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PROPAGATION OF COHERENT ELECTROMAGNETIC

RADIATION IN THE ATMOSPHERE

by

Gerd BLAESSER

Introduction

This report gives a summary of the present state of knowledge con-
cerning the propagation of visible, infrared and microwave radiation
in the atmosphere. Its scope is of introductory or "tutorial" charac-
ter, so that particular theoretical details and calculations were omitted;
the list of references is far from complete, but includes a number of

review articles where more specific references can be found.

In the first chapter the characteristics of coherent wave fronts are
discussed for the three special cases of plane waves, spherical waves
and Gaussian beams. Since laser beams correspond well to the descrip-
tion by Gaussian beam waves and since, on the other hand, the proper-
ties of such beam waves are usually not familiar to the newcomer in

this field, they are treated in more detail here,

The absorption bands of the main constituents of the atmosphere
limit the transmission of electromagnetic energy essentially to a num-
ber of "windows'' on the frequency scale. Within these transmission
windows and in the absence of selective (resonance) absorption by im-
purities, the effect of absorption on the transmission of radiation is

usually small compared to that of scattering, the main features of which

are outlined in chapter II,

The index of refraction of the atmosphere exhibits stochastic fluc-

tuations due to atmospheric turbulence, and also systematic variations



-l

caused by large-scale changes in the profiles of pressure, tempera-
ture and humidity. These variations of the index of refraction along
the path of propagation are responsible for amplitude and phase fluc-
tuations in communication links, for losses in coherence, fbr scat-
tering or even ""beam steering' (deviation of the path of the whole
beam). These phenomena constitute the main topic of this report;

they are discussed in chapters III, IV and V.

Finally, chapter VI summarizes experimental results of particular

importance to the general understanding of these propagation effects.



Chapter I - ELECTROMAGNETIC WAVE FIELDS

—_
In a source-free medium (div E = 0) with constant index of refrac-
tion n = Je and unit permeability p= 1 Maxwell’s equations for the
electromagnetic field are equivalent to the wave equations for the

— —
electric (E) and magnetic (H) fields:

2 2
) o=/ E aE-elN5SH
ot ot
. U 2 sinn coomn
where A is the Laplace operator (A= /. 5 In Cartesian coordinates
X X ,X_)e i=1 *
1’72’73

The fields E and f—i, solutions of (1) are related to each other by
= 0 =
(la) rotE = - catH

For monochromatic radiation of frequency w, i.e. if
E = E(o(xi)' exp(-jwt) H=H w(xi). exp(-j wt)

the wave equations (1) and the condition (la) become, respectively

(19 AEw+k2E'w=o AH +xH =0

(1a) n, rot Ew = jk_Ith

where the "wave number" k is defined by k = nw/c = 2/,
Particular solutions of the equations (17), (la”) are the plane wave,

the field of a radiating dipole and the Gaussian beam:

a, Plane Wave

(2) E, = E’Z exp(jk. r) H =nexE

. - - - . . . . .
with a "wave vector'" k = ke, where e is a unit vector in the direction

of propagation, is obviously a solution of (1) and (1a?). The surfaces

—_
of constant phase are planes orthogonal to k, The plane wave solution



given by (2) corresponds to an ideal monochromatic wave with linear
polarization (the direction of which is given by the direction of E(:).
More realistic wave fields can be constructed from superpositions of
waves of this type. Radiation arriving from a staf can be considered
as a superpositionf a(w )Eu) exp(-jwt)dw of such plane waves with the

. . . o
same direction of propagation e.

If the direction of polarization is of no importance, we can write it

in the scalar form

(29 E-= E exp(jk. r)

- -

where the scalar amplitude E is given by the expression E = E. Eo/l EOL

b, Field of a Radiating Dipole

2 2

-S> - > k .
e exp, exp(jkr)

- - .k .
(3) E,=- ><(e><p0)rn exp(jkr) H =

is the asymptotic solution (i.e, it satisfies the wave equation (1°) if X
terms of order r_2 and higher can be neglected) for the case of an oscil-
lating electric dipole of moment n1—3)= n.f))o exp(-jwt). e = ?/l_;‘l is the unit

vector that points radially from the source to the observation point 7. |

If we are not interested in the polarization, we can rewrite eq. (3) in

terms of the amplitude

2
k :
(37 E-= (_nR o.sin®)(exp(jkr)/r) = A(9) exp(jkr)/r
where $is the angle between the directions of f;a,nd of e,
2
The intensity I = (c/8)nlE|” of this wave exhibits the well known angu-
2
lar dependence on sin § and the total energy radiated by the dipole per
unit time, dW/dt, is obtained integrating the intensity over the surface

of a large sphere centered at the dipole

cxt 2 lox ™ Lt 2
3P,7 3 Po

(4) »dW/dt = rZ/Idﬂ =
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-4
This is the A -relationship for the energy emission by an electric
dipole which is always valid if the linear dimensions of the dipole are

small compared with the wavelength of the emitted radiation.

In communication systems, the angular relationship between 'trans-
mitter" and Yreceiver' is usually fixed, i.e. one investigates the depen-
dence of the field strength on distance r for points on the same ''radial"
8 = const, so that the factor A(8) in (3°) can be considered as a constant,
This means that instead of the dipole solution one supposes a '"'spherical
wave'!' which is - strictly speaking - never a topologically valid solution
of the wave equations of electrodynamics (1) and (1a”) but satisfies the

scalar wave equation
2
(5) Au+ku=0,

c) Gaussian Beam Waves

Choosing the direction of propagation e of a beam of limited cross

section as the z-axis we may try to describe it by expressions of the

(1)

form

-

- . — -
(6) E, = Eo(x, v, z)exp(jkz) H = nexgw
R
where Eo(x, ¥, z) can be considered as a slowly varying function of the

z-coordinate (since its main z-dependence is already included in the

2 2
exponential factor), so that the second derivative 9 E /92 can be ne-
2 2 2 2
glected in comparison with the quantities 0 Eo/ax and 0 E‘o/a y .

Thus we obtain from eq. (1) the following approximate equation for Eo:

2% aZEO OB _
(7) + F2ik—2 =0
2 >
ox oy oz

This equation admits a solution of the Gaussian form



lal
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2
(8) Eo =A eXp\_j(P(z) +2kc1(rz) )]

2 2 2
where A is a constant vector, r =x +y , and P(z), q(z) are func-
tions to be determined. The quantity P(z) represents a complex phase -
shift relative to the plane wave solution, while the complex '"beam pa-

rameter' q can be expressed in the form

1 1.2
) 3@ = Rz) Viw(e)

with real functions R(z) and w(z);R(z) can be interpreted as the radius
of curvature of the wavefront that intersects the axis at z, and w(z) as
the "width'" of the Gaussian beam cross section, i.e. as the distance r
at which the amplitude is decreased to a value 1/e times that on the z-

axis.,

Inserting the expression (8) into equation (7) and comparing terms

of equal power in r, one finds .

dg _ P __
(10a) el 1 (10b) . -

Q=

Integration of (10a) gives q(z) = q t+ 2z, where q is the value of the
complex beam parameter in the '""reference plane' z = 0, It is conve-
nient to choose the reference plane z = 0 at the ""beam waist" where the
phase front is plane (R =o ) so that q, = -jsz/z is purely imaginary.
We then have

kw;’j
(11) q(z) = -j5= + 2

This implies (c. f. equation (9)) the relations
(12a) w(z)2 = wi(l + (2z/kwi)2)
(12b)  R(z) = 2(1 + (kw'/22)")

i. e, the Gaussian beam contracts to the minimum diameter 2w at the
o ,



waist; the beam contour w(z) is a hyperbola with asymptotes that form
an angle %~ tan &= Z/kwo with the axis of propagation, This angle is
the well known far-field diffraction angle of a Gaussian amplitude dis-

tribution,

From equation (10b) for the complex phase shift P(z) at a distance z
from the waist, we obtain

