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ABSTRACT

The pressure history in a flashing liquid which follows a volume step is
calculated on the basis of the « thin thermal layer model » considering also
the rise of the bubbles formed during the initial volume step. The number
N of bubbles per cm3 is introduced as a parameter. The numerical calcula-
tions were done for water in the temperature range from 280° to 340° C. N
varied from 1.0 to 104 (1/cm3). Pressure curves and the « half value time tp, »
of return to the equilibrium pressure are presented as functions of initial
water temperature, bubble number and initial pressure step.
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1. Introduction

The knowledge of the flashing process, i.e. a sudden fo rmation and growth
of a high number of vapour bubbles caused by a quick expansion of a liquid,
is of importance for reactor safety considerations. This phenomenon occurs
in the primary cooling circuit of a pressurized water reactor, when a rup-
ture in the system leads to a rapid pressure fall, During the flashing the mix-
ture of water and vapour bubbles deviates strongly from the thermodynamic
equilibrium. This means that the pressure-volume relation of the mixture,
which is well defined in thermodynamic equilibrium, does not hold during

the flashing period.

In the last years several computer codes have been developed to calculate
the thermohydraulic history in a primary circuit after a rupture in the sys-
tem, as for example: BRUCH-D from LRA-GARCHING, the RELAP-Series
from GENERAL ELECTRIC, the KAPCOR-code from GAAA in France and
others, All these codes contain the assumption of thermbdynamic equilibrium,
As a consequence of this fact these codes cannot exactly describe the first
period after the rupture, during which the flashing water deviates from the

equilibrium,

Recéntly, first steps have been done to consider non-equilibrium in blow
down codes with simplified models. In BLAST 2, for example, the evaporatior
rate is assumed to be proportional to the difference between water and va-
pour temperature, The unknown factor of proportionality was chosen on the
basis of a comparison between calculations and experiments, Interesting
results have been published on the recent Meeting of Reactor Heat Transfer

1,2
at Karlsruhe (Oct., 1973)( ).

Nevertheless, there remains the task to clarify the nature and the nume-
rical values of the empirical factors in function of initial and blow down con-

ditions, Furthermore, it has to be studied whether these models are suffi-



ciently realistic to describe well the pressure-volume relation during
flashing or if another, more sophisticated, theoretical description

must replace the simple formulas,

This lack of information induced the German Reactor Licensing autho-
rities to sponsor a research contract with the C.C. R, -Ispra for an ex-
perimental study of non-equilibrium phenomena, especially the flashing

process,

To describe quantitatively the deviation from thermodynamic equili-
brium of the flashing water, both the volume and the pressure must be
known simultaneously. The planned experimental apparatus allows a con-
trolled variation of the volume and a dynamic meé,surement of the pres-
sure, i, e, in the experiments the volume represents the independent
variable and the pressure characterizes the deviation from thermodyna-
mic equilibrium. The measuring program will start with the most simple

volume -time function, that is a stepwise increase of the volume,

This report deals with the theoretical description of the pressure his-

tory which follows such a step-function of the volume,

2., Theory

. 2.1 Assumptions and Neglections

We assume that the water is completely free from gas- or vapour
bubbles and has a uniform temperature before the flashing starts, The
volume step causes, under these conditions, a pressure step which fol-
lows the adiabatic line of the liquid phase. At this point arises the first
problem: flashing occurs in the superheated region, i,e. when the pres-
- sure p has fallen below the saturation value P.e In this region, however,
table values of the specific volume of liquid water do not exist, For this

reason the value of



o sat
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( g at T=T =T
was maintained within the superheated regioh and applied to the liquid

phase throughout the whole flashing process,

It is assumed that a certain number N of bubbles per cm3 is created
simultaneously with the stepwise expansion, i.e. the creation time de-
lay has been neglected. This number N represents the most uncertain
factor in the theory. In reality it will depend on several factors, as for
example: initial temperature, impurities, gas content etc. The bubble
density N will be, for this reason, introduced as a parameter and varied

in a wide range.

