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ABSTRACT 

The pressure history in a flashing liquid which follows a volume step is 
calculated on the basis of the « thin thermal layer model » considering also 
the rise of the bubbles formed during the initial volume step. The number 
N of bubbles per cm3 is introduced as a parameter. The numerical calcula
tions were done for water in the temperature range from 280° to 340° C. N 
varied from 1.0 to 10* (1/cm3). Pressure curves and the « half value time th » 
of return to the equilibrium pressure are presented as functions of initial 
water temperature, bubble number and initial pressure step. 
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ι . Introduction 

The knowledge of the flashing p r o c e s s , i. e. a sudden formation and growth 

of a high number of vapour bubbles caused by a quick expansion of a liquid, 

is of impor tance for r eac to r safety cons idera t ions . This phenomenon occurs 

in the p r i m a r y cooling c i rcu i t of a p r e s s u r i z e d water r eac to r , when a rup 

tu re in the sys tem leads to a rapid p r e s s u r e fall. During the flashing the m i x 

tu re of water and vapour bubbles deviates strongly from the thermodynamic 

equi l ibr ium. This means that the p res su re -vo lume relat ion of the mix tu re , 

which is well defined in thermodynamic equi l ibr ium, does not hold during 

the flashing per iod. 

In the las t y e a r s seve ra l computer codes have been developed to calculate 

the thermohydraul ic h is tory in a p r i m a r y c i rcu i t after a rup ture in the s y s 

t em, as for example: BRUCH-D from LRA-GARCHING, the R E L A P - S e r i e s 

from GENERAL ELECTRIC, the KAPCOR-code from GAAA in F r a n c e and 

o t h e r s . All these codes contain the assumpt ion of thermodynamic equi l ibr ium. 

As a consequence of this fact these codes cannot exactly desc r ibe the f i rs t 

per iod af ter the rup tu re , during which the flashing water deviates from the 

equi l ibr ium. 

Recently, f i rs t s teps have been done to consider non-equi l ibr ium in blow 

down codes with simplified mode l s . In BLAST 2, for example, the evaporat ior 

ra te i s a s sumed to be propor t ional to the difference between wate r and va

pour t e m p e r a t u r e . The unknown factor of proport ionali ty was chosen on the 

bas i s of a compar i son between calculat ions and exper iments . In te res t ing 

r e su l t s have been published on the recent Meeting of Reactor Heat T r a n s f e r 
(I 2) 

at Kar l s ruhe (Oct . , 1973)v ' ' . 

Neve r the l e s s , there r ema ins the task to clarify the na ture and the nume

r i ca l values of the empi r i ca l factors in function of initial and blow down con

di t ions. F u r t h e r m o r e , it has to be studied whether these models a r e suffi-



- 6 -

cient ly r e a l i s t i c to desc r ibe well the p r e s s u r e - v o l u m e re la t ion during 

flashing o r if ano ther , m o r e sophis t ica ted , theore t ica l descr ip t ion 

m u s t r ep lace the s imple fo rmulas . 

This lack of informat ion induced the German Reactor Licensing autho

r i t i e s to sponsor a r e s e a r c h cont rac t with the C . C . R. - I sp ra for an ex

per imenta l study of non-equi l ib r ium phenomena, especial ly the flashing 

p r o c e s s . 

To d e s c r i b e quanti tat ively the deviation from thermodynamic equil i 

b r i u m of the flashing wa te r , both the volume and the p r e s s u r e mus t be 

known s imul taneous ly . The planned exper imenta l appara tus allows a con

t ro l l ed va r i a t ion of the volume and a dynamic m e a s u r e m e n t of the p re s -

s u r e , i . e . in the exper iments the volume rep resen t s the independent 

va r i ab le and the p r e s s u r e c h a r a c t e r i z e s the deviation from thermodyna

mic equ i l ib r ium. The measu r ing p r o g r a m will s t a r t with the mos t s imple 

v o l u m e - t i m e function, that is a s tepwise inc rease of the volume. 

This r e p o r t dea ls with the theore t i ca l descr ipt ion of the p r e s s u r e h i s 

to ry which follows such a s tep-function of the volume. 

2. Theory 

2 . 1 Assumpt ions and Neglections 

We a s s u m e that the water is completely free from gas - or vapour 

bubbles and has a uniform t e m p e r a t u r e before the flashing s t a r t s . The 

volume s t ep c a u s e s , under these conditions, a p r e s s u r e s tep which fol

lows the adiabat ic l ine of the liquid phase . At this point a r i s e s the f i r s t 

p rob l em: flashing occu r s in the superhea ted region, i . e . when the p r e s 

s u r e ρ has fallen below the sa tu ra t ion value ρ . In this region, however , 

table values of the specific volume of liquid water do not exis t . F o r this 

r e a s o n the value of 
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-Ι^Λ at Τ = Τ = Τ 3 ν , i ο sa t 1/ s=const 

was maintained within the superheated region and applied to the liquid 

phase throughout the whole flashing p r o c e s s . 

