu l t of the superpos i t ion of different pa r t i c l e s i z e s 

and shapes , as a function of wavelength is usual ly not known. (On the 

other hand, if the par t ic les a r e known to be of s p h e r i c a l fo rm, t he i r 

s ize dis t r ibut ion can be inferred f rom exper imenta l s c a t t e r i n g r e s u l t s 

at different wavelengths; c.f. r e fe rences (7), (8), (9)). 

2) Since the s ca t t e r ed radiation is not lost but r e ­ e m i t t e d in a different 

d i rec t ion, mult iple sca t te r ing contr ibutes to the radia t ion in tens i ty 

if the optical path in the medium exceeds the extinction length for 

sca t t e r ing . To deal with multiple sca t t e r ing effects the inte g ro­d i f fe ­

ren t ia l equations of the theory of radia t ion t r a n s p o r t have to be solved 

as in the re la ted p rob lems of radiat ion shielding in r e a c t o r s o r in 

the theory of the photosphere of s t a r s . Such t r a n s f e r of e l e c t r o ­

magnet ic radiat ion in the a tmosphere has been cons ide red in p a r t i c u ­

l a r for nuclear weapons a s s e s s m e n t and civil defense s tudies c o n c e r n ­
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t ( 1 2 >. ing the effects of the inf rared radiat ion of a nuclear b las t , and 

Monte Car lo codes (LITE) have been developed for such inves t iga­

■ (13) 
tions 

For tunate ly , for the design of communicat ion links it is usually 

sufficient to use some approximate s e m i ­ e m p i r i c a l formulae for the 

(4) 
es t imat ion of the t r a n s m i s s i o n factor . Since the visual range V ­

a l so cal led "meteorological r ange" ­ is de te rmined quasi exclusively 

by the concentrat ion of ae roso l pa r t i c les in the a i r , it is a convenient 

p a r a m e t e r to use in such a s e m i ­ e m p i r i c a l formula . Indeed, the resu l t s 

of many observat ions a r e r a the r well r ep re sen t ed by the express ion 

(16) Τ ε ( λ , χ ) = β χ ρ ( ­ ^ ( λ / 0 . 5 5 ) ­ ^ ) 

with 

1/3 
(17) q = 0.585 V ' 

In these relat ions V and χ a r e to be exp re s sed in k i lomete r s and λ 

in m i c r o n s . Fo rmu la (16) contains a wavelength dependence of the "ef­

fect ive" a tmospher ic extinction coefficient of the form λ ­ in con t ras t 

­4 
to the Rayleigh par t λ ­ which depends on the meteorologica l s i tuat ion. 

F o r ext remely good vis ibi l i t ies (i. e. meteoro logica l ranges of the o r ­

de r of 300 km) q approaches the Rayleigh exponent, q ­*■ 4, i . e . the for­

mula (16) predicts blue sky conditions in this l imi t , whereas for poor 

vis ibi l i t ies ­ below 1 km ­ q will be of the o rde r of only 0. 5 c o r r e s p o n ­

ding to a nonselective sca t te r ing typical for the white and grey colour 

of the clouds. The wavelength en te rs into the express ion (16) re la t ive 

to the wavelength of 0. 55 μ at which the s tandard m e a s u r e m e n t s of the 

visual range a r e per formed. The s tandard definition of the visual range 

is such that for a distance χ = V the intensi ty of the 0. 55μ radiat ion is 

/ ­2 

reduced by the sca t te r ing (thus apar t from a geometr ic r ­ reduct ion 

due to beam divergence) to 2% of its or iginal value, so that T(0. 55μ, V) = 

= 0 . 0 ? . The factor 3. 91 = ­ ln(0. 02) in (16) co r responds to this definition. 
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Chapter ΠΙ - MICROSTRUCTURE OF ATMOSPHERIC TURBULENCE 

We shal l d i scuss in this chapter some aspec t s of the theory of a t ­

mosphe r i c turbulence that a r e impor tan t for the propagat ion of e l e c ­

t romagne t ic waves in the a i r . A m o r e detai led d i scuss ion can be found 
(14) in the book of TATARSKP , while the genera l concepts of the theory 

(15) of turbulence a r e s u m m a r i z e d by BACHELOR , r ecen t s u m m a r i e s 

of the theory of a tmospher ic turbulence in the p lane tary boundary 

l ayer a r e a lso found in ref. (16) and (17). 

Air turbulence is p r ima r i l y observed in the form of fluctuating 
-* -* _> . 

wind veloci t ies U( r , t ) which depend on the posit ion r of the observa t ion 
point and on the t ime t . Let U (r) be the mean value of the wind ve lo ­in 
city a t the point r , i. e . the resul t of a t ime averaging over a c e r t a i n 

in te rva l of the o r d e r of 30 sec to 1 min . This value U (r) depends on 
m 

the meteoro logica l s i tuat ion and changes r a the r slowly with t i m e . Sub­
t rac t ing U (r) from the instantaneous values of the wind veloci ty we 

m 

obtain the turbulent component u( r , t) such that u( r , t) = U ( r j + u ( r , t ) 

where the mean value of u ( r , t ) is z e r o . Somet imes , as on a ca lm sunny 

(r) may be completely z e r o , but u( r , t) will be finite due to 

t h e r m a l convection. 

In o r d e r to gain some insight into the s t a t i s t i ca l s t r u c t u r e of the 

s tochas t ic velocity field u ( r , t ) we have to co r r e l a t e the veloci ty f luc­

tuations in different points r , r . This can be done by the study of the 

" s t r u c t u r e functions" 

(18) D . k ( V r 2 ) = ( u . ^ ) - u . ^ ) ) ^ ) - u ^ ) ) 

o r the "co r re l a t ion functions" 

(19) Znpyy = »frK^ 
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T h e b a r o v e r t h e s e p r o d u c t s d e n o t e s a v e r a g i n g , a s u s u a l , and the 

i n d i c e s (i = 1 , 2 , 3 a n d k = 1, 2, 3) e n u m e r a t e the v e l o c i t y c o m p o n e n t s 

in a c a r t e s i a n s y s t e m of c o o r d i n a t e s . 

T h e f ie ld of t u r b u l e n t v e l o c i t y f luc tua t ions is c a l l e d " h o m o g e n e o u s " 

if t h e funct ions D., ( r , , r_ ) a n d Β . , ( r , , r_) do not change if we shift the 
ík 1 2 ík 1 2 

—> —» 
p o s i t i o n s of the two a n e m o m e t e r s t h a t m e a s u r e u . f r . ) and u ( r_) by 

ι 1 k 2 
—> —> —> —> —­>· —> —> 

the s a m e d i s t a n c e d, i . g. if D., ( r n + d, r + d) = D., ( r , , r ) for a r ­
lk 1 2 ík 1 2 

­> 

b i t r a r y d. It is ev iden t t h a t the a i r t u r b u l e n c e in the a t m o s p h e r e i s 

not c o m p l e t e l y h o m o g e n e o u s , s i n c e the a t m o s p h e r e is a l w a y s bounded 

by t h e s u r f a c e of the e a r t h ; h o w e v e r , in m a n y p r o b l e m s involv ing 

s c a l e s of t u r b u l e n t m o t i o n which a r e s m a l l c o m p a r e d to the d i s t a n c e 

f r o m the o b s e r v a t i o n poin ts to t h e s u r f a c e of the e a r t h , the a s s u m p ­

t i on of h o m o g e n e i t y i n t r o d u c e s only a v e r y s m a l l e r r o r . In the c a s e 

of h o m o g e n e o u s t u r b u l e n c e the funct ions D and Β depend only on 

t h e d i f f e r e n c e r ­ r , a n d if 

B
i k ( ° )

= ö
i k

=
 V

r ) U
k

( r ) 

i s bounded , we m a y e x p r e s s the s t r u c t u r e funct ions in t e r m s of the 

c o r r e l a t i o n funct ions and v i ce v e r s a , s i n c e t h e n 

<
2o

>
 D

ik<*i - ν -
2 B

ik(
?
i - ν -

2
 i · 

2 2 
Note t h a t the d i a g o n a l v a l u e s O.. ( i = l , 2, 3) of the t e n s o r Ö., a r e 

i l í k 

t h e m e a n s q u a r e v a l u e s of t h e ve loc i t y f luc tua t ions in the t u r b u l e n t 

flow f ie ld a long the t h r e e c o o r d i n a t e a x e s . 