Z
/ —-2; = j. In(1 +jZz )
z-j(2w_/k) kw

(13) P(z)

| 2 2
Je ln\/l + (2z/kwo)2 - arctan (2z/kwo)

wiz!
w

o

= j. 1ln - o(2)

with w(z) given by (12a) and &(z) = a.rcta.n(Zz/kwi). Thus we can finally

write the Gaussian beam in the form

2
(14) E = A(wo/w(z))exp(-rZ/w(Z)Z)eXP[J'(kZ'@(z) * §R1Zz>)]

2
According to STROHBEHN( ) this equation describes correctly Gaus-
3
sian beams as long as z/wo<< (kwo/Z) , which is not a strong limitation
since it gives even for values of W of the order of only a millimeter

upper limits for z of the order of 10 m,

Gaussian beams are produced by many lasers that oscillate in the
fundamental mode; their parameters W and R(z) can be varied experi-
mentally by suitable stops and focussing devices (lenses or spherical
mirrors), respectively., The methods of paraxial .ra.y optics can be ex-

tended to deal with Gaussian beams (c.f. references (1) and (3)).
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Chapter II - ABSORPTION AND SCATTERING OF ELECTROMAGNETIC

RADIATION BY ATMOSPHERIC CONSTITUENTS AND IM-

PURITIES

Except in situations of extreme pollution at the wavelengths of spe-
cific absorption of the pollutants, the absorption in the atmosphere is
due to its principal constituants which are N2, 02, water vapour and
co, (at higher altitudes also 03). Since N, and O, have no dipole mo-
ment, they show no molecular absorption bands., Thus the main absorp-
tion effects that influence low altitude atmospheric communications are
due to water vapour and CO2 while high altitude links such as ground-to-
satellite communications, can also strongly be affected by O3 absorp-

tion,

This absorption precludes the practical use of the part of the spec-
trum corresponding to wavelengths above 151 and up to several milli-
meters for the transmission of information. The '"near infrared fegion
(wavelengths below 15 ) is divided by some strong absorption lines into
a series of "windows' in which the absorption is relatively small and can
be taken into account by multiplying the intensity of the transmitted ra-

diation by an averaged transmission factor of the form

A+ AN
(15) Ta(k, x) = All / d Nexp(- o l’);ax:)

A -AN
where AN is the wavelength interval use.d in the transmission and cen-
tered at A, ot(\) the absorption coefficient per unit concentration of the
absorber, ;a its mean concentration along the path x. Values for a(\)
for the main atmospheric absorbers and recipes for the estimation of
transmission factors as proposed first by LANGER can be found in text-

(4)

books on infrared communications' ‘. However, it appears from such
evaluations that for a suitable choice of the radiated wavelength inside

the infrared transmission windows and in particular in the visible part
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of the spectrum the atmospheric absorption can usually be neglected
(i.e. Ta. %~ 1) while the total transmission factor T = TaTs becomes
equal to the scattering transmission factor Ts which takes into account
the reduction of the transmitted intensity, due to scattering by the mole-

cular constituents of the air and by aerosol particles suspended in it,

Elastic scattering by molecules, also called '"Rayleigh scattering',
varies with wavelength as 7\-4, i. e. blue light is scattered more strong-
ly than red light - a fact which accounts for the blue colour of clear sky,
This 7\-4-1a.w is, however, typical for all scattering processes invol-
ving scatterers of linear dimensions much smaller than the wavelength
of the scattered radiation., It follows simply from the fact that the inci-
dent radiation gives rise to a fluctuating dipole moment which radiates

(i. e. scatters) energy according to eq. (4).

The scattering of electromagnetic waves by dielectric spheres of
arbitrary size was treated rigorously by MIE(S). His methods were ex-
tended by others to particles of other shapes; the main results of this
theory are summarized in the monograph of VAN DE HULST(6). Within
this theoretical framework one can discuss the main characteristics of
the scattering by aerosols, which is usually referred to as '"Mie scatter-
ing''. Of course, if the dimensions of the aerosol particles become much
smaller than the wavelength of the radiation, the Mie theory yields the
7\—4—1aw. Thus Rayleigh scattering - in the mathematical sense - is a
limiting case (and not something different) from Mie scattering. For
example, it applies to the extinction of cm-waves by scattering on rain-
drops in strong showers., The most dramatic features in Mie scattering
occur, however, when the linear dimensions of the scatterers are of
the same order as the wavelength; in such situations one may encounter
pronounced resonance scattering. Finally, when the particle size is

much larger than the wavelength, the scattering becomes rather indepen-
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dent of the wavelength (c.f. the white colour of vapours and clouds
consisting of liquid drops of dimensions >>A); in these situations we
deal with ordinary reflection of light by macroscopic bodies. The an-
gular distribution of the reflected light depends oﬁ the surface proper-
ties of the reflector; for optically rough surfaces Lambert’s law

(ISM cosf, where 9§ is the angle between the surface normal and the
direction in which one observes the scattered intensity IS) gives a

rather good description of the observed scattering.

A rigorous mathematical calculation of the transmission factor for
scattering under real atmospheric conditions is impossible mainly

for two reasons:

1) In aerosols the size distribution of the scatterers is not uniform

(and often not even known). Also, their geometry might not be known;
in the case of suspended liquid droplets they can be assumed to be
spherical because of the effect of surface tension, but dust particles,
ice crystals etc. can have about any shape. Thus, the effective cross-"u
section, i.e. the result of the superposition of different particle sizes
and shapes, as a function of wavelength is usually not known. (On the
other hand, if the particles are known to be of spherical form, their
size distribution can be inferred from experimental scattering results

at different wavelengths; c.f. references (7), (8), (9)).

2) Since the scattered radiation is not lost but re-emitted in a different
direction, multiple scattering contributes to the radiation intensity
if the optical path in the medium exceeds the extinction length for
scattering., To deal with multiple scattering effects the integro-diffe-
rential equations of the theory of radiation transport have to be solved

(10)

. Such transfer of electro-

as in the related problems of radiation shielding in reactors or in

11
the theory of the photosphere of stars( )
magnetic radiation in the atmosphere has been considered in particu-

lar for nuclear weapons assessment and civil defense studies concern-
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(12)

ing the effects of the infrared radiation of a nuclear blast , and

Monte Carlo codes (LITE) have been developed for such investiga-

13
tions( )

Fortunately, for the design of communication links it is usually
sufficient to use some approximate semi-empirical formulae for the

(4)

estimation of the transmission factor' . Since the visual range V -
also called "meteorological range' - is determined quasi exclusively
by the concentration of aerosol particles in the air, it is a convenient

parameter to use in such a semi-empirical formula. Indeed, the results

of many observations are rather well represented by the expression

(16) T _(r,x) = exp(-252 (1/0.55) %)

) 1/3
(17) q=0.585V /

In these relations V and x are to be expressed in kilometers and A
in microns. Formula (16) contains a wavelength dependence of the "ef-
fective'' atmospheric extinction coefficient of the form A% - in contrast
to the Rayleigh part 7\-4 - which depends on the meteorological situation,
For extremely good visibilities (i. e. meteorological ranges of the or-
der of 300 km) q approaches the Rayleigh exponent, q -+ 4, i.e. the for-
mula (16) predicts blue sky conditions in this limit, whereas for poor
visibilities - below 1 km - q will be of the order of only 0.5 correspon-
ding to a nonselective scattering typical for the white and grey colour
of the clouds. The wavelength enters into the expression (16) relative
to the wavelength of 0, 55 | at which the standard measurements of the
visual range are performed. The standard definition of the visual range
is such that for a distance x = V the intensity of the 0. 55y radiation is
reduced by the scattering (thus apart from a geometric r-z-reduction
due to beam divergence) to 2% of its original vé,lue, so that T(0,55W, V)=
= Q, 02, The factor 3.91 = - In(0.02) in (16) corresponds to this definition,
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Chapter III - MICROSTRUCTURE OF ATMOSPHERIC TURBULENCE

We shall discuss in this chapter some aspects of the theory of at-
mospheric turbulence that are important for the bropagation of elec-
tromagnetic waves in the air. A more detailed discussion can be found
in the book of TATARSKI'(14), while the general concepts of the theory
of turbulence are summarized by BACHELOR(IS); recent summaries
of the theory of atmospheric turbulence in the planetary boundary

layer are also found in ref, (16) and (17).