3 
It is a s sumed that a ce r t a in number Ν of bubbles per cm is c rea ted 

simultaneously with the s tepwise expansion, i . e . the crea t ion t ime de 

lay has been neglected. This number Ν r e p r e s e n t s the m o s t uncer ta in 

factor in the theory . In rea l i ty it will depend on seve ra l f ac to r s , as for 

example: ini t ial t e m p e r a t u r e , impur i t i e s , gas content e t c . The bubble 

density Ν will be, for this reason, introduced as a p a r a m e t e r and var ied 

in a wide range . 

The growth velocity of the c rea ted bubbles i s mainly de te rmined by 

the heat conduction in the liquid. The influence of iner t ia and surface 

tension fo rces , vanishes very quickly. This was shown by FOSTER and 
(3) ZUBER , who developed an equation for the bubble growth n e a r the c r i -

o t ica l s i z e . Applying the i r formula to water at 320 C, the calculated t ime 

to reach the s i ze , where these forces a r e negligible was very s m a l l com-
-2 

pared with the t ime scale which is expected in our exper iments (from 10 

to 0. 5 sec for the "half value t i m e " of the p r e s s u r e ) . Fo r this r ea son in

e r t i a and surface tension have been d i s r ega rded in the theory . The expe

r iments only, however , can decide whether this neglection was a d m i s 

sible o r not. 

During the bubble growth the liquid around the bubble moves in rad ia l 

d i rec t ion. This movement deforms the shape of the radial t e m p e r a t u r e 

dis t r ibut ion. The effect i n c r e a s e s markedly the heat flux to the bubble 

and has to be taken into considera t ion. This was done by introducing 

the "thin t h e r m a l layer hypothes is" in the model . This hypothesis allows 

a considerable simplif ication of the ma thema t i ca l fo rmal i sm giving, n e -
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v e r t h e l e s s , ve ry sa t i s fac tory r e s u l t s . 

The in t e rac t ion of the t e m p e r a t u r e fields of neighboured bubbles 

has a l so been d i s r e g a r d e d , which leads to a sma l l e r r o r of the a s y m p -
. o rf 

totic value of the p r e s s u r e curves (at 320 C about 0. 7% of the init ial 
p r e s s u r e s t ep) . 

The r i s e of the bubbles by buoyancy forces , however , has to be con

s i d e r e d . The i n c r e a s e d heat t r a n s f e r by bubble r i s e leads to a fas ter 

r e t u r n to t he rmodynamic equi l ibr ium. By using the NUSSE LT-number 

of s m a l l s p h e r e s in a s ta t ionary flow, this additional heat t r an s f e r has 

been - in an approximat ive way - taken into account. 

During the whole flashing p r o c e s s , the bubbles a r e a s sumed to have 

a sphe r i ca l shape . 

With these m a j o r assumpt ions the problem has been formulated in 

t e r m s of a di f ferent ia l - in te g ra l equation. The der ivat ion of this equa

t ion will be outlined in the next chap t e r s . 

2 .2 The Single Bubble Growth Law 

The s p h e r i c a l bubble grows by evaporation from the bubble surface. 

A c e r t a i n m a s s flow M i n c r e a s e s the bubble volume V following the 

equation: 

¿-SHPV-V (1) 

With: V „ = T5CR (Z) 
3D J 

(R = bubble rad ius ) 

2 
and the m a s s flow pe r cm bubble sur face : 
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2 
m = M/47CR (3) 

we obtain: 

dR 1 B
 d P V 

m = ρ — +  . R. —— (4) 
v dt 3 dt x ' 

Assuming a constant vapour temperature Τ (this assumption leads 

to an error of about 1%), we obtain: 

Ρ / p = p/p (5) 
V VO o

 s
 ' 

and equation (4) becomes: 

dR . I R áE _ Ξ1 /4ax 
dt + 3 * ρ * dt " ρ K a ; 

ν 

/ 2. 
The evaporation requires the heat flux q (per cm ) to the surface: 

q = L. m (6) 

(The positive heat flux is, as usual, defined in positive rdirection. A 

positive evaporation m requires thus a negative heat flux). 

With (6) equation (4a) becomes: 

dR + I R ¿P. = ^ 5 L _ i 4 b ) 

dt 3 ' ρ dt L.p K ' 
r
 ν 

2.3 The Pressure Bubble Volume Relation 

3 
Within each cm of the initial water volume V a number Ν of 

lo 

bubbles is created, forming a bubbly twophase mixture. The bubbles 

are assumed to have all the same diameter. 