The growth velocity of the created bubbles is mainly determined by
the heat conduction in the liquid., The influence of inertia and surface

tension forces, vanishes very quickly, This was shown by FOSTER and

3
ZUBER( ), who developed an equation for the bubble growth near the cri- -

tical size. Applying their formula to water at 320°C, the calculated time

to reach the size, where these forces are negligible was very small com-
pared with the time scale which is expected in our experiments (from 10°
to 0.5 sec for the "half value time'' of the pressure). For this reason in-

ertia and surface tension have been disregarded in the theory, The expe-

riments only, however, can decide whether this neglection was admis-

sible or not,

During the bubble growth the liquid around the bubble moves in radial
direction, This movement deforms the shape of the radial temperature
distribution, The effect increases markedly the heat flux to the bubble
and has to be taken into consideration, This was done by introducing
the ""thin thermal layer hypothesis'' in the model. This hypothesis allows

a considerable simplification of the mathematical formalism giving, ne-



vertheless, very satisfactory results,

The interaction of the temperature fields of neighboured bubbles
has also been disregarded, which leads to a small error of the asymp-
totic value of the pressure curves (a.t 3200C about 0, 7% of the initial

pressure step).

The rise of the bubbles b)/ buoyancy forces, however, has to be con-
sidered. The increased heat transfer by bubble rise leads to a faster
return to thermodynamic equilibrium, By using the NUSSELT -number
of small spheres in a stationary flow, this additional heat transfer has

been - in an approximative way - taken into account,

During the whole flashing process, the bubbles are assumed to have

a spherical shape,

With these major assumptions the problem has been formulated in
terms of a differential-integral equation, The derivation of this equa-

tion will be outlined in the next chapters.

2.2 The Single Bubble Growth Law

The spherical bubble grows by evaporation from the bubble surface.

. A certain mass flow M increases the bubble volume VB following the

equation:
N d
4 3
ith: =X R ' 2
With VB 37\'. (2)

(R = bubble radius)

: 2
and the mass flow per cm bubble surface:
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1

.. 5
m = M/4nR (3)
we obtain:
. drR 1 Py
m= P g TR T (4)

Assuming a constant vapour temperature To (this assumption leads

to an error of about 1%), we obtain:
(5)

0 /9y = o/,

and equation (4) becomes:
d 1
dR |1 R dp_m (42)
dt 3 p t p
A%
' . . 2
The evaporation requires the heat flux q (per cm ™ ) to the surface:
- (6)

q=-L.m

(The positive heat flux is, as usual, defined in positive r-direction., A
positive evaporation m requires thus a negative heat flux). '

With (6) equation (4a) becomes:
dR R dp -q
0 = L] - L] = 4
dt * 3°p dt L.p v (4b)

2.3 The Pressure- Bubble Volume Relation

Within each cm  of the initial water volume V1 a number N of
o
bubbles is created, forming a bubbly two-phase mixture, The bubbles
are assumed to have all the same diameter,

The water phase of this mixture follows the adiabatic line. We cha-

racterize this line by the adiabatic elasticity coefficient @ which is de-

fined by:
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v
Q= - =2, -ap—> (at T =T ) (7)
P ov o
o /s

Remaining (with the liquid phase) on the adiabatic line throughout

the whole flashing process Vi depends only on p and we can write:

dp _ . —g— . dv1 (7a)
Py lo _ :
Introducing Vi = Vl /M1 and finite differences instead of differentials,
one obtains:
P-Poh o <Vl-v10 Ml—Mlo> (7b)
P V10 1Mlo

/

The actual water volume V1 is equal to the initial volume Vlo (be-
fore flashing) plus the volume step AV (which causes the flashing) mi-

nus the sum of the bubble volumes, hence:

V=V +AV-V L N. VY (8)

The initial water mass M10 is diminished by evaporation of the mass

M, i.e,:
v
M, =M_-M (9)

or: ‘ -(1\/11-1\/110)/1\/110 = Mv/Mlo (9a)

With the relation:
p - VB. N
M /M, = = (10)
P1
and introducing: pvo/plo instead of pv/ Py the pressure relation be-

comes:.

