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A B S T R A C T

Legacy network systems and protocols are mostly static and keep state information in silo-
style storage, thus making state migration, transformation and re-use difficult. Software-
Defined Network (SDN) approaches in unison with Network Function Virtualization
(NFV) allow for more flexibility, yet they are currently restricted to a limited set of state
migration options. Additionally, existing systems and protocols are mostly tailored to
meet the requirements of specific application scenarios. As a result, the protocols cannot
easily be adapted to novel application demands, organically growing networks, etc.

Impeding the sharing of networking and system state, along with lacking support
for dynamic transitions between systems and protocols, severely limits the ability to
optimally manage resources and dynamically adapt to a desirable overall configuration.
These limitations not only affect the network performance but also hinder the deployment
of new and innovative protocols as a hard break is usually not feasible and thus full
support for legacy systems is required.

On the one hand, we propose a generalized way to collect, store, transform, and share
context between systems and protocols in both the legacy Internet as well as NFV/SDN-
driven networks. This allows us to share state information between multiple systems and
protocols from NFs over BGP routers to protocols on all layers of the network stack.

On the other hand, we introduce an architecture for designing modular protocols that
are built with transition in mind. We argue that the modular design of systems and
protocols can remove the key limitations of today’s monolithic protocols and allow for a
more dynamic network management.

First, we design and implement a Storage and Transformation Engine for Advanced Net-
working context (STEAN) which constitutes a shared context storage, making network
state information available to other systems and protocols. Its pivotal feature is the ability
to allow for state transformation as well as for persisting state to enable future re-use.

Second, we provide a Blueprint for Switching Between Mechanisms that serves as a
framework and guideline for developers to standardize and ease the process of designing
and implementing systems and protocols that support transitions as a first order principle.

By means of experimentation, we show that our architecture covers a diverse set of
challenging use cases in legacy systems—such as Wireless Multihop Networks (WMNs)—
as well as in NFV/SDN-enabled systems. In particular, we demonstrate the feasibility of
our approach by migrating state information between two instances of the PRADS NF
in a virtualized Mininet environment, and show that our solution outperforms state of
the art frameworks that are specifically built for NF migration. We further demonstrate
that a dynamic switch between WMN routing protocols is possible at runtime and that
the state information can be reutilized for bootstrapping novel protocol modules, thus
minimizing the control overhead.
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Z U S A M M E N FA S S U N G

Existierende Netzwerksysteme und -protokolle sind meist statisch und halten Zustands-
informationen in einem silo-artigen Speicher, was die Migration, Transformation und
Wiederverwendung dieser Zustände erschwert. Software-Definierte Netze (SDN) in Kom-
bination mit der Virtualisierung von Netzwerkfunktionen (NFV) ermöglicht mehr Flexi-
bilität, ist aber derzeit auf eine bestimmte Optionen zur Zustandsmigration beschränkt.
Darüber hinaus sind vorhandene Systeme und Protokolle meist auf die Anforderungen
von konkreten Anwendungsszenarien zugeschnitten, weshalb diese nicht einfach an neu-
artige oder geänderte Anforderungen sowie organisch wachsende Netzwerke angepasst
werden können.

Diese Beschränkungen, sowie die fehlende Unterstützung für dynamische Übergänge
zwischen Systemen und Protokollen, beeinträchtigen die Fähigkeit, Ressourcen optimal
zu verwalten und sich dynamisch an eine wünschenswerte Gesamtkonfiguration anzu-
passen. Sie beeinflussen nicht nur die Leistung des Netzwerks, sondern behindern auch
den Einsatz neuer und innovativer Verfahren, da eine Unterbrechung des Datenflusses
während des Betriebs normalerweise nicht akzeptabel ist und daher neue Systeme die
existierenden Protokolle vollständig unterstützen müssen.

Zum einen schlagen wir daher eine allgemeine Möglichkeit zum Sammeln, Speichern,
Transformieren und Teilen von Zustandsinformation zwischen Systemen und Protokollen
sowohl im Internet als auch in einer NFV/SDN-Umgebung vor. Dies ermöglicht es uns,
Zustandsinformationen zwischen mehreren Systemen und Protokollen von NFs über
BGP-Router zu Protokollen auf allen Ebenen des Netzwerkstapels zu teilen.

Zum anderen präsentieren wir eine Architektur für den Entwurf von modularen
Protokollen, die Schaltvorgänge zur Laufzeit explizit unterstützt. Der modulare Entwurf
von Systemen und Protokollen beseitigt die Beschränkungen der heutigen monolithischen
Protokolle und ermöglicht ein dynamischeres Netzwerkmanagement.

Zunächst entwerfen und implementieren wir eine Speicher- und Transformations-
Einheit für den erweiterten Netzwerkkontext (STEAN), die einen gemeinsamen Kon-
textspeicher bietet und Zustandsinformationen aus dem Netzwerk für andere Systeme
und Protokolle zur Verfügung stellt. Die entscheidende Fähigkeit dieses Systems ist es,
sowohl eine Transformation von Zustandsinformationen durchzuführen als auch diese
Informationen dauerhaft zu speichern und für eine zukünftige Nutzung bereitzustellen.

Weiterhin bieten wir einen Bauplan für Mechanismen an, die eine explizite Unterstüt-
zung von Umschaltvorgängen zur Laufzeit bieten. Dieser Plan dient als Rahmenwerk
und Leitfaden für Entwickler, um den Entwurf und die Implementierung von Systemen
und Protokollen, die Übergänge als Kernprinzip unterstützen, zu standardisieren und zu
vereinfachen.

Durch Experimente zeigen wir, dass unsere Architektur eine Vielzahl von anspruchs-
vollen Anwendungsfällen in bestehenden Systemen, wie Drahtlosen Multihop Netzwer-
ken (WMNs), als auch in NFV/SDN-fähigen Systemen abdecken kann. Insbesondere
präsentieren wir die Machbarkeit unseres Ansatzes durch die Migration von Zustandsin-
formationen zwischen zwei Instanzen der PRADS NF in einer virtualisierten Mininet-
Umgebung und zeigen, dass unsere Lösung den Stand der Technik übertrifft, obwohl
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diese Rahmenwerke speziell für die NF-Migration entwickelt wurden. Wir zeigen wei-
terhin, dass ein dynamischer Wechsel zwischen WMN Routingprotokollen zur Laufzeit
möglich ist und dass bestehende Zustandsinformationen für das initiale Starten von
neuartigen Protokollmodulen wiederverwendet werden können, wodurch die Menge der
nötigen Kontroll- und Steuerungsnachrichten minimiert wird.

vii





A C K N O W L E D G M E N T S

Writting this thesis was a long and winding road, and would have not been possible
without the support of a large group of people. There are those who accompanied me
during the whole time and those who where there for just a short period but showed
up at the right moment to give directions. Thus, a list of acknowledgements can never
be complete. However, I would like to thank two groups of people without whom this
thesis would not be possible at all:

The colleagues, students and fellow researchers that supported this work. Not only
those who directly supported me on the topics discussed within this thesis, and those
who shared their insights during fruitful discussions. But also those who were available
for social activities, who opened my mind to different directions, and that became more
than work colleagues over the course of the years.

My friends and family with whom I celebrated the successes but who also cheered me
up during times of frustration and who always supported me no matter what happened
in life. The people that give the joy in life and without whom it would have not been
possible to even get to the stage of starting this thesis.

As research is not only about serious work but also about living a life that allows for
creativity, I will close with the words of Steve Jobs who—eventhough not a classical
researcher—influenced our disipline propably more than any other person in the last
two decades: “Stay Hungry. Stay Foolish.”

ix





C O N T E N T S

1 introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Enable Native Context Sharing Across Mechanisms . . . . . . . . . 3

1.2.2 Enable the Transformation of Context Information . . . . . . . . . 4

1.2.3 Enable Transition Support in Mechanisms . . . . . . . . . . . . . . 4

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3.1 Design and Implement a State Plane for Software-Defined Networks 4

1.3.2 Provide an Architecture for Transformation Functions . . . . . . . 5

1.3.3 Offer an Architectural Model for Switching Mechanisms . . . . . . 5

1.4 Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 background and related work 7

2.1 Network Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Network Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 A Knowledge Plane for the Internet . . . . . . . . . . . . . . . . . . 10

2.2.2 Routing Control Platform (RCP) . . . . . . . . . . . . . . . . . . . . 10

2.2.3 A Software-Defined Internet Exchange (SDX) . . . . . . . . . . . . 11

2.2.4 Statesman . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Cross Layer Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.1 MobileMan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.2 CrossTalk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.3 CLiSuite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Router Migration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4.1 Virtual Routers on the Move (VROOM) . . . . . . . . . . . . . . . . 18

2.4.2 Router Grafting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4.3 Seamless BGP Reconfigurations . . . . . . . . . . . . . . . . . . . . 20

2.5 Network Function Virtualization . . . . . . . . . . . . . . . . . . . . . . . . 21

2.5.1 Remus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5.2 Tardigrade . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5.3 Split/Merge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5.4 Pico Replication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.5.5 OpenNF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.5.6 Distributed State Transfer (DiST) . . . . . . . . . . . . . . . . . . . . 28

2.5.7 P2P OpenNF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.5.8 Stateless Network Functions . . . . . . . . . . . . . . . . . . . . . . 30

2.6 Discussion and Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3 problem statement 35

3.1 Use Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.1.1 Migrating Network Functions . . . . . . . . . . . . . . . . . . . . . 35

3.1.2 Reconfiguring Network Functions . . . . . . . . . . . . . . . . . . . 37

3.1.3 Replacing BGP Routers . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.1.4 Switching Routing Protocols . . . . . . . . . . . . . . . . . . . . . . 39

3.2 Switching Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

xi



xii contents

3.3 Sharing Context Information . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4.1 Enable Seamless Migrations . . . . . . . . . . . . . . . . . . . . . . . 44

3.4.2 Provide a Generic Context Storage Solution . . . . . . . . . . . . . 45

3.4.3 Provide Context Persistence . . . . . . . . . . . . . . . . . . . . . . . 45

3.4.4 Reduce Overhead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.4.5 Enable Dynamic Reconfiguration . . . . . . . . . . . . . . . . . . . . 46

3.4.6 Support Data Transformations . . . . . . . . . . . . . . . . . . . . . 47

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4 system architecture 49

4.1 STEAN—A Storage and Transformation Engine for Advanced Networking
context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.1.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.1.2 Base Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.1.3 Context Transformation . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.1.4 System Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.1.5 Communication and Interaction . . . . . . . . . . . . . . . . . . . . 59

4.1.6 STEAN Implementation . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.1.7 Client Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.1.8 System Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.1.9 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.1.10 Implementation Overhead . . . . . . . . . . . . . . . . . . . . . . . . 67

4.1.11 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.2 A Blueprint for Switching Between Mechanisms . . . . . . . . . . . . . . . 69

4.2.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.2.2 System Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.2.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5 evaluation 81

5.1 Migrating Network Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.1.1 Experimental Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.1.2 Experiment Execution . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.1.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.1.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.2 Switching Routing Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.2.1 Experimental Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.2.2 Experiment Execution . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6 conclusion and outlook 103

6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.1.1 Enable Native Context Sharing Across Mechanisms . . . . . . . . . 103

6.1.2 Enable the Transformation of Context Information . . . . . . . . . 104

6.1.3 Enable Transition Support in Mechanisms . . . . . . . . . . . . . . 105

6.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105



contents xiii

6.2.1 Cooperation of Multiple STEAN Instances . . . . . . . . . . . . . . 106

6.2.2 Performance Improvements . . . . . . . . . . . . . . . . . . . . . . . 106

6.2.3 Generation of Transformation Functions . . . . . . . . . . . . . . . 107

6.2.4 Anticipate Mechanism Behavior . . . . . . . . . . . . . . . . . . . . 107

6.2.5 Complex Transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.2.6 Transitions of Finer Granularity . . . . . . . . . . . . . . . . . . . . 108

6.2.7 Decentralized Ochestration . . . . . . . . . . . . . . . . . . . . . . . 108

a characterizing the traffic gap 115

a.1 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

a.1.1 OLSR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

a.1.2 AODV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

a.2 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

a.2.1 Duration of the Traffic Gap . . . . . . . . . . . . . . . . . . . . . . . 118

a.2.2 Communication Overhead . . . . . . . . . . . . . . . . . . . . . . . 118

a.2.3 System Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

a.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

b curriculum vitæ 119

c author’s publications 121

d erklärung laut §9 der promotionsordnung 123



L I S T O F F I G U R E S

Figure 1.1 Comparison of current state sharing concepts to our proposal. . . 3

Figure 2.1 Overview of the information and parameters included in the
network context. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Figure 2.2 Statesman architecture . . . . . . . . . . . . . . . . . . . . . . . . . 13

Figure 2.3 MobileMan architecture . . . . . . . . . . . . . . . . . . . . . . . . 15

Figure 2.4 CrossTalk architecture . . . . . . . . . . . . . . . . . . . . . . . . . 16

Figure 2.5 CLiSuite architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Figure 2.6 Extended BGP state machine used by Router Grafting. . . . . . . 19

Figure 2.7 Ships-In-The-Night architecture . . . . . . . . . . . . . . . . . . . . 21

Figure 2.8 Overview of the Tardigrade architecture . . . . . . . . . . . . . . . 23

Figure 2.9 High level architecture of Pico Replication . . . . . . . . . . . . . . 25

Figure 2.10 OpenNF architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Figure 2.11 Related work and its position in a layered view of the networking
architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Figure 3.1 Dynamic scaling of NFs to the Cloud and context sharing between
instances. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Figure 3.2 Reconfiguration of NFs dependent on the shared context. . . . . 37

Figure 3.3 Layers involved in the migration of BGP routers . . . . . . . . . . 38

Figure 4.1 Simple network to show the advantages of sharing context between
different NFs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Figure 4.2 Architectural overview of STEAN. . . . . . . . . . . . . . . . . . . 57

Figure 4.3 Overview of the data access within the Storage Component of
STEAN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Figure 4.4 Mapping of the internal PRADS state elements to the base context. 64

Figure 4.5 Relation between the mechanisms specific context representation
of OLSR, AODV and the base context. . . . . . . . . . . . . . . . . 65

Figure 4.6 Time to insert an IPv4 address without calling a transformation
function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Figure 4.7 Time to retrieve an IPv4 address without calling a transformation
function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Figure 4.8 Overview of the switching system and the component interaction. 71

Figure 4.9 Placement and interaction of the controller infrastructure. . . . . 72

Figure 4.10 Implementation of the modular mechanism design in Click . . . 76

Figure 5.1 Migration time per flow split into subintervals. . . . . . . . . . . . 84

Figure 5.2 Experimental setup for the evaluation. . . . . . . . . . . . . . . . . 86

Figure 5.3 Total migration time per flow context between two PRADS instances. 88

Figure 5.4 Store and retrieve time per flow for migrating flows using STEAN. 89

Figure 5.5 Communication setup with two and three hop routes. . . . . . . . 92

Figure 5.6 Local forwarding time split up in subintervals. . . . . . . . . . . . 92

Figure 5.7 Node deployment in our testbed experiment. . . . . . . . . . . . . 94

Figure 5.8 End to end delay running OLSR on a two-hop route. . . . . . . . 95

xiv



Figure 5.9 Local forwarding delay on an individual node over time for
STEAN–enabled OLSR. . . . . . . . . . . . . . . . . . . . . . . . . . 96

Figure 5.10 Cumulative distribution function of the end to end delay running
OLSR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Figure 5.11 Local forwarding delay on an individual node over time for
STEAN–enabled OLSR without caching. . . . . . . . . . . . . . . . 97

Figure 5.12 Traffic gap during the execution of a mechanism switch on a highly
utilized network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Figure 5.13 Traffic gap during the execution of a mechanism switch on an
almost idle network. . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Figure 5.14 End to end delay when migrating from OLSR to AODV during
normal network operation. . . . . . . . . . . . . . . . . . . . . . . . 99

L I S T O F TA B L E S

Table 2.1 Types of state information. . . . . . . . . . . . . . . . . . . . . . . . 7

Table 2.2 Overview of the related work. . . . . . . . . . . . . . . . . . . . . . 31

Table 4.1 Additional or changed code to implement STEAN support. . . . 68

Table 5.1 Performance metrics on a single node while running OLSR. . . . 95

Table A.1 OLSR parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

Table A.2 AODV parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

L I S T I N G S

Listing 4.1 Format of shared library functions . . . . . . . . . . . . . . . . . . 62

A C R O N Y M S

5G network fifth generation mobile network

AI Artificial Intelligence

AODV Ad hoc On-Demand Distance Vector Routing Pro-
tocol

API Application Programming Interface

ARP Address Resolution Protocol

AS Autonomous System

xv



xvi acronyms

BGP Border Gateway Protocol

BS Base Station

CDF Cumulative Distribution Function

Click Click Modular Router

D2D device-to-device

DCN Data Center Network

DMA Direct Memory Access

DPI Deep Packet Inspection

DSL Domain Specific Language

eBGP Exterior Border Gateway Protocol

FIB Forwarding Information Base

HA High Availability

I/O Input/Output

iBGP Interior Border Gateway Protocol

IDS Intrusion Detection System

IoT Internet of Things

IP Internet Protocol

ISP Internet Service Provider

IXP Internet Exchange Point

LoC Lines of Code

LRU Least Recently Used

LVM Lightweight Virtual Machine

MAC Media Access Control

NAT Network Address Translation

NF Network Function

NFV Network Function Virtualization

OLSR Optimized Link State Routing Protocol

OS Operating System



acronyms xvii

P2P peer-to-peer

PCAP Packet Capture

pps packets per second

QoS Quality of Service

RDBMS Relational Database Management System

RIB Routing Information Base

RTT Round Trip Time

SAODV Secure Ad hoc On-Demand Distance Vector Rout-
ing Protocol

SDN Software-Defined Network

SLA Service Level Agreement

SO Shared Object

SOA Service Oriented Architecture

SOLSR Secure Optimized Link State Routing Protocol

STL C++ Standard Library

TCP Transmission Control Protocol

UDP User Datagram Protocol

VM Virtual Machine

VoIP Voice over IP

VRF Virtual Routing and Forwarding

WAN Wide Area Network

WMN Wireless Multihop Network

XML eXtensible Markup Language





P R E V I O U S LY P U B L I S H E D M AT E R I A L

This thesis includes material previously published in peer-reviewed publications. In
accordance with the regulations of the Computer Science department at TU Darmstadt,
we list below the chapters which include verbatim fragments from these publications.

Chapter 1 and 2 include verbatim fragments from “STEAN: A Storage and Transfor-
mation Engine for Advanced Networking Context” by Marc Werner, Johannes Schwandke,
Matthias Hollick, Oliver Hohlfeld, Torsten Zimmermann, Klaus Wehrle. In Proceedings of
the IFIP Networking Conference (IFIP Networking), 2016.

Chapter 3 and 4 build upon “A Blueprint for Switching Between Secure Routing
Protocols in Wireless Multihop Networks” by Marc Werner, Jög Kaiser, Matthias Hollick,
Elias Weingärtner and Klaus Wehrle. In: Proceedings of the 14th International Symposium on
a World of Wireless, Mobile and Multimedia Networks (IEEE WoWMoM, D-SPAN Workshop),
2013 as well as “STEAN: A Storage and Transformation Engine for Advanced Networking
Context” by Marc Werner, Johannes Schwandke, Matthias Hollick, Oliver Hohlfeld,
Torsten Zimmermann, Klaus Wehrle. In: Proceedings of the IFIP Networking Conference (IFIP
Networking), 2016.

Chapter 5 and 6 include verbatim text from “Mind the Gap – Understanding the Traffic
Gap when Switching Communication Protocols ” by Marc Werner, Tobias Lange, Matthias
Hollick, Torsten Zimmermann, Klaus Wehrle. In Proceedings of the 1st KuVS Workshop on
Anticipatory Networks, 2014. as well as “A Blueprint for Switching Between Secure Routing
Protocols in Wireless Multihop Networks” by Marc Werner, Jög Kaiser, Matthias Hollick,
Elias Weingärtner and Klaus Wehrle. In: Proceedings of the 14th International Symposium on
a World of Wireless, Mobile and Multimedia Networks (IEEE WoWMoM, D-SPAN Workshop),
2013. and “STEAN: A Storage and Transformation Engine for Advanced Networking
Context” by Marc Werner, Johannes Schwandke, Matthias Hollick, Oliver Hohlfeld,
Torsten Zimmermann, Klaus Wehrle. In: Proceedings of the IFIP Networking Conference (IFIP
Networking), 2016.

Appendix A includes verbatim text from “Mind the Gap – Understanding the Traffic
Gap when Switching Communication Protocols ” by Marc Werner, Tobias Lange, Matthias
Hollick, Torsten Zimmermann, Klaus Wehrle. In Proceedings of the 1st KuVS Workshop on
Anticipatory Networks, 2014.

xix





1
I N T R O D U C T I O N

1.1 motivation

The design and management of communication networks currently undergoes massive
changes towards realizing a more flexible management of complex networks. Recent
efforts include rethinking the control plane design by applying Operating System (OS)
design principles to realize Software-Defined Networks (SDNs). This triggered a shift in
paradigm from a statically deployed infrastructure that operates within tight boundaries
to an open system with well defined interfaces. It permits operators to dynamically adapt
the network topology to changes in load, user demands or to environmental conditions
without the need to physically replace components or completely redeploy the network.

Additionally, SDN enabled networks allow operators to converge existing infrastructure
into one unified architecture and gain centralized control over the complete network
management. Current deployments include carrier networks such as Google B4 [33]
that connects datacenters across the globe with a highly available dynamic Wide Area
Network (WAN).

A second innovation in the field of network operations in recent years is the intro-
duction of Network Function Virtualization (NFV) which is inspired by the success
of virtualization in the server market. Existing Network Functions (NFs) are designed
and implemented as black boxes that built upon proprietary software and specialized
hardware. This limits the deployment to a small predefined set of possible configurations
and forces operators into a vendor lock-in.

The introduction of virtualization in the field of NFs allows operators to run their
middleboxes on commodity hardware alongside other applications and supports the
operation of NFs from different vendors on the same infrastructure. Additionally, the
introduction of NFV enables the dynamic scaling of middleboxes to satisfy the demand
of varying traffic patterns and load scenarios. The flexible instantiation of NFs helps to
fulfill even tight Service Level Agreements (SLAs) without the need for over-provisioning.

The advances in both network management using SDN and traffic engineering by
employing NFV aim at a more flexible and dynamic service deployment, increased
resource utilization, improved energy efficiency, vendor independence, and ultimately
decreased operational costs.

On the one hand, current research targets further improvements to the operation of
these new services by proposing mechanisms for efficient scaling and dynamic rerouting
of packets. This in turn requires the sharing of state collected within the NF between
instances to prevent the service degradation or malfunction of middleboxes due to
missing information.

This requirement has lead to the development of various systems that allow explicit
state migration between NFs such as Split/Merge [57], OpenNF [28] or StatelessNF [34].
These solutions either require the developer of the NF to explicitly decouple the state from
the implementation during development or try to identify and extract the state contained
within existing NFs upon migration. The latter is done by adding annotations to the
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source code or by replacing system calls with alternate implementations to intercept the
communication with other systems.

On the other hand, there are systems and protocols that were never built with migration
in mind. These protocols still form the large backbone of today’s networks and, due to
compatibility issues, will not be replaced in the near future. For example, the Border
Gateway Protocol (BGP) was introduced with RFC 1105 [47] in 1989 and is still in active
use today. The protocol constitutes the routing backbone of the Internet and thus takes a
critical role in the network and the availability of the provided service.

However, the migration and replacement of BGP routers is a tedious task that requires
long and accurate planning. In the absence of state sharing, router migration is chal-
lenging since reestablishing BGP routing sessions is expensive and network operation
only allows for very short interruptions until the routing entries are invalidated [72].
Those interruptions would violate the SLAs usually in place at these critical points,
and network operators therefore avoid a router migration whenever possible even if
the complete network would benefit from this change. Even though some solutions for
sharing state information between different BGP routers such as Router Grafting [37]
or VROOM [73] exist, they are limited to specific operation environments, and require
substantial extensions to the router implementation.

But not only protocols and systems in the network core are ponderous to change. Also
access networks such as Wireless Multihop Networks (WMNs) are often running indefi-
nitely without the possibility to alter the configuration or even deploy new protocols, thus
limiting the options to adapt to changing user demands and environmental conditions.
The applications of WMNs vary widely from access networks in urban environments [3]
over connecting rural areas [1, 22] to networks that are only enabled in case of natural
disasters or other emergencies when other infrastructure is not available [31, 52]. The
requirements of these applications and the environment where these networks are de-
ployed differ dramatically. Thus the networks currently can not easily be repurposed and
a “one size fits all” approach is not feasible either.

Additionally, these networks are operated under a multitude of administrative domains
and most devices are owned by end users that are neither able nor willing to constantly
update their devices. Therefore, the once deployed protocols and systems often run for a
long time without any possibility to alter the installation.

1.2 goals

Despite their success, current state sharing mechanisms are customized solutions tailored
to specific use cases and are ignoring the fact that they continue to use closed silo style
storage as shown in Figure 1.1a.

Our goal is to break these silos open and allow state to be shared within the complete net-
work, ranging from SDN controllers over NFs to routers and protocol implementations—
we call them mechanisms throughout this thesis—as shown in Figure 1.1b.

In this way, we enable legacy mechanisms to exchange state information with only
minimal changes to the existing implementation and thus provide the possibility for
better scaling and faster migration of these mechanisms. We also support the design and
implementation of new mechanisms with a strict separation of functionality and state in
mind. This clean segregation of operational information enables a wide sharing of state
without the need for specialized solutions tailored to only a small number of use cases.
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Figure 1.1: Current state sharing frameworks only allow sharing between functions of the same
group (a). We enable sharing state between different groups by using a common
representation and mapping the function specific state using the transformation
functions fT1 and fT2 (b).

Additionally, we aim to extend the sharing of information beyond state information.
Our goal is to establish the exchange of network context—an extended set of information
introduced in detail in Section 2.1—to further open networks to a more flexible and
dynamic management. Whenever we use the term context throughout this thesis, we refer
to the network context.

In order to achieve our main goal of breaking the information silos open, we address
the following sub goals in this thesis:

1.2.1 Enable Native Context Sharing Across Mechanisms

Our first goal is to provide a generalized way to share context in a diverse set of
core functionality such as routing, in-network processing, and dynamic mechanism
adaptation. This relies on collecting and managing context from different sources (e.g.,
NFs, BGP routers, protocols on all layers of the network stack) using their preferred state
representation, thus replacing per-entity state storage with a shared context management.
It makes this dynamic information available to other mechanisms, and stores and persists
the current context to re-use at later points in time.

The system aids in seamlessly changing between mechanisms at runtime, or access
persisted information describing the mechanism context from the past to reach fully
operational state with minimal latency.
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1.2.2 Enable the Transformation of Context Information

The global sharing of information would usually require all connected mechanisms
to adapt their state representation to the format required by the context management
system. However, this requires a major redesign of mechanisms, and thus hinders the
introduction of a context management system.

Therefore, our second goal is to define transformation functions to re-use context
in other mechanisms without agreeing on a common representation. These functions
allow us to leave the internal state representation of the mechanisms unaltered while still
sharing the context with other mechanisms.

Transformations enable context sharing between mechanisms that were not originally
built with sharing in mind, and permits the seamless extension of existing mechanism
stacks and network topologies. This adaptability enables the wide acceptance of a state
sharing infrastructure as it significantly lowers the entry boundaries for participation.

1.2.3 Enable Transition Support in Mechanisms

Existing design principles for mechanisms do not take mechanism switches—also referred
to as transitions [25]—into account. The existing solutions are either implemented as
an supplementary addition to already existing designs or do not even incorporate the
actual mechanisms but solely rely on external systems such as programmable networks
to execute the switch.

Thus, our third goal is to introduce transition support as a first order design principle
for mechanisms. The design, implementation and deployment of mechanisms with
switching support further boosts the innovation in the Internet and supports the transition
towards a flexible and dynamic network management.

1.3 contributions

Based on the goals of this thesis, we conceive, design, implement and evaluate the core
components of an enhanced network architecture that natively supports the sharing,
transformation and activation of context as well as enables the transition between the
employed mechanisms. This architecture allows us to broadly extend the sharing and
re-use of context information between mechanisms, and opens networks to allow for an
even more flexible management.

On the one hand, we are able to extend the existing solutions for sharing state to provide
more information to adjacent mechanisms and thus further improve their dynamic
reconfiguration.

On the other hand, this approach allows to enable migration and scaling features for a
large set of mechanisms that were not build with migration in mind.

In particular our contributions are as follows:

1.3.1 Design and Implement a State Plane for Software-Defined Networks

We design and implement the Storage and Transformation Engine for Advanced Networking
context (STEAN). It provides an architecture for a context management system that allows
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us to share context between mechanisms in a diverse set of core functionality such
as routing, in-network processing, and dynamic mechanism adaptation. It makes this
dynamic information available to other mechanisms, and stores and persists the current
context to re-use at later points in time. This way, STEAN enables any component in a
network to access other components’ context information, hence facilitating seamless
network transitions.

The system aids in seamlessly changing between mechanisms at runtime, or access
persisted information describing the mechanism context from the past to reach fully op-
erational state with minimal latency. We demonstrate this by migrating NFs as described
in the use case from Section 3.1.1, and by seamlessly switching between routing protocols
in a WMN as discussed in Section 3.1.4.

1.3.2 Provide an Architecture for Transformation Functions

We define transformation functions to re-use context in other mechanisms without
agreeing on a common representation. These functions enable context sharing between
mechanisms that were not originally built with sharing in mind. Transformations allow
the state plane to be integrated into legacy mechanisms and to interoperate with arbitrary
mechanisms which permits the seamless extension of existing mechanism stacks and
network topologies. Furthermore, transformation functions allow us to share context
between different NFs that are—until now—only designed to exchange state between
instances of the same implementation.

We demonstrate the feasibility of employing transformation functions and the perfor-
mance of our implementation in both, a synthetic setup as well as the use cases utilized
in Section 1.3.1. Our results show that employing transformations only imposes a small
overhead on the operation of NFs and WMN routing protocols but provides the ability
to share context between mechanisms that rely on a specialized state representation.

1.3.3 Offer an Architectural Model for Switching Mechanisms

We design a system for switching mechanisms in existing legacy systems. Our approach is
based on a central controller that coordinates the transition and ensures that all connected
instances change to the same target mechanism. The system not only supports the switch
between mechanisms, but also allows for a parallel operation of multiple mechanisms to
enable the reestablishment of information prior to carrying data traffic. This approach
eliminates the traffic gap when switching and enables seamless transitions between
mechanisms.

We implement a prototype of the architecture and evaluate our design based on
the use case described in detail in Section 3.1.4. The implementation is based on the
Click Modular Router [39] and extends existing WMN routing protocols to support
our architecture. We show that our approach efficiently supports a seamless transition
between mechanisms and thus enables the dynamic reconfiguration of legacy systems.



6 introduction

1.4 outline of the thesis

The remainder of this thesis is structured as follows:
In Chapter 2, background and related work, we introduce the concept of

network context along with a survey of the related work.
On the one hand, the survey focuses on work in the areas of network architecture and

cross layer systems and specifically how state sharing can support new concepts and
paradigms for designing and deploying network stacks or even complete networks.

On the other hand, we analyze the existing work in the area of router migration and
network function virtualization, and how state management enables seamless migration
and failover on those critical mechanisms.

We then introduce the use cases referenced throughout this thesis in Chapter 3, prob-
lem statement. The use cases include scenarios from recent developments in the
field of NFV such as the seamless migration of middleboxes and the exchange of state
between different types of NFs that allows for dynamic reconfiguration. Additionally, we
also cover the sharing of information between legacy mechanisms such as BGP routers
and WMNs. The chapter also introduces the challenges these use cases impose on the
proposed solutions.

Our system architecture is presented in Chapter 4. First, we present our work on
the Storage and Transformation Engine for Advanced Networking context (STEAN) [75]
which serves as a reference architecture on how to design a context management system
in a modular and extensible manner. STEAN not only manages and stores context
information from various mechanisms but also provides transformation functions that
allow us to exchange context between different mechanisms that were never built with
sharing in mind. We provide a proof-of-concept of our architecture along with a system
analysis of our prototype.

Second, we introduce our blueprint for switching between mechanisms [74] that
provides an architectural model for designing transition aware mechanisms as well as a
prototypical implementation of the introduced concepts based on multiple WMN routing
protocols using the Click Modular Router (Click). We also implemented a command
and control environment that allows us to trigger and coordinate the switch between
mechanisms across multiple nodes in a network segment.