A s we s h a l l s e e in m o r e d e t a i l l a t e r , the t u r b u l e n t a i r m o t i o n 

t a k e s p l a c e in the f o r m of e d d i e s of d i f f e r en t s i z e s , a n d it i s c l e a r 

­> ­> ­* ­> 
t h a t t he d i f f e rence u(r . . ) ­ u ( r ) i s m a i n l y c o r r e l a t e d wi th the p r o p e r ­
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t ies of eddies of dimension s = I r ­ r I . Eddies of s ize s a r e a p ­

proximately i so t rop ic , if their dis tance from flow boundar ies is 

l a rge compared to s . We will cal l the velocity field " local ly i s o t r o ­

pic" in the neighbourhood of the point r if t he re exis ts a length L 

such that for dis tances s < L the s t ruc tu re functions D., (and the c o r ­
l k 

re la t ion functions Β ) depend the re only on the d is tance s and on the 
ik 

re la t ive orientat ion of the two a n e m o m e t e r s but not on t he i r absolute 

or ientat ion in space . In such a case D (s) can have only two indepen­

dent components, s ince the relative or ienta t ion of the two de t ec to r s 

pe rmi t s an invar iant decomposit ion of any wind veloci ty u into a c o m ­

ponent u() = (u. e)e pa ra l l e l to the d i rec t ion given by the unit vec to r 

e = (r ­ r ) / s (the di rect ion that joins the two a n e m o m e t e r s ) and a 

component uA= u ­ (u. e)e orthogonal to it, so that D m u s t be given 
IK 

by the express ion 

(21) D.k(s) = D i è ( s )e . e k + D1(s)(6 ^ ­ e .e k ) 

involving the project ion opera tors π = (ee) = e.e on the d i rec t ion 

lK. l i e 1 iC 
s and π ., = (1­ee j . . = δ . , ­ e.e, on the plane orthogonal to it , and 

ik i k i k i k 

the invariants (22) D ^ s ) ^ ^ ) ­ ^ ) ) 2 

and 

(23) D ^ ) ^ ^ ) ­ ^ . , ) ) 2 

which can be formed with the vec tors u(J (r ) ­ u „ ( r ) and u^ (r ) ­
L C* 1 

­ uj_(r~) in the two subspaces . S imi la r ly , it is 

(24) B. k (s) = B„ ( s ) e . e k + B x ( s ) ( ô . k ­ e .e k ) . 

The flow of the a i r in the a tmosphere can be cons ide red as incorri­
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pressible, since all wind speeds are well below sonic velocities. 

The condition of incompressibility, div u = 0, leads to a relation 

between the two functions D .̂ and D¿ , so that finally only one inde­

pendent function is sufficient to characterize the turbulent flow. In 

fact, we then have 

3 

(2 5) y 3 D . k / 3 x . = 0 

i=l 

We will derive from eq. (25) a relation for the Fourier transform 

Φ., OK) of the correlation function B.. (r), defined by 
i k ik 

(26) B.k(?) = ƒ ƒ ƒ A c $ ik(x)exp(jx?) 

From equation (20) we find that 2(1 -exp(j xrj) Φ (κ) is the Fourier 

transform of D., : 
ik 

(27) D.k(r) = 2 ƒƒƒ Α (1 -βχρ055) )Φ Λ (κ ) . 

The incompressibility condition (25)-then leads to 

3 
\ κ Φ (κ) = o 

i=l 
(28) ) ^ i k ( x ) 

In the case of local isotropy we obtain by Fourier transform of 

equation (24) the following form for the function Φ (κ): 
l x C 

(29) Φί1ς(κ) = F(x ) ô . k + 0 ( κ ) κ . κ Κ / κ 2 

where the scalar functions F( κ) and Ο(κ) are the Fourier transforms 

of B. ­ Β . and of B_¿ , respectively. Equation (28) then leads to 

G(K) + F(x) = 0 
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o r 

(30) Φ.κ(κ) = ( ô . k ­ x . y x 2 ) F(K ) 

Up to now we have only defined the s t r uc tu r e and c o r r e l a t i o n func­

tions and studied the l imitat ions imposed on them by the conditions 

of homogeneity, local isotropy and incompress ib i l i ty . In o r d e r to a r ­

r ive at an explicit express ion of the s t ruc tu re function, we have to 

use a model of turbulent flow. A model which is sufficiently a ccu ra t e 

(18) 
for our purposes was developed by KOLMOGOROV^ ' . It s t a r t s f rom 

the fact that a l aminar flow of a i r of flow velocity U becomes unstable 

and changes into turbulent flow whenever its Reynolds number Re = U L / v 

exceeds a c r i t i ca l Reynolds number Re . . )> is the specif ic v iscosi ty , 

c r i t ' 

V =μ /pjOÍ the a i r and L some c h a r a c t e r i s t i c length, de t e rmined in 

meteorologica l applications by the c h a r a c t e r i s t i c s of the wind prof i le . 

The eddies of dimension 1 which a r e formed in the tu rbu lence ­ with a 

turbulent velocity u ­ a r e again unstable if the i r Reynolds number 
Re = lu / v exceeds Re . ; they b reak up into a next genera t ion of 

1 1 c r i t 
s m a l l e r eddies , and so on. This p roces s of t r a n s f e r of flow energy 

from l a r g e r eddies to sma l l e r ones continues until eddies of s ize 1 
o 

a r e formed for which Re, « Re . . At that level , the energy is d i s s i ­
1 c r i t 

pated into heat by l amina r viscous flow, at a ra te ε (per unit m a s s ) which 
2 , 2 

is proport ional to Vu / l . Under s ta t ionary conditions th is r a t e of 

energy dissipat ion mus t be equal to the ra te of energy t r a n s f e r (per 
3 

unit m a s s ) ~ u , / l from eddies of s ize 1 to s m a l l e r ones (the flow e n e r ­

2 
gy per unit m a s s in the eddies of s ize 1 is propor t ional to u , and the 

2, , 

ra te of t r ans fe r must be proport ional to u / τ where τ.. ~ 1/u is the 

lifetime of these eddies) . Thus the turbulent velocity u d e c r e a s e s with 

the s ize 1 of the eddies according to 

(31) u r ( e l ) l / 3 

Since the s t ruc tu re functions D (s) a r e mainly d e t e r m i n e d by the 
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eddies of size 1 = s and since D , has the dimensions of the square 
ik 

of a velocity, it is reasonable to a s s u m e that 

(32) D . k ~ ( e s ) 2 / 3 

as long as L > s > 1 . The two l inear dimensions L and 1 which l imit 
o o 

this so­cal led " iner t ia l subrange" a r e cal led the 'outer s c a l e " and the 

" inner sca le" of turbulence, respec t ive ly . 

While L ranges from m e t e r s to hundreds of m e t e r s , 1 is of the 
o 

o r d e r to some m i l l i m e t e r s . A detailed d iscuss ion of the boundaries 

1 and L of the iner t i a l subrange can be found in ref. (19). 

By fourier t r ans fo rmat ion we obtain from eq. (32) that F(y.) is 

­ ï 1/3 
propor t ional to κ in the range Z%/L· < κ < 2 π / ΐ , i . e . with some 
suitable constant of proport ional i ty A: 

(33) F ( x ) = A e 2 / V U / 3 

A consequence of the turbulent motion of the a i r a r e fluctuations 

in t e m p e r a t u r e , humidity and other cha rac t e r i s t i c p a r a m e t e r s of the 

a i r for which macroscop ic gradients exis t , since the turbulent flow 

mixes continuously a i r of different c ha r a c t e r i s t i c s and c rea t e s in this 

way s ta t i s t ica l deviations from the local mean values of these p a r a ­

m e t e r s . On the other hand, diffusive forces tend to r e - e s t a b l i s h the 

local equil ibrium, so that in the s teady s tate a balance will be e s t a ­

bl ished between the forces that c rea te the local fluctuations and those 

that diss ipate them. 

We consider he re in pa r t i cu la r the fluctuations in t e m p e r a t u r e . 

At a point r the local t e m p e r a t u r e is given by T(r) = T(r) + T ' ( r , t ) , 

The dependence of T(r) on r is of macroscop ic sca le while that of 
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T ' ( r , t ) is a mic roscop ic one, i . e . grad T « g r a d Τ ' . Conduction of 

heat by molecu la r t r an spo r t tends to es tab l i sh the loca l equ i l ib r ium, 
—> 

i . e . tends to reduce Τ , giving r i s e to a mo lecu la r heat flow a, =-Dgrad Τ 

(D = coefficient of molecu la r heat t r a n s p o r t ) . Since the t he rmodynamic 

driving force of this p roces s is given by g rad Τ ' , the m e a n d i ss ipa t ion 

of the local t e m p e r a t u r e inhomogeneit ies pe r unit t ime is then p r o p o r ­

tional to the average of the product " c u r r e n t t imes dr iv ing fo rce" , i . e . 

to 

(34) Ν = D(grad TO 

Meanwhile, local fluctuations a r e continuously c r ea t ed by the turbulent 

flow that t r a n s p o r t s heat from the (macroscopica l ly) w a r m e r p a r t s of 

the a tmosphere to the colder ones , i. e. that tends to reduce the m a c r o ­

scopic heat gradient by a t r anspor t phenomenon which is s i m i l a r to m o ­

lecular heat t r an spo r t in i ts mathemat ica l a s p e c t s , but t akes place on 

a macroscop ic s ca l e . With a coefficient Κ of turbulent heat t r a n s p o r t 

which exceeds the molecu la r one by o r d e r s of magnitude (K>>D) one 

can wri te the turbulent heat cur ren t in the form 

(3 5) "c^ = - K g r a d T 

Str ic t ly speaking, the t empera tu re Τ in eq. (35) should be r ep l aced , 
— _3 

by the "potential t e m p e r a t u r e " Τ + Γ ζ, where Γ = 9. 8 · 10 d e g r e e / m 

is the adiabatic t e m p e r a t u r e gradient , s ince the moving a i r p a r c e l s 

adjust themse lves adiabatically to the p r e s s u r e of the su r round ing a i r , 

and this effect a l t e r s the original t e m p e r a t u r e of the moving p a r c e l , 

while i ts potential t empera tu re r ema ins constant . As a consequence , 

we see that convective flow in a neu t ra l a tmosphere - where Τ - Τ - Γ ζ 
o 

- produces no turbulent heat cur rent . 

