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Ι) Introduction 

We consider the problem of resolving a measured pulse­height spectrum of 

a material mixture (e„g„ gamma­ray­spectrum, Raman­spectrum) into a 

weighted sum of the spectra of the individual constituents of the mix­

ture l[l,2,3,4J . The analytical formulation of this problem will be based 

on the following models 

(1) the measured spectrum of the mixture is represented by the vector 

Ν = ) Ν., ,N„o. .N>T f , where Ν is the number of counts in channel >> 
L 1' 2 Nj ' y

 r 

(2) the vector S. = ÍS. ,S „. .S.„f represents the spectrum of con­

χ *· il i2 iNj 

stituent i (i - 1,2...L) which might possibly be in che mixture 

(3) ß. is the magnitude of the contribution of constituent i to the 

measured spectrum Ν (ß. is proportional to the concentration of 
1 

constituent i in the mixture)„ 

The number of counts observed in channel V is then given by: 

A,„- X / * * , v * 3 > . (1) 

¿«­/ 

where D . is SJI error­term for channel y? „ For these error­terms we as­

sume that they are statistically independent and have expectation vuiue 

E(D ) = 0. Each Ν . nas a Poisson distribution with mean­value ana vari­

ance equal to 

Ù 

x. - Χ Λ'
 5/

-

The probability for the measured spectrum Ν becomes 

<P(N)~ ¡I e 
(3) 

ρ ■ 



Now we apply the principle of Maximum Likelihood ¿J5 I to obtain estimated 

the unknown ß.. Due to this principle 

operations : 

values for the unknown ß.. Due to this principle we have to perform the 

2ßt (i = 1,2...L) (4) 

on (3) and obtains 

Nu 

*=4 

X /Vu \ z_±y 

v 9/i,· 

For practical applications we may assume that Ν will deviate not too 

much from \ . so that we can put 

—
 Ä Ί+ "Ζ ì ——' *=■ Λ— r~^ (6) 

and therefore 

s­~ * 'fa­ ­r) cr) 

Using (7) and (2) in (5) we finally arrive at the system of linear equat­

ions for the ß, s 
k 

2Λ/Ζ^7= Xiv ^-4 

This system (8) gives us point­estimators for the ß*s but no information 

about their statistical distribution properties. The knowledge of these 
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distribution properties is important however for further statements 

about the accuracy of the solutions of (8), for the construction of 

confidence intervals and for testing assumptions about the ß*s. To ob­

tain this information about the statistical behaviour of the B's we 

refer to the assumption made above, that N v will deviate not too much 

from X, ­. Under this assumption N . (greater than about 20 counts) 

will behave approximately as a random variable with a normal distribut­

ion of mean value E(N . ) =%» and variance &~, = %­ ,. 

o 
The variance (?L of N in our case is a function of the β*s which are 

~ ν 

not known. On the other hand we have up to terms of higher order: 

>%_-_Vr: ^ A^, - V r 
(9) il7T¿ 

We assume therefore further QTV to be given and replace it for numerical 

calculations by /N^/ . 

We introduce the quantities: 

J 

tv
m

ZP;Xi·' ι ï ~llob-1 J 

(10) 

which give equation (1) the form: 

y - Σ Α · ^ / - + t~ 
V
 /s/ f 

or (11) 

y = Ζ +
 L 
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where Z.^, is normally distributed with mean value 0 and variance 1. 

Our problem can then be stated in the following way: 

Given a vector y in an N dimensional space V with components y 

(j> = 1,2...N). Determine that vector £ = 2Z
 b

· \ · i n t n e
 subspace 

V , spanned by the L linear independent vectors χ. , which makes 

(12) ?- /y- ¿7 = Ζ Λ" ¿*~ - i *" - ~ i W 

to a minimum. 

The corresponding b. are found out of the system of equations (equivalent 

to (8)): 

Σ ¿Ζ *a )&* =
 Cx

' ^ 

This means that the error vector 

­9 

r=y~ J t -*¿ (14) 

is orthogonal to V and 

lì V - S 
(15) 

2 

/\, distribution of (N­L) degrees of freedom. 

The initial problem (1) to (8) is thus reduced to a multiple linear re­

gression problem as formulated in (11) to (15). It is well known /6,7,8J 

that the solutions b,j& of the system (13) are normally distributed with 

mean value E(b* ) = ß, and variance (>, = a where a is a dia­

*~ +- b
* ­ .* 

gonal element of the inverse matrix to a.« = (χ.,χ,). 