In Chapter 5, we present an extensive evaluation of our architecture using two
dedicated use cases. We show the system behavior while migrating network functions in
Section 5.1. The experiments are conducted using a virtual environment based on Mininet,
and show how the sharing of context information improves the migration time between
two NF instances compared to state of the art frameworks such as OpenNF. We then
evaluate the influence of sharing context information when switching routing protocols in
Section 5.2 We show that a traffic gap always exists when switching mechanisms even on
less utilized networks, and demonstrate how a context management system supporting
transformation functions along with a modular mechanism design can eliminate this gap.

Finally, we conclude our work in Chapter 6. We discuss possible improvements to our
prototype as well as a possible migration path towards a state plane. Additionally, we
give an outlook on possible research directions and offer pointers for future work.



2
B A C K G R O U N D A N D R E L AT E D W O R K

Traditionally, networked systems are not designed with a clear separation of functionality
and state information in mind. They are carefully engineered to provide the maximum
forwarding performance and their architecture often sacrifices all other design goals such
as extensibility towards faster packet processing. These mechanisms hold various state
information in different parts of their architecture without providing a consistent or even
convenient way to extract or modify this data.

Various solutions to share, migrate or replicate state information in such closed mecha-
nisms exist. One of the key challenges is to identify the relevant data structures within
the implementation as not all state information is of importance when sharing the data
between instances. Table 2.1 gives an overview of the different types of state information
available in networked systems.
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Network Packets x x x

Flow Information x x x

Configuration x x x

Caches x x x

Timers x x x

Statistics x x x

Background Processes x x x

Table 2.1: Types of state information (adapted from [56, 57]).

Another challenge is to extract the relevant state from the current instance and transfer
the information to another instance, thus creating an operational copy of the service.
This is either done by accessing the structures in memory directly or by replacing the
functions to access memory with customized versions that intercept the requests.

This thesis contributes to the area of state management for NFV as well as SDN.
Additionally, our use cases described in Section 3.1 also include the context management
of routing protocols in the Internet core and in WMNs. In the following, we therefore
survey the related work in these areas and show the advantages of the presented
approaches as well as their shortcomings.

Before we survey the related work, we introduce the concept of network context that
is used throughout this thesis to describe the information handled by the presented
systems.
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8 background and related work

2.1 network context

Today, networked systems hold a large amount of state information from mechanisms
as well as from applications that access the network and analyze or manipulate net-
work traffic. This state information is mechanism specific, and often only an implicit
description—expressed as data structures—exists within the used implementation. This
state information is usually lost when an application is terminated or the mechanism
stack is restarted.

Additionally, the existing systems only hold the current operational state and do not
preserve or store historical information beyond the information needed for the current
operation. The only structure that provides a history of operation is logging information
generated by the mechanisms. However, application logs are usually unstructured and
the data presented is selected based on the needs of a human operator. It is not meant to
regenerate the operational state but to detect and analyze false behavior.

The term state is usually used to describe internal information, and context refers to all
external factors that impact the behavior of a mechanism. We unify those two information
sets and extend the included information.

Our goal is to not only share the current state of mechanisms, but to extend the
shared information beyond the operational parameters. We therefore define the network
context—shortly referred to as context throughout this thesis—as the extension of the state
information and environmental parameters as shown in Figure 2.1.
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Figure 2.1: Overview of the information and parameters included in the network context.

We include metadata that describes the state representation as well as methods to
interpret and convert the information if necessary. This metadata is required to interpret
the state information correctly and to be able to re-use the stored information across
different mechanisms as well as at a later point in time. Possible information can range
from simple data types such as Integer or String to extended information on how to
interpret the stored information correctly such as object definitions. Metadata might
also include the function names (but not the function itself) to interpret, convert and
transform the stored state information.

The context also holds the configuration parameters of the mechanisms since the state
information usually depends on these parameters, and even minor changes to the
configuration can lead to a complete other mode of operation and thus completely
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different state. Static configurations are normally stored in files that are loaded on
startup and thus are persistent between restarts, but cannot be altered during runtime.
We not only capture the static parameters of the configuration, but also keep dynamic
adaptations of the settings in the context. This allows us to provide a self contained view
on the mechanism without referring to external sources such as configuration files.

We include monitoring information that is requested by external mechanisms into the
network context. Monitoring information is not needed for the operation of a mechanism,
but allows external services to police and intervene the operation if changes in either the
configuration or the state are necessary. The inclusion of monitoring information enables
us to generate individual views on the operational status depending on the requirements
of the external mechanism. The monitoring information is usually closely coupled to the
internal state and thus a tight integration allows us to gain additional insights into the
current operational status.

Additionally, we include historical records for the information mentioned above. The
history enables us to return to a known previous context of the mechanism that includes
all relevant data for the operation. A rollback can be used to re-establish a certain setup
where the internal state together with the configuration parameters provided a optimal
operational environment.

Wherever the term context is used throughout this thesis, we specifically refer to the
network context.

2.2 network architecture

The design and operation of large campus networks or Data Center Networks (DCNs)
is a challenging task. While adjustments to the operational parameters are possible,
fundamental decisions made during the design phase of such a network can often
not be revised once the mechanisms are implemented and under operation. Risking a
malfunction or even a complete downtime of the network is prohibitive as the mechanisms
normally run under tight SLAs that guarantee customers a high availability in conjunction
with a certain Quality of Service (QoS). Additionally, these networks usually run under
a very high utilization and thus the traffic is not easily redirected over secondary links
during the reconfiguration.

Deploying a completely redundant infrastructure—ideally using hardware from dif-
ferent vendors and operating the mechanisms by disjunct teams—to prevent outages is
usually prohibitively expensive even for critical networks and only a few Tier 1 providers
use a completely redundant setup.

However, with the wide spread deployment of SDNs and especially with the in-
troduction of OpenFlow [49] as a standardized architecture, the task of dynamically
reconfiguring network elements became less tenuous. The first large scale networks are
now under full operation [33] and mechanism developers as well as operators gather
first hand experience in designing and operating global SDN deployments.

Additionally, the introduction of SDN has led to new architectural concepts in network
design and to completely new applications that are either run on top of or in direct inter-
action with the network. These applications were either not possible with traditionally
operated networks or their deployment was a tedious and often expensive task.
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Still, operating these networks requires to incorporate legacy mechanisms as the
functionality is either not yet available in an SDN compatible mechanism or existing
infrastructure has to be interconnected with the new deployment.

2.2.1 A Knowledge Plane for the Internet

Clark et al. [18] propose a new paradigm in network design and operations where a
pervasive system is resonsible for 1. building and maintaining an abstract model of
the overall network state, 2. orchestrating all network components to actually achieve
the desired state, and 3. monitoring the network for problems that possibly result in a
deviation from the desired state. This Knowledge Plane is construed of multiple loosly
coupled mechanisms that cooperate in order to reach the global network state defined by
the operators.

The system is designed such that parts—run on both end hosts and servers within the
network—report back to a locally centralized instance that is responsible for monitoring
and enforcing the local as well as the global goals. This local instance federates with
other instances running in different parts of the network in order to gain a global view,
and to infer the globally optimal configuration from all local requirements.

The authors argue that, by using Artificial Intelligence (AI) and cognitive systems, the
Knowledge Plane enables the network to become self aware and independent of human
operators. This independence allows the network to monitor and reconfigure itself in
order to provide meaningful feedback to the end users and to optimize its operations
within the boundaries of the operator defined ruleset.

The key principles of the architecture are the integration of data that is routed through
the network to different points where the information is required, and the need to
operate on incomplete or imperfect information. The latter is especially important as the
information is collected from different administrative domains and from networks with
different operational states. However, the architecture requires all connected mechanisms
to support a single interchange format as it is missing support for transformation
functions, and thus is not able to adapt itself to different representations of the same
information.

While the work defines the requirements of such a Knowledge Plane and suggests
possible building blocks, the system was never implemented nor evaluated. The authors
thus fail to prove that their architecture is actually feasable for achieving the goal
of a globally but decentralized management and coordination system that is able to
orchestrate large scale networks such as the Internet.

2.2.2 Routing Control Platform (RCP)

The Routing Control Platform (RCP) [23] by Feamster et al. is a first step towards a
software-defined routing as it introduces a separate control plane along with a central
decision engine (a controller) for a network of BGP routers. The authors argue that the
routing decisions should be decoupled from the actual forwarding and IP routers should
be more like lookup-and-forward switches that forward packets as fast as possible. The
RCP is connected to all routers in an Autonomous System (AS) and provides centralized
routing decisions based on global knowledge.
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The proposed separation allows for a network wide path selection based on expressive
policies while keeping the changes to existing routers minimal. RCP enables a more
flexible traffic engineering as the egress link for certain traffic can now be changed and the
operators can configure a load balancing system to utilize all existing downstream paths,
thus avoiding congestion on certain links that would normally be selected by the routing
algorithm. Additionally, the proposed solution can enforce correctness contraints and
invariants on the routing decision as it can ensure that each router along the forwarding
path selects the optimal BGP route and thus forwarding loops are avoided.

As RCP uses BGP to connect to the routers, only configuration changes are necessary
and the existing hard- and software can be left in place.

In a first step, only the intra-AS or Interior Border Gateway Protocol (iBGP) links are
replaced with a connection to the RCP and the inter-AS or Exterior Border Gateway
Protocol (eBGP) sessions are still handled by the individual routers. In this phase, the
edge routers of a network need to apply the routing policies defined internally and
distributed via the RCP to the traffic received via the edge links. The RCP acts similar to
a route reflector but is able to provide individual results to each router.

In a second phase, the BGP sessions at the edge links are replaced by connections
between the RCP instances of the different operators that run each AS. The individual
instances continue to use eBGP to exchange routing information. However, due to the
direct connection between RCP instances, the operators can apply global policy changes
directly on the routing information gathered from other ASes instead of applying the
policies locally at each ingress router.

On the one hand, the Routing Control Platform allows network operators to gain a
global view on their network of routers while they can continue to use the existing hard-
and software, such as routers, that provide hardware acceleration for the data plane. Also
existing, and well known and understood protocols are used which allow operators to
incrementally introduce RCP into the existing infrastructure.

On the other hand, RCP is still limited to the lowest common denominator in exchang-
ing routing state and lacks the ability to seamlessly incorporate new and upcoming
routing protocols.

2.2.3 A Software-Defined Internet Exchange (SDX)

The work on a Software-Defined Internet Exchange (SDX) [30] by Gupta et al. describes a
novel architecture for introducing SDN into an Internet Exchange Point (IXP) environment
where no single operator controls the network but networks of different Internet Service
Providers (ISPs) with potentially different interests are interconnected.

Traditionally, IXPs such as DE-CIX [21] offer a neutral point for ISPs to exchange traffic
without requiring a separate peering location. The IXP operates a switch fabric where
all participating carriers connect their networks using edge routers. These routers are
currently using BGP to exchange routing information and peer with other ISPs. The IXP
usually also operates a BGP route reflector to reduce the number of active BGP sessions
and to distribute the routing information among all participants.

The continuing increase in (video) traffic along with an increasing number of peering
disputes between content providers and ISPs put the IXPs in the front line of providing
technical solutions for a more sophisticated traffic management together with a flexible
peering infrastructure. SDX thus offers a solution based on a flexible SDN infrastructure
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to allow carriers as well as content providers to specify peering policies across the
complete IXP infrastructure.

Simply deploying SDN-enabled hardware is not feasible in an IXP environment as the
networking policies along with potential wide-area traffic-delivery applications are not
run by a single operational instance but each ISP is defining its own policies and runs its
own applications that support the specific traffic engineering goals of that carrier.

SDX provides an abstract network consisting of virtual switches to each ISP that accept
the defined policies and commands issued by applications but do not directly enable
these rules on the physical hardware. The SDX combines the policies issued by the
different ISPs to a single coherent set of rules for the physical switches. This abstraction
allows for isolation between the different ASes that are run by the participating ISPs
without loosing the flexibility of a SDN.

As the SDN policies defined by the carriers must match the announced BGP path
for traffic forwarding, the SDX allows carriers to define forwarding policies relative to
the currently advertised BGP routes. The SDX therefore integrates a route reflector that
allows each participant to forward traffic to all feasible routes for a prefix. The announced
BGP routes are used as a default for forwarding traffic if no policies for the particular
flow are defined and traffic is only routed along the BGP-advertised path such that a
network that does not announce a prefix will never receive traffic for this destination. The
tight integration of the route reflector with the SDX infrastructure also allows for policies
based on BGP attributes and to distribute BGP routes based on the defined policies.

However, the SDX still relies on the features of an underlying BGP infrastructure and
while it allows the definition of fine grained forwarding policies, these policies do not
incorporate novel routing protocols nor can they be easily migrated to other platforms.

Additionally, the focus on a single use case along with the restriction of only supporting
a single routing protocol—due to missing support for transformation functions—limits
the advantages of the SDX architecture.

2.2.4 Statesman

Sun et al. [68] introduce a network-wide state management architecture (see Figure 2.2)
that is tailored towards large DCNs. Due to the sheer size of these networks, problems
arise that usually do not occur in smaller networks such as simultaneous failures of
components or a sudden burst of traffic for a specific resource. DCNs thus usually run
multiple management applications that are tailored towards a specific scenario such
as component failure and traffic bursts. These applications often come with conflicting
interests such as avoiding a specific path due to failure while routing traffic over this
path to mitigate the burst.

Statesman provides a network-state management system that allows management
applications for DCNs to export and import certain state to a central location in the
network. The system functions as an invariant checker and conflict resolver. It focuses on
the collection and migration of state from multiple network management applications.
The goal is to manage the configuration state of the complete network and to allow for a
coordinated network-wide state transition while keeping track of network invariants and
offering several mechanisms for conflict resolution during state migration.

The underlying model abstracts the network state into three views: 1. the observed
state, 2. the target state and 3. the proposed state. The observed state represents the
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Figure 2.2: Statesman architecture (adapted from [68])

current state of the network while the target state is the desired configuration of the
network which Statesman is responsible to reach. The poposed state is introduced to
capture the state desired by the applications and each application writes its own proposed
state to the system. Statesman then detects possible conflicts between the proposed states
and validates them against a set of network-wide invariants which capture the basic
operational conditions such as required backup mechanisms or maximum link load.
The states are accepted and merged into the target state if the proposed states are not
conflicting with each other and are compliant with the invariants. Those changes are
then executed on the network.

Statesman focuses on the network-wide configuration state of management applica-
tions, but is not designed to handle the state of running mechanisms. It also requires
applications to adapt their internal state representation to the format defined by States-
man and thus potentially requires major changes to the underlying data structures.

2.3 cross layer systems

Traditionally, network stacks follow a strictly layered design where only mechanisms on
adjacent layers are able to communicate with each other and the exchange of information
is limited to the absolute minimum. Typical implementations of this approach are the OSI
model [77] and the TCP/IP model [13, 14] which itself is based on the DoD model [16].

While limiting the communication to neighboring layers allows for a clean definition
of the communication model as well as the Application Programming Interfaces (APIs),
it also limits the possibilities for adaptation of mechanisms running in each layer, and
some even consider the strict layering of network mechanisms harmful [15].
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Cross layer systems aim to remove the strict separation of mechanisms in the different
layers of the network stack, and allow for information exchange between layers not di-
rectly adjacent to each other. This is either done by introducing additional communication
paths that directly connect mechanisms in non-adjacent layers, by providing a separate
module that spans multiple layers or by completely removing the layered approach and
introducing a new paradigm for mechanism abstraction [66].

While we acknowledge the existence of other approaches in the field of cross layer
architectures, we focus on systems that introduce a separate element for collecting
and disseminating information from mechanisms across the network stack as these
approaches are closely related to the goals of the thesis defined in Section 1.2, and
specifically the contribution described in Section 1.3.1.

2.3.1 MobileMan

MobileMan [19] by Conti et al. is a cross layer architecture for WMNs that allows the
cooperative sharing of status information across all layers of the network stack without
sacrificing the separation of mechanisms into layers during the design phase. This allows
mechanism developers to implement mechanisms that run independent of each other
while offering the possibility to benefit from information gathered on other layers.

The main goal of the enhanced architecture is to increase the local communication
and information exchange among mechanisms and thus reducing the need for remote
communication which subsequently leads to an optimized use of bandwidth and energy.

The authors introduce an additional module named Network Status that spans across
all layers of the network stack as depicted in Figure 2.3. The module is responsible for
handling the state information of mechanisms running on each layer as well as providing
methods for direct communication between those mechanisms. The Network Status holds
information that are usually duplicated across multiple layers, thus enabling mechanisms
to re-use the data gathered on other layers, and allows for a de-duplication of information.

MobileMan combines the advantages of a layered design with the advantages of a
cross layer architecture, and allows network designers to combine existing mechanisms
in some layers that are not yet cross layer enabled with mechanisms in other layers that
are already built with information sharing in mind. This allows for full compatibility
with existing standards as the core functionality of each layer is not modified, and the
benefits of a modular architecture are maintained.

However, existing mechanisms need to be heavily modified to benefit from the Mobile-
Man architecture as the internal state representation needs to be adapted to the interfaces
and the data model provided by the Network Status element. Additionally, when de-
veloping new mechanisms, the designers need to strictly adhere to the specifications
imposed by the architecture to be able to share state information, and are thus possibly
forced to use less efficient internal data structures to be able to share information using
MobileMan.

Additionally, the architecture is limited to the network stack of a single host and is not
able to extend the sharing of information across multiple mechanisms that are distributed
in a network segment. While this allows for a fast exchange of information due to the
local nature of the data structures, the limitation to a single node highly restricts the
possible gains of sharing state information as a regional—within a network segment—or
even global optimization is not possible.
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Figure 2.3: MobileMan architecture (adapted from [19])

2.3.2 CrossTalk

Winter et al. propose CrossTalk [76], an architecture that not only focuses on the dis-
semination of locally gathered information. It also includes globally collected data to
optimize the behavior of mechanisms. The goal is to not only provide local improve-
ments of the running mechanisms within a single network stack but to increase the
overall performance of the complete network by including a global view into the local
optimizations.

CrossTalk includes two additional elements that span all layers of the networking stack
as shown in Figure 2.4: 1. The Local View is responsible for gathering and distributing
local information, and 2. the Global View is used to collect information provided by other
nodes in the network and to distribute this global data to local mechanisms. The global
information is piggybacked on existing packets to reduce the number of packets that
need to be transmitted and to minimize the overhead for the global data exchange.

Additionally, the Local View does not only include information provided by the
mechanisms running in the local network stack but also by other system components such
as the OS, hardware components etc. This tight integration with the nodes’ components
allows for even better optimizations on the local level, and—together with the global
dissemination of information—enables the sharing of these data within the complete
network to achieve a global optimization of the connected mechanisms.

The architecture requires the connected mechanisms to fully adapt the data structures
and semantics provided by CrossTalk in order to benefit from the shared information.
This forces developers to inherit the structures provided by the architecture instead of
selecting the optimal specifications based on the requirements of each mechanism.

Additionally, CrossTalk duplicates the global information across all nodes of the
network which in turn can lead to inconsistencies in the stored information and the
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Figure 2.4: CrossTalk architecture (adapted from [76])

decisions based thereon. This is especially critical in networks with high dynamics where
the data dissemination using the piggybacking mechanisms takes longer than the validity
of the information.

2.3.3 CLiSuite

Instead of providing direct cross layer interaction between mechanisms, CLiSuite [44]
by Lindeberg et al. introduces a middleware that abstracts from the concrete implemen-
tation dependent representation of state information. The framework instead offers a
generic approach to access and re-use state provided by other mechanisms by mapping
semantic equivalent information to a common network state. It thus provides mechanism
independent state information that is dynamically mapped to the mechanism specific
data.

CLiSuite consists of four major components that collect data from the mechanisms on
all layers of the network stack, transfer the information into an abstract state represen-
tation and disseminate the abstract information to the mechanisms again. The overall
architecture is depicted in Figure 2.5.

Each mechanism needs to implement the CLiWrapper interface that is providing a
publish-subscribe interface to transfer the state information within the mechanism to the
CLiMonitor. This interface abstracts from the internal representation of the mechanism
state and provides a common interface to the other components that is not dependent on
a specific implementation.

The CLiMonitor functions as an event bus between the mechanisms running within the
network stack and the storage component. It receives atomic events from the connected
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Figure 2.5: CLiSuite architecture (adapted from [44])

mechanisms on state change, and is able to forward already gathered information to the
requesting layer.

The storage for network state is represented by the CLiMetadataManager. It holds
the abstract state information, and is responsible for converting between the abstract
representation used to by CLiSuite and the concrete representation required by each
mechanism.

The CLiSocket provides applications running on top of the stack with an interface
that supports the primitives of BSD sockets and acts as an compatibility layer between
the—possibly unmodified—application and the cross layer-enabled network stack. Addi-
tionally, the socket offers applications an API to interact with the CLiMonitor and access
the CLiMetadataManager.

CLiSuite also provides filters to limit the amount of information that is stored as
Network State, and reduce the load on the CLiMonitor. However, currently only simple
filters such as predicate and aggregate operators are available which limits the possibilities
of selecting the required state information.

Additionally, CLiSuite only allows for sharing information between mechanisms that
are running on the same network node and even within the same network stack. The
architecture does not provide facilities to share state information across multiple nodes
in a network, and thus cannot provide regional or even global optimizations. The
mechanisms are also not able to incorporate information that are collected outside the
actual data transfer such as energy levels, environmental conditions or OS status.
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2.4 router migration

Routers are at the heart of the Internet. They are the devices that allow the interconnection
of different ASes and thus enable the network of networks in the first place. The BGP
protocol [59] is used to exchange information with both routers in the same as well as
in adjacent networks. It was designed in the early stages of the Internet, and today’s
requirements for high availability and seamless migration were not in focus of the
protocol designers.

Thus, the migration and replacement of BGP routers is a tedious task that requires
long and accurate planning. The sessions between routers run indefinitely and only allow
for very short interruptions until the routing entries are invalidated [72].

However, a replacement for BGP is currently not in sight and even the design of
modern networks is limited to this protocol as the common denominator for exchanging
routing information with other networks.

The need for dynamic adjustments of the routing infrastructure has lead to various
works that try to tackle this challenge. In the following, we discuss the most important
ones.

2.4.1 Virtual Routers on the Move (VROOM)

Wang et al. [73] propose Virtual Routers on the Move (VROOM), a system that decouples
the control plane of routers from the data plane and introduces a dataplane hypervisor that
allows the router to freely move from one physical system to another without interrupting
neither the data nor the control traffic.

VROOM partitions a physical router to create virtual router instances that each run
their own control and data plane and are thus able to forward traffic independently of
each other. Each control plane can run in a container or virtual environment, executing
its own applications, routing protocol implementations and configurations, while the
independent data planes all reside on the substrate, but each holding a separate Forward-
ing Information Base (FIB) and operating on separate interfaces. This separation enables
VROOM to migrate the control and data plane independently of each other and thus
support a seamless move of (virtual) routers between hardware instances.

The seamless migration is assisted by a remote control plane that forwards protocol
updates received by the migrate-from router to the moved control plane such that
the router remains reachable by its adjacent protocol peers and can receive update
notifications. The mechanism also allows an already migrated control plane to send
updates back to the data plane of the migrate-from router and thus keep the forwarding
information current even during migration.

Additionally, VROOM introduces the concept of double data planes where a single
control plane can orchestrate two data planes, one residing on the migrate-from and one
residing on the migrate-to router. This aids the seamless migration process as it allows
for asynchronous link migration where some traffic still flows trough the old router while
other traffic is already handled by the new instance.

However, VROOM is designed to migrate routing state between router instances of
the exact same type. The authors leverage this limitation to speed up the migration time
by providing a basic Virtual Machine (VM) image on each physical instance and only
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copying the configuration and runtime state in the control as well as the data plane
between routers.

2.4.2 Router Grafting

Router Grafting [37] by Keller et al. is a system that allows to seamlessly remove partial
state of a BGP router from one mechanism and merge them into another. The system
focuses on typical use cases in large provider networks that connect multiple customers
and where SLAs often prevent operators from reconfiguring parts of the networks as this
reconfiguration would lead to customer downtime and thus violate the SLA.

Router Grafting performs the following steps to achieve a seamless migration of single
BGP sessions: 1. export the protocol configuration on the migrate-from router 2. migrate
the underlying link, 3. migrate the underlying Transmission Control Protocol (TCP)
connection, 4. import the protocol configuration on the migrate-to router, and 5. exchange
any routing state that was changed during the migration process. While the steps two
and three are covered by existing solutions, namely SockMi [11] and programmable
networks such as SDNs, the first and the last steps require modifications of the BGP
implementation.

The authors modified the BGP state machine and introduced an additional inactive
state (see Figure 2.6) to allow the router to import the necessary information without
trying to comunicate with the remote end-point. Once the migration of the configuration
and link state is completed, the router transitions into established state and continues to
import the existing routing information extracted from the Routing Information Base
(RIB).

Idle

Connect Active

OpenSent OpenConfirm

EstablishedInactive

Figure 2.6: Extended BGP state machine used by Router Grafting. The additional inactive state is
highlighted.
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Additionally, the migration requires the BGP decision process to be re-run, and routing
changes to be disseminated to neighboring routers, once the state is transfered. This step
is necessary as the migrate-to router might have another best route for the destination
prefixes. To avoid a complete reconfiguration of the neighboring routers, the migrate-from
router replays the messages received from the neighbor such that the migrate-to router is
able to run the decision process and notify all other connected mechanisms about the
necessary updates.

The system currently only handles the RIB as the most important source of state
information available at the router. All other state such as timers and statistics are
reinitialized on the migrate-to router during the migration and the information gathered
so far is lost.

Router Grafting specifically targets the migration of routing state between mechanisms
from different vendors where interoperability is usually not given. Therefore, it introduces
the possibility to adapt the format of the RIB during the migration. However, this
adaptation is performed offline and thus takes an additional step in the migration
process.

2.4.3 Seamless BGP Reconfigurations

Vissicchio et al. [71] propose a scheme for seamlessly reconfiguring BGP routers named
Ships-In-The-Night (SITN). The system is based on the Virtual Routing and Forwarding
(VRF) feature [62] that is available in most commercially available routers, and thus
requires only minimal changes to the existing infrastructure. VRF provides multiple
namespaces within a single router, and allows operators to run multiple independent
RIBs on a single system.

SITN maintains multiple RIBs per device, but only one routing table is active at any
time. This allows for updating the inactive routing tables on all devices of a given AS
without any effects on the actual forwarding as well as the eBGP sessions maintained
with external mechanisms.

The architecture requires three main components to achieve a seamless reconfiguration:
1. a mechanism to propagate all external routes to multiple namespaces, 2. an interface
that propagates iBGP updates from the currently active namespace to the eBGP peers,
and 3. a tagging mechanism that is able to label packets with VRF information. While
the first component is available in commercial routers, the latter two are implemented
using a BGP proxy that is located in front of the actual router as shown in Figure 2.7.

The proxy terminates the eBGP sessions from external peers and maintains an iBGP
session per VRF domain to the router. The proxy provides a BGP multiplexer [70] but
extends the architecture to support the concept of active namespaces—which allows to
switch between different RIBs—as well as selective update propagation.

While SITN provides seamless BGP reconfiguration within a network, it does not
directly support the migration of the complete RIB between router instances. Additionally,
SITN is a special purpose solution that only focuses on BGP, and is not generally
applicable to either other routing protocols or even mechanisms from a completely
different domain.
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Figure 2.7: Ships-In-The-Night architecture (adapted from [71])

2.5 network function virtualization

Network Functions pervade networks of various sizes from small company networks
running a single NF to large DCNs where NFs already make up between 30 % and 50 % of
all networked devices [64, 65]. NFs range from simple mechanisms performing Network
Address Translation (NAT) over packet filters and firewalls to advanced functions such
as Intrusion Detection Systems (IDSes) and Deep Packet Inspection (DPI) that monitor
and manipulate traffic on all layers.

Traditional NFs are vendor specific devices that function as a black box to the operator
and can only be configured and customized to a pre-defined level. These devices are
placed statically in a network path and features such as scalability and High Availability
(HA) come at an additional operational and monetary cost, if they are available at all.

However, research efforts in this area have lead to service oriented [6, 26], compos-
able [63], extensible [7] and scalable [28, 57] NF implementations. The introduction and
combination of technics well known from other areas of network design and operations,
namely SDN and hardware virtualization running VMs, fostered the development and
deployment of NFV.

NFV uses virtualization on commodity servers to enable dynamic scaling of NFs and
SDN principles to compose new functions by chaining existing NFs. This approach in
deploying NFs has lead to the development of Service Oriented Architectures (SOAs) in
the area of network design and operations where each function only executes a small but
specific task and multiple functions are dynamically combined to achieve an overall goal.

Currently, there exist two types of systems that are either optimized to provide HA or
to enable dynamic scaling of virtualized NFs. In the following, we discuss both categories
with a focus on the possibilities and methods for sharing state information.
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2.5.1 Remus

The goal of Remus [20]—proposed by Cully et al.—is to provide transparent recovery
from fail-stop failures of a single physical host, thus enabling HA on commodity hardware
for existing, unmodified software. It does so by snapshotting VMs on a regular basis and
transferring this snapshot to a backup mechanism holding a secondary copy that is spun
up upon failure of the primary instance.

The system is based on the Xen [9] hypervisor, utilizing, optimizing, and extending the
existing functionality to seamlessly migrate VMs between hosts. It runs paired servers
in an active-passive setup where one mechanism takes the role of actively executing the
replicated VM while the passive mechanism only manages and stores the replicated disk
and memory content until the active instance fails. Upon failure, the passive instance
immediately takes on the active role without a boot process as all necessary information
is readily available. This requires a high snapshot frequency to ensure that the state
information on the passive instance is up to date, usually leading to a high operational
delay as the memory access is basically limited to the speed of the synchronisation
network.

Therefore, the authors explicitly do not to attempt to achieve a deterministic behavior
of the replicas. Instead, they accept that the output can be different, even when the same
input is replayed and use speculative execution [51] ahead of the synchronisation points.
Buffering the output of the active mechanism enables the operator to define a tradeoff
between consistency and output delay depending on the requirements of the network
and the application running inside the VM. The buffered output also enables Remus to
use asynchronous state replication that allows the active instance to continue operating
even if the snapshot is not yet committed on the passive node.

The output buffers introduce additional burstiness into the network traffic as the
output is now released at intervals instead of as a continuous stream of data.

There is no need to specifically design software to use Remus but it supports any OS
and application without modification to run inside the replicated VM. However, directly
copying memory between the active and passive instance limits Remus to running exactly
the same implementation not only of the application providing the functionality but of
the complete VM including the OS and any auxiliary software.

2.5.2 Tardigrade

Tardigrade [46] by Lorch et al. is a system for deploying existing, unmodified binary
applications as fault-tolerant services using Lightweight Virtual Machines (LVMs). Similar
to Remus, described in Section 2.5.1, it asumes a fail-stop model where host machines
only fail by completely stopping operation but not by acting arbitrarily.

The LVMs employed by Tardigrade only use a thin layer of abstraction between the
host OS and the virtualized application stack instead of replicating a complete VM
including the OS running an independent kernel, managing different memory modes
and executing background services. This reduces overhead for both network latency and
replication bandwidth as the memory footprint of LVMs is much lower, resulting in faster
snapshot creation and smaller snapshots to be transfered between the replicas.

Additionally, the system is not limited to a single pair of servers but supports multiple
replicas of the same LVM that all act as a passive mechanism to the one active instance
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processing packets. On failure, one of the passive mechanisms takes the active role and
the other replicas continue to receive and process state updates. This enables Tardigrade
to not only handle the failure of a single host but continues to offer HA even if multiple
servers fail.

The architecture of Tardigrade is shown in Figure 2.8. It is based on three main
components: The orchestrator is responsible for coordinating both failure detection and
instance management as well as snapshot coordination. It uses an unreliable failure
detector that receives periodical heartbeat messages from each instance and decides,
based on these updates, if a fail-over should be initialized (failure of the currently active
instance) or an instance should be removed from the set of backups (failure of a passive
instance). The orchestrator also manages the creation and distribution of snapshots
among the instances. It distinguishes between full and incremental snapshots. While a full
snapshot can always be applied to an instance, an incremental snapshot is only applicable
if the last full snapshot and all subsequent incremental snapshots have been applied. The
active instance only proceeds operation—i.e., releases buffered network packets—if the
generated snapshot is applicable to all backups.
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Host
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Figure 2.8: Overview of the Tardigrade architecture (adapted from [46])

The checkpointer is responsible for creating consistent snapshots across all system objects
such as files, threads or memory locations. To track memory changes, it identifies the
pages altered between two snapshots to efficiently generate incremental snapshots by
intercepting the memory write operation and setting a dirty bit in its own metadata.
For file-change tracking, the checkpointer captures ongoing write operations that are
replayed on the backup without the need to track the actual changes in a file.