P_-P
o AV l
= -N.V_. - 1
P, « V10 B (1 pvo/p 10) (11)
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We now define a certain bubble radius Ro which has the following
meaning: when the bubbles have reached the radius Ro, the pressure
has returned to the equilibrium pressure po. For Ro’ we obtain the
expression:

3 AV 3

R = . (12)
© V10 47N (1- pvo/plo)

and (11) can be written as:

v 3=
-;’Z =1-a. Q/_; l_ 1-(R/R ) :l (11a)

Immediately after the initial volume step AV, R is still zero and
the pressure jumps down to a value called p . From equation (11a)
m .

follows:

P e
m_ g, %’Y— (13)
po lo

e () 0o

Each single bubble, expanding by evaporation, requires a certain
heat flux, which is transported by heat conduction from the liquid phase
to the bubble surface. According to PLESSET and ZWICK(4) and other
authors, we assume now that the temperature fall from liquid bulk tem-
perature To to the surface temperature T occurs in a small ''thermal

’

boundary layer b' which is defined by:
TO-T a8
= : 1
b <8r> r=R (15)

(with 8= 8(r) being the temperature profile in the liquid).
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If b is small compared to the bubble radius and the medium around
the bubble is at rest, the temperature gradient is well known as func-
tion of time:

<a& ) ~ T T (16)
or J R JriE.1

(K = thermal diffusivity)

and we have the relation:
b=dAJgK.t (17)

By differentiation one obtains:

3_11:);\/7“{: f{% J (18)
24t

We now must consider, however, that the liquid around the bubble
is moving in radial direction and the shape of the temperature curve

is continuously deformed.

To obtain the total changement of b we introduce the bubble radius

R, which characterizes the movement, as second variable, i, e.:
b = b(t, R) (19)

From this follows:

db /0b b dR
dt (a t) + <ER> St dt (192)
R=const t=const

We now identify the first term on the right hand of (19a) with equa-
tion (18), because (18) was derived considering a conducting medium

at rest (R=const), hence:

db _ K 1
<8t> T 2°%hb : (18a)
R=const

The second term in (19a) follows from the continuity equation: at

-t = const we consider the deformation of b only by the movement of the
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conducting liquid. As b at dt = 0 does not spread out relative to the
liquid, the volume occupied by the boundary layer b must remain _

constant, i, e,

5 :
b.R = const (for t = const)

b b
<a R> = 2R (20)
t=const

Equation (19a) now becomes:

or:

at (21)

2
ig:—hbzi.d—lt:w,K \ (22)

This is a first order linear differential equation for b where R is

a pure time function (in our case even a monotonous time function).

The general solution of this equation is:

t
.
pe = X / rY a9 + & (23)
4 4
R ;c, R

with an arbitrary lower limit t, The solution, which obeys the initial
condition b = 0 at t =t is the interesting one in our problem, This

leads to C = 0 and thus we write:

t
4
7‘4./ R” do (23a)
R” -

|

2
b =

From (23a) we obtain now the differential of the heat flux caused by

a temperature step dT occurring at the time t” at the bubble surface:

2
dT _A.dT R (t)
R VR

Lft, <'as |

t
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The heat flux at the time t is obtained by integrating (24) over t”

from 0 to t:

t /dT\

A 2 / \at Jt=t- &

‘nst= t 1 (25)
TER S )

|/ R d

i ) ‘P]

t

The index "inst'" was used to distinguish between this (insteady) part
of the total heat flux and the heat flux by bubble rise, which has now to
be considered., The rise of the bubbles, caused by the buoyancy forces, '
results in an additional heat flux which, relative to qinst’ increases
with increasing bubble diameter. A thorough study of DERGARABEDIAN s

(5)

measurements gives an indication of the existence of this effect. With
higher bubble radius the measuring points tend to lie above the theoreti-
cal curve calculated with a heat flux following equation (25).