Air turbulence is primarily observed in the form of fluctuating
wind velocities _I.)J(?, t) which depend on the position T of the observation
point and on the time t. Let ﬁm(?) be the mean value of the wind velo-
city at the point r, i, e. the result of a time averaging over a certain
interval of the order of 30 sec to 1 min. This value ﬁm(?) depends on
the meteorological situation and changes rather slowly with time, Sub-
tracting ﬁm(_f) from the instantaneous values of the wind velocity we
obtain the turbulent component 3(17: t) such that G’(?, t) = ﬂ’m(;’) + 4(T, t)
where the mean value of U(¥, t) is zero. Sometimes, as on a calm sunny
day, ﬁm(_;) may be completely zero, but 3(;: t) will be finite due to

thermal convection,

In order to gain some insight into the statistical structure of the
stochastic velocity field 1—1)(1?: t) we have to correlate the .velocity fluc-
-tuations in different points ?1, ?2. This can be done by the study of the
""'structure functions"

= = = = = =¥
(18) D, (7),7,) = ((F) - %N (7)) - 0 (F,))
or the '"correlation functions''

(19) Bik(?l’?z) = uizrl)uk(rz)



The bar over these products denotes averaging, as usual, and the
indices (i = 1,2,3 and k = 1, 2, 3) enumerate the velocity components

in a cartesian system of coordinates.

The field of turbulent velocity fluctuations is called '""homogeneous"
if the functions Dik(?l, ?2) and Bik(?l, ?2) do not change if we shift the
positions of the two anemometers that measure ui(;l) and uk(x_')z) by
the sami distance Ef, i, g if Dik(r_; + &’, ?2 + 21’) = Dik(_;l’?Z) for ar-
bitrary d. It is evident that the air turbulence in the atmosphere is
not completely homogeneous, since the atmosphere is always bounded
by the surface of the earth; however, in many problems involving
scales of turbulent motion which are small compared to the distance
from the observation points to the surface of the earth, the assump-
tion of homogeneity introduces only a very small error. In the case
depend only on

of homogeneous turbulence the functions D _ and Bi
i

k k

the difference ?1-?2, and if

B, (0) =0 izk = oMo ()

is bounded, we may express the structure functions in terms of the

correlation functions and vice versa, since then

2
22y = = - 20 .
(20) Dy (7, -7,) =2 Bik(?l r,) ik

2 2
Note that the diagonal values O . (i=1, 2, 3) of the tensor 0.\ are

the mean square values of the velocity fluctuations in the turbulent

flow field along the three coordinate axes,

As we shall see in more detail later, the turbulent air motion
takes place inthe form of eddies of different sizes, and it is clear

- -
that the difference Tl(?l) - u(rz) is mainly correlated with the proper-
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- ) - - _’ _’ - -
ties of eddies of dimension s = { r. - r_1. Eddies of size s are ap-

1 2
proximately isotropic, if their distance from flow boundaries is
large compared to s. We will call the velocity field '"'locally isotro-
pic'" in the neighbourhood of the point ¥ if there exists a length L
such that for distances s < L the structure functions Dik (and the cor-
relation functions Bik) depend there only on the distance s and on the
relative orientation of the two anemometers but not on their absolute
orientation in space. In such a case Dik(s) can have only two indepen-
dent components, since the relative orientation of the two detectors
‘permits an invariant decomposition of any wind velocity u into a com-

- e i s 4
ponent u, = (u.e)e parallel to the direction given by the unit vector

e = (_1!1 - ?2)/3 (the direction that joins the two anemometers) and a

component 1_.1’J_= U - (4. €)e orthogonal to it, so that D, must be given
i

k
by the expression

(21) Dik(s) = Du(s)eiek + D, (s)(6 ik eiek)

involving the projection operators 'K’,'k = (gg).k =ee on the direction
i i
dxt =(- =06 - i
s and ® ik ( ee')ik ik " &%k °m the plane orthogonal to it, and

the invariants

(22) D, (s) = (&, (F) - %, )"

and

(23) Do(s) = (F,(3)) - T (2))°

which can be formed with the vectors 3" (?1) - ;.1’“ (?2) and 31 (?1) -

- ﬁ'l(?z) in the two subspaces, Similarly, it is

(24) Bik(s) =B, (s)eiek + Bl(s)(éik - eiek) .

The flow of the air in the atmosphere can be considered as incom-
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pressible, since all wind speeds are well below sonic velocities,
The condition of incompressibility, div u = 0, leads to a relation
between the two functions D, and D, , so that finally only one inde-
pendent function is sufficient to characterize the turbulent flow. In

fact, we then have

3

(25) Z aDik/a x. =0

i=1
We will derive from eq. (25) a relation for the Fourier transform

@ik(_i) of the correlation function Bik(?), defined by

(26) B (7) = ///d3 % @ (X)exp(i %) -

From equation (20) we find that 2(1-exP(j)T?))@ik(5€) is the Fourier

transform of D__ :
ik

1) @ =2 [[[ O (explii) e, -

The incompressibility condition (25)-then leads to

3
@s) ) %o (h=o

i=1

In the case of local isotropy we obtain by Fourier transform of

equation (24) the following form for the function @ik(;):
(29) 3, (%) = Fbu )y + Glodx g /x”
) = Fle)o %1y /%

where the scalar functions F(x) and G(x) are the Fourier transforms

of B, - B, and of B, respectively., Equation (28) then leads to

G(%) + F(x) = 0



or

(30) o (%)= (5, - iixk/acz) Fex) .

Up to now we have only defined the structure and correlation func-
tions and studied the limitations imposed on them by the conditions
of homogeneity, local isotropy and incompressibility, In order to ar-
rive at an explicit expression of the structure function, we have to
use a model of turbulent flow, A model which is sufficiently accurate
for our purposes was developed by KOLMOGOROV(IS). It starts from
the fact that a laminar flow of air of flow velocity U becomes unstable
and changes into turbulent flow whenever its Reynolds number Re = UL/y
exceeds a critical Reynolds number Recrit' ¥ is the specific viscosity,
vV =l /p, of the air and L. some characteristic length, determined in
meteorological applications by the characteristics of the wind profile.
The eddies of dimension 1 which are formed in the turbulence - with a

turbulent velocity u, - are again unstable if their Reynolds number

1

Re1 = lul/v exceeds Recrit; they break up into a next generation of

smaller eddies, and so on., This process of transfer of flow energy

from larger eddies to smaller ones continues until eddies of size 1o

are formed for which Re1 ~ Recrit' At that level, the energy is dissi-
pated into heat by laminar viscous flow, at a rate € (per unit mass) which
is proportional to vui/lcz). Under stationary conditions this rate of
energy dissipation must be equal to the rate of energy transfer (per

unit mass)~ uf/l from eddies of size 1 to smaller ones (the flow ener-

gy per unit mass in the eddies of size 1 is proportional to uf » and the

2
rate of transfer must be proportional to ul/fl: 1 where T~ 1/u1 is the

1

lifetime of these eddies). Thus the turbulent velocity u) decreases with

the size 1 of the eddies according to

(31) u ~(e nl/3

Since the structure functions Dik(s) are mainly determined by the



eddies of size 1 = s and since D'k has the dimensions of the square
i

of a velocity, it is reasonable to assume that

(32) D, ~ (e5)%/>

as long as LL> s > 10. The two linear dimensions L and 1o which limit
this so-called '"inertial subrange' are called the 'buter scale' and the

""Inner scale'" of turbulence, respectively.

While L. ranges from meters to hundreds of meters, 1O is of the
order to some millimeters, A detailed discussion of the boundaries

1 and L of the inertial subrange can be found in ref. (19).

By fourier transformation we obtain from eq. (32) that F(x) is

11/3

suitable constant of proportionality A:

proportional to % in the range 2%/L < % <27(/10, i. e. with some

(33) F(x) = Aez/3 x_ll/?’

A consequence of the turbulent motion of the air are fluctuations
in temperature, humidity and other characteristic parameters of the
air for which macroscopic gradients exist, since the turbulent flow
mixes continuously air of different characteristics and creates in this
way statistical deviations from the local mean values of these para-
meters, On the other hand, diffusive forces tend to re-establish the
local equilibrium, so that in the steady state a balance will be esta-
blished between the forces that create the local fluctuations and those

that dissipate them.

