
E U R 5 0 5 4 e 

m 

%w.t i" 

iVv 

COMMISSION OF THE EUROPEAN COMMUNITIES 

Vh 
r 

rií !» 

NEUTRON SPIN PRECESSION 

IN POLARIZED NUCLEAR TARGETS 

by 
ft ! 

M. FORTE 

1?
ν 

Hi ,JnW' 

1974 

Joint Nuclear Research C entre 

Ispra Establishment - Italy 

Physics Division 



LEGAL NOTICE 

This document was prepared under the sponsorship of the Commission 
of the European Communities. 

Neither the Commission of the European Communities, its contractors 
nor any person acting on their behalf: 

make any warranty or representation, express or implied, with respect 
to the accuracy, completeness, or usefulness of the information contained 
in this document, or that the use of any information, apparatus, method 
or process disclosed in this document may not infringe privately owned 
rights; or 

assume any liability with respect to the use of, or for damages resulting 
from the use of any information, apparatus, method or process disclosed 
in this document. 

This report is on sale at the addresses listed on cover page 4 

at the price of B.Fr. 40.— 

Commission of the 
European Communities 
D.G. XIII - C.I.D. 
29, rue Aldringen 
L u x e m b o u r g 

February 1974 

This document was reproduced on the basis of the best available copy. 



EUR 5054 e 

NEUTRON SPIN PRECESSION IN POLARIZED NUCLEAR TARGETS 
Commission of the European Communities 
Joint Nuclear Research Centre - Ispra Establishement (Italy) 
Physics Division 
Luxembourg. February 1974 - 18 pages - 4 figures - B.Fr. 40,-

Whena neutron beam is transmitted by a polarized nuclear target, the spin dependent 
part of the neutron optical potential causes a neutron spin precession. The connec -
tion of this potential with the nuclear scattering amplitudes is reviewed with regard 
to the approximations involved in current formulations. 

The neutron spin precession, modified by a spin dependence of the neutron wave 
attenuation, is analitically described. 

The principles and preliminary results are presented of new experiments which mea­
sure directly a neutron spin rotation, proportional to the spin dependent real part 
of the scattering amplitude. 

EUR 5054 e 

NEUTRON SPIN PRECESSION IN POLARIZED NUCLEAR TARGETS 
Commission of the European Communities 
Joint Nuclear Research Centre - Ispra Establishement (Italy) 
Physics Division 
Luxembourg, February 1974 - 18 pages - 4 figures - B.Fr. 40,-

When a neutron beam is transmitted by a polarized nuclear target, the spin dependent 
part of the neutron optical potential causes a neutron spin precession. The connec -
tion of this potential with the nuclear scattering amplitudes is reviewed with regard 
to the approximations involved in current formulations. 

The neutron spin precession, modified by a spin dependence of the neutron wave 
attenuation, is analitically described. 

The principles and preliminary results are presented of new experiments which mea­
sure directly a neutron spin rotation, proportional to the spin dependent real part 
of the scattering amplitude. 

EUR 5054 e 

NEUTRON SPIN PRECESSION IN POLARIZED NUCLEAR TARGETS 
Commission of the European Communities 
Joint Nuclear Research Centre - Ispra Establishement (Italy) 
Physics Division 
Luxembourg, February 1974 - 18 pages - 4 figures - B.Fr. 40,-

When a neutron beam is transmitted by a polarized nuclear target, the spin dependent 
part of the neutron optical potential causes a neutron spin precession. The connec -
tion of this potential with the nuclear scattering amplitudes is reviewed with regard 
to the approximations involved in current formulations. 

The neutron spin precession, modified by a spin dependence of the neutron wave 
attenuation, is analitically described. 

The principles and preliminary results are presented of new experiments which mea­
sure directly a neutron spin rotation, proportional to the spin dependent real part 
of the scattering amplitude. 





