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Many-Body Perturbation Theory for Ab Initio Nuclear Structure

Abstract

The solution of the quantum many-body problem for medium-mass nuclei using realistic
nuclear interactions poses a superbe challenge for nuclear structure research. Because an
exact solution can only be provided for the lightest nuclei, one has to rely on approximate
solutions when proceeding to heavier systems. Over the past years, tremendous progress
has been made in the development and application of systematically improvable expansion
methods and an accurate description of nuclear observables has become viable up to mass
number A ≈ 100. While closed-shell systems are consistently described via a plethora of
different many-body methods, the extension to genuine open-shell systems still remains a
major challenge and up to now there is no ab initio many-body method which applies equally
well to systems with even and odd mass numbers.

The goal of this thesis is the development and implementation of innovative perturbative
approaches with genuine open-shell capabilities. This requires the extension of well-known
single-reference approaches to more general vacua. In this work we choose two complemen-
tary routes for the usage of generalized reference states.

First, we derive a new ab initio approach based on multi-configurational reference states
that are conveniently derived from a prior no-core shell model calculation. Perturbative
corrections are derived via second-order many-body perturbation theory, thus, merging con-
figuration interaction and many-body perturbation theory. The generality of this ansatz
enables for a treatment of medium-mass systems with arbitrary mass number, as well as the
extension to low-lying excited states such that ground and excited states are treated on an
equal footing.

In a complementary approach, we use reference states that break a symmetry of the
underlying Hamiltonian. In the simplest case this corresponds to the expansion around a
particle-number-broken Hartree-Fock-Bogoliubov vacuum which is obtained from a mean-
field calculation. Pairing correlations are already absorbed in the reference state. The mild
scaling allows for investigations up to tin isotopic chains.

All benchmarks were performed using state-of-the-art chiral two- plus three-nucleon inter-
actions thus allowing for a universal description of nuclear observables in the medium-mass
regime.





Vielteilchenstörtheorie in der Ab Initio Kernstrukturphysik

Zusammenfassung

Die Lösung des quantenmechanischen Vielteilchenproblems für mittelschwere Kerne mittels
realistischer nuklearer Wechselwirkungen stellt die moderne Kernstrukturphysik vor eine
große Herausforderung. Da eine exakte Lösung nur für sehr leichte Systeme möglich ist, wer-
den fü schwerere Systeme approximate Lösungsverfahren angewandt. Innerhalb der letzten
Jahre sind große Fortschritte in der Entwicklung solcher Näherungsverfahren erzielt wor-
den und eine präzise Beschreibung von Kernstrukturobservablen bis hin zu Massenzahlen
A = 100 wurde ermöglicht. Obwohl für Kerne mit Schalenabschlüssen eine Vielzahl ver-
schiedener Vielteilchenmethoden existieren, ist die Erweiterung solcher Methoden auf Sys-
teme fernab von Schalenabschlüssen noch immer eine große Herausforderung. Insbesondere
existiert keine ab initio Methode, die auf mittelschwere Systeme mit gerader und ungerader
Massenzahl angewendet werden kann.

Das Ziel dieser Arbeit ist die Entwicklung und Implementierung innovativer störungs-
theoretischer Methoden, die auf beliebige mittelschwere Kerne angewendet werden können.
Dies setzt insbesondere die Erweiterung auf allgemeinere Referenzzustände voraus, die keine
einfachen Slaterdeterminanten sind. In dieser Arbeit zeigen wir zwei verschiedene Lösungsan-
sätze auf.

Wir führen eine neuartige ab initio Methode ein, bei welcher störungstheoretische Kor-
rekturen bezüglich eines Multi-Determinanten-Zustands bestimmt werden. Solche Referenz-
zustände können mit Hilfe des No-Core Schalenmodells konstruiert werden. Dies erlaubt
die Bestimmung von korrelierten Grundzustands- und Anregungsenergien für Systeme mit
gerader und ungerader Massenzahl.

Ein ergänzender Ansatz besteht in der Verwendung Symmetrie-gebrochener Referenz-
zustände. Im einfachsten Fall führt das auf Teilchenzahl-gebrochene Hartree-Fock-Bogoliu-
bov-Vakua, die aus einer vorherigen Lösung eines effektiven Einteilchenproblems bestimmt
werden. Dabei werden Pairing-Korrelationen bereits in den Referenzzustand absorbiert.
Aufgrund des moderaten Skalierungsverhaltens können hierbei Grundzustandsenergien bis
hin zu schweren Zinn-Isotopen berechnet werden.

Alle Berechnungen in dieser Arbeit wurden mit modernen chiralen Zwei- plus Drei-
Nukleonen-Wechselwirkungen durchgeführt. Dies erlaubt eine universelle Beschreibung von
Kernstrukturobservablen bis hin zu mittelschweren Kernen.
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Introduction

Quantum Chromodynamics (QCD) is the fundamental theory of the strong interaction within
the Standard Model of Particle Physics. QCD describes the interaction of quarks and gluons.
Due to asymptotic freedom QCD can be handled by means of perturbation theory at high
energies. The validity of a perturbative treatment breaks down in the low-energy regime
of nuclear structure physics requiring a non-perturbative approach. Moreover, it is well
established that physical bound states only consists of color-neutral objects—the baryons
and mesons. Thus the lightest particles, being nucleons and pions are the relevant degrees
of freedom for an effective theory of the strong interaction valid in the regime of nuclear
structure. Over the past 20 years the development of chiral effective field theory (EFT)
established the most consistent approach for the formulation of an effective theory of the
strong interaction [EM03; EHM09].

When solving the quantum many-body problem, i.e., solving the stationary Schrödinger
equation for a realistic nuclear Hamiltonian using basis-expansion methods, one faces the
problem that these interactions exhibit very slow convergence with respect to model-space
size. This effect is due to the strong short-range repulsion and tensor interactions. Such
interactions induce a strong coupling between high and low momenta, yielding a strongly
off-diagonal matrix in momentum representation of the Hamiltonian. Even though converged
results can be obtained for the lightest nuclei up to mass number A ≈ 12, e.g., in a No-Core
Shell Model (NCSM) framework [Nav+09; Rot+11; BNV13], medium-mass systems require
the use of different approaches.

In the past, several schemes have been proposed to overcome this difficulties by deriving
’softened’ effective interactions, which preserve the low-energy phase shift and deuteron
properties the inital interaction was fitted to. The presently most commonly used approach
is the Similarity Renormalization Group (SRG) which uses a unitary transformation to
tame the strong short-range repulsion and tensor correlation parts [BFP07; HR07; RRH08].
Unitarity of the transformation formally guarantees preservation of physical quantities. It is
has been shown in numerous investigations that the use of SRG-transformed Hamiltonians
strongly improves model-space convergence and gives a suppression of the aforementioned
coupling of low- and high-momentum states.

The use of these renormalized interactions enables for the solution of the stationary
Schrödinger equation for heavier systems. For the solution of the quantum many-body
problem in a controllable way one desires the following key property:

An ab initio many-body method has a systematically improvable expansion

vii
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which—given a fixed Hamiltonian—reproduces the exact nuclear observable in a
well-defined limit.

Fifteen years ago, ab initio calculations were limited to very light nuclei using diag-
onalization techniques, such as the NCSM, or Green’s function Monte Carlo techniques
(GFMC) [Pud+97; PW01]. In the NCSM, for example, one builds from a given single-
particle basis all many-body states up to a given model-space size and diagonalizes the
matrix representation of the Hamiltonian via Lanczos techniques. Other than working with
a finite basis set, the method is exact in the sense that the exact eigensystem is obtained in
the limit where Nmax tends to infinity. A common feature of exact many-body methods is the
curse of dimensionality, which reflects the fact that the size of the corresponding many-body
basis grows factorially with the size of the single-particle basis. The range of applicability is
limited to rather light nuclei, even though there exist extensions that enable calculations up
to the oxygen dripline, e.g., the Importance-Truncated No-Core Shell Model (IT-NCSM).
However, when proceeding to heavier systems one must adapt a different strategy.

The first investigations of medium-mass nuclei made use of independent-particle models
such as the HF approximation and were restricted to ground-state energies of closed-shell
nuclei, where all shells are either fully occupied or unoccupied. Typically, ground-state
wave functions of closed-shell nuclei are dominated by a single Slater determinant such that
the HF model constitutes a good initial approximation. In more sophisticated many-body
approaches, the HF determinant is, therefore, used as a reference state for a properly designed
correlation expansion, e.g., via many-body perturbation theory or coupled-cluster theory.
A key feature of these methods is a systematic expansion of correlation effects available
with a well-defined limit in which the expansion becomes exact. In actual applications
these expansions are truncated, inducing a systematic error that can be controlled and
systematically improved in accord with the ab initio philosophy. However, improved the
accuracy simultaneously requires larger computational effort.

Such many-body techniques have a long history in nuclear structure and quantum chem-
istry but are also applied in other areas of physics such as solid state physics. In particular,
in quantum chemistry Many-Body Perturbation Theory (MBPT) [Sch26; SB09; SO82] and
Coupled-Cluster (CC) theory have been successfully applied for almost 60 years. A decade
ago CC theory has been applied to the calculation of ground-state energy of closed-shell
nuclei by using a HF reference determinant [DH04; BM07; Hag+10; Kow+04; PGW09;
Bin+14; Bin14]. In the following years other alternatives such as Self-Consistent Green’s
function (SCGF) [DB04; CBN13] and In-Medium Similarity Renormalization Group (IM-
SRG) [Her+13; TBS11; MPB15; Her14; Her+16] were developed. Theab initio community
started to create a versatile toolbox of different many-body approaches that consistently
describe medium-mass systems with 20 ≲ A ≲ 100.
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From experiment, we know of roughly 3000 nuclei today. However, only a few ten of them
are closed-shell nuclei and can be described by the techniques mentioned above. The vast
majority are so-called open-shell nuclei. First attempts to extend the range of many-body
techniques into the open-shell region made use of equation-of-motion (EOM) techniques.
Here one starts with a correlated wave function of a neighboring closed-shell nucleus and
describes the target system via the action of particle creators/annihilators with respect to
a state of different particle number. This has been successfully applied in the CC context
to the calculation of open-shell system in the vicinity of shell closures [PGW09]. An EOM-
extension of IM-SRG for the description of spectra of closed-shell nuclei was proposed very
recently [PMB16]. However, the complexity of the formalism as well as computational con-
siderations restrict their use to targeting systems which differ at most by two particles from
the closed-shell reference. Thus, it does not provide a universal approach for solving the
many-body problem for open-shell systems.

Another attempt for describing open-shell nuclei made use of effective interactions, where
single-particle states are classified into core, valence and virtual states. The core states
define the reference determinant which typically is a HF determinant with lower particle
number than the target system. One then defines a valence space where correlation ef-
fects of virtual states are summed into the effective interaction. Subsequently the effective
Hamiltonian is diagonalized in the valence space thus yielding the low-lying spectrum. This
defines the shell model. Initially, shell-model interactions were developed in MBPT, but non-
perturbative approaches for deriving valence-space interactions followed in the CC [Jan+14]
and IM-SRG [Bog+14] frameworks. This enabled, for the first time, to calculate spectra
of open-shell medium-mass nuclei. There are, however, several questions which need to be
addressed. First of all, one always assumes an inert core. In nuclei which have a complicated
structure this choice might be inappropriate. Furthermore, opening up large shells leads
to a very large valence spaces which makes the subsequent diagonalization computationally
demanding. Additionally, in the past years significant effort was spent in the derivation of
effective interactions which include several major shells (so-called multi-shell approaches).
The inclusion of several major shells yields a pronounced shell gap within the valence space
which lead to results that heavily depend on the particular orbits which are included in the
valence space. Till now this problem has not been solved in a satisfactory way.

The aforementioned approaches provide solutions to the open-shell many-body problem
in a certain regime, where either the target system is near a shell closure or a properly
designed valence space can be identified with a pronounced shell gap between core, valence
and virtual single-particle states. Both frameworks, however, yield no generic solution for
an arbitrary open-shell systems far away from shell closures and high degrees of degeneracy.
It has been recognized that more general reference states, other than a HF determinant, are
necessary to describe genuine open-shell systems, where the corresponding wave function
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is not dominated by a single many-body configuration. In general, correlation effects can
be distinguished into static correlations and dynamic correlations. Static correlations are
a collective phenomenon, that is related to the fact that several determinants contribute
significantly to an eigenvector of the Hamiltonian. Dynamic correlations, on the other hand,
are related to the formation of nucleonic pairs, triplets, quadruplets and so on. Typically,
dynamic correlations are accounted for via the correlation expansion, e.g., perturbative cor-
rections in MBPT or the solution of the amplitude equations in CC. Static correlation effects
require high excitation rank in a particle-hole picture, which is the natural framework for
single-reference many-body methods. However, the appearance of these highly-excited states
is strongly-suppressed in the correlation expansion and one has to include high-order effects,
which typically are computationally too demanding. Therefore, one aims at incorporating
static-correlation effects already at the level of the reference state. If the wave function of
a target system is not dominated by a single Slater determinant, static correlations play
an important role. Since by construction the HF approximation does not include correla-
tions, a single-reference treatment either fails or requires a high degree of sophistication, i.e.,
relaxation of the truncation parameter in the many-body method.

The extension to more general reference states can be performed in two directions: either
one uses reference states of multi-configurational character, i.e., the reference state itself is a
superposition of several Slater determinants or one uses a symmetry-broken reference state,
i.e., the reference states breaks a symmetry of the underlying Hamiltonian. The aim of
this thesis is the extension of many-body perturbation theory to genuine open-shell systems.
Both of the above options are investigated.

Multi-configurational reference states can be obtained from NCSM calculations in small
model spaces. In particular this allows for describing complex collective effects at the zeroth-
order description [RSS03; SSK04]. Multi-configurational states have successfully been incor-
porated in the multi-reference version of IM-SRG (MR-IM-SRG) which enabled, for the first,
time the investigation of long isotopic chains up to the driplines from an ab initio perspec-
tive [Her14]. Analogously, one can extend the MBPT treatment also to NCSM reference
states defining a novel ab initio approach which uses systematically improvable reference
states and incorporates residual correlation effects perturbatively [TGR17]. The generality
of this ansatz allows—for the first time in ab initio nuclear structure theory—to treat even
and odd nuclei on equal footing in a medium-mass no-core approach.

While the concept of symmetry-breaking has a long tradition in other fields, e.g., energy
density functional theory (EDF) or condensed matter physics, it has only scarcely been
applied in the ab initio context. The basic idea is to let the reference state break a symmetry
of the underlying Hamiltonian. In the simplest case this corresponds to using a particle-
number non-conserving reference state, which can for example arise from the solution of the
Hartree-Fock-Bogoliubov (HFB) equation and, therefore, corresponds to a violation of global
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Figure 1: Schematic overview over the methods used for the solution of the quantum many-body
problem.

U(1) gauge symmetry. In the HFB scheme one can explicitly account for pairing correlations
by going to a quasiparticle description, where particle-particle, hole-hole and particle-hole
excitations are treated equally. Such reference states have only recently been adopted in
the CC framework [Dug14]. The application to other—possibly non-abelian—symmetry
groups, e.g., the breaking of SU(2) and the corresponding violation of angular-momentum
conservation, are under investigation.

For finite nuclei, the restoration of the broken symmetry is mandatory. This step, how-
ever, needs to be postponed to the future and to our knowledge there has been no imple-
mentation of a symmetry-broken many-body method that consistently restores the symmetry
beyond the mean-field level, even though the theory is worked out on a formal level [DS16].

Although the entire work of this thesis is dedicated to the development and extension
of innovative ab initio many-body techniques, one should keep in mind that plenty of addi-
tional work is necessary for the solution of the many-body problem for medium-mass nuclei.
Figure 1 serves as a reminder of the individual aspects this thesis.

The structure of this work is as follows. This thesis is divided into four major parts.
Part I is dedicated to the introduction of the nuclear Hamiltonian and the presentation of
supplementary material needed later. In Part II we discuss single-configurational MBPT
and its application to closed-shell nuclei. In Part III we introduce a multi-configurational
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version of MBPT capable of describing genuine medium-mass open-shell systems via using
NCSM reference states as zero-order input. Part IV is dedicated to symmetry-broken MBPT,
where a particle-number-broken HFB vacuum is used as reference state for the correlation
expansion. Parts II, III and IV have an introductory section, respectively, which displays
the structure of the individual parts.

A number of technical derivations necessary for the implementationsare gathered in the
appendix.

Figure 1 gives a schematic overview of the content of this thesis and the workflow starting
from chiral EFT to the approximate solution of the Schrödinger equation in a many-body
framework.
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Basics





1
Preliminaries

The goal of the section is to provide the basic material that is necessary to follow the later
derivations as well as to fix notations. This section includes a discussion of the single-
particle basis used in the implementation as well as the different model-space truncation
schemes, which will be applied subsequently. Furthermore, we introduce definitions of
angular-momentum coupled quantities, the particle-hole formalism, and give an introduction
to normal-ordering.

1.1 Single-particle basis and model-space truncations

We start with the definition of the single-particle basis. A general basis state |k⟩ is written
as

|k⟩ ≡ |nk, jk, lk, tk,mk⟩ ≡ |nk(lk
1

2
)jkmk, (

1

2
tk)⟩ (1.1)

where nk denotes the radial quantum number, jk the total angular momentum quantum
number, lk orbital angular momentum quantum number, tk the isospin projection and mk

the total angular momentum projection. Furthermore, nucleons have spin sk = 1
2

and isospin
quantum number τk = 1

2
which will be suppressed in the following.

In typical calculations the reference basis is constructed from the eigenstates of the spher-
ical harmonic-oscillator (HO) Hamiltonian

ĤHO =
ˆ⃗p 2

2m
+

1

2
mΩ2 ˆ⃗r

2
(1.2)

with m being the nucleon mass and Ω the oscillator frequency fixing the width of the HO
potential. The eigenenergies, characterized by the nk and lk quantum numbers,

3
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ϵk =
(
2nk + lk +

3

2

)
ℏΩ (1.3)

coincide for proton and neutrons single-particle states. We further introduce the principal
quantum number

ek = (2nk + lk), (1.4)

which fully defines the energy eigenvalue.
In actual applications the single-particle basis must be truncated to finite size for com-

putational reasons. We define the emax-truncated single-particle space

Vemax ≡
{
|k⟩ ∈ H1 : ek ≤ emax

}
, (1.5)

that contains all single-particle states with principal quantum numbers up to emax, where
H1 denotes the infinite-dimensional one-body Hilbert space.

When including three-body forces the typical number of matrix elements becomes in-
tractable when using a single-particle truncation only. Therefore, one introduces a collective
three-body truncation E3max defined by

e1 + e2 + e3 ≤ E3max (1.6)

and discards all three-body matrix elements where the sum of the principal quantum numbers
of bra or ket states exceeds E3max.

For many-body methods such as the no-core shell model a mere single-particle truncation
is prohibitive. Therefore, one introduces the so-called Nmax-truncation scheme. Given an
A-body Slater determinant (SD) |ψ⟩ one includes all many-body configurations |ψI⟩ in the
many-body basis for which the sum of HO excitation quanta does not exceed a given value
of Nmax. We note that the number of single-particle orbitals in emax-truncated model spaces
is independent of the considered nucleus while the number of many-body configurations in
an Nmax-truncated model space does depend on the target system.

1.2 Angular-momentum coupling

Even though large parts of this work are implemented in an m-scheme basis, it can be impor-
tant to make use of symmetry properties of the Hamiltonian and transfer the implementation
to an angular-momentum-coupled scheme.

Consider two different particles with corresponding angular-momentum vectors Ĵ1 and
Ĵ2.1 Then

1A quantity Ĵ is called angular-momentum vector if its components satisfy

4



1.2 - Angular-momentum coupling

[Ĵ1k, Ĵ2l] = 0 for all k, l = 1, 2, 3, (1.8)

where the indices k, l refer to the Cartesian coordinates. The angular-momentum operators
have eigenstates satisfying

Ĵ2
n|jnmn⟩ = jn(jn + 1)ℏ2|jnmn⟩, (1.9)

Ĵnz|jnmn⟩ = mnℏ|jnmn⟩. (1.10)

The corresponding eigenvector of Ĵ1 + Ĵ2 is given by the product of the eigenvectors of Ĵ1

and Ĵ2, respectively,

|j1m1j2m2⟩ ≡ |j1m1⟩ ⊗ |j2m2⟩, (1.11)

where ⊗ denotes the tensor product of two single-particle states.
The states defined in (1.11) are eigenstates of the maximum set of commuting operators

{Ĵ2
1 , Ĵ1z, Ĵ

2
2 , Ĵ2z}. (1.12)

We call the set of states {|j1m1j2m2⟩} the uncoupled basis. We further define anti-symmetrized
two-body states by

|j1m1j2m2⟩a ≡
1√
2
(|j1m1j2m2⟩ − |j2m2j1m1⟩). (1.13)

For the exchange of the two-particle state we get

|j1m1j2m2⟩a = −|j2m2j1m1⟩a, (1.14)

according to the Pauli principle.