The water phase of this mixture follows the adiabatic line. We cha

racterize this line by the adiabatic elasticity coefficient <X which is de

fined by: 
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e s . - J o / J E - \ ( a t T = T ) (7) 

Remaining (with the liquid phase) on the adiabatic line throughout 

the whole flashing p r o c e s s ν depends only on ρ and we can wr i t e : 

d£ = 

Ρ . dv 
V i 1 

o lo 

(7a) 

Int roducing ν = V, / M and finite differences ins tead of differentials , 

one ob ta ins : 

p - p V - V 1 M - M . 
o / 1 lo 1 lo 

= α V lo M. lo 
(7b) 

The ac tua l wa te r volume V, is equal to the init ial volume V (be-
1 lo 

fore flashing) plus the volume s tep AV (which causes the flashing) mi

nus the s u m of the bubble volumes , hence: 
V = V. + AV - V, . Ν . V_ 1 lo lo Β (8) 

The in i t ia l wa te r m a s s M is diminished by evaporat ion of the m a s s 

M , i . e. : ν 

M, = M, - M 1 lo ν 

o r : - (M,-M, ) /M = M / M , v 1 lo lo ν lo 

(9) 

(9a) 

With the re la t ion : 

M / M , = ν lo 

p . V ^ . N pv Β 

Pi 
(10) 

and in t roduc ine : η / ρ , ins tead of η / ρ the p r e s s u r e re la t ion b e -° Kvo K l o r v *l 
c o m e s : 

P 0 - P 
= a ^ - N . v _ . ( i - ρ / P l )' 

V Β vo' r lo 
_ lo 

(n) 
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We now define a certain bubble radius R which has the following 

meaning: when the bubbles have reached the radius R , the pressure 

has returned to the equilibrium pressure ρ . For R , we obtain the 
o o 

expression: 

R o " v · 4π.Ν.(1- ρ / P l ) ( 1 2 ) 

lo v "vo ^lo' 

and (H) can be written as: 

f=i-ct. ^-.[~i-(R/R0)31 (Ha) 
o lo -J 

Immediately after the initial volume step AV, R is still zero and 

the pressure jumps down to a value called ρ . From equation (Ha) 
m 

follows : 

P m , AV ' 
— = ! - « . — (13) 
*o lo 

Introducing (13) in (Ha) we obtain: 

P_ / P~\ / D \ 3 

*- = -^+f i r 
Ρ Ρ V P 
o ro x o 

• (i ) 
2.4 The Heat Flux to the Bubble 

Each single bubble, expanding by evaporation, requires a certain 

heat flux, which is transported by heat conduction from the liquid phase 
(4) to the bubble surface. According to PLESSET and ZWICKV ' and other 

authors, we assume now that the temperature fall from liquid bulk tem

perature Τ to the surface temperature Τ occurs in a small "thermal 

boundary layer b" which is defined by: t 

Τ -Τ 
-2— = ίΜλ (15) 

b \drj r=R V ' 

(with θ= θ(τ) being the temperature profile in the liquid). 
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li b is small compared to the bubble radius and the medium around 

the bubble is at rest, the temperature gradient is well known as func

tion of time : 

~« v T - T 

3θ \ o (16) 
'r i t 1 

/ r=R Λ/π Κ. t 

(Κ = thermal diffusivity) 

and we have the relation: 

b = >J%K.t' (17) 

By differentiation one obtains: 
db Λ/^Κ _ JHK 1 

dt =
 zS

 2
 ' * 

(18) 

We now must consider, however, that the liquid around the bubble 

is moving in radial direction and the shape of the temperature curve 

is continuously deformed. 

To obtain the total changement of b we introduce the bubble radius 

R, which characterizes the movement, as second variable, i .e. : 

b = b(t, R) (19) 

From this follows: 

db / 8 b \ , /9b\ dR , , n . 

+ ( lb) * · "17 (
19a

) dt l a t i I 3RJ * dt 

\ / R=const \ / t=const 

We now identify the first term on the right hand of (19a) with equa

tion (18), because (18) was derived considering a conducting medium 

at rest (R=const), hence: 

Bb\ πΚ 1 . . 

èT)
 =

~'h
 (18a) 

7 R=const 

The second term in (19a) follows from the continuity equation: at 

t = const we consider the deformation of b only by the movement of the 
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conducting liquid. As b at dt = 0 does not spread out relative to the 

liquid, the volume occupied by the boundary layer b must remain 

constant, i .e. 

(for t = const) 

o r : 

2 
o. R = const 

V
3 R

A 
\ /t=const 

-2¿ 
R 

(20) 

Equation (19a) now becomes: 

db πΚ 1 b dR . . 

dt " 2 ' b R dt {Z1) 

which can also be written in the form: 

2 
d(b ) 2 4 dR 
^ — ' + b  . = 7C.K 

dt R dt 
(22) 

2 
This is a first order linear differential equation for b where R is 

a pure time function (in our case even a monotonous time function). 