EUR SOS4 e 

COMMISSION OF THE EUROPEAN COMMUNITIES 

NEUTRON SPIN PRECESSION 
IN POLARIZED NUCLEAR TARGETS 

by 

M.FORTE 

1974 

Joint Nuclear Research Centre 
Ispra Establishment — Italy 

Physics Division 



ABSTRACT 

When a neutron beam is transmitted by a polarized nuclear target, the spin dependent 
part of the neutron optical potential causes a neutron spin precession. The connec -
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1. INTRODUCTION 

When a neutron is t ransmi t ted through a polar ized nuclear t a rge t where the 

average of the spin dependent par t of the nuclear potential is not vanishing, 

a p reces s ion of the neutron spin is produced and effects analogous to the 

ordinary magnetic p recess ion become obse rvab le . 

The nuclear precess ion of neutrons was afore seen by Baryshevsk i i and 

Podgore tsk i i , , who have a lso proposed a so r t of neutron resonance 

depolar izat ion exper iment , to detect the nuclear shift in the p recess ion 

frequency of the neutron spin in a polar ized ta rge t , placed in a magnetic 

f ield. With appropriate conditions, the neutron resonance can be s t imulated 

by the nuclear interact ion coupling the neutron spin with the nuclear spins 

pre ce s s ing in the magnetic f ield. 

(2) Exper iments on this l ine, recent ly performed by Abragam et a l . , were 

successful l to demonstra te the nuclear p recess ion of slow neu t rons . In the 

future, a main object of these exper iments will be the de terminat ion of the 

spin dependent part of the nuclear sca t ter ing ampl i tude . 

(3) As we had previously pointed out , a mos t sensit ive method, to m e a s u r e 

spin in teract ions of this type, is a d i r ec t measu remen t of the neutron spin 

rotat ion ang le . Following this line we have undertaken neutron p recess ion 
(4) exper iments , of which we will give a p re l iminary account . We will f i r s t 

d i scuss some theoret ical aspects of the neutron p recess ion in connection with 

the neutron scat ter ing, which may be in teres t ing a l so for the in terpre ta t ion 

of neutron p recess ion e x p e r i m e n t s . 

In pa r t i cu l a r , we will give a complete descr ip t ion of the evolution of the 

neutron spin in a polarized nuclear t a r g e t . 
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2 . OPTICAL POTENTIAL AND NUCLEAR PRECESSION OF NEUTRONS 

a) We consider the t r ansmis s ion of a neutron beam in a l a rge uniform m e d i u m . 

The t ransmi t ted coherent wave is formed by the coherent superpos i t ion of the 

incoming wave and of the wavelets s ca t t e r ed at the t a rge t c e n t r e s , leaving the 

target in the initial s t a t e . 

A coherent wave sat isf ies a one part icle equation with a sui table complex 

momentum-dependent potential (optical potent ia l ) . In a l a rge uniform med ium, 

the solution i s a superposi t ion of plane wa ve s . The wave number k ' , for a given 

external wave number k, is determined by the r e a l par t of the optical potent ia l , 

by the re la t ion valid for weak potentials ( V|<<E) 

k ' 2 » k 2 - 2 m C 2 R e V k , , (1) 

which defines also the refract ion index n = k ' / k . The imaginary p a r t of the 

optical potential simply introduces a wave a t tenuat ion. In what follows we 

will be concerned with the r ea l par t of the optical potential in connection with 

the neutron interact ion with the target c e n t r e s . On the other hand we will a s s u m e 

that the attenuation of the t ransmit ted wave, due to nuclear absorp t ion as well 

as to any kind of scat ter ing away from the propagation d i rec t ion , can be de te rmined 

from the exper imenta l c r o s s section da ta . 
(5) In a multiple sca t te r ing approach followed in ' , the f i r s t o r d e r approximat ion 

for V i s , consider ing n scat ter ing c e n t r e s , 

n 
V = . Σ , < t.> 1 1=1 ι 

where < t. > is the coherent pa r t of the t rans i t ion opera to r for the two body 

scat ter ing inside the ta rge t , that is the average of t. over the ini t ial s ta te of 

the target , taking into account only neutron scat ter ing with no energy or spin 

exchange with the t a rge t . 
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The higher o rde r cor rec t ions to the optical potential a r i s e from multiple 

sca t te r ing and vanish unless ta rget excitat ions and deexcitat ions to the 

init ial state occur by success ive neutron scat ter ing at different ta rge t cen t res , 

However, in ordinary t a r g e t s , where the in terpar t ic le cor re la t ion range is 

very shor t compared to the neutron scat ter ing mean free path, the l a t t e r 

contribution needs not to be taken into account . 