The ra te of t r ans fe r of heat from the mac roscop ic t e m p e r a t u r e in-
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homogeneit ies to the microscopic ones ­ which is equal to the ra te 

of c rea t ion of the mic roscop ic inhomogeneit ies ­ is then proport ional 

to the product of the macroscop ic cu r r en t t imes its driving force, 

— 2 

i . e . to K(grad(T + Γζ)) . F o r local s ta t ionar i ty , the ra te of crea t ion 

of microscopic t empe ra tu r e fluctuations mus t be equal to the ra te of 

the i r dis t ruct ion, so that 

(36) K(grad(T+ Γ ζ ) ^ = D(grad TO = Ν 

This "heat diss ipivi ty" N i s , like ε , a p a r a m e t e r cha rac t e r i s t i c 

for the turbulent s ta te and the t e m p e r a t u r e profile of the a tmosphe re . 

Thus we expect that the t empe ra tu r e s t ruc tu re function D (s) ­
2 

= (T \r ) ­ T ' ( r )) or the cor re la t ion function of t empera tu re 

Β (s) = T( r )T(r ) will depend on s, Nand ε . Since Ν has the dimen­

2 2 
s ions ( tempera ture) / t i m e and D the dimensions of ( t empera ture ) , 

1/3 
while s / u ~ s / ( e s ) has the dimensions of t ime , we can wri te 

S 

/ 0 „ , „ 2 ­ ­ 1 / 3 2 /3 2 2/3 
'37) D„, -■ a Ν ε ' s = C s · 

with some constant a and C defined by 

¡38) C T = a Ñ 1 / 2 e ­ 1 / 6 

C is called the " s t ruc tu re p a r a m e t e r " of t empera tu re fluctuations; 

it is a m e a s u r e of the intensity of the turbulent t empe ra tu r e fluctua­

1/3 ■;ions. The values of C usually lie between 0.01 d e g r e e / m for 

/ 1/3 
weak turbulence and 0, 5 d e g r e e / m for s t rong turbulence . 

By F o u r i e r t r ans format ion we obtain from eq. (3 7) the spec t rum 

of the t empera tu re fluctuations 

'39» $> ­ 0 . 0 3 3 C 2 κ ~ " · . τ Τ 
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The in terac t ion between a tmospher ic turbulence and e lec t romag­

netic radiat ion is due to turbulence induced var ia t ions of the index 

of refract ion n. The index of ref ract ion of the a i r is ve ry c lose to 

unity; so one usually wr i tes 

(40) n = 1 + Ν· IO" 

The quantity Ν depends on t e m p e r a t u r e , p r e s s u r e and humidi ty . 

F o r vis ible and inf rared radiat ion the influence of humidity can be 
(2) 

neglected and it is 

(41) Ν = Ν = 7 7 . 6 Ρ / Τ (optical f requencies) 

where Ρ is the a tmospher ic p r e s s u r e in mi l l i ba r s and Τ the t e m p e ­

r a t u r e in degree Kelvin. 

F o r microwaves the s t rong dipole moment of the wa te r molecu les gives 

an apprec iable dependence of Ν on the vapour p r e s s u r e e f (f = re la t ive 

humidity, e (Τ) = sa tura t ion p r e s s u r e of wa te r vapour); it is 
S 

(42) Ν = Ν , + Ν (microwaves) ν dry wet 

with Ν given by the same express ion (41) and 

(43) Ν = 3. 73 . IO5 e f /T 2 
v ' wet s 

F o r s implic i ty we cons ider in the following only the d ry t e r m . 

Since a i r turbulence involves only veloci t ies which a r e s m a l l c o m ­

pared to the speed of sound, we can a s s u m e that in a l l convective p r o ­

c e s s e s the moving a i r pa rce l s a r e always in p r e s s u r e equi l ib r ium, i . e . 

a t the same p r e s s u r e as the surrounding a i r . There fo re t h e r e a r e p r a c ­

t ical ly no p r e s s u r e fluctuations due to turbulence a t the obse rva t ion 

point r (which is fixed in space) , so that n ' - the fluctuating p a r t of η -
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is determined by t empera tu re fluctuations alone, and we find 

n ' ( r , t ) = 77.6 - l O ' 6 ^ * ; Τ \Ϋ, t) 
T ¿ ( r ) 

Thus , the s t ruc ture function of the refract ive index fluctuations is 

given by 

(45) D j e J M n T ^ ) ­ n ' ( r ­ ) ) 2 = C 2 s 2 / 3 

with 

(46) C = (77.6 · IO" 6 P / T 2 ) C 
η Τ 

o ­6 
F o r Τ = 288.2 Κ and Ρ = 1013 mb this gives C = 0 . 9 5 ­ 1 0 C . 

η Τ 

F o r the spec t ra l η ι η ^ ϊ ο η φ (κ) , the F o u r i e r t r ans fo rm of Β (s) = 
η η 

= η'ÇÍ. ) η \ τ ), we obtain from (45) by F o u r i e r t ransformat ion the 

express ion 

(47) Φ (κ) = 0.033 C ^ í " 1 1 / / 3 

η η 

These relat ions a r e valid within the iner t ia l subrange, i . e. for 

L > s > 1 or 2%/L· < κ < 2 π / ΐ respect ive ly . Outside of this i n t e r -o o 
val l sca t ter ing due to turbulence is re lat ively smal l ; so it is s o m e ­

t imes convenient mathemat ica l ly to provide suitable cutoff factors and 
(19) to use the following express ions for φ : 

η 

(48) Φ (κ) = 0.033 C 2 * ' 1 1 ' 3 ε χ ρ ( - κ 2 / κ 2 ) ν ' η η m 

with κ = 5.92/1 which is valid for al l κ l a rge r than 2%/L·, or m o α ι 

(49) Φ (κ) = 0 .063G 2 L 3 β χ ρ ( - κ 2 Α 2 )/(1 + x 2 L 2 ) U / / £ > 
η n o m o 

2 which can be used for al l values of κ . σ denotes the var iance of the 
η 
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refract ive index fluctuations. 

Typical values for the s t ruc ture p a r a m e t e r C of ref rac t ive index 
(21) fluctuations a r e : 

weak turbulence: 

in te rmedia te turbulence: 

s t rong turbulence: 

C = 8 . IO" 9 m " 1 / 3 

C n = 4 - 1 0 " 8 m " l / 3 

C n = 5 . 1 0 " 7 m " 1 / 3 
n 
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Chapter IV - PROPAGATION OF OPTICAL WAVES IN THE TUR­

BULENT ATMOSPHERE 

The turbulence-induced fluctuations of the index of refract ion 

a r e inhomogeneities that s ca t t e r e lec t romagnet ic radiat ion. The 

physical aspects of this sca t te r ing depend essent ia l ly on the ratio 

ΐ / λ where 1 is the dimension of the sca t te r ing inhomogeneity and 

X the wavelength of the incident radiat ion. In fact, the scat ter ing 

by an inhomogeneity of size 1 can be calculated from the general 

express ions of the Mie theory - which can be simplified cons ider ­

ably in this par t icular case where the index of refract ion of the in­

homogeneity differs only by a very smal l amount from the mean 

index of refraction (which we assume to be unity) -, and it is well 

known that the Mie theory predic ts par t icu lar ly s trong sca t te r ing 

if ΐ / λ is of order of unity. This case occurs in the sca t te r ing of 

mic rowaves , since the a tmospher ic turbulence contains eddies of 

a l l s izes from a few mi l l ime te r s to some m e t e r s or even tens or 

hundreds of m e t e r s . The eddies of the size of the wavelength a r e 

d is t r ibuted at random among eddies of other s ize in the general 

turbulence, so that the sca t te r ing of the microwave by the indivi­

dual eddies will add up incoherent ly. Scat ter ing is effective in all 

d i r ec t ions , even backward. This is of p rac t ica l importance for the 

application of microwave sca t te r ing for the detection and study of 
(22)(23)(24) 

c l ea r a i r turbulence (CAT) by remote r ada r sensing ana 

for establishing microwave communication beyond the optical ho r i -
(20) zon by "sca t t e r l inks" . The physici 

will be considered in the next chapter . 