One can show that the sum Ĵ = Ĵ1 + Ĵ2 also is an angular-momentum vector in the
above sense. Equally, one can couple the angular momenta of the two particles. The coupled
momentum Ĵ2 is contained in the complete set of pairwise commuting operators

{Ĵ2
1 , Ĵ

2
2 , Ĵ

2, Ĵz}. (1.15)

The complete set of states {|j1j2JM⟩} defines the coupled basis. We get for exchanging the
total angular momenta

Ĵ†
k = Ĵk, for k = 1, 2, 3 and [Ĵi, Ĵj ] = iℏ

∑
k

ϵijkĴk, (1.7)

where ϵijk denotes the totally anti-symmetric Levi-Civita tensor.

5
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|(j1j2)JM⟩a = (−1)j1+j2−J |(j2j1)JM⟩a. (1.16)

Coupling symbols

Since, both, the coupled and uncoupled basis form a complete set of states one can transform
one basis into the other. Inserting a resolution of the identity with respect to the uncoupled
basis gives

|(j1j2)JM⟩ =
∑
m1m2

|j1m1j2m2⟩⟨j1m1j2m2|(j1j2)JM⟩. (1.17)

The overlap (
j1 j2 J

m1m2M

)
≡ ⟨j1m1j2m2|(j1j2)JM⟩ (1.18)

defines the so-called Clebsch-Gordan (CG) coefficient.
There are several important relations for the CGs. The most important ones being the

orthogonality and completeness relations

∑
m1m2

(
j1 j2 J

m1m2M

)(
j1 j2 J ′

m1m2M
′

)
= δJJ ′δMM ′ , (1.19)

∑
JM

(
j1 j2 J

m1m2M

)(
j1 j2 J

m1′ m2′ M

)
= δm1m1′

δm2m2′
. (1.20)

Sometimes it is more convenient to use the so-called Wigner 3j-symbol(
j1 j2 J

m1m2M

)
≡ (−1)j1−j2−M Ĵ−1

(
j1 j2 J

m1m2M

)
3j

, (1.21)

where we introduced the hat-symbol 2

Ĵ ≡
√
2J + 1. (1.22)

By means of the above Wigner 3j-symbols we further define the so-called Wigner 6j-symbol{
j1 j2 j12

j3 j j23

}
≡

∑
m1m2m3
m12m23

(−1)j3+j+j23−m3−m−m23

(
j1 j2 j12

m1m2m12

)
3j

×

(
j1 j j23

m1 −mm23

)
3j

(
j3 j2 j23

m3m2 −m23

)
3j

(
j3 j j12

−m3mm12

)
3j

(1.23)

2The hat does not indicate an operator in this context.
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1.2 - Angular-momentum coupling

which arises naturally in the coupling of three angular momenta and will be needed frequently
in the coupling of matrix elements in appendix E.

For a discussion of symmetries and additional relations of the above introduced cou-
pling symbols see, e.g., the extensive treatment in the book of Varshalovic, Moskalev and
Khersonskii [VMK88].

Matrix elements

We define anti-symmetrized matrix elements of a generic Hermitian two-body operator Ô
written in m-scheme as

Ok1k2k3k4 ≡ a⟨nk1lk1jk1tk1mk1nk2lk2jk2tk2mk2|Ô|nk3lk3jk3tk3mk3nk4lk4jk4tk4mk4⟩a. (1.24)

Note that, by Hermiticity, matrix elements are anti-symmetric with respect to exchange of
bra single-particle states as well

Ōk1k2k3k4 = Ōk3k4k1k2 = −Ōk3k4k2k1 = −Ōk2k1k3k4 . (1.25)

Using the definition of the two-body states in coupled basis we define

Ok̃1k̃2JM ;k̃3k̃4J ′M ′ ≡
∑

mk1
mk2

mk3
mk4

(
jk1 jk2 J

mk1 mk2 M

)(
jk3 jk4 J ′

mk3 mk4 M
′

)
Ōk1k2k3k4 , (1.26)

where we introduce the Baranger notation

k̃ ≡ (nk, lk, jk, tk) (1.27)

which keeps all quantum numbers other than the angular momentum projection mk. The
above normalization constants are due to using anti-symmetrized two-particle states.

Conversely, we get for the transformation from the coupled to the uncoupled basis

Ōk1k2k3k4 =
∑
JJ ′

∑
MM ′

(
jk1 jk2 J

mk1 mk2 M

)(
jk3 jk4 J ′

mk3 mk4 M
′

)
Ok̃1k̃2JM ;k̃3k̃4J ′M ′ . (1.28)

We note that both (1.26) and (1.28) carry an additional prefactor that accounts for the
correct normalization. However, since both prefactors cancel each other when performing
the angular-momentum coupling, we will suppress them for the sake of simplicity.

Since nuclear potentials are rotationally invariant they do not depend onM orM ′ and are
non-zero only if J = J ′. Therefore, if the operator Ô corresponds to the nuclear Hamiltonian
Ĥ [2] we get the J-coupled matrix elements

7
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H
[2]

k̃1k̃2JM ;k̃3k̃4J ′M ′ ≡ δJJ ′δMM ′
JH

[2]

k̃1k̃2k̃3k̃4
. (1.29)

1.3 Particle-hole formalism

Several many-body approaches are conveniently formulated with respect to a reference Slater
determinant |Φ⟩ instead of the physical vacuum |0⟩,

|Φ⟩ = |k1k2 · · · kN⟩a ≡ ĉ†k1 ĉ
†
k2
. . . ĉ†kN |0⟩. (1.30)

where ĉ†k denotes a single-particle creation operator. Analogously we define single-particle
annihilation operators ĉk by

ĉk|0⟩ = 0 (1.31)

Other Slater determinants are then constructed with respect to the reference |Φ⟩ via the
action of particle creation and annihilation operators

|Φa1
i1
⟩ = ĉ†a1 ĉi1|Φ⟩, (single excitation)

|Φa1a2
i1i2

⟩ = ĉ†a1 ĉ
†
a2
ĉi2 ĉi1|Φ⟩, (double excitation)

... ...
|Φa1...ap

i1...ip
⟩ = ĉ†a1 ...ĉ

†
ap ĉip ...ĉi1|Φ⟩. (p-fold excitation) (1.32)

The reference determinant |Φ⟩ is conveniently called Fermi vacuum. This allows for a classi-
fication of single-particle states. In the remainder of this work single-particle states which are
occupied in the Fermi vacuum are called holes and single-particle states that are unoccupied
in the reference state are called particles. We further fix the following index convention:

Holes (i, j, k, ...)

Particles (a, b, c, ...)

General (p, q, r, ...)

We note that there is no general convention on naming single-particle indices. The convention
used here is consistent with the one used in Ref. [SB09]. However, other sources use different
notation, e.g., [SO82].

1.4 Normal ordering

For the derivation of working formulas of many-body methods the evaluation of matrix el-
ements containing products of second-quantized operators is inevitable. In this section we

8



1.4 - Normal ordering

introduce supplementary notations and techniques and ultimately formulate the Standard
Wick’s theorem which is of central importance when dealing with a diagrammatic represen-
tation of operator strings. The following treatment follows roughly the discussion in [SB09].

Normal ordering with respect to the physical vacuum

Let Â, B̂, Ĉ, ... be various creation or annihilation operators. Then we define the normal-
ordered product of such operators relative to the physical vacuum |0⟩ to be the rearranged
product of operators such that all creation operators are left to the annihilation operators.
The normal-ordered product is denoted by

n[ÂB̂Ĉ...]. (1.33)

The normal-ordered product gathers a relative phase coming from the permutation of cre-
ation and annihilation operators. 3 The usefulness of the normal-ordered form of a operator-
string comes from its vanishing vacuum expectation value

⟨0|n[ÂB̂Ĉ...]|0⟩ = 0, (1.34)

if [ÂB̂Ĉ...] is not empty. We define the contraction of two operators by

ÂB̂ ≡ ÂB̂ − n[ÂB̂]. (1.35)

For stating Wick’s theorem we need to define a normal product with contractions

n[ÂB̂Ĉ · · · R̂ · · · Ŝ · · · T̂ · · · Û · · · ] = (−1)σR̂T̂ ŜÛ · · ·n[ÂB̂Ĉ · · · ] (1.36)

where σ is the parity of the permutation(
ÂB̂Ĉ · · · R̂ · · · Ŝ · · · T̂ · · · Û · · ·

R̂T̂ ŜÛ · · · ÂB̂Ĉ · · ·

)
. (1.37)

where the original order of R̂, T̂ and Ŝ, Û must be maintained. With this Wick’s theorem
states:

Theorem 1 (Time-independent Wick’s theorem, [Wic50]). A product of a string of creation
and annihilation operators is equal to their normal product plus the sum of all possible normal
products with contractions.

3We note that the definition is not unique since permutation among the creators/annihilators yields an
operator string in normal-ordered form but is the permutation would give an additional phase factor.
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Normal ordering with respect to a Slater determinant

As already mentioned, many-body theories are commonly formulated with respect to a Fermi
vacuum that is not the physical vacuum. Therefore, it is useful to extend the notion of
normal order to an arbitrary Slater determinant |Φ⟩. We define a product of creation and
annihilation operators to be in normal order relative to |Φ⟩ if all pseudo-creation operators
are left of all pseudo-annihilation operators. We introduce the notation

b̂†i ≡ ĉi, (1.38a)
b̂i ≡ ĉ†i , (1.38b)
b̂†a ≡ ĉ†a, (1.38c)
b̂a ≡ ĉa. (1.38d)

where i and a denote hole and particle indices, respectively. Then again it holds that the
(Fermi-vacuum) expectation value of a normal-ordered product vanishes, since

b̂p|Φ⟩ = 0 and ⟨Φ|b̂†p = 0, (1.39)

where p is a general single-particle index. In order to distinguish the normal ordering with
respect to a Fermi vacuum from normal-ordering with respect to the physical vacuum, we
introduce 4

{ÂB̂Ĉ · · · }|Φ⟩ = (−1)σ b̂†p1 b̂
†
p2
· · · b̂q2 b̂q1 , (1.40)

instead of using n[· · · ].5 Here σ denotes the parity of permutation from ÂB̂Ĉ... to b̂†p1 b̂†p2 · · · b̂q2 b̂q1
and the particular nature of the pseudo-creator and pseudo-annihilators depends on the in-
dex type of the corresponding operator Â, B̂, Ĉ, ..., i.e., if they correspond to creators or
annihilators and if they correspond to particle or holes.

Analogously to the case of a physical vacuum we introduce the notion of a contraction
(with respect to the Fermi vacuum) by

ÂB̂ ≡ ÂB̂ − {ÂB̂}, (1.41)

where we put brackets above the expression in order to distinguish from the contraction with
respect to a physical vacuum. With this the only nonzero contractions are given by

ĉ†i ĉj = δij, ĉa ĉ
†
b = δab. (1.42)

4In the following we often discard the lower index which specifies the Fermi vacuum since it is clear from
context which state is meant.

5It is also common to denote the normal-ordered operators with respect to the Fermi vacuum by N [· · · ].
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Again a normal product with contractions with respect to a reference state |Φ⟩ is defined by

{ÂB̂Ĉ · · · R̂ · · · Ŝ · · · T̂ · · · Û · · · }|Φ⟩ = (−1)σR̂T̂ ŜÛ · · · {ÂB̂Ĉ · · · }|Φ⟩. (1.43)

With this the Wick theorem for an arbitrary Slater determinant reads

Theorem 2. A product of a string of creation and annihilation operators is equal to their
normal product with respect to a Fermi vacuum |Φ⟩ plus the sum of all possible normal
products with contractions with respect to the Fermi vacuum |Φ⟩,

ÂB̂ĈD̂ · · · = {ÂB̂ĈD̂ · · · }+
∑
all

contractions

{ÂB̂ĈD̂ · · · }. (1.44)

Standard Wick’s theorem

For the evaluation of matrix elements and the use of diagrammatic techniques an additional
extension of Wick’s theorem is necessary that allows for the computation of products of
normal-ordered operators.

In the context of many-body methods one typically evaluates expression between various
SDs, and not just the reference state, i.e.,

⟨Φa1a2...
i1i2...

|Ô|Φb1b2...
j1j2...

⟩ = ⟨Φ|ĉ†i1 ĉ
†
i2
. . . ĉa2 ĉa1 Ô ĉ

†
b1
ĉ†b2 · · · ĉj2 ĉj1 |Φ⟩, (1.45)

for some operator Ô. The Standard Wick’s theorem states which contractions need to be
considered:

Theorem 3 (Standard Wick’s theorem). A general product of operators which are in normal-
ordered form is given by the overall normal product plus the sum of all overall normal products
with contractions between operators that were not in the same original normal product.

{Â1Â2 · · · }{B̂1B̂2 · · · }{Ĉ1Ĉ2 · · · }

= {Â1Â2 · · · B̂1B̂2 · · · Ĉ1Ĉ2 · · · }+
∑

all external
contractions

{Â1Â2 · · · B̂1B̂2 · · · Ĉ1Ĉ2 · · · }.

(1.46)

Contractions are called external if both operators belong to different normal products.

We emphasize that there is confusion on the naming of the version of Wick’s theorem. The
above Standard Wick’s theorem is called ’generalized Wick’s theorem’ (GWT) in the book
of Bartlett and Shavit [SB09]. However, the naming GWT is commonly also used when
defining contractions with respect to a symmetry-broken reference state [BB69]. In this
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thesis when working with Slater determinants with ordinary single-particle states we refer to
Standard Wick’s theorem, and in the context of symmetry-breaking we use the term GWT.

We also note that there is a formalism of normal-ordering with respect to an arbitrary
multi-determinantal reference state [KM97]. This is also often called ’generalized Wick
theorem’ and arises naturally in several many-body methods. However, it will not be used
in this work.

Normal-ordered form of the Hamiltonian

The Standard Wick’s theorem allows us to derive the normal-ordered form of the Hamilto-
nian. Let Ĥ be a general three-body Hamiltonian

Ĥ = Ĥ [0] + Ĥ [1] + Ĥ [2] + Ĥ [3]

= H [0] +
∑
pq

H [1]
pq ĉ

†
pĉq +

1

4

∑
pqrs

H̄ [2]
pqrs ĉ

†
pĉ

†
q ĉsĉr +

1

36

∑
pqrstu

H̄
[3]
pqrstu ĉ

†
pĉ

†
q ĉ

†
rĉuĉtĉs,

with anti-symmetrized two- and three-body matrix elements.
In normal-ordered form the operator reads

Ĥ = Ĥ [0] +
∑
i

H
[1]
ii +

1

2

∑
ij

H̄
[2]
ijij +

1

6

∑
ijk

H̄
[3]
ijkijk (1.47)

+
∑
pq

H [1]
pq {ĉ†pĉq}+

∑
pqi

H̄
[2]
piqi{ĉ†pĉq}+

∑
pqij

H̄
[3]
pijqij{ĉ†pĉq}

+
1

4

∑
pqrs

H̄ [2]
pqrs {ĉ†pĉ†q ĉsĉr}+

∑
pqrsi

H̄
[3]
pqirsi {ĉ†pĉ†q ĉsĉr}

+
1

36

∑
pqrstu

H̄
[3]
pqrstu {ĉ†pĉ†q ĉ†rĉuĉtĉs} (1.48)

where we identify the zero-body part of Ĥ in normal-ordered form with the reference expec-
tation value ⟨Φ|Ĥ|Φ⟩

⟨Φ|Ĥ|Φ⟩ = Ĥ [0] +
∑
i

H
[1]
ii +

1

2

∑
ij

H̄
[2]
ijij +

1

6

∑
ijk

H̄
[3]
ijkijk, (1.49)

as well as the one-, two- and three-body parts of the normal-ordered Hamiltonian

Ĥ
[1]
N ≡

∑
pq

⟨p|Ĥ [1]
N |q⟩{ĉ†pĉq}, (1.50a)

Ĥ
[2]
N ≡ 1

4

∑
pqrs

⟨pq|Ĥ [2]
N |rs⟩{ĉ†pĉ†q ĉsĉr}, (1.50b)
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Ĥ
[3]
N ≡ 1

36

∑
pqrstu

⟨pqr|Ĥ [3]
N |stu⟩ {ĉ†pĉ†q ĉ†rĉuĉtĉs}, (1.50c)

with matrix elements

⟨p|Ĥ [1]
N |q⟩ = H [1]

pq +
∑
i

H̄
[2]
piqi +

∑
ij

H̄
[3]
pijqij, (1.51a)

⟨pq|Ĥ [2]
N |rs⟩ = H̄ [2]

pqrs + 4
∑
i

H̄
[3]
pqirsi, (1.51b)

⟨pqr|Ĥ [3]
N |stu⟩ = H̄

[3]
pqrstu. (1.51c)

Note that the matrix elements of the normal-ordered zero-, one- and two-body part im-
plicitely depend on the choice of the Fermi vacuum. With this the Hamiltonian can be
written by

Ĥ = ⟨Φ|Ĥ|Φ⟩+ Ĥ
[1]
N + Ĥ

[2]
N + Ĥ

[3]
N (1.52)

and we introduce

ĤN ≡ Ĥ − ⟨Φ|Ĥ|Φ⟩. (1.53)

Starting from the Schrödinger equation of Ĥ, we obtain

ĤN |ψ⟩ = ∆E |ψ⟩, (1.54)

where

∆E ≡ E − ⟨Φ|Ĥ|Φ⟩. (1.55)

The normal-order N-body approximation

We have seen how to cast a general three-body Hamiltonian into normal-ordered form.
The normal ordering is nothing but a reordering of creation and annihilation operators and
transfers information about the three-body force into the normal-ordered zero-, one- and
two-body parts.

However, as already mentioned the explicit treatment of three-body operators in many-
body theories is complicated due to the increasing complexity of the underlying theory and
the computational effort that is needed to solve the many-body problem.

Therefore, we define the Hamiltonian in normal-ordered N-body approximation via

ĤNONB ≡
N∑
i=1

Ĥ
[i]
N . (1.56)
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Of particular importance is the Hamiltonian in normal-ordered two-body approximation
(NO2B)

ĤNO2B = Ĥ
[0]
N + Ĥ

[1]
N + Ĥ

[2]
N (1.57)

where the effect of three-body forces is included in the matrix elements of the normal-order
parts of lower particle-rank. The residual three-body force is discarded.

Extension to multi-determinantal reference states

The framework of contractions and normal ordering can be extended to arbitrary multi-
determinantal reference states [KM97]. This allows extending normal-ordering to genuine
open-shell nuclei, since a single Slater determinant is not a proper reference state for open-
shell systems.

In particular the multi-configurational version of perturbation theory—to be discussed in
Part III of this thesis—makes extensive use of the so-called Hamiltonian in multi-reference
normal-ordered two-body approximation

ĤMR-NO2B ≡ Ĥ
MR[0]
N + Ĥ

MR[1]
N + Ĥ

MR[2]
N , (1.58)

where—similar to the single-determinantal case—the matrix elements are given by

H
MR[0]
N =

1

36

∑
pqrstu

H̄
[3]
pqrstu(γprtqsu − 18γpqγrtsu + 36γpqγrsγtu), (1.59a)

⟨p|ĤMR[1]
N |q⟩ = H [1]

pq +
∑
rs

H̄ [2]
prqsγrs +

∑
rstu

H̄
[3]
prtqsu(γrtsu − 4γrsγtu), (1.59b)

⟨pq|ĤMR[2]
N |rs⟩ = H̄ [2]

pqrs +
∑
tu

H̄
[3]
prtqsuγtu, (1.59c)

where

γpq = ⟨ψ|ĉ†pĉq|ψ⟩, (1.60)
γpqrs = ⟨ψ|ĉ†pĉ†q ĉsĉr|ψ⟩, (1.61)

γpqrstu = ⟨ψ|ĉ†pĉ†q ĉ†rĉuĉtĉs|ψ⟩, (1.62)

are the one-, two- and three-body density matrices of the reference state |ψ⟩. Contractions in-
volve density matrices instead of simple delta constraints. For a discussion of multi-reference
normal ordering in the context of nuclear Hamiltonians see Refs. [Geb13; GCR16].