The network filter is the third major component within Tardigrade. It is responsible for
handling the buffering and release of network packets on the active instance and ensures
that only the active instance is visible towards the network using the shared address. Due
to the socket based implementation of the network interface in Bascule [10]—the LVM
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framework used by Tardigrade—the TCP connections are currently broken on failover as
the TCP state is not replicated between instances.

While Tardigrade uses LVMs and thus the footprint of the replicated memory is small,
the authors recommend to use the system only for services that have a low memory-
dirtying to bandwidth ratio. Otherwise the snapshotting of a LVM and the replication of
a snapshot takes too much time and the network latency significantly increases due to
buffering the output until the snapshot is committed.

2.5.3 Split/Merge

Split/Merge [57] by Rajagopalan et al. provides an abstraction that uses state replication
on scale-out and state merge on scale-in. It uses a state-centric, system-level design for
seamlessly scaling NFs. The system makes use of the specific state properties of NFs that
each instance is only responsible for a certain number of flows and thus only needs to
hold state information for that specific set while global state shared between all flows
usually is neither large nor critical for the operation of the NF.

The state information is classified into internal state which is only required by a instance
to run but has no effects on the migration (e.g., cache entries, temporary information),
and external state that needs to be migrated in order for the NF group to function properly.
The external state must be consistent across all NFs that access the information to ensure
consistency and loss-free operation. The external state is further classified into partitioned
and coherent state. While the first class is exclusively accessed by a single instance (e.g.,
flow specific information), the latter is shared globally between all instances of a NF.

Split/Merge provides a library that externalizes state management and acts as an
additional layer in accessing the stored information. It provides functions to handle
per-flow (external partitioned) as well as shared (external coherent) state on a transaction
basis where state information must be locked before access and must be unlocked after
operations are finished. The library is also responsible for copying partitioned sub-state
to another replica when notified by the orchestrator.

The orchestrator is a central instance that coordinates the complete operation of
Split/Merge similar to the controller in a SDN. It is supported by an agent that runs on
the virtualization host and manages the dynamic creation and destruction of VMs.

The system uses an underlying SDN to ensure that packets are always forwarded to
the VM responsible for the flow the packet belongs to. The orchestrator has access to the
SDN and can implement rules that ensure the forwarding policy. Split/Merge relies on
certain configurations of the underlying network and the VMs. For example, all VMs
must share common MAC and IP addresses.

Split/Merge is designed to operate loss-free but explicitly allows for reordering of
packets even during normal operation. It is up to the NF and the subsequent mechanisms
to cope with the reordered data stream. To ensure loss-free operations, Split/Merge halts
all flows and buffers the packets at the orchestrator while migrating flow state. The
buffering can lead to a significant delay of packets during migration and—depending on
the current network load—might cause a large memory overhead on the orchestrator.

NFs must be explicitly designed to support the Split/Merge abstraction and must use
a five tuple to identify the flow state. Split/Merge is limited to sharing state information
between instances of the exact same implementation and the requirement of strong
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consistency across coherent state information might cause a large overhead due to state
synchronisation across multiple instances.

2.5.4 Pico Replication

Rajagopalan et al. also propose Pico Replication [56], a HA framework that is specifically
tailored towards NFs. It operates on a per-flow basis and is able to create snapshots
of the individual flow state instead of snapshotting the complete mechanism as done
by other systems. This enables Pico Replication to achieve a higher snapshot frequency
while having a lower overhead than VM centric systems.

A high snapshot frequency without introducing traffic burstiness is only possible by
handling flow state individually as snapshotting requires packets to be buffered until the
snapshot is committed. This prevents inconsistent state between NFs.

The framework utilizes concepts introduced by Split/Merge (see Section 2.5.3) and
extends the existing mechanism with additional modules running on each host to support
HA functionality. An overview of the architecture is given in Figure 2.9.
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Figure 2.9: High level architecture of Pico Replication (adapted from [56])

In particular, Pico Replication introduces a State Management Module (SMM) that is
responsible for identifying relevant information within a NF implementation and controls
access to the flow state during operation. Pico Replication only targets partitioned state,
that is state critical for the correct operation of a NF and that cannot be recreated during
or after failover. The authors also explicitly exclude coherent state (e.g., static configuration,
non-critical counters globally shared between NF instances) as it is assumed that this
state information is already replicated by other mechanisms anyway.
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The SMM contains both active as well as passive flow state. The active state is associated
to a flow currently processed by the NF running on the host while the passive state contains
information replicated to the system but belonging to a flow that is processed on another
host (backup state). The passive state is not released to the NF until a failover is signalled
and the instance is instructed to take over the particular flow.

Additionally, the SMM maintains transactions for each active flow state, thus keeping
track of packet processing of the NF and therefore accessing or altering the state informa-
tion. This tracking is necessary to define if it is save to replicate flow state or if the state
is currently modified by a processed packet.

The Packet Management Module (PMM) is responsible for buffering packets during a
snapshot operation. It buffers incoming packets during snapshot creation, thus suspend-
ing any operation on the flow state until the transaction is completed. This prevents state
changes during operation as the state of NFs is solely dependent on received packets.
Output packets are also buffered during snapshotting until the state is committed to the
passive node. This is necessary to prevent state update in subsequent mechanisms that
might become inconsistent if the NF instance fails during the snapshot.

The Replication Module (RM) orchestrates the operation of Pico Replication by executing
a per-flow replication policy defined by the NF operator. It instructs the PMM to halt a
flow, signals the SMM to create and transfer a snapshot of the state of the halted flow, and
after receiving confirmation that the snapshot was transfered successfully, commands the
PMM to release the output buffer.

The framework also utilizes the features of an underlying SDN to detect NF failure
and redirect the assigned flows to a backup instance. The former is done by listening to
port down messages of the switch that connects the NF instance to the network and the
latter is done by rewriting forwarding rules in the SDN controller.

Pico Replication is specifically designed for HA requirements of NFs. It is able to
continuously replicate state information between instances of the same implementation
but lacks features to failover between different implementations. The dynamic scaling of
NFs is not in focus of the framework and the authors explicitly refer to other solutions
like Split/Merge that can be operated in conjunction with Pico Replication. Additionally,
Pico Replication explicitly accepts temporary packet loss during failover as long as the
end to end connectivity in upper layer mechanisms is retained.

2.5.5 OpenNF

OpenNF [28] by Gember-Jacobson et al. provides a framework that allows for “efficient,
coordinated control of both internal NF state and network forwarding state”. The frame-
work enables operators to access and migrate the state of one NF instance to another
instance while coordinating the packet forwarding in an SDN-enabled network to the
currently active NF. This tight coordination enables OpenNF to avoid loss or reordering
of packets, and thus provides guarantees on both latency and memory overhead during
the move. The framework is able to satisfy tight SLAs on NF performance and availability
while minimizing operating costs.

The setup uses a design similar to SDN as shown in Figure 2.10. A central controller
coordinates both the state migration and the coordination of flows. On top of this
controller, several applications provide the actual logic that initiates the migration and
manages the state information during the operation. The application is connected to the
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controller using a northbound API and can issue a move command to migrate the state of
flows from one NF instance to another. Typical controller applications are performance
or failure monitors that—in the first case—surveil the CPU and memory consumption of
a NFV host and initiate a flow and state migration in case of high load on the system,
or—in the second case—provide a hot standy-by mechanism that takes over the operation
if the primary instance fails.

NF State Manager Flow Manager

NFs SDN

Southbound API

Control Application

OpenNF Controller

Northbound API

Figure 2.10: OpenNF architecture (adapted from [28])

The application can specify several modes of operation such as parallelization and early
release of flow state information that allow for faster migration of NFs and thus keep the
operational overhead low. This is especially important for virtualized NFs that run on
highly utilized hosts and where the NF performance is critical for the operation of the
network.

Depending on the requirements of the migrated NF and the specification given by the
application, multiple levels of guarantees such as no guarantees, loss-free, order preserving
and consistency, or a combination thereof ensure that the reconfiguration of the data
network during the migration does not affect the operation of the NF. An IDS for example
might rely on receiving packets in the correct sequence in order to accurately monitor
the network for suspicious flows on the one hand but not raise false alerts due to packet
reordering on the other hand.

The southbound API connects the controller to the actual NF and provides an interface
to extract and insert state information. The controller is able to specify exactly which state
to export and import and the API provides several functions to handle state information
for single as well as multiple flows. Additionally, filters allow the controller to specify
which flow state information should be extracted from the NF.

Depending on the mode of operation, packets are buffered at the controller which
might introduce a high load on the central system and hinders scalability.

OpenNF focuses on the migration of state between the exact same implementation
of a NF. It transfers the raw state information between instances and is thus limited to
NFs that are able to directly process the transfered data. It is not possible to migrate
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certain flow state to another implementation of the same NF that is better suited for the
current traffic type such as specialized IDSes that are optimized to detect certain attacks.
Furthermore, OpenNF is—due to missing support for transformation functions—not able
to exchange state between different NFs such as sharing information about malicious
flows between IDSes and firewalls.

2.5.6 Distributed State Transfer (DiST)

Kothandaraman et al. [40] propose a system that extends OpenNF—presented in Sec-
tion 2.5.5—to support Distributed State Transfer (DiST). The enhanced framework re-
moves the controller from the critical path during migration by using the data network
to exchange state information directly between NFs. Removing the control network from
the critical path—using it only for signalling—reduces the migration time and prevents
controller as well as network overload, thus improving the scalability of the complete
setup.

DiST extends the OpenNF framework by introducing additional commands such that
the controller does not have to extract flow information from the migrate-from NF and
then insert it to the migrate-to NF. The system is able to initiate a move that commands
the migrate-from NF to directly send its current state to the migrate-to NF. It does so by
extending the per-flow messages with the Internet Protocol (IP) address of the destination
VM in the data network.

To allow for loss-free and order preserving operation, DiST also introduces packet
forwarding between the migrate-from and the migrate-to NF. It uses OpenNF events to
notify the migrate-from NF which packets to forward to the migrate-to instance. A packet
buffer at the migrate-to NF holds the received packets until all relevant state is transfered.
This can either be initiated on a per-flow basis where only packets for the currently
migrating flow are redirected or on a global basis where all packets are redirected and
the buffer is only released after all state is transfered.

While buffering is sufficient for loss-free operations, DiST introduces an additional
mechanism to provide order preservation of packets. The system uses InBand Control
(IBC) Packets to synchronize the two packet streams, one from the migrate-from NF
and one directly from the switch. Once the migration starts, the switch is configured to
duplicate the data stream and send one copy to each of the involved NFs. The switch then
generates an IBC packet and inserts it into both data streams. Depending on which IBC
packet is received first by the migrate-to NF, the packets are either buffered or directly
processed until the second IBC packet arrives.

While DiST reduces the overhead imposed by OpenNF during migration, it does not
remove the other limitations, namely sharing information only between NFs of the exact
same implementation.

2.5.7 P2P OpenNF

Gember-Jacobson and Akella [27] introduce two mechanisms to improve the performance
of a loss-free migration of NF state.

On the one hand, they remove the controller from the critical path by enabling NFs
to directly transfer state information as well as packets between instances. On the
other hand, they propose the reprocessing of packets to update the already transfered
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state information while migration is still in progress. The optimizations are applied to
OpenNF (see Section 2.5.5) but can be transfered to other state migration systems such as
Split/Merge.

To support a peer-to-peer (P2P) state and packet transfer between NF instances, the
authors extended the OpenNF southbound API to support two new functions, namely
accept and transfer. The former instructs the migrate-to instance to accept incoming
state transfers while the latter initiates the export of state information and instructs the
migrate-from instance to duplicate and forward all packets to the migrate-to instance for
reprocessing. The received data packets are either buffered on the migrate-to instance until
the state transfer is completed or directly are forwarded to the NF for (re)processing. The
extension uses virtual interfaces in conjunction with bridges to inject the P2P transfered
packets into the packet stream received from the distributing switch.

The P2P forwarding of packets between NF instances significantly reduces the load on
the controller and thus reduces the possibility of loss of processing performance during
a migration due to controller overload.

The authors introduce the reprocessing of packets as a method to avoid packet loss
during a migration due to overflowing buffers. Therefore, the migrate-from instance
continues to process the incoming packets belonging to a flow even if the corresponding
flow state is currently migrated while also forwarding packets to the migrate-to instance
where they are buffered. The migrate-from instance only forwards packets that trigger
a state update, reducing the number of buffered packets on the migrate-to instance,
and consequently reducing buffer demands. The forwarded packets are then processed
twice: once at the migrate-from instance and once at the migrate-to instance. While the
migrate-from instance continues to process the packets and produces output as normal,
the migrate-to instance only processes the packets to update the already migrated state
information. It is thus necessary to suppress any output (both log entries and output
packets) from that instance in order to avoid duplicate results. This is done by replacing
the standard Input/Output (I/O) as well as the socket and the Packet Capture (PCAP)
functions by stubs that either surpress the output on reprocessing or call the original
function, and by tagging each packet with a reprocessing flag that indicates if output
should be produced.

The continuous processing on the migrate-from instance provides a source of current
state information even if packets on the migrate-to instance are lost due to a buffer
overflow. Additionally, the migrate-from instance keeps the state for some time after the
migration is finished to ensure that relevant state information is still available for normal
packet processing.

While the reprocessing of packets still requires buffers to temporarily store packets dur-
ing migration, the buffers are removed from the critical path and thus packet processing
speed is not decreased during migration.

The extended implementation reduces the controller load and thus significantly speeds
up both the migration time as well as the packet processing during migration. It does,
however, neither remove the limitations of OpenNF to only migrate state information
between instances of the exact same implementation nor add the missing ability to share
state information between different types of NFs.



30 background and related work

2.5.8 Stateless Network Functions

Kablan et al. [34] introduce the concept of Stateless Network Functions (StatelessNF)
where the functionality of a NF is decoupled from its state. While previous work focused
on identifying and migrating relevant flow state, the authors of StatelessNF argue that
the state of a NF needs to be cleanly separated from the actual operation and persisted in
a backend store that can be concurrently accessed by all instances of the NF.

The architecture of StatelessNF currently consists of a processing tier and a data store
tier but could be easily extended to additional tiers that process information in the
background or provide security services for accessing the stored data. This dynamic
architecture allows NFs implemented using StatelessNF to scale even on high load as
the number of processing tiers can be increased without limitations that are otherwise
imposed by state migration such as the need to redistribute flow state across new
instances.

StatelessNF uses RAMCloud [54], a backend providing a generalized data store for
datacenter applications. It runs on a cluster of storage nodes and provides a unified
frontend to applications, managing data replication among connected servers and as-
suring data availability even on node failure. RAMCloud keeps the data in DRAM at
all times and thus achieves very low latency both on read and write operations. The
communication to the external data store is done using an InfiniBand based low latency
network.

The authors created a dedicated RAMCloud client implemented as a library that acts
as a layer between the NF and RAMCloud. The library handles both the communication
setup with RAMCloud using IP and the actual exchange of information using DMA, thus
bypassing the OS for higher performance.

StatelessNF provides both a blocking and a asynchronous (non-blocking) interface to
the storage backend. Using the blocking mode requires only minimal changes to the
NF as the calls to local lookups are simply replaced by calls to the external memory,
thus blocking the execution until the network call to RAMCloud returns. While blocking
execution to wait for the response of a local function or memory call is reasonable,
using this method to access remote resources might lead to a decreased forwarding
performance of the NF. Using the asynchronous interface circumvents this execution lock
but requires additional changes to the implementation where the functionality must be
split into a pre-lookup, lookup and post-lookup phase.

The authors also implemented a NF-local cache that holds the most recently read state
information locally and thus avoids calls to RAMCloud.

To ensure data consistency, each instance of a NF acts as a liable source of state
information for the flows it is assigned to. This guarantees that updated information is
only actively used by the NF once it is persisted by the storage backend and thus the
stored state in the backend always represents the current operational state of the NF
group. It is not necessary for the NF to wait for the state information to be replicated in
the storage cluster until it can be actively used.

StatelessNF focuses on the clean separation between functionality and state while
providing near native access time to the state information. However, the externalized
state is still specific to a certain NF implementation and thus can only be shared between
instances of the exact same type.
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Additionally, StatelessNF explicitly does not provide methods to annotate state but
views the stored information as a unstructured block of data without any prescribed
structure or schema. Furthermore, StatelessNF provides no means to persist and load
snapshots of (partial) state at a specific point in time.

2.6 discussion and summary

The systems surveyed in this chapter all provide means to share, migrate or replicate
state information of different network components but with different use cases in mind.
We provide an overview of the discussed systems in Table 2.2.
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RCP [23] + − + −− o −− o ++ −−

SDX [30] + o o o + o + ++ −−

Statesman [68] + −− ++ − ++ − ++ o −−

MobileMan [19] ++ o − −− + −− −− −− ++

CrossTalk [76] ++ o − −− + − o − ++

CLiSuite [44] ++ + − + o −− −− −− ++

VROOM [73] −− + − −− −− + − ++ −−

Router Grafting [37] −− ++ − + −− o −− ++ −−

SITN [71] −− + −− −− −− −− −− ++ −−

Remus [20] o − −− −− −− + o + −−

Tardigrade [46] −− + −− −− −− + o + −−

Split/Merge [57] −− + −− −− −− ++ − ++ −−

Pico Replication [56] + o −− −− −− ++ − o −−

OpenNF [28] −− + o o −− ++ − + −−

DiST [40] − ++ −− −− −− ++ o + −−

P2P OpenNF [27] − ++ −− −− −− ++ o + −−

StatelessNF [34] ++ − o −− ++ ++ o ++ −−

Table 2.2: Overview of the related work. We use ++ (extended support), + (full support), o (partial
support), − (rudimentary support), and −− (no support) to denote the feature set of an
approach and its suitability for the use cases presented in Section 3.1.

Architectural changes in the network design have mainly be introduced with the usage
of SDNs. The clean partitioning of network operations into management, control and data
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plane as shown in Figure 2.11 has introduced a separation of concerns where decisions are
taken in a central controller and the network hardware only acts as the execution instance
of a centrally provided ruleset. This centralization has naturally led to the exchange of
state information on the management and control plane while systems on the data plane
keep their state locally due to performance reasons. Systems like Statesman coordinate
the requirements of different network operations on the management plane to impose a
unified and consistent state on the network that prevents a performance degradation or
even network splits while systems like RCP handle the central coordination of packet
forwarding.

Management 
Plane    

Control Plane

Data Plane

Statesman

RCP

SDX

VROOM

Router Grafting

Remus
Tardigrade

Split/Merge

Pico Replication

OpenNF

p2p OpenNFDiST

StatelessNF

Knowledge Plane

MobileManCrosstalk CLiSuite

SITN

Figure 2.11: Related work and its position in a layered view of the networking architecture.

The integration of legacy mechanisms and the seamless migration towards a fully SDN
enabled network is still one of the major challenges in this area [41].

On the one hand, architectural solutions such as SDX provide methods to unify the
view of such hybrid networks by providing a common interface for both legacy as well as
SDN-enabled devices. These interfaces are limited to the smallest common denominator
when it comes to incorporating existing management planes.

On the other hand, cross layer solutions require the exchange of all legacy mechanisms
in order to share state information. They remove the strict communication hierarchy by
bypassing the layers of the network stack, and some frameworks such as CLiSuite even
support rudimentary transformation functions. However, those approaches are focused
on mechanisms running on the same node, and only extended architectures such as
CrossTalk enable the sharing of information across multiple nodes. Thus, the use cases
for cross layer systems are limited to specialized networks such as WMNs where each
node runs independently, and bases its decissions only on locally gathered data.
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In the area of NFV, some systems such as Remus and Tardigrade focus on the HA
of networked systems, while the work on Split/Merge as well as OpenNF and its
optimizations target the dynamic and efficient scaling of NFs during different load
situations. The systems keep the state information as close to the functionality of the
mechanism as possible, only extracting state during snapshot creation (in the HA use
case) or during scaling events.

StatelessNF proposes a strict separation of functionality and state information leading
to a new design principle when creating networked systems. This separation of state
information has the advantage of using common methods to share information between
different instances of the NF without the need to extract state from various locations
beforehand. It usually requires a redesign of the software architecture as relevant state
information now has to be identified and separated by the mechanism architect during
the design process instead of leaving this task to a third party system.

We introduced the concept of a network context in Section 2.1. Existing work handles
the sharing, migration or replication of current state representation using various technical
solutions, but only few works even considers the other but equally important pieces of
information. The configuration parameters are considered to be manually distributed
among the various instances that use the same state information while metadata is not
attached to the shared information, limiting the replication of state to the exact same
implementation of the same mechanism.

Some systems such as StatelessNF even explicitly view the shared information as a
binary blob without the need to know its exact structure or contents. Only Router Grafting
considers the migration of state between routers of different vendors proposing an offline
procedure to convert the data format between these mechanisms.

Historical records to recreate a state at a certain point in time are not considered by
any system. Thus, none of the systems support a roleback to a previous known working
state once the current state is finally committed. While such a short term roleback might
be sufficient at a first glance, it can be advantageous to load known to work states
where a quick adaptation to dramatic changes in environmental conditions or traffic
characteristics is required and built in mechanisms are either not capable of handling
these changes or are simply too slow to react.

The HA solutions use a heartbeat to detect a complete failure of the active instance
but do not provide extensive monitoring information. All other systems rely on external
monitoring to provide the controller with information necessary to police and intervene
their operations.

None of the existing solutions supports sharing of the complete set of information
that is composing the network context. Especially the metadata that enables sharing
of information across mechanisms and implementation borders is missing in all the
surveyed work. However, the extensive sharing of the complete context information is
required to achieve a more flexible and dynamic network management, and further boost
the deployment of new and innovative services.
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P R O B L E M S TAT E M E N T

In this chapter, we first introduce four use cases that are references throughout this
thesis, and that serve as examples for possible deployment scenarios for the proposed
architecture. The scenarios are chosen to represent a wide variety of challenging network
designs from state of the art core network deployments over data center infrastructure to
upcoming access networks using device-to-device (D2D) communication.

Second, we introduce the concept of switching between mechanisms, and thus enable
networks to cover a large spectrum of environmental and operational conditions. We
argue that a switch becomes necessary when conditions change, due to the fact that
mechanisms are designed with a certain operation environment in mind. Thus, changes
in this enviornment also require a change in mechanisms to provide optimal network
performance.

Third, we introduce the sharing of network context as one of the core enablers for
innovation in network architectures. While sharing of state is already available in a
narrow set of applications, we extend the sharing of information beyond those silos and
propose an extensive exchange of context between all mechanisms within a network.

3.1 use cases

In this section, we provide several motivating use cases that show why broader sharing
of context is beneficial for networked systems and network operation in general. The use
cases serve as examples where sharing of network context can be employed to gain either
additional performance, security or operational safety, or where sharing information can
evolve the network itself, e.g., in a SDN or when deploying NFs.

We not only focus on newly developed mechanisms that can be built with sharing in
mind, but also include legacy deployments where context sharing was not a first order
design principle. In particular, we show how networks can benefit from context sharing
between NFs as well as legacy mechanisms such as BGP routers and routing protocols
deployed in WMNs.

The use cases described in this section are used throughout the remainder of this thesis
to illustrate the concepts introduced. Additionally, the use cases serve as scenarios for
the evaluation to show the feasibility of our approach.

3.1.1 Migrating Network Functions

The migration or sharing of context is a core enabler of employing NFVs as shown
in previous work such as [28, 34, 57]. Tight SLAs on the operation of networks often
demand a low packet processing time of NFs running in the data path of these networks
while over-provisioning the hardware to address possible load scenarios is prohibitively
expensive.

The dynamic scaling of virtualized NFs allows an operator to provide enough for-
warding capacity during times of high load while shutting down unneeded instances

35
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of the NF when the network is not fully utilized, thus saving energy and operational
costs. The dynamic allocation of computing resources even enables the operator to scale
out some of the running NFs to cloud providers if the resources available locally are not
sufficient to handle the current load as shown in Figure 3.1. Additionally, the usage of
virtualization allows multiple different NFs to share resources which leads to a higher
utilization of the available hardware.

Local Datacenter
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Cloud Datacenter
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Figure 3.1: Dynamic scaling of NFs to the Cloud and context sharing between instances.

However, the dynamic scaling of NFs requires the underlying systems to either keep
the network context consistent across all instances or migrate the relevant context together
with the redirection of the corresponding flow.

For instance, an IDS stores state about each flow along with global counters and threat
information gathered across all analyzed flows. Rerouting a flow to a new instance can
significantly impact the detection accuracy due to missing context and can either trigger
false alerts or leave attacks undetected. Thus, the sharing of IDS context improves the
detection rate even when the mechanism is dynamically scaled and flows are redirected
to other instances.

However, sharing context information is not only necessary for dynamic scaling of
NFs. It is also required if an operator needs to replace an instance of a NF with either a
version upgrade or with a new implementation. Especially networks that operate on tight
SLAs which do not allow for service degradation or even outages require an in-place
upgrade or replacement. Redirecting new flows to an upgraded instance and fading out
the operation of the old instance when the handled flows are terminated is sufficient for
networks with only short lasting flows.

However, only redirecting new flows is not reasonable when the network also carries
long lasting flows that delay the fade out process for an undefined amount of time. The
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migration of context between the current and the new instance helps reduce the total
upgrade time as it enables the operator to redirect existing flows to the new mechanism
as soon as the corresponding data is migrated without loosing information on the flow
context.

Additionally, it might be necessary to employ specialized implementations of a NF for
flows with certain characteristics. These specialized NFs usually need more resources,
leading to a higher computational load on the hosts, to a higher delay in packet forward-
ing, and to a lower throughput. It is therefore not feasible to route all flows through this
specialized mechanism as this would decrease the overall performance of the network.
Instead, it is advisable to process all flows with a generic and high performance instance
and to carefully select the flows to be processed by the specialized implementation. In
the example above, a generic IDS inspects the complete traffic in a network segment and
detects a suspicious flow. This flow is then redirected to a specialized IDS for further
inspection.

3.1.2 Reconfiguring Network Functions

It is beneficial for services in a network to exchange relevant context information among
each other and to cooperate in packet forwarding and manipulation in order to provide a
higher service level. An asset management system like PRADS [24] might want to share
the information about hosts and services in the network with an IDS to allow event to
host/service correlation, or an IDS might wants to consent a firewall to access a list of
malicious flows in order to block them as shown in Figure 3.2.

SDN
Firewall

IDS

Asset Management

Context

Configuration Context

Figure 3.2: Reconfiguration of NFs dependent on the shared context. The SDN controller is
omitted for clarity.

Another reason to share information between services in a network is the offloading of
functionality to a better suited mechanism, thus reducing the load while still maintaining
forwarding performance. For example, a firewall can offload filter rules to an SDN-
enabled switch that processes packets at line speed. While advanced firewall policies and
features such as connection tracking cannot be enforced on the switch, it is possible to
execute simple filters based on IP addresses or TCP ports. The firewall engine continues
to run on dedicated systems or as virtualized NF, but is able to extract rules and share
this context information with the SDN controller that implements the policies on the
switches.
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Different groups of NFs usually run independently of each other as implementations
are unable to directly share context with other mechanisms. Where sharing of context
information exists, all information exchanged between groups of NFs has to flow via
a central controller. This limits the possible sharing scenarios to a predefined set of
information that is known to the providing and consuming NF as well as to the controller.

3.1.3 Replacing BGP Routers

Migrating BGP routers is a tedious task that involves multiple steps before a mechanism
can be replaced safely. These mechanisms not only keep a RIB as context information but
also hold long living TCP connections with all neighboring nodes as shown in Figure 3.3.
These connections must not be interrupted as the neighboring routers will discard all
routes learned from the node if the connection is lost.

BGP

TCP

IP

BGP

TCP

IP

Routing Information

Reliable Transport Stream

Addressing

Physical Link

Figure 3.3: Layers involved in the migration of BGP routers. (adapted from [37])

Currently, the migration involves reconfiguring the routing protocols to route traffic
away from the affected device, wait until the flow of traffic over the router stops, and then
take the mechanism offline. This process can take tens of minutes and makes maintenance,
dynamic adaptation, and load balancing of BGP routers hard [42]. Existing SLAs with
customers also often prevent operators from taking routers down, or even from changing
the internal routing without prior notice and without specifying a concrete maintenance
window. These limitations often prevent the dynamic adjustment of internal routing
as well as the on-demand replacement of router hardware, thus limiting the possible
adjustments of the network to new traffic patterns or customer requirements.

Additionally, an operator might not want to migrate a complete router to another
location but only move individual sessions from one device to another to relocate cus-
tomers [5], or for traffic engineering purposes. This is especially important in SDNs where
high dynamics in the network configuration exist and limitations of legacy mechanisms
can hinder the evolvement of the complete network.

While migrating the BGP routing state between devices of the same vendor might be
possible with proprietary solutions [17], the migration between routers with different
implementations is a disruptive operation as each vendor uses its own representation of
the routing state.
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In conjunction with a SDN-enabled network, explicit support for sharing of routing
context overcomes the vendor lock-in and provides capabilities for online conversion of
context resulting in easier maintenance, faster adaptation, and better load balancing. This
leads to a need for seamless migration of routers [37] where the BGP routing table as
well as the TCP state and the IP configuration is moved from one device to another.

3.1.4 Switching Routing Protocols

D2D communication is a key technology in fifth generation mobile networks (5G net-
works) [53] to offload traffic from the Base Station (BS). The upcoming standards support
a large variety of operational modes and parameters. The modes range from communi-
cation that is completely controlled by the infrastructure over central coordination but
local traffic exchange to a complete decentralized network where devices coordinate
themselves and only use some dedicated uplinks to the infrastructure. In these scenarios,
routing protocols developed for WMNs are used to find neighboring devices and to route
traffic through the network without central coordination or control.

Today, WMNs are already in operation where wired infrastructure is either not available
or too expensive to deploy.

On the one hand, this can be rural areas [22] where low cost network access is essential
for the education of children and the development of the area but the spending power of
the people is very low. Connecting these neighborhoods by laying cables or deploying
infrastructure based wireless technology such as cellular networks or IEEE 802.16 WiMAX
is prohibitively expensive.

On the other hand, deploying wired technology to form the backbone of a wireless
access network can be challenging even in splendidly constructed areas [3]. Government
regulations and the populousness make wiring works difficult and limit the quick
extension of the network. This is particularly true where a high density of access points
is required.

Thus, WMNs can be used to form a wireless backbone to reduce the construction work
required in both rural as well as in congested areas.

However, a variety of parameters and environmental conditions have to be considered
when planning and deploying a WMN. The conditions and parameters can range from
the population and usage density over the general weather situation to the expected
usage scenario. Especially the latter is crucial for the selection and parameterization
of the mechanisms used. A community network with free access for everyone requires
fast network links but is expected to be unreliable, while a network built to support
emergency services must be reliable but the bandwidth demands are likely lower.

These considerations result in a choice of mechanisms that are fixed over the lifetime of
the network as changing or adapting the networking stack to varying conditions or usage
patterns basically results in deploying a completely new mechanism configuration. This
static deployment limits the usage of networks for multiple purposes and results in either
multiple networks that serve special purposes and are not federated due to different
mechanisms used, or in not deploying networks at all as specialized mechanisms that are
only used very scarcely are too expensive to provision.

The dynamic adaptation of routing protocols provides a possible exit route to this
dilemma. It allows operators to deploy WMNs running a mechanism that is designed for



40 problem statement

the current usage scenario, but allows the conversion of the network—within the bounds
of the deployed hardware—if other scenarios arise.

The mechanism switch within a WMN must be seamless without interruption of end to
end connectivity and transparent to the end user. This is not only important for the rare
case of a complete repurposing of the network but especially for the dynamic adaptation
to changing conditions during runtime when the global usage scenario remains the
same.

3.2 switching mechanisms

Mechanisms are usually designed for optimal operation in a narrow set of environmental
and network conditions. These conditions can range from the number of concurrent
users or flows in the network over the available bandwidth that can vary depending on
the physical route of a transmission in a network to the environmental conditions such
as the temperature and the precipitation that severely impact the lifetime of batteries
and the propagation characteristics of wireless signals. Once the operational boundaries
envisioned by the mechanism designer are left, the performance and efficiency usually
decreases radically.