We consider here in particular the fluctuations in temperature.
- —
At a point r the local temperature is given by T(r) = T(¥) + T~ (T, t).

The dependence of ’i‘_(?) on T is of macroscopic scale while that of
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T “(r,t) is a microscopic one, i.e. grad T << grad T Conduction of

heat by molecular transport tends to establish the local equilibrium,

i.e. tends to reduce T, giving rise to a molecular heat flow ;m=—Dgra.d T
(D = coefficient of molecular heat transport). Since the thermodynamic
driving force of this process is given by grad T’ the mean dissipation

of the local temperature inhomogeneities per unit time is then propor-
tional to the average of the product ''current times driving force", i. e.‘

to

(34) N = D(grad T9°

Meanwhile, local fluctuations are continuously created by the turbulent
flow that transports heat from the (macroscopically) warmer parts of
the atmosphere to the colder ones, i.e. that tends to reduce the macro-
scopic heat gradient by a transport phenomenon which is similar to mo-
lecular heat transport in its mathematical aspects, but takes place on
a macroscopic scale. With acoefficient K of turbulent heat transport
which exceeds the molecular one by orders of magnitude (K>>D) one
can write the turbulent heat current in the form

- -
(35) q, = -Kgrad T
Strictly speaking, the temperature T in eq. (35) should be replaced,
by the ''"potential temperature" T + T z, where I'= 9.8 10-3 degree/m
is the adiabatic temperature gradient, since the moviné air parcels
| adjust themselves adiabatically to the prés sure of the surrounding air,
and this effect alters the original temperature of the moving parcel,
while its potential temperature remains constant, As a consequence,
we see that convective flow in a neutral atmosphere - where T=T -Tz

o
- produces no turbulent heat current.

The rate of transter of heat from: the macroscopic temperature in-
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homogeneities to the microscopic ones - which is equal to the rate
of creation of the microscopic inhomogeneities - is then proportional
to the product of the macroscopic current times its driving force,
i.e. to K(grad(E‘ + I‘z))z. For local stationarity, the rate of creation
of microscopic temperature fluctuations must be equal to the rate of

their distruction, so that

(36) K(gra,d(E‘ + I‘z))2 = D(grad T ’)2 =N

This "heat dissipivity'" Nis, like g, a parameter characteristic
for the turbulent state and the temperature profile of the atmosphere.

Thus we expect that the temperature structure function DT(s) =

2
= (T ’(?1) - T’(?Z)) or the correlation function of temperature
BT(s) = T(rl)T(rZ) will depend on s, Nand g¢. Since N has the dimen-

2
sions (temperature) /time and D, the dimensions of (temperature) ,

T
1/3
while s/us~ s/(es) / has the dimensions of time, we can write

2— -1/3 2/3 2 2/3
37) DT:aNe /s/ :CTS'/

with some constant a and CT defined by

a8) c = al/2e /"

CT is called the "structure parameter' of temperature fluctuations;

it is 2 measure of the intensity of the turbulent temperature fluctua-

1/3

tions, The values of CT usually lie between 0,0l degree/m for

1/3

weak turbulence and 0.5 degree/m for strong turbulence.

By Fourier transformation we obtain from eq. {37) the spectrum

of the temperature fluctuations

;A ) 2 ~1i/2
.‘59} ®T = 4, 033 (J,.F N -
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The interaction between atmospheric turbulence and electromag-
netic radiation is due to turbulence induced variations of the index
of refraction n. The index of refraction of the air is very close to
unity; so one usually writes

(40) n=1+ N-107°

The quantity N depends on temperature, pressure and humidity.
For visible and infrared radiation the influence of humidity can be

(2)

neglected and it is

(41) N=N =77.6 P/T (optical frequencies)

dry

where P is the atmospheric pressure in millibars and T the tempe -
rature in degree Kelvin, .

For microwaves the strong dipole moment of the water molecules gives
an appreciable dependence of N on the vapour pressure e f (f = relative

(20)

humidity, eS(T) = saturation pressure of water vapour); it is

(42) N = Ndry TNt (microwaves)

with N , given by the same expression (41) and

(43) N oy =3-73° 10° esf/TZ

For simplicity we consider in the following only the dr}; term.

Since air turbulence involves only velocities which are small com-
pared to the speed of sound, we can assume that in all convective pro-
cesses the moving air parcels are always in pressure equilibrium, i.e.
at the same pressure as the surrounding air. Therefore there are prac-
tically no pressure fluctuations due to turbulence at the observation

point T (which is fixed in space), so that n’- the fluctuating part of n -
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is determined by temperature fluctuations alone, and we find

(44) n17,t) = 77.6 - 10‘6%;@} T 17, t)
T (r)

Thus, the structure function of the refractive index fluctuations is

given by

2 S2/3

(45) D_(s) = (nT2)) - n(F) =C.

with

-6 2
(46) ani (77.6 + 10 ~ P/T )cT

For T = 288.2°K and P = 1013 mb this gives C_ = 0,95- 107° o
For the spectral function(pn(x), the Fourier transform of Bn(s) =
= m, we obtain from (45) by Fourier transformation the
expression

-1
(47) ©_(x)=0.033 C x 1/3

These relations are valid within the inertial subrange, i.e. for

L>s > 10 or2n/L<xn< 2 7{/1o respectively, Outside of this inter-
vall scattering due to turbulence is relatively small; so it is some-
times convenient mathematically to provide suitable cutoff factors and

(19)

to use the following expressions for @n:

2 -11/3 2, 2
48 =0,033C - ¢
(48) @ _(x) 3T (-t /)
with X = 5.92/10 which is valid for all ¥ larger than 2x /L, or

_ 2.3 2, 2 2 2.11/6
(49) @n(x) =0.0630 L_ exp(-% A m)/(1 +% Lo)

2
which can be used for all values of y%. On denotes the variance of the



-

refractive index fluctuations.

Typical values for the structure parameter Cn of refractive index

(21)

fluctuations are

8.107 7 m'l/3

intermediate turbulence: C =4- 10-8 m-l/3

51077 m™1/3

i

weak turbulence:

strong turbulence:



Chapter IV - PROPAGATION OF OPTICAL WAVES IN THE TUR-

BULENT ATMOSPHERE

The turbulence-induced fluctuations of the index of refraction
are inhomogeneities that scatter electromagnetic radiation. The
physical aspects of this scattering depend essentially on the ratio
1/ A where 1 is the dimension of the scattering inhomogeneity and
A the wavelength of the incident radiation. In fact, the scattering
by an inhomogeneity of size 1 can be calculated from the general
expressions of the Mie theory - which can be simplified consider-
ably in this particular case where the index of refraction of the in-
homogeneity differs only by a very small amount from the mean
index of refraction (which we assume to be unity) -, and it is well
known that the Mie theory predicts particularly strong scattering
if 1/A is of order of unity. This case occurs in the scattering of
microwaves, since the atmospheric turbulence contains eddies of
all sizes from a few millimeters to some meters or even tens or
hundreds of meters. The eddies of the size of the wavelength are
distributed at random among eddies of other size in the general
turbulence, so that the scattering of the microwave by the indivi-
dual eddies will add up incoherently. Scattering is effective in all
directions, even backward, This is of practical importance for the
application of microwave scattering for the detection and study of
clear air turbulence (CAT) by remote radar sensing<22)(23)(24) and
for establishing microwave communication beyond the optical hori-

(20)

zon by "scatter links" . The physical aspects of this scattering

will be considered in the next chapter,

Here, we will be concerned with the effect of turbulence on the
optical frequencies, where the wavelengths are always small com-

pared to even the smallest eddies, so that the scattering is predo-
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minantly forwdrd, i.e, it is confined to a cone of angular aper-
ture =2 /1; it is cohérent and can be thought of as a random re-
fraction of the incident wave. Though it is mathematically straight-
forward to derive the formulae that apply to this case from the
general scattering results by a limit operation (c.f. TATARSKI
for plane and spherical waves(14) and ISHIMARU for beam wa.ves(2 5)),
it seems more intuitive to treat this case by a discussion of the re-
fraction of waves by successive random phase sereens as first pro-
posed by LEE and HARP(Zé). For some situations geometrical op-
tics (which are essentially the WKB-approximation to the wave equa-
tion) give already the correct answer(14)(27); this is plausible, since
the dimensions of the inhomogeneities are so large compared to the
wavelength, that in many instances diffraction effects can be neglec-
ted. However, it is well known that at long distances Z from the re-
gion where the interaction took place, diffraction effects can be ob-
served. In fact, diffraction effects become important whenever the
dimension of the eddies 1 are smaller than the diameter of the first
Fresnel zone, i.e. whenever 1 < #AZ. For visible light of 0. 5um
and smallest eddies of the size of, say 5 mm, this leads to a dis-

tance of 50 m, which is not even very large for most practical ap -

plications.