The general solution of this equation is: 

b2=*f. [*'»+■% (23) 

R [. R 

with an arbitrary lower limit t'. The solution, which obeys the initial 

condition b = 0 at t = t ' is the interesting one in our problem. This 

leads to C = 0 and thus we write: 

t 

b2 = * γ . ƒ R4 dq> (23a) 
R t ' 

From (23a) we obtain now the differential of the heat flux caused by 

a temperature step dT occurring at the time t ' a t the bubble surface: 

dq. ( t . 0 , X . g , J ^ I , . R 2 (*> (24) 
l n S t b ^ K r·} Λ -V1 

I R 4 d ? 
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The heat flux at the t ime t is obtained by integrat ing (24) over t' 

f rom 0 to t: 

tfdxN 
q. 

ins t 4%K 
. R< J \*{"'*\ (25) 

J r— 0 f 4 " / R dcp 2 

t ' 

The index " ins t " was used to dis t inguish between this (insteady) par t 

of the to ta l hea t flux and the heat flux by bubble r i s e , which has now to 

be cons ide red . The r i s e of the bubbles , caused by the buoyancy fo rces , 

r e su l t s in an addit ional heat flux which, relat ive to q. , i n c r e a s e s 
ins t 

with i nc r ea s ing bubble d i ame te r . A thorough study of DERGARABEDIANAS 
(5) m e a s u r e m e n t s gives an indication of the existence of this effect. With 

h igher bubble radius the measu r ing points tend to lie above the t heo re t i 

ca l curve calcula ted with a heat flux following equation (25). 

It is a l m o s t hope less to pre tend an exact theore t ica l descr ip t ion of 

th is p rob lem. It would requi re the s imultaneous solution of the NAVIER-

STOKES equation and the heat conduction equation in a moving liquid, a 

highly complex ma thema t i ca l p rob lem. F o r this reason, the additional 

hea t flux by bubble r i s e has been taken into account in an approximat ive 

way. To this end the well known formula for the heat flux to sphe re s in 
(6) a s ta t ionary flow has been simply added to the flux q. in equation 

(2 5). Neglect ing the effect of PRANDTL' -number (in the in te res t ing 

range is P r » 1, and in the formula appears only P r κ l / 3 ) we have: 

q . =-75- (2 + 0 . 3 7 . R e ° * 6 ) ( T - Τ ) (26) 
r i s e 2R o 

T e s t ca lcu la t ions , however , with q . added to q resu l ted in a too 
r i s e inst 

high heat flux in the ea r ly s tage of bubble growth. This can be explained 

by the fact, that the d isp lacement of the bubbles by r i s e during the f i rs t 
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mil l i seconds is sma l l compared to the bubble d iamete r and the t e m 

pera ture field, requi red for the heat flux q . of (26), is not yet d e 

n s e 

veloped. There fo re , the velocity dependent pa r t of (26) was c o r r e c t e d 

by multiplying it with a t ime dependent function f: 

2 

f = 1  β ' β μ (27) 

with μ = W . /— . r r i s e dt 

The factor β was then chosen to obtain the best fit with DERGARABE· 

DIAN's m e a s u r e m e n t s . 

With this co r r ec t ion the total heat flux to the bubble becomes : 

4?i ..dt

^ J rf R4d9ni Λ~πκ I rr -
4
 . -IT 

(28) 

The bubble r i se velocity W . (necessa ry for f and Re) was obtained 
r i s e 

by equalizing buoyancy forces with friction fo rces . The calculat ion m e 

thod is desc r ibed in the appendix. 

2. 5 The Equations of P r e s s u r e His tory 

We now dispose of a l l e lements to se t up the equations for the t ime 

curve of p r e s s u r e ρ as a consequence of a volume step AV. 

At f i r s t we mus t co r re l a t e the t e m p e r a t u r e s tep ÙT = TT and the 

differential dT with a Δ ρ and a dp respec t ive ly . To this end we identify 

the t e m p e r a t u r e Τ of the bubble surface with the sa tura t ion t e m p e r a 

tu re belonging to the actual p r e s s u r e p . This assumpt ion was a l so made 

by PLESSET and Ζ WICK and led, as a l ready mentioned, to a good agree

ment with the expe r imen t s . F u r t h e r m o r e , we l inear ize the sa tu ra t ion 
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line in the neighbourhood of Τ and obtain: 

T - T o = V ^ ; . ( P - P 0 ) - Y . ( P - P 0 ) 
r sa t 

(30) 

and: dT = Y. dp 

Y is taken at the ini t ia l wa te r t e m p e r a t u r e Τ . 

Introducing the d imensionles s va r i ab les : 

R /R S ν and ρ /ρ = ψ o o 
P m / p o · Ψ m 

(31) 

we obtain from the equations (5), (4b) and (14) the growth law: 

_^L dv _ 1 
dt ~ 2ψ - ψ L . ρ . R 

Ύ γ m *νο ο 

(32) 

The in tegra l in the heat flux equation (28) becomes with an init ial 

p r e s s u r e s tep from ρ t'o ρ at the t ime t = 0: 
o m 

/ \ d t / t = t 

0 r ^ R 4 d , 

p - Ρ 
m 

d t / t = t 

J R4 d φ 2 f R 4 d^2 J0 \f R
4

 d<p~f" 
' i l ! ƒ ! 

t ' t ' 
(33) 

The f i r s t t e r m on the r ight hand is the resul t of the in tegrat ion with 

the p r e s s u r e s tep function only, the second t e r m contains the p r e s 

s u r e h is tory after the s tep excluding the step function itself. 