Thus, there is no one single mechanism that is able to fullfil the requirements imposed
by all possible users, environments and network properties.

Switching between different mechanisms is one way out of the dilemma. Instead of
deploying one mechanism that needs to fit all requirements and conditions that might
occur—and are potentially not even known during deploy time—we implement and
roll out multiple mechanisms that are each optimized for a narrow set of operational
conditions.

Additionally, we implement a system that is able to coordinate and orchestrate the
transition between mechanisms along with a monitoring and decision engine that allows
us to observe the network behavior as well as the environmental conditions and select
the most appropriate mechanism for the current situation out of the set of available
mechanisms.

By enabling those mechanisms to be transition aware, we can ensure that mechanisms
are able to announce their properties and operational parameters during deploy time
and that the optimal mechanism for the current conditions is selected during operation.

There are two possible ways of switching mechanisms: 1. the hard switch where one
mechanism is disabled immediately before another mechanism is engaged, and 2. the
soft switch where multiple mechanisms run in parallel during the transition phase.

The hard switch uses only minimal resources on the hosts during the transition as it
only requires the orchestrator to run during a short period of time, and the mechanisms
do not consume any additional resources. However, the hard switch does not allow for a
seamless transition—without external support—as the mechanisms are not executed in
parallel and thus cannot set up their state to match the current environment. Thus, there
will always be a gap in network traffic until the new mechanism is fully operational.

During a soft switch, multiple mechanisms—usually two—are operated in parallel.
While the currently selected mechanism is still responsible for handling the live traffic,
the new mechanism is receiving a copy of all network flows to establish its operational
state. This enables the new mechanism to bootstrap its internal data structures using the
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information available on the network node without requiring the mechanism to directly
handle the data traffic.

One of the main challenges when switching mechanisms during runtime is finding a
consensus between all participating nodes in a network that one or more mechanisms
need to be exchanged. This is especially true in distributed systems such as WMNs where
no central instance exists that can enforce the switch. We need to gather comprehensive
monitoring data from all connected mechanisms as well as their environment to reach a
concise decision on when to switch and what mechanism to choose next. This information
has to be made available to all participating nodes in order to make informed decisions
that are viable for all affected nodes in the network.

Additionally, when a consensus is reached and the decision for a switch is made, we
need to orchestrate the transition process. This not only requires a tight monitoring to
ensure that all nodes switch to the new mechanism and are using the selected parameters,
but also a rollback strategy in case the selected transition path fails. We must ensure
that no node is disconnected from the network due to the transition and that all affected
nodes use the same set of new mechanisms and parameters for a seamless operation.

Designing mechanisms that are transition aware is the second challenge when switch-
ing. While it seams reasonable at first to simply deploy existing implementations and
only add a thin additional layer to support the switch on the underlying network stack,
this also implies that the mechanisms are not aware of the complete system behavior and
cannot react to events initialized by the transition infrastructure. Even when only using a
hard switch to change mechanisms, it is usually feasible to not completely shut down the
running mechanism but to introduce a hibernate state where computational intensive and
network traffic generating operations such as timers or responding to connection requests
are disabled but the program code is still held memory. This enables operators to switch
between mechanisms within a couple of milliseconds and thus utilize transitions to adapt
the network to highly dynamic demands.

The introduction of a soft switch requires further adaptations of the mechanisms. In
addition to the dynamic control of timers and operational state, it also requires fine
grained control over the output of a mechanism to not duplicate the packets during the
bootstrap phase while still being able to send and receive control traffic necessary to
fully create the operational state. Thus, it is also not feasible anymore to filter, select
and redirect the packets at the interface level but all information has to be forwarded to
transition aware mechanisms that can base the handling decisions on their internal state,
current operational status and their requirements.

During a soft switch, we also need to determine the time required for parallel operation
to ensure that the new mechanism has created all state required for its seamless operation
while not wasting additional resources due to an unnecessary long parallel execution of
both mechanisms. This transition time is dynamic and largely depends on the current
network utilization along with the operational conditions of the nodes involved in the
transition, but also on the selected mechanisms and parameters.

Therefore, we need to take the required transition time into consideration 1. when
deciding which mechanism to choose and selecting the transition path to ensure that the
transition does not take longer than the envisioned operation time, and 2. during the
execution of the switch where the parallel execution needs to run as long as necessary
and as short as possible to provide a seamless transition.
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The requirements for more dynamic networking structures and mechanisms demand
not only flexible forwarding infrastructures and algorithms on the packet level using SDN
but a dynamic adaptation of mechanisms on all layers of the network stack. Thus enabling
transitions between mechanisms of the same class is a route towards the required flexible
network behavior. However, enabling mechanisms to be transition aware introduces some
additional challenges from the decision when to switch and where to switch to, over the
orchestration of the transition process to the mode of operation during the transition
phase.

While we recognize the importance of the decision and orchestration, we focus on the
requirements and modifications necessary to design, implement and deploy transition
aware mechanisms, and their behavior during the switching phase.

3.3 sharing context information

The sharing of network context is not only a key enabler for a more dynamic network
management but also a possible solution to reduce the time of parallel operation in a soft
switch scenario as described in Section 3.2. The exchange of context information between
mechanisms fosters innovation in all fields of network deployment and operations from
the fundamental services such as BGP over state of the art architecture concepts like SDN
and NFV to mechanisms that are designed for special environments or usage scenarios
such as WMNs.

Thus, context sharing leads to a better utilization of existing resources, higher through-
put, lower latency and optimized network operations, resulting in superior adherence to
SLAs and an improved user experience.

Additionally, the extensive sharing of context information allows for additional and
new functionality that is not available when each mechanism is operated by itself and is
not aware of the current operational parameters, other mechanisms in the same network
segment are running on.

Context can be shared in two distinct ways: 1. the migration of information between
mechanisms at distinct events such as a switch in mechanisms, and 2. the continuous
exchange of context during all stages of the mechanism life cycle.

Using context migration, each mechanism is responsible for managing its context
during normal operation and needs to provide data structures as well as functionality to
store and control the usage of the information.

On the one hand, this allows the mechanism designer to use patterns optimized for
the current implementation and the context handling of existing implementations does
not need to be altered. The complete local handling of context information allows for
native performance as the information is handled in native data structures and the access
patterns can be optimized to suite the features of the programming language as well as
the features of the runtime environment used.

On the other hand, it requires functionality for context handling in each mechanism
design and synergy effects for context management are only minimal as each mechanism
runs its specific implementation. It limits the exchange of context between different
implementations or even different types of mechanisms as the context is highly specific
to the source mechanism and the possibilities of integrating context transformations are
limited.
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The local context handling usually also does not include the supply of monitoring data
nor does it allow for the generation of a history or the insertion of previously gathered
context. Therefore, it only allows for a limited set of information that rudimentary
conforms to our definition in Section 2.1.

Additionally, the migration of context requires an API that allows to extract the context
information from one instance of the mechanism and inject this information into another.
This interface needs to be explicitly supported by the mechanism developer and therefore
the migration support introduces additional overhead alongside the local management
of context.

While the migration of context usually does not require an external system to handle
the information but implements a direct exchange between the involved mechanisms, an
external controller is necessary to schedule the information transfer, control the migration
path and orchestrate the exchange.

The continuous sharing of context enables mechanisms to access information of other
connected mechanisms during the complete lifecycle and therefore constantly adapt their
operation to the current network status without the need to wait for new information
during a migration cycle. This allows for highly dynamic networks without the overhead
of triggering context migrations at a high frequency.

Using continuous sharing, the context is best managed in an external system that is
solely responsible for handling the information provided by the various mechanisms
available in a network segment and that controls the lifecycle of the stored data. The
context management system relieves the mechanism developer from implementing a
custom context handling and allows to hand of all context management by providing a
flexible API that enables a standardized way of organizing the context information across
various mechanisms and removes the need for customized solutions.

The management system provides access to the complete context history of the network
segment and allows operators to infix previously gathered information into the mecha-
nism when necessary. It is also able to provide preprocessed information for monitoring
systems that require context information to gain a complete view of the network and the
connected mechanisms.

The continuous sharing of information using an external context management system
enables the exchange of information between different mechanism implementations as
well as across mechanism classes. The centrally gathered information is available to all
connected mechanisms and thus the extensive sharing of context is facilitated, leading
to more information available at each mechanism. This additional data can be used to
further optimize the operation and allows mechanisms to cooperate within their network
segment.

However, the integration of an external system comes at an increased latency to access
the context information and therefore a potentially lower performance of the mechanisms.
This can be circumvented by using local caches within the mechanism implementation
which reduce the number of requests to the external system required while still keeping
the context information current.

Both methods of sharing context information require a granular selection of what
information needs to be shared. While it seems obvious to simply share the complete set
of context information between mechanisms, the overhead increases with each exchanged
data point without necessarily increasing the benefits. Caching information for instance
is taking a large amount of context storage in certain applications but can be easily
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recreated. Another example is short lived information that is already outdated before the
exchange between two mechanisms is completed. This could be for instance the physical
layer properties of a wireless channel or the memory page information in an OS.

The exchange of context information is a complex and challenging task not only in
terms of selecting the most suitable sharing strategy depending on the mechanisms and
the goals pursued but also in terms of choosing the information that needs to be shared.

While the former decision is usually taken by the network operator depending on
the current mode of operation, the selection of relevant context can only be done by
the mechanism designer who has specific knowledge on the internal operations of the
mechanism.

The migration of context at distinct events is usually used for failover scenarios
and scaling requirements where mechanisms run independently of each other, and an
external system monitors the operational environment and triggers the migration of
context information if predefined thresholds are exceeded.

In this thesis however, we focus on enabling a continuous exchange of context infor-
mation in conjunction with sharing information across multiple mechanisms to allow
operators to design and built more dynamic networks.

3.4 challenges

The exchange of context information is technically challenging for three main reasons:
First, context information may not always be stored in equivalent form, resulting in
the need of translating state information during the transition phase. Second, many
implementations are of rather monolithic nature; however, context transfers between
instances require a clear encapsulation of the mechanism context and according interfaces:
if the mechanism context is dispersed all over an implementation, it is very hard to extract
and to inject the context if a transition is fired. Third, it must be ensured that the context
transfer between the implementations does not yield leakage of sensitive or private data.

However, these challenges are not only directly imposed by the mechanisms that access
the context management but also by the circumstance that the information is now shared
among mechanisms.

In this section, we break down the demands of the targeted mechanisms and the use
cases that go beyond the requirements of a stand-alone implementation and focus on
the extended set of requirements that comes with the introduction of an external context
management system. We identify, extract and generalize the challenges that are imposed
on a generic system specifically designed to manage network context.

3.4.1 Enable Seamless Migrations

The most fundamental issue is that changing or migrating a service forces context
information to be newly negotiated or reestablished—requiring setup time—before the
new service is operational. Transitions can result in service gaps during which no data
can be processed or forwarded due to missing context. Thus, we must reduce the service
downtime by sharing established context information between the different mechanisms.

We need to either migrate the context information before the link migration is initiated
or externalize the context storage to a separate and specialized system that enables
concurrent access for all mechanisms.
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On the one hand, the on-demand sharing allows the mechanisms to store the context in
local data structures and enables direct access, it requires the sharing system to either pre-
populate the data structures before the migration is initialized, or—in case of a failover
scenario—to constantly update the information on the passive or stand-by mechanism.

A central context management on the other hand enables mechanisms to directly access
all shared information without the need for an external system to update internal and
private data structures.

However, context transfers between mechanisms require a clear encapsulation of
the context and according interfaces: if the context information is cluttered all over a
mechanism implementation, it is very hard to extract and to inject if a transition is fired.
The support for seamless migration thus requires the mechanism designer to gather all
relevant context information at a central point and clearly separate the functionality from
the context.

3.4.2 Provide a Generic Context Storage Solution

The context management system must provide a general storage solution for all con-
nected mechanisms as it can be prohibitively expensive to customize already existing
implementations to suite a new system. This does not only include the support for data
types that are used but also for the metadata that is usually assigned to each value such
as the storage and last access time, the visibility to other instances, and the expiration.

However, the support for an extensive set of data types and the associated metadata is
not only limited to the storage backend. Additionally, the context management system
must provide an expressive interface that is used by the connected mechanisms to store
and retrieve the context information as well as alter the information associated to it. This
includes a query language that supports the dynamic composition of requests and allows
for dynamic filtering depending on the desired information.

3.4.3 Provide Context Persistence

The network context does not only include the current configuration, state information
and metadata but also comprises historical records of these information as described in
Section 2.1.

We thus must prevent the loss of context due to a system reconfiguration or failure,
and offer access to the historical records along with the possibility to easily restore a
previous state. It is not sufficient to hold the currently valid information in memory
but we must provide means to persist the information held by the context management
system, and to load this saved context information at a later point in time. The persistence
of context information also allows us to later load the previously known context that best
matches the current environment if a change in the operating conditions or operational
requirements occurs, and the new conditions were experienced before.

Additionally, the persistence of context information allows offline operations of the
collected information by duplicating the stored data to another system. This enables us
to run resource intensive tasks on a additional copy of the context instead of directly
accessing the context management system that continuously processes the requests of
the connected mechanisms.
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In order to efficiently support historic information as required by the network context,
the storage also needs to be able to generate a consistent and self contained snapshot
of stored context information at a certain point in time. This requires that the context
management system is brought to a stable state where all dependent operations are fin-
ished before the snapshot is taken, and that the resulting snapshot does not only contain
the context information currently governed by the system but also the configuration
parameter and internal state of the context management system itself. Only the complete
set of data ensures that the snapshot can be restored later and the information loaded
into the storage is consistent even when used across multiple instances.

3.4.4 Reduce Overhead

Network mechanisms such as NFs and routers are required to process a large amount of
packets, each resulting in a context lookup or even update to the context management
system. Thus, the overhead introduced by the system must be minimal to not reduce the
overall performance of the network by introducing context management, and to satisfy
even tight SLAs.

The context management system must not only be able to handle a large amount of
concurrent requests, but also process these requests with 1. a low latency, and 2. low
resource consumptions on the host system. While the former is necessary to support
the processing of packets for real time applications and in high speed networks such
as the Internet core, the later is especially relevant if the context management system is
running on a low powered device that is executing other processes and also hosts the
accessing mechanisms. This could be for example a WMN node running the context
management along with the routing protocols that are storing and retrieving information
to forward packets to other nodes in the network. Offloading the context management to
a secondary system is not possible in this scenario as the outside connectivity directly
depends on the availability of the context.

We must not only confine the computational and network overhead but also the
memory consumption. The context management is required to store a large amount
of data and thus the available memory for both active as well as persistent storage
must be used efficiently. While state information is usually only small compared to the
information that is processed by the mechanisms, the historical records can—depending
on the snapshot frequency—significantly increase the size of the required storage.

3.4.5 Enable Dynamic Reconfiguration

The context management system is responsible for storing and providing the core
information to the connected mechanisms which are not operational if the information is
delayed or missing.

Therefore, we must provide a high availability and minimize outages due to system
maintenance. The support for dynamic reconfigurations of the context management
system is an essential feature to support when new mechanisms are introduced or the
parameters of the system itself need to be adjusted.

The context management system is designed to support arbitrary mechanisms and it is
usually not known in advance which mechanisms are connected during the life cycle of
the instance. Thus, we need to provide a system to dynamically load new or changed
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functions if connecting mechanisms require additional or altered data transformation
functions to operate on already gathered information.

The newly loaded functions need to be announced within the context management
system, and the system therefore must provide a configuration API that enables the
operator to register new mechanisms as well as additional features such as new data
transformations during runtime. Additionally, the API must allow to set the opera-
tional parameters of the context management during runtime and provide endpoints to
completely reconfigure the instance.

3.4.6 Support Data Transformations

The use cases require the sharing and re-use of context information across different
mechanism implementations or even across different application domains. This requires
the possibility to adapt the information provided by the context management to the
needs of the accessing mechanism in both data representation and semantics.

While it might be tempting to adapt the internal state representation of each mechanism
and accommodate the implementation to a generic format, this leads to a high complexity
of the required adjustments as the functionality of a mechanism is usually closely
coupled to the state representation. The changes applied to the data format also require
modifications of the underlying functionality and can even lead to inevitable changes of
the externally visible functionality or features.

Additionally, when designing a common format for storing the context information, all
possible current and future mechanisms, including their requirements and specifications,
need to be considered. However, this is usually not feasible as networks are subject to
constant change as new mechanisms are introduced and existing solutions are decom-
missioned. The constant change in network configuration and the used NFs would lead
to regularly re-specifying the base context and then adjusting all implementations to the
new base context.

Therefore, it is not feasible to adapt the connected mechanisms to a central context
management by specifying a global and universally valid base context, and modifying
the implementation of each mechanism to match this specification.

Instead, the modifications required to connect a mechanism to the context management
system must be minimal, and the connected mechanisms must be able to share informa-
tion without agreeing on a common context. Hence, a mechanism might profit from the
information others have contributed without being explicitly aware of the existence, or
even the context, of other mechanisms.

We need to implement data transformations that allows us to 1. adapt the information
provided by the mechanism to the internal representation of the context management
upon storage, 2. convert the data format of the stored information to match the represen-
tation required by the requesting mechanism during retrieval, and 3. retrieve semantically
equivalent information either directly from the context storage or with the support of
external systems when the requested data is not directly available. The operations can
range from simple type conversions over mathematical functions such as the average
over a series of values to complex methods with external calls such as the conversion
from an IP address to a Media Access Control (MAC) address employing an Address
Resolution Protocol (ARP) lookup.
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This support for data transformations is the core enabler for sharing context between
different network components.

3.5 summary

In this chapter, we introduced the challenges that arise when sharing network context
across multiple mechanisms along with the requirements for introducing a system that
supports transitions in various networking environments.

We introduced multiple use cases that represent the diverse set of mechanisms and
deployment scenarios that can occur in a heterogenous network environment and that
all benefit from sharing context information. Our use cases range from core network
services such as BGP where we show how a seamless replacement of BGP routers can
be implemented using context sharing, over the migration of NFs that allows for HA
applications and the fulfillment of tight SLAs to the introduction of extended sharing of
context information to reconfigure NFs. We also target the transition between different
mechanisms of the same class. The use case describes how switching WMN routing
protcols can be realized to adapt networks to different environmental or operational
conditions.

We extracted two major problem domains from these use cases, namely: 1. switching
mechanisms during runtime, and 2. the implications of sharing context information.

The switching of mechanisms is required for an optimal operation in changing en-
vironments as mechanisms are designed for a narrow set of conditions. We argue that
switching between multiple mechanisms leads to a better network performance during
the complete lifecycle of the deployment and show what challenges arise when such a
dynamic transition is introduced. While we recognize the importance of the network
wide support systems such as monitoring, decision and execution of the transition, we
specifically focus on the design and implementation challenges for transition aware
networks on a mechanism level.

The exchange of context information supports operators in optimizing existing net-
works and enables network architects to design new mechanisms dependent on informa-
tion already available in the network. We stated that the extensive sharing of network
context is critical to facilitate development in SDN as well as existing infrastructure
such as BGP routers. We showed the challenges that arise from sharing information not
only between mechanisms of the same implementation but between different classes of
mechanisms.

Finally, we presented the demands of the targeted mechanisms that go beyond the
requirements of a stand-alone implementation, and keep a focus on the introduction of
an external context management system and the extended set of requirements that comes
with its introduction.



4
S Y S T E M A R C H I T E C T U R E

Our survey of the use cases and the challenges that arrise from those scenarios presented
in Chapter 3 show that the problem of enabling transitions between mechanisms in a
network is twofold:

First, we need to introduce a state plane that is able to handle the network context
of all mechanisms deployed in the network. We must 1. provide a central storage for
the participating mechanisms to store their context information in a structured format,
2. enable the retrieval of context that is either provided by the requesting mechanism itself
or by another mechanism, and 3. provide transformation functions to enable connected
mechanisms to share information without agreeing on a common context.

The state plane must also provide means to persist and load context information
depending on the current environmental and network conditions as well as take regular
snapshots of the information to hold a history of the context.

Additionally, it requires interfaces to external systems such as the monitoring infras-
tructure to supply the transition architecture with relevant information and ease the
decision of initiating a mechanism switch.

In Section 4.1, we present the design and implementation of STEAN—a Storage and
Transformation Engine for Advanced Networking context. It provides an architecture for
a context management system specifically developed to support a wide range of network
mechanisms such as NFs, WMN routing protocols and BGP routers, and acts as a state
plane to handle all relevant context in a specific network segment.

STEAN is designed to handle both legacy mechanisms as well as mechanisms that
are designed and implemented with transitions in mind. Thus, it is the core system that
enables the extensive sharing of context information between mechanisms, and allows
for a more dynamic network management.

Second, we need to provide a system architecture that 1. allows us to easily extend
existing mechanisms to support transitions, 2. enables software designers to develop
new mechanisms that are specifically created with transitions in mind, and 3. supports
operators to deploy those mechanisms in both existing and newly rolled out networks.

Additionally, we need to ensure that a synchronous transition between the services is
supported by all participating nodes, and we must provide methods to coordinate and
control the switch within the network to not disconnect sub-networks during or after the
transition. We present a blueprint for such an architecture in Section 4.2.

Our architecture provides a paradigm shift, such that it takes transitions as a first order
principle. The modular nature of the architecture allows us to adapt the components to
the requirements of a highly dynamic network, and optimize mechanisms depending on
the specific use case without the need for a complete reimplementation.

49
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4.1 stean—a storage and transformation engine for advanced networking

context

The introduction of a state plane is the core enabler to a wide sharing of network context
between all mechanisms running in a network and across all layers of the network stack.
This state plane is responsible for managing all context information gathered by the
various mechanisms, resolves any conflicts in context data, and provides the collected
information to other mechanisms that benefit from the additional information. It also
provides information for monitoring systems that are able to directly gather data within
the mechanisms instead of relying solely on information that is observed from the outside,
and keeps historical records to return to a known previous context if required.

In this section we present the Storage and Transformation Engine for Advanced Networking
context (STEAN), an architecture for such a state plane along with an implementation of
our design to validate the concept. The presented system provides a generalized way to
share context in a diverse set of core functionality such as routing, network processing,
and dynamic mechanism adaptation without loosing the particular quirks of each context
representation that is required for an efficient operation of the mechanism. This relies on
collecting and managing context from different mechanisms using their preferred context
representation, thus replacing per-entity state storage with a shared context management.
STEAN makes this dynamic information available to other mechanisms, and stores
and persists the current context for re-use at later points in time. This way, our system
enables any component in a network to access other components’ context information,
hence facilitating seamless network transitions. It aids in seamlessly changing between
mechanisms at runtime, or access persisted information describing the mechanism context
from the past to reach fully operational state with minimal latency.

We also introduce transformation functions that allow for context sharing between
mechanisms that where not originally build with sharing in mind. They enable mech-
anisms to re-use context from other mechanisms without agreeing on a common state
representation, and thus allow STEAN to be integrated into legacy mechanisms and to
interoperate with arbitrary mechanisms, which permits the seamless extension of existing
stacks and network topologies.

Furthermore, transformation functions allow us to share context between different NFs
that are—until now—only designed to exchange state between instances of the same
implementation. The STEAN architecture is built with transformation support as a first
order design principle and transformation functions are at the core of our implementation.
This ensures that the overhead introduced by the transformations is kept to a minimum
and all other features are optimized towards an efficient processing of transformations.

Additionally, we show how the state plane can be integrated into newly designed
mechanisms as well as legacy mechanisms, and provide client implementations for a wide
variety of network mechanisms from WMN routing protocols to SDNs. The presented
library supports multiple platforms from modular mechanism frameworks such as Click
to control plane architectures for NFs such as OpenNF. We consider each connected
mechanism that is able to contribute information to the context store as well as request
information from the context management system a client to STEAN regardless of its
functionality or implementation.

By deploying STEAN as a state plane, network operators not only benefit from the
extended sharing of network context and thus from improved operational parameters
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but the benefits also result from a faster development and deployment cycle. Mechanism
architects do not need to design and implement individual state storage and management
solutions but can focus on providing the desired functionality while using a standardized
API for state access and leaving the context handling to STEAN.

We unify the strength of the current systems by removing their individual weaknesses,
and we argue that the gains of a unified system—with respect to support context sharing—
are higher than the possible performance losses introduced. A general analysis of the
performance is presented in Section 4.1.8, and the results of our evaluation—based on
multiple use cases—are discussed in Chapter 5.

4.1.1 Assumptions

The proposed system offers functionality for context transformation, storage and retrieval
in both legacy and SDN-enabled networks using wired as well as wireless technologies.
Our goal is to support context sharing among all mechanisms connected to a network and
even across network boundaries to fertilize the innovation in the network and support
the transition towards a flexible and dynamic network management.

While we target a wide variety of deployment options, we base the presented work on
the following assumptions about the design of the network infrastructure, the connected
mechanisms and the deployment of STEAN:

4.1.1.1 One STEAN instance per functional group

STEAN is designed as a centralized context management system that forms a state
plane for the complete network infrastructure. However, while it is usually desirable to
have one (logically) centralized system that handles all context information in an entire
network, it is not feasible to deploy just a single instance where potentially thousands of
mechanisms contribute information.

Thus, we follow the same approach as in SDN-enabled networks where one logically
centralized controller is managing the complete network but the actual deployment
follows a distributed approach. We assume that each logical functional unit in a network—
such as one node in case of a WMN or a functional group of NFs—contribute information
to the same STEAN instance that is placed close to the requesting mechanisms. This not
only eliminates the single point of failure introduced otherwise, but also reduces the
latency of requests as the systems responsible for a certain slice of the network can be
placed closer to the managed mechanisms.

4.1.1.2 Separation of functionality and context

A modular design and clean separation between the functionality and the context of the
deployed mechanism is critical for the network wide sharing of context information as
discussed in Section 4.2. While we are aware of the fact that most existing mechanisms
are not designed with sharing in mind and the modification of existing implementations
is a tedious task, the change in design principles and the adaptation of already deployed
mechanisms is crucial to the successful introduction of a state plane.

Therefore, we assume that the connecting mechanisms are either directly developed
following the presented design principle or are already modified to extract the relevant
context using frameworks such as OpenNF. The modifications necessary to provide the
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information can also be supported by using a tool such as StateAlyzr [38] that automates
the process of identifying relevant state information.

4.1.1.3 External trigger for functional migration

Two of the core use cases, namely the migration of NFs and the switching of routing
protocols, require a monitoring and decision system that continuously supervises the
network and orchestrates the migration between mechanisms. Various systems that are
specifically designed to handle the migration of NFs already exist, and we sketched the
requirements and possible design choices for such a system to be deployed in WMNs in
Section 4.2.1.

In the remainder of this section, we assume the existence of a transition controller
wherever necessary and solely focus on the sharing of context information between
mechanisms that are orchestrated by such a system.

4.1.2 Base Context

STEAN uses a context representation that—in conjunction with the transformations
introduced in Section 4.1.3—allows network architects and operators to combine the
required information of various connected mechanisms into a consistent model. This
unified context representation—we call the base context—removes the need to store
duplicate information contributed in different formats and fosters the sharing of context
between mechanisms.

Despite the fact that we unify the context handling throughout a network segment or
mechanism group, the base context still strongly depends on the mechanisms deployed
within the specific network. Thus, it needs to be adapted to the current deployment
situation, and the design of the base context must include possible future extensions of
the network. Thus, we are not able to provide a single unified model of the base context,
but show in Section 4.1.7 how the different base context for our use cases are designed
and which information is matched between the mechanism implementations.

The construction of the base context is currently done by the network architect or oper-
ator during the intial deployment of STEAN. The adaptation to the available mechanisms
requires a deep understanding of the network architecture as well as the operational
mode of the connected mechansisms. The design and implementation of the base context
is done in close cooperation with the design of the context transformations as those two
elements directly relate to each other.

The base context uses labels or tags—we call them annotations—to address the different
entries. Those annotations are definied within the base context itself, and mechanisms
can neither add nor alter annotations but have to use the set provided by the context man-
agement system within the current base context. This allows us to further abstract from
the mechanism specific context, and forces the consistent use of annotations throughout
all mechanisms.

The architecture of using an adapted base context for each mechanism group allows us
to unify the context of those mechanisms without loosing any information due to either
an incomplete data model or a high level of abstraction that tries to unify all possible
scenarios in one common base context. Wherever the projection of future mechanisms
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within the network is not possible, our concept also allows for migrations between two
base contexts to enable future changes using context transformations.

4.1.3 Context Transformation

The support for context transformations is the core enabler for sharing context between
different network components. STEAN implements transformation functions that enable
connected clients to share information without agreeing on a common context. Hence, a
client might profit from the information others have contributed without being explicitly
aware of the existence, or even the context, of other mechanisms.

We use a running example throughout this section to show how transformation func-
tions can be employed to share context between independent NFs: a network consisting
of a NAT, an SDN-enabled switch that balances the traffic load between two firewalls,
and an IDS (Figure 4.1). All NFs in this example are STEAN-enabled. The SDN controller
providing rules for the switch is connected to STEAN, where it stores its state, including
the SDN rules. During normal operation, the firewall instances share their context using
STEAN and the other NFs operate independently of each other, using STEAN as their
context storage.

Now, we consider the following failover scenario: Link 1 carrying the traffic assigned
to Firewall A fails so all traffic is re-routed to Firewall B. The traffic load exceeds the
capacity of a single firewall instance, thus traffic must either be dropped or SDN rules
must be dynamically generated to enable a pre-filtering on the switch.

NAT

Firewall A

Firewall B

SDN Switch

Link 1

Link 2

IDS

Figure 4.1: Simple network to show the advantages of sharing context between different NFs. All
NFs as well as the SDN controller are connected to a central STEAN instance (omitted
for clarity).

4.1.3.1 Concept

Transformations allow developers to create and use an extensible set of functions that acts
as an additional layer between the client and the context storage. This layer is responsible
for translating between the client-specific context and the common base context. It allows
the client to store and retrieve the information “as is” and “as needed” without adapting
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its internal representation to the one used in the context management system. The client
does not need any information on how the context of other clients has to be interpreted.
This interpretation is provided by the transformation functions that offer a client specific
view on the base context.

In our example, the NFs can share state between each other to allow for a flexible load
balancing and dynamic reconfiguration in case of failure. Each NF as well as the SDN
controller keep their internal state representation, and STEAN provides transformation
functions for each client. We identified four different types of transformation functions
that enable different operations on the stored context:

1. Filter Functions are applied during data retrieval and limit the results to the context
information that is relevant to the client. The storage system iterates over the data items
during the lookup process and applies the filter functions on each item or until a specified
amount of matching results has been found. The filters are applied as early as possible.
This minimizes the amount of data passed to subsequent functions, which are potentially
more complex.
For example, filters allow the NAT to only select the specific state relevant for the
currently inspected packet instead of retrieving a large information base for all active
translation rules.

2. Mapping Functions are applied to transform the client specific context to the base
context and vice versa. Additionally, these functions can be used to transform serialized
mechanism objects within a request to the base context. This allows for minimal modifi-
cations on the client side as all mappings to the context definition are done within the
context management system. In our example, the firewall as well as the SDN controller
can continue to store context information using their internal state representation. In case
of failure, the SDN controller is able to request additional rules from STEAN that are
generated from the firewall state using mapping functions. The controller does not need
to understand the state representation of the firewall but is able to use the additional
information provided without adaptations.

3. Aggregation Functions allow for sub-context re-use. They enable the context man-
agement to combine two or more existing contexts to a single new context. Clients can
register complex queries that contain information from multiple annotations within the
storage system. The aggregation functions combine the results from multiple annotations
and return a single annotation set to the client. Aggregations can thus be compared to
the JOIN operation or views in traditional databases. After registration, clients can use
complex queries for data retrieval in the same way they do for standard annotations. For
example, the SDN rules generated from the firewall state (as described above) can be
aggregated with the SDN rules stored by the controller to create a unified rule set that
can be directly installed on the switch.

4. Modifier Functions are called on (filtered) data items retrieved from the storage. The
functions can change the actual data within the item, alter the metadata attached to the
entry, or modify custom metadata the client contributed. In our example, a modifier
function can be used to add additional information from which context the SDN rules are
generated. This informs the controller about the rules required for the network operation
as well as the rules installed to reduce the load on the firewall.