Since the velocities involved in turbulent motion are extfemely
small compared to the speed of light, we can neglect the time de-
pendence of n(¥,t), during the transit of the electromagnetic wave.
We consider a plane air slab of thickness Az extending in the x- and
y-directions, situated at z = £, and a plane wave Eo(z) = exp(jkz)
impinging normally on it. The distribution n’(r)z:é =n"x,y, g) of
the index of refraction fluctuation in the slab at the moment of inci-
dence can be written in terms of the spatial Fourier components in

the x- and y-directions:
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(50) n’(r)zzro = //dulduZN((‘;,ul,uZ)exp(julx + juzy)

We make the assumption - discussed below - that terms of order
n” 2 and higher can be neglected because of the smallness of n”,

so that all equations governing the wave propagation are linear in
n”; thus we can consider the contribution of each Fourier compo-

nent separately and add the results. A Fourier component a. exp(jux)

gives rise to a periodic phase modulation

A® = a Azkexp(jux) where aAz <<1

of the wave leaving the slab, which becomes

(51) exp[j(kg + a0 )] = exp(jkz)(1 +jArd) = E (1) + E_(Z,x)
whe_re

(52) Es((';,x) = jah zkexp [j(k & + ux)]

is a plane wave inclined with respect to the z-axis by an angle 4 such
that tg 9 = u/k. Since the smallest eddies are of dimensions 1>> A,
the spatial frequencies u of n” must all be <<k, so that the angle

9~ u/k =7/lis very small,

It is now assumed that no multiple scattering takes place, since
this would involve terms of order (n’)2 and higher. This assumption -
which is equivalent to the Born-approximation in the usual scatter-
ing theory - is really the most serious limitation of all existing
theories of wave propagation in turbulent media. It leads to notable
discrepancies with experimental results when the total scattering
contribution becomes large, Attempts to use some well known proce-
dures of theoretical physics for higher scattering approximations -

. . R . 28
such as diagram expansions and renormalization techniques ), mo-

(29)

ment methods or the integro-differential equations of radiation
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transport - so far have not led to generally accepted results
for the case that the Born-approximation breaks down, Fortuna-
tely, experiments and also some of the calculations indicate that
at least the amplitude fluctuations tend to an asyrﬁptotic constant
limit ("'saturation'') and that the Born-approximation holds as long

as it predicts fluctuations well below that limit (c.f. Chapter VI).

Thus, here we assume that the two waves Eo and Es propagate
with the wave number k of the unperturbed medium in slightly dif-
ferent directions to the receiver plane z = Z where they superim-

pose to give the total field E(Z) which we write in the form
(53) E(Z) = EO(Z) + EO(Z)Aq;l (x,2)

i.e. we express the scattering by a term AV 1(x, Z) = ES/Eo which
gives the scattered field relative to the unperturbed field. We find,
' 2
u

5
with N=2Z -Z and k” = kcos $ =~/I< -uzzk- EE

(54) MY | (x,2) = ja Azkexp(jux)exp [j(k"- k)]

If we sum coherently the contributions of all Fourier components
of n{r) according to eq. (50) and also sum over all planes Az from
0 to Z (or integrate over 1= Z - z from 0 to Z) we can find the com-
plete scattered wave IDI = 3AY,, such that the total field at (x,v,2) is

~given by
(55) E(x,y,2) =E_(2) t+ E _(2)¥,(x.y, 2)

Since the total scattered contribution 1 has still to be small in
order that the Born-approximation be valid, we can write eq. (55)

also in the form

(56) E(x,y, Z) = EO(Z) exp [1!11(}"3’: Z)]



Thus % = Rei\{;li is the fluctuation of '""log-amplitude' with
respect to the unperturbed solution, and S = Im i 11;1} that of the

phase.

We are not so much interested in the fluctuating field \,'/1 itself
as in its correlation or structure functions which relate the statis-
tics of signals received simultaneously in two detectors in the
plane z = Z, separated by a distance 3 = (x,y). We first calculate
the amplitude correlation BX (;) Since different spatial frequencies

b .
u = (ul,u can be considered as uncorrelated, we can sum the con-

5)
tributions dB X(z,ff) to obtain BX(E{), where the dBX(E{,'ff) are the
amplitude correlation functions for the spatial frequency &. Noting
that the reality of n(t) implies N(Z -1, -u) = N*(Z-n,u) ‘we find

z z _
(57) dBX @, = dulduZZkZ/A d‘r]lsin(k’—k)‘r]l/ dnzsin(k’—k)nzcos(ﬁ). 2) -

(o} (o)

+ F(u,m,-n,)

with
. 0
(58) F(u,n,-n,) = N, wN(n,, wdu du, / dKcos(K(n - 1,))@ ()
=00
where B

2 2
x = ,u + K~ and @n(x) is given by eqgs. (47) to (49).

Introduction of the new variables of integration

(59) s =(n,; +m,)/2 w=m; -1,

(14),

one integration in equation (57) can be carried out so that

Z
.

(60) dBX(_ai,Ti) =du1du227tk/ @n(u)sinz(uzs/Zk)cos(E’.Z)ds
o

In this form it is still possible to include a smooth variation ~7
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the statistical properties of the refractive index fluctuations along
the path by assuming a weak dependence on s of the structure para-

meter Cn so that

(61) @ () = Ci(s)a (v)

with
-11/3
d = 0. < <
(62) o(u) 0.033 u (umin u um)
so that finally L

(63) dBX(a,ff) = duldu227tk2<1> o(u)/‘ ci(s) sinz(uzs/Zk) ds cos(d. 2)

(o)

The contribution of the spatial frequency 4 to the phase perturba-
tion correlation function is obtained from the imaginary part of 1,{!1

which involves the cosine instead of the sine, so that
z

(64) dBS(ﬁ,u’) = dulduZZﬂkzoo(u) /‘Ci(s)cosz(uzs/Zk)ds cos(_u.z)

o
2

In particular, if Cn is independent of s (homogeneous turbulence),

these expressions can be integrated so that we obtain

dB_(a,u)

(65) } - dulduzkzz(l + (k/Zu%)sin(u®Z/K)) @ (u)cos(h.3)

dBS(a., u)

From eqs. (63) and (64) the correlation functions BX and By are

obtained by integrating over duldu2 = ududg (o =§:@,5.’))

Ym z 2, 2
: B (a) . : “sin (u”s/2k)
X = ax’il u sud (u u.a
(66) Bs(a)}_ 4n k u/ d / d ¢n( )Jo( : ){cosz(uzs/Zk)

2 .
or in the case that Cn is independent of s,

B(a) S '
(67) 4 (a)} - 2751z / I (u.a) {1 & (k/20%)} sin(e®2/k)uo_(u)au
S

The integration variables u_. and u_ can be replaced by 0 and w0
- min m
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if expressions of C‘n(u) with suitable cutoff-factors are used. Be-
cause of the vanishing of the integrand for u— 0 the quantity BX ()

is insensitive to the exact form of & (u) for small u. Unfortunately,
n

this is not the case with BS. It turns out that the structure function
of the phase fluctuations DS(a.) = (S(O)-S(a.))2 = 2(BS(O)—BS(a.)) does
not present this problem, since it involves the factor l-Jo(ua.) in-
stead of Jo which vanishes as uz and suppresses the dependence of

the integral on its lower limit.