We introduce now the d imensionles s t ime 

τ a t . 
Κ 

R 
' * ' -K-

τ - t R o 

(34) 

and a new var iable defined by: 
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r 4 
a J V άξ wi th ξ 3 φ . — 

R o 

(3 5) 

F r o m (3 5) fo l l ows : 

d σ = V d T 

and 
r 4 
/ v dξ = σ ( τ ) - σ ( - : 0 a σ - σ ' 

(3 5a) 

(35b) 

If σ i s a m o n o t o n o u s func t ion of τ the i n t e g r a l J i n (33) c a n b e w r i t 

t e n : 

γρ M rt -1 ?£*) ,dO'n 

R 
3 Λ / Ρ 

σ - σ 

(36) 

T h e e q u a t i o n s (14) , (27) , (32) , (33) and (36) t o g e t h e r give t he g r o w t h 

l aw in t h e fol lowing d i m e n s i o n l e s s f o r m : 

d ν 3BD 
Aj¿ 

dp 3 
1+2DV 

_<Võ 

. d p ' 
^3Á£al^L +i^:(^+o.328.Re0^f)" 

σ σ 

(37) 

with the de f in i t ions : 

Y  V
c

i * P i o 
Β a 

«Pk · Ε ρ 

(c = spec i f i c h e a t of the l iquid) 

vo 

D = 

f m 

μ
 s 

(!"0/Ψ™ m m 

1e βμ 

W
· /f" r i s e dt (37a) 

E q u a t i o n (37) r e l a t e s t he d i m e n s i o n l e s s v o l u m e d i f f e r e n t i a l d( V ) to d o , 

wh ich i s l inked wi th the t i m e d i f f e r e n t i a l dT by ( 3 5 a ) . E q u a t i o n (14) c o m 

b i n e s y wi th the d i m e n s i o n l e s s p r e s s u r e p / p , h e n c e t he d e s i r e d p r e s 
o 
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s u r e - t i m e function as a consequence of a volume s tep can be ca lcu la 

t ed . The REYNOLDS-number Re and the function f mus t be calculated 

with W . , which is de te rmined by the actual bubble d i ame te r , r i s e 

2. 6 The Method of Numer i ca l Calculat ion 

The in t eg ra l in (37) r equ i r e s for each calculation s tep two m e m o r y 

p l a c e s . The compute r p r o g r a m mus t thus be wr i t ten in such a form 

that the n u m b e r of n e c e s s a r y s teps to r each a cer ta in accuracy resu l t s 

as s m a l l as pos s ib l e . Tes t calculat ions with different possible indepen-
3 

dent p a r a m e t e r s (dT, d o , d( V ), dv) revealed dv to be the most con
venient one. 

With the definitions: 

y a 4o~ 

and _ fá y 
. d o ' 

I - f V d O V ^ ^ (38) 
Ό ' σ - ° 

equat ion (37) can be wr i t ten : 

Ö T  Ζ ( 1 + 2 D V 3 ' · Λ ο ν (39) 

2DB l-I.y+y.^r('J% +0.328. Re0* . f) 
- V 

The i n t e g r a l I to be used in (39) for s tep number n+1 was calculated 

in the form: 

η 

ï®If I = 2 · ' σ η + Γ σ ΐ " / σ η + Γ σ ΐ + 1 (40) 

i^r 

where ( ) is a medium value taken over the s tep i . 
V ô O / i 

As the va r i ab le s y and ν s t a r t at z e ro , the f i r s t s tep had to be cal
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culated sepa ra t e ly . This was done by putting I and Re in (39) to ze ro 

and resolving the remaining equation in a sma l l in terva l . 

F o r each s tep the values of R and dR/d t of the previous s tep a r e 

taken for the calculat ion of W . and μ . 
r i s e 

In the appendix the l ist ing of the FORTRAN IV-program is given 

and a confrontation of the code-symbols with the symbols used in these 

c h a p t e r s . 

3. Resul ts and Conclusions 

F ig . 1 shows the adiabatic e las t ic i ty coefficient Ct of liquid wa te r at 

the sa tu ra t ion line and F i g . 2 the factor Β as function of t e m p e r a t u r e . 
(7) The values have been obtained with the help of the s team tables . 