(20) zon by "sca t t e r l inks" . The physical aspects DÌ this sca t ter ing 

Here , we will be concerned with the effect of turbulence on the 

optical frequencies, where the wavelengths a r e always smal l com­

pared to even the smal les t eddies , so that the sca t te r ing is predo-
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minantly forward, i. e. it is confined to a cone of angular a p e r ­

tu re θ = λ / l ; it is cohérent and can be thought of as a random r e ­

fraction of the incident wave. Though it is mathemat ica l ly s t r a i gh t ­

forward to derive the formulae that apply to this case from the 

genera l sca t te r ing resu l t s by a l imit operat ion (c. f. TATARSKI 

for plane and spher ica l waves and ISHIMARU for beam waves ), 

it s eems more intuitive to t rea t this case by a d i scuss ion of the r e ­

fraction of waves by success ive random phase s e r e e n s as f i r s t p r o ­

(26) 

posed by LEE and HARP . F o r some situations geome t r i ca l op­

t ics (which a r e essent ia l ly the WKB­approximation to the wave equa­

tion) give a l ready the c o r r e c t answer ; this i s p laus ib le , s ince 

the dimensions of the inhomogeneities a r e so la rge compared to the 

wavelength, that in many instances diffraction effects can be neg lec ­

ted. However, it is well known that at long dis tances Ζ from the r e ­

gion where the in teract ion took place , diffraction effects can be ob­

se rved . In fact, diffraction effects become impor tant whenever the 

dimension of the eddies 1 a r e s m a l l e r than the d i a m e t e r of the f i r s t 

F r e s n e l zone, i. e. whenever 1 < Λ/ΧΖ. F o r visible light of 0. 5μηα 

and smal les t eddies of the size of, say 5 m m , this leads to a d i s ­

tance of 50 m, which is not even very l a rge for mos t p r ac t i c a l ap ­

pl icat ions. 

Since the velocities involved in turbulent motion a r e e x t r e m e l y 

smal l compared to the speed of light, we can neglect the t ime d e ­

pendence of n ' ( r , t ) , during the t r ans i t of the e lec t romagne t i c wave . 

We consider a plane a i r s lab of th ickness Δ ζ extending in the x ­ and 

y ­d i r ec t ions , si tuated at ζ = ζ , and a plane wave E (z) = exp(jkz) 

impinging normal ly on it. The dis t r ibut ion n ' ( r ) _ = n ' ( x , y , ζ ) of 

the index of refract ion fluctuation in the s lab at the moment of inc i ­

dence can be wri t ten in t e r m s of the spat ia l F o u r i e r components in 

the x ­ and y­d i rec t ions : 
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(50) n ' ( r ) z = / / d U j d ^ N f e . u ^ u ^ e x p C j ^ x + j ^ y ) 

We make the assumpt ion ­ d i scussed below ­ that t e r m s of o rde r 
2 

n ' and higher can be neglected because of the sma l lness of n ' , 

so that al l equations governing the wave propagation a r e l inear in 

n' ; thus we can consider the contribution of each F o u r i e r compo­

nent separa te ly and add the r e s u l t s . A F o u r i e r component a. exp(jux) 

gives r i se to a periodic phase modulation 

ΔΦ = a Azkexp(jux) where aAz « 1 

of the wave leaving the s lab , which becomes 

(51) β χ ρ ^ ζ + ΔΦ )] « exp(jk£)(l + j Δ Φ) = Ε ^ ζ ) + E g ( £ , x ) 

where 

(52) Ε ( ζ , χ ) = jaAzkexp [ j(k£ + ux)] 
S 

is a plane wave inclined with respec t to the z­axis by an angle θ such 

that tg θ = u/k . Since the smal l e s t eddies a r e of dimensions 1 » λ, 

the spat ia l frequencies u of n ' m u s t all be <<k, so that the angle 

·& ~ u /k = \/l is very sma l l . 

It is now assumed that no multiple sca t te r ing takes place, since 

/ <Λ2 
this would involve t e r m s of o rde r (nO and higher . This assumpt ion ­

which is equivalent to the Born­approximat ion in the usual s c a t t e r ­

ing theory ­ is real ly the mos t ser ious l imitat ion of a l l existing 

theor ies of wave propagation in turbulent media . It leads to notable 

d i sc repanc ies with exper imenta l resu l t s when the total sca t te r ing 

contr ibut ion becomes l a rge . Attempts to use some well known p roce ­

dures of theoret ica l physics for higher sca t te r ing approximations ­

(28) 
such as d iagram expansions and renormal izä t ion techniques , m o ­

(29) 
ment methods or the integro­different ia l equations of radiation 
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(30) t r a n s p o r t - so far have not led to genera l ly accepted r e su l t s 

for the case that the Born-approximat ion b reaks down. F o r t u n a ­

tely, exper iments and a lso some of the calculat ions indicate that 

at l eas t the amplitude fluctuations tend to an asymptot ic constant 

l imi t ("saturat ion") and that the Born-approx imat ion holds as long 

as it predic ts fluctuations well below that l imi t (c.f. Chap te r VI). 

Thus , he re we a s s u m e that the two waves E and E propagate 

with the wave number k of the unper turbed medium in sl ightly dif­

ferent d i rec t ions to the rece ive r plane ζ = Ζ where they s u p e r i m ­

pose to give the total field E(Z) which we wr i te in the form 

(53) E(Z) = E o (Z) + Eo(Z)Mf1 (x, Z) 

i . e . we express the scat ter ing by a t e r m Δψ (x> Z) = E / E which 
ι s o 

gives the sca t t e red field relative to the unper turbed field. We find, 

/
2 2 u2 

k - u « k - — 
uri 

(54) Δψ ^'χ, Ζ) = ja Azkexp(jux)exp [j(k'- k)] 

If we sum coherent ly the contributions of al l F o u r i e r components 

of n ' ( r ) according to eq. (50) and a lso sum over a l l planes Δζ f rom 

0 to Ζ (or in tegra te over η = Ζ - ζ from 0 to Ζ) we can find the com­

plete s ca t t e r ed wave ψ = ΣΔψ., such that the total field at (x ,y , Z) is 

given by 

(55) E ( x , y , Z ) = Ε ο (Ζ) + Ε ο ( Ζ ) ψ 1 ( χ , Υ , Ζ ) 

Since the total s ca t t e red contribution ψ has s t i l l to be s m a l l in 

o r d e r that the Born-approximat ion be valid, we can wr i te eq. (55) 

a l so in the form 

(56) E(x ,y , Z) = E o (Z) exp [ ^ ( x . y , Z ) ] 



Thus χ = Re ί ψ A is the fluctuation of " log-ampl i tude" with 

r e spec t to the unper turbed solution, and S = Im ί ψ y that of the 

phase . 

We a r e not so much in te res ted in the fluctuating field ψ itself 

as in its cor re la t ion or s t ruc tu re functions which re la te the s t a t i s ­

t ics of signals rece ived s imultaneously in two de tec tors in the 

plane ζ = Z, separa ted by a dis tance a = (x ,y) . We f i rs t calculate 

the amplitude cor re la t ion Β (a). Since different spat ial frequencies 
A. 

u = (u , u ) can be considered as uncor re la ted , we can sum the con­

tr ibut ions dB (a,u) to obtain Β (a), where the dB (a, u) a r e the 
Λ. Λ. X 

ampli tude corre la t ion functions for the spat ial f r equency^ . Noting 

that the real i ty of n ' ( r ) implies Ν ( Ζ - η , -u) = Ν (Z-r ) ,u) we find 

ζ ζ 

(57) dB (a*, üO = d ^ d u ^ k 2 / d T ^ s i n ^ ­ k ) · ] ^ / d ^ s i n ( k ' ­ k ) ^ c o s ( u . a) 

• Γ ( η » η 1 ­ η 2 ) 

with 

; .co 

(58) F t u . T ^ ­ n ^ = Ν ( η 1 , ^ Ν ( η 2 , ^ ά η 1 ά η 2 = J dKcos(K(η l - η ^ Φ ^ χ ) 
—CO 

where 

J 2 2 

u + Κ and Φ (κ) is given by eqs . (47) to (49). 
Introduction of the new var iables of integrat ion 

(59) s = (τ)1 + η 2 ) / 2 w = r)l - η 2 

(14) one integrat ion in equation (57) can be c a r r i e d out so that : 
ζ 

2 l' _ , , 2 , 2 (60) dB (a,u) = d\x du. 2%k Ι φ (u)sin (u s /2k)cos(u. a)ds 

o 

In this form it is s t i l l possible to include a smooth var ia t ion oí 
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the s t a t i s t i ca l p roper t i e s of the ref rac t ive index fluctuations along 
the path by assuming a weak dependence on s of the s t r u c t u r e p a r a ­
m e t e r C so that 

n 

(61) φ (u) = 0 2 ( β ) φ (u) \ / η\ n o 

with 

(62) Φ (u) = 0.033 u " 1 1 / 3 (u . < u < u ) x ' ox x min m ' 

so that finally 
L 

2, % . 2, 2 (63) dB (f, i?) = du du 27ck $ (u) ƒ C (s) sin (u s /2k) ds cos(u. ã) 