Unless stated otherwise when referring to the Hamiltonian Ĥ we always mean the nuclear
Hamiltonian in (multi-reference) NO2B approximation with respect to a specified reference
state.

14



2
The Nuclear Hamiltonian

In the history of physics the determination of the nuclear interaction is a long-standing
problem. Even though it is clear from the Standard model of particle physics that the
underlying theory of the strong interaction is quantum chromodynamics (QCD), the non-
perturbative character prohibits a direct construction of the nuclear Hamiltonian that serves
as input for subsequent many-body calculations.

2.1 Empirical properties

Before constructing realistic nuclear potentials a few empirical properties obtained from
experiments on finite nuclear systems as well as two-nucleon scattering phase shifts can be
addressed.

An important property of finite nuclei is the saturation of nuclear binding energies, i.e.,
one empirically obtains a binding energy per nucleon of about 8MeV per nucleon. This is a
direct hint for the finite-range character of the nuclear force. In the case that every single
nucleons interacts with all other nucleon the overall binding energy will scale as ∼ A(A−1)/2,
which contradicts nuclear saturation properties. Instead nucleons tend to interact only with
their nearest neighbors, thus, the displaying short-range behavior of the nuclear Hamiltonian.

Since nuclei are selfbound systems, the nuclear interaction must have a attractive com-
ponent at intermediate distances. From nuclear matter calculations one obtains a nuclear
saturation density of about 0.17 fm3, thus, leading to a mean distance of 1 − 2 fm between
nucleons. More precise statements about the sign of the interaction can be deduced from
experimental scattering phase shifts. One obtains strong repulsion at short distances and
attraction at long distances.

For the accurate reproduction of nuclear properties a mere central potential is insufficient.
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It was, thus, recognized that for the description of magic numbers, the HO single-particle
shell model fails to reproduce experimentally observed shell closures beyond A = 20. The
corresponding spin-orbit splitting can be achieved by adding an additional spin-orbit force
to the nuclear interaction.

Furthermore, when investigating deuteron properties one obtains a non-vanishing quadru-
pole moment due to an admixture of an L = 2 component to the ground-state wave function
which does not occur when restricting to central potentials only. This motivates the exis-
tence of an additional tensor force in the nuclear interaction.

2.2 Phenomenological potentials

From the above observations nuclear researchers started constructing realistic nuclear inter-
actions with the additional constraint of being in agreement with fundamental symmetries
observed in nature. Examples of such symmetries are Galilean, time-reversal or parity in-
variance.

While in the 1960s nuclear potentials were designed via mere parametrizations of ra-
dial dependences, e.g., the Reid potential [Rei68], later attempts, performed in the context
of the Argonne V4 potential, used a Wood-Saxon form as ansatz for the short-range part
and an additional spin-orbit coupling and isospin-dependent term were added to reproduce
magic numbers. Later on other operator structures were obtained in the context of Argonne
V14 and V18 potentials by enriching the simple V4 potential with additional higher-order
polynomial dependencies of the momenta [WSA84; Vee11]. Alternatives to the Argonne
interaction were later introduced by the Nijmegen and Bonn potentials [Mac89]. Such elab-
orate potentials yield highly accurate reproduction of NN phase shifts.

It is well known that three-body effects play a crucial role in deriving observables to
high accuracy [Rot+11; Hag+12; Hol+12]. When following the same strategy and building a
phenomenological three-body potential, the tremendous amount of possible operator struc-
tures makes it extremely challenging to derive a phenomenological three-body interaction
consistently to the two-body sector [PG90].

2.3 Chiral effective field theory

In order to systematically proceed one needs physical guidance on how to choose the operator
structures in the NN, 3N and multi-nucleon sector, that may be important for the description
of the atomic nucleus. In particular the construction of phenomenological interactions does
not yields a systematically improvable way to deal with this problem.

One way for the construction of a systematically improvable interaction is chiral effective
field theory (EFT), where one writes down the most general Lagrangian consistent with the
symmetries of QCD, thus, having a sound connection with the underlying quantum field
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2.3 - Chiral effective field theory

theory of the strong interaction. In chiral EFT quark degrees are frozen and pions mediate
the strong force as Goldstone bosons. Therefore, pions and nucleons are the effective degrees
of freedom instead of quarks and gluons.

In the seminal work from the 1990s Steven Weinberg introduced a power counting scheme
which allows for a systematic ordering of the importance of operator structures in terms
of powers of Q/Λ, where Q denotes the typical momentum scale inside the nucleus and
Λ ≈ 1GeV is the chiral breakdown scale [Wei90; Wei91; Wei92]. In particular, within
this scheme higher particle-rank operators appear naturally at higher orders in the chiral
expansion implying a hierarchy of the importance of many-body forces of higher particle
rank.

Following, a strict ab initio route, the chiral interaction is ultimately fitted to two- and
three-body properties such as the deuteron and 3He binding energies, respectively. How-
ever, in recent years several chiral Hamiltonians were designed, that were fitted to A-body
observables, e.g., the charge radius of 16O. The corresponding interactions often yield better
agreement with experimental data up to medium-mass nickel isotopes. The most prominent
example of such an interaction is the N2LOsat interaction [Eks+13], where both two- and
three-nucleon forces are consistently truncated at next-to-next-to leading order in the chiral
power counting.

Chiral EFT is an overwhelming topic which is extensively covered in the literature.
Therefore, we do not aim on giving a more detailed introduction here but rather refer the
interested reader to the corresponding literature. Excellent modern reviews are given by
Entem and Machleidt [ME11] as well as Epelbaum [Epe09]. A discussion of three-body
operators can be found in [Epe+02; Heb12] and with particular focus on neutron-matter
calculations [HS10]. For the extension to four-nucleon forces see [Epe06].

For a recent overview of the status of addressing theoretical uncertainties in the chiral
Hamiltonian see the LENPIC proceedings [GS17].

In this thesis we work with several different Hamiltonians which we will introduce in the
following. One choice is the use of a chiral two-body Hamiltonian constructed at next-to-
next-to-next-to leading-order (N3LO) with a cuttoff parameter of Λ2N = 500MeV with a
non-local regularization scheme [EM03]. If we restrict ourself to a two-nucleon interaction
this yields the NN-only interaction, denoted by NN4

500. For the incorporation of three-body
effects we use a N2LO three-body Hamiltonian with cutoff parameter Λ3N = 400MeV with
a local regularization scheme [Nav07]. This defines the NN+3N-full interaction, denoted by
NN4

500+3N3
400. Note that this induces a source of inconsistency since two-body and three-

body operators are included up to different orders in the chiral expansion.
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3
Similarity Renormalization Group

Nuclear structure calculations are severely complicated due to correlation effects coming from
the strong repulsion of the nuclear force at short distances, leading to a coupling of high- and
low-momentum many-body states. Therefore, we introduce a renormalization-group (RG)
approach, which will be used subsequently to tame these correlation effects. Additionally,
this greatly improves model-space convergence, thus, enabling converged results even for
medium-mass systems.

3.1 Flow equation

In the (free-space) Similarity-Renormalization-Group (SRG) approach one uses a unitary
transformation Ûα to transform the initial nuclear Hamiltonian Ĥ0 leaving the spectrum
unchanged [SP00; BFP07; HR07; RRH08; Rot+11; Jur+13]. 1

The transformed Hamiltonian is given by

Ĥα = Û †
αĤ0Ûα, (3.1)

where α defines the so-called SRG flow parameter. Differentiation of (3.1) with respect to α
yields according to the product rule

dĤα

dα
=

dÛ †
α

dα
Ĥ0Ûα + Û †

αĤ0
dÛα
dα

. (3.2)

1We added the term ’free-space’ in order to clearly distinguish the method from the In-Medium Similarity
Renormalization Group. Even though both approaches share many formal similarities, (free-space) SRG is
used for the renormalization of an operator whereas the in-medium SRG defines a many-body method which
solves the quantum many-body problem.
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Since by unitarity Û †
αÛα = 1, it follows that

dÛ †
α

dα
Ûα = −Û †

α

dÛα
dα

. (3.3)

Solving for the derivatives of Ûα and Û †
α gives

dÛ †
α

dα
= −Û †

α

dÛα
dα

Û †
α, (3.4)

dÛα
dα

= −Ûα
dÛ †

α

dα
Ûα. (3.5)

In the following it will be convenient to define a generator of the SRG transformation

η̂α ≡ −dU
†
α

dα
Uα. (3.6)

By (3.5) it follows the anti-Hermiticity of η̂α,

η̂α = −η̂†α. (3.7)

Substitution of (3.5) into (3.2) finally yields 2

d

dα
Ĥα = [η̂α, Ĥα]. (3.8)

Equation (3.8) is called the SRG flow equation and shares formal similarities with an equation
of motion in the Heisenberg picture, i.e., an ordinary differential equation (ODE) for the
Hamiltonian.

3.2 Choice of generator

Up to now the discussion of the SRG is completely general. In an actual physical application
the particular choice of the generator η̂α specifies the decoupling pattern. Assume we write
the generator η̂α as

η̂α = [Ĝα, Ĥα] (3.9)

for some Hermitian operator Ĝα such that anti-Hermiticity of η̂α is satisfied. As a first
obvious choice we might take

2Even though all the discussion is based on the Hamiltonian, the flow equation holds for any operator Ô

d

dα
Ôα = [η̂α, Ôα].
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3.3 - Cluster decomposition

Ĝα ≡ Ĥdiag
α =

∑
I

⟨Φ|Ĥα|ΦI⟩|ΦI⟩⟨ΦI |, (3.10)

i.e., as the diagonal part of Ĥα in a given many-body basis. The advantage of this form is
that by setting

η̂α = [Ĥdiag
α , Ĥα] (3.11)

the generator η̂α will vanish as soon as Ĥα becomes diagonal. In this way, we achieve a
pre-diagonalization of Ĥα, and since the generator is zero, this yields a stationary point of
the SRG flow. However, building the generator η̂α from a general reference basis {|ΦI⟩}
in which the Hamiltonian is represented may lead to an undesired suppression of certain
parts of the Hamiltonian, since the reference basis may not have much in common with the
eigenbasis of Ĥα. In modern applications a convenient choice is given by

η̂α = (2µ)2[T̂int, Ĥα], (3.12)

where µ is the reduced mass of the nucleon and T̂int = T̂ − T̂cm the intrinsic kinetic-energy
operator. In the approximation of equal proton and neutron masses the intrinsic kinetic-
energy operator is defined as

T̂int ≡
1

Aµ

∑
i<j

ˆ⃗q 2
ij, (3.13)

with the relative-momentum operator ˆ⃗qij =
ˆ⃗pi− ˆ⃗pj

2
. However, in recent years several other

possibilities for the definition of η̂α have been examined.

A schematic view on the effect of the SRG evolution can be seen in Figure 3.1. Initially,
the Hamilton matrix representation is dense. Performing SRG evolution drives the Hamil-
tonian to a band diagonal structure and yields large blocks with vanishing matrix elements
indicated by the blank white space. There are also other renormalization approaches like
Vlow-k or the Unitary Correlation Operator Method (UCOM) [Fel+98; NF04; HR07; RRH08]
which have been used in the past but follow different strategies to improve model-space
convergence.

3.3 Cluster decomposition

The major drawback of the SRG method are higher particle-rank many-body forces which
are induced during the flow [BFP07; JNF09]. Typically (3.8) is solved by means of multi-
step ODE solvers. When evaluating the commutator of, e.g., two two-body operators Â and
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Figure 3.1: Schematic representation of several renormalization approaches. The picture is taken
from [Bin14].

B̂ it holds that [Â, B̂] contains up to three-body operators. 3 Therefore, the consecutive
evaluation of the commutator in the flow-equation raises the particle rank of the evolved
Hamiltonian, thus leading to induced many-body contributions up to the A-body level

Ĥα = Ĥ(1)
α + Ĥ(2)

α + Ĥ(3)
α + Ĥ(4)

α + ...+ Ĥ(A)
α , (3.14)

where the subscript corresponds to the flow parameter α and the superscripts in brackets
indicate the irreducible particle rank of the corresponding operator. Irreducibility means
that the operator can not be decomposed into operators of lower particle rank.

In subsequent many-body calculations the incorporation of higher particle-rank operators
becomes challenging both conceptually and computationally. Therefore, contributions in
(3.14) beyond the three-body level are typically discarded. This approximation step formally
violates the unitarity of the SRG transformation in A-body space and leads to a dependence
of the results on the SRG flow parameter α.

Therefore, even though the SRG transformation improves model-space convergence, the
limit α → ∞ is undesirable since the amount of induced many-body forces strongly depends
on α. In actual applications one must find a reasonable trade-off between convergence and
the amount of induced many-body contributions.

The above choice for the generator in (3.12) is the standard choice in nuclear structure
applications. While convergence with respect to model-space size is improved significantly
it yields significant induced many-body contributions. Investigation of other choice for the
generator have been explored recently with the aim of lowering the induced higher-particle
rank contributions.

3Let rank (Â) = m and rank (B̂) = n then rank ([Â, B̂]) = m+ n− 1.
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3.4 - Types of interactions

3.4 Types of interactions

In the following we will briefly define the different types of truncations of the cluster ex-
pansion used throughout this thesis and fix the nomenclature for later applications. They
differ in the particle-rank of the initial Hamiltonian and the space which is used for the SRG
evolution:

NN-only: Use an initial two-body force and perform evolution in two-body space

NN+3N-induced: Use an initial two-body force and perform evolution in two-body and
three-body space

NN+3N-full: Use an initial two-body and three-body force and perform evolution
in two-body and three-body space

We note that there have been studies on the impact of the evolution of two- and three-
body operators in four-body space [Sch13; Cal14]. Due to large computational requirements
and the incapability of reaching model-space convergence four-body forces (and beyond) are
currently neglected in the description of medium-mass systems.
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Part II

Single-Configurational Many-Body
Perturbation Theory





Introduction to Part II

The description of closed-shell systems constitutes the simplest case for the solution of the
quantum many-body body problem. The reason for this is that such nuclei are adequately
described in an independent-particle model, e.g., the Hartree-Fock approximation. In par-
ticular all quantum numbers are correctly reproduced such that mean-field wave function
has the same symmetry properties as the exact ground-state wave function. Furthermore,
a large part of the overall binding energy can be described via the solution of an effective
one-body problem. Residual correlation effects are comparably small such that they can be
treated in a perturbative way.

For a long time it was argued that the hard core of the nuclear potential makes a non-
perturbative description necessary, since the perturbation series was expected to diverge.
Traditionally, G-matrix methods were used to renormalize the interaction. The advent of
softened nuclear potentials incited a renaissance of perturbative approaches and lead to new
insights, which will be presented at the end of this part of the thesis.

We give a self-contained introduction to many-body perturbation theory based on a
single-configurational vacuum starting with a brief introduction of Hartree-Fock theory as a
convenient way to obtain an optimized mean-field reference function. We proceed with the
introduction of perturbation theory based on a formal derivation of the resolvent expansion
in the case of a non-degenerate reference state. From this the many-body perspective is
developed with particular focus on the use of diagrammatic techniques for the evaluation
of expectation values of second-quantized operators by means of Wick’s theorem. Finally,
we derive second- and third-order energy corrections in the case of a single-determinantal
reference state and discuss intrinsic scaling properties of low-order many-body perturbation
theory. Furthermore, we emphasize the role of angular-momentum coupling techniques for
the efficient evaluation of the occuring sums. We conclude with a qualitative discussion on
the limitations of single-reference theories when proceeding to open-shell systems.

In our investigations, coupled-cluster methods will serve as benchmark calculations.
Therefore, we briefly discuss the main concepts of single-reference coupled-cluster theory
and introduce nomenclature used in the discussion of the results.

In the last chapter we present extensive benchmark studies of single-configurational many-
body perturbation theory with respect to a canonical Hartree-Fock vacuum. We present a
detailed analysis of the impact of the partitioning on the convergence behavior. Additionally,
the role of renormalization, i.e., the Similarity Renormalization Group, is discussed and its
impact on convergence rates of perturbation series of light nuclei. We proceed with a detailed
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analysis of third-order many-body perturbation theory and state-of-the-art coupled-cluster
calculations for selected closed-shell nuclei up to the heavy tin region. Furthermore, we
present a detailed discussion of the individual diagrammatic contributions at third-order
and question the reliability of approximations that neglect certain terms of the perturbative
expansion at a given order.
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Hartree-Fock Theory

A simple approach for the description of nuclear systems are the so-called independent-
particle models, where one assumes the exact wavefunction to be given by a single Slater
determinant. In this scenario, correlation effects are neglected and the individual particles
move independently in an effective one-body potential.

The most commonly used model is the Hartree-Fock (HF) approximation, where the
single-particle orbitals and energies are obtained from a self-consistent solution of a varia-
tional problem. The use of HF theory has a long history in nuclear structure and quantum
chemistry and has successfully been applied to a vast variety of quantum systems. Most
commonly, the HF approximation is not used as a standalone approach, but rather as a
starting point for the construction of reference states for more advanced techniques, which
explicitly construct correlations on top of the optimized HF reference state. Examples of
such methods are many-body perturbation theory, coupled-cluster theory or the in-medium
similarity renormalization group approach.

4.1 Variational principle and testspace

In the following we briefly discuss the fundamentals of HF theory. For an extensive treatment
of HF theory and its extensions to open-shell systems see [SO82].

We start the derivation from the time-independent Schrödinger equation

Ĥ|ψ⟩ = E|ψ⟩. (4.1)

The solution of (4.1) is equivalent to the solution of the variational equation

δE[ψ] = 0, (4.2)
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where the energy functional E[ψ] is given by

E[ψ] =
⟨ψ|Ĥ|ψ⟩
⟨ψ|ψ⟩

. (4.3)

However, this equivalence breaks down if the test space is restricted. In HF theory the space
of test functions Hvar consists of all Slater determinants and is, therefore, a proper subspace
of the entire Hilbert space H we work in,

Hvar ⊂ H. (4.4)

In case the lowest eigenvalue for a given Hamilton operator corresponds to an eigenvector
which is a single Slater determinant, the HF method is exact. Otherwise it yields an ap-
proximation to the exact solution. However, by the Ritz variational principle it holds for
|ψvar⟩ ∈ Hvar

E[ψvar] ≥ E0, (4.5)

where E0 denotes the exact ground-state energy such that the HF energy provides an upper
bound.

4.2 Derivation of the Hartree-Fock equations

To derive the HF equations the trial state is written in second quantization

|HF⟩ = |φ1, ..., φA⟩, (4.6)

=
A∏
i=1

â†i |0⟩, (4.7)

where {|φi⟩} denotes the set of HF single-particle states with corresponding creation opera-
tors {â†i}.