In F ig . 3 a compar i son is made between calculated curves and expe

r iments of DERGARABEDIAN. The curves were calculated with equa

tion (37) cons ider ing , however, the exper imenta l boundary condition 

ρ = const . This condition is fulfilled by maintaining ze ro the in tegra l 

in (37). The figure shows the deviation of the measur ing points from the 

theore t i ca l curve without bubble r i s e (calculated with Re = 0) and the 

good ag reemen t with the curve which includes the bubble r i s e . The fac 

to r β resul t ing in the bes t fit was β = 0. 0784. This factor was then main

tained throughout the other ca lcula t ions . 

The p r e s s u r e h is tory for wa te r at 300 C with different bubble den

s i t ies Ν a r e given in F ig . 4 . The ini t ial p r e s s u r e step is 10% of the 

equi l ibr ium p r e s s u r e ρ , i . e . ψ = 0 . 9 . The p r e s s u r e s t ep is the con

sequence of a re la t ive volume s tep AV/V = 1 . 4 7 x 1 0 
o 

The t ime for the p r e s s u r e to reach the value ψ + ( 1 - ψ ). 0. 5 is 
m m 
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ca l led the "half value t ime t, ". It r ep re sen t s a cha rac t e r i s t i c m e a 
h 

s u r e of the t ime sca le for the r e t u r n to thermodynamic equil ibr ium; 

t depends on t e m p e r a t u r e Τ , ini t ia l p r e s s u r e s tep (or volume step) 
h O 

and on bubble densi ty N. F ig . 5 shows this half value t ime t as func

3 
t ion of in i t ia l t e m p e r a t u r e T at a given bubble density of N = 100/cm 

and with an in i t ia l p r e s s u r e s tep of 10% from equi l ibr ium value 

(Ψ.= 0. 9). F i g . 6 shows t, as function oí A at a given t e m p e r a t u r e . 

F i g . 7 finally shows the influence of the bubble density N on the half 

o 
value t ime with an ini t ia l t e m p e r a t u r e of Τ = 300 C. The resu l t s in

o 

d ica te a r easonab le range of t ime for r e tu rn to equi l ibr ium after a 

s t epwise d i s tu rbance from 0.01 to 0. 5 seconds . 

/ 

The expe r imen t s now mus t decide which bubble density Ν desc r ibes 

in the bes t way the m e a s u r e d p r e s s u r e history after a volume s tep . 

As r e g a r d s the applicat ion of the resu l t s in blow down codes , fur

t h e r work has to be done in the following two d i rec t ions : 

 the theory has to be extended to a r b i t r a r y volumet ime functions; 

 the resu l t ing p r e s s u r e  t i m e functions must be compared to the r e 

sul ts of the simplif ied mode l s , as for example with that used in the 

BLAST2 code, with the a im to improve these models or to replace 

t hem by m o r e sophis t ica ted formula t ions . 
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4. Appendix 

4. 1 Bubble Rise Velocity and Re-Number 

The r i s e velocity W of the bubbles is calculated making a s imple 

counterbalance of buoyancy forces and flow res i s t ance by frict ion. The 

effects of bubble acce le ra t ion and radial expansion and a lso the tangen

t ia l movement of the bubble surface have been neglected, (i . e . we take 

the r e s i s t ance law of solid s p h e r e s ) . These neglections a r e justified by 

the fact that a lso in the heat flux formula the effect of bubble r i s e is 

considered only in an approximat ive way and the result ing curves a r e 

fitted to the exper imenta l r e su l t s of DERGARABEDIAN by the choice of 

the empi r i ca l factor β . 

The flow res i s t ance i s : 

W = c . π . R . -~. W . (40) 
w 2 r i s e 

The buoyancy force (with ρ << ρ ): 

A = g . P l . j * R (41) 

Equalizing (40) and (41) we obtain: 

2 2 3 
v 2 „ 3 32 g P l 3 32 g Pl R o , . , . 
X a c w Re = R J - . — = V - — (42) 

η 
with: Re = p , . W . 2R/fa 1 r i s e 

2 
The grouping c . R e can be cor re la ted to Re (in the case of solid 

sphe res ) by the following equation: 

2 
log Re = - 1 . 2990 + 0. 95798. X - 0. 035276. X (43) 

The determinat ion of Re and μ, nece s sa ry in equation (39) for the 

calculat ion of a ce r ta in s t ep , is done in the following way: 
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From equation (12), the water properties ρ and η and the ν -value 

of the previous calculation step we obtain with (42) the value X. With 

equation (43) we calculate Re and from Re we obtain: 

W . = Re . — ^ - (44) 
rise Pi2R 

a n d 

μ = W . / ~= (45) 
rise dt 

taking the values of R and dR/dt from the previous calculation step. 

In the code the equations are slightly transformed by introducing 

non-dimensional values. Equation (42) can be written: 

2 
o , o g· Ρτ Ι" Ψ 

c .Re 2= V 3 | . — * . — » (42a) 
w π 2 . Ν x ' 

η^α(1-ρ ν ο /ρ1 ο) 
AT 

AT is a function of the water properties. This value must be given as 

entrance parameter in the code calculations. 