ρ 

—> 

The contribution of the spatial frequency u to the phase p e r t u r b a ­

t ion co r re l a t ion function is obtained from the imaginary p a r t of ψ 

which involves the cosine instead of the s ine , so that 

ζ 

(64) dB (a, u) = du du Ziek Φ (u) I C (s)cos (u s /2k)ds cos(u. a) 

o 

2 
In pa r t i cu la r , if C is independent of s (homogeneous tu rbu lence) , 

η 

these express ions can be integrated so that we obtain 

d B y ( a ' u ) l 2 2 2 
(65) JT , , J = du du k Z(l + (k /Zu )sin(u Z/k)) Φ (u)cos(ù. a) 

dB (a, u)­^ 1 2 — n 

F r o m eqs . (63) and (64) the cor re la t ion functions Β and Β a r e 

obtained by integrat ing over du1 du = ududcp (φ =­¿^(u, a)) 

u Ζ . . 2, 2 
B

v
( a )

l 2 2 Γ /" f
Sin (U s / 2 k ) 

<66> B * ( a ) > 4 * k / d U / d S U ^ J o ( U ­ a H c o s 2 ( u 2 s / 2 k ) 

u . 0 
m m 

2 
or in the case that C is independent of s, 

η 

B ( a ) Ί 2 2 Γ r 2 , 2 
(67) , . J = 2 π k Ζ / J (u .a ) { l + (k /Zu )} sin(u Ζ / ΐ φ Φ (u)du 

u . m m 

The integrat ion var iab les u and u can be r ep l aced by 0 and «*> 
m m m 
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if express ions of Φ (u) with suitable cutoff­factors a r e used. Be­
n 

cause of the vanishing of the integrand for u­> 0 the quantity Β (a) 
Λ. 

is insensi t ive to the exact form of φ (u) for smal l u. Unfortunately, 
η 

this is not the case with Β . It turns out that the s t ruc tu re function 
2 

of the phase fluctuations D (a) = (S(O)­S(a)) = 2(B (0)­B (a)) does 
not p resen t this problem, since it involves the factor 1­J (ua) in­

o 
2 

s tead of J which vanishes as u and suppres ses the dependence of 
o 

the in tegra l on its lower l imi t . 

The case of a spher ica l wave, originating at the origin of the co­

ordinate sys tem and normal ized to an amplitude 1 at the r ece ive r 

(z = Z), i . e. 

/ 2 2 2 
(68) E (x, y, z) = (Z/z)exp(jk jx + y + z ) 

can be t rea ted by the same method. The slab of turbulent a i r of 

th ickness ζ at ζ = ζ leads to a modification of the t r ansmi t t ed wave, 

which can be wri t ten for each spat ial frequency + ü* contained in 

n ' ( x , y , £ ) as the or iginal spher ica l wave plus two additional spher ica l 

waves differing in amplitude from the original wave by the factors 
2 

kA zN(+u,ζ ) and in phase by j exp(ju ζ / 2 k ) and originating from the 
(2d) 

points ( u £ / k , 0, 0) and ( ­u£ /k , 0, 0) . Here the (x, y)­coordinates 

have been chosen in such a way that the x­d i rec t ion coincides with 

the d i rec t ion of u; also it is a s sumed that the field will be observed 

nea r the z ­ax i s , so that x, y « /2ζ*7λζ . These waves combine at 

the r ece ive r plane to give 

2 

(69) Δψ1 = kAzexpl j U
2 ^ ­ ^ " | f N(u, £)exp(j ψ) + Ν*(ϊ . £ ) e x p ( - j ^ ) " j 

The further mathemat ica l development then follows the same lines 

as in the plane-wave case and leads to 
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2 

(70) 

and 

(71) 

dB (5) sin ( ΊΙ„ hl ) 
Ί 2 Γ Γ 2 k Z 

J ■ " k 7 *„<"» I i ^ n ­ r ) , cosCS.?|)d5dVu 
c o s

 ( — ^ i ^ ,
 fa

 ) d B S ( a ) o » 2kZ 

2 
_ /­κ u Ζ . 2,u ζ ( Ζ ­ ζ ) , 
Bx(a) m sin ( ^ L) 

= 4 A 2 ƒ du f d£ u f ( u ) j A 2 
min 

(31) 
These results agree with those found by SCHMELTZERV ' and 

(32) FRIED . If the refractive index fluctuations are finite only over 

the range Ζ - H< ζ < Ζ (zero elsewhere) and if Ζ is made arbitra­

rily large, so that ζ/Ζ-> 1 over the range of integration, eq. (71) 

goes over to 

τ, r*\ u Ζ . 2 u2(Z-£). Β (a) m sm (—\" *') 
y Λ f ¿K 

= 4 i k f du f d ζ u φ ( u ) j (ua) 

B_(a u . Ζ ­ H c o s j ^ ) 
Sv m m x 2k 

which is the plane wave result, eq. (66), as it should be. 

(26) 
LEE and HARP derived by the same phase screen method also 

the results for a Gaussian beam, which agree with the expressions 

found by SCHMELTZER^ ' and ISHIMARu'25' by a direct solution of 

the wave equation. We do not quote these results here as no further 

physical insight can be gained from the resulting rather awkward for­

mulae, which, however, are a valuable starting point for a numerical 

analysis of the beam wave case which is discussed by ISHIMARU (loc. 

cit. ). 

We have seen that the final expressions for the correlation func­

tions of the quantity i (where the index i stands for χ or S) have the 
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f o r m : 

oo 

2. 2 2 2 Γ 
(72) Β. (a) = 2 π k Ζ / udu F . (u ) φ (u) 

ι J i n 

One f ac to r of the i n t e g r a n d i s s i m p l y the p o w e r s p e c t r u m φ (u) 
η 

of the r e f r a c t i v e index f l u c t u a t i o n s , whi le the o t h e r , F . ( u ) , is c a l l e d 
ι 

the " f i l t e r funct ion" for the quan t i ty i, s i n c e i t weights s e l e c t i v e l y 

the s p e c t r a l t e r m . It is a m e a s u r e of the s c a t t e r i n g ef f ic iency of the 

p e r t u r b a t i o n s of d i f f e ren t s i z e s 1 = 2 7</u, and d e p e n d s a l s o on the 

g e o m e t r i c a l v a r i a b l e s Ζ ( d i s t a n c e r e c e i v e r ­ s o u r c e ) , a ( r e c e i v e r s e ­

p a r a t i o n in the r e c e i v e r p l ane ) , k ( w a v e n u m b e r of the i n c i d e n t r a ­

d i a t ion ) and in the c a s e of G a u s s i a n b e a m s on the b e a m width w. 

" T h e i m p o r t a n c e of f i l t e r func t ions b e c o m e s c l e a r when a t t e m p t s a r e 

m a d e to i n t e r p r e t e x p e r i m e n t a l m e a s u r e m e n t s in t e r m s of a t m o s p h e ­

r i c p a r a m e t e r s . A s ing l e m e a s u r e m e n t obv ious ly canno t un ique ly 

d e t e r m i n e a n u m b e r of p a r a m e t e r s , and it is n e c e s s a r y to d e t e r m i n e 
(26) 

t h o s e p a r a m e t e r s to which the m e a s u r e m e n t i s m o s t s e n s i t i v e . " 

As an e x a m p l e , we note t h a t the f i l t e r funct ions for a m p l i t u d e and 

p h a s e in the p l a n e ­ w a v e h o m o g e n e o u s ­ t u r b u l e n c e c a s e a r e g iven by 

( c f . e q . (67)) 

F (u)­ | 2 N 

(73) * = J (ua) ( l + — s i n ^ ) = J (ua)( l + ­ ^ s i n ^ ­ ) v ' J ox / v — 2^ k ' ox /v — 2% N 

F s ( u ) 

A p a r t f rom the f a c t o r J (ua) wh ich d e s c r i b e s the effect of the s e ­
o 

p a r a t i o n of the two r e c e i v e r s , the s p a t i a l f r e q u e n c y r e s p o n s e is d e ­

t e r m i n e d by a f i l t e r funct ion wh ich d e p e n d s only on the F r e s n e l n u m ­

b e r 

(74) N = ( 1 / W J 2 

2 w 2 
u W F 
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which is the rat io of the geometr ica l c r o s s section of the obstacle 

to the a r e a of the f i rs t F r e s n e l zone; W is the width of the f i r s t 

F r e s n e l zone: W = */λΖ = ! 2 π Ζ / ^ F r o m the form of the f i l ter 

functions we conclude that smal l wave numbers ( large inhomogenei -

ties) a r e weighted s trongly for phase f luctuations, and l a rge wave-

numbers ( smal l inhomogeneities) contr ibute s t rongly to fluctuations 

in log-ampl i tude . 