We expand the single-particle states and creation operators with respect to a fixed refer-
ence basis 1

|φi⟩ =
∑
p

Dip|χp⟩, (4.8)

â†i =
∑
p

Dipĉ
†
a, (4.9)

where the overlap Dia = ⟨χa|φi⟩ denotes the matrix elements of the unitary transformation

1In typical applications this is a spherical harmonic oscillator single-particle basis.
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4.2 - Derivation of the Hartree-Fock equations

and |χa⟩ and ĉ†a denote the single-particle states and creation operators in the reference basis,
respectively. We define the one-body density matrix of the trial state with respect to the
reference basis

ρ(1)pq = ⟨HF|ĉ†q ĉp|HF⟩ =
∑
ij

DpiD
⋆
qj⟨HF|â†j âi|HF⟩ =

A∑
i

DipD
⋆
ji. (4.10)

Further we define the corresponding density operator by

ρ̂ ≡
∑
pq

ρ(1)pq |χp⟩⟨χq|. (4.11)

We must impose additional restrictions to ensure that the many-body state is still a single
Slater determinant after the variation has been performed. We enforce this by requiring
idempotency and hermiticity of the one-body density matrix∑

r

ρ(1)pr ρ
(1)
rq = ρ(1)pq , (4.12)

ρ(1)⋆pq = ρ(1)qp . (4.13)

In the following we assume a general two-body Hamiltonian in second-quantized form with
respect to the reference basis 2

Ĥ =
∑
pq

H [1]
pq ĉ

†
pĉq +

1

4

∑
pqrs

H̄ [2]
pqrs ĉ

†
pĉ

†
q ĉsĉr. (4.14)

where tpq denotes the matrix elements of the kinetic energy operator and vpqrs the anti-
symmetric matrix elements of the two-body potential. Since the state |HF⟩, is normalized
the energy functional reads

E[|HF⟩] =
∑
pq

H [1]
pq ⟨HF|ĉ†pĉq|HF⟩+ 1

4

∑
pqrs

H̄ [2]
pqrs⟨HF|ĉ†pĉ†q ĉsĉr|HF⟩. (4.15)

We additionally introduce the two-body density matrix

ρ(2)pqrs = ⟨HF|ĉ†pĉ†q ĉsĉr|HF⟩, (4.16)

and write (4.15) as

2The discussion can be extended to three-body operators by adding

Ĥ3N =
1

6

∑
p1p2p3q1q2q3

H̄ [3]
p1p2p3q1q2q3 ĉ

†
p1
ĉ†p2

ĉ†p3
ĉq3 ĉq2 ĉq3

in the following derivation.
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E[|HF⟩] =
∑
pq

H [1]
pq ρ

(1)
qp +

1

4

∑
pqrs

H̄ [2]
pqrsρ

(2)
rspq. (4.17)

In the case of a single Slater determinant the two-body density matrix factorizes into its
one-body components

ρ(2)pqrs = ρ(1)ps ρ
(1)
qr − ρ(1)pr ρ

(1)
qs . (4.18)

Substituting (4.18) into (4.17) yields

E[ρ(1)] =
∑
pq

H [1]
pq ρ

(1)
qp +

1

2

∑
pqrs

H̄ [2]
pqrsρ

(1)
ps ρ

(1)
qr . (4.19)

We now perform a variation of the above expression neglecting terms, which are quadratic
or higher in δρ(1),

δE[ρ(1)] =
∑
pq

H [1]
pq δρ

(1)
qp +

1

2

∑
pqrs

H̄ [2]
pqrs(δρ

(1)
ps ρ

(1)
qr − ρ(1)ps δρ

(1)
qr ), (4.20)

=
∑
pq

(H
[1]
pq+

∑
rs

H̄ [2]
pqrsρ

(1)
pq )δρ

(1)
rs . (4.21)

By defining an auxiliary mean-field Hamiltonian

hpq[ρ
(1)] = H [1]

pq + upq[ρ
(1)], (4.22)

upq[ρ
(1)] =

∑
rs

H̄ [2]
prqsρ

(1)
rs , (4.23)

the stationarity condition for the energy functional can be written∑
ik

hik[ρ
(1)]δρ

(1)
ki = 0. (4.24)

Since for any variations ρ(1) + δρ(1) idempotency and Hermiticity must be fulfilled we get

ρ(1)δρ(1)ρ(1) = 0, (4.25)
(1− ρ(1))δρ(1)(1− ρ(1)) = 0. (4.26)

Therefore, variations can only be performed between particle and hole states. From the sta-
tionarity condition (4.24) we know that the commutator between the mean-field Hamiltonian
ĥ and the one-body density ρ̂(1) vanishes,

[ĥ[ρ(1)], ρ̂(1)] = 0. (4.27)
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thus, there exists a common eigenbasis of ĥ[ρ(1)] and ρ̂(1). The operator-valued expression
(4.27) can be cast into an eigenvalue equation for the mean-field Hamiltonian ĥ[ρ(1)],

ĥ[ρ(1)]|φn⟩ = ϵn|φn⟩, (4.28)

where the {ϵn} usually emerge as Lagrange multipliers for the normalization condition of
single-particle states. The eigenvalues ϵn are the so-called Hartree-Fock single-particle en-
ergies and will play an important role in the development of many-body perturbation theory.

The transformation of the eigenvalue equation (4.28) to the reference basis yields∑
r

hpr[ρ
(1)]Dir = ϵiDip. (4.29)

Substitution of the mean-field Hamiltonian gives∑
r

(H [1]
pr +

∑
qs

∑
j

H̄ [2]
pqrsD

⋆
jsDjq)Dir = ϵiDip (4.30)

The above equation (4.30) is the Hartree-Fock equation and constitutes a non-linear equation
for the solution of the eigensystem of ĥ. The non-linearity requires the use of iterative
procedures.

For a given A-body system the lowest single-particle energies are used to define the
occupied states in the Hartree-Fock ground state with corresponding ground-state energy

E[|HF⟩] = ⟨HF|Ĥ|HF⟩ (4.31)

=
∑
i

ϵi −
1

2

∑
ij

H̄
[2]
ijij, (4.32)

where obviously the HF energy is not just the sum of single-particle energies.

4.3 Brillouin’s theorem

Of central importance in applications of HF theory in perturbation theory is Brillouin’s
theorem. Assume we have solved the HF equation and obtained a set of single-particle states
{|φi⟩} and the corresponding HF determinant |HF⟩ containing the single-particle states with
the lowest single-particle energies. A priori one might expect that the leading corrections to
this mean-field wave function come from singly-excited determinants |HFai ⟩. However, the
matrix elements of the HF reference state with singly-excited determinants

⟨HF|Ĥ|HFai ⟩ = H
[1]
ia+

∑
j

H̄
[2]
ajij. (4.33)
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is an off-diagonal matrix element of the Fock operator. By construction, the solution of the
HF eigenvalue problem requires the off-diagonal matrix elements to satisfy

hia = 0. (4.34)

Equivalently, solving the HF equation is the same as ensuring that the HF vacuum does
not mix with singly-excited determinants. Note that Brilloun’s theorem prevents the HF
vacuum from direct mixing with singly-excited determinants. This does not mean that there
are no singly-excited states in the exact ground-state wave function. Mixing can still appear
indirectly via matrix elements of the type ⟨Φa

i |Ĥ|Φab
ij ⟩.

The above statement has several important consequences—in particular for many-body
perturbation theory. For example it follows that, when using Hartree-Fock single-particle
states, there are no diagrams containing one-body vertices in Hartree-Fock many-body per-
turbation theory. This significantly reduces the number of diagrams and the implementa-
tional effort decreases considerably.
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5
Formal Perturbation Theory

This section is devoted to the discussion of general aspects of perturbation theory [Sch26;
SB09; SO82]. Perturbation theory (PT) can be separated into a formal part, which is
concerned with the general ansatz and the development in terms of many-body states and
operators. The complementary, many-body part of PT, which makes use of properties of
a particular reference state and a choice of the unperturbed Hamiltonian, is postponed to
the next section. It is possible to derive very deep results, such as the resolvent expansion,
without making use of any second-quantization techniques.

We start with the introduction of the PT ansatz and derive working formulae for energy
corrections in terms of the unperturbed many-body quantities. By further making use of
projection operators we introduce the Rayleigh-Schrödinger resolvent and derive the resolvent
expansion for the exact ground-state energy and wave function. We proceed with a discussion
of general aspects of the choice of partitioning and the relation to the zero-order energies.
After introducing the normal-product Schrödinger equation we make the connection to the
many-body part of PT and introduce the diagrammatic notation for the evaluation of matrix
elements of second-quantized operators. At the end, aspects which are not covered in this
work are summarized and referenced for further reading.

5.1 The perturbative ansatz

We divide the nuclear Hamiltonian Ĥ into a zero-order or unperturbed part Ĥ0 and a
perturbation Ŵ ,

Ĥ = Ĥ0 + Ŵ , (5.1)
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Chapter 5 - Formal Perturbation Theory

thus formally defining the perturbation by Ŵ = Ĥ − Ĥ0. The additive splitting of the
perturbation operator is the so-called partitioning.

Introducing an auxilary parameter λ yields a one-parameter family of operators

Ĥλ = Ĥ0 + λŴ , (5.2)

where the unperturbed problem is obtained by setting λ = 0. We write the exact solution
as

Ĥ|Ψn⟩ = En|Ψn⟩, (5.3)

the zero-order solution as

Ĥ0|Φn⟩ = E(0)
n |Φn⟩, (5.4)

and we assume orthonormality of the unperturbed states,

⟨Φm|Φn⟩ = δmn. (5.5)

As ansatz for the exact energy and state solutions of (5.3) we write

En =
∞∑
p=0

E(p)
n λp, (5.6)

|Ψn⟩ =
∞∑
p=0

|Ψ(p)
n ⟩λp. (5.7)

In the following derivation we always work in intermediate normalizaton

⟨Ψ(0)
m |Ψn⟩ = δmn, (5.8)

and, furthermore, assume the zero-order solution to be non-degenerate. From now on we
will denoted the unperturbed basis functions by

|Ψ(0)
n ⟩ = |Φn⟩, (5.9)

to make the dependence of the perturbation order explicit. Substitution of the above power-
series ansatz into the Schrödinger equation yields

Ĥ0|Ψ(0)
n ⟩+

∞∑
p=1

λp
(
Ŵ |Ψ(p−1)

n ⟩+ Ĥ0|Ψ(p)
n ⟩
)
= E(0)

n |Ψ(0)
n ⟩+

∞∑
p=1

λp
( p∑
j=0

E(j)
n |Ψ(p−j)

n ⟩
)
. (5.10)
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5.1 - The perturbative ansatz

Multiplication from the left with ⟨Ψ(0)
n | gives

⟨Ψ(0)
n |Ĥ0|Ψ(0)

n ⟩+
∞∑
p=1

λp
(
⟨Ψ(0)

n |Ŵ |Ψ(p−1)
n ⟩+ ⟨Ψ(0)

n |Ĥ0|Ψ(p)
n ⟩
)

= E(0)
n +

∞∑
p=1

λp
( p∑
j=0

E(j)
n ⟨Ψ(0)

n |Ψ(p−j)
n ⟩

)
. (5.11)

Using the eigenvalue relation of the unperturbed Hamiltonian Ĥ0 gives

⟨Ψ(0)
n |Ŵ |Ψ(p−1)

n ⟩ = E(p)
n , (5.12)

which shows that the p-th order energy correction can be calculated from the (p−1)-th order
state correction.

In order to derive expressions for the corresponding state corrections we note that by
completeness of the unperturbed basis

|Ψ(p)
n ⟩ =

∑
m

|Ψ(0)
m ⟩⟨Ψ(0)

m |Ψ(p)
n ⟩. (5.13)

Multiplication of (5.10) from the left with ⟨Ψ(0)
m | for m ̸= n,

∞∑
p=1

λp
(
⟨Ψ(0)

m |Ŵ |Ψ(p−1)
m ⟩+ ⟨Ψ(0)

n |Ĥ0|Ψ(p)
n ⟩
)
=

∞∑
p=1

λp
( p∑
j=0

E(j)
n ⟨Ψ(0)

m |Ψ(p−j)
n ⟩

)
, (5.14)

where we used orthogonality of the unperturbed basis states. By uniqueness of the power
series expansion, (5.14) must hold for arbitrary λ,

⟨Ψ(0)
m |Ŵ |Ψ(p−1)

m ⟩+ ⟨Ψ(0)
n |Ĥ0|Ψ(p)

n ⟩ = E(0)
n ⟨Ψ(0)

m |Ψ(p)
n ⟩+

p∑
j=1

E(j)
n ⟨Ψ(0)

m |Ψ(p−j)
n ⟩, (5.15)

where we split the sum on the right-hand-side of the last equation. Solving for ⟨Ψ(0)
m |Ψ(p)

n ⟩
gives

⟨Ψ(0)
m |Ψ(p)

n ⟩ = 1

E
(0)
n − E

(0)
m

·
(
⟨Ψ(0)

m |Ŵ |Ψ(p−1)
m ⟩ −

p∑
j=1

E(j)
n ⟨Ψ(0)

m |Ψ(p−j)
n ⟩

)
. (5.16)

To further simplify the above equations we expand the energy and state corrections in terms
of zero-order states,

⟨Ψ(0)
m |Ψ(p)

n ⟩ = 1

E
(0)
n − E

(0)
m

·
(
⟨Ψ(0)

m |Ŵ |Ψ(p−1)
m ⟩ −

p∑
j=1

E(j)
n ⟨Ψ(0)

m |Ψ(p−j)
n ⟩

)
,
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=
1

E
(0)
n − E

(0)
m

·
(∑

m′

⟨Ψ(0)
m |Ŵ |Ψ(0)

m′ ⟩⟨Ψ(0)
m′ |Ψ(p−1)

n ⟩ −
p∑
j=1

E(j)
n ⟨Ψ(0)

m |Ψ(p−j)
n ⟩

)
. (5.17)

In the following we make use of the short-hand notation

C(p)
m,n ≡ ⟨Ψ(0)

m |Ψ(p)
n ⟩, (5.18)

such that the energy corrections read

E(p)
n =

∑
m

⟨Ψ(0)
n |Ŵ |Ψ(0)

m ⟩ · C(p−1)
m,n . (5.19)

With this we can expand the corresponding energy corrections explicitely. For the first-order
state correction we get

|Ψ(1)
n ⟩ =

∑′

m

⟨Ψ(0)
n |Ŵ |Ψ(0)

m ⟩
E

(0)
n − E

(0)
m

|Ψ(0)
m ⟩, (5.20)

where the prime at the summation sign indicates that the reference state has to be excluded
from the summation. Plugging (5.20) into (5.19) gives the well-known form of the second-
order energy correction

E(2)
n = ⟨Ψ(0)

n |Ŵ |Ψ(1)
n ⟩ =

∑′

m

⟨Ψ(0)
n |Ŵ |Ψ(0)

m ⟩⟨Ψ(0)
m |Ŵ |Ψ(0)

n ⟩
E

(0)
n − E

(0)
m

=
∑′

m

|⟨Ψ(0)
m |Ŵ |Ψ(0)

n ⟩|2

E
(0)
n − E

(0)
m

, (5.21)

where all matrix elements are taken with respect to the unperturbed basis states.

5.2 Derivation of the resolvent expansion

In this section we derive a formal expression of the exact ground-state energy in terms of
a resolvent operator. In the following we will omit the index n and always use the index 0

regardless wether this corresponds to the ground state or some excited state. We start again
from the Schrödinger equation

(Ĥ0 + Ŵ )|Ψ⟩ = E|Ψ⟩, (5.22)

with a given zero-order solution

Ĥ0|Φ0⟩ = E
(0)
0 |Φ0⟩. (5.23)

For the following discussion it is convenient to define projection operators
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5.2 - Derivation of the resolvent expansion

P̂ = |Φ0⟩⟨Φ0|, Q̂ =
∑′

I

|ΦI⟩⟨ΦI |. (5.24)

Adding E(0)
0 |Ψ⟩ to both sides of (5.22) gives

(E
(0)
0 − Ĥ0)|Ψ⟩ = (Ŵ − E + E

(0)
0 )|Ψ⟩. (5.25)

Applying Q̂ to both sides yields

Q̂(E
(0)
0 − Ĥ0)|Ψ⟩ = Q̂(Ŵ − E − E

(0)
0 )|Ψ⟩, (5.26)

and since Ĥ0 commutes with Q̂ and by idempotency we get

Q̂(E
(0)
0 − Ĥ0)|Ψ⟩ = Q̂(E

(0)
0 − Ĥ0)Q̂|Ψ⟩. (5.27)

Expanding the operator Q̂(E(0)
0 − Ĥ0)Q̂ in terms of zero-order functions gives

Q̂(E
(0)
0 − Ĥ0)Q̂ =

∑′

ij

|Φi⟩⟨Φi|(E(0)
0 − Ĥ0)|Φj⟩⟨Φj|. (5.28)

We then define the inverse of the operator Q̂(E(0)
0 − Ĥ0)Q̂

R̂ =
Q̂

E
(0)
0 − Ĥ0

≡
∑′

ij

|Φi⟩⟨Φi|(E(0)
0 − Ĥ0)

−1|Φj⟩⟨Φj|, (5.29)

to be the (Rayleigh-Schrödinger) resolvent of Ĥ0.

Since all solutions are expanded with respect to (orthonormal) eigenfunctions of Ĥ0, the
resolvent can be expressed as

R̂ =
∑′

i

|Φi⟩⟨Φi|
E

(0)
0 − E

(0)
i

. (5.30)

Equation (5.26) can be reexpressed via

Q̂(E
(0)
0 − Ĥ0)Q̂|Ψ⟩ = Q̂(Ŵ − E + E

(0)
0 )|Ψ⟩. (5.31)

Multiplication with R̂ yields

Q̂|Ψ⟩ = R̂(Ŵ − E + E
(0)
0 )|Ψ⟩. (5.32)

By adding |Φ0⟩ and substituting |Ψ⟩ = |Φ0⟩+ Q̂|Ψ⟩ on the left-hand side, we get an implicit
equation for |Ψ⟩:
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Chapter 5 - Formal Perturbation Theory

|Ψ⟩ = |Φ0⟩+ R̂(Ŵ − E + E
(0)
0 )|Ψ⟩. (5.33)

Iteratively plugging (5.33) into (5.32) yields the resolvent expansion

|Ψ⟩ =
∞∑
n=0

[R̂(Ŵ − E + E
(0)
0 )]m|Φ0⟩. (5.34)

Equation (5.34) constitutes the central equation of the perturbation problem and is subse-
quently used to derive explicit expressions for low-order energy corrections in the Rayleigh-
Schrödinger framework.

By left-projecting eq. (5.34) on ⟨Φ0| and using again that ∆E = E −E
(0)
0 , we obtain the

Rayleigh-Schrödinger correlation expansion for the ground-state energy

∆E =
∞∑
n=0

⟨Φ0|Ŵ
[
R̂(Ŵ −∆E)

]n|Φ0⟩. (5.35)

However, due to the presence of the term −E + E
(0)
0 we do not have a true expansion in

powers of the perturbation operator Ŵ (but rather in powers of (Ŵ −∆E)).

Expanding the first few powers gives

∆E = ⟨Φ0|Ŵ |Φ0⟩+ ⟨Φ0|Ŵ R̂(Ŵ −∆E)|Φ0⟩+

+ ⟨Φ0|Ŵ R̂(Ŵ −∆E)R̂(Ŵ −∆E)|Φ0⟩+ ... (5.36)

Since ∆E is just a number it commutes with R̂ yielding

R̂∆E|Φ0⟩ = 0, (5.37)

i.e., the action of the resolvent on the reference gives zero. Equation (5.36) takes the simpler
form

∆E = ⟨Φ0|Ŵ |Φ0⟩+ ⟨Φ0|Ŵ R̂Ŵ |Φ0⟩+ ⟨Φ0|Ŵ R̂(Ŵ −∆E)R̂Ŵ |Φ0⟩+ ... (5.38)

Insertion of (5.36) and rearranging (5.38) according to the number of Ŵ factors yields

∆E =⟨Φ0|Ŵ |Φ0⟩+ ⟨Φ0|Ŵ R̂Ŵ |Φ0⟩

+ ⟨Φ0|Ŵ R̂Ŵ R̂Ŵ |Φ0⟩ − ⟨Φ0|Ŵ |Φ0⟩⟨Φ0|Ŵ R̂2Ŵ |Φ0⟩+ ... (5.39)

Explicitly the lowest orders read

E(1) = ⟨Φ0|Ŵ |Φ0⟩,
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5.2 - Derivation of the resolvent expansion

E(2) = ⟨Φ0|Ŵ R̂Ŵ |Φ0⟩,

E(3) = ⟨Φ0|Ŵ R̂(Ŵ − ⟨Φ0|Ŵ |Φ0⟩)R̂Ŵ |Φ0⟩,

E(4) = ⟨Φ0|Ŵ R̂(Ŵ − ⟨Φ0|Ŵ |Φ0⟩)R̂(Ŵ − ⟨Φ0|Ŵ |Φ0⟩)R̂Ŵ |Φ0⟩ − E(2)⟨Φ0|Ŵ R̂2Ŵ |Φ0⟩.
(5.40)

Due to the frequent appearance of

Ŵ − ⟨Φ0|Ŵ |Φ0⟩ (5.41)

we define the shifted perturbation operator ˆ̃W

ˆ̃Wij = Ŵij − δijE
(1), (5.42)

which allows for the more compact expressions

E(1) = ⟨Φ0|Ŵ |Φ0⟩,

E(2) = ⟨Φ0|Ŵ R̂Ŵ |Φ0⟩,

E(3) = ⟨Φ0|Ŵ R̂ ˆ̃WR̂Ŵ |Φ0⟩,

E(4) = ⟨Φ0|Ŵ R̂ ˆ̃WR̂ ˆ̃WR̂Ŵ |Φ0⟩ − E(2)⟨Φ0|Ŵ R̂2Ŵ |Φ0⟩. (5.43)

The above equations will be the starting point for the many-body development of perturba-
tion theory using diagrammatic techniques.