The opera to r t. can usually be approximated by the free two par t ic le opera tor 

t. ( impulse approximation) . 

The validity of the impulse approximation will be d i scussed l a t e r . 

Using the known relat ion between the t rans i t ion amplitude and the scat ter ing 

ampl i tude , one can derive the ordinary form : 

V k , = - 2 * f i 2 m - 1 N<fk , ( 0 ) > (2) 

for the optical potential in an extended medium, produced by a large number 

of identical a toms with uniform density Ν , where <f (0)> is the free a tom 

forward scat ter ing ampli tude, averaged over the init ial t a rge t s t a t e . 

We will consider now the sp in dependent pa r t of the optical potential , in a 

t a rge t including nuclear and, eventually, magnetic po la r iza t ion . 

We have : 

< f (o )> = < f n u c l ( o ) > + < f m a g ( 0 ) > 

Considering only s - wave nuclear sca t te r ing , we have 

n u c l " 21+1 I + 21+1 Z + 21+1 κτ Γ ; 

-ι — + -
being I the nuclear spin, L· a the neutron spin, and f ,f the ampli tudes 

1 1 
for the sca t te r ing with J = I + —■ and J = I —— , r e spec t ive ly . 
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Using the known express ion for f one obtains (taking into account a l so 
mag ° 

the applied magnet ic field) the optical potential : 

V = -2*K,2nT1 N.fc o h + | } | i > (f+ - O ] - μσ.Β (3) 

for a density Ν of identical a t o m s . 

The rea l spin dependent pa r t of the optical potential is then : 

Re VQ = - σ . (2 % Α " 1 IT fprec ρ + μ Β ) = σ . A 

where ρ r e p r e s e n t s the orientation and the degree of nuc lear polar iza t ion, 

and 

f · = ο Ά Re (f+ - f~) (4) 
■precess ion 21+1 x ' v*' 

is an amplitude defined for convenience . 

The vector A can be assumed oriented along the ζ a x i s . 

b) The form of the potential suggests that the neutron spin will p r e c e s s around 

the 2 axis with a p r eces s ion frequency ω = 2/1/ A. The frequency is independent 

on the neutron velocity, as far as f (θ) does not vary with k ' . 

F o r a complete descr ip t ion of the evolution of the neutron spin in the t a rge t 

potential , more detailed considerat ions a r e needed, taking into account the spin 

dependent neutron attenuation in the polar ized medium, which can r e su l t f rom 

nuclear and magnetic sca t ter ing and from nuclear absorp t ion . P a r t of the 

following resu l t s have been derived in 

A coherent plane wave propagating in a d i rec t ion f, can be expanded into the 

solutions of the wave equation with O = + 1 : 

Ψ = Ψ ( r ) = a1 expUk^r ).βχρ(-τ< | r) Ν + 

+ a2 exp(ik2 ' r) , βχρ( - τ r ) c! 
1
I 

For the two spin components , we have assumed different wave n u m b e r s , 

accord ing to (1) and (3), and different at tenuation coefficients τ and τ , 
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the difference ( τ . ­ T_) = ΔΤ corresponding to the t r ansmis s ion polar izat ion 

c r o s s sec t ion . 

Since we look at a phenomenon due to a coherent phase change, we need not 

to dist inguish between a single neutron and a fully polar ized neutron b e a m . 

Taking a = a , we a s s u m e , at r = 0 an initial state completely polar ized in 

the χ d i rec t ion . 

At a depth r in the medium, we obtain : 

i) Intensity attenuation : 

(Ψ*Ψ)/(Ψ*(0)Ψ(0)) = \ [exp (­^τ,,Γ) + βχρ ( ­2τ 2 r ) ] 

ii) Relative phase shift of the two spin components : 

(Κ.,· ­ k 2 ' ) . r ^ k ' . r = φ , 

that is the p recess ion angle of the spin around the ζ a x i s , 

iii) Polar iza t ion components (averaging in the spin space only): 

P x = < ψ !° lei ψ > / (ψ**) = c o s ( A k ' r ) / corh(AT.r)= cos<?>/cosh(|p .ψ) 

P y = <Ψ ¡σ
γ |Ψ> /'((Φ*ν ) = s i n φ/cosh ( | p .c?) 

