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ABSTRACT

We consider the problem of resolving a measured pulse-height spectrum of a
material mixture (e.g. Raman-spectrum, gamma-spectrum) into a weighted sum of
the spectra of the individual components of the mixture. If the measured spectrum
is contaminated with noise, the standard least-square method cannot be used to
unfold the spectrum into its individual components for small signal-to-noise ratios.
To improve the identification of the components in the mixture we constructed a
“stepwise regression” method which gives very good results even for signal to noise
ratios of the order of one. The new methad is a combination of the least-square
mechanism and repeated application of statistical tests.
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1) Introduction

We consider the problem of resdiving a measured pulse-height spectrum of
a material mixture (e.g., gamma-ray-spectrum, Raman-~spectrum) into a
weighted sum of the spectra of the individual constituents of the mix-
ture [E,Z,S,Q] . The analytical formulation oflthis problem will be kased

on the following model:

(1) the measured spectrum of the mixture is represented by the vector

-
N =z{N1,N2...NN} , Where Ny is the number of counts in channel

-
(2) the vector Si

fl

Zsil,sizu..SiNj’represents the spectrum of con-

Il

stituent i (i 1,2,..L) which might possibly be in the mixture

[0}

(3) Bi is the magnitude of the contriputicon of constituent i to .:
’ -5
measured spectrum N (Bi is proportional to the concentration cf

constituent i in the mixturej.

The number of counts observed in channel ¥ is thea given by:

l:’l
N, = Z /3"‘ Siv + D, ()
CRg

C

where Dy, is an error-term for channel 9° ., For these errcr-iermg we ss-
sume that they are statistically independent and have expectaticn vuliue

E(Q’) = 0, Each N, has a Poisson distribution with mean-value ana vari-

N

ance equal to

&
N = Z Yea 5/'v "
v /

-V AR

-
The probability for the measured spectrum N becomes

N ‘lu Ny

- o~ Ly (3)
P(N) = // € _—
V=4 /
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Now we apply the principle of Maximum Likelihood E’S]to obtain estimated.
values for the unknown Bi. Due to this principle we have to perform the

operations:

2 2.7
3}‘2' (i =1,2...L) (4)

I\
Q

on (3) and obtain:
N o v DAs
- - = 0
Z (/{ /\V) 9/;(. (5)
V=4

For practical applications we may assume that Nv will deviate not too

much from )h" so that we can put

"‘—V lV /Yy bl
and therefore
My PSP
1~ 5. = (4~ = P
~v N‘/

Using (7) and (2) in (5) we finally arrive at the system of linear equat-

ions for the Bk:

S > 55, v
zﬂﬁ /Z /l): *) = Z 5/‘\/ (=4, 3-L) g,
-ﬁzd v

Y:/ Y=

This system (8) gives us point-estimators for the B's but no information

about their statistical distribution properties. The knowledge of these



distribution properties is importa.nt however for further statements
about the accuracy of the solutions of (8), for the construction of
confidence intervals and for testing assumptions about the B's, To ob~
tain this information about the statistical behaviour of the B's we

refer to the assumption made above, that N will deviate not too much

y
from XV . Under this assumption Ny, (greater than about 20 counts)
will behave approximately as a random variable with a normal distribut-
. _ . 2 _
ion of mean value E(N, ) _’\v and variance 6 = )«V.
The variance Cyz of Nvin our case is a function of the B's which are

not known. On the other hand we have up to terms of higher order:

N’,“'>V —~ NV’XV

P d

(9)
G-v INy

We assume therefore further 7’, to be given and replace it for numerical

calculations by JNy/ .

We introduce the quantities:

);’==AAJ,,//IC;Z;:j ;7;:ZGX; x;"');VJ;; g;:= C{:; 2 ”'é;/J/?
-
o= S [ ) X =85 4

¢ (10)
-
12X | g =t 8 b
r=f
which give equation (1) the form:
7]
\/y= .Z /"\//"/ t+ &,
=/
or ' . (11)

- — -
y =2 *t?#2



where zvisnoma]ly distributed with mean value O and variance 1,
Our problem can then be stated in the foilowing ways

' >
Given a vector y in an N dimensional space VN- with components s
2 o :
(¢ = 1,2...N). Determine that vector ?= ‘2 bi )(71 in the subspace

v spanned by the "L linear independent vec%grls ‘7?1, which makes

L?
o i " _ .
S’: /;’_Z-?/: Z(yy~ét,\fw~é_,\’,_v“ ~é'«\"_‘,) | (12)

to a minimum,

The corresponding bi are found out of the system of equations (equivalent

to (8)):

v 2 2 (‘” -2
Z (X/ Xi ) é—( = oland } (13)
2 |

This means that the error vector

&
E= Y = < X . (14)
s ’

is orthogonal to VL and

/;—7/’2.= S

(15)