While the (spectra]) f i l ter functions F . jus t introduced, give the 

weighting of the different spatial f requencies in the case of a known 

spatial dis tr ibut ion of the intensity of turbulence along the path of 

observat ion s - usually under the hypothes is , as in eq. (73), of an 

independence of the turbulence c h a r a c t e r i s t i c s from the spa t ia l 

positions - we can also define "spa t ia l f i l ter functions" G. under the 

assumption, that the turbulence spec t rum can be wr i t ten in the form 

of eq. (61) with a known analytical form of Φ (u). We then wr i t e the 

cor re la t ion function for the observable i in the form 

Ζ 

(75) Β.(a) = B°(a) ƒ ds C 2 (s)G.(s) ι ι / η ι 

These spat ial f i l ter functions a re especia l ly in te res t ing for app l i ca ­

tions in "a tmospher ic probing", s ince in such p rob lems one usual ly 
- 1 1 / 3 a s s u m e s a spec t rum of the form (61) with φ (u) ~ u as given 

by the Kolmogorov theory (c.f. eq. (62)) , and one t r i e s to d e t e r -
2 

mine C (s) by a best fit to the m e a s u r e m e n t s . The fo rm of the s p a -n 
t ial fi l ter functions G.(s) gives an indication on the p a r t s of the path 

1 2 
which a r e most sensi t ive to the values of C (s) . F o r example , it 

η 

can be seen from eqs . (63) and (64) that ampli tude fluctuations a r e 

more sensi t ive to the turbulence around the emi t t e r , while phase 

fluctuations depend evenly on the conditions along the whole path. 
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Detai led discussions and plots of spec t r a l and spat ia l fi l ter 
(2(>) functions can be found in the paper of LEE and HARP for plane 

(25) and spher ica l waves and in that of ISHIMARU for some types 

of Gaussian b e a m s . 

We will turn now to the d iscuss ion of some p rac t i ca l consequences 

of turbulence effects on optical communicat ion s y s t e m s . We have 

seen that a tmospher ic turbulence leads to fluctuations in amplitude 

and phase of the signal a r r iv ing at the r e c e i v e r . The amplitude fluc­

tuations a r e analogous to "fading" in radio t r ansmis s ion ; they a r e 

cal led "beam scint i l la t ion" in our case of optical communicat ion 

l inks , and are var ia t ions in the spat ia l power density at the r ece ive r 

caused by interference within the beam c ros s sect ion. The fluctua­

tions in log-ampli tude have probably a Gaussian probabili ty d i s t r i -
(33)(34) 2 , , bution with a var iance given by O = Β (0). 

Λ. Α. 

The phase fluctuations lead to spat ial coherence degradation, 

image dancing and beam spreading . It is convenient to define a " l a -
(21) 

t e r a l phase coherence length" ρ by the condition that the root 

mean square phase difference between the signals at two points in 

the r ece ive r plane which a r e the distance ρ apar t will be equal to π: 

(76) Acp(p0)=JD s(p0)= J [ s ( p o ) - s ( 0 ) ] 2 = π 

In other words, an in t e r f e reomete r with the two sl i ts apa r t a d i s ­

tance l a r g e r than ρ will detect no phase cor re la t ion . This spat ial 

coherence loss is especia l ly important for heterodyne receiving 
(35)(36) . . , . . , s y s t ems since it l imits the max imum receiving antenna a p e r ­

tu re to dimensions of the o rde r ρ . On the other hand, a phase in­

sensi t ive (intensity) de tec tor of l inear dimensions >>p (i. e. a d i rec t 

detect ion rece iver with an ent rance pupil of that size) m e a s u r e s an 

intensity equal to the spat ia l average over its a p e r t u r e , and since 
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the fluctuations a r e uncor re la ted over m o s t of this region, t he i r 

effects tend to be ¡ 

averaging effect". 

(37) 
effects tend to be smoothed out ; this is ca l led the " a p e r t u r e 

Within each coherence region the phase fluctuations cause 
Í38ÍÍ39Í 

" image dancing" . If the phase , as a r e su l t of the f luctua­

t ions , va r i e s l inear ly by an amount Δφ over a d is tance b in the 

plane of the wave, the wave front (plane of equal phase) is effecti­

vely t i l ted by an angle α « Δφ/kb . The va r i ance of these " a n g l e ­

o f ­ a r r i v a l f luctuations" is therefore given by 

(77) a 2 = σ
 2 = D ( b ) / k V ( b « p ) 
(X o o 

These var ia t ions in the a r r i va l angle α at the en t rance of the r e ­

ce ive r cause the image point to wander in the focal plane by the 

dis tance f a , where f is the focal length of the r e c e i v e r op t i c s . 

As the different coherent subregions of the beam undergo inde ­

pendent a n g l e ­ o f ­ a r r i v a l fluctuations, the beam as a tota l is sp r ead 

out, i . e . the beam divergence i n c r e a s e s and the power densi ty on 

i ts axis d e c r e a s e s . Beam spreading can be cons idered as a typical 

s m a l l angle sca t t e r ing effect; its magnitude is au tomat ica l ly taken 

into account by the c o r r e c t beam wave solution, but s ince the r e ­

sult ing ma themat i ca l express ions a r e of a r a t h e r unconvenient form, 

(21) 
some authors p re fe r to use the s imple plane wave solution and 

to c o r r e c t for beam spreading a f te rwards by as suming that the 

width of the sp read beam is given approximate ly by w = 2 Z Q 

with σ as in eq. (77). Beam spreading has to be taken into account 

when w becomes l a rge compared to the width w of the u n p e r t u r ­
sp r 

bed Gaussian beam at the r ece ive r . 



In the case of very strong coherent phase fluctuations across 

the beam, the whole beam can be deviated from its path ("beam 

steering" or "beam wander") and eventually miss the receiver com­

pletely. It is clear that such an effect cannot be described correctly 

even by beam wave theory since the perturbation approximation fails 

for such a strong deviation from the unperturbed solution. It can be 

treated, however, within the limits of geometrical optics ; this 

leads essentially to the same formula for the mean square deviation 
2 -». -> 

σ of the arrival point ρ from its mean value ρ = 0, as the one given P 2 2 2 2 in the case of beam spreading for w , i.e. Ο ~ Ζ σ . so that spr ρ CX 

beam steering and beam spreading can be considered as almost the 

same phenomenon; indeed, if the intensity in the receiver plane is 

averaged over longer observation times, beam wander gives just an 

additional contribution to beam spreading. 

Beam steering has to be distinguished from "beam bending" which 

is not really a turbulent effect, but is due to a gradual systematic 

variation of the index of refraction along the propagation path. Beam 

bending can have dramatic effects such as the formation of mirages 

in some rather rare occasions, but it can be distinguished from tur­

bulence effects by its slow variation with time (timescales of minutes 

or even hours, instead of seconds or less). Since in the case of beam 

bending, the variation of the index of refraction is very gradual com­

pared -with the wavelength of the radiation, "ray tracing" by the me­

thods of geometrical optics can be performed to compute the beam 

trajectories provided that the index of refraction or - equivalently -

the temperature distribution in the neighbourhood of the path is known; 

unfortunately, this is rarely the case. 
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Chapter V ­ SCATTERING OF MICROWAVES BY ATMOSPHE­

RIC TURBULENCE 

If the index of refraction n = Λ/ε becomes ­ due to the turbulent 

fluctuations n^(r) ­ a function of position, Maxwell's equations lead 

to a wave equation for the electric field E of the following form: 

2 2 ~* 
(78) àè + k n (r)E + 2grad{È*. grad [in n(r)] J = 0 

The last term ­ which gives rise to a turbulent depolarization ­

is usually small and can be neglected, so that 

(79) ΔΕ + k2n2(r)E = 0 

— 2 
Assuming n = 1 and noting that for small n "we have (1 + nO ~ 1 + 2n', 

we can write eq. (79) in the form 

(80) ΔΕ* + k E" = ­2k nÜ? 

We try again the solution in the form of the first Born­approximation 

(c. f. the discussion in the preceding chapter) and write the field E 

in the form 

(81) 2 = 2 + 1 ? 

where the scattered wave E is assumed to be ­ relative to the unper­

turbed incident wave E ­ of the order of smallness n', so that second 

° -> 
order products such as ηΈ can be neglected. 

—» —> 2—> 
Since Ë is a solution of the homogeneous wave equation, Δ E + k E =0, 

o o o 

we obtain for E the equation 

(82) ¿È + k2E = ­2k2n/Ê> 

■ ' s s o 
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which indicates that the waves E originate from sources of 

strength -2k n'(r)E . Eq. (82) has the well known solution 

. 2 , , nlfrOE (Ϋ) 
-* - * k ; 3 x / o ->■ - ► 

(83) E ( r ) = - 7 d r 2 exp(jk|? - r l ) v ' s v ρ ' 2 π / , -> -» , Ρ 
J I r -r I 

V ρ 

where the integration extends over the scattering volume V and r 

denotes the location of the observation point. 