Transformation of partial context, i.e., context information not providing the complete
state required by a client, is explicitly supported. Partial context can occur when a new
client is connected and other clients only gathered parts of the required state. When partial
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context is available, the client can retrieve the stored information using transformation
functions to convert the context but the client also has to gather the missing information
using mechanism specific procedures. Then, the additional context can be contributed to
the context management system and, hence, made available to other clients. For instance,
one routing protocol might only be able to contribute one-hop neighbors to the context
storage while another protocol also requires all two-hop neighbors of a node. When
switching mechanisms, the latter can retrieve the list of one-hop neighbors from context
management and start the discovery of two-hop neighbors based on this information.

STEAN-side transformations allow us to make use of a shared cache between clients
when they connect in parallel and query the same context information. This cache reduces
the load on the system and thus decreases the response time for subsequent requests.
Additionally, we are able to reduce the communication overhead between STEAN and the
clients when filtered or aggregated context information is requested as only the needed
set of context information is returned to the client. The firewalls in our example use the
same state representation and thus share a common cache. This results in faster access
times when packets matched by the same rule are processed on either instance.

Additionally, functions executed by STEAN allow for re-use of transformations across
several client implementations. It is possible to call other transformations from within
a function and leverage the already implemented features without knowing the exact
implementation. It also allows us to provide a library with common functionality that is
implemented and loaded like any other transformation function and that can be used
from various clients.

4.1.3.2 Features

STEAN allows clients to specify the transformation functions between their specific
context and the base context upon connection. Those functions are then called each time
a client reads or writes data, and the base context is automatically mapped to the client
specific context and vice versa.

The mapping does not need to be a static function but can be adaptive to runtime
configuration changes. This allows the client to dynamically adapt its context to the
current environment without the need for redefining annotations or exchanging the
transformation function. In our example above, the IDS can dynamically adapt the
information retrieved from STEAN when a suspicious flow is detected and extend
the number of evaluated flow properties without reconfiguration. This allows to faster
detect attackers by looking for flow context stored in STEAN—that is contributed by the
firewalls—once a suspicious flow is identified.

Transformation functions are designed to be modular and composable: functions can
call other functions to create complex transformations with minimal effort. Additionally,
transformation functions query external systems to retrieve additional information. For
example, the transformation between an IP address and a MAC address requires to issue
an ARP request on the local network.

4.1.3.3 Limitations

Transformation functions are mainly limited by their complexity and the resulting loss
in performance. The complexity of a transformation not only depends on the function
itself but also on the design of the base context. If the base context efficiently supports
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the envisioned clients and thus the needed transformations, the overhead can be kept
minimal and the performance loss is mostly negligible.

Furthermore, the client developer has to manually define the required transformation
functions. Currently, there is no automatic system that generates transformation functions
from either existing implicit context representations within the client (data structures,
object relations), or from an explicit description of the client specific context (annotations,
models).

Naturally, state transformations are further bound by the available state. That is, state
can only be transformed but not inferred. For example, transforming state from a routing
protocol maintaining a one-hop neighborhood to a mechanism that requires information
about the two-hop neighborhood is only partially possible, as the missing state needs to
be inferred by the mechanism itself.

4.1.3.4 Designing Transformation Functions

When designing and implementing new transformations, it is important to keep the
computational overhead as low as possible since all information stored in and retrieved
from STEAN potentially passes the functions. Moreover, it is necessary to evaluate the
cost of using transformations against the cost of locally retrieving or calculating the
information within the client without accessing the context management system. In some
cases, it might be more efficient to (re-)generate the context in the client rather than
extracting the needed context from STEAN using a complex transformation function. This
is especially true for information with a short lifetime which requires regular updates
that prevent efficient caching of transformation results.

As the complexity of the transformation functions depends on the design of the
base context, a close interaction while building the base context and the transformation
functions reduces the computational overhead. This includes that transformations should
target a small scope of the overall context and apply filter functions as early and as
restrictive as possible. Restrictive filtering limits the number of data items processed by
other, potentially more complex, functions to a minimum, thus improving the response
time of STEAN. This also contemplates that functions exit as early as possible: if the NAT
in our example requests a single state item, the filter function must be terminated after
this item is found.

During a lookup operation, transformation functions should be called in a specific order:
1. filter functions reduce the amount of data retrieved from storage, 2. mapping functions
translate the base context to the client-specific context, and 3. aggregate functions then
unify different data items to provide a single context to the client.

While technically feasible, transformation functions should not fetch information from
external sources unless this information is a direct transformation of stored context.
Additional functionality should be placed within the client as it is a feature of the imple-
mented mechanism rather than a necessity of sharing context. In general, transformation
functions should not generate new state but work on the existing context stored by the
clients.

Additionally, in order to support concurrent access, all transformation functions must
not directly alter the stored data but only transform the information received from the
storage subsystem.
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4.1.4 System Design

STEAN is designed as a node-local system that manages all context information of the
connected mechanisms. A node is not limited to a single (physical) system but can be any
network entity with a well-defined purpose. This can be instances of a virtualized NF
that form a cluster of IDSes as discussed in the use case “Migrating Network Functions”,
or a single wireless device that is forwarding traffic in a WMN as shown in our use case
“Switching Routing Protocols”. A certain number of mechanisms with a well defined
functionality or purpose thus form a node.

The design is centered around the transformation functions as the enabler for a
generalized context management system.

4.1.4.1 Components

STEAN consists of five core components which are assigned specific tasks within our
architecture and can be exchanged with other implementations. Figure 4.2 gives an
overview of the components and their interaction.

Management Base (MB)

Storage 
Component (SC)

Transformation Component (TC)

Interaction 
Component (IC)

Cache 
Component (CC)

Transformation 
Module

Management 
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Figure 4.2: Architectural overview of STEAN. The arrows show the interaction between compo-
nents. The modular mechanisms presented in Section 4.2 connect to STEAN using the
Client API and the Pub/Sub Interface.

interaction component The Interaction Component (IC) is responsible for han-
dling incoming commands. These commands can be either context requests from a client,
or updates to the state of STEAN itself such as adding new transformation functions or
registering additional annotations.
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The IC reads a stream from a socket and dispatches the request to the responsible
handler which invokes the parser and executes the corresponding backend functions.
Before dispatching the command, the IC checks the command against the metadata
stored in the Management Base. It retrieves information on registered annotations and
available transformation functions, and returns an error if unknown requests are included
in the query.

storage component The Storage Component (SC) holds the actual data that the
clients add and query. Data within the SC is grouped by annotations and organized in
several sets. These sets are used for efficient data retrieval since only those sets using the
requested annotations have to be searched. In addition, metadata is attached to each data
item. This metadata can either be provided by the client, by transformation functions
that are called during the storage process, or by STEAN itself. There are two mandatory
attributes that have to be assigned to each entry. The timestamp holds the date and time
the entry was added, and the mID stores the identifier of the mechanism that added the
entry.

transformation component The Transformation Component (TC) implements
transformation functions as described in Section 4.1.3. The TC is invoked on every query
and connects to the SC. The TC either transforms the data retrieved by the SC to match
the context of the requesting client (lookup request) or transforms the inserted data to
the base context (add or modify request).

STEAN is designed in such a way that all requests have to pass the TC. However, it
is possible to specify the identity function as a transformation and thus to have only a
minimal overhead when no data transformation is needed. This is especially important
for mechanisms that are designed to use (parts of) the base context as their local context
as well.

Additionally, we provide a method to register trusted functions that are allowed to access
data marked as private. These functions guarantee that they do not leak any sensitive
information and can, for example, be used to cryptographically sign data with a private
key stored in STEAN.

cache component To be better suitable for performance critical mechanisms, STEAN
makes intensive use of caching. The cache allows to reduce the retrieval costs for con-
text lookups which is relevant for performance critical NFs (e.g., functions performing
per-packet lookups at line rate).

The Cache Component (CC) is placed between IC and TC, and thus holds context
information where the client specific transformation functions are already applied. The
placement keeps the computational overhead of applying transformation functions as
low as possible but leads to a minimal re-use of cached results across clients.

We opted against a shared cache placed between TC and IC but for a cache holding
an individual set of results for each client. The diversity of clients would not allow for
a wide re-use of cached entries as each client specifies its own context. A shared cache
instead extends the number of entries per cache set and thus leads to a higher retrieval
time.
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Additionally, we decided not to place a shared cache between SC and TC. This place-
ment would allow for a higher re-use of cached information but the gains are much lower
since transformations have to be applied to each returned result.

We chose a Least Recently Used (LRU) caching policy as we assume that clients will
constantly request specific annotations during normal operations while other information
is only requested either during startup or at long intervals. For example, the rules filtering
HTTP traffic implemented at a corporate firewall will be called regularly as employers
are using their webbrowser while the rules for filtering mail traffic are called infrequently
due to the fact that corporations use internal mail servers.

However, our design is open to extensions and allows for the implementation of a
different caching strategy per client.

The client can invalidate its own cache and the Management API supports the inval-
idation of the caches of all clients. This is especially important when transformation
functions are replaced and thus the caches have to be rebuilt.

management base The complete metadata and the state of STEAN itself is repre-
sented in the Management Base (MB). The Type Base within the MB stores information
about known annotations and possible attributes, while the Library Base manages the
transformation functions available. The Module Base subcomponent holds a list of clients,
and their registered annotations and transformation functions. The MB does not contain
any client-supplied context, but is responsible for the state created by STEAN itself.

4.1.5 Communication and Interaction

STEAN provides two interfaces for outside communication. The Client API is used by
the accessing mechanisms to store and retrieve context, and the Management API is used
to control the behavior of STEAN itself. While the first interface is openly available to
all clients, the second interface is protected to prevent unauthorized reconfiguration of
STEAN.

4.1.5.1 Client API

STEAN supports multiple annotation sets that are registered by clients. Upon connection,
each client has to register and provide the annotation (sub-)set it will use, and specify
the transformation functions to convert the client-specific context to the base context and
vice versa.

After successful registration, the client can access the specified annotations and trans-
formation rules while access to other annotations or transformations is denied. This
initial registration forces each client to completely model its environment and describe
its specific context compared to the base context before access is granted. Changes to the
set of annotations or transformation functions require a full re-connect of the client.

While the above restrictions appear unnecessary at a first glance, they provide the
following advantages:

1. The set of context variables of a client is typically fixed and does not change
during runtime. Therefore, sharing the context definition during registration is not a
limitation but allows STEAN to accept shorter requests and to issue compact answers
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that are directly mapped to the client context. This mapping highly reduces latency in
communication with STEAN which is critical for networking mechanisms.

2. Providing annotations and required transformation functions during runtime would
result in possible data duplication in the cache as the service might not be able to
detect identical subsequent requests. Providing the context definition of the client during
registration allows for a more effective caching infrastructure.

3. The service allows mechanisms to mark data as private and then only allows access
to this data via trusted transformation functions. A registration of annotations that mark
private data items simplifies the establishment of a trust relation between the mechanism
and STEAN as the exact methods of retrieval are defined beforehand.

The mechanisms can use add, remove, modify and lookup calls to insert, remove, alter or
retrieve data stored in STEAN. While the first three calls change the stored context and
are directly passed to the TC and the SC, the CC can answer the last command if valid
data is available. This circumvents the execution of transformation functions and storage
lookups and thus offers lower latency than the other calls. Additionally, these requests
are parallelized using multiple threads to allow several mechanism lookups at the same
time.

STEAN also offers a publish-subscribe interface that notifies connected mechanisms
when changes to subscribed annotations occur, i.e., it can notify connected clients such as
monitoring systems when the stored context is altered. However, the publish-subscribe
interface only sends out change notifications, and leaves the update of local context or
any other appropriate actions to the subscribers. Thus, the subscriber has to react to the
notifications and actively retrieve the altered information from STEAN.

4.1.5.2 Management API

The management interface provides methods to alter the base context of the service, add
and remove annotations, and register new transformation functions. Access limitations
on the interface prevent clients from registering arbitrary annotations or transformation
functions that have no value to other clients (as they are unknown), or even compromise
the service itself as malicious functions might leak sensitive data.

4.1.6 STEAN Implementation

The STEAN prototype is implemented as a stand-alone application written in C++. It runs
as an independent service on any Unix-like OS. We successfully tested the functionality
on Linux, FreeBSD and Apple’s macOS.

Our implementation heavily relies on the features provided by both the programming
language—especially in terms of low level access and pointer based operations—and
the OS and programming environment (e.g., support for dynamic libraries, threading
mechanisms). These features allow us to provide a fast response time with minimal
latency without putting significant additional load on the node running STEAN.

4.1.6.1 Storage System

The storage system is implemented on top of a eXtensible Markup Language (XML)
database using RapidXML [35], and the items in the database are accessible via a
management plane. The management plane is implemented as a map of pointers that
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allows for direct access to the requested annotation and handles the lifetime of each data
item. All information is managed in memory during runtime. Hence, pointers can be
used within the data structure which significantly speeds up the data retrieval.

The database consists of several sets—one per available annotation. Each data item can
currently only be tagged with one annotation and is thus associated to exactly one set.
To remove this limitation, the management plane provides additional indices that allow
for direct access across annotation sets. These indices can be seen as virtual annotations
and can be accessed in the same way. Figure 4.3 shows an overview of how data can be
accessed within the store.
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Figure 4.3: Overview of the data access within the SC: Items can be accessed via annotation sets
(S) to filter by their metadata. They can also be filtered by custom indices (I), which
contain pointers to items from (possibly) different annotation sets. The figure shows a
storage with three sets (S1 to S3) and two indices (I1 and I2). In general, there is no
limitation for the number of annotation sets, items per set and custom indices.

We also implemented a custom memory pool for the storage backend. In contrast
to the implementation provided by RapidXML—that only supports the deallocation of
the complete memory—our pool allows us to release specific areas of memory during
runtime. This is especially important as the STEAN storage system is designed as a long
living document which is continuously updated and thus requires a highly dynamic
handling of memory.

STEAN also supports a snapshot feature that can be used to create a persistent copy of
the stored information and the current state of the service. The snapshots, however, do
not contain the shared libraries registered but assume that the libraries are available at
the same location. To ensure consistency within the snapshot, all ongoing operations are
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finished before the snapshot is taken, and all open requests are delayed until snapshot
creation is complete.

The created snapshots can either be directly loaded during initialization of a STEAN
instance or imported into a running instance using the Management API. This allows us
to setup new instances with a known and pre-published base context to speed up the
mechanism initialization phase, and replace existing context information during runtime
if the operational conditions of the network change.

4.1.6.2 Function Libraries

Transformations are implemented as Unix Shared Objects (SOs) and have to be loaded
via the Management API. This enables us to add functions on demand without shutting
down or even recompiling STEAN.

After registering the library system wide, each client needs to register the used transfor-
mation functions together with the base context annotation and the mapping annotation
within its client context. This ensures that STEAN calls the correct transformation func-
tion when an annotation is requested without the need to specify the function on each
request, and prevents inconsistent mappings between requests from the same client.
Additionally, it keeps the size of request messages low and thus increases the response
time of STEAN.

The TC within STEAN offers full support of the C programming language together with
all libraries available on the host. We have defined four method signatures—presented
in Listing 4.1—each function has to comply to in oder to be registered as a transfor-
mation within STEAN. The signatures corespond to the transformation types defined
in Section 4.1.3 and include the specific requirements of each type. For example, the
mapping functions accept a simple data item that should be transformed to the target
context while the aggregate functions require a more complex set of information such as
a Vector of storage nodes that should be combined into the single annotation.

// Filter Functions
extern "C" pair <bool ,int > name(xml_node <>* n,

map <string ,string >* params)

// Mapping Functions
extern "C" pair <bool ,string > name(string s,

map <string ,string >* params)

// Modifier Functions
extern "C" bool name(xml_node <>* item , map <string ,string >* params)

// Aggregate Functions
extern "C" void name(vector < vector < xml_node <>* > > sources ,

vector <string >* destination)

Listing 4.1: Format of shared library functions

In general, a transformation function takes the XML structure returned by the SC
along with a map of additional parameters—such as additional selectors, filter settings or
operators to be applied—as an argument and returns a boolean that indicates the success
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or failure of the applied transformation. When successful, the result of the transformation
is returned as XML structure as well.

4.1.6.3 Client Communication

STEAN runs as a single-instance service on each node and communicates with clients
either via Unix domain sockets or via TCP sockets. Each client is assigned a separate
socket upon connection and communicates with our service using XML based commands.

The data received on each socket is handled as a stream of request and responses. The
stream is split at the closing tag of the XML element by the IC. Malformed messages
are either ignored or answered with an error message, depending on how much of the
message can be interpreted. All messages are then classified to determine the component
responsible for handling the request. Messages that update the MB are directly passed to
the component while requests to the data storage are forwarded to the TC.

The response is passed back to the client handler that uses a message builder to create
valid XML and return the answer to the client.

STEAN supports concurrent access of multiple clients. The service uses a synchronized
queue to manage incoming requests after classification and to forward lookup operations
to the addressed component. We use a scheduler to continuously read from this FIFO
queue and forward the requests to the responsible component.

Read operations are immediately forwarded by the scheduler and processed in parallel
to reduce the latency of a request. This requires the transformation functions to not alter
any data items in the storage backend during lookup operations (including the metadata)
as this would contradict the fully parallel operation mode.

When the service receives a request to alter the stored data, the execution is blocked
until all currently running operations are finished and the storage is in a consistent state.
The operation is then executed and the scheduler blocks all other subsequent requests
until the alter operation is finished. Currently, our implementation blocks all operation
regardless of which part of the storage they require to access.

4.1.7 Client Implementation

We designed and implemented a client library that provides convenient access to STEAN
without the need for the client developer to handle the connection management and
the XML message building and parsing. Additionally, we provide fully functional client
implementations for two mechanism classes—that are in the focus of the use cases
presented in Section 3.1—along with the required transformation functions to support
the seamless transition between those mechanisms.

Client side caching potentially brings additional performance benefits to mechanisms
connected to STEAN, depending on the access and update behavior. It can dramatically
reduce the latency when continuously retrieving the same information but is rendered
useless if other connected clients are permanently updating the requested data. While we
provide a library to connect client mechanisms to STEAN, we opted against including
a generic cache solution. This allows us to focus on the core functionality and enables
mechanism designer to create a caching solution that specifically targets the requirements
and singularities of their mechanism.
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4.1.7.1 Network Functions

The STEAN support for NFs is built on top of the OpenNF [28] modifications that allow
to migrate NF state between different instances. Instead of migrating the state via the
controller, we directly share context information between the NF instances using STEAN
and thus circumvent the bottleneck of passing all context information through the already
loaded orchestration instance.

We have chosen the PRADS asset monitor [24] as an example to show the feasibility
of our approach. PRADS is a passive network monitor that allows operators to map the
services running in a network and detect changes in real time. It uses TCP and UDP
fingerprinting to identify OSes and service applications. PRADS also keeps an internal
state table to identify flows in the network and provide information on the services
offered and used by the networked systems.

We modified PRADS to be a STEAN client while still supporting the OpenNF controller
messages to initiate the migration of flows between instances. The PRADS instances
share the complete internal state of all observed flows using STEAN. The per-flow state
generated by PRADS consists of a unique identifier per flow, the protocol 5-tuple and the
IP protocol version along with timestamps for the first and last seen packets, the number
of packets observed for the flow, as well as the total size of transmitted data for each
direction. PRADS also includes the hardware protocol and any TCP flags observed into
the flow state along with a list of identified assets for source and destination.

We specifically target the use case of migrating NFs with our implementation, and thus
we are only sharing information between instances running the same implementation.
The only transformation functions required are filters to select specific flow entries based
on the unique flow identifier assigned by PRADS. Therefore, also the base context is held
simply by mapping the identifying hash of a flow to the item key and the serialized data
object that comprises the flow properties to a String element as shown in Figure 4.4.
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Figure 4.4: Mapping of the internal PRADS state elements to the base context.

4.1.7.2 Modular Routing Protocols

We modified implementations of the Ad hoc On-Demand Distance Vector Routing
Protocol (AODV) as well as the Optimized Link State Routing Protocol (OLSR) to
support the use case of switching routing protocols as introduced in Section 3.1.4. The
mechanisms are implemented using Click, and we extended the state handling elements
to connect to STEAN. Each mechanism uses a special Click element that is responsible
for specifying the mechanism context, and registering annotations and transformation
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functions during system startup. This element also handles the communication with
STEAN during mechanism operation.

The separation of the mechanism functionality and the context handling allows us to
keep the modification overhead in the existing implementations low. It leads to a strict
separation of concerns: the STEAN client can be exchanged with another implementation
without changing any other code. This allows us to evaluate clients with different data
access and caching strategies.

Our implementation makes heavy use of client side caching and thus serves as an
example how a client side cache that takes the quirks of the implemented mechanisms
into account, can be realized. We use the publish-subscribe interface provided by STEAN
to register for annotations used by the mechanism implementation and invalidate the
client-side cache entries when the information stored in the context management system
changes.

Accompanying the implementation changes, we designed a base context that closely
matches the requirements of the routing protocols. Specifically, we share the list of one-
and two-hop neighbors as well as the list of multipoint relays and the routing tables. The
mechanisms do not hold any local context but solely access information stored in STEAN.
Figure 4.5 shows the relation between the information used within the routing protocols
and the base conext used by STEAN.
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base context

<neighbors>

<link data>

linear lookup

neighbor base

link base

neighbors

OLSR AODV

if base <if data>

topology base

mpr

<t data>

two hop

Figure 4.5: Relation between the mechanisms specific context representation of OLSR, AODV and
the base context.

We have implemented transformation functions that convert the base context to the
specific context of each mechanism and vice versa. These functions include an aggregate
function to join the information into one result as needed by our AODV implementation
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as well as filter functions that allow us to select entries from the shared context and thus
only extract the information needed to forward the currently processed packet.

4.1.8 System Analysis

In this section, we present a general analysis of our design and implementation. Our
goal is to understand 1. the performance of basic STEAN operations, and 2. the scope of
changes required to adapt existing mechanisms to our context management system.

A more extensive evaluation that shows the performance of STEAN in multiple use
cases is performed in Chapter 5.

4.1.9 Performance

We analyze the overall system performance of STEAN by evaluating the insert and
retrieve time of context information. We use a simple client that inserts and reads IPv4

addresses that are either represented as a String with dots separating the octets or each
octet represented as a Integer value. Additionally, transformation functions are available
in STEAN to convert between these two formats.

The evaluation is conducted on a single machine with a Quad-core Intel Xeon CPU
and 16 GB of memory. All caches are disabled to show the raw performance of the
transformation engine and the context storage.

Figure 4.6 shows the time per insert for inserting 1000 (a, d), 10.000 (b, e) and
100.000 (c, f) unique IPv4 addresses both with and without applying the transformation
function.
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Figure 4.6: Time per insert without calling a transformation function (a–c), and with calling a
transformation function to convert the representation (d–f).

Our results show that writing to STEAN takes constant time regardless of the number
of entries already stored. Saving one context entry takes about 140µs when no trans-
formation function is employed and around 180µs when the simple function described
above is used to convert the representation.

Additionally, we see that at least 1/3 of the request completion time is spent on socket
communication.

The time shown for transformations, even when no function is executed, is due to
the overhead passing all requests through the transformation engine and not interfacing
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with the storage directly. While we focus on a single client in Figure 4.6, we remark that
additional clients have a negligible performance impact and only increase the variability
of the insert time (not shown).

Figure 4.7 depicts the results for reading one out of the 1000 (a, d), 10.000 (b, e) and
100.000 (c, f) addresses inserted before. The address is selected by applying a filter
function for a random but fixed address per operation.
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Figure 4.7: Time to retrieve an address without calling a transformation function (a–c), and with
calling a transformation function (d–f). The boxes represent the median and the error
bars show the first and third quartile.

The experiments show that the time for retrieving context is linear to the number
of entries stored in STEAN. This is due to the current implementation of the storage
component that is iterating over all entries for an annotation until a match is found.

This behavior is also represented in the timings for the transformation engine as they
include the time for applying the filter function. Each item is passed through the filter to
check for a match and thus the transformation time also increases with the number of
entries. Concurrent lookup requests do not influence the performance of STEAN as read
operations are executed in parallel.

Our initial system analysis demonstrates, that STEAN is able to handle large amounts
of context information with only minimal overhead, and is thus suited even for highly
loaded networks. In Chapter 5, we strengthen this conclusion by integrating STEAN into
existing network architectures, and applying different work loads from our use cases.

4.1.10 Implementation Overhead

To quantify the modification required to support STEAN using the mechanisms presented
in Section 4.1.7, we counted the Lines of Code (LoC) that were added or changed in each
implementation and present our findings in Table 4.1.

The results show that systems designed to share context information only require
minimal changes to support STEAN. While the number of LoC for AODV and OLSR
suggests rather dramatic changes, the actual implementation overhead was minimal since
only a few functions needed to be changed.

However, as these functions were largely scattered over the code, they increased the
overall LoC count. Nevertheless, most of these changes can be generated automatically
using refactoring tools.
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implementation loc added/changed change in code

AODV 542 21.4 %

OLSR 1289 49.9 %

Common Click Code 1243 n/a

PRADS w. OpenNF 144 0.7 %

STEAN shared library 972 n/a

Table 4.1: Additional or changed code to implement STEAN support.

4.1.11 Summary

We presented STEAN—a Storage and Transformation Engine for Advanced Networking
context—that enables us to not only share state between instances of the exact same
implementation but to extend the sharing of network context beyond these boundaries.

STEAN supports the decoupling of functionality and context and serves as the state
plane that is responsible for gathering the state information from mechanisms deployed
in a network segment, and enriches the gathered information to provide the network
context to the connected mechanisms.

We introduced the concept of transformations to bridge the gap between existing
mechanisms that do not share a common context by adding a translation layer that
mediates between the mechanism specific state representation and the base context used
by STEAN. This additional layer allows us to leverage the advantages and features of
a context management system with only minimal changes to existing implementations.
It also enables a faster development of new mechanisms as it reduces the overhead of
handling state information locally by providing a well defined API along with supporting
tranformation functions. The developers can focus on the functionality and leave the
context handling to STEAN.

Our component based architecture is centered around transformation functions as
the core feature and enables us to connect arbitrary mechanisms from WMN routing
protocols over BGP implementations to virtualized NFs with a minimal performance
penalty. This penalty is further reduced by introducing a specialized storage backend that
is based on a in-memory XML database and a customized memory pool that efficiently
supports high frequency updates by using pointer operations on the stored information.

We also implemented a message cache that uses per client results with tranformations
already applied to efficiently support reoccurring requests from the same mechanism.
This avoids the multiple execution of potentially costly transformation functions while
still providing a performance gain for the connected clients even if they are not sharing
the cached results. We support multiple caching strategies on a per client basis to provide
an optimized solutions to all connected mechanisms and to further reduce the latency
overhead. An evaluation of the gains provided by the cache is presented in Section 5.2.

Additionally, we offer client implementations for two distinct use cases, namely “Switch-
ing Routing Protocols” presented in Section 3.1.4 and “Migrating Network Functions”
discussed in Section 3.1.1, based on the Click Modular Router and OpenNF respectively.
The client implementations show how STEAN can be incorporated into a diverse set of
mechanisms that depend on different frameworks without the need to adapt the inner
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workings of the mechanism but replacing the internal state handling with a set of library
calls to STEAN.

4.2 a blueprint for switching between mechanisms

In this section, we present the blueprint of an architecture for transition enabled mecha-
nisms, and introduce a framework to execute such a mechanism switch during runtime.
To this end, we deviate from monolithic mechanisms and follow a modular approach,
thus further increasing the flexibility of our solution.

We focus on the use case of switching WMN routing protocols discussed in Section 3.1.4
as it is one of the most challenging examples in providing a switching architecture both
in terms of mechanism design as well as coordination during the switch.

Currently, many configuration parameters and settings of a WMN are chosen at
deployment time. This includes the choice of a routing protocol and the associated
protocol parameters such as link weights, timeouts etc. that vary depending on the
protocol type and mode of operation. The choice depends on the application scenario and
the existing boundary conditions—current mechanisms for WMNs are typically tailored
to a narrow scenario set—thus yielding the desired performance.

These conditions are subject to change over time. A once stable and reliable network
can suddenly get unreliable due to external factors such as obstacles that obstruct wireless
links or interference caused by other radio devices. Moreover, in WMNs the topology
can change completely over time as mobile nodes move within the network or as the
network organically grows and new applications are deployed. These changes in the
environment and the network’s structure as well as its usage may require changes in
the routing protocol during runtime to maintain the desired network performance. Yet,
current WMN deployments do not support dynamic transitions between different routing
protocols.

While nodes in an infrastructure based network are usually managed by a single
administrative domain, the nodes in a WMNs are often controlled independently of
each other. This also includes the availability of complete mechanisms and mechanism
features as the implementation can be different on each participating node. Therefore, we
need to ensure that a synchronous transition between the routing services is supported
by all nodes.

One solution to this problem is to deploy a set of mechanisms and then select on
demand the mechanism fitting the current situation best—switching between those
choices during runtime. However, we then need to gather the routing information for the
new mechanism and establish new routes before the network is operational again.

4.2.1 Assumptions

A core question is: when should one mechanism be exchanged with another one and
with which one. For this purpose, we can either employ a traditional monitoring solution
such as Nagios [50] or Icinga [69] that uses agents installed on each host, and connect
back to a central instance.

The central service analyzes the collected data using a set of pre-defined metrics
to observe the network performance. The global view enables a central monitoring to
provide concise information on the current operational status of the complete network
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and supply the operator with an up-to-date view of the system performance and potential
bottlenecks.

However, those systems are built for monitoring networks that use a rather static
topology, and are operated by a single administrative instance where a central controller
orchestrates all networked devices.

WMNs are, however, built with a decentralized approach in mind. Therefore, mon-
itoring solutions that are specifically tailored towards WMNs such as Damon [58] or
Crater [60] are available. Those systems collect metrics in a distributed fashion and
the monitoring agents deployed on the network nodes already process, aggregate and
correlate the collected information before forwarding them to neighboring nodes or a
data sink to reduce the load on the wireless channel. Monitoring services designed for
WMNs are able to 1. dynamically adapt to the underlying network topology, 2. handle
the characteristics of a wireless communication medium to distribute the monitoring
results, and 3. take the resource limitations of mobile devices (e.g., energy) into account.

For now, we assume the existence of such a monitoring service—either centralized
or distributed—that is able to support us with connectivity and performance metrics in
order to support our decision on initiating a transition.

Still, the question remains which system decides to initiate the transition and instructs
the nodes to change the used service and when, i.e., which system coordinates the
switching. This system needs to incorporate the information collected by the monitoring
service as well as additional requirements either supplied by the operator or users such
as certain QoS levels, by applications running on top of the network infrastructure, or by
the (expected) environmental conditions.

The decision and execution engine could again be a centralized system, orchestrating
the complete network from a single instance or a distributed decision scheme such as
majority voting. While a centralized system is able to incorporate monitoring information
from the complete network, and collect and consider all features that are requested by
the users, the view of a decentralized system can be limited due to connectivity problems
or even a split in the network. Still, as WMNs are distributed systems by design, a
distributed decision engine is usually better suited to those networks as a central—and
thus critical—instance is explicitly avoided.

The remainder of this section is based on the assumption that a decision and coordi-
nation system exists and that the system is able to contact and control all participating
nodes to orchestrate the transition.

In addition, we need to develop ways to assure that the coordination of the nodes’
transition process is protected by an adequate authentication scheme when the commands
are issued on an in-band connection that is also used for data traffic. Otherwise, potential
attackers could flood the network with switching requests which would cause the entire
network to fail in the worst case.

As ensuring the authenticity and integrity of messages is a general problem in WMN
(routing) mechanisms, we omit this question for now. We assume that the communication
with the other nodes is established via a secondary channel such as a very robust but
low bandwidth mesh network. A low bandwidth channel is sufficient as only status
information and switching commands are exchanged but no data traffic is routed over
this network.
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4.2.2 System Design

In this section, we describe our approach to modular mechanisms and present a solution
for developing and deploying mechanisms that are designed with sharing of network
context in mind. Our design serves not only as an example on how modular mechanism
architectures can be used to share context information. It also acts as a guideline for other
developers on how frameworks for modular mechanism design can be used to support
context sharing.

We focus on the clear separation of functionality and context to ease the sharing
of information between mechanisms by either common elements available within the
framework or by employing an external context management system—such as STEAN—
that is connected to each mechanism implementation. Figure 4.8 gives an overview of the
design and the interaction of the components involved in our architecture.
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Figure 4.8: Overview of the switching system and the component interaction.