2
has a X, N-L distribution of (N-L) degrees of freedom,

The initial problem (1) to (8) is thus reduced to a multiple linear re-

gression problem as formulated in (11) to (15). It is well known 5,7,81

that the solutions bg, of the system (13) are normally distributed with
K where a**

. . 2
gonal element of the inverse matrix to aii— (xi,xk).

mean value E(b&) = B, and variance Gs = a is a dia-



2) Stepwise linear regression

A straightforward solution of the system (13) for the b's could only be
feasible if L is not too large énd if the constituents-spectra';; were
accurately known. These are just two points which are not fulfilled in
our case, We shall have to déal with the problem that the number L of
constituents which could be in the mixture under investigation is very
large (L $ 50 or more) but that the number of constituents which actually
are in the mixture is very small (£10). Further, the library spectra-;;
are in general found experimentally and as such are contaminated with a
noise component. Thus taking into account all L components when solving
(13) for the bi the allowance for components which are not in the mixture
(Et‘: 0) will strongly influence the accuracy of those bi for constituents
which actually are in the mixture. To solve this difficulty we shall con-
struct a stepwise regression procedure which selects a most probable com-
bination of constituents from the set of library spectra by means of re-
peated application of statistical tests and the least square mechanism.
The final result will give both the constituents contained in the mixture
and their respective (relative) strength (contribution to the measured
spectrum y), To arrive at this stepwise regression procedure we employ
the statistical test for the hypothesis that some of the B's are iden-

tically zero. This test-situation can be described in the following terms
[h,q] :

»> -» >
Let us assume that only the Q spectra out of the set To'—{}%l’xiz o xiQ}

contribute to the measured spectrum y and no other spectrum out of the
- -

ini = co X will give "significant con-
remaining set T1 { le,sz, ij-Q } i gi any gn

tribution' .

-ip
In other words, if we would add an arbitrary spectrum x_ of T  to To and

e r g > -*-'}thlt.
try to fit y within the set gr,- xil’xi2°°° xiQ,ijb , e assumption
says that no xj‘* is necessary to fit -y‘or that the corresponding bj‘“are
indentically zero for all (A - If our hypothesis is true, then (for each

cu) the quantity

7 ¢ = Sm;(;;(?) -(v-&-4)  ao



has a F distribution with 1 and (M-Q-1) degrees of freedom,

(1,N-Q-1)

where

5(4: )“ MIN// 2 b, /1, | an

~

16 7;,;,‘)

P%
(1,N-Q-1)

{) F% o 18
"{fc“ (4/«/&-4)}:73/’ -

choosing for P values of the order of 1%, 5% or 10% we can be (almost) sure

P%
(1,RQ-1)

Due to this fact we can find a number F such that

that all foo will be smaller than F if our hypothesis is true

->
(that no xj is necessary to fit y)

The test of this hypothesis will therefore be performed in four steps:

-»
1) Calculate fQ‘a for all xir_ out of Tl'

2) 1f f(ck) (1 N-Q-1) for allc«- go to step 4,

3) If for some ¢~ ve have f c~> F y? we choose the m largest of

Q* (1 N-Q-1
these £ (usually m = 1) and add the corresponding spectra to To’ re-
move then from T, and go back to step (1) to repeat this "forward se-

lection procedure",

4) The hypothesis is accepted that the constituents of TO only make up
the mixture and no component of T1 will make any further "significant

-
contribution" to y.

It might still be possible that during this '"forward selection procedure"
-
we added to many components to TO and some of the x. , (of the final TO)

Hf“

have a negligible influence on y,

To test for this possibility we make the hypothesis that e.g. X, has no
> >
significant influence on y and to fit y it is enough to use the spectra
- - -»
of set T only, where T contains all spectra of T0 except x. ., If

[iad ™
this hypothesis is true, then the quantity



—_ 1 —

@) ’.S‘(?ZJ'”)V—"S(K) (N-Q) (19)
T sm)

has a F distribution,

(1,NQ)
Now we apply the above "forward"-procedure in the reverse sense and perform

the following four steps:

@~ >
1) Calculate g ) for all x, out of T .
1~ o

@) pP%

If f

2) g >F (1,N-Q) or all ¢~ &° to step 4,

3) If for some gar we have nges F??,N*Q)’ we choose the n smallest of

these gQ?O (usually n = 1), remove the corresponding spectra from TO
and go back to step (1) to repeat this "backward elimination proce-

11"
dure .

4) The hypothesis is accepted that no spectrum of T may be neglected,
This means that the experimental data (y) are con51stent with the as-

sumption that all components of To (and not more) arerecessary to fit y.

This stepwise regression method consists therefore of the two essential

steps:

a) the "forward selection procedure” selects by repeated application of
the statistical tests out of the set of all L possible library spectra
a subset To of vectors which should all be included in the regression.