It is almost hopeless to pretend an exact theoretical description of
this problem, It would require the simultaneous solution of the NAVIER-
STOKES equation and the heat conduction equation in a moving liquid, a
highly complex mathematical problem, For this reason, the additional
heat flux by bubble rise has been taken into account in an approximative
way. To this end the well known formula for the heat flux to spheres in

(6)

(25). Neglecting the effect of PRANDTL’-number (in the interesting

a stationary flow has been simply added to the flux oot in equation

range is Pra 1, and in the formula appears only Pr & 1/3) we have:

~ A 0.6
=—— (2 «37.R -
9Uice = 2R (2+0 e  NT To) (26)
Test calculations, however, with'a . added to q. resulted in a too
rise inst

high heat flux in the early stage of bubble growth, This can be explained

by the fact, that the displacement of the bubbles by rise during the first



=]5=- )

milliseconds is small compared to the bubble diameter and the tem-
perature field, required for the heat flux qrise of (26), is not yet de -
veloped., Therefore, the velocity dependent part of (26) was corrected
by multiplying it with a time de pendent function f:
2
f=1-e B - (27)

dR

ith 1 = .
with | Wrise dt

The factor 8 was then chosen to obtain the best fit with DERGARABE -
DIAN‘s measurements,

With this correction the total heat flux to the bubble becomes:

t
2 (g?T>t=t'dt' A 0.6
q=—2—.R +==(2 + 0,37TRe " ", £)(T-T )
NET t 4 _1 2R °
o [ r d(p]z
L (28)

The bubble rise velocity Wrise (necessary for f and Re) was obtained
by equalizing buoyancy forces with friction forces., The calculation me-

thod is described in the appendix.

2.5 The Equations of Pressure History

We now dispose of all elements to set up the equations for the time

curve of pressure p as a consequence of a volume step AV,

At first we must correlate the temperature step AT = T-To and the
differential dT with a Ap and a dp respectively. To this end we identify
the temperature T of the bubble surface with the saturation tempera-
ture belonging to the actual pressure p. This assumption was also made
by PLESSET and ZWICK and led, as already mentioned, to a good agree-

ment with the experiments, Furthermore, we linearize the saturation
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line in the neighbourhood of To and obtain
(30)

(g) -(p-p)=x

d
p sat

-(p-p,)

T-T =
o

and: dT = Y.dp

¥ is taken at the initial water temperature T .

Introducing the dimensionless variables

R/Ro =y and p/poE 1}
p_/P, =y (31)

we obtain from the equations (5), (4b) and (14) the growth law
(32)

-9

dv 1

a2y -qjm. Lepyor R

The integral in the heat flux equation (28) becomes with an initial
at the time t = 0:

pressure step from P, to p
t <dT . t ( .
- dt -
;o Ndt/t=t pm Po dt Ndt/t=t” t’dt
J = / 1 = /t 1 +‘Y‘. t
> > 4 75 4
0 f_[R d(p:lz [_, R dpi? ’o | fR dcp—l_
4 '.f _l ;J
t’ 0 t’
(33)

The first term on the right hand is the result of the integration with

the pressure step function only, the second term contains the pres-
sure history after the step excluding the step function itself,

We introduce now the dimmensionless time
K . . K
T =at. _2" ; T =t _2 (34)
R R
o o

and a new variable defined by
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T

4 K
o E/' v dE with & =¢.=; (35)
‘0 | R.cJ
From (35) follows:
4 .
do=vdx : (35a)
and
T 4
[ viag=6(z) -0(=)=0- 0 ~ (35b)
J

T
If 0 is a monotonous function of T the integral J in (33) can be writ-

ten:

O

P ’\/—W dO/Q o’
s =5

The equations (14), (27), (32), (33) and (36) together give the growth

law in the following dimensionless form:

dy 3BD‘10§id cdo” )8 0.6
v _ | - O0/c%q + == (7 +0. 328, Re ):l

Y AN [6-6 7 v’

with the definitions:
Y . poo Cl. p]_o

(37)

B= - (c1 = specific heat of the liquid)
N L op
= (1- !
D= (1-y /¥,
2
f=1-¢ P
dR. - (37a)

B = Wrise dt

3
Equation (37) relates the dimensionless volume differential d(v~) to do,
which is linked with the time differential dt by (35a). Equation (14) com-

bines v3 with the dimensionless pressure p/po' hence the desired pres-
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sure-time function as a consequence of a volume step can be calcula-
ted. The REYNOLDS-number Re and the function f must be calculated

with wrise’ which is determined by the actual bubble diameter.