The case of a spherical wave, originating at the origin of the co-
ordinate system and normalized to an amplitude 1 at the receiver

(z = 2), i.e.

(68) E_(xy,72) = (2/z)exp(ik /xz +yl 420

~

can be treated by the same method. The slab of turbulent air of
thickness z at z =Z leads to a modification of the transmitted wave,
which can be written for each spatial frequency + U contained in
n1{x,y,Z) as the original spherical wave plus two additional spherical
waves differing in amplitude from the original wave by the factors
kAzN(+u,% ) and in phase by j exp(juzé /2k) and originating from the
points (u%/k,0,0) and (-uZ /k, 0, 0)(26) . Here the (x,y)-coordinates
have been chosen in such a way that the x-direction coincides with
the direction of Z; also it is assumed that the field will be observed

near the z-axis, so that x,y « ’ZQ\/?\é . These waves combine at

the receiver plane to give

(69) A\',I = kAzexpLJ ZkZ {N(a), Z )exp(j %) + N*(G, Yexp(-j Z )1

The further mathematical development then follows the same lines

as in the plane-wave case and leads to
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dB'X. (@) % sin (—;M )

(7¢)

dBS(Z) } i MkZ/@n(u “cos (—:‘-@;ﬁ)

o

g4
cos(u.a Z)dgduldu2

and 2

m 2kZ

2.2 u&a
(71) =47k du / dZ ud (u)J ( o2 )
e ) [ ! {cosz<—§f§*z’l)

min

(31)

These results agree with those found by SCHMELT ZER and

FRIED(32)

. If the refractive index fluctuations are finite only over
the range Z - H< 4 < Z (zero elsewhere) and if Z is made arbitra-
rily large, so that 7/Z -1 over the range of integration, eq. (71)
goes over to

B @) mo F Sinz(u_zfzi__él’
X =45 K / du / dZu @n(u)Jo(ua) {
BS(;) u Z-H cos (H_(M)

which is the plane wave result, eq. (66), as it should be.

LEE and HARP(26) derived by the same phase screen method also
the results for a Gaussian beam, which agree with the expreésions
found by SCHMELTZER(31) and ISHIMARU(ZS) by a direct solution of
the wave equation. We do not quote these results here as no further
physical insight can be gained from the resulting rather awkward for-
mulae, which, however, are a valuable starting point for a numerical
analysis of the beam wave case which is discussed by ISHIMARU (loc.

cit, ).

We have seen that the final expressions for the correlation func-

tions of the quantity i (where the index i stands for }x or S) have the



form:

[eo]
(12) B.(a) =2 7K’z / udu F(u) @ (u)
o

One factor of the integrand is simply the power spectrum @n(u)
of the refractive index fluctuations, while the other, Fi(u), is called
the 'filter function' for the quantity i, since it weights selectively
the spectral term. It is a measure of the scattering efficiency of the
perturbations of different sizes 1 = 2 %/u, and depends also on the
geometrical variables Z (distance receiver-source), a (receiver se-
paration in the receiver plane), k (wavenumber of the incident ra-
diation) and in the case of Gaussian beams on the beam width w.
"The importance of filter functions becomes clear when attempts are
made to interpret experimental measurements interms of atmosphe-
ric parameters, A single measurement obviously cannot uniquely
determine a number of parameters, and it is necessary to determine

(26)

those parameters to which the measurement is most sensitive. "

As an example, we note that the filter functions for amplitude and

phase in the plane-wave homogeneous-turbulence case are given by

(c.f. eq. (67))

F (u) 2 N
(713) X } =3 (ua)(l £ - sin 2) = 7 _(ua)(l £ 5+ sin 28

27 N )

u Z F

Apart from the factor Jo(ua) which describes the effect of the se-
paration of the two receivers, the spatial frequency response is de-
termined by a filter function which depends only on the Fresnel num-

ber
2 4
(74) N_ =(1/w_)" = ==
F F 2
uw

2
F
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which is the ratio of the geometrical cross section of the obstacle
to the area of the first Fresnel zone; WF is the width of the first
Fresnel zone: WF = NAZ = [2xZ/k. From the form of the filter
functions we conclude that small wave numbers (large inhomogenei-
ties) are weighted strongly for phase fluctuations, and large wave-

numbers (small inhomogeneities) contribute strongly to fluctuations

in log-amplitude.

While the (spectral) filter functions Fi just introduced, give the
weighting of the different spatial frequencies in the case of a known
spatial distribution of the intensity of turbulence along the path of
observation s - usually under the hypothesis, as in eq. (73), of an
independence of the turbulence characteristics from the spatial
positions - we can also define ""'spatial filter functions" Gi under the
assumption, that the turbulence spectrum can be written in the form
of eq. (61) with a known analytical form of CIDO(u). We then write the
correlation function for the observable i in the form |

V4
(75) B,(a) = B (a) / as G2 (5)G(s)

(¢]

These spatial filter functions dre especially interesting for applica-
tions in "atmospheric probing", since in such problems one usually

-1
assumes a spectrum of the form (61) with (]}o(u) ~u 1/3

as given
by the Kolmogorov theory (c.f. eq. (62)), and one tries to deter-
mine Ci(s) by a best fit to the measurements. The form of the spa-
tial filter functions Gi(s) gives an indication on the parts of the path
which are most sensitive to the values of Ci(s). For example, it
can be seen from eqs. (63) and (64) that amplitude fluctuations are

more sensitive to the turbulence around the emitter, while phase

fluctuations depend evenly on the conditions along the whole path,



]
(O}
(8]

]

Detailed discussions and plots of spectral and spatial filter
2
functions can be found in the paper of LEE and HARP( 6) for plane
and spherical waves and in that of ISHIMARU(25) for some types

of Gaussian beams.

We will turn now to the discussion of some practical consequences
of turbulence effects on optical communication systems. We have
seen that atmospheric turbulence leads to fluctuations in amplitude
and phase of the signal arriving at the receiver. The amplitude fluc-
tuations are analogous to 'fading' in radio transmission; they are
called "beam scintillation' in our case of optical communication
links, and are variations in the spatial power density at the receiver
caused by interference within the beam cross section, The fluctua-

tions in log-amplitude have probably a Gaussian probability distri-

(33)(34) 2 _
y = BX(O).

bution with a variance given by ©
The phase fluctuations lead to spatial coherence degradation,
image dancing and beam spreading. It is convenient to define a "la-

(21)

teral phase coherence length!' by the condition that the root
p g po Y

mean square phase difference between the signals at two points in

the receiver plane which are the distance apart will be equal to «:
p Po P q

(16) np (o) = [Dglo) = [[S(p,) -5(0)1" = =

In other words, an interfereometer with the two slits apart a dis-

tance larger than e, will detect no phase correlation. This spatial
coherence loss is especially important for heterodyne receiving

(35)(36)

systems since it limits the maximum receiving antenna aper-
ture to dimensions of the order po' On the other hand, a phase in-
sensitive (intensity) detector of linear dimensions >>p (i.e. a direct

detection receiver with an entrance pupil of that size) measures an

intensity equal to the spatial average over its aperture, and since
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the fluctuations are uncorrelated over most of this region, their

effects tend to be smoothed out(37); this is called the "aperture

averaging effect'.

Within each coherence region the phase fluctuations cause
"image da.ncing"(38)(39). If the phase, as a result of the fluctua-
tions, varies linearly by an amount A9 over a distance b in the
plane of the wave, the wave front (plane of equal phase) is effecti-
vely tilted by an angle & » A9 /kb. The variance of these "angle-

of-arrival fluctuations' is therefore given by

2

(17) o«® =0 = DyB)K"D?

(b<<p)

These variations in the arrival angle a at the entrance of the re- -
ceiver cause the image point to wander in the focal plane by the

distance f a, where f is the focal length of the receiver optics.