If the observation point is far remote from the volume V where 
. 1/3 

the scattering takes place - such that Kr >> V - we can make the 
- » -► P 

approximation I r -r | s r - fr. r )/r in the exponential and replace 
Ρ Ρ P P 

the denominator by r . This gives a spherical wave in the scattering 
Ρ 

direction m = r / r . 
Ρ Ρ 

Jkrp 

(84) E (r ) = τ­> 
s ρ m r 

Ρ 
­» 

with the "scattering amplitude" Τ­> 
m 

( 8 5 ) ^ m = " ïki d 3 r M?)E0(r>xp(­jk(?.m)) 

As incident wave we can assume a linearly polarized plane wave pro­

pagating in a direction given by the unit vector ï?, 

­ > ­ > - * - * - * ■ -*■ ­ » 

E = ρ exp(jk. r) = ρ exp(jku. r) 

­> 
where ρ is the unit vector in the direction of polarization. Actually, 

it is now unimportant whether we consider beam waves or plane waves, 

since the most effective scattering is caused now by eddies of the or­

der of a wavelength which scatter incoherently and are insensitive to 

the macroscopic distribution of the incoming wave field. Thus we ob­

tain 

(86) τ­jk = ρτ(κ) = ­ — ƒ d r n'(r) exp(j£. r) 
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where the " sca t t e r ing vector" is given by 

(87) x>= k (u - m) 

Its magnitude is given by v. = 2k 8ΐη(·&/2), where the " s c a t t e r i n g 

angle" θ is the angle between the d i rec t ions u and m of the incident 

and sca t te red waves , respect ively , such that l ì . rn" = cosfi·. The mean 

intensity at the observat ion point"? is given by the mean value of 
p 

the component of energy flow in the outward d i rec t ion m at that point, 
—► 

i . e . by definition of the corresponding component m . S of the Po in t -

ing vector 

(88) S = ( c ^ ) R e (Ε χ Η = (ο/8π)Ε*χ(ίηχ E ) 

so that 

(89) m. S = ( c / δ π ) \Ê i ein χ ~ | τ ( κ ) | s in χ 
S S 

Here we have denoted the angle between the d i rec t ion of polariza­

tion p* and the d i rec t ion of observat ion m by χ , so that m.p* = cos^ . 

According to eq. (89) the intensity is de te rmined essen t i a l ly by the 

"differential sca t te r ing c ross sec t ion" 

4 
k V . 2 / .3 

(90) Q = h (κ)I s in γ = — r sin γ i d r Β (r) exp(j>¡> r) 

4π 
V 

where 

Β Γτ) = n ' ( r + r )n ' ( r ) is the co r re la t ion function of the re f rac t ive 
ηλ ' x ο λ o 

index fluctuations. If V is l a rge r than the co r re l a t ion volume (which 
3 

is of the o rde r of 1 where 1 is the s ize of the sca t t e r ing eddies) the 

integrand vanishes outside V and we can rep lace the in tegra l over V 

by an in tegra l over the whole space; the in tegra l is then equal to 

(2π) t imes the F o u r i e r t r ans form φ ( κ) of Β ( r ) , i . e . 
η η 

(91) Q = 2*k 4V β ί η 2 χ φ (κ) 
η 



In pa r t i cu la r , with the Kolmogorov-express ion (47) for Φ (κ ) we 

obtain 

(92) Ω(κ) = Q(2ksin ϋ/2) = 0.016 k ^ V C 2 ( s in θ /2)" 1 ^ s i n 2 χ 
η 

This express ion is valid within the l imits (2π /L)<2ks in θ /2<(2π/ ΐ ). 

F o r backward sca t te r ing ■& is equal to 180 , so that s in ($ /2) = 1 and 

2k = 4%/λ < 2π / ΐ . Thus backs catte ring is possible only if λ >2 1 . 
O o ir y 0 

This condition shows that only radio waves (and no optical radiation) 

can be used for monostat ic remote probing of a tmospher ic turbu­

lence . Since Q depends only on the cube root of k, it appears that m i ­

crowaves with wavelength of the o rde r of one cent imeter might have 

an advantage in the re la t ive sca t te r ing intensity, but that the k-depen-

dence of the cross sect ion is weak enough to pe rmi t the use even of 
(24) dec ime te r waves for such purposes 

We conclude this chapter by the r e m a r k that for optical frequen­

cies the express ions der ived here remain applicable as long as the 

sca t t e r ing is confined to a cone in the forward direct ion, subtended 

by the maximum scat ter ing angle θ ; this angle is defined by 
m 

2k sin( ■& /2) ~ k θ = 2 π / l or θ = X/l . This condition was a l ­x m ' m ' o m o 
ready mentioned at the beginning of the preceding chapter . Indeed, 

we can obtain the resu l t s o f tha t chapter , writ ing E = Ε A, and 
s ο γ 1 

using ­ for the plane wave case ­ equation (83) with the approxima­
k(x + y2\ 

t ions k j ? ­ ? |RJ k η + —~ *—¿ in the exponential and ¡Ϋ - r*| Ε η Ρ 2 η ρ 
in the denominator. 

F o r 1 = 5 m m and λ = 0. 5 μιτι we find an angular ape r tu re of the 

forward scat ter ing cone of 0. 1 mi l l i r ad i ans . 
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Chapter VI ­ SOME EXPERIMENTAL RESULTS ON THE PROPA­

GATION OF ELECTROMAGNETIC WAVES IN THE 

ATMOSPHERE 

Exper iments done under conditions that allow a d i r ec t check of 

the theore t ica l predict ions require s imultaneous m e a s u r e m e n t s of 

the pert inent meteorologica l p a r a m e t e r s such as C . Since such 

m e a s u r e m e n t s a r e not easy to pe r fo rm, the f i rs t r e a l t e s t of the 

Í41) 
theory was made only in 1965 by GRACHEVA and GURVICHV ', who 

m e a s u r e d the var iance of the log­ intensi ty fluctuations over a flat 

hor izontal path up to 2 000 m. They encountered the phenomenon 

of sa tura t ion: while for shor te r d i s tances L the va r i ance of log­

2 . 2 , H / 3 Λ ,_ , 
intensity σ = 4 χ was proport ional to L as p red ic ted by the 

theory, the O ­ v s ­ L ­ c u r v e " sa tu ra t ed" ( i . e . became hor izonta l ) 
Ini ' 

at 

0, T » 1 . 6 ( X » 0 . 6 4 ) . 
(42)(43)(44) 

The same phenomenon was la ter verif ied by o thers , though 

(45) 
with a ce r ta in spread of the repor ted sa tu ra t ion va lues . DABBERT 

(46) 

investigated the scinti l lat ion of log­ampli tude on ground paths up 

to 7. 5 km and slanted paths (from or to a 465 m tower) f rom 0. 6 km 

to 10 km and fitted the saturat ing resu l t s to express ions of the form 

Ο = α , / ( I + ασ' , ) where the fitting p a r a m e t e r s α, β 

m e a s . theor . theor . ° r v 

showed a slight frequency dependence and a lso a dependence on the 

c lass of a tmospher ic stabil i ty. According to his r e su l t s the m e a s u r e d 

scinti l lat ion magnitude σ s a tu ra t e s as range and turbulence 

m e a s . ° 
( i . e . C ) i n c r e a s e , but finally even d e c r e a s e s with fur ther i n c r e a s e 
in range a n d / o r turbulence ( supersa tura t ion region) . The m a x i m u m 

­7 /12 
of σ (at the sa tura t ion point) is propor t ional to λ (as it is 

m e a s . 

in the unsatura ted region) while in the supe r sa tu ra t i on region t h e r e 

is l i t t le dependence on frequency. 

Saturation indicates the point where the per tu rba t ion theory c e a s e s 

to be appl icable . Over shor t dis tances (10 km) the validity of the p e r ­

turbation theory was a lso confirmed by an excel lent a g r e e m e n t with 
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(47) 
the measu remen t s by GRAY and WATERMAN^ ' of the log­ampl i ­

(48) 
tude covariance function. OCHS et a l . have m e a s u r e d the no r ­

ma l i zed covariance function over longer d is tances and got a good 

ag reemen t with the theore t ica l predict ions up to 15 km. However, 

(49) 
KERR reported cases where even at modera te turbulence and 

shor t path lengths substant ia l d i sag reemen t with the theory was ob­

se rved . The reason for these d i sc repanc ies is not known, but it is 

poss ible that in some meteorologica l si tuations the Kolmogorov mo­

del does not cor respond to the main mechan i sm of turbulent energy 

diss ipa t ion . 