Expression (45) can be transformed in 

μ = 0. 5. Pr. Re. -— (4 5a) 
dy 

V ' d x 
2 

(In the code the grouping β .μ is called B2). The best fit value for β 

was: 

β = 0.0784 . 

4. 2 Listing of the Computer Code 

From the listing, given hereafter, we understand that five entrance 

parameters are necessary for the calculations. These parameters are: 
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Code Symbol Report Symbol 

PM ψ (see 31) 
m 

Β Β (see 37a) 

AT AT (see 42a) 

PR P r (PRANDTLnumber 

of water) 

ZN Ν (bubble density) 

The values of d imensionless p r e s s u r e , t ime and bubble radius a r e 

pr inted. Each 20th s tep is pr inted, i . e . in total 100 values, as the 

total s tep number is l imited to 2, 000. Independent variable is V (in the 

code R). The s tep ôv (in the code called HR) is 0.000 5. 
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EVEL 2 MAIN JA Γ F = 7 3149 1 8 / 3 0 / 0 * 

FLASH! \I3

1<< 

12 
13 

14 

IMPL 
01 MF 
Η Ε Α.") 
FORM 
WRIT 
F UR H 

1 1 5 . 6 
HR »"» 
HRH = 
H=HR 
0 = ( 1 
F = 2 . 
GR*0 
APN = 
AR = A 
¿A = l 
A = ( 0 
OY=A 
γ = η . 
S ( l > 
T=" l # 

SI=0 
M=n 
0T=" 
N=N* 
Y=Y+ 
K=H< 
V=R* 
X = OL 
RFL5 
«F = l 
BETA 
I F ( 3 
B? = d 
EXB2 
GÜ T 
EXB2 
RF'"i> 
«JNU= 
QN = 1 
I F U 
S ( N * 
OS = S 
0T = 3 
T = Tf 
0Y=3 
DVS( 
SS=1 
OU 2 
SK = ( 2< 

4 '
1 

5f 
4 

6ί · 

70 

oc I - I . * D : M / Q A / 2 . " D I 

1C1T R F A L * 8 ( A  H , Ü  Z ) 
:>IS!QN S ( 2 " 1) , D V S ( 2

n r
0 ) 

( 5 , 1 ) R M , 3 t A T . P R j Z N f K N 
AT ( 5 0 ? " . 6 , I I " ) 
F ( î > , 2 ) P M , 3 , A T . P R . Z N 
AT ( · 1 ' , 5 X , · P M =

l
, D Í 5 . ò , 5 X , ' B = ' , 0 1 5 „ 6 , 5 < , · A T = · , 0 1 5 . 6 , 5 X , · Ρ Ρ = · , 3 

, 5 X , · Ζ Ν = » , 0 1 5 . ^ / / / ) 
• O ; *05ü

f 

">. 53 )*HR 
*HR*HR 
. a j r t  P M ) / P M 
! 0 ^ * 0 
• 5 0 ' V ü / « * H R 
t 1 . > J >  P M ) / Z N 
T*APM 
, 7 7 2 4 5 0 ~ 
S Q R T Í 2 . ' iOO*QA/ ( 3 · ί ) 0 0 * 8 * 0 ) +1 . 
*H 
= 0 , ."Dii 

.oor) 

. ί ϊΟΛ 

1 
ΟΥ 
*OFLOAT(N) 
R*R ' 
33 I ? ( A R * V ) 
= - 1 . 2 9 9 0 ' -Η . 9 5 79BUÍ * X 

f
 %

 Λ
 3 5 2 7 6 0 η * * * * 

' . >D ' * *RfcLG 
= 0 . l ^ t O T * P R * R E * O T / H R / R 
E TA. 3 T. 1 " . i r ) · ) GÜ Tü 12 
ETA*BETA 
= 1 . Γ ' ϋ υ - 0 E X P Í  B 2 ) ' 
1 1 3 
= 1 . 0 J 0 
= C Y J ^ φ D p <c φ » > ¿_ ~\ i 

Y / V * ( l , 7 7 2 4 5 Ò . U H e 3 2 8 03*RE ^ > * l 1 . Η) ■■V) 
. n j r '  Y * S Ï «  Q N J 
Μ. L T . 1 . 0 0  9 1 30 
1 ) = Υ*Υ 
( N + 1 Í  S I N ) 
S / ( R  H R H ) * * 4 o  0 · 
ΟΤ 
R*( 1 . 0 0 " + F * V ) * ( R + H R H ) * * 2 . ,îO?/QN 
Μ Ι · 6 · " 9 ~ * ( Κ Η* I I ) * ( RriRH) «HR/OS 
. 0 3 0 
1
 < = 1,Ν 

O S J R l l S l Ν*· I ) S( Κ) ) OS(JRT(S( N + l ) S(K+1) ) ) * 0 \ / S ( K ) 

! .328D0*RE" Î> 1 * 1 1 . 