We note that another possibility is the use of the Brillouin-Wigner resolvent

R̂BW =
∑′

i

|Φi⟩⟨Φi|
E − E

(0)
i

. (5.44)

Since the exact eigenvalue appears implicitly in the denominator, the corresponding energy
corrections have to be solved for iteratively. The advantage of this choice is that the resolvent
expression reads

|Ψ⟩ =
∞∑
m=0

[
R̂Ŵ

]m|Φ0⟩, (5.45)

which defines a true expansion in powers of the perturbation Ŵ . The simplification in the
resolvent expansion, however, yields a perturbation theory that is not size-extensive when
truncated at finite orders. Therefore, this choice is only scarcely used in actual applications.
Low-order working formulae must be solved iteratively due to the appearance of E in the
denominators.
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5.3 Partitioning of the Hamiltonian

Up to now we did not specify the particular form of the perturbation operator Ŵ . Most
importantly, the specific choice of Ĥ0 remains to be fixed. Commonly, Ĥ0 is chosen as a
diagonal one-body operator, which can be expanded in its eigenbasis {p̂†} according to

Ĥ0 =
∑
p

ϵpp̂
†p̂, (5.46)

where the quantities ϵp are called single-particle energies or sometimes orbital energies. In
most applications single-particle energies are chosen as diagonal elements

ϵp = fpp (5.47)

of a suitably chosen Fock operator

F̂ =
∑
pq

fpqp̂
†q̂. (5.48)

With this, the perturbation operator Ŵ = Ĥ − Ĥ0 consists of one- and two-body parts

Ŵ = Ŵ [1B] + Ŵ [2B], (5.49)

written in second-quantized form

Ŵ =
∑
pq

(hpq − ϵpδpq)ĉ
†
pĉq +

1

4

∑
pqrs

H̄ [2]
pqrsĉ

†
pĉ

†
q ĉsĉr. (5.50)

The advantage of using a diagonal zero-order Hamiltonian comes from knowing a complete
set of eigenfunctions of Ĥ0. This is the case of diagonal perturbation theory and all our
investigations are based on choosing a diagonal zero-order Hamiltonian. When using a set
of orthonormal single-particle states {|φi⟩} to construct the many-body SDs one finds that

Ĥ0|φ1, ..., φA⟩ =
A∑
i

ϵi |φ1, ..., φA⟩ (5.51)

such that the zero-order energies of the SDs are given by

E
(0)
0 =

∑
i

ϵi, (5.52)

where the sum runs over all hole states of the corresponding SD. Furthermore, for the zero-
order energy of a particle-hole excitation holds
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5.4 - The normal-product Schrödinger equation

Ĥ0|Φa1···ap
i1···ip ⟩ =

(
E

(0)
0 + ϵa1 + · · ·+ ϵap − ϵi1 + · · ·+ ϵip

)
|Φa1···ap

i1···ip ⟩. (5.53)

The above choice of Ĥ0 and the unperturbed energies defines the Møller-Plesset (MP) par-
titioning.

Starting from the Rayleigh-Schrödinger resolvent expansion other partitionings of the
Hamiltonian can be used. Alternatively, the diagonal part of the many-body Hamiltonian
with respect to a fixed basis representation is used for Ĥ0

Ĥ0 =
∑
i

|Φi⟩⟨Φi|Ĥ|Φi⟩⟨Φi|

=
∑
i

|Φi⟩Ei⟨Φi|. (5.54)

The many-body states {|Φi⟩} constitute eigenstates of Ĥ0 according to

Ĥ0|Φi⟩ = Ei|Φi⟩. (5.55)

This type of partitioning is called Epstein-Nesbet (EN) partitioning and results in shifted
denominators due to the appearance of Ĥ0−Ei in the Rayleigh-Schrödinger resolvent. How-
ever, in the following we will not investigate this type of partitioning.

5.4 The normal-product Schrödinger equation

After discussing general aspects of MBPT and the partitioning we will cast the stationary
Schrödinger equation into a form that is more convenient for the diagrammatic analysis that
follows. In particular, this will allow for elimination of the first-order energy correction from
our analysis. We start again from

(Ĥ0 + Ŵ )|Ψ⟩ = E |Ψ⟩ (5.56)

and subtract

⟨Φ|Ĥ|Φ⟩ = ⟨Φ|Ĥ0|Φ⟩+ ⟨Φ|Ŵ |Φ⟩ (5.57)

giving

Ĥ − ⟨Φ|Ĥ|Φ⟩ = (Ĥ0 − ⟨Φ|Ĥ0|Φ⟩) + (Ŵ − ⟨Φ|Ŵ |Φ⟩)

(Ĥ − Eref) = (Ĥ0 − E(0)) + ŴN . (5.58)

where E(0) is the unperturbed eigenvalue and Eref the expectation value of the reference
state with respect to the full Hamiltonian, i.e., E(0) + E(1). In this scheme we define a new
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zero-order Hamiltonian Ĥ0 − E(0) = (Ĥ0)N leaving Ŵ as the perturbation operator and
Ĥ − Eref as the full Hamiltonian. This yields the normal-product Schrödinger equation

ĤN |Ψ⟩ = ∆E|Ψ⟩, (5.59)

with energy eigenvalue

∆E = E − Eref. (5.60)

The quantity ∆E captures corrections beyond the reference-state description. When using
a HF reference state ∆E corresponds to the correlation energy.

5.5 Diagrammatic representation

The aim of this section is to develop tools for the evaluation of low-order energy corrections.
For example the second-order energy correction can be written as

E(2) =
∑′

I

⟨Φ|Ŵ |ΦI⟩⟨ΦI |Ŵ |Φ⟩
E

(0)
0 − E

(0)
I

(5.61)

where |ΦI⟩ denote excited SD with respect to |Φ⟩. When using up to two-body interactions,
we can rewrite (5.61) as

E(2) =
∑
ai

⟨Φ|Ŵ |Φa
i ⟩⟨Φa

i |Ŵ |Φ⟩
E

(0)
0 − E(0)(|Φa

i ⟩)
+
∑
abij

⟨Φ|Ŵ |Φab
ij ⟩⟨Φab

ij |Ŵ |Φ⟩
E

(0)
0 − E(0)(|Φab

ij ⟩)
(5.62)

and evaluate the matrix elements in the numerator, e.g., via Wick’s theorem. However, when
going beyond second-order the derivation becomes very tedious due to the large number of
contractions to be considered. For example consider the evaluation of the following matrix
element that appears at third-order PT,

⟨Φa
i |Ŵ |Φb

j⟩ =
1

4

∑
pqrs

H̄ [2]
pqrs⟨Φ|{ĉ

†
i ĉa}{ĉ†pĉ†q ĉsĉr}{ĉ

†
bĉj}|Φ⟩. (5.63)

which yields according to Wick’s theorem

⟨Φa
i |Ŵ |Φb

j⟩ =
1

4

∑
pqrs

H̄ [2]
pqrs⟨Φ|{ĉ

†
i ĉa}{ĉ†pĉ†q ĉsĉr}{ĉ

†
bĉj}|Φ⟩

=
1

4

∑
pqrs

H̄ [2]
pqrs

(
⟨Φ|{ĉ†i ĉa}{ĉ†pĉ†q ĉsĉr}{ĉ

†
bĉj}|Φ⟩+ ⟨Φ|{ĉ†i ĉa}{ĉ†pĉ†q ĉsĉr}{ĉ

†
bĉj}|Φ⟩

)
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5.5 - Diagrammatic representation

FN :

X = 0 X = 1 X = −1 X = 0

Figure 5.1: Goldstone diagrams representing the Fock operator F̂N .

+ ⟨Φ|{ĉ†i ĉa}{ĉ†pĉ†q ĉsĉr}{ĉ
†
bĉj}|Φ⟩+ ⟨Φ|{ĉ†i ĉa}{ĉ†pĉ†q ĉsĉr}{ĉ

†
bĉj}|Φ⟩

)
=

1

4

[
−H̄ [2]

ajbi + H̄
[2]
ajib + H̄

[2]
jabi − H̄

[2]
jaib

]
= H̄

[2]
ajib. (5.64)

where we made use of the Standard Wick theorem as stated in chapter 1. We note that
equally the above matrix element could have been evaluated by means of Slater rules [Sla29;
Con30].

It is clear that the evaluation of matrix elements of SDs with higher excitation rank
becomes increasingly more cumbersome and a more systematic way of evaluating such ex-
pressions is desirable. The diagrammatic approach outlined below considerably lowers the
effort of deriving MBPT formulae. We will not go into too much detail but only introduce
the notation necessary for the derivation of energy corrections in Hartree-Fock MBPT and
Multi-Configurational MBPT. The interested reader is referred to [SB09] for more informa-
tion and an introduction to the application of diagrams in Coupled-Cluster theory.

The diagrammatic representation of the normal-ordered perturbation operator is dis-
played in Figure 5.1 and Figure 5.2. For every topology there exist an excitation rank X

depending on the number of upgoing and downgoing lines. Consider now that we want to
evaluate an expectation value with respect to the reference state |Φ⟩ of a product of two
two-body operators

⟨Φ|ŴŴ |Φ⟩. (5.65)

Since the formula is closed from the left and right by the reference state the corresponding
diagrams will be closed from above and below, i.e., the excitation rank X of the left operator
must be −2 and the excitation rank of the right operator must be +2. There exists in
each case only one topology. In the following picture vertical dotted lines correspond to
contractions of single-particle indices:
We refer to the object on the right-hand side as an anti-symmetrized Goldstone (ASG)
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diagram. To complete the description of the diagrams the edges must be labelled by single-
particle indices. Downgoing lines are labeled with hole indices, whereas upgoing lines are
labelled by particle indices. The fully labelled ASG diagram reads

(a)(i) (b)(j)

The rules for the evaluation are as follows:

Diagrammatic Rules for the Evaluation of Matrix Elements

1. Every vertex corresponds to an anti-symmetric matrix element, where the corre-
sponding single-particle indices are read from left to right:

⟨1st incoming line, 2nd incoming line|...|1st outgoing line, 2nd outgoing line⟩.

2. Add a prefactor 1
2

for every pair of equivalent lines, i.e., lines connecting the same
vertices.

3. The sign of the expression is given by (−1)h+l where h is given by the number of
hole lines and l the number of closed loops.

4. Sum over all internal single-particle indices.

With this the above diagram evaluates to

1

4

∑
abij

H̄
[2]
abijH̄

[2]
ijab. (5.66)

Note that we could have equally well contracted in the following way

leading to the expression
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WN :
X = +2 X = +1 X = −1 X = 0

X = −1 X = −1 X = −2

Figure 5.2: Anti-symmetrized Goldstone diagrams representing the 2B-part of the perturbation
operator ŴN .

−1

4

∑
abij

H̄
[2]
abijH̄

[2]
ijba, (5.67)

which is by anti-symmetry of the matrix elements equivalent to (5.66). Therefore, one only
needs to take one of the possible contraction schemes into account since all give the same
contribution. More complex expressions, e.g.,

⟨Φ|Ŵ 3|Φ⟩ (5.68)

can be evaluated by drawing all of the corresponding diagrams and summing up their indi-
vidual contributions.

From the resolvent expansion we see that—in addition to higher powers of the perturba-
tion operator—(5.35) contains the resolvent operator R̂. Therefore, working formulae require
the evaluation of

⟨Φ|Ŵ R̂Ŵ |Φ⟩ (5.69)

rather than ⟨Φ|Ŵ 2|Φ⟩. We, therefore, need a diagrammatic expansion of the resolvent oper-
ators

R̂ =
∑′

I

|ΦI⟩⟨ΦI |
E

(0)
0 − E

(0)
I

(5.70)
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where the sum is taken over all many-body states other than the reference state.1 The
operation of R̂ on a many-body SD |ΦJ⟩ gives

R̂|ΦJ⟩ =
∑
I

|ΦI⟩⟨ΦI |ΦJ⟩
E

(0)
0 − E

(0)
I

=
∑
I

|ΦI⟩
δIJ

E
(0)
0 − E

(0)
I

= |ΦJ⟩
1

E
(0)
0 − E

(0)
J

(5.71)

In the case of a single-configurational reference state the energy denominator reads

ϵ
a1···ap
i1···ip = E(0) − E

(0)
J = ϵi1 + · · ·+ ϵip − ϵa1 + · · ·+ ϵap , (5.72)

where |J⟩ = |Φa1···ap
i1···ip ⟩. This concludes the formal development of MBPT.

5.6 Remarks and further reading

We covered an introduction of the formal aspects of MBPT. There are, however, many in-
teresting features that we did not cover at all or only briefly mentioned in a side remark.
One big topic is the use of MBPT formulations other than the Rayleigh-Schrödinger frame-
work. The most important alternative is the Brillouin-Wigner perturbation theory as well
as their relation to Coupled-Cluster theory. Even though not being size-extensive at finite
order, there exist a-posteriori corrections to account for the lack of size-extensivity making
it still a viable approach which is simpler due to the missing renormalization terms in the
corresponding resolvent expansion. A discussion of the advantages and disadvantages can
be found for example in the monograph by Hubac and Wilson [HW10].

Furthermore, all MBPT variants employed in this work are of single-reference type, mean-
ing that we use one reference state for each individual calculation. There is a vast literature
on multi-reference many-body perturbation theory, where n different SDs are taken as ref-
erence states. One constructs an effective Hamiltonian of dimension n × n which captures
correlation effects by resumming Q-space effects into the effective Hamiltonian. A subse-
quent diagonalization yields the associated spectrum. For application in nuclear physics see
for example [Hol+12]. There have also been extensive studies in the quantum chemistry
literature on how to construct the Hamiltonian and which SDs to include in the construc-
tion. Typically, one includes all many-body states that can be formed from a fixed valence
space of single-particle states leading to so-called complete active space (CAS) formulation
of multi-reference MBPT. More general frameworks, where only a selected number of many-

1Note we restrict ourselves to the case of a diagonal resolvent as already mentioned before. Equa-
tion (5.70) can be seen as the spectral resolution of R̂ in Q-space.
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body configurations is included in the unperturbed basis yield the more advanced incomplete
active space (IAS) methods, which can overcome some of the limitations of CAS approaches,
but are conceptually more complicated. For an overview and present status of multi-reference
MBPT in quantum chemistry see for example [Cha+16].

We remark that the term multi-reference specifies the number of reference states and
not whether the reference states are single Slater determinants or more complex objects.
Typically multi-reference approaches use several SDs as reference. However, there are also
investigations of multi-reference MBPT with reference state which themselves are superpo-
sitions of SDs, see for example [Nak93]. Contrary, the term multi-configurational (or rarely
multi-determinantal) specifies the structure of the reference state, i.e., if the reference state
is a single SD or a superposition of SDs.

The development so far used an time-independent formalism. Another important variant
are time-dependent approaches [Bru55; Gol57]. These were originally used to derive the
linked-cluster expansion in terms of the time-evolution operator. In Part IV of this thesis,
we will go into the details that are necessary for the use of symmetry-broken reference states.

Other than that, there are several more exotic variants of MBPT that get rid of the
restriction to diagonal resolvent operators. The evaluation of energy corrections requires
the inversion and, therefore, diagonalization of the many-body resolvent which is compu-
tationally demanding, but yields the additional freedom of using zero-order Hamiltonians
which are non-diagonal one-body operators. Further, one is not restricted to using one-body
operators as the unperturbed part of the Hamiltonian but can choose a more general ansatz.
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6
Single-Configurational Many-Body

Perturbation Theory

In the previous chapter we presented the fundamentals of many-body perturbation theory
without specifying a particular reference state. In the simplest version, MBPT is performed
on top of single Slater determinant. In such an approach we can efficiently investigate closed-
shell nuclei. Additionally, the restriction to closed-shell systems allows for the use of angular-
momentum coupling techniques, which enable for an efficient evaluation of MBPT formulas
in a J-coupled framework. We further discuss computational details of the implementation
that allow us to proceed to the heavy-mass regime. We conclude with a qualitative discussion
of limitations of single-configurational perturbation theories and the reasons for their possible
failure in actual applications in open-shell systems.

6.1 Derivation of low-order formulas

The resolvent expansion (5.35) derived in the previous chapter is the starting point for the
diagrammatic treatment. We will explicitly derive all second- and third-order diagrams for
an arbitrary reference determinant.

6.1.1 Second-order energy

From the resolvent expansion (5.35) we get for the second-order energy correction

E(2) = ⟨Φ|Ŵ R̂Ŵ |Φ⟩. (6.1)

The only two-body contribution appearing at second-order is given
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(a)(i) (b)(j)
1

4

∑
abij

⟨ab|Ĥ [2]|ij⟩⟨ij|Ĥ [2]|ab⟩
ϵabij

where it is clear from the denominator that this diagrams corresponds to double-excited
intermediate states. Additionally, we get a one-body contribution from the normal-ordered
one-body part of the perturbation operator

(a)(i)
∑
ai

⟨a|Ĥ [1]|i⟩⟨i|Ĥ [1]|a⟩
ϵai

.

The last diagram corresponds to a singly-excited intermediate state. When using canonical
HF single-particle states the last diagram does not contribute due to Brillouins theorem and
we are left with the two-body contribution only. We also note that the second-order energy
correction in the HF case is always negative since the expression in numerator is a square
of a real quantity and the energy denominator ϵabij is always negative by the construction of
the hole states. 1

6.1.2 Third-order energy

From (5.35) we obtain for the third-order energy correction

E(3) = ⟨Φ|Ŵ R̂Ŵ R̂Ŵ |Φ⟩. (6.2)

Instead of two matrix elements and one resolvent line we now have three matrix elements
and two resolvent lines. When a HF single-particle basis is used, the only contributions come
from diagrams containing two-body operators. One-body contribution vanish since interme-
diate states are eigenstates of the one-body part of the Hamiltonian. The corresponding
diagrams and their algebraic expressions are displayed in Figure 6.1. When using a reference
determinant that is not written in HF single-particle basis Brillouins theorem does not hold
and we get additional contributions from diagrams containing a one-body operator. The
additional eleven diagrams are shown in Figures 6.2 and 6.3, respectively.

From the third-order energy correction it is immediately clear that the use of HF orbitals
simplifies the diagrammatic treatment significantly and the number of non-HF diagrams
increases rapidly. Since we do not go beyond third-order in the calculations of medium-mass
nuclei we do not show the fourth-order energy diagrams. The interested reader is refered to
[SB09] for a complete list of HF and non-HF diagrams appearing at fourth-order MBPT.

1We defined the hole states to be the single-particle states with the lowest single-particle energies.
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Figure 6.1: Anti-symmetrized Goldstone diagrams appearing at third-order MBPT when using a
canonical HF reference state.

In summary, the second and third-order energy corrections for a HF reference determinant
are given by

E(2) =
1

4

∑
abij

H̄
[2]
abijH̄

[2]
ijab

ϵabij
(6.3)

E(3) =
1

8

∑
abcdij

H̄
[2]
ijabH̄

[2]
abcdH̄

[2]
cdij

ϵabij ϵ
cd
ij

(6.4)

+
1

8

∑
abijkl

H̄
[2]
ijabH̄

[2]
abklH̄

[2]
klij

ϵabij ϵ
ab
kl

(6.5)

−
∑
abcijk

H̄
[2]
ijabH̄

[2]
kbicH̄

[2]
ackj

ϵabij ϵ
ac
kj

. (6.6)

The above formula are implemented for the calculation of ground-state energies of medium-
mass closed-subshell nuclei.