All remaining vectors in T, are rejected as the final test supports the

1
hypothesis that all B's of the vectors in T1 could be assumed to vanish,

b) The 'backward'elimination procedure' eliminates from To found in step
(a) further variables for which a test supports the hypothesis that

their corresponding B's can be assumed to vanish,

Only if we are sure that the complete TO is found (as a result of the ap-
plied tests in step (a)) we can start with the elimination procedure., This
is the point where the method described above differs from published step-
wise regression methods [7,10] which perform the elimination procedure im-

mediately after each forward selection step.
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3) Application of the stepwise regression method

In order to fest the efficiency of the stepwise regression method (SRM)

we transformed the procedures described in chapter 2) in a computer pro-
gramme, This programme was thén used (to simulate a practical application)
to unfold test-spectra which were obtained by mixing some spectra (out of

avlibrary of arbitrarily chosen Spectra) and adding a noise component,

The L(=50) library spectra were constructed by a linear superposition of

I (= 10) Gaussian curves with random aplitudes, random widths and random
positioné with an average distance of % between the peak positions, where
M (= 10 cm) is the range over which the spectra were chosen to extend (the
range M is chosen to correspond to N (=100) channels), Figs. la,b,c show
some typical library spectra., Some of these library spectra were now line-
arly superposed with different weighting factors to obtain a pure signal
spectrum and to obtain measured spectra each signal spectrum was con-
taminated with (Gaussian random-) noise of mean zero and variance 1 and a

constant background (=5.0) was added (see Fig. 2).

The contamination of the signal spectra with noise was done for different
signal-to-noise-ratios (SNR) to simulate measured spectra for different

experimental conditions, The signal-to-noise-ratio is defined by

ad =12
2 = ($6)- 5)
SHMR = =z ~ 2 | (20
> NG)

=g

where: S(i) = Signal value in channel i

]

N(i) Noise value in channel i

]

- N ’
s % 'Z' S(i):;mean value of signal

i=1
A typical sample of "measured" spectra for different SNR's is shown in
Figs. 3a,b,c,d,

The results of the unfolding of the "measured" spectra of Fig, 3 using
the least-square method and the step-wise regression method are shown in

Figs, 4a-e.
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Many calculations were made with varying numbers K of components in the
signal spectrum (1 to 20 components out of 50) and different signal-to-

noise ratios (0.5,1,....30),

The results of these calculations were all similar to the special case

-mentioned above and shown in Figs, 3 and 4.

Conclusion

The main conclusions out of these calculations can be summarized as fol-

lows:

The least-square method cannot be used to resolve a mixture of K(& 10)

out of L(» 20) spectra in the range of SNR€ 5.0,

The stepwise method in this range of the SNR identifies in general all
components of the mixture and gives their (absolute) weights within 10%,

It might happen that some components are not identified, but if the step-
wise method identified a component it was in the mixture. For larger sighal-
to-noise ratios the ability of the least-square method to predict the com-
ponent~spectrum of a mixture improves and for SNR & 10,0 both methods give
equally good results (at least for the calculations pérformed, that means

resolving mixtures of K(¥ 10) out of L (£50) library-spectra).
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Figure Captions

Fig. la,b,c: Some of the arbitrarily chosen library spectra,

Fig, 2 Superposition of a constant background and a random Gaussian
noise component of mean zero and variance 1, The background
is also considered as a library spectrum (no, 1) and can be

chosen arbitrarily,

Fig, 3: a) Signal spectrum obtained from a linear superposition of
the library spectra no, {3,6,9,13,19} with the weight fac-
tors {0.45, 0,15, 0.28, 0.37, 1.12

b) Measured spectrum obtained from a linear superposition of
the signal spectrum of Fig, 3a with the noise and back-

ground of Fig, 2 and arranged for a SNR of 0,5
c) same as Fig, 3b for a SNR = 1,0

d) same as Fig. 3b for a SNR = 5,0

Fig, 4: a) Component spectrum of the signal spectrum of Fig. 3a

b) Least-square solution for the component spectrum of Fig.

3c (SNR = 1,0)

c) Least square solution for the component spectrum of Fig.

3d (SNR = 5.0)

d) Stepwise solution for the component spectrum-of Fig, 3c.

Components 6 and 13 of Fig., 4a are not identified.
e) Stepwise solution for the component spectrum of Fig, 3d.

Only component 6 of Fig, 4a is not identified,

Fig. 5: a) Component spectrum for a mixture of 10 components, each

with the same weight-factor of 0.5.

b) Stepwise solution for the component spectrum of Fig, 5a

for a SNR = 5.0.
Only component 39 has been wrongly identified.

c¢) Least-square solution for the component spectrum of Fig.

5a (SNR = 5.0).
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