Tü 50 

ss=ss+s< 
SI=SS 
I F I M f m ( M t 2

n
) . F ( 3 . « ) GU TO 

I F O J . C J . 2 0 " ' ) GO TO 60 
GO ro 10 
P = PM«( 1 . O O  P M ) * V 
WRITE ( 6 , 3 ) P , T , R 
FORMAT ( · · . 1 . T X , 0 1 5 . 6 , 1 
Ι Ρ ( Ν . Γ ^ . 2 ? Λ Λ ) GO TO 60 
GU TO I · " 
WRITF ( 6 . 4 ) 

t 11 . ι 

' Χ , 0 1 5 . 5 , 1 Κ , 0 1 5 . b) 

FORMAT ( ·:."»· , 'MbNNFR 
Ρ=ΡΜ* ( 1 .

 ,
3 :

i
 P M ) * V 

WRITE ( 6 , 3 ) Ρ,T 
I F Í K M . j r . T ) 33 ΤΠ 70 
GO Τ J ì 
STOP 
ENO 

UN NAHF N U L L ' / / / ) 
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S y m b o l 

r e p o r t 

A 

Β 

D 

I 

J 

Κ 

L 

M 

M 

Ν 

P r 

Re 

R 

R 
o 

Τ 

V 

V B 

AV 

W 

W . 
r i s e 

X 

b 

c i 

c 
w 

f 

g 

i 

code 

-

B 

D 

SI 

-

-

-

-

-

ZN 

P R 

R E 

-

-

-

-

; 

-

-

X 

-

-

-

E X B 2 

-

-

M e a n i n g 

( e q u a t i o n n u m b e r ) 

b u o y a n c y f o r c e 

g r o u p i n g (37a) 

g r o u p i n g (37a) 

i n t e g r a l (38) 

i n t e g r a l ( 3 3 ) 

t h e r m a l d i f fus ivi ty 

h e a t of e v a p o r i z a t i o n 

m a s s c o n t e n t 

e v a p o r a t i n g m a s s p e r s e c o n d 

bubb le d e n s i t y 

P R A N D T L - n u m b e r 

R E Y N O L D S - n u m b e r 

bubb le r a d i u s 

f ina l b u b b l e r a d i u s 

t e m p e r a t u r e of bubble s u r f a c e 

v o l u m e 

b u b b l e v o l u m e 

v o l u m e s t e p 

flow r e s i s t a n c e 

bubb le r i s e v e l o c i t y 

c . R e (42) 
w x 

t h e r m a l l a y e r t h i c k n e s s 

s p e c i f i c h e a t of l iqu id 

coe f f i c i en t of flow r e s i s t a n c e 

func t ion (27) 

g r a v i t y a c c e l e r a t i o n 

c u r r e n t i n d e x 

D i m e n s i o n 

dyn 

-

_ 

-

C / c m / s 

2 / c m / s 

J / g 

g 

g/s 

l / c m 

-

-

c m 

c m 

°C 
3 

c m 

3 
c m 

3 
c m 

dyn 

c m / s 

-

c m 

J/g/°c 

-

■ -

/ 2 

c m / s 
-
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Symbol 

r e p o r t 

• 
m 

n 

Ρ 

q 

r 

s 

t, t ' 

v 

y 

α 

ß 

Y 

δ 

η 

θ 

λ 

μ 

ν 

ς 

Ρ 
σ, σ' 
τ , τ ' 
φ 
Ψ 

code 

-

-

-

-

-

-

-

Υ 

-

-

-

-

-

-

-

-

R 

-

-

S 

Τ 

-

Ρ 

Meaning 
(equation number) 

evaporat ing m a s s per second and 
2 

cm 
c u r r e n t index 

p r e s s u r e 

heat flux 

radius coordinate 

specific entropy 

t ime 

specific volume 

var iable (38) 

e las t ic i ty coefficient 

emp i r i ca l factor 

slope of sa tu ra t ion curve (30) 

finite difference 

water v iscosi ty 

t e m p e r a t u r e ( radia l distr ibution) 

t h e r m a l conductivity 

ra t io (27) 

d imens ion less bubble radius 

in tegra t ion var iab le (dimension

l e s s t ime) 

density 

var iab le (3 5) 

d imens ionless t ime 

in tegra t ion var iab le (time) 

d imens ion less p r e s s u r e 

1 

Dimension 

j 
/ 2 , g / c m / s 

1 
i 

dyn/cm 

j / c m / s 

c m 

J/g/°c 
s 
3 / cm / g 

-

-

-

C. cm /dyn 

-

g / c m / s 

°C 
j / s / c m / C 

-

-

-

g / c m 

-

-

s 

-
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Subscr ip t s ; 

ν vapour 

1 liquid 

o ini t ia l conditions (except R ) 

o 

sa t sa tura t ion 

m min imum value (after the step) 

r i s e bubble r i s e 

inst nons ta t ionary 
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