2) Stepwise linear regression 

A straightforward solution of the system (13) for the b*s could only be 

feasible if L is not too large and if the constituents­spectra x. were 

ι 

accurately known. These are just two points which are not fulfilled in 

our case. We shall have to deal with the problem that the number L of 

constituents which could be in the mixture under investigation is very 

large (L ̂  50 or more) but that the number of constituents which actually 

are in the mixture is very small (^10). Further, the library spectra x. 

are in general found experimentally and as such are contaminated with a 

noise component. Thus taking into account all L components when solving 

(13) for the b. the allowance for components which are not in the mixture 

(β a« 0) will strongly influence the accuracy of those b. for constituents 

which actually are in the mixture. To solve this difficulty we shall con­

struct a stepwise regression procedure which selects a most probable com­

bination of constituents from the set of library spectra by means of re­

peated application of statistical tests and the least square mechanism. 

The final result will give both the constituents contained in the mixture 

and their respective (relative) strength (contribution to the measured 

spectrum y). To arrive at this stepwise regression procedure we employ 

the statistical test for the hypothesis that some of the ß's are iden­

tically zero. This test­situation can be described in the following terms 

fs,9] : 
Let us assume that only the Q spectra out of the set Τ =j χ ,x .. X­0> 

contribute to the measured spectrum y and no other spectrum out of the 

remaining set Tn = J χ ,χ ,.,.χ I will give any "significant con­
*■ \ J

1 3¿ JLi­W J 

tribution". 

­J» 

In other words, if we would add an arbitrary spectrum χ of Τ to Τ and 

try to fit y within the set Τ^=^χ ,x. ...
 x
0?

x
i/(Wj »

 t n e
 assumption 

says that no χ. is necessary to fit "y* or that the corresponding b . are 

indentically zero for all *A* . If our hypothesis is true, then (for each 

A*») the quantity 

¿#m SOZ)- SC-Çt) ,fr_^j (i6) 
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has a F, N_Q_­.·) distribution with 1 and (H.­Q­1) degrees of freedom, 

where 

P% 
Due to this fact we can find a number F,, „ Λ „. such that 

(1,N­Q­1) 

(17) 

(18) 

choosing for Ρ values of the order of 1%, 5% or 10% we can be (almost) sure 

</*f) P% 
that all f* will be smaller than F,, „ Λ ,. if our hypothesis is true 

_^ ^ (1,M­Q­1) ** 
(that no χ. is necessary to fit y). 

The test of this hypothesis will therefore be performed in four steps: 

1) Calculate f ^ for all x. out of Τ . 

Of
 1 

2) If f ^ ^ F^° N_Q_1) for all¿»*. go to step 4. 

3) If for some ̂ c we have f ̂  ^ F ° ., we choose the m largest of 

(**) tijN­y— 1) 

these f ^ (usually m = 1) and add the corresponding spectra to Τ , re­

move then from Τ and go back to step (1) to repeat this "forward se­

lection procedure". 

4) The hypothesis is accepted that the constituents of Τ only make up 

the mixture and no component of Τ will make any further "significant 

contribution" to y. 

It might still be possible that during this "forward selection procedure" 

we added to many components to Τ and some of the x.^iof the final Τ ) 

have a negligible influence on y, 

To test for this possibility we make the hypothesis that e.g. x... has no 

significant influence on y and to fit y it is enough to use the spectra 

of set Τ„ only, where T~ contains all spectra of Τ except x. 

this hypothesis is true, then the quantity 

. If 
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0 (f) . Se&)-SCrz) ,(„-tj\ <1β) 

has a F., „ '■ « distribution. 
(1,N­Q) 

Now we apply the above "forward"­procedure in the reverse sense and perform 

the following four steps: 

1) Calculate g^* for all x. ' out of Τ . 

Vf ° 

2) If g^\p> F , ' N _ Q ) f o r a 1 1 (*· SO to s t e p 4 . 

<<*.) p % 

3) If for some (*~ we have ζ S. F, „,­>·>> we choose the η smallest of 

(>».) ^ ιΙ,ΝΗί; 
these g (usually η = 1), remove the corresponding spectra from Τ 

o 
and go back to step (1) to repeat this "backward elimination proce­
dure" . 

4) The hypothesis is accepted that no spectrum of Τ may be neglected. 
This means that the experimental data (y) are consistent with the as­
sumption that all components of Τ (and not more) are necessary to fit y. 

This stepwise regression method consists therefore of the two essential 
steps: 
a) the "forward selection procedure" selects by repeated application of 

the statistical tests out of the set of all L possible library spectra 
a subset Τ of vectors which should all be included in the regression. o 
All remaining vectors in Τ are rejected as the final test supports the 
hypothesis that all ß*s of the vectors in Τ could be assumed to vanish. 

b) The "backward"elimination procedure" eliminates from Τ found in step 

(a) further variables for which a test supports the hypothesis that 

their corresponding ß's can be assumed to vanish. 