While our focus is on the design of transition aware mechanisms, we have also
developed an infrastructure for the switching system that is based on the assumptions
presented in Section 4.2.1. This system supports the evaluation of our approach and
serves as a guideline to develop and deploy the services currently not included in this
work.

4.2.2.1 Controller Infrastructure

Our design includes a hierarchical architecture of controller elements that are responsible
to transfer and forward the instructions issued by either the operator or the orchestration
system to each mechanism implementation that is actually handling the data traffic. The
placement of the different controller elements and the interaction between them is shown
in Figure 4.9.
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Figure 4.9: Placement and interaction of the controller infrastructure.

mastercontroller The MasterController is the central interface to control the
network and serves as a stub for the monitoring services and the connected decision
engine. When a new node joins the network, it registers with the MasterController
and announces the available routing protocols together with a list of optional features
supported by the implementation.

The MasterController provides methods to initiate the switching process and orches-
trates the switch to a new routing protocol. The controller can either reside on a separate
node in the network or on a normal WMN node.

onhostcontroller We designed the OnHostController as a proxy between the
MasterController and the mechanism implementations that translates the commands
issued by the MasterController to framework specific instructions that are understood by
the implementation.

The OnHostController connects back to the MasterController on startup and announces
the available mechanisms. It then listens for switching instructions from the MasterCon-
troller and interfaces with the routing protocols locally available, forwarding the received
commands.

We chose to introduce this proxy service to stay independent from the mechanism
framework used and possibly employ different frameworks on different nodes without
the need to adapt the MasterController. This even allows us to provide different imple-
mentations of the same mechanism on a single node without the need to integrate them
into one common mechanism framework.
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frameworkcontroller The FrameworkController offers a common interface for
all mechanisms that are implemented in the same mechanism framework. It offers a
single interface for the OnHostController to instruct the implemented mechanisms and is
responsible for dispatching the commands received from the OnHostController to the
mechanisms available within the framework.

It is also responsible for controlling the traffic flow within the framework, and ensures—
in conjunction with additional modules—that the selected mechanism processes and
forwards the data packets received by the node.

This additional layer allows us to perform complex orchestration scenarios such as
dynamically adjusting timers, automatically redirecting data and control traffic within the
framework to selected mechanisms, or even duplicate traffic to be received by multiple
mechanisms in preparation of a transition without offering specialized interfaces or
adapting the OnHostController.

mechanismcontrol Each mechanism implements a MechanismControl module
that serves as a single source for the definition of properties, requirements and features of
the mechanism. It also announces framework specific information such as other elements,
the mechanism implementation is connected to.

The MechanismControl orchestrates the other modules composing the mechanism
such as enabling and disabling mechanism specific timers that would otherwise consume
CPU time or even generate unwanted traffic (e.g., HELLO messages).

The element registers the mechanism with the FrameworkController on initialization
and thus allows to add additional mechanisms without adapting the FrameworkCon-
troller or specifically define the available mechanisms beforehand. By using the Mecha-
nismControl element, we are able to dynamically load mechanisms during runtime if
supported by the framework.

4.2.2.2 Modular Mechanisms

The modular mechanisms handle the actual data traffic as well as manage their specific
control traffic such as the neighbor announcements and the route discovery.

We encapsulate each functionality into modules at a very fine grained level and
use dedicated context modules where necessary to aggregate and unify the access to
context information per mechanism. This helps us keep the information gathered by the
module close to the origin while still providing a unified interface to an external context
management system such as STEAN, and therefore eases the transition between different
routing daemons.

The transition between mechanisms can be seen as the transition between a set of
modules where each module is either re-used in the new routing scheme or is responsible
for handing over its information to the corresponding new module.

The context transition can be performed using a direct exchange between the involved
modules or alternatively by storing/retrieving the information in/from a common
context management system. While the former keeps the relevant information closer to
the functionality, the latter allows for a wider sharing of context. It allows mechanisms to
share their context across framework boundaries, and enables them to employ context
transformations to adapt the stored information to the desired representation.
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The mechanism specific operations such as exchanging routing information or for-
warding traffic are executed on the data network and run independently from the control
commands sent by the switching system.

Mechanism designers should keep the modules for the operation of the core mecha-
nism features separated from the elements responsible for switching support to ensure
that the network continues to operate even if the controller infrastructure is temporarily
not available. However, each mechanism implementation must provide a specific Mecha-
nismControl element as described above to announce itself to the FrameworkController.

4.2.2.3 STEAN Connector

The STEAN Connector offers a unified interface for modular mechanisms to store
and retrieve context information using the context management system introduced in
Section 4.1. The element serves as an abstraction layer for the STEAN API, and allows
us to design and develop mechanisms independently of the STEAN implementation. It
enables us to extend or even exchange the context management system without the need
to adapt all mechanisms to the new architecture.

The connector maps the internal calls of the mechanism implementation to STEAN API
calls. Therefore, existing implementations do not need to be altered, and the function
calls for accessing state information remain the same. This eases the transition towards
sharing context information as only a small subset of the implementation needs to be
adapted.

To acomplish the mapping of calls from arbitrary mechanisms, the STEAN Connector
dynamically loads the concrete implementation of the mapping functions on initialization
using the same mechanisms as the MechanismControl element described above. Thus,
we provide developers with a single interface to integrate the mechanisms into our
framework.

Additionally, the connector provides a client side cache to reduce the amount of
subsequent calls to the STEAN API. The cache supports multiple strategies that can be
dynamically selected by the mechanism in order to fullfil the desired caching properties.

Placing the cache close to the mechanism implementation allows us to provide a tailor-
made solution without leaving caching to the mechanism developer even though each
mechanism requires its own cache instance—as already described in Section 4.1.4.1—due
to the diverse set of context information.

The STEAN Connector uses the library introduced in Section 4.1.7 as a convinient way
to access the context information managed by STEAN. The library allows developers to
use standard function calls from within the programming language of choice instead of
dealing with the XML API directly, thus facilitating the development of mechanisms.

4.2.3 Implementation

We developed a prototype of the switching system using Click [39] as a framework
for modular mechanism design. Click supplies us with a Domain Specific Language
(DSL) to rapidly prototype and built not only routing protocols but also other types of
mechanisms such as a NAT.

The framework provides multiple components called elements where each element only
offers a very small but well defined functionality such as inspecting packets, cryptograph-
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ically signing a payload or modifying the IP header. Multiple elements are then linked in
a directed graph forming the functionality of the mechanism, and packets flow along the
edges of this graph.

Click allows for two modes of operation: 1. a binary running in user space that loads a
specific configuration on startup, and 2. a kernel module that uses a special filesystem to
communicate with the user space and allows for dynamic reconfiguration.

However, our implementation is currently only available for the user space mode as
we rely on external libraries that are not available in kernel mode such as the Botan
Cryptographic Library [45]. Enabling kernel mode would require to port the library
functions to separate Click elements.

In particular, Click implements the modular routing protocols, the STEAN Connector
and the FrameworkController as shown in Figure 4.10. Currently, we provide implemen-
tations for AODV [55], a reactive WMN routing protocol, and OLSR [32], a proactive
protocol, as well as their secured versions: the Secure Ad hoc On-Demand Distance
Vector Routing Protocol (SAODV) [29] and the Secure Optimized Link State Routing
Protocol (SOLSR) [2].

The mechanisms themselves are composed of multiple elements to clearly separate the
routing functionality from the cryptographic operations, and enable a re-use of common
elements across the secure and the non-secure versions. The mechanisms also share
common functionality such as the ARP handling or the access to the physical network
device.

Each mechanism implementation includes a separate MechanismControl element
that announces the mechanism identifier to the FrameworkController and registers the
implementation with our switching system on startup.

We also developed additional modules to support the mechanism switch within the
framework. This includes a TrafficSwitch that is able to pass the data traffic to the
currently active mechanism for processing and forwarding to the next hop as well as
a configurable MechanismClassifier that is able to dissect the incoming control traffic
based packet characteristics such as the destination port.

The separation of handling control and data traffic within the framework allows us to
run two mechanisms in parallel where both mechanisms exchange control information
with their neighbors but only one mechanism is forwarding data traffic.

The MasterController and the OnHostController are implemented as standard Unix
daemons running in user space and communicating with the Click modules using
TCP sockets. The framework offers handlers to control the behavior of an implemented
mechanism during runtime outside of the data path used for processing packets. We use
these handlers in our implementation to interact with the FrameworkController which
aggregates and dispatches the commands from and to the MechanismControl elements.

The internal interaction between FrameworkController and MechanismControl is
implemented using direct function calls which reduces the communication overhead and
speeds up the processing of control information.

The separation of controllers has the advantage that the routing framework does not
have to be adapted if new features are introduced or if one of the controllers is replaced
with a more advanced or distributed version. At the same time it is also possible to
replace the mechanisms with another implementation without the need to replace the
controllers.
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Figure 4.10: Implementation of the modular mechanism design in Click.

As Click currently only runs single threaded and in order to keep the execution of the
current configuration from blocking, handlers are not waiting for results as this would
also block the forwarding of data traffic. Hence, the handlers need to be polled for new
or updated information. The polling is done by the OnHostController and once a change
in status occurs the MasterController is notified.

The OnHostController connects back to the MasterController using a reliable out-
of-band connection that provides connectivity even if the main link—handled by the
Click implementation—fails. The use of a separate control channel ensures that the
communication between the central MasterController and the connected nodes—running
the OnHostController—is never lost even if a mechanism transition fails and some
nodes run a different mechanism than the other nodes (i.e., the network is split). This is
especially critical if mechanisms that are responsible for the end to end connectivity such
as the routing protocol are included in the transition. While a split network situation
disrupts the forwarding of data traffic between end hosts, the secondary link allows us to
recover from this error by simply issuing another switch command that enables the same
mechanism implementation on all nodes again. However, our implementation is also
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able to use the main data link between nodes for its control information, if a secondary
channel is not available but then leaves the failure recovery to the individual node.

The MasterController is implemented as a single instance component that runs only
once in the complete network and acts as the orchestrator for the switching process
where the mechanism information of all nodes is aggregated and offered to the network
operator in a unified and concise view.

As we focus on the transition between mechanisms, we currently also do not incor-
porate a monitoring solution to observe the network behavior and automatically base
switching decisions on this information but handle the decision to switch manually. This
allows us to control the transition between mechanisms without relying on the results of
a decentralized decision engine or monitoring system.

For this purpose, the MasterController has a command line interface where switching
requests can be issued. Those requests are then distributed to the mesh nodes in a syn-
chronized fashion. The interface allows us to automate the mechanism transition during
an experiment and execute multiple switches in sequence without manual interaction.

4.2.4 Summary

In this section, we presented an architecture that allows us to switch between routing
protocols in a WMN. We have defined a blueprint for transition aware mechanisms
that enable a seamless switch between mechanisms during runtime by sharing context
information such as the routing table.

Our approach serves as design guideline for mechanism architects to create mechanisms
that are developed and built with context sharing in mind. We have based our approach
on the principle of modular mechanism development and extended the architecture to
natively support transitions within the complete mechanism stack.

Additionally, we have shown how existing mechanisms can be modified to support
both a mechanism switch as well as context sharing and how these two principles can be
incorporated into a revised implementation.

To this end, we have introduced a hierarchical set of controller components (Master-
Controller, OnHostController, FrameworkController and MechanismControl) as well as a
joint connector element that allows the sharing of context information using STEAN.

However, the presented architecture is not limited to the sharing of routing information
but targets the complete set of context information on all layers of the network stack.

While we focused on WMNs in this section, the presented architecture principles are
not limited to one networking technology but can be applied to other network designs or
use cases, and the results can be easily transfered to both wired networks such as SDNs
as well as other wireless technologies.

Our architecture enables all mechanisms to connect to the state plane of the network and
benefit from the extensive sharing of context. It enables network operators to dynamically
select the running mechanisms during runtime without the need for downtimes while a
transition is executed.

We have implemented a prototype based on the Click framework, which enables a
switch between the WMN routing protocols AODV and OLSR as well as their secure
counterparts SAODV and SOLSR. For this purpose, we modified the existing imple-
mentations and added multiple elements both in the mechanism design as well as the
surrounding framework.
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Additionally, we have implemented the controller infrastructure to dynamically select
mechanisms during runtime and disseminate the selection to all connected nodes.

An evaluation of our framework along with a discussion of the insights gained from
running the system in a WMN testbed is presented in Section 5.2.

4.3 discussion

In this chapter, we presented the two major building blocks for enabling context sharing
across multiple mechanisms and laid the foundation to establish a network wide state
plane.

First, we presented STEAN, an implementation of a context management system
that collects, aggregates and disseminates context information across all connected
mechanisms. Our design enables us to store and retrieve context information from any
connected mechanism without the need to adapt the internal state representation of the
contributing instance to the context representation used by STEAN.

We realized the mechanism independence by introducing transformation functions that
enable STEAN to construe the mechanism specific context representation from a common
base context that is used within the context management system and that represents the
complete set of context information usually scattered across the network segment.

STEAN acts as a network wide state plane that provides a unified interface to state in-
formation and enriches the stored data to provide the network context. It offers transition
support for both legacy implementations as well as newly designed mechanisms.

Second, we introduced a structural design to enable mechanism transitions during
runtime without service interruption. Our design is based on a distributed controller
architecture that allows us to connect multiple mechanisms to a decision and control
engine that orchestrates the switching process. We provide generic interfaces that are
independent of the underlying mechanism and unify the command and control channel
into a common architecture.

Additionally, we show how mechanisms need to be altered to support seamless
transitions by introducing additional elements into modular mechanism frameworks,
dedicated to switching support. Using distinct elements allows us to reduce the changes
to the actual elements composing the mechanism functionality to a minimum and thus
increase the adaptation rate of existing implementations.

We specifically do not assume a clean slate approach which ignores existing implemen-
tations and requires developers to implement major changes to their existing mechanisms.
The targeting of specialized mechanisms in such an approach allows architects to create
high performance implementations with virtually no additional overhead. However, it
ignores the already existing and widely deployed legacy mechanisms in favor of a highly
customized network architecture.

The state handling in such mechanisms is usually only driven by considerations about
forwarding performance of single mechanisms, but ignores the fact that cooperating
functions can lead to a better overall network performance even if individual mechanisms
operate at a lower forwarding rate.

The sharing of context information across multiple implementations and even among
mechanisms with different functionality is not in focus of existing state of the art state
handling systems. Instead, they focus on the fast migration between instances and the
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high availability of services among a single class of mechanisms or even only among a
single unified implementation.

We opted against a design that forces mechanism developers to adapt their imple-
mentation to a specific context representation but rather enable developers to integrate
the existing mechanisms into our architectural concept. We offer a blueprint on how
existing mechanisms can be integrated as well as guidelines on how newly developed
mechanisms need to be designed to be context aware, and seamlessly contribute to a
network wide state plane.

The introduction of transformation functions in STEAN further boosts the acceptance
of such a context management system among network architects as well as mechanism
designers. We not only use transformations to convert between different representations
but contribute additional value to the state information gathered by the connected
mechanisms. Our focus lies on the metadata that accompany the state information to
form the network context.

The introduction of both a blueprint for designing and implementing transition aware
mechanisms as well as a state plane architecture and implementation enables us to
enhance the current state handling in networks to create a more dynamic and adaptive
system architecture. It enables network architects as well as mechanism engineers to easily
adapt existing mechanisms to our architecture, and quickly introduce new mechanisms
that are built with transitions and context sharing in mind.
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E VA L U AT I O N

Our system architecture is based on two major components, namely a context man-
agement system that enables us to transform and share context information between
mechanisms in Section 4.1, and a guideline to design and implement transition aware
mechanisms in Section 4.2.

In this chapter, we evaluate the individual components as well as the complete archi-
tecture by applying the principles to two distinct use cases selected from the scenarios
presented in Section 3.1: “Reconfiguring Network Functions” and “Switching Routing
Protocols”.

While we already discussed the general system behavior of STEAN in Section 4.1.8, the
analysis now focuses on the interaction of the individual components with the connected
mechanisms as well as on the benefits we can gain from employing the architectural
principles introduced in Chapter 4. We not only show how each individual component
influences the system behavior but also discuss the implications of implementing the
complete architecture, and how we are able to improve the performance, reliability and
resource consumption of selected mechanisms.

First, we evaluate the behavior of STEAN as a context management system for mi-
grating NFs. The dynamic scaling of NFs allows operators to provide the forwarding
capacity required by the current network utilization without the need to over-provision
resources. It allows to reduce the operational cost without loosing the ability to adhere to
tight SLAs.

We compare our approach of a external context management and the continuous
sharing of information to a framework that handles state locally and only transfers
information when a migration is initiated. Our analysis is based on the implementation
of STEAN presented in Section 4.1.6 on the one hand, and OpenNF—discussed in
Section 2.5.5—on the other hand.

Our second evaluation is centered around the use case of switching routing protocols
as introduced in Section 3.1.4. Existing WMNs use a static set of mechanisms and
parameters that are chosen during deploy time and that do not necessarily offer the
optimal performance under changing conditions. Our approach offers an exit route to this
dilemma by selecting the appropriate mechanisms on demand and allowing a transition
of the network during runtime.

We show that a transition of mechanisms in a highly utilized network can dramatically
improve the forwarding performance both in terms of latency and jitter, and we demon-
strate how employing our architecture can avoid the existing traffic gap when using a
hard switch.

The use cases span a wide field of current network operations from the mechanisms
employed in core networks and DCNs to state of the art client access networks using
D2D communication. Our evaluation therefore covers a broad spectrum of current
challenges in network operations and shows how all areas can benefit from a generalized
context management system, and a mechanism architecture that is specifically built with
transitions in mind.
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5.1 migrating network functions

In this section, we evaluate the behavior and performance of our proposed context
management system when deployed in a NFV environment to handle the context of
a group of NFs that provide both load balancing and failover services. Our goal is to
compare context sharing using STEAN with current state migration systems for NFV
such as OpenNF, and show that a generalized context management approach is feasible
even for high performance mechanisms.

We use the migration of NFs—introduced as a use case in Section 3.1.1—to demonstrate
the performance of STEAN and to discuss the advantages of a generalized context
management system over a solution specifically tailored to a certain implementation of a
NF.

We focus on the time required to successfully migrate the handling of network flows
from one instance of the NF to a second instance without interrupting the packet
forwarding. Additionally, we monitor the forwarding performance of both instances
during the migration process and analyze the system behavior.

Network operations are usually bound to tight SLAs that define not only the general
availability of the service but specify exact boundaries for critical network parameters
such as forwarding performance, latency and jitter. These parameters need to be mon-
itored and the network operator must ensure that the stipulated thresholds are not
exceeded.

The compliant operation of the network can be achieved by either planning for the worst
case, over-provisioning the required resources and thus underutilizing the infrastructure
during normal operations, or by employing a dynamic scaling of NFs depending on the
current load. The dynamic scaling frees resources on the underlying infrastructure such
as VM hosts and allows to utilize the systems as needed.

Today, ISPs usually deploy proprietary and vendor specific solutions that allow for
dynamic scaling during runtime, but are limited to products from the chosen vendor or
even to certain implementations. This leads to a strong dependency on the chosen vendor
and implementation, and disallows to combine the best currently available mechanisms.
In other words, the operators run networks that leave a lot of room for improvement.

We thus introduce an open system that is able to not only handle the context of a
single group of NFs or even a single vendor specific implementation but that can manage
the context of various NFs and supplies multiple implementations with the required
information. We are able to 1. overcome the vendor lock-in, 2. deploy the best system
available for the current operation, and 3. exchange the NF with a feature equivalent
replacement during runtime without any impact on the user or even service interruption.

In this evaluation, we are using a modified implementation of the PRADS asset monitor
that supports OpenNF and also includes our extensions for STEAN support as described
in Section 4.1.7. STEAN serves as the context management system that handles all flow
related information while we utilize the existing functionality of OpenNF to initiate the
migration. This separation allows us to directly compare the performance of existing
state management solutions with our approach of external context handling.

We have chosen OpenNF as it is one of the most discussed state migration frameworks
in the research community. The authors have proven that their design and implementation
has no impact on the forwarding performance of the NF, that the time required for a
migration is very low, and the implementation overhead is manageable. OpenNF therefore



5.1 migrating network functions 83

serves as a reference for both the performance and the usability—in terms of ease of
implementation.

5.1.1 Experimental Design

The design of our experiments is closely based on the requirements of a network operator
running multiple instances of a NF that require migration support in order to provide
fault tolerance and scalability. We focus on the problems that arise during the migration
process and identify the relevant parameters influencing the migration performance as
well as the metrics to show the performance of the proposed architecture.

The evaluation is done using a virtual environment—described in detail in Sec-
tion 5.1.2—that allows us to control all parameters of both the network and the hosts
running the NF instances. Therefore, it enables us to define multiple scenarios that
typically appear in a DCN. We use the same general setup as proposed by the authors of
OpenNF to facilitate the comparison of our results to those of the evaluation presented
in [28] and enable other researchers to reproduce our results.

5.1.1.1 Parameters

The migration performance of a mechanism is influenced by three main parameters,
namely 1. the network performance available for coordinating the migration and transfer-
ring the context information, 2. the size of the context information stored in either the
migrate-from instance or STEAN, and 3. the number of currently connected flows to the
migrate-from and the migrate-to NF. Therefore, we discuss these contributing factors in
more detail and show how a change is influencing the measurement results.

network performance : The network performance is one of the critical parameters
when migrating context or even using a context management system to externally
store information. This includes both bandwidth and latency as the contributing factors
influencing the migration performance of the complete system.

The bandwidth is relevant when transferring large amounts of data in a staked time
frame—such as the migration of the complete context between NFs while the latency
is an influencing factor when small parts are continuously requested, e.g., required
information stored in a context management system.

Today’s DCN architectures consist of two distinct networks, one comprising the data
plane that handles the production traffic and one forming the control plane for managing
the environment, including the orchestrating systems such as SDN controllers. The two
networks often differ in performance by an order of magnitude and thus offer different
capabilities for handling packets.

context size: The size of the stored context influences not only the total migration
time as more information has to be transfered but potentially also the time required to
migrate each flow. This is especially relevant for storing context in an external manage-
ment system as these systems gather information not only from a single pair of NFs but
from mechanisms running in a complete network segment and therefore need to handle
a larger dataset.
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The size of this dataset influences the response time of the context management
system for retrieving specific entries as shown in Section 4.1.8 and thus contributes to
the migration time of each individual flow. The size of the context again refers to both
dimensions of the parameter: 1. the number of items stored within the context, and
2. the number of bytes required to store those items. While the storage size of each
item is usually low, the number of items is large as multiple mechanisms contribte their
information the the context management system.

number of connected flows : The number of connected flows defines the work-
load of each NF. It sets the baseline for the utilization of each instance and thus how much
resources are available for handling the additional load introduced by the migration
process.

Additionally, it also specifies the amount of context information changed during the
migration, and which information requires special care to ensure that the current state is
available on the migrate-to instance when the flow is transfered.

5.1.1.2 Metrics

We identified several metrics that allow us to assess the system behavior of both frame-
works for direct context migration and transitions supported by a context management
systems, and compare the results.

migration time: The total migration time tmigration =
∑
tflow, i.e., the time (in

seconds) required to migrate the complete context information between NF instances as
well as transferring the data path using SDN, is critical for the overall performance of
the evaluated system. It forms the main metric for identifying the workload the system
under test is capable of handling, and thus lets us anticipate if our solution is feasible for
the use case.

Additionally, the migration time per flow tflow = t8 − t0 (in seconds) provides us
with insights on the behavior when the system is not running under maximum load. It
represents the interval in which either all forwarding operations on a particular flow
have to be suspended to fully migrate the context information, or all packets belonging
to a flow need to be replayed to ensure order preserving operations.

It consists of the time required locally within each NF tnf = (t1− t0)+ (t8− t7) as well
as the time required to transfer information across the network tnet = (t2− t1)+ (t7− t6),
and the processing time required by STEAN tstean = t6 − t2. The migration time per
flow allows us to infer the general conduct even in larger installations, and provides us
with a baseline to identify the upper boundary in terms of packet and flow handling
capacity.

STEAN
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Figure 5.1: Migration time per flow split into subintervals.
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stean times: The time (in seconds) required by STEAN is critical for the overall
system performance when employing a context management system. Therefore, we
further divide the time tstean into transformation time ttrans = (t3 − t2) + (t6 − t5) and
the time required by the storage backend tstore = (t4− t3)+ (t5− t4) to add and retreive
the information. While the direct migration of context or the migration employing a
controller to forward the information does not exhibit any delay due to storage and
retrieval, using a context management system to handle the information always imposes
a certain latency. This is due to access delays of the storage component and the execution
of transformation functions. Therefore, we monitor these delays when employing STEAN
to handle the context and the observations enable us to gain insights on the influence of
our context management system regarding the total migration time.

system load : The system load (in percent) shows how much overhead the migration
process imposes on the systems—either physical or virtual—hosting the NF instances. It
offers insights on the efficiency of the transition as well as revealing potential bottlenecks
for high load operations.

We are not only focusing on the load generated by the mechanisms but also examine
the impact of running the orchestrating SDN controller as well as the context management
system. The controller is critical for context migration using OpenNF as it resides on
the critical path and all information must pass the single instance. The same applies for
STEAN when running a context management system with the exception that the load
is not suddenly applied when the migration is initiated but the system must be able to
continuously handle the emerging load.

network utilization: The network utilization (in percent) is offering an insight
into the transfer of information not only during the migration but also during normal
operation. It is important to first establish a baseline to evaluate the additional overhead
introduced by the migration process and to ensure that the network is not overloaded dur-
ing the complete operation as such an overload would result in both bad NF performance
as well as extended migration times.

We identified multiple parameters and metrics that are relevant for evaluating the
performance of context migration between NFs. In the following experiments, we focus
on the most relevant parameters that influence the time for a transition and evaluate
the most significant metrics in terms of comparing the performance of a specialized
migration framework and a generalized context management system.

5.1.2 Experiment Execution

We used Mininet [43] as a virtual environment to provide the network setup for conduct-
ing our experiments since it allows us to easily specify a network topology, condition
network links, and start multiple OS containers. This framework enables us to perform
the complete evaluation on a single host without the need for special SDN hardware
such as switches or multiple physical servers that host the required instances of PRADS,
the SDN controller and STEAN.

The setup allows us to use a low range server machine with a Quad-core Intel Xeon CPU
and 16 GB of RAM to execute all experiments without any performance issues. However,
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we bound each virtual host running the NF as well as the controller and STEAN instances
to a dedicated CPU core to avoid context switches.

The architecture of our virtual network follows the principles of a SDN architecture,
and separates the experiment platform into two distinct planes as depicted in Figure 5.2:
1. A data plane that handles all network flows, and 2. a discrete management plane that is
responsible for handling the command and control instructions from the SDN controller.
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Figure 5.2: Experimental setup for the evaluation.

The data plane consists of two Mininet hosts that each run a dedicated PRADS instance
(PRADS1 and PRADS2), and a separate host that is responsible for generating the
workload by replaying a previously recorded network trace. All hosts are connected
via a virtual 100 MBit/s link to an Open vSwitch that is responsible for segregating the
network flows depending on the responsible NF instance.

On the management plane, we use Floodlight as the SDN controller—with patches
from the OpenNF project applied—to enable the handling of state migration as well as
the orchestration of the data path. The SDN controller is connected to the Open vSwitch
as well as the PRADS instances via an unmanaged switch using 10 MBit/s links.

We have chosen the available bandwith based on the assumption that state of the art
DCNs run at least 10 GBit/s links in the data and 1 GBit/s links in the management
plane. Thus, the performance of the data plane is one order of magnitude higher than
the performance of the management plane.

The workload on the data network is generated by replaying a network trace from a
university-to-cloud scenario where multiple end systems within a local network connect
to various cloud based services.

We used tcpdump [67] to record our own trace on the border gateway of our office
network as the trace used by the authors of OpenNF is not publicly available. The trace
was recorded over a period of approx. 20 h, and contains 70 k TCP flows, 2/3 of which
are HTTP(S) flows generated by connecting to typical web services such as Dropbox,
Google Calendar and Youtube. Only a minimal amount of these HTTP(S) flows were
generated by users actually browsing on websites. The application mix of our trace with
more than 60 % of HTTP(S) is also observed at large IXPs [4, 61] as well as on residential
lines [48], and thus is exemplary for a typical workload of NFs.

On average, a flow has a duration of 35.0 s and 5.0 flows are active in parallel. For 13 %
of the time, more than 100 flows are active in parallel. The mean number of flows is 33.6
which comes from a few long lived management connections that are active during the
whole capture.
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We determined the maximum packet rate our setup can handle experimentally and
found that the processing of flows on the NF as well as the migration process were
unreliable when more then 550 packets per second are emitted by the host replaying
the trace. Therefore, we chose to use a sending rate of 500 packets per second to not
operate our network under maximum or even overload but to leave some headroom for
additional flows.

All migrations are executed with order preservation enabled as it is one of the critical
requirements for operating NFs to not generate false context during the migration and
thus potentially raise false alerts, e.g., on a firewall or IDS.

The Open vSwitch initially redirects all traffic to PRADS1. Once the NF instance has
created state for 250 and 400 flows, respectively, we initiate the migration of the flow
state to PRADS2. We have chosen these thresholds due to the limited packet buffering
capacity of Floodlight when operated in order preserving mode.

While it seems more efficient to provide the context of all flows to PRADS2 at once,
STEAN executes filter transformations to select the context of the flow that is currently
migrated. This limits the additional load on the data plane to the absolut necessary
information at any point in time.

5.1.3 Results

We now present two distinct aspects of our evaluation, and undermine our findings with
selected results from our extensive series of experiments.

First, we put the focus on the overall system behavior during the migration process,
including all components from the two PRADS instances serving as an example for a
virtualized NF, over the extended SDN controller that orchestrates the migration process,
to STEAN as the backend for context management. This allows us to provide a direct
quantitative analysis of the migration performance employing our proposed solution in
comparison to state of the art migration frameworks.

Second, we analyze the behavior of STEAN during the migration process, and how the
prototype is handling the imposed load. This allows us to provide a qualitative analysis
of our architectural principals in general and the introduction of a dedicated state plane
in a DCN environment in particular.

For a general system analysis, we compare the OpenNF implementation to our ex-
tended framework using STEAN as a context management system. The box plots shown
in Figure 5.3 present the results for two different workloads that 1. resemble a similar
workload to the one used by the authors of OpenNF, and 2. represent the maximum load
our current setup can handle. In Figure 5.3, we show the migration time for one TCP flow
as the most relevant metric for the forwarding delay caused by the migration process.

We observe that employing STEAN for context migration reduces the median migration
time per flow from 103 ms to 41 ms for the 250 flow case, and from 280 ms to 160 ms for
the 400 flow case. This equates to an improvement of the median migration time between
42 % and 60 %, where a larger improvement is achieved when fewer context is stored.

The results also show that OpenNF completes its operation in a narrow time frame
while employing STEAN results in a higher variability. For the 250 flow case, we note that
the third quartile for both systems is at 145 ms and the first quartile is about 50 % lower
for STEAN. The distance between the first quartile and the median indicates that STEAN
is able to respond to most requests in a narrow time frame, and the larger variance results
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Figure 5.3: Total migration time per flow context between two PRADS instances.

from some operations that take significant more time but are still in the scope set by
OpenNF.

This is even more visible at the results for the 400 flow case where both the first
quartile as well as the median for STEAN are far below the results for OpenNF. However,
OpenNF is able to response in an even narrower range while the variability—when using
STEAN—is further increased.

The higher variability is mainly due to database locking of the current STEAN storage
backend on inserts and updates. The current implementation does not allow for con-
current operations when executing write operations on the data set and thus delays all
concurrent requests until the insert or update is completed.

In the median case, we observe that running STEAN increases the migration perfor-
mance, and the usage of a dedicated context management system only comes with a
negligible overhead when migrating TCP flow state between PRADS instances. This
additional overhead for some operations is represented in the increased variability for
the migration time of a single flow.

Increasing the number of flows to be migrated above 400 results in a large increase
in time between storing the context on PRADS1 and retrieving the context on PRADS2.
Therefore, we specifically analyze the performance of STEAN during these operations to
demonstrate where potential bottlenecks are located.

The results presented as box plot in Figure 5.4 show the response time of STEAN
for the 250 and 400 flow case examined before as well as the results gathered from
experiments migrating 1000 and 1500 flows respectively.

The evaluation shows that the times for operations involving STEAN remain almost
constant even though we observed a dramatic increase in total migration time up to the
point where the operation of transferring 1000 and 1500 flows were never completed.