2.6 The Method of Numerical Calculation

The integral in (37) requires for each calculation step two memory
places, The computer program must thus be written in such a form
that the number of necessary steps to reach a certain accuracy results
as small as possible. Test calculations with different possible indepen-
dent parameters (dT, do, d( v3), dv) revealed dv to be the most con-

venient one,

With the definitions:

cl)i‘

y

and

(38)

—
[}

— a
/F.
[o N
o <
N
Q

1)
Q
AY
[o N
Q
AY

equation (37) can be written:

3, 2
(1+42Dy ). v .Ov
oY = — 3 (39)
1-v7, — 0.6
ZDBLI Loyty. = (Wx +0.328.Re ° . f)-.-l

Vv

The integral I to be used in (39) for step number n+l was calculated

in the form:

n
O /6V [‘ —
= \ _— - - -
t=2 ) <503,i\/0n+1 Ci J°n+1 Oit1 (20)
J 1__

i=T"

ov . .
where (——3> is a medium value taken over the step i.
bo/;
i

As the variables y and v start at zero, the first step had to be cal-
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culated separately, This was done by putting I and Re in (39) to zero

and resolving the remaining equation in a small interval,

For each step the values of R and dR/dt of the previous step are

taken for the calculation of W and Q.
rise

In the appendix the listing of the FORTRAN IV-program is given
and a confrontation of the code-symbols with the symbols used inthese

chapters.

3. Results and Conclusions

Fig. 1 shows the adiabatic elasticity coefficient o of liquid water at
the saturation line and Fig. 2 the factor B as function of temperature.

(7).

The values have been obtained with the help of the steam tables

In Fig, 3 a comparison is made between calculated curves and expe-
riments of DERGARABEDIAN, The curves were calculated with equa-
tion (37) considering, however, the experimental boundary condition
p = const, This condition is fulfilled by maintaining zero the integral
in (37). The figure shows the deviation of the measuring points from the
theoretical curve without bubble rise (calculated with Re = 0) and the
good agreement with the curve which includes the bubble rise, The fac-
tor B resulting in the best fit was = 0.0784. This factor was then main-

tained throughout the other calculations,

The pressure history for water at 300°C with different bubble den-
sities N are given in Fig. 4. The initial pressure step is 10% of the
equilibrium pressure P i. e. q;m = 0,9. The pressure step is the con-

-3
sequence of a relative volume step AV/Vo =1,47x10 ",

The time for the pressure to reach the value 1!!m +(1- \Ilm). 0.5 is
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called the '""half value time th". It represents a characteristic mea-
sure of the time scale for the return to thermodynamic equilibrium;
th depends on temperature To’ initial pressure step (or volume step)
and on bubble density N, Fig. 5 shows this half value time th as func-
tion of initial temperature To at a given bubble density of N = 100/cm
and with an initial pressure step of 10% from equilibrium value

Y =0.9). Fig. 6 shows t, as function of at a given temperature.
m g m & .

h
Fig. 7 finally shows the influence of the bubble density N on the half
value time with an initial temperature of To = 3000C. The results in-
dicate a reasonable range of time for return to equilibrium after a
stepwise disturbance from 0.01 to 0.5 seconds,

P

The experiments now must decide which bubble density N describes

in the best way the measured pressure history after a volume step.

As regards the application of the results in blow down codes, fur-

ther work has to be done in the following two directions:

- the theory has to be extended to arbitrary volume-time functions;

- the resulting pressure-time functions must be compared to the re-
sults of the simplified models, as for example with that used in the
BLAST-2 code, with the aim to improve these models or to replace

them by more sophisticated formulations.
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4, Appendix

4.1 Bubble Rise Velocity and Re-Number

The rise velocity Wrise of the bubbles is calculated making a simple
counterbalance of buoyancy forces and flow resistance by friction. The
effects of bubble acceleration and radial expansion and also the tangen-
tial movement of the bubble surface have been neglected, (i.e. we take
the resistance law of solid spheres). These neglections are justified by
the fact that also in the heat flux formula the effect of bubble rise is
considered only in an approximative way and the resulting curves are

fitted to the experimental results of DERGARABEDIAN by the choice of

the empirical factor 8.