6.2 Angular-momentum coupling

When proceeding to larger model spaces, the dimension of the single-particle basis becomes
very large and calculations beyond second-order become impractical for heavy systems.
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Figure 6.2: Hugenholtz diagrams appearing at third-order MBPT when using a non-canonical
HF reference state.
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Therefore, we use angular-momentum coupling techniques to cast the expressions for the
energy corrections into spherical form. In the following we make use of the Baranger nota-
tion

k = (nk, lk, jk, tk,mk) = (k̃,mk), (6.7)

where a collective single-particle index k is split into a spherical (i.e. m-independent) part
k̃ and its total angular-momentum projection mk. The index k̃ contains all information on
the radial quantum number kn, the oribtal angular momentum nl, total angular momentum
jk and isospin projection tk.

We write the second-order energy correction by

E(2) =
1

4

∑
abij

H̄
[2]
abijH̄

[2]
ijab

ϵabij

=
1

4

∑
ãb̃̃ij̃

∑
mamb
mimj

∑
JJ ′
MM ′

JH
[2]

ãb̃̃ij̃
J ′
H

[2]

ĩj̃ãb̃

ϵãb̃
ĩj̃

(
ja jb J

mambM

)(
ja jb J ′

mambM
′

)(
ji jj J

mimj M

)(
ji jj J ′

mimj M
′

)

=
1

4

∑
ãb̃̃ij̃

∑
JJ ′
MM ′

JH
[2]

ãb̃̃ij̃
J ′
H

[2]

ĩj̃ãb̃

ϵãb̃
ĩj̃

δJJ ′δMM ′

=
1

4

∑
ãb̃̃ij̃

∑
J

Ĵ2

JH
[2]

ãb̃̃ij̃
JH

[2]

ĩj̃ãb̃

ϵãb̃
ĩj̃

, (6.8)

where we used the definition of J-coupled matrix elements JH
[2]

ãb̃̃ij̃
according to (1.28) and

the orthogonality relation of the Clebsch-Gordan coeffcients, as well as the notion of the
hat-symbol Ĵ =

√
2J + 1 to account for the correct multiplicities. Note that for a closed-

shell nucleus the HF single-particle energies are independent of the total angular-momentum
projection, i.e., ϵãb̃

ĩj̃
= ϵabij .

Coupling of the third-order energy

Two of the three HF diagrams at third-order MBPT can coupled analogously to the second-
order case. For the particle-hole channel, however, additional effort is needed. We define the
so-called generalized Pandya transformation of a two-body operator by

JHXC
ãb̃c̃d̃

≡ −
∑
J ′

Ĵ2

{
ja jb J

jc jd J
′

}
J ′
H

[2]

ãd̃c̃b̃
, (6.9)

which allows for a recoupling of bra and ket indices [Suh07]. With this the J-coupled
expressions of the third-order HF-MBPT energy correction are synethesized as follows:
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E(3) =
1

8

∑
ãb̃c̃d̃̃ij̃

∑
J

Ĵ2

JH
[2]

ãb̃̃ij̃
JH

[2]

ĩj̃c̃d̃
JH

[2]

c̃d̃ãb̃

ϵãb̃
ĩj̃
ϵc̃d̃
ĩj̃

+
1

8

∑
ãb̃̃ij̃k̃l̃

∑
J

Ĵ2

JH
[2]

ĩj̃ãb̃
JH

[2]

ãb̃k̃l̃
JH

[2]

k̃l̃̃ij̃

ϵãb̃
ĩj̃
ϵãb̃
k̃l̃

−
∑
ãb̃c̃̃ij̃k̃

∑
J

Ĵ2
JHXC

ãr̃s̃b̃
JHXC

s̃b̃t̃c̃
JHXC

t̃c̃ãr̃

ϵãb̃
ĩj̃
ϵãc̃
k̃j̃

The derivations of the J-coupled matrix energy expressions can be found in Appendix A.

6.3 Computational considerations

After deriving the m-scheme and J-scheme expressions we want to investigate some of the
computational consequences and scaling properties. The second-order energy correction in
HF-MBPT contains two particle summations and two hole summations. We will denote the
computational scaling by

HF-MBPT(2) ∼ n2
p · n2

h, (6.11)

where np denotes the number of particle states and nh denotes the number of holes states
respectively. Without distinguishing particles and holes we will refer to this as a N4 process.
2 The one-body contribution at second-order contains one particle and one hole summation
resulting in a subleading contribution with computational cost ∼ np · nh or roughly a N2

process. We see that even though the use of a HF determinant lowers the numbers of
contributing diagrams the computational costs are dominated by the two-body contribution.
Therefore, using a HF reference will prevent the proliferation of diagrams but will not improve
upon the scaling properties of the theory.

When proceeding to third-order HF-MBPT we see that every diagram contains six single-
particle summations thus making MBPT(3) a N6 process or more precisely

HF-MBPT(3) ∼ max{n4
p · n2

h, n
2
p · n4

h}, (6.12)

where again for large model spaces the first term dominates.

One can see from the resolvent expansion that the n-th order energy correction contains n
operator products of two-body operators. For n-th order HF-MBPT one gets naively

2In actual calculation one often has np ≫ nh. However, for a rough estimate of the computational
complexity it is sufficient to know the overall power of the many-body theory under consideration.
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Figure 6.3: Anti-symmetrized Goldstone diagrams appearing at third-order MBPT when using a
non-canonical HF reference state (continued).

HF-MBPT(n) ∼ N2n, (6.13)

thus, yielding a polynomial scaling at every finite truncation order. 3 Equation (6.13) is
a worst-case estimation and one can already show that MBPT(4) is not a N8 process but
rather a N7 process due to the factorisation of certain contributions [SB09].

In order to estimate the gain in performance when using a angular-momentum coupled
formulation, we compare the size of the single-particle basis in m-scheme with the spherical

3When dealing with operators of higher particle-rank the above statement must be modified. If, e.g.,
three-body operators are included in the calculation the the n-th order energy correction contains up to N3n

single-particle summations.
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single-particle basis. In our calculations we typically include 13 major oscillator shells,
corresponding to single-particle bases that contain ∼ 2000 single-particle states, whereas the
spherical single-particle basis contains roughly ∼ 100 basis states. Therefore, this yields a
speedup of a factor of 20 for every single-particle summation that appears in the formulas
for the energy corrections. At second-order this gives approximately a speedup of ∼ 105.
It is clear that the use angular-momentum coupling techniques is a highly efficient tool to
increase code performance. 4

From the formula of the second-order correction in J-scheme we see that the angular-
momentum coupling yields a decoupling of matrix elements with different total angular
momenta (this is just the result of the use of the orthogonality relation). In the following we
will show how to cast (6.8) into a form that is amenable for the use of matrix multiplication.
To do so we define the following auxiliary quantities

JAãb̃̃ij̃ ≡
JH

[2]

ãb̃̃ij̃
. (6.14)

JBãb̃̃ij̃ ≡
1

ϵãb̃
ĩj̃

JH
[2]

ãb̃̃ij̃
. (6.15)

Furthermore, we define collective multi-indices M,N via

M = (ãb̃) and N = (̃ij̃), (6.16)

such that

JBMN = JBãb̃̃ij̃. (6.17)

With this (6.8) can be written as

E(2) =
∑
J

Ĵ2
∑
MN

JBMN
JANM , (6.18)

where the double sum over the multi-indices M,N constitutes a trace of a matrix product

E(2) =
∑
J

Ĵ2
(
Tr(JA ·J B)

)
. (6.19)

The advantage of the last expression is that matrix multiplication can be effectively per-
formed by means of cache-optimised linear algebra libraries, e.g., BLAS. This allows for a
tremendous speedup. The direct use of BLAS-techniques for m-scheme implementations is
much more difficult since the lower symmetry of the single-particle basis does not allow for

4Be reminded that this is still a very rough estimate since we do not distinguish between particle and hole
dimensions. However, the above argument gives at least a glimpse of the importance of angular-momentum
algebra in many-body physics.
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a block-diagonal structure of the Hamiltonian. In particular, the size of the m-scheme ma-
trix representation of the Hamilton matrix is too large to fit into the cache of even modern
computers.

Analogously, the third-order energy correction can be cast into a form containing a trace
over a double matrix product. However, additional matrices must be stored, since the
particle-particle channel and hole-hole channel contain matrices that consist of four particle
indices or four hole indices, respectively.

6.4 Limitations of single-reference theories

This final section is dedicated to a qualitative discussion of single-configurational many-
body techniques and in particular to HF-MBPT and will motivate the extension of MBPT
to multi-configurational reference states. 5

For systems with a (sub)-shell closure, investigations using softened potentials show that
MBPT with respect to a HF determinant yields accurate results at low orders that are in
reasonable agreement with more sophisticated many-body techniques like CC, SCGF, or
IM-SRG [Tic+16]. The reason for this is that closed-shell nuclei are typically dominated by
a single Slater determinant. This is for example reflected by the fact that the Hartree-Fock
energy constitutes up to 80% of the overall binding energy and only 20% percent are genuine
correlation effects when using a sufficiently softened interaction obtained from an initial
SRG transformation. 6 Moreover, due to the shell structure, usually one has a pronounced
shell gap for the single-particle energies i.e., there is a significant difference in the single-
particle energies of the particle and hole states, respectively. On a more fundamental level, a
single Slater determinant does even not possess good quantum numbers, e.g., total angular
momentum. Using a single-determinantal reference state fails to reproduce basis symmetries
of the underlying Hamiltonian in open-shell systems.

Let us now assume that we investigate a truly open-shell system, where some of the
orbitals are only partially occupied. This leads to a degeneracy of the spherical Hartree-Fock
solution since several determinants have the same zero-order energy, i.e., sum of single-
particle energies. Since we want to perform MBPT on top of a single Slater determinant,
we randomly choose one of the degenerate determinants as reference for the correlation
expansion, thus defining the one-dimensional reference space. The calculation of perturbative
corrections requires summations over many-body states that are not contained in the model

5The use of single-configurational reference states is also of concern in other many-body approaches like
CC or IM-SRG, but due to the non-finite correlation expansion in MBPT it is more pronounced in our
framework.

6These estimate hold for systems in nuclear physics. In quantum chemistry the Hartree-Fock approx-
imation typically accounts for 99% of the overall binding energy of closed-shell states. However, quantum
chemists aim for much higher accuracy since the Coulomb interaction is known analytically and electrons
are pointlike particles.
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space. These summations in particular include the many-body states that are degenerate
with the reference determinant. Formulae of RS-MBPT contain denominators that consist of
differences of zero-order energies. In the case of degeneracies these denominators vanish and
the perturbation expansion becomes singular. Even if the zero-order energy differences are
not exactly zero but very small, this can prevent the perturbation expansion from converging
or yield a slow rate of convergence. This case is referred to as quasi-degeneracy and can occur
if the shell gap between occupied and unoccupied single-particle states is too small. We note
that sometimes the problem of small denominators can be overcome by altering the choice
of Ĥ0 and going from a Møller-Plesset to an Epstein-Nesbet partitioning, since the shifted
denominators lift the zero-order degeneracy.

Besides handling vanishing denominators, a single-configurational MBPT is inappropri-
ate when a certain correlated state is dominated by more than one determinant. For example
assume that two degenerate SDs |Φ⟩, |Φ′⟩ contribute significantly to the exact solution. Fur-
ther, assume that |Φ′⟩ = |Φabcd

ijkl ⟩ is a quadruply-excited SD with respect to |Φ⟩. Let us
take |Φ⟩ as reference for the correlation expansion. Since we know that |Φ′⟩ contributes
significantly to the exact wavefunction we expect contributions from this quadruply-excited
intermediate to be quite large. However, due to its high excitation rank the first contribution
of the determinant appears at fourth-order HF-MBPT, which is beyond the level of current
medium-mass calculations. Therefore, the third-order energy correction lacks important
corrections from the other determinant. This is a generic problem of single-configurational
theories and can be solved by using more complex reference states, which are themselves
proper superposition of several SDs. This is the starting point of the multi-configurational
MBPT.
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7
Coupled-Cluster Theory

This chapter serves as a short introduction to Coupled-Cluster (CC) theory. CC calculations
have become the gold standard for the determination of ground-state energies for medium-
mass closed-shell nuclei [DH04; BM07; Hag+10; Kow+04; PGW09; Bin+14; Bin14]. An
exhaustive introduction to CC theory and many of its different flavors can be found in
[SB09]. For applications in nuclear physics and in particular a discussion of spherical CC
theory the interested reader is referred to [Bin14].

Historically, the CC method was introduced by Kümmel and Cizék in the late 1950s [Čı́ž66;
ČP69; CK60].

7.1 The Exponential Ansatz

As MBPT, the CC approach in its basic formulation aims at the solution of the stationary
Schrödinger equation

Ĥ|ψ⟩ = E0|ψ⟩ (7.1)

for the ground-state energy E0. Similar to MBPT we write the exact eigenstate |ψ⟩ in terms
of the action of the wave operator Ω̂ on some reference state |Φ⟩ 1

Ω̂|Φ⟩ = |ψ⟩. (7.2)

In CC theory we take as ansatz for Ω an exponential form

Ω̂(CC) = eT̂ , (7.3)

1Most commonly |Φ⟩ is a single determinant of Hartree-Fock type.
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where T̂ is an excitation operator. The above choice for the wave operator ensures size
extensivity of the results.

The CC wave function has the form

|ψ⟩ = eT̂ |Φ⟩ (7.4)

where

T̂ = T̂1 + T̂2 + T̂3 + · · · (7.5)

are the so-called cluster operators

T̂1 =
∑
ai

tai {ĉ†aĉi}, (7.6)

T̂2 =
1

4

∑
abij

tabij {ĉ†aĉ
†
bĉj ĉi}, (7.7)

T̂3 =
1

36

∑
abcijk

tabcijk{ĉ†aĉ
†
bĉ

†
cĉkĉj ĉi}, (7.8)

which are in normal order with respect to the reference determinant |Φ⟩. The general cluster
operator is given by

T̂n =
1

(n!)2

∑
a1···an
i1···in

ta1···ani1···in {ĉ†a1 ...ĉ
†
an ĉin ...ĉi1}, (7.9)

where the quantities ta1···ani1···in are called cluster amplitudes.

7.2 Similarity-Transformed Hamiltonian

Analogously to MBPT we are interested in correlation effects, i.e., corrections beyond the
reference-state description. The normal-product Schrödinger equation for the CC wave func-
tion can be written as

(ĤN −∆E)eT̂ |Φ⟩ = 0. (7.10)

Multiplication from the left by e−T̂ yields

(e−T̂ ĤNe
T̂ −∆E)|Φ⟩ = 0. (7.11)

Equation (7.11) constitutes a right eigenvalue equation for the correlation energy ∆E of the
non-Hermitian similarity-transformed Hamiltonian
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7.2 - Similarity-Transformed Hamiltonian

H = e−T̂ ĤNe
T̂ . (7.12)

An explicit form of H can be obtained by making use of the Baker-Campbell-Hausdorff
(BCH) expansion

e−B̂ÂeB̂ = Â+ [Â, B̂] +
1

2
[[Â, B̂], B̂] +

1

3!
[[[Â, B̂], B̂], B̂] + ... (7.13)

Application to H yields

H = ĤN + [ĤN , T̂ ] +
1

2
[[ĤN , T̂ ], T̂ ] +

1

3!
[[[ĤN , T̂ ], T̂ ], T̂ ]

+
1

4!
[[[[ĤN , T̂ ], T̂ ], T̂ ], T̂ ], (7.14)

where the BCH series naturally truncates after fourfold nested commutators.2

By virtue of Wick’s theorem it can be shown that

H = e−T̂ ĤNe
T̂ (7.15)

= (ĤNe
T̂ )C , (7.16)

where the subscript indicates that only connected diagrams have to be taken into account
such that the normal-product Schrödinger equation takes the form

(ĤNe
T̂ )C |Φ⟩ = ∆E|Φ⟩. (7.17)

By left-projecting the reference state and particle-hole excitations onto equation (7.17) we
obtain the coupled cluster working equations. The first one is the so-called energy equation

⟨Φ|(ĤNe
T̂ )C |Φ⟩ = ∆E. (7.18)

Projection of excited determinants yields the (non-linear) amplitude equations

⟨Φa1
i1
|(ĤNe

T̂ )C |Φ⟩ = 0 (7.19a)
⟨Φa1a2

i1i2
|(ĤNe

T̂ )C |Φ⟩ = 0 (7.19b)
... ...

which need to be solved iteratively.

2The above statement holds for a Hamiltonian that contains up to two-body operators. When going to
higher particle rank, the series still terminates after a finite number of commutators, e.g., sixfold commutators
for a three-body interaction.
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7.3 Truncation of the Cluster Operator

The above discussion is completely general and the calculated correlation energy will give the
exact ground-state energy. However, in actual computations the form of the cluster operator
T̂ has to be truncated. The most common form is to take

T̂ = T̂1 + T̂2 (7.20)

which defines the Coupled Cluster with Singles and Doubles (CCSD) wave operator. The
CCSD wave function is then given by

|ψ(CCSD)⟩ = eT̂1+T̂2|Φ⟩. (7.21)

For the energy and amplitude equations one gets

⟨Φ|ĤN(T̂2 + T̂1 +
1

2
T̂ 2
2 )C |Φ⟩ = ∆E, (7.22)

⟨Φa
i |ĤN(1 + T̂2 + T̂1 + T̂1T̂2 +

1

2
T̂ 2
2 +

1

3!
T̂ 3
1 )C |Φ⟩ = 0, (7.23)

⟨Φab
ij |ĤN(1 + T̂2 +

1

2
T̂ 2
2 + T̂1 + T̂1T̂2 +

1

2
T̂ 2
2 +

1

2
T̂ 2
1 T̂2 +

1

3!
T̂ 3
1 +

1

4!
T̂ 4
1 )C |Φ⟩ = 0, (7.24)

Equations (7.22)-(7.24) are then evaluated by means of Wick’s theorem.

The inclusion of higher-order cluster operators requires significantly more computational
resources. Since the CC equations are a system of coupled non-linear algebraic equations
they have to be solved iteratively. This requires the storage of all cluster amplitudes in every
iteration. In particular the storage of T̂3 amplitudes scales with N6 where N is the size of the
single-particle basis which becomes unfeasible for larger model spaces. Therefore, one uses
an approximate non-iterative treatment of the T̂3 cluster operator. This leads, for example,
to the definition of ΛCCSD(T) or CR-CC(2,3) which partially account for triply-excited
clusters. Currently, the full implementation of CCSDT, i.e., a consistent iterative treatment
of the T̂3 cluster operator is out of reach for medium-mass systems.

7.4 Connections to perturbation theory

The exponential form of the CC wave operator yields an all-order resummation of MBPT
diagrams. The following discussion is restricted to the single-configurational case, since, to
our knowledge, there is no implementation of genuine multi-configurational CC in nuclear
physics. The CCSD approach contains all diagrams with singly- and doubly-excited inter-
mediate states up to infinite order, thus making it exact up to third-order HF-MBPT while
including many additional diagrams of higher order. The non-iterative triple corrections
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7.4 - Connections to perturbation theory

derived from CR-CC(2,3) yield a correlation energy that is exact up to fourth-order MBPT.
We note, that even though there are quadruply-excited intermediates in HF-MBPT(4), these
contributions can be factorized into products of doubly-excited intermediates that can be
described without the use of T̂4 amplitudes.

The infinite-order resummation of certain types of MBPT diagrams is a general property
shared by other non-perturbative many-body methods. A computational feature of CC is
the non-linear nature of the CC amplitude equations, which requires the storage of the
cluster amplitudes. Therefore, one heavily relies on using a spherical scheme for storing
the cluster amplitudes. However, this prevents a direct extension to arbitrary open-shell
systems since the solution of the m-scheme amplitude equations becomes intractable even
for the lightest nuclei. Therefore, open-shell approaches have up to now been restricted to
equation-of-motion techniques [PGW09] or the construction of valence-space Hamiltonians
that make use of a frozen inert core [Jan+14]. Very recently, CC theory has been formulated
and implemented in the context of symmetry-broken many-body theory [Dug15; Sig+15;
DS16]. We will discuss MBPT in the context of symmetry breaking in much more detail in
Part IV of this thesis.