Measurements of the phase covariance function by BOURICIUS 

(50)(51) 
et a l . showed good ag reemen t with the theore t ica l p red ic t ions . 

(50) 
The first group of exper iments used a 25 m re tu rn path, i. e. a 

total distance t r a n s m i t t e r ­ r e c e i v e r of 50 m, and the spat ia l c o r r e l a ­

tion measuremen t s were replaced by t empora l au tocorre la t ion m e a ­

s u r e m e n t s , assuming the validity of Tay lo r ' s hypothesis that the t u r ­

bulence field of t e m p e r a t u r e fluctuations does not change during a 

shor t t ime interval τ , so that it is m e r e l y t r anspor t ed a c r o s s the light 

path by the mean t r a n s v e r s e wind ν . Under this assumpt ion the r an ­
n 

­ > -*■ ­ > 

dom field at d and t ime t + t coincides with the field at d ­ vT at 
"* n (51) 

t ime t, so that D (a) = D (ν τ ) . The second group of exper iments 
(52) 

used a 70 m di rec t path and an in t e r f e reomet r i c a r r a y of two r e ­

ceiving s l i ts at 4 different spacings d < 30 cm for a d i rec t ver i f ica­

tion of Tay lor ' s hypothes is . In both exper iments s imultaneous C ­

measu remen t s were done with two 2 μ ιη P t ­ w i r e r e s i s t ance t h e r m o ­

m e t e r s (10 cm distant from each other) located nea r the cen te r of the 

light path, and the mean wind was recorded with a conventional ane ­

m o m e t e r . 

Ta y lo r ' s hypothesis gave an excellent ag reemen t between the cor­

responding tempora l and spat ial spec t r a , and the resu l t s for D (d) 
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ag reed with those of the TATARSKI theory for a l l va lues of d (^30 cm) 

in the second ca se , while in the f i r s t case this a g r e e m e n t could be 

ver if ied even for values of d = ν τ of the o r d e r of 1 m . Since the path 
n r 

was at a height of only 1.6 m, the upper sca le of t u rbu lence , L , 

should have been a l so of the o rde r of 1 m, so that the TATARSKI 

theory turned out to be co r rec t within the whole ine r t i a l sub range . 

While the knowledge of the mean wind along the t r a n s m i s s i o n path 

pe rmi t s - with Tay lo r ' s hypothesis - the use of only one r e c e i v e r and 

the subst i tut ion of t empora l au tocorre la t ion m e a s u r e m e n t s for s p a ­

t ia l co r re l a t ion measu remen t s (which necess i t a te a t l e a s t two r e c e i ­

ving antennas o r s l i t s e t c . separa ted by a dis tance d), the d e t e r m i n a ­

t ion of an unknown mean wind velocity by t ime c r o s s c o r r e l a t i o n m e a ­

su remen t s of the s ignals at two r e c e i v e r s s epa ra t ed by a distance, d 

has be 

wind). 

(53) has been shown to be a l so feasible ( remote sens ing of the m e a n 

2 A compar i son by BUFTON of the theore t i ca l value of χ computed 

with the help of C -prof i l es , obtained by radiosonde bal loons for 

heights up to 25 km with the observed scint i l la t ions of s t e l l a r objects 
(54) ag reed within a factor of 2* '. F o r these ve r t i ca l paths sa tu ra t ion 

does not occur since turbulence is usual ly r e s t r i c t e d to s e v e r a l r a t h e r 

shallow l a y e r s . These resu l t s show the applicabil i ty of e x p r e s s i o n s of 

the form given in eq. (64) with a var ia t ion of C along the light path. 
η 

Compar ing the scint i l la t ion cha rac t e r i s t i c s of 0 .488 μ m rad ia t ion r e ­

flected from the GEOS-II satel l i te at a height of 1250 km with s t e l l a r 
(55) data MINOTT found values of lo g-ampli tude va r i ance and n o r m a ­

lized power spec t r a l density within the l imi ts m e a s u r e d for s t e l l a r 

scint i l la t ion. 

Assuming the validity of the theory and a smooth var ia t ion of the s t r u c ­

tu re constant C as a function of alt i tude h, exp res s ib l e in parabol ic 
form C (h) = a + a . h + a^h , SUBRAMANIAJSP ' d e t e r m i n e d the coef-nv ' o 1 2 
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ficients a. from a bes t fit to the observed data for the scint i l lat ions 
ι 

of a 0. 6328 μη­i­laser beam reflected from a r e t ro re f l ec to r mounted 

on a thethered balloon which was success ive ly flown at s eve ra l a l t i ­

tudes . The consistency of the resu l t s indicated a ce r ta in potential 

of this method for remote determinat ions of the s t ruc tu re constant , 

though its assumptions would not apply to the case of a layered a t m o s ­

phere where the turbulence s t ruc tu re exhibits pronounced jumps in 

magnitude as function of a l t i tude. 

All these exper iments were done at optical frequencies (mostly with 

the 0.6328 μ ιη HeNe­ l a se r ) . The observat ions of LEE and WATER­

(57) 
MAN showed a good ag reemen t with t 

mm­waves (35 GHz) for a path of 28 km. 

(57) 
MAN showed a good ag reemen t with the TATARSKI theory a lso for 

Concerning other propagation effects such as beam s teer ing ,a d i rec t 

compar i son between the predict ions of geomet r ica l optics with the help 

of m e a s u r e d C ­values and observat ions along a 480 m path (240 m 

r e t u r n path) and a 1380 m path, both at 20 m height, is d i scussed by 

(40) 
CHIBA . The ag reemen t between his theory and the exper iments 

was sa t i s fac tory . The s t ronges t observed fluctuations cor respond to 

angular fluctuations σ = On / z of the o r d e r of about 40 a r a d . S imi la r 
OC Ρ ' , 

( 58Ì 
r e su l t s a r e given by KURIGER^ for a distance of 7226 m (3613 m 

r e t u r n path). 

f 59) 

LAWRENCE and STROHBEHNv ' r epor t on exper iments by OCHS 

and LAWRENCE on beam bending over paths from 5 to 45 km: A typi­

cal 24­hour measu remen t showed a diurnal var ia t ion of about 30 μ r a d / k m 

on a 1 5 km path. These var ia t ions were usually slow enough that a s e r ­

votracking system with a max imum angular ra te of 7. 5 μ ^ ά / β β ο could 

compensate for them. 
(60) GRUSS repor t s that on a typical communicat ions re lay link, with 
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dis tances up to 20 km, no beam loss due to a tmosphe r i c be a m 

bending was observed (during an observa t ion per iod of about two 

y e a r s ) , and that beam deviations due to mechanica l f luctuations of 

the support ing s t ruc tu re s in response to wind p r e s s u r e had much 

m o r e se r ious effects. 

(61) MASON and LINDBERGV ' s tudied the behaviour of an H e N e - l a s e r 

beam over an 80 km long, 1. 3 km high path between two mounta ins , 

thus free from surface effects, and found - as should be expected -

that in this case beam bending (which is due to the v e r t i c a l r e f rac t ive 

index gradient) is p r i m a r i l y a function of lapse ra te (ve r t i ca l gradient 

of mean t empera tu re ) as measu red by radiosonde soundings . 

In a study of the spreading of a 0. 9050 μπι G a - A s - l a s e r beam of 

an init ial angular ape r tu re of 66 χ 5 μ rad at d is tances f rom 130 m to 
(62) 4 . 5 km RAIDT and HOHN observed that it is main ly due to a e r o ­

sol sca t t e r ing and not to a tmospher ic turbulence , even for med ium 

v is ib i l i t i es . With inc reas ing distance and dec reas ing me teoro log ica l 

range (visibility) beam spreading i n c r e a s e s . 

This point is a l so investigated in the work of DOWLING and LIVING-
(63) STON who m e a s u r e d the spread of a l a s e r beam along path lengths 

up to 1.75 km (height 1. 8 m or 2. 4 m above ground) at 0. 63 μ π ι and 

at 10.6 μ π ι . The observed beam sp read can be s e p a r a t e d into s h o r t -

t e r m (©) and l ong - t e rm (©0 rms ave rages that differ by be a m wander 
2 2 1/2 φ (beam s teer ing) , so that ©'= (© +Φ ) . Φ has been found to be 

essent ia l ly independent of the wavelength and is adequately d e s c r i b e d 

by geomet r i ca l opt ics . The s h o r t - t e r m ave rage beam s p r e a d is s t r ong ­

ly wavelength dependent. The m e a s u r e m e n t s at 10. 6 μ m a r e nea r ly 

diffraction l imited, whereas the cor responding data for 0 .63 μπ ι a r e 

s t rongly influenced by variat ions of C . The expe r imen ta l ' da t a a r e pre-
β γ δ sented by empi r i ca l fits of the type © = a + bC Ζ k , with e x p e r i -
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mental ly determined constants a, b, β , γ , δ which do not agree too 

well with the predict ions of the TATARSKI theory . 
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