Additionally, we analyzed the system behavior using various bandwidth settings from
10 MBit/s to 50 MBit/s for the control network in order to eliminate the possibility of
congestion during the migration.

However, the different bandwidth settings did not have any effect on the migration
time for both setups—OpenNF and STEAN—which shows that the network is able
to provide sufficient resources even when using a lower bandwidth. Thus, the overall
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Figure 5.4: Store and retrieve time per flow for migrating flows using STEAN.

performance decrease when more than 400 flows are migrated is not due to a bottleneck
in STEAN but originates from an overload of the controller supplied by OpenNF.

5.1.4 Summary

In this section, we evaluated the system behavior of STEAN when employed as a context
management system for NFs in a data center environment, and we showed how the direct
sharing of context information can improve the migration process. The experiments were
conducted using a virtual network environment using Mininet. We replayed a previously
recorded university-to-cloud trace to two instances of PRADS configured in a migration
scenario.

The focus of our evaluation was on the time required to successfully transfer the
handling of network flows from one instance of our NF to another without interrupting
the traffic or pausing the processing of packets. The migration also included the transfer
of context information required by the NF such that consecutive packets belonging to the
same flow are identified and classified accordingly.

Our results show that sharing context using STEAN is generally faster than migrating
state employing OpenNF. This increase in performance mainly results from the improved
sharing of context using STEAN where information is directly accessed by the requesting
NF. While OpenNF only shares information between instances when the migration is
initiated and otherwise operates the mechanisms completely independent of each other,
our approach allows for a continious exchange of context between running mechanisms.

The global view on all context information provided by STEAN along with the active
communication between the context management system and the connected NFs enables
us to migrate the flows between instances without the need to first transfer the required
state information. We are able to directly serve the context associated with the migrated
flow to the now responsible instance, and thus avoid the otherwise required state transfer.

The direct exchange of information also allows us to remove 1. the SDN controller
from the critical path, and 2. the need to buffer data packets to provide order preserving
delivery. In our architecture, the controller is only responsible for orchestrating the
migration process and does not handle any data traffic which significantly reduces the
load on the controller and improves its responsiveness to migration requests.
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Additionally, our network design allows for further enhancements in the migration
process as the context information could now be transfered using the faster data plane.
While the data plane carries a much higher load than the control plane, the better
network performance both in terms of bandwidth and latency could help us to reduce
the migration time. Especially the reduced latency is a key factor as the response time of
STEAN highly depends on the delay of the network connection to the mechanisms. Thus,
we are able to deliver the requested context information faster and improve the overall
responsiveness of the system.

However, we also observed that the variability of the migration time per flow increases.
This is mainly due to our current implementation of the storage component which blocks
all other operations during a write access to avoid the delivery of inconsistent information.
When one instance of PRADS writes context information to STEAN, all requests of the
other instances are delayed until the write operation is finished, therefore increasing the
response time of these requests and subsequently the migration time of the associated
flows.

One possible solution to this limitation of our current implementation is to partition
the XML document managed by the storage component into multiple subdocuments
that can be locked independently and thus reduce the amount of data blocked by each
write operation to a minimum. This partitioning is already done in Relational Database
Management Systems (RDBMSs) where multiple tables or even single rows can be
independently locked for write operations [8].

In this evaluation, we have shown that the direct sharing of information using STEAN
as a context management system can compete with state of the art systems for migrating
NF state, and even improves the overall migration performance of the system. Our
architecture not only centralizes the context information associated to each flow for direct
access by the processing NF but also enables us to improve the network design in terms
of utilizing the best available network connection to handle context requests, and remove
the SDN controller from the critical path during migration.

5.2 switching routing protocols

In this section, we evaluate the feasibility of our system architecture for the use case
of switching WMN routing protocols presented in Section 3.1.4. We show that 1. our
approach is able to handle the context information of WMN routing protocols even on
low powered nodes, and 2. we are able to execute mechanism transitions using a hard
switch while precluding a gap in end to end connectivity. Our focus is on the applicability
of transformation functions to provide seamless transitions between mechanisms using
STEAN.

While it is possible to avoid the traffic gap—inherent to a hard switch—by operating
multiple mechanisms in parallel to bootstrap the context information required by the new
mechanism, this soft switch imposes additional overhead on the network as discussed
in Section 3.2. Using a context management system such as STEAN, it is possible to
reduce the time of parallel operation, required to avoid the traffic gap, to a minimum
or—depending on the specific mechanism properties—even use a hard switch and thus
completely eliminate the need for parallel operation.

It is generally desirable for network operators to minimize the time required for a
transition and thus the time of parallel execution as multiple subsequent transitions can
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be executed on a tighter schedule. This leads to a more flexible and dynamic network
that can faster react to changes, and cedes more network resources to the actual data
traffic.

However, the reduction or even complete avoidance of parallel operations is especially
important in environments where the transition is only invoked when a problem in the
network arrises as it is too costly to precautionary switch mechanisms. These networks
often only have scarce resources and are highly utilized which both prohibits the addi-
tional overhead of running multiple mechanisms in parallel and forces the operators to
reduce the time required for the transition.

Additionally, the necessity of invoking a transition in such a network implies that there
is already either a high utilization or the network is currently not capable of providing
the intended throughput. Thus, putting additional load on the system by operating
mechanisms in parallel often exacerbates the problem instead of providing a viable
solution.

In this evaluation, we employ STEAN to manage the context of the WMN routing
protocols and transform the routing information between mechanisms during the transi-
tion. Our main goal is to show how transformation functions can be employed to share
context information between different protocols and how the shared information can be
used to allow for a seamless switch between these mechanisms during runtime.

Furthermore, we show that using STEAN as a context management system only
imposes a minimal overhead on the forwarding delay even on low end WMN nodes, and
that it is feasible to store all context in STEAN during normal operation. The directly
shared context information allows us to use a hard switch to transition between routing
protocols while providing seamless network operation during the transition phase with
only slightly increased end to end delay.

While we chose WMN routing protocols as an example, our aim is not to present a
performance evaluation of different WMN routing protocols. Instead, we focus on the
effects during a transition of communication mechanisms.

5.2.1 Experimental Design

During the experiments only selected nodes were active and participating in the mesh
network. We used this setup to force the protocols to choose specific routes and to create
a bottleneck in the network to achieve a maximum gap in network traffic when executing
a hard switch without context sharing. This leads to route lengths of two and three hops
respectively as shown in Figure 5.5.

The experiments are conducted with various packet rates between 10 and 250 packets
per second (pps), and packet sizes of 300 byte to 1000 byte. We expect the total length of the
gap in end to end connectivity to be dependent on both parameters—along with various
protocol dependent parameters discussed in Appendix A—while the performance of
STEAN does not depend on the absolute throughput of the network. It is solely dependent
on the packet rate as the number of requests to STEAN does not increase when using
larger packets.

Our main metric for evaluating the network performance is the end to end delay (in
seconds) of a single connection between a pair of nodes. We have shown in Section 4.1.8
that STEAN introduces a latency penalty as additional operations such as network calls,
transformations and storage lookups have to be performed. Thus, using STEAN increases
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Figure 5.5: Communication setup with two and three hop routes. The enumeration represents the
nodes as shown in Figure 5.7. All all nodes are STEAN-enabled, and run our modular
implementation of AODV and OLSR (exemplary shown for node 15).

the forwarding delay when used as a context management system for routing information
while the other network characteristics such as throughput are not affected.

Additionally, we use the remaining node pairs to generate background traffic that
increases the load on the intermediate hosts where the packets of all flows have to be
processed. Therefore, the background traffic has a direct influence on the delay of packets
in the observed flow, the system load of the intermediate node as well as the size of the
traffic gap when a mechanism switch is executed.

However, we ensure that neither the nodes nor the routing protocols are overloaded
and only analyze the behavior of the components in a stable state—that is when all
routes are established and a continuous flow of packets is guaranteed. Our goal is not to
examine the mechanism behavior during route establishment and network interference
but the system characteristics of STEAN when serving as a backend for sharing routing
information.

One of the core factors influencing the end to end delay is the Round Trip Time (RTT)
between STEAN and the connected mechanisms as each packet generates at least one
lookup to the context store for determining the next hop on the route—unless client side
caches are in place—to ensure that subsequent requests can be answered locally. These
requests add additional delay multiple times during an end to end transmission as the
round trips have to be done on the source node and each forwarding node.

STEAN SocketSocketMech Mech

Mechanismwithout STEAN

STEAN-enabled

t3t2t0 t1 t5t4

t0 t5

Figure 5.6: Local forwarding time split up in subintervals.
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We can further divide this local forwarding time for each node into subintervals as shown
in Figure 5.6. We define the mechanism time as the time a request is solely processed
by the mechanism implementations. This excludes the intervals for OS operations such
as receiving a packet on the inbound network interface and sending the packet on the
outbound interface after local processing as well as the time a mechanism is waiting for
a response from the context management system. The mechanism time is determined by
tmech = (t1 − t0) + (t5 − t4). The socket time describes the time spent on (local) network
communication between the mechanisms and STEAN to send the request and receive
the corresponding response and is calculated as tsock = (t2 − t1) + (t4 − t3). We refer
to STEAN time as the interval between receiving the request in STEAN and sending out
the response. This interval includes all operations within STEAN, e.g., dispatching the
request, database lookup, applying transformation functions and assembling the XML
response and is determined by tSTEAN = t3 − t2.

For mechanisms not connected to STEAN, we assume that tsock = tSTEAN = 0 The
total local forwarding time is then calculated as tfwd = tmech + tsock + tSTEAN for each
instance.

We also monitor and evaluate the resource usage of the involved software components—
namely the OS, Click and STEAN—during the experiment execution. Therefore, we
record the CPU utilization (in percent) as well as the RAM usage (in percent) of each
component over time to 1. ensure that the nodes are not overloaded, 2. gain insights
on the resource usage of each component, and 3. analyze the impact of using a central
context management system on the host system.

We compile and execute Click as a single threaded program in user space to avoid the
tedious setup of kernel mode which might provide insignificant performance gains, but
disallows the use of C++ Standard Library (STL) functions.

However, STEAN is compiled multi threaded in order to reduce the response time
for multiple parallel context requests as well as to enable parallel execution of the
maintenance tasks.

We specifically omitted experiments running the secured version of SAODV and
SOLSR as previous experiments—presented in [74]—showed that the nodes available in
our testbed were not capable of performing the required cryptographic operations in real
time.

5.2.2 Experiment Execution

We use our WMN testbed currently consisting of 17 statically mounted wireless nodes
across two floors in an office and lab building to conduct the experiments. The location
of the nodes within the building is depicted in Figure 5.7.

Each node is composed of a x86 compatible 500 MHz AMD Geode LX800 CPU with
256 MB of RAM and Atheros wireless cards. The CPU only has a single core which
precludes the parallel operation of the Click and STEAN process as well as the parallel
execution of multiple STEAN threads. The nodes also have a wired ethernet connection for
booting from a remote server and for receiving control messages during the experiments.
We run an off-the-shelf Linux with Kernel 3.13.5, and use tcpdump on each node to
capture the wireless traffic.

The nodes run our Click based routing protocol implementation presented in Sec-
tion 4.2.3 along with the extensions presented in Section 4.1.7 to connect the mechanisms
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Figure 5.7: Node deployment in our testbed experiment.

to STEAN. This setup allows us to use the same mechanism implementation in all experi-
ments, and we only need to replace the context storage element when necessary. To keep
the overhead and thus the influence of the not running mechanism to a minimum, all
timers are turned off by default and only get activated when the mechanism is in use.

Additionally, each node runs an independent instance of STEAN that has the base
context and the transformation functions described in Section 4.1.7 configured. The local
STEAN instance ensures that each node runs independent of the network connectivity
and resembles the operational mode as well as the behavior in a WMN as close as
possible, despite the fact that a wired out-of-band connection is available. We also
enabled client-side as well as STEAN-side caches for optimal forwarding performance.

We utilize the command and control infrastructure presented in Section 4.2.3 to manage
the node configuration, control the experiment, and trigger the transition.

The control server connects to each node using the wired out-of-band link to not inter-
fere with the measurement traffic. This setup also ensures a reliable control channel even
when the wireless medium is under heavy use and thus prevents a service interruption
due to different execution states. It leaves the reestablishment of routing information as
the only source for a potential traffic gap.

The Distributed Internet Traffic Generator (D-ITG) [12] is used to generate the workload
and measurement traffic. The software offers an easy way to specify the exact payload
length as well as the sending rate. Thus, the used bandwidth can be easily determined.
Additionally, D-ITG allows to measure the end to end delay by simply logging the sending
and receiving time of a packet and then calculating the delta. As this measurement highly
depends on accurate clocks on all nodes, we use the NTP to sync the time on all nodes.
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Even though the nodes keep a permanent connection to the control server, the measure-
ment data was collected locally on each node, and only mirrored to the central storage
after each experiment run was finished. This ensured that the network stack of the node
was not utilized by auxiliary tasks such as NFS traffic.

5.2.3 Results

First, we discuss the general behavior of the routing protocols without a mechanism
switch.

The time series graph in Figure 5.8 shows the end to end delay on a two-hop route in our
testbed running OLSR for both the original implementation as well as our modifications
that enable context sharing. In these experiments, we transmitted 250 pps with a packet
size of 1000 byte in a single flow which results in a total sending rate of 2 MBit/s.
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Figure 5.8: End to end delay running OLSR on a two-hop route.

The average delay for the unmodified mechanism over our 600 s experiment runtime
was 6.48 ms with a maximum delay of 20.36 ms, and a jitter of 1.88 ms. Additionally, we
observed a packet loss of 4.2 % which most likely results from unstable wireless links
caused by interference with other transmissions on the same channel.

Our analysis of the CPU load and RAM distribution between the various processes
running on the node showed that most of the RAM was used by the tcpdump process for
capturing the wireless traces and the Click process did only consume 1.4 % of the total
memory and generated a processor load of 7.8 %.

The results—summarized in Table 5.1—indicate that the wireless links are not in an
oversaturated state as otherwise buffers and therefore RAM usage would increase. Thus,
the nodes’ hardware is capable of handling the imposed load. Thus, the packet size and
sending rate chosen for our evaluation is a good baseline for evaluating the network
behavior when using STEAN as a context management system on each node.

parameter click stean

without stean with stean

CPU 7.8 % 10.1 % 13.1 %

RAM 1.4 % 1.5 % 1.1 %

Table 5.1: Performance metrics on a single node while running OLSR.
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For the experiments that use OLSR with STEAN support to manage the mechanism
context, we observed an increase of the average end to end delay to 11.93 ms and
an increase of the jitter to 10.15 ms but recorded no packet loss. Measurements of
the hardware utilization showed an increased CPU usage for Click to 10.1 %—due to
the additional connection required to contact the context management system—and a
memory usage of 1.5 % while STEAN used 13.1 % of the computational resources and
1.1 % of the RAM available.

While the increase in both delay and jitter seems large at first, it is still acceptable for
almost all applications running across a WMN and even allows for Voice over IP (VoIP)
calls [36]. We also have to take into account that the network is running under optimal
conditions where delay and jitter of the wireless link is minimal, and thus the effects
introduced by STEAN are more significant. For networks with increased forwarding delay
and jitter, the relative performance impact of utilizing a context management system is
reduced. This holds especially true as the performance of our prototype is not bound
by CPU or RAM limitations but by the throughput of the local network socket used to
connect the clients.

The time series graph in Figure 5.9 shows the RTT of a STEAN request on a single node
during another experiment with a similar workload. Here we can see that about 45 %
of the total forwarding time (tfwd) on a single node is spent on socket communication
(tsock) between the mechanism implementation in Click and STEAN while the—potential
complex—operations within the context management system (tSTEAN) are responsible
for another 45 % of the RTT. The computation of the actual forwarding decision within
the mechanism (tmech) is only responsible for 10 % of the total forwarding time.
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Figure 5.9: Local forwarding delay on an individual node over time for STEAN–enabled OLSR.

Additionally, we observed that for 2/3 of all packets the forwarding time is equal
for both the standard and the STEAN-enabled implementation as shown in Figure 5.10

which presents the Cumulative Distribution Function (CDF) of the end to end delay
running OLSR. The higher delay for other packets is due to blocking updates of the
routing table that include packet counters, and thus is altered regularly. This shows that
the performance decrease is not a general limitation of utilizing a context management
system to share information across routing protocols, but can be addressed in optimized
implementations of both the mechanism and STEAN. We could either store the counters
locally within the mechanism implementation and relinquish from storing all context
information—especially the information with a short life time and marginal use to other
mechanisms—within STEAN, or we could enhance our implementation of the context
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management to support concurrent add and modify operations by substituting the
storage component.

The CDF also shows that 95 % of all packets arrive within 33 ms and the high jitter
comes from a few outliers which are due to the locking storage backend. Therefore,
the optimization discussed above would also reduce the jitter and further improve the
forwarding performance of the modified routing protocols.
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Figure 5.10: Cumulative distribution function of the end to end delay running OLSR.

However, disabling the STEAN-side cache dramatically degrades the network per-
formance of a node, and the local forwarding time per node increases from 2 ms to
7 ms as presented in the time series graph in Figure 5.11 (using the same workload as
in Figure 5.9). This shows that the caching infrastructure provided by STEAN is very
effective, and significantly reduces the response time for subsequent requests even though
we opted against a shared cache between all clients and use a separate cache instance per
mechanism instead.
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Figure 5.11: Local forwarding delay on an individual node over time for STEAN–enabled OLSR
without caching.

Second, we show the results obtained from our evaluation of mechanism transitions
during runtime using a hard switch. We present selected sample runs from our data
collection that show the effect of different protocol parameters and workloads before pre-
senting our findings on how a shared context is influencing the forwarding performance
during the transition.
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During each experiment, the transition was initiated after the running mechanism was
in steady state, i.e., all routes required for end to end connections were established and
the nodes included in the experiment were continuously forwarding packets.

The time series graph in Figure 5.12 shows the gap in traffic on a three hop connection
with a packet size of 300 byte and a sending rate of 50 pps. The background traffic consists
of two flows with the same parameters as the measurement connection. We ran OLSR as
the initial mechanism and switched to AODV.

The total sending rate within the network is 351 kBit/s which is significantly lower
than the 2 MBit/s that mark the stable thoughput our network can handle. Nevertheless,
we observed a gap in traffic of 171.7 s during the switch.
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Figure 5.12: Traffic gap during the execution of a mechanism switch on a highly utilized network.
A end to end delay of 0 indicates that no packets were forwarded during this time
interval.

Additional experiments with a total sending rate of more than 400 kBit/s—only 1/5 of
the possible stable throughput—showed that the network is not able to recover from the
connection loss and that all management packets sent by the routing protocols during
the transition are lost.

In the time series graph in Figure 5.13, we show a switch on an almost idle network
running three flows with a packet size of 300 byte and a sending rate of 10 pps each or
a total sending rate of 70 kBit/s. The experiment is launched running AODV and then
the routing protocol is switched to OLSR. The protocol parameters in this setup are
optimized for a higher mobility of nodes, and thus the protocols react quicker to changes
in the network such as a switch in mechanisms, but also generate more traffic overhead
due to the increased number of coordination messages. Even though there is only a low
load on the network a gap of about three seconds is still visible.

We now use STEAN to share context information between the two mechanisms and
thus provide the routing information already gathered by the preceding mechanism to
the starting protocol.

The experiments are executed using a single sender that emits 250 pps with a packet
size of 1000 byte or a total sending rate of 2 MBit/s. We have chosen this workload as
our experiments showed that both the mechanism implementation as well as STEAN are
capable of handling that workload, and a gap in network traffic is already visible with
even a significant lower sending rate.

The forwarding behavior of our network during a mechanism transition from OLSR to
AODV during runtime is presented in the time series graph in Figure 5.14.
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Figure 5.13: Traffic gap during the execution of a mechanism switch on an almost idle network.
A end to end delay of 0 indicates that no packets were forwarded during this time
interval.
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Figure 5.14: End to end delay when migrating from OLSR to AODV during normal network
operation. The transition is executed after 295 s (red line).

The results show that the transition is executed without interruption in packet forward-
ing and the only visible effect is that the jitter is reduced from 16.46 ms to 4.26 ms and
the average end to end delay drops from 22.95 ms when running OLSR to 18.15 ms when
AODV is employed as a routing protocol.

We also observed that only a minimal number of AODV control messages such as
HELLO, Route Requests and Route Replies are sent directly after the transition but
the new mechanism almost solely operates on the existing context information—list of
neighboring nodes, next hop to destination, existing network links—provided by the
preceding mechanism without any service degradation.

5.2.4 Summary

In this section, we demonstrated the feasibility of our approach for sharing context
information between WMN routing protocols by 1. showing that the performance impact
of using a context management system such as STEAN is perceptible but not prohibitive
even on low powered nodes, and 2. we are able to remove the effects of a hard mechanism
switch during runtime by sharing the context information between multiple routing
protocols.

Our focus was not only on the quantifiable metrics such as end to end delay and
local forwarding performance, but also on the feasibility of sharing context information



100 evaluation

between different mechanism designs—namely proactive vs. reactive routing protocols—
in order to eliminate the traffic gap when switching mechanisms.

We used our modular implementation of AODV and OLSR that follow the guidelines
presented in Section 4.2, and employed STEAN with integral support for transformation
functions—introduced in Section 4.1—to accommodate the requirements of the used
mechanisms. This provides us with a system to dynamically choose the routing protocol
during runtime without the need to extensively modify the mechanism implementation
or even add specialized data structures that support the requirements of all employed
mechanisms. Instead, we are able to provide each mechanism with its preferred context
representation and, at the same time, gather monitoring information from the internal
structures of the mechanisms to support our switching decision.

Our system imposes an acceptable overhead on the network performance which
is mainly visible in an increased end to end delay. We analyzed the behavior of all
involved components and came to the conclusion that this increase is mainly due to the
prototypical implementation of our architecture and the major factors responsible for
to the overhead—namely the delay in socket communication and the response time of
STEAN—can be improved by future implementations.

The evaluation shows that a traffic gap exists when switching between different routing
protocols in a WMN and that this gap is not negligible but has a significant impact on
end to end connectivity. It not only prevails if the load on the network is high but also
when using low to moderate data rates. Thus, a mechanism transition effects all types of
network operations from low bandwith text based applications over voice communication
to video transmissions.

We conclude from the experiments shown above that a common context management
in conjunction with transformation functions—as implemented by STEAN—along with
the support of transition aware mechanisms—designed and implemented using the
proposed blueprint—is able to provide a seamless mechanism switch in WMNs with
acceptable overhead and enables mechanism transitions during runtime without loosing
end to end connectivity.

Furthermore, our results show that the dynamic adaptation of mechanisms is a core
requirement not only for optimizing the performance of communication networks but—
during certain operational conditions—ensures the availability of end to end connectivity.
The complete support for transitions in the employed mechanism along with integral
support for context sharing are key enablers to achieve this goal.

Executing a switch of mechanisms that support context sharing is transparent to end
systems as well as upper layer mechanisms and thus enables network operators to
dynamically choose mechanisms during runtime without any negative effect noticeable
by the users.

5.3 discussion

In this chapter, we presented the evaluation of our system architecture using two distinct
use cases. We focused on the interaction of the individual components with the connected
mechanisms as well as on the benefits we can gain from employing the architectural
principals. Our goal was to demonstrate the feasibility of our approach and identify the
deficiencies when using a centralized context management system such as STEAN.
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The chosen use cases cover the complete spectrum of network operations and access
technologies from employing NFV in a DCN or carrier environment to providing access
services for end systems using WMNs. Thus, the use cases are suitable to evaluate a
generalized context management system that is designed to serve the requirements of all
mechanisms in a network as well as demonstrating the feasibility of our architectural
concepts across all networking domains.

First, we analyzed the performance of STEAN during the migration of NFs by employ-
ing the extension described in Section 4.1.7 and compared its performance to the OpenNF
framework. Our implementation uses STEAN as a backend for context management and
allows the direct sharing of information between the NFs while OpenNF uses the data
structures provided by the mechanism implementation and extracts the context when
the migration is initiated.

The results show that the direct sharing of context is generally faster than the solution
provided by OpenNF even though we apply transformation functions to the context
information instead of directly attaching the serialized data structures to the migration
command, and we add additional latency due to the required network communication.

Additionally, the direct sharing of information allows us to remove the SDN controller
from the critical path and enables us to exchange the context information using the
higher performance data plane instead of the management plane.

Second, we evaluated STEAN along with the implementation of our mechansism
framework introduced in Section 4.2. The experiments are performed in a WMN testbed
by executing transitions between routing protocols, and the evaluation is based on the
use case presented in Section 3.1.4.

We analyzed the end to end delay and local forwarding performance of our implemen-
tation and showed the feasibility of employing transformation functions to share context
information between different mechanisms.

The results demonstrate that employing transition aware mechanisms in conjunction
with a context management system can completely eliminate the traffic gap that exists
when switching mechanisms. Our prototypes inflicted an acceptable penalty on the
forwarding delay that still allows the execution of real time applications such as VoIP
calls. The increased delay mainly results from the additional communication overhead
between the routing protocols and STEAN to exchange the context information, and can
be reduced by optimizing the communication path.

We also showed that our approach is feasible even for low powered devices such as the
nodes in our testbed. We show that STEAN is able to run on smartphones and embedded
devices without any significant performance impact, and demonstrate the efficiency of
our prototype despite the fact that some drawbacks remain.

We conclude from the results gathered from both experiments that 1. direct sharing
can improve the migration performance of NF context, 2. the sharing of information
between WMN routing protocols completely removes the otherwise existing traffic gap
when switching mechanisms during runtime, 3. employing transformation functions to
serve the requirements of different mechanisms impedes an acceptable overhead, and
4. the strict adherence to the proposed architectural principles enables network operators
to easily deploy new mechanisms in an existing network.

While we focused on the system behavior during the migration of context and the tran-
sition of mechanisms, our experiments also show that our prototypical implementation
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generally reduces the forwarding performance of a mechanism but that this penalty is
negligible.

The analysis shows that our approach is feasible for a wide variety of use cases and
allows us to not only handle the context of multiple mechanisms but also to share that
context across these mechanisms. Our prototype is capable of handling the workload
applied during the experiments, and all limitations during the evaluation were caused by
either the host system or the available network links.

Thus, we argue that the direct exchange of context information between mechanisms
using a context management system such as STEAN in conjunction with architectural
guidelines to develop and implement mechanisms leads to an improvement in migration
performance, network reliability, and operational overhead.



6
C O N C L U S I O N A N D O U T L O O K

In this thesis, we have introduced distinct use cases that benefit from extended context
sharing across mechanisms along with the challenges that arise from sharing information
across mechanism boundaries in Chapter 3. We then presented an architecture for sharing
network context in Chapter 4, and an extensive evaluation of our design in Chapter 5.

To conclude this thesis, we now discuss our findings in relation to the goals defined in
the introduction, and give an outlook on future work that can built upon our architecture.

6.1 conclusion

The extensive sharing of network context across mechanisms further boosts the deploy-
ment of new and innovative services. With this, we are able to overcome the limitations
of current mechanisms, and the sharing allows us to include legacy mechanisms such as
routing protocols into new network architectures.

Additionally, the extensive sharing of information allows operators to fulfill even tight
SLAs as it allows for a highly dynamic scaling of mechanisms such as NFs.

However, current systems are only able to share information between a very narrow set
of mechanisms, often restricting the exchange of information to a single implementation.
This limits the benefits gained from sharing, and continues to collect information in silo
style storage.

To overcome this limitation, we presented an architecture to break these silos open
and to enable the network wide sharing of context information between mechanisms
on all layers of the network stack. The extensive sharing allows us to migrate flows
between multiple instances of a single NF as well as seamlessly transition between
routing protocols in a WMN.

We now revisit the goals of this thesis defined in Section 1.2, and show that our
architecture is able to satisfy the requirements of multiple mechanisms running in a
diverse set of networks while only marginally influencing the performance of the overall
system.

6.1.1 Enable Native Context Sharing Across Mechanisms

The core enabler for extensive sharing of network context is the strict separation of
functionality and state within each mechanism along with an API to store the information
in an external context management system. This separation ensures that all relevant
information is made available to other mechanisms that are also connected to this context
management system, and the mechanism is able to benefit from previously contributed
information.

On the one hand, we presented STEAN—a Storage and Transformation Engine for
Advanced Networking context—that provides a generalized context storage, and offers a
simple XML-base API to access this storage. The STEAN architecture supports any type
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of context and is thus able to collect and disseminate the information of all connected
mechanism, regardless of their individual requirements.

The evaluation shows that we are able to support fundamentally different mechanisms
such as NFs and WMN routing protocols using the same implementation, only adjusting
the context model—the base context—to the specific requirements.

Additionally, we show that STEAN only imposes a minimal performance overhead,
and in some use cases is even able to provide faster migration times than other state of
the art systems.

On the other hand, we introduced a blueprint for designing transition aware mech-
anisms that allows us to 1. speed up the development cycle of new mechanisms by
providing crucial elements that are required for context sharing, and 2. quickly adapt
existing mechanisms to become sharing-enabled by using our lightweight client side
framework to integrate the required functionality.

We show how mechanisms that are based on different operational principles—namely
a reactive and a proactive routing protocol—can be implemented within our framework
and how these mechanisms use common elements to enable context sharing between
them.

We have presented the two main components for sharing context information between
a large set of different mechanisms. Our proposal enables mechanism designers to include
context sharing as a first order principle into their architecture, and allows developers to
easily include the sharing paradigm into new as well as existing mechanisms.

6.1.2 Enable the Transformation of Context Information

Transformations are a major enabler for this extensive sharing as they allow us to support
a large variety of mechanisms without the need to adapt the internal state of these
systems. The support for transformations by the context management system does not
force developers to completely redesign their mechanism but enables them to include
context sharing with only minimal changes to existing implementations.

STEAN supports transformations by design and the architecture is centered around
this core feature. The transformation functions act as an additional layer between the
mechanism and the storage backend, and allow STEAN to receive information “as is” and
provide context “as needed”. This layer provides mechanism designers with the ability
to built their own transformation functions, and customize the behavior of STEAN to the
requirements of the mechanism without loosing the generality of the context storage.

We not only provided an architectural view of transformations in this thesis, but also
presented guidelines for designing and implementing those functions to reduce the
computational overhead and ensure the feasibility of our approach even under high
load. This includes that transformations need to be developed in close interaction with
the design of the base context used by the STEAN storage component to reduce the
complexity of the required transformations whenever possible.

Additionally, transformations should not be used to implement features of the mecha-
nism but only to execute functionality necessary for sharing context. While the former is
technically possible, it would weaken the strict separation of functionality and context
and thus reduce the generality of our architecture.

Our evaluation shows that transformation functions—when designed according to our
guidelines—only have a minimal impact on the performance of STEAN.



6.2 outlook 105

In conclusion, the transformation functions provided by STEAN enable us to not only
share state between instances of the same implementation but to extend the sharing of
networking context beyond these boundaries.

6.1.3 Enable Transition Support in Mechanisms

In order to efficiently reconfigure the network and gain the maximum benefits from the
extensive sharing of context information, it is necessary to provide mechanisms that are
built with support for transitions as a first order principle. This allows us to efficiently
exchange mechanisms with the same high level functionality such as routing but that
are based on different a different set of requirements to best accomodate the current
network situation. Along with an orchestration infrastructure that is able to efficiently
and reliably execute those transitions, we can provide a more dynamic and flexible
network management.

In this thesis, we presented a blueprint for such a switching architecture that uses a
modular design to compose the mechanisms, and enables us to closely interact with each
component. The design not only includes elements for creating the actual mechanism
functionality but also for providing transition support. This tight integration between
the mechanism and the transition system allows for a fine granular control over the
mechanism features such as timers, and enables us to reduce the overhead introduced by
a transition.

Our implementation is based on the Click Modular Router and provides dedicated
elements for controlling the data path within the implementation as well as a standardized
API for interacting with the included mechanisms. The controller infrastructure used
for coordinating the mechanism switch across multiple nodes is implemented around
a simple text based API that allows us to exchange individual controller elements with
other implementations to provide a more advanced feature set such as distributed
switching decisions and coordination.

The evaluation of our approach shows that we are able to dynamically switch between
mechanisms during runtime without any overhead during normal operations, and that
seamless transitions can be achieved with the support of a context management system
such as STEAN.

We are able to natively support transitions within mechanisms by providing a modular
architecture for a switching system that is not only able to select the currently active
mechanism by redirecting the data flow but also interact with the internal functionality
of each mechanism in order to reduce the operational overhead.