We note that, in quantum chemistry, there exist proper multi-configurational CC theo-
ries which use generalized normal-ordering techniques to obtain energy and amplitude equa-
tions [KM97; Mah+98]. To our knowledge they have, however, never been transferred to the
nuclear structure case.
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8
Ground-state energies of closed-shell systems

In this section we apply single-configurational perturbation theory for the calculation of
ground-state energies of closed-shell nuclei using state-of-the-art chiral interactions. We start
with a systematic investigation of the convergence behavior using the recursive treatment
introduced in chapter 5. In the second step we use low-order MBPT to proceed to medium-
mass nuclei.

In the following we make use of a chiral two-body interaction at N3LO with a cut-off
parameter of 500MeV combined with a an additional chiral three-body interaction at N2LO
with Λ3N = 400MeV as introduced in chapter 2. The three-body part of the Hamiltonian is
incorporated via the NO2B approximation. Furthermore, the nuclear Hamiltonian is SRG
evolved for different values of the flow parameter.

8.1 Impact of partitioning

As a first step we investigate the dependence of the convergence behavior on the choice of
zero-order Hamiltonian and unperturbed energies. Prior investigations in nuclear physics
used the spherical harmonic oscillator (HO) Hamiltonian

ĥHO =
p̂2

2m
+

1

2
mΩ2r̂2 (8.1)

to construct the zero-order Hamiltonian in first quantisation

ĤHO
0 =

A∑
i=1

ĥHO
i , (8.2)
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where ĥHO
i denotes the HO single-particle Hamiltonian of the i-th particle. The eigenvalue

equation

ĥHO|φk⟩ = ϵk|φk⟩ (8.3)

for a single-particle state |φk⟩ = |nklkjktkmk⟩ yields

ϵHO
k = ℏΩ(2nk + lk +

3

2
), (8.4)

and the eigenvalues obviously only depend on the radial-quantum number nk and the orbital
angular-momentum quantum number lk. In particular the HO single-particle energies are
isospin-independent. We will refer to the above choice as HO partitioning, which is given in
second-quantized form by

ĤHO
0 =

∑
p

ϵHO
p p̂†p̂. (8.5)

Contrary, one can chose the unperturbed Hamiltonian as the mean-field HF Hamiltonian

ĤHF
0 =

∑
p

fpp p
†p (8.6)

with matrix elements 1

fpp = tpp +
∑
i

H̄
[2]
pipi, (8.7)

where the sum over i runs over all single-particle states occupied in the HF determinant.
Since the HF Hamiltonian is diagonal one-body operator the eigenvalues are given by the
diagonal elements ϵp = fpp. This defines the HF partitioning.

Again, we note that in our analysis we make use of the Møller-Plesset scheme, where
zero-order energies of the many-body states are defined as sum over single-particle energies.

In Fig 8.1 we display the impact of the choice of partitioning on the convergence charac-
teristics of the perturbation series. In the left-hand panels we show the value of p-th order
partial sum

E(p)
sum =

p∑
i=1

E(i), (8.8)

for perturbation order up to p = 30. The right-hand panels show the absolute value of the
corresponding energy correction for every perturbation order. The top row we used the HO

1For the sake of simplicity we restrict ourselves again to a two-body interaction.
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8.1 - Impact of partitioning

partitioning and for the bottom row the HF partitioning. As benchmark system we use 16O
for a sequence of model spaces with Nmax = 2, 4, 6. The interaction is SRG-evolved with
α = 0.08 fm4 and the reference basis is taken at ℏΩ = 24MeV.

We see from panel (a) that the HO partitioning yields a divergent perturbation series for
all model spaces, making it impossible to extract the ground-state energy directly from the
sequence of partial sums. Moreover, we see from panel (c) that higher-order energy correc-
tions are exponentially growing. Contrary, the use of HF partitioning displays a qualitatively
different behavior. From panel (b) it is clear that for all model spaces the perturbation series
is converging. Panel (d) shows that higher-order corrections are exponentially suppressed.
Furthermore, the rate of convergence is roughly independent of the model space.

This first investigation shows the huge impact of the choice of the unperturbed Hamilto-
nian on the convergence characteristics of the underlying perturbation series. Even though
we use a softened interaction, the HO perturbation series cannot overcome the defects that
are present in the zero-order description. By construction, HF theory gives us the variational
minimum of the energy functional in the test space of single Slater determinants and, thus,
an optimal starting point for the perturbation series of the ground-state wave function. It is,
therefore, not surprising that using the HF partitioning gives a highly robust perturbation
series for closed-shell systems.

At first glance it might appear that the use of a HO partitioning is useless since we can-
not directly obtain the ground-state energy from the wildly divergent series. However, it is
possible to extract the ground-state energy from the divergent expansion via so-called resum-
mation techniques. One uses a transformation scheme to transform the sequence of partial
sum into a transformed sequence of approximants. It is quite often possible to find a trans-
formation scheme such that the transformed sequence converges to the correct value, which
is in our case the CI result from the same model space. The most commonly used transfor-
mation schemes are Padé approximants, which are closely related to continued fractions. It
was shown that by applying the Padé scheme to perturbation series in HO partitioning gives
a convergent sequence of approximants, thus revealing the exact CI result from the divergent
perturbation expansion [RL10; LRS12]. For the construction of a particular resummation
scheme one typically needs additional information about the kind of divergence, e.g., oscil-
latory, exponential or factorial. A major drawback is that one typically needs quite a large
number of approximants and, therefore, also a large number of energy corrections, to obtain
convergence in the sequence of approximants. 2 In medium-mass calculations, however, one
is typically restricted to three terms in the perturbation series, which makes the use of, e.g.,
Padé approximation questionable. For light systems the use of such approximants can give
additional insights and might help to further improve the convergence of the perturbation

2Typically, one needs about 10-20 approximants and correspondingly 15-20 energy corrections to reach
convergence. However, this also strongly depends on the transformation scheme under consideration.
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Figure 8.1: Partial sums of 16O in HO basis (a) and HF basis (b) for α = 0.08fm4 with truncation
parameters Nmax = 2(l), 4( ▼) and 6(⋆). The corresponding energy corrections are displayed in
(c) and (d), respectively. All calculations are performed at oscillator frequency ℏΩ = 24MeV.

series. For more details in the nuclear physics context see [Tic14].

8.2 SRG dependence

The previous section revealed that the choice of partitioning has a major impact on the
convergence behaviour of the perturbation series. In the next step the question arises,
if there are other—secondary—parameters that influence the convergence pattern of the
perturbation series. We will see that the ”softness” of the interaction, parametrized by the
value of the SRG flow parameter α, plays an important role for the correlation expansion.
From now on all single-configurational MBPT calculations make use of the HF partitioning.

In Figure 8.2 we show the impact of the variation of α on the convergence behavior of the
perturbation series. Again the left column shows the sequence of partial sums and the right
column the absolute value of the p-th order energy corrections. All calculations are performed
in Nmax = 6 model spaces. The different plot markers correspond to different values of
the flow parameter ranging from ’hard’ interactions (α = 0.02 fm4) to ’soft’ interactions
(α = 0.08 fm4). As benchmark systems we use the doubly magic nuclei 4He and 16O, as
well as the closed-subshell nucleus 24O. A common feature for all three systems is that
increasing the flow parameter and, thus, softening the interaction, increases the binding
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Figure 8.2: Partial sums for varying flow parameters in HF-MBPT for 4He (a), 16O (b) and 24O
(c). The corresponding energy corrections are given in (d), (e) and (f), respectively. The model
space for the first and second panel are truncated at Nmax = 6. The truncation for the third panel
is given by Nmax = 4. The flow parameters are given by 0.02 fm4 (l), 0.04 fm4 ( ▼) and 0.08 fm4(⋆).
All calculations use a NN+3N-full interaction with oscillator frequency ℏΩ = 24MeV.

energy yielding lower ground-state energies in agreement with our expectation of the SRG
flow that enhances the model-space convergence. Additionally, all perturbation series are
convergent, even though the convergence for α = 0.02 fm4 for 24O is very poor as seen from
panel (c). We want to stress that all calculation are far from being converged with respect
to model space size. Therefore, there appears a sizeable dependence of the results on the
SRG parameter.

Obviously, HF-MBPT is very robust with respect to variations of the SRG flow parameter.
However, one definitely sees a systematic dependence of the absolute value of the energy
corrections on the value of α. Increasing the flow parameter yields a stronger suppression
of higher-order corrections. This is most pronounced in the case of 16O where the rate of
convergence is systematically improved by increasing the flow parameter. 24O shows also
hints in this direction - however much less pronounced than in 16O. Finally, 4He does not
show any dependence on the flow parameter at all. For all values of α the perturbation series
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α[fm4]
0.02 0.04 0.08

4He

E
(2)
sum -19.204 -20.269 -23.588

E
(3)
sum -20.334 -23.224 -26.589

E
(10)
sum -20.507 -24.444 -26.947

E
(20)
sum -20.526 -24.462 -26.964

E
(30)
sum -20.537 -24.469 -26.971
CI -20.539 -24.483 -26.994

16O

E
(2)
sum -85.620 -107.241 -120.699

E
(3)
sum -89.315 -110.861 -123.863

E
(10)
sum -83.780 -107.199 -122.561

E
(20)
sum -84.180 -107.341 -122.577

E
(30)
sum -84.018 -107.331 -122.577
CI -84.034 -107.330 -122.577

24O

E
(2)
sum -125.460 -124.459 -149.053

E
(3)
sum -122.880 -126.670 -151.059

E
(10)
sum -119.705 -121.233 -147.446

E
(20)
sum -119.335 -121.314 -147.508

E
(30)
sum -119.483 -120.948 -147.489
CI -119.131 -120.947 -147.488

Table 8.1: Ground-state energies in MeVfor 4He, 16O and 24O using HF-MBPT with p = 30 and
CI calculations for different values of α. The model spaces are truncated by Nmax = 6 for 4He and
16O and Nmax = 4 in the case of 24O. The HO frequency is ℏΩ = 24MeV.

converges monotonically to the exact full CI limit.
Table 8.1 allows for a more quantitative analysis of Figure 8.2. Shown are the partial

sums for p = 2, 3, 10, 20, 30, as well as the exact CI result for all three nuclei and all SRG
parameters. From comparing the partial sum for p = 30 with the CI limit we see that the
deviations are of the size of a few keV, for α = 0.04, 0.08 fm4 and up to a few hundred keV,
for α = 0.02 fm4 in the case of 24O. The residual deviations between the 30th-order partial
sum and the CI limit are due to the incomplete convergence of the perturbation series. In
particular for very hard interactions we expect perturbative corrections beyond p = 30 to be
necessary to agree with the CI results on a keVlevel. Also note that the convergence pattern
for 24O for α = 0.02 fm4 is oscillatory such that the deviation at p = 30 is not surprising.

Most importantly, we find that when using softened interactions the perturbation series
converges rapidly and high-order calculations reproduce the CI result with only very small
deviations. On this basis we expect low-order energy corrections to be a reasonable approx-
imation to the converged result. Note that the deviation of third-order partial sum from the
CI limit is less than 3%.

From the above table we see that for 16O and 24O the third-order partial sum overbinds
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the CI result. We want to stress that this might not be a general feature of HF-MBPT but
rather a truncation effect due to the use of a Nmax truncation for the HF single-particle basis.
The Nmax truncation is originally constructed for the use of HO single-particle states and
simply adapting the same truncation scheme to the HF basis might lead to an unexpected
behavior of the perturbation series, since HF theory naturally is formulated in emax-truncated
model spaces. Unfortunately, the rapid growth of the many-body space in full CI with respect
to single-particle dimension makes it hard investigate oxygen isotopes in model spaces that
are only truncated with respect to emax.

We remark that further increasing the flow parameter is not a feasible solution to further
improve the rate of convergence of the perturbation series. As already noted in the discussion
of the cluster decomposition, the SRG flow induces irreducible contributions of particle rank
beyond two. Further increasing the SRG parameter leads to stronger induced many-body
forces, which can not be accounted for in the many-body treatment. Therefore, choosing
the SRG parameter of the Hamiltonian is always a trade-off between the size of the induced
many-body contributions and the improved convergence with respect to model-space size
and the convergence properties of the perturbation expansion. 3 A value of α = 0.08 fm4

seems like a good compromise that yields a rapidly converging perturbation series without
inducing too strong higher-body forces.

8.3 Low-order energy corrections

In the previous sections we used a recursive high-order treatment to investigate the conver-
gence behavior in detail. Since this uses a formulation in terms of many-body states and
many-body matrix-elements, it has the same computational limitations as a full CI calcu-
lation in the same model space. Application of this scheme beyond the lower sd-shell is
infeasible even for highly-parallelized numerical codes. The explicit evaluation of low-order
energy corrections up to p = 3 allows us to investigate ground-state binding energies up to
the heavy tin region. Since we are dealing with spherical systems we make use of angular-
momentum coupling and evaluate the third-order partial sum. Because the investigated
systems are out of reach of the IT-NCSM, we compare our results to the well-established
CC approach with a sophisticated approximate treatment of triply excited clusters.

In the following we always use model spaces truncated with respect to HO quantum
number e ≤ emax = 12. We further truncate the single-particle basis by limiting the orbital
angular-momentum to l ≤ lmax = 10. This saves considerable amounts of computing time
while having no significant effect on the calculated result, since single-particle state with l >
10 correspond to very high single-particle energies, which are strongly suppressed in MBPT

3There are systems where the use of a ’bare’ interaction, i.e., α = 0.00 fm4 yields an unbound HF
solution. It is clear that such a reference state is inappropriate to serve as a zero-order starting point for the
correlation expansion.
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Figure 8.3: Panel (a) shows the ground-state energies per nucleon from third-order HF-MBPT
(l) in comparison to CR-CC(2, 3) ( ▼) results for selected closed-shell nuclei. Panel (b) shows the
correlation energy per nucleon, E

(2)
0 (◦) as well as E

(2)
0 + E

(3)
0 (l) for HF-MBPT. Additionally,

the correlation energy per nuclei for CCSD (△) and CR-CC(2,3) ( ▼) are shown. The SRG flow
parameter is α = 0.08 fm4, the HO frequency ℏΩ = 24MeV, for a model space truncated by emax =
12 and lmax = 10. All calculations were performed with NN + 3N -full interaction. Experimental
values are indicated by black bars [Wan+12].

due to large denominators in the Møller-Plesset scheme. Additionally, all Hamiltonians are
SRG-evolved with flow parameter α = 0.08 fm4 to ensure sufficiently fast convergence of the
perturbation series.

Figures 8.3 and 8.4 show the ground-state energies calculated in HF-MBPT at second
and third order and in the CC framework for the NN+3N-full Hamiltonian and NN+3N-
induced Hamiltonian for a selection of closed-subshell nuclei ranging from 4He to 132Sn.
The top panel shows the overall ground-state energy per nucleon at third order as well as
the energy of the ground-state obtained with the CR-CC(2,3) method. Additionally, black
bars indicate the experimental ground-state energies. The lower panel shows the correlation
energy Ecorr per nucleon

Ecorr = Eapprox − EHF, (8.9)

where Eapprox stands for either approximation to the exact eigenvalue, e.g., Eapprox = E(2) or
Eapprox = E(CCSD). Investigating the correlation energy allows us to understand the subtle
differences between MBPT and CC, since we get rid of the bulk of the binding energy in
form of the mean-field approximation first.

The most important observation is that HF-MBPT(3) and CR-CC(2,3) are in almost
perfect agreement with each other. The differences in the overall binding energy are less
than 0.5% and MBPT reproduces the highly sophisticated CC approach for all nuclei and
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8.3 - Low-order energy corrections

both interaction types. Both interactions reproduce a constant energy per nucleon—a feature
that is not present when dealing with a two-body interaction only. In particular the use of
the NN+3N-full Hamiltonian reproduces fairly good experimental binding energies up to
24O, whereas the NN+3N-induced interaction predicts to0 loosely-bound nuclei in this mass
region. However, when going to the medium-mass regime and beyond, the calculations using
the NN+3N-full exhibit a strong overbinding of up to 2MeV per nucleon in the tin region.
In contrast, the NN+3N-induced Hamiltonian reproduces the experimental trend fairly well
even for heavier systems. Be reminded that the nuclear Hamiltonians in use are fitted to few-
body data. Therefore, it is quite surprising how accurately heavy systems can be described
given the mass-regime the parameters of the interaction were fitted to. We note that even
though we only show results up to 132Sn it is possible to use MBPT and CC to compute
for the correlation energy of heavy closed-shell elements like, e.g., 208Pb. However, when
proceeding to such large mass-numbers one runs into convergence issues with respect to
the truncation of the three-body matrix elements necessary for the HF calculation and the
normal-ordering. Currently the upper limit for the three-body model space is E3max = 14,
which is insufficient for such heavy nuclei. Therefore, the neglected contributions associated
to the cutoff in the three-body matrix elements induce an additional systematic error of up
to 5% which makes a quantitative analysis challenging.

Focusing on the bottom panel of Figs. 8.3 and 8.4 we can compare the truncation effects
of MBPT and CC for different degrees of sophistication. The second-order energy correction
(◦) already accounts for a large part of dynamical correlation effects and contributes typically
about 1.5MeV per nucleon to the correlation energy. Additional 0.3MeV per nucleon come
from the inclusion of the third-order energy correction. The value of the correlation energy
from CCSD lies in between the second-order and third-order partial sums of the correlation
energy. This is an interesting result since CCSD is exact through third-order HF-MBPT.
Therefore, the additional contributions from singly- and doubly-excited intermediates at
higher-order must have a repulsive effect that lowers the binding energy. The inclusion
of triply-excited clusters via CR-CC(2,3) yields a method that is exact through fourth-
order HF-MBPT. These contributions have an attractive effect since the CR-CC(2,3) results
are always below the HF-MBPT(3) results. Effects of triply-excited intermediates are not
accounted for at HF-MBPT(3), which serves as explanation for the systematic differences
between HF-MBPT(3) and CR-CC(2,3). However, these differences in the correlation energy
are less than 0.1MeV per nucleon which is rather surprising.

Additionally, we note that the evaluation of the perturbative formulas at third-order
requires only 1 − 3% of the computing time required for the CR-CC(2,3) calculation thus
serving as cheap, high-quality alternative to state-of-the-art medium-mass methods.
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Figure 8.4: Panel (a) shows the ground-state energies per nucleon from third-order HF-MBPT
(l) in comparison to CR-CC(2, 3) ( ▼) results for selected closed-shell nuclei. Panel (b) shows the
correlation energy per nucleon, E

(2)
0 (◦) as well as E

(2)
0 + E

(3)
0 (l) for HF-MBPT. Additionally,

the correlation energy per nuclei for CCSD (△) and CR-CC(2,3) ( ▼) are shown. The SRG flow
parameter is α = 0.08 fm4, the HO frequency ℏΩ = 24MeV, for a model space truncated by
emax = 12 and lmax = 10. All calculations were performed with NN + 3N -induced interaction.
Experimental values are indicated by black bars [Wan+12].

8.4 Anatomy of the third-order energy correction

In this section we will investigate the diagrammatic content at third-order HF-MBPT more
deeply. In many-body theory one encounters the situation that a given method becomes
computationally very challenging at a certain truncation order. However, for physics rea-
sons it might be favorable to include at least some of the contributions of a given theory
at a certain truncation order. One such example is CC theory: it is expected that the
inclusion of triply-excited cluster into the many-body framework is necessary to improve
upon the quality of the CCSD approximation. In nuclear structure the full inclusion of
triples in the form of CCSDT is out of reach for computational reasons since this requires
the storage of the T̂3 amplitudes. To circumvent this problem, non-iterative schemes with
an approximate treatment of the triples were derived to partially account for the effect of
triples beyond the CCSD model. Analogously, one can analyze the diagrammatic content
at a given perturbation order and search for diagrams with critical scaling behavior that do
not contribute significantly. In the following we give a detailed analysis of the third-order
HF-MBPT diagrams and discuss approximation schemes beyond the perturbation order.