P
z

 = <ψ σ
ζ *>/(***) =

 t a n h
 ( í k "

 Φ } (
* 

2 2 2, 2 
We verify that P = ( P + P + Ρ ) = 1 

χ y ζ 

The polar izat ion component in the (x.y) plane is 

2 2 Ì 
(P

x
 + P

y
 ) 2 = P

L
= l / c O S h (

Γ Τ ^ ·
φ ) 

v ' Note that, in the present c a s e , Ρ takes the same value which one would 
ζ 

obtain by transmit t ing a beam completely unpolarized at r = 0 (incoherent 

mixture of O = + l s ta tes with equal weights) 
ζ _ 



Let us consider an indefinitely extended medium and r e p r e s e n t Ρ = (P ­0 ) , 

taking as a p a r a m e t e r φ =Δ k ' . ï ' i n the range (­co,+00), (see F i g . 1). 

The point Ρ desc r ibes a sp i ra l lying on the unit sphe re , with polar axis z, 

with uniform angular increment (αφ/dr) = Δ k ' , asymptot ical ly te rmina t ing 

at the two po le s . We have a rb i t r a r i ly assumed an evolution toward Ρ = +1, 

with increasing r . By convention, we have taken P ( r = 0) = + x , however the 

sp i ra l can be used, by an obvious p rocedure , to de te rmine the polar iza t ion 

change Ρ (r ) ­ Ρ (r ) in a ta rge t thickness (r ­ r ), for any given init ial 
Cá X L· 1 

polarizat ion Ρ (r ) . The exact conditions Ρ (­00) = ­ ζ and Ρ ( + 00) = + ζ 

correspond to the two stat ionary spin s ta tes σ = + 1 admit ted by the wave 

equation. 

The importance of the sp i ra l effect in the exper iments can be e s t ima ted f rom 

the relat ion : ( d t ' 0 / dcp ) = ( Ρ . Δ τ ) / ( Δ k ' ) where iTis the az imuth 

angle of E 

F o r slow neutrons is, ord inar i ly , ( Δτ / Δ k ' ) < < 1 a n d £ t h e r e f o r e , a negligible 

sp i ra l effect is expected in exper iments of the type cons idered l a t e r on, in 

which smal l φ rotat ions a re m e a s u r e d . 

On the other hand, in neutron resonance depolar izat ion e x p e r i m e n t s , a la rge 

number of neutron spin revolutions a r e produced by the t a rge t polar iza t ion and 

the influence of the sp i ra l effect might be cons iderable , in ce r t a in c a s e s . 

c) We conclude this t rea tment with a simplified d iscuss ion of the conditions 

for the validity of the impulse approximation, which has been a s sumed at the 

beginning. The impulse approximation applies when the t a rge t a toms can be 

considered weakly bound in comparison with the neutron ene rgy , o r , l e s s 

res t r i c t ive ly , when the binding potential r ema ins near ly constant for the 

recoiling atom, during the scat ter ing interact ion with the incident neu t ron . 

The correc t ion to the impulse approximation is es t imated of the o r d e r : 

f U av b 2 ! 

* 2M R2 c 
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where M is the atom m a s s , U ( ^ 1 eV) is the average binding 
­ 8 a V 

potential , R ( φ 10 cm) is the potential r ange , and t is the t ime duration 
c 

of the col l i s ion . 

Taking, for non resonant sca t te r ing , t ­ TV/E, we have 
c 

A ^ 5 . l 0 6 ( | f | / M a m u ) . E ~ 3 / 2 

So, the impulse approximation is accura te a lso at neutron energ ies well below 

the a tom binding energies for ordinary values of f ( <10 c m ) . The case of 

neutron resonance scat ter ing has to be considered sepa ra t e ly . 