As the different coherent subregions of the beam undergo inde-
pendent angle-of-arrival fluctuations, the beam as a total is spread
out, i, e. the beam divergence increases and the power density on
its axis decreases, Beam spreading can be considered as a typical
small angle scattering effect; its magnitude is automatically taken
into account by the correct beam wave solution, but since the re-

sulting mathematical expressions are of a rather unconvenient form,

(21)

-some authors prefer to use the simple plane wave solution and
to correct for beam spreading afterwards by assuming that the
width of the spread beam is given approximately by wSpr = ZZoa
with O, 38 in eq. (77). Beam spreading has to be taken into account
when wSpr becomes large compared to the width w of the unpertur-

bed Gaussian beam at the receiver.
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In the case of very strong coherent phase fluctuations across
the beam, the whole beam can be deviated from its path ("'beam
steering' or "beam wander') and eventually miss the receiver com-
pletely. It is clear that such an effect cannot be described correctly
even by beam wave theory since the perturbation approximation fails
for such a strong deviation from the unperturbed solution. It can be
treated, however, within the limits of geometrical optics(40); this
leads essentially to the same formula for the mean square deviation
0p2 of the arrival point B from its mean value B = 0, as the one given

2

2 2
in the case of beam spreading for w , i.e, 0_~Z CO_,
spr p o

beam steering and beam spreading can be considered as almost the

so that

same phenomenon; indeed, if the intensity in the receiver plane is
averaged over longer observation times, beam wander gives just an

additional contribution to beam spreading.

Beam steering has to be distinguished from ""beam bending'' which
is not really a turbulent effect, but is due to a gradual systematic
variation of the index of refraction along the propagation path. Beam
bending can have dramatic effects such as the formation of mirages
in some rather rare occasions, but it can be distinguished from tur-
bulence effects by its slow variation with time (timescales of minutes
or even hours, instead of seconds or less). Since in the case of beam
bending, the variation of the index of refraction is very gradual com-
pared with the wavelength of the radiation, ''ray tracing'" by the me-
thods of geometrical optics can be performed to compute the beam
trajectories provided that the index of refraction or - equivalently -
the temperature distribution in the neighbourhood of the path is known;

unfortunately, this is rarely the case.
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Chapter V - SCATTERING OF MICROWAVES BY ATMOSPHE -

RIC TURBULENCE

If the index of refraction n = N € becomes - due to the turbulent
fluctuations nq{r) - a function of position, Maxwell’s equations lead

to a wave equation for the electric field E of the following form:
2 2,22 &2
(78) AE +k'n (?)E + Zgrad{ .grad[ln n(r)]} =0

The last term - which gives rise to a turbulent depolarization -

is usually small and can be neglected, so that
2 2
(79) AE +kK“n“(ME =0

L= : 2
Assuming n = 1 and noting that for small n“we have (1 +n”) ~ 1 + 2n7

we can write eq. (79) in the form
2 2
(80) AF +k“E = -2k'n B

We try again the solution in the form of the first Born-approximation
—-’
{c.f. the discussion in the preceding chapter) and write the field E

in the form

(81) §=§o+§s

1
" where the scattered wave Es is assumed to be - relative to the unper-

_.’
turbed incident wave Eo - of the order of smallness n%, so that second
-
order products such as n’Es can be neglected.

2

-
Since Eo is a solution of the homogeneous wave equation, AE + k —f} =0,
: o o

we obtain for Es the equation

2 2 =

-
(82) AE'S tKE = -2knE_
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e d
which indicates that the waves Es originate from sources of

2 -
strength -2k n’(;')Eo. Eq. (82) has the well known solution

2 n{HE ()
i / 3, PEEL)

= - B
(83) Es(rp) = -5 r exp(Jklrp-r V)

o
- -
I -r

A P l

—_
where the integration extends over the scattering volume V and r

denotes the location of the observation point,

If the observation point is far remote from the volume V where

/3

approximation iT -?l ~r - (7. ?p)/rp in the exponential and replace
P p

1
the scattering takes place - such that 7\rp>> A% - we can make the

the denominator by r . This gives a spherical wave in the scattering
p

. . —> -
directionm =T /r .
P

jkr
e P

(84) _ES(? ) = ’?—r;l -
P p

—’
with the '"'scattering amplitude" ’L'rr—l’

2 -
(85) 7 = - /V &r nR)E, Pexp(-ik(F. 7))

As incident wave we can assume a linearly polarized plane wave pro-

pagating in a direction given by the unit vector U,

- - - - - - =
E =P exp(jk. r) = p exp(jku. r)
where ;is the unit vector in the direction of polarization., Actually,
it is now unimportant whether we consider beam waves or plane waves,
since the most effective scattering is caused now by eddies of the or-
der of a wavelength which scatter incoherently and are insensitive to
the macroscopic distribution of the incoming wave field, Thus we ob-

tain

2
K [ 3
(86) T =pr(¥) = - a/’ d"r n{%) exp(j¥%. T)
v



b=
where the '"scattering vector'" is given by
(87) %=k (d - m)

Its magnitude is given by 7 = 2k sin(9/2), where the "scattering
angle' %is the angle between the directions ¥ and m of the incident
and scattered waves, respectively, such that 4.m = cos®. The mean
intensity at the observation point ?P is given by the mean value of

the component of energy flow in the outward direction_}r?x at that point,

i. e, by definition of the corresponding component m. Ss of the Point-

ing vector

(88) §’s = (c/8T)Re {_E'Sx ﬁs} = (c/8x ) Ex(mhx Es)

so that

(89) m. S = (c/8%) 'Es' 2 sinzx ~ 1t (%)} 2 sinzx

Here we have denoted the angle between the direction of polariza-
tion P and the direction of observation m by % » so that r_ﬁ.i)' = CcOSY, .
According to eq. (89) the intensity is determined essentially by the
"differential scattering cross section"

4
2

(90) Q = It ()] 2 sin"y = k—lzf sinzx/ d3r Bn(?) exp(j . T)
47
Vv

where

Bn(;') = n’(?0 + ?)n’(?o) is the correlation function of the refractive
index fluctuations. If V is larger than the correlation volume (which
is of the order of 13 where 1 is the size of the scattering eddies) the
integrand vanishes outside V and we can replace the integral over V
by an integral over the whole space; the integral is then equal to

3
(2®)” times the Fourier transform <I>n( %) of Bn(?), i. e,

4
91) Q=2xk’'V sinzx @n(jc)
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In particular, with the Kolmogorov-expression (47) for <I>n()_(>) we
obtain

(92) Q(x) = Q(2ksin §/2) = 0.016 k1/3V Ci(sin e/z)"“/3sin2 %

This expression is valid within the limits (2 %/L)<2ksin 8/2< (2 ’K/lo).
For backward scattering § is equal to 1800, so that sin(§/2) = 1 and
2k = 4%/ < 2')1:/10. Thus backscattering is possible only if A >2 L.
This condition shows that only radio waves (and no optical radiation)
can be used for monostatic remote probing of atmospheric turbu-
lence. Since Q depends only on the cube root of k, it appears that mi-
crowaves with wavelength of the order of one centimeter might have
an advantage in the relative scattering intensity, but that the k-depen-
dence of the cross section is weak enough to permit the use even of

24
decimeter waves for such purposes( )

We conclude this chapter by the remark that for optical frequen-
cies the expressions derived here remain applicable as long as the
scattering is confined to a cone in the forward direction, subtended
by the maximum scattering angle 3m; this angle is defined by
2k sin( em/z) vk = 271;/10 or § = 7\/10. This condition was al-
ready mentioned at the beginning of the preceding chapter, Indeed,
we can obtain the results of that chapter, writing Es = Eoﬂjl and

case - equation (83) with the approxima-

using - for the plane wave,
2

, k
tions k| ?p - Tz kn + __(’;_'LL_Z in the exponential and I?p - Tz
mn

in the denominator,

For 10 = 5mm and A =0,5 pm we find an angular aperture of the

forward scattering cone of 0.1 milliradians,
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Chapter VI - SOME EXPERIMENTAL RESULTS ON THE PROPA -

GATION OF ELECTROMAGNETIC WAVES IN THE

ATMOSPHERE

Experiments done under conditions that allow a direct check of
the theoretical predictions require simultaneous measurements of

the pertinent meteorological parameters such as C Since such

T.
measurements are not easy to perform, the first real test of the

41
theory was made only in 1965 by GRACHEVA and GURVICH( ), who
measured the variance of the log-intensity fluctuations over a flat

horizontal path up to 2 000 m, They encountered the phenomenon

of saturation: while for shorter distances L the variance of log-

11/3

2
intensity O = 4% was proportional to L as predicted by the

Inl

theory, the olnI -vs-L-curve "saturated" (i.e. became horizontal)
at ___
2
. (42)(43)(44) .,
The same phenomenon was later verified by others , though
(45)

with a certain spread of the reported saturation values. DABBERT
(46) investigated the scintillation of log-amplitude on ground paths up
to 7.5 km and slanted paths (from or to a 465 m tower) from 0.6 km
to 10 km and fitted the saturating results to expressions of the form
cmeas. = ctheor. /(1 + acriheor.) where the fitting pa.rame.te‘rs o B
showed a slight frequency dependence and also a dependence on the
class of atmospheric stability. According to his results the measured
scintillation magnitude ome . saturates as range and turbulence

(i. e. Cn) increase, but finally even decreases with further increase
in range and/or turbulence (supersaturation region). The maximum

-7/12
/ (as it is

of ¢ (at the saturation point) is proportional to A
meas.,

in the unsaturated region) while in the supersaturation region there

is little dependence on frequency.