6.2 outlook

The future work on context sharing in networks is twofold. The core aspects are 1. the
extension of the context management system, and 2. further work on the design and
implementation of transition aware mechanisms. In the following, we provide an outlook
on those issues and point to possible directions of research.
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6.2.1 Cooperation of Multiple STEAN Instances

In this thesis, we assumed a single instance of STEAN that is responsible for collecting
and disseminating the context information from all mechanisms within a functional area
of the network, e.g., a single host, a group of NFs or a network segment.

On the one hand, this allowed us to share the context information available within the
functional area across all mechanisms, on the other hand it also limited the sharing to a
small subset of the complete network.

The federation of multiple STEAN instances can overcome this limitation, and enables
the sharing of context between multiple functional areas of a network without sacrificing
the principle of keep information locally close to the mechanisms. The integration of
multiple instances of a context management system requires an extension that is able to
decide if the requested context information is available locally—and can thus be served
directly—or if the data has to be requested from another instance.

Additionally, we introduced a single point of failure by only running a single instance of
STEAN that is responsible for managing the context information of multiple mechanisms
or even failover groups.

This drawback could be overcome by introducing a distributed storage backend across
multiple instances where each piece of context information is stored in multiple locations.
The distribution of context storage would require the design of an alternative storage
component that is able to dynamically balance the context information between instances
depending on the current request volume, to 1. reduce the storage load on the system,
and 2. keep the required information close to the end system.

The current STEAN architecture already allows for a replacement of the storage
backend, as the design is based on distinct components and all components are only
loosely coupled.

6.2.2 Performance Improvements

Our evaluation has shown that the design and implementation of STEAN is capable of
handling thousands of requests per second without any significant delay in mechanism
operations.

However, we also identified that the current usage of sockets to communicate between
mechanisms and the STEAN instance is a major performance bottleneck. The socket
communication is responsible for 45 % of the local forwarding time on a WMN node
when running routing protocols that are backed by STEAN.

Future directions of research could include the usage of directly shared memory space.
This can be implemented locally using Direct Memory Access (DMA) if the mechanisms
run on the same node as the context management system, or by leveraging systems like
RAMCloud [54].

This also requires the redesign of transformation functions as they need to be directly
executed on the memory contents rather than acting as an additional layer between
mechanism and context storage.
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6.2.3 Generation of Transformation Functions

Currently, transformation functions that map the mechanism specific context to the base
context provided by STEAN need to be provided by the mechanism developers as the
design and implementation of transformations requires specific knowledge about the
internal operations and the requirements of the mechanism. Reducing the overhead of
creating specialized transformations for each mechanism would increase the adaptation
of context management systems as one of the main drawbacks for developers would be
removed.

This could be achieved by using static code analysis on the data structures used to
handle context information within the mechanism, and by applying dynamic analysis of
memory structures along with the mechanisms output.

The results of this analysis can then either be mapped to an existing base context—in
case a new mechanism needs to be integrated into an existing environment—or the
results of multiple analysis are federated to find the optimal base context for a given
combination of mechanisms.

6.2.4 Anticipate Mechanism Behavior

STEAN provides a management solution for network context as defined in Section 2.1,
including historical records and monitoring data. This information can be leveraged to
gain insights on the mechanism behavior and develop strategies to transition between
those mechanisms. We could—assumed that the information was already gathered over
time—learn on what mechanism performs best during which conditions, and which
transitions were successful, i.e., improved the overall network performance.

Therefore, we propose the in-depth analysis of context information, and the possible
application of machine learning strategies as a direction for future research. This would
allow us to gain a deep understanding on how mechanism properties influence the
network behavior under certain environmental conditions, and enable operators to better
react on those conditions.

Moreover, the systematic collection and evaluation of the gathered information would
allow us to anticipate possible bottlenecks and execute appropriate transitions even
before network problems arise.

6.2.5 Complex Transitions

This thesis focused on transitions where only one mechanism class—such as routing
protocols or type of NF—is switched at a time.

However, during practical operation, it might be necessary to switch multiple mecha-
nisms either directly after each other or even at the same time, e.g., when an application
layer mechanisms depends on the properties of a specific transport protocol, or a secure
routing protocol requires a certain cryptographic scheme.

Those complex transitions where dependencies between mechanisms exist and a
transition between operational states require the exchange of multiple mechanisms are
areas that require further investigation.

One research question that might arise is how to model and resolve those dependencies
to ensure that the network is always in an operational state, and a possible resolution
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could be the necessity to execute transitions using intermediate mechanisms on one
layer that are chosen to allow the seamless switch on another layer. The intermediate
mechanisms are not run for a longer period but only ensure the required properties are
provided while the transition is in progress.

6.2.6 Transitions of Finer Granularity

While our mechanism architecture presented in Section 4.2 is modular—thus allowing for
switches on sub-mechanism level—in this work we have focused on transitions between
mechanisms as a whole.

Possible future work in this area is the evaluation on how mechanisms behave if
core elements such as queueing strategies in routing protocols or congestion control
algorithms in transport protocols are exchanged during runtime.

This would allow for lightweight network stacks that include multiple sub-mechanisms,
and thus enable transitions on very low powered hardware such as sensor nodes or
Internet of Things (IoT) devices.

6.2.7 Decentralized Ochestration

In our experiments, we simplified the control of the transition to be centralized and
manually executed using an out-of-band channel. This allowed us to tightly control the
network during a switch, and easily recover from any failure during the transition.

In practical deployments, however, such a central instance that is able to orchestrate the
transition might not exist. Therefore, it is necessary to investigate decentralized schemes
that use in-band messaging to coordinate the switch.

Moreover, a suitable decision metric which signifies whether to switch or not and
which transitions to perform, needs to be identified. This decision ideally is also made
in a distributed fashion such as using appropriate voting schemes where all nodes
participating in the network decide on the transition depending on their local state and
the available context information.

acknowledgments

This work has been funded by the German Research Foundation (DFG) as part of the
Collaborative Research Center (CRC) 1053 “MAKI—Multi-Mechanisms Adaptation for
the Future Internet”.



B I B L I O G R A P H Y

[1] M. Adeyeye and P. Gardner-Stephen. The Village Telco project: a reliable and
practical wireless mesh telephony infrastructure. EURASIP Journal on Wireless
Communications and Networking (JWCN), 2011(1), 2011.

[2] C. Adjih, T. Clausen, A. Laouiti, P. Mühlethaler, and D. Raffo. Securing the OLSR
protocol. In Proceedings of the 2nd IFIP Annual Mediterranean Ad Hoc Networking
Workshop (Med-Hoc-Net), 2003.

[3] M. Afanasyev, T. Chen, G. M. Voelker, and A. C. Snoeren. Analysis of a mixed-use
urban wifi network: When metropolitan becomes neapolitan. In Proceedings of the
8th ACM SIGCOMM Conference on Internet Measurement (IMC), 2008.

[4] B. Ager, N. Chatzis, A. Feldmann, N. Sarrar, S. Uhlig, and W. Willinger. Anatomy of a
Large European IXP. In Proceedings of the ACM SIGCOMM Conference on Applications,
Technologies, Architectures, and Protocols for Computer Communication (SIGCOMM),
2012.

[5] M. Agrawal, S. R. Bailey, A. Greenberg, J. Pastor, P. Sebos, S. Seshan, K. van der
Merwe, and J. Yates. RouterFarm: Towards a Dynamic, Manageable Network Edge.
In Proceedings of the 2006 SIGCOMM Workshop on Internet Network Management (INM),
2006.

[6] Amazon Web Services, Inc. Elastic Load Balancing.
https://aws.amazon.com/elasticloadbalancing/.

[7] J. W. Anderson, R. Braud, R. Kapoor, G. Porter, and A. Vahdat. xOMB: Extensible
Open Middleboxes with Commodity Servers. In Proceedings of the 8th ACM/IEEE
Symposium on Architectures for Networking and Communications Systems (ANCS), 2012.

[8] M. M. Astrahan, M. W. Blasgen, D. D. Chamberlin, K. P. Eswaran, J. N. Gray, P. P.
Griffiths, W. F. King, R. A. Lorie, P.R. McJones, J. W. Mehl, G. R. Putzolu, I. L.
Traiger, B. W. Wade, and V. Watson. System R: Relational Approach to Database
Management. ACM Transactions on Database Systems (TODS), 1(2), 1976.

[9] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, I. Pratt,
and A. Warfield. Xen and the Art of Virtualization. In Proceedings of the 19th ACM
Symposium on Operating Systems Principles (SOSP), 2003.

[10] A. Baumann, D. Lee, P. Fonseca, L. Glendenning, J. R. Lorch, B. Bond, R. Olinsky,
and G. C. Hunt. Composing OS Extensions Safely and Efficiently with Bascule. In
Proceedings of the 8th ACM European Conference on Computer Systems (EuroSys), 2013.

[11] M. Bernaschi, F. Casadei, and P. Tassotti. SockMi: a solution for migrating TCP/IP
connections. In Proceedings of the 15th EUROMICRO International Conference on
Parallel, Distributed and Network-Based Processing (PDP), 2007.

109



110 bibliography

[12] A. Botta, A. Dainotti, and A. Pescapè. A tool for the generation of realistic network
workload for emerging networking scenarios. Computer Networks", 56(15), 2012.

[13] R. Braden. RFC 1122: Requirements for Internet Hosts – Communication Layers.
Technical report, The Internet Engineering Task Force (IETF), 1989.

[14] R. Braden. RFC 1123: Requirements for Internet Hosts – Application and Support.
Technical report, The Internet Engineering Task Force (IETF), 1989.

[15] R. Bush and D. Meyer. RFC 3439: Some Internet Architectural Guidelines and
Philosophy. Technical report, The Internet Engineering Task Force (IETF), 2002.

[16] V. G. Cerf and E. Cain. The DoD internet architecture model. Computer Networks,
7(5), 1983.

[17] Cisco Systems Inc. Graceful Restart, Non Stop Routing and IGP routing protocol
timer Manipulation. http://bit.ly/1NgpVJO.

[18] D. D. Clark, C. Partridge, J. C. Ramming, and J. T. Wroclawski. A Knowledge Plane
for the Internet. In Proceedings of the ACM SIGCOMM Conference on Applications,
Technologies, Architectures, and Protocols for Computer Communication (SIGCOMM),
2003.

[19] M. Conti, G. Maselli, G. Turi, and S. Giordano. Cross-layering in mobile ad hoc
network design. Computer, 37(2), 2004.

[20] B. Cully, G. Lefebvre, D. Meyer, M. Feeley, N. Hutchinson, and A. Warfield. Remus:
High Availability via Asynchronous Virtual Machine Replication. In Proceedings of
the 5th USENIX Symposium on Networked Systems Design and Implementation (NSDI),
2008.

[21] DE-CIX Management GmbH. DE-CIX – German Internet Exchange.
https://www.de-cix.net.

[22] P. Dutta, S. Jaiswal, D. Panigrahi, K.V. M. Naidu, R. Rastogi, and A. Todimala.
VillageNet: A low-cost, 802.11-based mesh network for rural regions. In Proceedings
of the 2nd International Conference on Communication Systems Software and Middleware
(COMSWARE), 2007.

[23] N. Feamster, H. Balakrishnan, J. Rexford, A. Shaikh, and J. van der Merwe. The
Case for Separating Routing from Routers. In Proceedings of the ACM SIGCOMM
Workshop on Future Directions in Network Architecture (FDNA), 2004.

[24] E. Fjellskål. Passive Real-time Asset Detection System.
http://gamelinux.github.io/prads/.

[25] A. Frömmgen, M. Hassan, R. Kluge, M. Mousavi, M. Mühlhäuser, S. Müller,
M. Schnee, M. Stein, and M. Weckesser. Mechanism Transitions: A New Paradigm
for a Highly Adaptive Internet. Technical report, Technische Universität Darmstadt,
2016.



bibliography 111

[26] A. Gember, R. Grandl, J. Khalid, and A. Akella. Design and Implementation of
a Framework for Software-defined Middlebox Networking. In Proceedings of the
ACM SIGCOMM Conference on Applications, Technologies, Architectures, and Protocols
for Computer Communication (SIGCOMM), 2013.

[27] A. Gember-Jacobson and A. Akella. Improving the Safety, Scalability, and Efficiency
of Network Function State Transfers. In Proceedings of the ACM SIGCOMM Workshop
on Hot Topics in Middleboxes and Network Function Virtualization (HotMiddlebox), 2015.

[28] A. Gember-Jacobson, R. Viswanathan, C. Prakash, R. Grandl, J. Khalid, S. Das, and
A. Akella. OpenNF: Enabling Innovation in Network Function Control. In Proceedings
of the ACM SIGCOMM Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communication (SIGCOMM), 2014.

[29] M. Guerrero-Zapata. Secure Ad hoc On-Demand Distance Vector (SAODV) Routing.
Technical report, Technical University of Catalonia (UPC), 2006.

[30] A. Gupta, L. Vanbever, M. Shahbaz, S. P. Donovan, B. Schlinker, N. Feamster, J. Rex-
ford, S. Shenker, R. Clark, and E. Katz-Bassett. SDX: A Software Defined Internet
Exchange. In Proceedings of the ACM SIGCOMM Conference on Applications, Technolo-
gies, Architectures, and Protocols for Computer Communication (SIGCOMM), 2014.

[31] T. Hossmann, F. Legendre, P. Carta, P. Gunningberg, and C. Rohner. Twitter in
Disaster Mode: Opportunistic Communication and Distribution of Sensor Data in
Emergencies. In Proceedings of the 3rd Extreme Conference on Communication: The
Amazon Expedition (ExtremeCom), 2011.

[32] P. Jacquet and T. Clausen. RFC 3626: Optimized Link State Routing Protocol (OLSR).
Technical report, The Internet Engineering Task Force (IETF), 2003.

[33] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh, S. Venkata, J. Wanderer,
J. Zhou, M. Zhu, J. Zolla, U. Hölzle, S. Stuart, and A. Vahdat. B4: Experience with
a globally-deployed software defined WAN. In Proceedings of the ACM SIGCOMM
Conference on Applications, Technologies, Architectures, and Protocols for Computer Com-
munication (SIGCOMM), 2013.

[34] M. Kablan, B. Caldwell, R. Han, H. Jamjoom, and E. Keller. Stateless Network
Functions. In Proceedings of the ACM SIGCOMM Workshop on Hot Topics in Middleboxes
and Network Function Virtualization (HotMiddlebox), 2015.

[35] M. Kalicinski. RapidXML. http://rapidxml.sourceforge.net/.

[36] M. J. Karam and F. A. Tobagi. Analysis of the Delay and Jitter of Voice Traffic
Over the Internet. In Proceedings of the 20th Conference on Computer Communications
(INFOCOM), 2001.

[37] E. Keller, J. Rexford, and J. E. van der Merwe. Seamless BGP Migration with Router
Grafting. In Proceedings of the 7th USENIX Symposium on Networked Systems Design
and Implementation (NSDI), 2010.



112 bibliography

[38] J. Khalid, A. Gember-Jacobson, R. Michael, A. Abhashkumar, and A. Akella. Paving
the Way for NFV: Simplifying Middlebox Modifications Using StateAlyzr. In Proceed-
ings of the 13th USENIX Symposium on Networked Systems Design and Implementation
(NSDI), 2016.

[39] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek. The Click Modular
Router. ACM Transactions on Computer Systems (TOCS), 18(3), 2000.

[40] B. Kothandaraman, M. Du, and P. Sköldström. Centrally Controlled Distributed
VNF State Management. In Proceedings of the ACM SIGCOMM Workshop on Hot Topics
in Middleboxes and Network Function Virtualization (HotMiddlebox), 2015.

[41] D. Kreutz, F. M. V. Ramos, P. E. Veríssimo, C. E. Rothenberg, S. Azodolmolky, and
S. Uhlig. Software-Defined Networking: A Comprehensive Survey. Proceedings of the
IEEE, 103(1), 2015.

[42] C. Labovitz, A. Ahuja, A. Bose, and F. Jahanian. Delayed Internet Routing Conver-
gence. In Proceedings of the ACM SIGCOMM Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communication (SIGCOMM), 2000.

[43] B. Lantz, B. Heller, and N. McKeown. A Network in a Laptop: Rapid Prototyping
for Software-Defined Networks. In Proceedings of the 9th ACM SIGCOMM Workshop
on Hot Topics in Networks (HotNets), 2010.

[44] M. Lindeberg, V. Goebel, and T. Plagemann. CLiSuite: Simplifying the Development
of Cross-layer Adaptive Applications. In Proceedings of the 7th Workshop on Middleware
for Next Generation Internet Computing (MW4NG), 2012.

[45] J. Lloyd. Botan Cryptographic Library. https://botan.randombit.net.

[46] J. R. Lorch, A. Baumann, L. Glendenning, D. T. Meyer, and A. Warfield. Tardigrade:
Leveraging Lightweight Virtual Machines to Easily and Efficiently Construct Fault-
Tolerant Services. In Proceedings of the 12th USENIX Symposium on Networked Systems
Design and Implementation (NSDI), 2015.

[47] K. Lougheed and Y. Rekhter. RFC 1105: A Border Gateway Protocol (BGP). Technical
report, The Internet Engineering Task Force (IETF), 1989.

[48] G. Maier, A. Feldmann, V. Paxson, and M. Allman. On Dominant Characteristics
of Residential Broadband Internet Traffic. In Proceedings of the 9th ACM SIGCOMM
Conference on Internet Measurement Conference (IMC), 2009.

[49] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford,
S. Shenker, and J. Turner. OpenFlow: Enabling Innovation in Campus Networks.
ACM SIGCOMM Computer Communication Review, 38(2), 2008.

[50] Nagios Enterprises. Nagios – The Industry Standard In IT Infrastructure Monitoring.
https://www.nagios.com.

[51] E. B. Nightingale, P. M. Chen, and J. Flinn. Speculative Execution in a Distributed
File System. In Proceedings of the 20th ACM Symposium on Operating Systems Principles
(SOSP), 2005.



bibliography 113

[52] H. Nishiyama, M. Ito, and N. Kato. Relay-by-smartphone: realizing multihop device-
to-device communications. IEEE Communications Magazine, 52(4), 2014.

[53] A. Osseiran, V. Braun, T. Hidekazu, P. Marsch, H. Schotten, H. Tullberg, M. A.
Uusitalo, and M. Schellman. The Foundation of the Mobile and Wireless Communi-
cations System for 2020 and Beyond: Challenges, Enablers and Technology Solutions.
In Proceedings of the 77th IEEE Vehicular Technology Conference (VTC Spring), 2013.

[54] J. Ousterhout, P. Agrawal, D. Erickson, C. Kozyrakis, J. Leverich, D. Mazières,
S. Mitra, A. Narayanan, G. Parulkar, M. Rosenblum, S. M. Rumble, E. Stratmann,
and R. Stutsman. The Case for RAMClouds: Scalable High-performance Storage
Entirely in DRAM. ACM SIGOPS Operating Systems Review, 43(4), 2010.

[55] C. Perkins, E. Belding-Royer, and S. Das. RFC 3561: Ad hoc On-Demand Distance
Vector (AODV) Routing. Technical report, The Internet Engineering Task Force
(IETF), 2003.

[56] S. Rajagopalan, D. Williams, and H. Jamjoom. Pico Replication: A High Availability
Framework for Middleboxes. In Proceedings of the 4th Annual Symposium on Cloud
Computing (SOCC), 2013.

[57] S. Rajagopalan, D. Williams, H. Jamjoom, and A. Warfield. Split/Merge: System
Support for Elastic Execution in Virtual Middleboxes. In Proceedings of the 10th
USENIX Symposium on Networked Systems Design and Implementation (NSDI), 2013.

[58] K. N. Ramachandran, E. M. Belding-Royer, and K. C. AImeroth. DAMON: a dis-
tributed architecture for monitoring multi-hop mobile networks. In Proceedings of
the 1st Annual IEEE Communications Society Conference on Sensor and Ad Hoc Communi-
cations and Networks (SECON), 2004.

[59] Y. Rekhter, T. Li, and S. Hares. RFC 4271: A Border Gateway Protocol 4 (BGP-4).
Technical report, The Internet Engineering Task Force (IETF), 2006.

[60] N. Richerzhagen, D. Stingl, B. Richerzhagen, A. Mauthe, and R. Steinmetz. Adaptive
Monitoring for Mobile Networks in Challenging Environments. In Proceedings of the
24th International Conference on Computer Communication and Networks (ICCCN), 2015.

[61] P. Richter, N. Chatzis, G. Smaragdakis, A. Feldmann, and W. Willinger. Distilling
the Internet’s Application Mix from Packet-Sampled Traffic. In Proceedings of the 16th
International Conference on Passive and Active Measurement (PAM), 2015.

[62] E. Rosen and Y. Rekhter. RFC 4364: BGP/MPLS IP Virtual Private Networks (VPNs).
Technical report, The Internet Engineering Task Force (IETF), 2006.

[63] V. Sekar, N. Egi, S. Ratnasamy, M. K. Reiter, and G. Shi. Design and Implementa-
tion of a Consolidated Middlebox Architecture. In Proceedings of the 9th USENIX
Symposium on Networked Systems Design and Implementation (NSDI), 2012.

[64] V. Sekar, S. Ratnasamy, M. K. Reiter, N. Egi, and G. Shi. The Middlebox Manifesto:
Enabling Innovation in Middlebox Deployment. In Proceedings of the 10th ACM
SIGCOMM Workshop on Hot Topics in Networks (HotNets), 2011.



114 bibliography

[65] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy, and V. Sekar. Making
Middleboxes Someone else’s Problem: Network Processing As a Cloud Service. In
Proceedings of the ACM SIGCOMM Conference on Applications, Technologies, Architec-
tures, and Protocols for Computer Communication (SIGCOMM), 2012.

[66] V. Srivastava and M. Motani. Cross-layer design: a survey and the road ahead. IEEE
Communications Magazine, 43(12), 2005.

[67] H. V. Styn. Tcpdump Fu. Linux journal, 2011(210), 2011.

[68] P. Sun, R. Mahajan, J. Rexford, L. Yuan, M. Zhang, and A. Arefin. A Network-
state Management Service. In Proceedings of the ACM SIGCOMM Conference on
Applications, Technologies, Architectures, and Protocols for Computer Communication
(SIGCOMM), 2014.

[69] The Icinga Project. Icinga – Open Source Monitoring. https://www.icinga.org.

[70] V. Valancius and N. Feamster. Multiplexing BGP Sessions with BGP-Mux. In
Proceedings of the 3rd International Conference on emerging Networking EXperiments and
Technologies (CoNEXT), 2007.

[71] S. Vissicchio, L. Vanbever, C. Pelsser, L. Cittadini, P. Francois, and O. Bonaventure.
Improving Network Agility With Seamless BGP Reconfigurations. IEEE/ACM
Transactions on Networking (TON), 21(3), 2013.

[72] L. Wang, M. Saranu, J. M. Gottlieb, and D. Pei. Understanding BGP Session Failures
in a Large ISP. In Proceedings of the 26th Conference on Computer Communications
(INFOCOM), 2007.

[73] Y. Wang, E. Keller, B. Biskeborn, J. van der Merwe, and J. Rexford. Virtual Routers
on the Move: Live Router Migration As a Network-management Primitive. In Pro-
ceedings of the ACM SIGCOMM Conference on Applications, Technologies, Architectures,
and Protocols for Computer Communication (SIGCOMM), 2008.

[74] M. Werner, J. Kaiser, M. Hollick, E. Weingärtner, and K. Wehrle. A Blueprint for
Switching Between Secure Routing Protocols in Wireless Multihop Networks. In
Proceedings of the 14th International Symposium on "A World of Wireless, Mobile and
Multimedia Networks" (WoWMoM), 2013.

[75] M. Werner, J. Schwandke, M. Hollick, O. Hohlfeld, T. Zimmermann, and K. Wehrle.
STEAN: A Storage and Transformation Engine for Advanced Networking context.
In Proceedings of the IFIP Networking Conference (IFIP Networking), 2016.

[76] R. Winter, J. H. Schiller, N. Nikaein, and C. Bonnet. CrossTalk: cross-layer decision
support based on global knowledge. IEEE Communications Magazine, 44(1), 2006.

[77] H. Zimmermann. OSI Reference Model - The ISO Model of Architecture for Open
Systems Interconnection. IEEE Transactions on Communications, 28(4), 1980.

All web pages cited in this work have been checked in September 2017. However, due to the
dynamic nature of the World Wide Web, their long-term availability cannot be guaranteed.



A
C H A R A C T E R I Z I N G T H E T R A F F I C G A P

One of the main challenges when introducing a mechanism switch during runtime is the
reestablishment of context information as described in Section 3.4.1. The transition will
lead to a gap in data traffic until all communication paths and context information are
established and the network is fully operational again.

We discuss additional parameters and metrics—not or only partially reviewed in
Section 5.2—that influence the duration of the traffic gap along with metrics that help
us to analyze the network traffic for gap times during a switch and to identify the
contributing factors.

a.1 parameters

Both routing protocols under test in Section 5.2 have several parameters that determine
the performance of the network. We distinguish between traffic independent and traffic
dependent parameters that either generate additional load by periodically emitting
packets or significantly influencing the forwarding performance of the network.

a.1.1 OLSR

a.1.1.1 Traffic Independent

The Link Hysteresis allows the protocol to decide when a wireless link should be con-
sidered valid. It helps to avoid the phenomena of “on-off-neighbors” by introducing a
pending link state in which the wireless link to the neighbor is considered to be not
established even if some HELLO messages are received. The hysteresis has an upper
bound and a lower bound value. As we run only static nodes in our network and thus the
characteristics of the wireless link remain the same, we chose to keep the link hysteresis
fixed.

The Willingness of a node describes how this node is disposed to forward traffic on
behalf of other nodes. This parameter influences the routing decisions and might be based
on external factors such as the availability of a permanent power supply or computational
resources. We ran all our experiments in a homogeneous setup and therefore decided
to set the willingness of all nodes to the same value to not prefer one of the nodes over
another.

a.1.1.2 Traffic Dependent

The HELLO Interval defines the emitting interval of link sensing announcements and
influences the discovery of new or lost neighbors. Additionally, HELLO messages are the
most frequent control messages and thus can account for a high additional load. Nodes
first need to discover at least one neighbor before they are reachable from other members
of the network. Therefore, we expect a high influence of the HELLO Interval on the gap
time as HELLO messages might get delayed or even lost during the initialization phase
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and the neighbor discovery then takes a large amount of time. In our experiments, we
used three different intervals to account for different networking situations where nodes
might move fast to an almost static network.

Directly related to the emitting interval is the Neighbor Hold Time which describes
the time, an entry in the neighbor list is considered valid even if no additional HELLO
messages are received. We have chosen three different factors of the HELLO interval for
the Neighbor Hold Time to account for different environmental conditions as well as
load pattern.

As OLSR is a proactive protocol, the actual routing information is transmitted using
Topology Control (TC) messages. Therefore, the TC Interval influences the built up time
of the routing tables once neighbors are discovered. These messages are flooded through
the whole network and can account for a high additional load.

The TC Hold time defines how long an entry in the routing table should be kept without
any refresh. Once this time expires and no TC message with the according information
was received, the entry is removed and the path is not used any longer.

For an overview of possible values for each parameter we refer to Table A.1.

parameter values

HELLO_INTERVAL 1000 ms, 2000 ms*, 5000 ms, 10000 ms

TC_INTERVAL 4000 ms, 5000 ms*, 15000 ms, 20000 ms

NEIGHBOR_HOLD 2 × HELLO_INTERVAL, 3 × HELLO_INTERVAL*,
4 × HELLO_INTERVAL, 8 × HELLO_INTERVAL

TC_HOLD 2 × TC_INTERVAL, 3 × TC_INTERVAL*, 4 × TC_INTERVAL,
8 × TC_INTERVAL

Table A.1: OLSR parameters. A * denotes the default parameter setting from the RFC.

a.1.2 AODV

a.1.2.1 Traffic Independent

The Network Diameter describes the maximum number of hops a route in the network
can consist of. We are running a small and dense network and therefore lowered the
net diameter to avoid long running expanding ring searches when no route is available.
All experiments were executed in a static setup which allowed us to keep the parameter
static.

We used a high Node Traversal Time to account for the low computational performance
of our mesh nodes. This parameter depicts the maximum retention time on a single node
and even though our experiments did not show any performance bottlenecks on the
CPU, the messages might still need a significant time to be forwarded.

The Route Request Retry count is set to a static value across all tests but high enough
that when the value is reached, the running experiment is also finished.

Using the Active Route Timeout parameter, the protocol removes unused routes after
a certain period. We are constantly transmitting data over all routes and therefore this
threshold never gets reached and can remain static over all tests.
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a.1.2.2 Traffic Dependent

AODV is a reactive ad-hoc routing protocol and therefore only has very few messages
that are sent periodically.

The HELLO Interval defines the emitting interval of neighbor discovery messages. These
are broadcasted periodically to announce the existence of a node and its willingness to
participate in the network. Each node has to at least receive one valid HELLO message
before it can participate in the network and request routes for other destinations. HELLO
messages are the only packets sent periodically by AODV. We have chosen three different
emitting intervals to account for different node behaviors from fast moving participants
to an almost static network.

Directly related to the HELLO Interval is the Allowed HELLO Loss which depicts the
number of HELLO messages to be lost before a node should assume that the link to
the respective neighbor is currently lost. In our experiments, we used three different
values for the Allowed HELLO Loss to account for different load pattern as well as
environmental conditions that influence the reception of broadcast messages.

The RREQ Retries parameter sets the number of Route Requests sent by a node before
it considers a destination not reachable over the network. We kept this parameter high
but static to account for a potential high loss of Route Requests during the high traffic
experiments. This setting was chosen in favor of different values for the RREQ Retries
parameter as it does not directly impose more traffic but the actual finding of routes
highly relies on this parameter.

Table A.2 gives an overview of the parameters and sensible values for conducting
experiments.

For AODV, the Route Request (RREQ) messages are expected to create substantial
overhead when a protocol switch is performed. These messages are only sent on demand
but broadcasted through the whole network to discover routes.

parameter values

HELLO_INTERVAL 1000 ms*, 5000 ms, 10000 ms

ALLOWED_HELLO_LOSS 2*, 4, 8

RREQ_RETRIES 2*, 5

Table A.2: AODV parameters. A * denotes the default parameter setting from the RFC.

a.2 metrics

During our experiments we record different metrics that can be used to characterize the
behavior of a WMN and the gap in networking traffic when switching mechanisms in
particular.
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a.2.1 Duration of the Traffic Gap

The most important metric is the time where no data traffic in the network is forwarded.
During this interval, no communication between end nodes is possible and the user
experiences a degradation in service.

We define the duration of the traffic gap as the time between the reception of the switch
command by a node and the first successful delivery of a data packet after the switch
was initiated. During this time a routing protocol typically has to built an initial routing
table that contains at least one entry for the observed flow. Thus, the protocol does not
have to be in steady state but needs to offer end to end connectivity.

During the gap phase there might also be data traffic still forwarded to the next
hop that is already in the outbound buffer. These packets are however not necessarily
delivered to the final destination.

a.2.2 Communication Overhead

When a new protocol is bootstrapped, typically a large number of messages has to be
exchanged by the participating nodes. The neighbors of each node have to be discovered,
routes have to be selected and forwarding nodes have to be chosen. This leads to an
increased overhead of control messages until the network is stable again. The number
of messages is typically even larger when there are already data packets waiting to be
delivered. We record the number and size of control messages along with the data traffic
to calculate the overhead each mechanism produces.

a.2.3 System Load

The forwarding performance of intermediate nodes also depends on the load the system
has to handle during operation. This load can be caused by the forwarding itself but also
by the management and control overhead of the protocols.

a.3 summary

Dynamic adaptation of mechanisms is a key to optimize the performance of communica-
tion networks. In Section 5.2, we showed that a traffic gap exists when switching between
different routing protocols in a WMN.

This gap does not only prevail if the load on the network is high but also on low to
moderate data rates. While the gap is still small on moderate load of the network it
suddenly grows rapidly once a certain throughput threshold is reached.

We also argue that the gap not only depends on the traffic load imposed but also on
the parameter settings of the involved mechanisms. Our results show a high influence
of the number of control messages and the emitting interval of these messages. These
parameters are however not only important for the characterization of the traffic gap but
also for the reliable operation of the mechanisms themselves. A dynamic adjustment of
these parameters depending on the current network state as well as the operation mode
might be feasible and will improve the overall network performance not only during the
transition of communication protocols but also during normal operations.
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