At a neutron resonance, we can take, for s implici ty , (f ­ f ) = + f , 

— res 
with f represen ted by a single level resonance formula . ( *) 

r e s 
According to (4), we have : 

o 

_ I _ * ο
( Ε

-
Ε

ο
) ( Γ

η
/ 2 ) 

W ~ ± 21+1 ( E . E o )2 + ( r / 2 ) 2 « 

The p reces s ion amplitude has a sha rp oscil lation, changing the sign at E = E 

The coll ision t ime, at r esonance , is t = Us / E + Q , including a "time delay" 

Q ^ 7 Ì ( Γ /2 ) corresponding to the lifetime of the scat ter ing s t a t e . 

Assuming Γ <<E , and being, near the resonance, 

I
f
 I -i *o V

r 

we have, as a rough es t ima te , 

Δ ¿ IO"2 ( r n / r ) / ( M a m u Γ 2
ν ) 

So, in the case of resonant sca t te r ing , the impulse approximation seems to 

be fair ly accu ra t e , a t l eas t when the scat ter ing nuclei a re sufficiently heavy, 

and with the favourable concurrence of large absorption widths . 

The previous considerat ions e n s u r e , within the l imits which we have d i scussed , 

that the neutron nuclear p recess ion measu remen t s a r e uniquely related to the 

nuc lear scat ter ing ampl i tudes , while the ta rget s t ruc ture and dynamical p roper ­

t ies can be ignored, at this stage of the r e s e a r c h . 

(*) The sign + or ­ depends on whether f+
 o r f­ ■ 

s resonant 
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3 . EXPERIMENTS 

Various aspects and possibi l i t ies of neutron nuclear p r e c e s s i o n expe r imen t s 
(4) a r e discussed more estensively in 

A compar ison of the spin rotation effect with a m e a s u r e m e n t of the po l a r i za ­

tion t r ansmiss ion (or scat ter ing) c ro s s section is obtained, for a weakly 

polarized target , from the relation 

(k) 

where f is the unpolarized scattering ampl i tude . Accordingly, la rge gains 

in the sensit ivity a r e expected with the new spin rotat ion e x p e r i m e n t s , 

typically four o r d e r s of magnitude with the rma l neu t rons . 

No substantial gain is expected at a neutron resonance , even at low energy , 

being ! f J ^ | f r e s M . 

A pre l iminary exper imenta l se t -up is schematical ly r ep re sen t ed in F i g . 2 . 

The polarizat ion vector of the neutron beam, reflected from a magnet ic m i r r o r , 

is turned into the χ di rect ion, by the spin ro ta tor (P ) . 

The beam, suitably coll imated, c ro s se s a pair of identical superconducting 

coils A , B , having rectangular loops, which a r e fed by the same c u r r e n t . 

The fields, inside the coils a r e of the same intensi ty, but of opposite polar i ty , 

Η = Hz, Η = - Hz* so to produce equal and opposite ro ta t ions of Ρ in the (x ,y) 

plane, thus reset t ing Ρ at the original d i r ec t ion . 

In prac t ice , however, a smal l deflection φ =φ may r e s u l t . By feeding a 

s imi la r coil C, c rossed by the beam, known rotat ions can be produced, both 

for ad justement and cal ibrat ion pu rposes . 

The angle φ is measured by a sys tem (P = which analyses the component 

Ρ = Ρ sin φ . 
y 
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One of the measur ing methods followed works with a pai r of identical 

t a ree tsT , Τ , which a r e s tat ical ly polar ized in the fields of the pa i red 
6 A Β 

co i l s , the polarization being ? A = Ρ a n d P B = ­ P« respec t ive ly , along 

the ζ d i r ec t ion . 

Each of the two targets is a l te rnate ly positioned in the neutron be a m (positions 

1 and 2 in the figure), and the corresponding rotations a r e observed : 

Φ­, = φ (P A ) + <P0 and q>2 = φ ( ρ β ) + <p0 , 

respect ively · 

The difference («^ ­ <p2) = φ ( ρ Α ) ­ φ ( ρ β ) = 2 φ ( ρ ) 

m e a s u r e s , in addition to the neutron nuclear p recess ion , the magnetic p recess ion 

due to the induced ta rge t magnetizat ion (B ­ H). The la t te r can be easi ly accounted 

for, using diamagnetic or weakly paramagnet ic subs t ances . 