Only if we are sure that the complete Τ is found (as a result of the ap­

plied tests in step (a)) we can start with the elimination procedure. This 

is the point where the method described above differs from published step­

wise regression methods JJÎ,101/ which perform the elimination procedure im­

mediately after each forward selection step. 
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3) Application of the stepwise regression method 

In order to test the efficiency of the stepwise regression method (SRM) 

we transformed the procedures described in chapter 2) in a computer pro­

gramme. This programme was then used (to simulate a practical application) 

to unfold test­spectra which were obtained by mixing some spectra (out of 

a library of arbitrarily chosen spectra) and adding a noise component. 

The L(=50) library spectra were constructed by a linear superposition of 

I (= 10) Gaussian curves with random aplitudes, random widths and random 

M 
positions with an average distance of — between the peak positions, where 

M (= 10 cm) is the range over which the spectra were chosen to extend (the 

range M is chosen to correspond to N (=100) channels). Figs. la,b,c show 

some typical library spectra. Some of these library spectra were now line­

arly superposed with different weighting factors to obtain a pure signal 

spectrum and to obtain measured spectra each signal spectrum was con­

taminated with (Gaussian random­) noise of mean zero and variance 1 and a 

constant background (=5.0) was added (see Fig. 2). 

The contamination of the signal spectra with noise was done for different 

signal­to­noise­ratios (SNR) to simulate measured spectra for different 

experimental conditions. The signal­to­noise­ratio is defined by 

SMR - -^—7} :
 (20) 

X 

'-y 

where: S(i) = Signal value in channel i 

N(i) = Noise value in channel i 

Ν 
1 * ■­

~ ^~ S (i); mean value of signal 

i=l 

A typical sample of "measured" spectra for different SNR's is shown in 

Figs. 3a,b,c,d„ 

The results of the unfolding of the "measured" spectra of Fig. 3 using 

the least­square method and the step­wise regression method are shown in 

Figs. 4a­e. 
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Many calculations were made with varying numbers K of components in the 
signal spectrum (1 to 20 components out of 50) and different signal-to-
noise ratios (o.5,l,....30). 

The results of these calculations were all similar to the special case 
mentioned above and shown in Figs. 3 and 4. 

4) Conclusion 

The main conclusions out of these calculations can be summarized as fol­
lows: 

The least-square method cannot be used to resolve a mixture of K(^ 10) 
out of L(^ 20) spectra in the range of SNR<^5.0. 

The stepwise method in this range of the SNR identifies in general all 
components of the mixture and gives their (absolute) weights within 10%. 
It might happen that some components are not identified, but if_ the step­
wise method identified a component it was in the mixture. For larger sighal-
to-noise ratios the ability of the least-square method to predict the com­
ponent-spectrum of a mixture improves and for SNR £ 10.0 both methods give 
equally good results (at least for the calculations performed, that means 
resolving mixtures of K(^ 10) out of L ($50) library-spectra). 
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Figure Captions 

Fig. la,b,c: Some of the arbitrarily chosen library spectra. 

Fig. 2 Superposition of a constant background and a random Gaussian 
noise component of mean zero and variance 1. The background 
is also considered as a library spectrum (no. 1) and can be 
chosen arbitrarily. 

Fig. 3: a) Signal spectrum obtained from a linear superposition of 
the library spectra no. / 3,6,9,13,19J with the weight fac­
tors ̂ 0.45, 0.15, 0.28, 0.37, 1.12 J 

b) Measured spectrum obtained from a linear superposition of 
the signal spectrum of Fig. 3a with the noise and back­
ground of Fig. 2 and arranged for a SNR of 0.5 

c) same as Fig. 3b for a SNR =1.0 

d) same as Fig. 3b for a SNR =5.0 

Fig. 4: a) Component spectrum of the signal spectrum of Fig. 3a 

b) Least-square solution for the component spectrum of Fig. 
3c (SNR = 1.0) 

c) Least square solution for the component spectrum of Fig. 
3d (SNR = 5.0) 

d) Stepwise solution for the component spectrum of Fig. 3c. 
Components 6 and 13 of Fig. 4a are not identified. 

e) Stepwise solution for the component spectrum of Fig. 3d. 
Only component 6 of Fig. 4a is not identified. 

Fig. 5: a) Component spectrum for a mixture of 10 components, each 
with the same weight-factor of 0.5. 

b) Stepwise solution for the component spectrum of Fig. 5a 
for a SNR = 5.0. 

Only component 39 has been wrongly identified. 

c) Least-square solution for the component spectrum of Fig. 
5a (SNR = 5.0). 
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