Saturation indicates the point where the perturbation theory ceases

to be applicable. Over short distances (10 km) the validity of the per-

turbation theory was also confirmed by an excellent agreement with
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47
the measurements by GRAY and WATERMAN( ) of the log-ampli-

(48)

tude covariance function. OCHS et al. have measured the nor-
malized covariance function over longer distances and got a good
agreement with the theoretical predictions up to 15 km,. However,
KERR(49) reported cases where even at moderate turbulence and
short path lengths substantial disagreement with the theory was ob-
served., The reason for these discrepancies is not known, but it is
possible that in some meteorological situations the Kolmogorov mo-

del does not correspond to the main mechanism of turbulent energy

dissipation,

Measurements of the phase covariance function by BOURICIUS

(50)(51)

et al. showed good agreement with the theoretical predictions,

The first group of experiments(so) used a 25 m return path, i.e. a
total distance transmitter-receiver of 50 m, and the spatial correla-
tion measurements were replaced by temporal autocorrelation mea-
surements, assuming the validity of Taylor’s hypothesis that the tur-
bulence field of temperature fluctuations does not change during a
short time interval T, so that it is merely transported across the light
path by the mean transverse wind Vn' Under this assumption the ran-

-

—
dom field at d and time t+ T coincides with the field at d - \7’17 at

(51)

of two re-

-
time t, so that DS(H) = DS(vnq:). The second group of experiments

(52)

ceiving slits at 4 different spacings d ¢ 30 cm for a direct verifica-

used a 70 m direct path and an interfereometric array

tion of Taylor“s hypothesis. In both experiments simultaneous CT-
measurements were done with two 2 pym Pt-wire resistance thermo-
meters (10 cm distant from each other) located near the center of the
light path, and the mean wind was recorded with a conventional ane -

mometer.

Taylor’s hypothesis gave an excellent agreement between the cor-

responding temporal and spatial spectra, and the results for Ds(d)
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agreed ’with those of the TATARSKI theory for all values of d (<30 cm)
in the second case, while in the first case this agreement could be
verified even for values of d = v.T of the order of 1 m, Since the path
was at a height of only 1, 6 m, the upper scale of‘turbulence', Lo’
should have been also of the order of 1 m, so that the TATARSKI

theory turned out to be correct within the whole inertial subrange.

While the knowledge of the mean wind along the transmission path
permits - with Taylor“s hypothesis - the use of only one receiver and
the substitution of temporal autocorrelation measurements for spa-
tial correlation measurements (which necessitate at least two recei-
ving antennas or slits etc. separated by a distance d), the determina-
tion of an unknown mean wind velocity by time cross correlation mea-
surements of the signals at two receivers separated by a distance.d
has been shown to be also fea.sible(53)(remote sensing of the mean
wind),

A comparison by BUFTON of the theoretical value of xz computed

with the help of C_,-profiles, obtained by radiosonde balloons for

T
heights up to 25 km with the observed scintillations of stellar objects

54
( ) For these vertical paths saturation

agreed within a factor of 2
does not occur since turbulence is usually restricted to several rather
shallow layers. These results show the applicability of expressions of
the form given in eq. (64) with a variation of Cn along the light path,
. Comparing the scintillation characteristics of 0. 488 ym radiation re-
flected from the GEOS-II satellite at a height of 1250 km with stellar

(55)

data MINOTT found values of log-amplitude variance and norma-

lized power spectral density within the limits measured for stellar
scintillation,
Assuming the validity of the theory and a smooth variation of the struc-

ture constant Cn as a function of altitude h, expressible in parabolic

2
h+a.h, SUBRAMANIAN(Sé) determined the coef-

form _Cn(h) =a_ ta, 5
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ficients a, from a best fit to the observed data for the scintillations

of a 0,6328 um-laser beam reflected from a retroreflector mounted
on a thethered balloon which was successively flown at several alti-
tudes. The consistency of the results indicated a certain potential

of this method for remote determinations of the structure constant,
though its assumptions would not apply to the case of a layered atmos-
phere where the turbulence structure exhibits pronounced jumps in

magnitude as function of altitude.

All these experiments were done at optical frequencies (mostly with
the 0,6328 um HeNe-laser), The observations of LEE and WATER-
57
MAN( ) showed a good agreement with the TATARSKI theory also for

mm-waves (35 GHz) for a path of 28 km.

Concerning other propagation effects such as beam steering,a direct
comparison between the predictions of geometrical optics with the help
of measured CT-values and observations along a 480 m path (240 m
return path) and a 1380 m path, both at 20 m height, is discussed by
CHIBA(40). The agreement between his theory and the experiments
was satisfactory. The strongest observed fluctuations correspond to
angular fluctuations Oy = Op /z of the order of about 40 prad. Similar
results are given by KURIGER(SS) for a distance of 7226 m (3613 m

return path).

LAWRENCE and STROHBEHN(Sg) report on experiments by OCHS
and LAWRENCE on beam bending over paths from 5 to 45 km: A typi-
cal 24-hour measurement showed a diurnal variation of about 30 p rad/km
on a 15 km path, These variations were usually slow enough that a ser-
votracking system with a maximum angular rate of 7.5 prad/sec could

compensate for them.

60
GRUSS( ) reports that on a typical communications relay link, with
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distances up to 20 km, no beam loss due to atmospheric beam
bending was observed (during an observation period of about two
years), and that beam deviations due to mechanical fluctuations of
the supporting structures in response to wind pressure had much

more serious effects,

MASON and LINDBERG(él) studied the behaviour of an HeNe-laser
beam over an 80 km long, 1.3 km high path between two mountains,
thus free from surface effects, and found - as should be expected -
that in this case beam bending (which is due to the vertical refractive
index gradient) is primarily a function of lapse rate (vertical gradient

of mean temperature) as measured by radiosonde soundings.

In a study of the spreading of a 0, 9050 ym Ga-As-laser beam of
an initial angular aperture of 66 x 5 yrad at distances from 130 m to
4,5 km RAIDT and HO'HN(()Z) observed that it is mainly due to aero-
sol scattering and not to atmospheric turbulence, even for medium
visibilities., With increasing distance and decreasing meteorological

range (visibility) beam spreading increases.

This point is also investigated in the work of DOWLING and LIVING-
STON(63) who measured the spread of a laser beam along path lengths
up to 1.75 km (height 1,8 m or 2.4 m above ground) at 0,63 pm and
at 10,6 pm, The observed beam spread can be separated into short-
-term (©) and long-term (@) rms averages that differ by beam wander
d (beam stee1;ing), so that ©*= (@2 +cp2)1/2. ® has been found to be
essentially independent of the wavelength and is adequately described
by geometrical optics. The short-term average beam spread is strong-
ly wavelength dependent, The measurements at 10,6 u m are nearly

diffraction limited, whereas the corresponding data for 0,63 pum are

strongly influenced by variations of Cn. The experimental data are pre-
B Z‘Y‘k6

n » with experi-

sented by empirical fits of the type ® = a + bC
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mentally determined constants a, b, ,v,5 which do not agree too

well with the predictions of the TATARSKI theory.
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