The flow resistance is:

2 P 2
W=c .x. RS = wo (40)
w 2 rise

The buoyancy force (with P, << pl):

A:g,pl.'—'J{R | (41)

The grouping Cwt Re can be correlated to Re (in the case of solid

spheres) by the following equation:
' 2
log Re = -1.2990 + 0,95798, X - 0,035276. X" (43)

The determination of Re and |, necessary in equation (39) for the

calculation of a certain step, is done in the following way:
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From equation (12), the water properties Py and 1) and the y -value
of the previous calculation step we obtain with (42) the value X, With 7

equation (43) we calculate Re and from Re we obtain:

- -n_ 44
wrise Re . p12R ( )
and
dR
= _— 4
H wrise dt (5)

taking the values of R and dR/dt from the previous calculation step.

In the code the equations are slightly transformed by introducing

non-dimensional values. Equation (42) can be written:

2

g.p 1-y
c .Re2 = v3§. 1 . = (42a)
T 2
¥ all-g /o)
« 1 Po/P1d |
AT

AT is a function of the water properties. This value must be given as

entrance parameter in the code calculations,

Expression (45) can be transformed in

p = 0.5, Pr.Re, (45a)

dy
v.d’U

2
(In the code the grouping B .p is called B2). The best fit value for g

was:

B =0.0784 .,

4.2 Listing of the Computer Code

From the listing, given hereafter, we understand that five entrance

paramecters are necessary for the calculations. These parameters are:



Code Symbol

PM
B

AT
PR

ZN

Report Symbol
Vo (see 31)
B (see 37a)
AT (see 42a)

Pr (PRANDT L -number
of water)

N (bubble density)

The values of dimensionless pressure, time and bubble radius are

printed. Each 20th step is printed, i.e. in total 100 values, as the

total step number is limited to 2,000, Independent variable is V (in the

code R). The step Ov (in the code called HR) is 0, 0005,
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4.3 List of Symbols
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Symbol Meaning Dimension
report “ode (equation number)

A - buoyancy force dyn
B B grouping (37a) -
D D grouping (37a) -
I SI integral (38) -
J - integral (33) OC/cmZ/s
K - thermal diffusivity cm2 / s
L - heat of evaporization J / g
M - mass content g
I.vi - evaporating mass per second g/s

N ZN bubble density 1 /cm3
Pr PR PRANDT L-number -
Re RE REYNOLDS-number -
R - bubble radius cm
R0 - final bubble radius cm
T - tempe rature of bubble surface 0C
v - volume cm3
VB - bubbble volume cmz
AV - volume step cm
w - flow resistance dyn
Wrise - bubblezrise velocity cm/s
X X C o Re (42) -
b - thermal layer thickness cm
c, - specific heat of liquid 3/g/°C
€ - coefficient of flow resistance -
f EXB2 function (27) -
g - gravity acceleration cm/s2
i - current index -
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(contd.)
Symbol Meaning Dimension
report code (equation number) v
r.n - evaporating mass per second and g/cmz/s
2
cm
n - current index -
P - pressure dyn/cm2
q - heat flux ' J/cmz/s
T - radius coordinate cm
s - specific entropy J/g/OC
t,t” - time 8
v - specific volume cm3/g
y Y variable (38) -
a - elasticity coefficient -
B - empirical factor -
Y - slope of saturation curve (30) °c. cmz/dyn
1) - finite difference -
n - water viscosity g/cm,/s
9 - temperature (radial distribution) °c
A - thermal conductivity 3/s/cm/°C
0 - ratio (27) -
v R dimensionless bubble radius -
£ - integration variable (dimension-
less time) -

P - density g/cm3
o, o’ S variable (35) -
T, T’ T dimensionless time -
P - integration variable (time) s
¥ P dimensionless pressure -
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Subscripts:

v
1
o

sat

rise

inst

vapour
liquid

initial conditions (except Ro)
saturation

minimum value (after the step)
bubble rise

non-stationary
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