F i g . 3 shows the resu l t s obtained with pro tons , using a pair of polyethylene 

t a rge t s polar ized in a field intensity Η 3? 600 G, at the t empera tu re of the· 

° -5 

liquid helium bath, of ­^ 4 ,2 K, polar izat ion degree ρ a# 1, 46 χ 10 . Two 

m e a s u r e m e n t s of the nuclear p reces s ion effect (φ1 ­ φ7)ζ& (φ , ­ φ7 ), obtained 

at two known field intensi t ies in the cal ibrat ion coil C, can be di rect ly compared 

with the magnetic p recess ion difference, which is measu red by : 

(<P0 ­ <P¿) = (φ 1
 + Φ 2 ) / 2 ­ (φ^ + q>¿)/2 

This cal ibrat ion me thod is independent of the neutron velocity spec t rum and 

polar izat ion d e g r e e . The measu red p recess ion amplitude reproduced the value 

calculated f rom the η­p scat ter ing ampl i tudes , within the exper imenta l uncer ta in ­

t i e s , of the o rde r of + 10%. The ta rge t d iamagnet i sm contributed l e s s than a 

percent co r rec t ion . Much be t t e r accurac ie s a re expected with this method, 

after a few improvement s . 

The sensit ivi ty of the method is l imited by the highest field intensi ty, in the 

pa i red co i l s , which is compatible with a regu la r and controllable neutron 

po la r iza t ion . 

This l imit can be largely overcome when a ta rge t with a conveniently long nuclear 

spin re laxat ion time is ava i l ab le . The ta rge t is placed in a s trong field ( severa l 

kG) , supplied by a superconducting coil , D in F i g . 2, and, after the polar izat ion 
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bui ld-up, is t r a n s f e r r e d into a coil of the pa i r , where it is m e a s u r e d . 

F i g . 4 shows the nuclear p recess ion effect, decaying s imul taneously with 

the proton polar izat ion, in a hexamethylbenzene t a r g e t . The base l ine c o r r e s p o n d s 

to the s tat ic polar izat ion in the weak field of the pa i red co i l s , H* l 60 G. 

Occasional ly, the proton polarization d e g r e e , reached in the s t rong field during 

the allowed t ime was a modest fraction of the equi l ibr ium v a l u e . 

The evident advantage of this method is to enhance the m e a s u r a b l e nuc lear 

p r eces s ion , by a la rge fac tor . On the other hand, the re la t ive contr ibution 

of the induced ta rge t magnetization is min imized . 

A detailed r epo r t on these exper iments is the subject of a next paper (7) 
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F igure captions 

F i g . 1 Representa t ion of the spi ra l desc r ibed by the polar iza t ion vec to r 

Ρ = (P-0) , see eq . (5). 

a ' ) , a") projections on the (x ,y ) plane of the loops lying on the 

hemispheres ζ >0 and ζ < 0, r e spec t ive ly . 

b) project ion of the spiral on the ( x , z ) p lane . 

Chosen value of the coefficient A.^/Ak' = 0 , 2 / π -.·= 0 .0636 . 

F i g . 2 Scheme of the exper imental set up . 

P. = neutron po la r ize r and sp in ro ta to r , Ρ = ana lyzer of the 

component Ρ . η = polarized neutron b e a m . A, Β )= pa i red coils 

with fields in opposit ion. C = cal ibra t ion co i l . Τ , Τ = polar ized 

nuclear t a r g e t s . D = coil for t a rge t polar izat ion in s t rong f ie ld. 

E = liquid he l i um ce l l . S = neutron beam c o l l i m a t o r s . M = be a m 

moni to r . Ν = analysed neutron coun te r . 

F i g . 3 Neutron p reces s ion measured with a pa i r of polyethylene proton 

t a r g e t s , Τ and Τ . 

φ , φ = rotat ions with Τ and Τ in the b e a m , respec t ive ly 
1 ù Ά SD 
ι I 

φ φ_ = idem, with a field change in the ca l ibra t ion co i l . 

(The φ scale is approximate) . 

F i g . 4 Decay of the neutron precess ion effect, φ , in a hexamethylbenzene 

proton t a r g e t , φ = 

tion bui ld-up per iod . 

proton t a r g e t , φ = baseline (weak stat ic po la r iza t ion) , t = po la r iza · 
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