Recall from section 6.1 the individual contributions to the third-order energy correction

E(3)
pp =

1

8

∑
abcdij

H̄
[2]
ijabH̄

[2]
abcdH̄

[2]
cdij

ϵabij ϵ
cd
ij
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Figure 8.5: Individual contributions of the diagrams appearing at third-order perturbation theory.
Show are the contributions per nucleon from the pp-diagram( ■) , the hh-diagram (⋆) and the ph-
diagram ( ▼). The overall contribution of the third-order correction is depicted in (l). The left panel
corresponds to a 3N -full interaction and the right panel to a 3N -induced interaction. The SRG
flow parameter is α = 0.08 fm4, the HO frequency ℏΩ = 24MeV, in an emax = 12 and lmax = 10
truncated model space.
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,

where the lower indices refer to the particle-particle, hole-hole and particle-hole channels,
respectively. A possible way to approximate the third-order energy correction is to neglect
a certain diagram and only evaluate the remaining expression. Figure 8.5 disentangles the
individual contributions from the three terms for a selection of closed-shell nuclei. Again
we show the third-order correction per particle. For both interactions, the particle-particle
channel contributes only little to the overall third-order correction and is in most cases
weakly attractive. The hole-hole channel gives a slightly negative contribution which is a
little stronger in absolute value than the particle-particle channel. Most of the contribution
to the third-order energy correction comes from the particle-hole channel. Furthermore, the
third-order energy correction per nucleon is decreasing when going to heavy systems in the
case of the NN + 3N -induced interaction, but stays roughly constant for the NN + 3N -full
interaction.

Prior investigations—particularly in neutron matter—often neglected the particle-hole
channel and used the sum of the particle-particle and hole-hole channel as approximations
for the third-order energy correction [Heb+10; Krü+13; DHS16]. We assume the reason for
this to be the much simpler handling of the particle-particle and hole-hole channel by means
of a BLAS implementation, since only the particle-hole channel requires the additional use of
Pandya transformations to be cast into a matrix-product form. However, simply neglecting
the particle-hole channel for computational reason might induce severe systematic errors as
the largest part of the third-order correction comes from this term. It is also clear that
such effects may strongly depend on the Hamiltonian under consideration, i.e., a general
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Chapter 8 - Ground-state energies of closed-shell systems

Hamiltonian-independent conclusion about the size of a certain contribution is difficult. We
strongly recommend, however, to respect the intrinsic hierarchy of the many-body method
in use. Thus, at a given order, all diagrams must be included. In particular, a selection of
diagrams for computational reason must be avoided since the computational complexity is
not connected to the physical content of a given channel. 4

We note that even though an arbitrary selection of diagrams may lead to wrong estimates
and is not recommended, there exist ways to partially include diagrams of a given pertur-
bation order in a meaningful way. One possibility for example is the use ring summations
or ladder summations where certain topologies are included up to infinite order. Some first
test calculations can be found in Ref. [Dör15].

4Note that since np ≫ nh the particle-particle channel is from the point of computational scaling the
most challenging one.
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Introduction to Part III

When advancing to genuine open-shell systems the use of single-determinantal reference
states is, in general, not a suitable starting point for the correlation expansion. We have
seen in 6 that occurring (quasi-)degeneracies can lead to singular perturbation expansions.
Furthermore, the fully correlated wave function may not be dominated by single Slater deter-
minant and requires an inclusion of high-order correlation effects. Moreover, the extension
of HF-MBPT to excited states is not straightforward.

A possible solution is the use of more general states that already account for static corre-
lation effects at zero order. In particular, proper multi-configurational reference states, i.e.,
a superposition of several Slater determinants, have proven to provide accurate results in
quantum chemistry [RSS03; SSK04], and also in the application of the multi-reference IM-
SRG in nuclear structure [Her+16; Geb+16]. In general the origin of these reference states
remains arbitrary. However, using eigenvectors from a prior no-core shell model calculation
leads to systematically improvable zero-order states and, thus, defines a hybrid ab-initio ap-
proach combining configuration interaction and perturbation theory. Additionally, such an
ansatz treats ground and excited states on an equal footing and, therefore, provides direct
access to medium-mass spectroscopy.

We start with introducing configuration interaction as a general ab initio method and
discuss the no-core shell model and its importance-truncated extension as particular vari-
ants thereof. Next, we present many-body perturbation theory with respect to arbitrary
multi-configurational reference states. After defining the basic concept (and zero-order
Hamiltonian) we introduce the diagrammatic formalism, which is used for the derivation
of low-order energy corrections. Later on, we discuss no-core shell model eigenvectors as a
particular choice of reference state.

Since the derivation of low-order formulas becomes very cumbersome and error-prone
with increasing perturbation order, we present a systematic way for computer-aided code
generation of low-order multi-configurational perturbation theory.

In the last chapter we discuss recent results for excitation spectra and ground-state
energies of medium-mass nuclei using state-of-the-art chiral interactions for selected isotopic
chains. Particular emphasis is put on a deeper understanding of neutron-rich isotopes and
the theoretical reproduction of experimentally observed neutron driplines.
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9
Configuration Interaction

One of the conceptually simplest approaches for the solution of the quantum many-body
problem is the configuration interaction (CI) approach. The basic idea is to diagonalize the
nuclear Hamiltonian in A-body space in a basis of Slater determinants for a selected single-
particle basis. In principle the CI method provides an exact solution of the Schrödinger
equation. In actual calculations one is restricted to a finite set of basis functions and,
therefore, CI only provides upper bounds to the exact solution. A special variant of CI is the
no-core shell model (NCSM) which has a long tradition in nuclear structure theory [NVB00;
Bog+08; Bin10; BNV13; RN07]. Because of the high computational costs, CI approaches
are limited to light nuclei. In order to advance to heavier systems extensions have been
developed, which reduce the size of the Hamilton matrix and allow tackling nuclei up into
the lower sd-shell. Such approaches will be described at the end of the chapter in the context
of the importance-truncated NCSM (IT-NCSM).

9.1 Full Configuration Interaction

The full CI wave function has the form

|ψFCI⟩ = |Φ⟩+
∑
a,i

Ca
i |Φa

i ⟩+
∑

a<b,i<j

Cab
ij |Φab

ij ⟩+
∑

a<b<c,i<j<k

Cabc
ijk |Φabc

ijk⟩+ ..., (9.1)

where |Φ⟩ is the reference determinant and all other components are build via particle-hole
excitations on top of |Φ⟩. The restrictions of the summations in (9.1) ensure that every
configuration is accounted for only once. When using the full configuration interaction
(FCI) ansatz all components up to Ap-Ah-excitations are taken into account. This means,
for example, that the FCI expansion in a 4He calculation contains up to fourfold-excited
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Chapter 9 - Configuration Interaction

determinants, whereas for 208Pb one needs to include up to 208-fold excited determinants in
the many-body space.

In FCI calculations there is no other truncation than the dimension of the single-particle
basis DSP . The many-body basis is constructed as

V FCI ≡
{
|Φk⟩ = ĉ†k1 · ... · ĉ

†
kA
|0⟩ : k1 < ... < kA = 1, ...,DSP

}
. (9.2)

It can be shown that the dimension of the FCI space is given by

dim(V FCI) =
(DSP )!

A!(DSP − A)!
. (9.3)

The factorial growth of the FCI space with respect to, both, particle number A and single-
particle dimension DSP , provides the main limitation of applying FCI beyond the lightest
nuclei.

Sometimes it is more convenient to have a shorthand notation for the FCI expansion
available. We, therefore, define so-called np-nh excitation operators

Ĉn =
1

(n!)2

∑
i1,...,in
a1,...,an

Ca1,...,an
i1,...,in

ĉ†a1 · · · ĉ
†
an ĉi1 · · · ĉin , (9.4)

with CI amplitudes Ca1,...,an
i1,...,in

such that, when acting on |ψ0⟩, Ĉn generates all np-nh excita-
tions. Therefore, the linear FCI expansion can be written as

|ψFCI⟩ = (1 + Ĉ1 + Ĉ2 + Ĉ3 + ...)|Φ⟩. (9.5)

We can, thus, define the FCI wave operator by

|ψFCI⟩ = (1̂ + Ω̂(FCI))|Φ⟩, Ω̂(FCI) ≡
A∑
n=1

Ĉn, (9.6)

which reproduces the exact wave function when acting on the reference determinant.

9.2 Truncated Configuration Interaction

Due to the large size of the many-body basis in FCI calculations such an approach becomes
impractical with increasing mass number. Therefore, one introduces a truncation of the FCI
wave operator in the particle rank of the excitation operators Ĉn. The wave operator in
truncated configuration interaction of rank m reads,
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9.2 - Truncated Configuration Interaction

Ω̂CI(m) =
m∑
n=1

Ĉn. (9.7)

For the lowest truncated CI variants there exists an explicit nomenclature. In the simplest
case the truncated CI wave operator contains only double excitations, which is called CI with
doubles (CID). More advanced methods include all excitation operators up to, e.g., particle
rank m = 3 leading to CI with singles, doubles and triples (CISDT). Contrary to what
one might expect, CI with singles (CIS) is not the simplest non-trivial finite CI method.
Using only singles in the CI expansion correspond to performing an orbital rotation of the
single-particle states which does not affect the binding energy.

The above truncation is justified since one expects a hierarchy in the importance of
particle-hole excitations in the description of ground-state energies. In particular, one ex-
pects that higher-order contributions will become less significant than lower ones. However,
this is a rather generic statement. In particular in quantum chemistry we know systems
where, e.g., quadruples in the CI expansion are equally important as triples. The particular
importance of certain types of contributions heavily depends on the system under investiga-
tion and the Hamiltonian used in the calculation.

The truncated CI expansion leads to a much milder scaling of the many-body basis size
when enlarging the single-particle basis. However, in any truncated CI method there exists
the so-called size-consistency problem. A truncation scheme is defined to be size-consistent
if the energy of the two systems A and B and the energy of the combined system AB satisfy

E(AB) = E(A) + E(B), (9.8)

where it is assumed that the two systems A and B are infinitely far apart such that they do
not influence each other. Furthermore, the energy has to be computed in equivalent ways,
e.g., in the CID approximation. Relation (9.8) is always fulfilled in the FCI ansatz. How-
ever, when truncating the FCI expansion one always introduces a source of size-inconsistency.
Practical calculations in quantum chemistry showed that CISDTQ, i.e., CI with singles, dou-
bles, triples and quadruples, is effectively size-consistent when describing systems of modest
size. Additionally, it is possible to derive a-posteriori corrections to account for the induced
size-consistency error in finite CI calculations [LD74; DD94; Rot08].

Ultimately, one is interested in formulating a many-body approach that is rigorously size-
consistent at any truncation order. Coupled-cluster theory was one of the first approaches
that solved the size-consistency problem by using an exponential ansatz for the wave operator
instead of the linear CI form [Coe58; CK60; Čı́ž66; ČP69]. For a more detailed discussion
of the connection of coupled-cluster theory and CI theory in the context of size consistency
we refer the reader to [SB09].
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9.3 No-Core Shell Model

Another possibility to truncate the FCI expansion is a restriction in the maximal excita-
tion energy with respect to |Φ⟩ in (9.1). In the following we will always assume a HO
single-particle basis. We define a shorthand notation for the excitation energy of a Slater
determinant |Φa1,...,an

i1,...,in
⟩ with respect to |Φ⟩ by 1

ea1,...,ani1,...,in
≡

n∑
k=1

(eak − eik), (9.9)

where ek = (2nk + lk) denotes the HO quantum number. With this we define No-Core
Shell-Model (NCSM) wave operator via

Ĉ(NCSM) ≡
A∑
n=1

Ĉ(NCSM)
n , (9.10)

where

Ĉ(NCSM)
n ≡

∑
a1,...,an
i1,...,in

Ca1,...,an
i1,...,in

ĉ†a1 · · · ĉ
†
an ĉi1 · · · ĉin (9.11)

is the NCSM excitation operator. The sum in (9.11) is constrained such that

ea1,...,ani1,...,in
≤ Nmax, (9.12)

where Nmax is the maximal value of excitation quanta of the Slater determinants that are
included in the model space.

One important property of this truncation scheme is a factorization of the NCSM wave
function into a center-of-mass part and a relative part when using harmonic oscillator single-
particle states,

|ψ(NCSM)⟩ = |ψint⟩ ⊗ |ψcm⟩, (9.13)

where |ψint⟩ denotes the intrinsic wave function and |ψcm⟩ the center-of-mass wave function.
When using a total nuclear Hamiltonian

Ĥtot = Ĥnucl + βĤcm, (9.14)

where Ĥcm denotes a HO Hamiltonian with respect to the center-of-mass coordinates, the
NCSM scheme avoids spurious center-of-mass contaminations, which are present when deal-

1We note that the term ’energy’ is misleading since ea1,...,an

i1,...,in
is a dimensionless quantity.
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ing with CI wave functions constructed from another single-particle basis, e.g., the self-
consistent field orbitals arising from Hartree-Fock calculations.

For a discussion of recent applications of the NCSM see, e.g., Ref. [BNV13].

9.4 Importance-Truncated No-Core Shell Model

As already mentioned, the tremendous growth of basis size restricts the range of applicability
of the NCSM to very light nuclei. Many applications of the NCSM with very large Nmax-
truncated model spaces do not reach model-space convergence even with the use of massive
parallelization techniques. In order to extend the reach of CI methods, several importance-
truncated extensions have been formulated and applied [ALP03; RN07; Rot08; Rot09].

The main observation is that a large part of the many-body states in the NCSM basis
do not significantly contribute to the expansion of a particular eigenstate. Therefore, one
constructs an a-priori measure for the importance of a certain basis state. With this the most
relevant basis states are preselected before the diagonalization is performed. We emphasize
that we do not evaluate all matrix elements of the Hamiltonian and discard corresponding
column vectors according to the a-priori measure of the corresponding basis state, but only
build the many-body Hamiltonian with respect to basis states, where the measure exceeds
a given threshold.

For the construction of the importance measure one uses a perturbative ansatz and
investigates the amplitude of the first-order state correction. To this end, one defines a small
reference space Mref in which the nuclear Hamiltonian is subsequently diagonalized, 2

Ĥ|ψref⟩ = ϵref|ψref⟩. (9.15)

Let now |ϕµ⟩ /∈ Mref be a Slater-determinantal basis function. We define the importance
measure κµ by

κµ ≡ −⟨ϕµ|Ĥ|ψref⟩
ϵµ − ϵref

. (9.16)

The IT-NCSM model space is defined as

V (IT-NCSM) ≡ span{|ϕµ⟩ ∈ V(NCSM) : |κµ| ≥ κmin}, (9.17)

where κmin is some fixed value, where now

V (IT-NCSM) ⊂ V (NCSM). (9.18)

2Typically such a reference space is defined by a full NSCM space for a small value of Nmax.
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The NCSM wave function is obtained in the limit of κmin → 0,

|ψ(NCSM)⟩ = lim
κmin→0

|ψ(IT-NCSM)⟩. (9.19)

In practice, IT-NCSM calculations are typically performed for several values of κmin. The
limit κmin = 0 is then obtained by extrapolating a κmin-sequence. The extrapolation error is,
in most cases, of the order of 100 keV for an absolute energy and reliable results for ground-
state energies and spectra can be obtained up to heavy oxygen isotopes [Rot08; Rot09].
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Multi-Configurational Perturbation Theory

At the end of the discussion of HF-MBPT we have discussed possible limitations of single-
configurational many-body methods and single-configurational MBPT in particular. A solu-
tion to this problem is the use of more general reference states that include static correlation
effects and lift the zero-order degeneracy. In this section we derive a general version of
perturbation theory that is build on top of a (normalized) multi-configurational reference
state consisting of several determinants. Similar techniques have already been used success-
fully in quantum chemistry [RSS03; SSK04]. With this we can generalize the partitioning
from HF-MBPT to such multi-configurational reference states while sticking to a Møller-
Plesset philosophy, where unperturbed energies are defined in terms of sums of suitably
chosen single-particle energies. We derive low-order energy corrections and introduce a new
normal-ordering formalism, which makes use of several (single-determinantal) Fermi vacua
allowing for the derivation of perturbative energy corrections in terms of one- and two-body
quantities. After presenting an exhaustive list of all second-order diagrams we discuss com-
putational aspects of the implementation.

Finally, by using particular reference states obtained from prior NCSM calculations we
define a novel hybrid ab initio approach which merges NCSM and MBPT technology, thus,
allowing to improve the zero-order reference states in a controlled way.

10.1 Definition of Partitioning

We start with a discussion of the partitioning and the reference space in depth and derive a
low-order many-body perturbation theory from it.

We use a reference state obtained from a prior diagonalization in a model space Mref,
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|ψref⟩ =
∑

|Φν⟩∈Mref

Cν |Φν⟩, (10.1)

where cν denote the expansion coefficients of the eigenvector with respect to the Slater-
determinantal basis functions {|Φν⟩} spanning Mref.

We formally define the zero-order Hamiltonian Ĥ0 by

Ĥ0 =
∑
I

EI |ψI⟩⟨ψI |+
∑

|Φµ⟩/∈Mref

E(0)
µ |Φµ⟩⟨Φµ|, (10.2)

where {|Φµ⟩} denote the Slater determinants spanning M⊥
ref. The first term corresponds

to the solution of the eigenvalue problem in Mref with corresponding eigenstates |ψI⟩. In
particular |ψref⟩ corresponds to one of the eigenvectors |ψI⟩.

With this it holds that

Ĥ0|ψref⟩ = Eref|ψref⟩, (10.3)

where Eref is yet to be specified. In the spirit of the Møller-Plesset partitioning in HF-MBPT
we define the reference energy by

Eref =
∑
p

ϵpγpp, (10.4)

where ϵp denote suitably chosen single-particle energies and γ the (correlated) one-body
density matrix with respect to the multi-configurational reference state

γpq = ⟨ψref|ĉ†pĉq|ψref⟩. (10.5)

The diagonal elements γpp ∈ [0, 1] can be seen as generalizations of the occupation numbers
from HF theory.

The unperturbed energies of the states |Φµ⟩ ∈ M⊥
ref are defined by

E(0)
µ =

∑
i occupied in |Φµ⟩

ϵi. (10.6)

For the definition of single-particle energies we use the Baranger Hamiltonian with matrix
elements

fpq = H [1]
pq +

∑
rs

H̄ [2]
prqsγrs, (10.7)

and define
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ϵp = fpp. (10.8)

Again structural information about the reference state enters the definition of the single-
particle energies. With the above partitioning the zero- and first-order energy corrections
read

E(0) = ⟨ψref|Ĥ0|ψref⟩ = Eref, (10.9)
E(1) = ⟨ψref|Ŵ |ψref⟩ = ⟨ψref|Ĥ|ψref⟩ − Eref, (10.10)

such that

E(0) + E(1) = ⟨ψref|Ĥ|ψref⟩, (10.11)

thus, corresponding to the eigenvalue of Ĥ restricted to Mref.
According to the resolvent expansion the first non-trivial energy correction appears at

second order and can be written as

E(2) =
∑

|Φν⟩/∈Mref

|⟨ψref|Ŵ |Φν⟩|2

Eref − E
(0)
ν

, (10.12)

where the sum runs over all determinants {|Φν⟩} /∈ Mref.
The restriction of the above sum to states from M⊥

ref is a particular feature of using an
eigenvector of Ĥ in the reference space. In general there appears the additional term

∑
|ψI⟩∈Mref
|ψref⟩≠|ψI⟩

|⟨ψref|Ŵ |ψI⟩|2

Eref − E
(0)
I

, (10.13)

which runs over the other eigenvectors |ψI⟩. However, by orthogonality of the eigenvectors
follows

⟨ψref|Ŵ |ψI⟩ = ⟨ψref|Ĥ|ψI⟩ − ⟨ψref|Ĥ0|ψI⟩

= ⟨ψref|ENCSM
ref |ψI⟩ − ⟨ψref|EI |ψI⟩ = 0, (10.14)

where ENCSM
I denotes the NCSM eigenvalue of the state |ψI⟩. Therefore, other many-body

states than |ψref⟩ in Mref do not contribute to the evaluation of the second-order correction.
This is of particular importance since the many-body dimension of the reference states can
contain up to several millions of states. 1

We note that this holds no longer true for MCPT beyond third-order, where other P -

1Note that we require here a solution of the complete eigensystem and not just the lowest one. Therefore,
Lanczos methods for the solution of extremal eigenvalue are inapplicable.
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space states may contribute indirectly through intermediate states.

The limit of a one-dimensional reference space

After discussing the generalities of the above choice of Ĥ0 we investigate the limit of a one-
dimensional reference space, i.e., where |ψref⟩ is (again) a single Slater determinant. In this
case the one-body density matrix becomes diagonal. Moreover, γpq vanishes if p and q are
not both hole states. 2

The formal definition of Eref becomes

Eref =
∑
p

ϵpγpp =
∑
i

ϵi, (10.15)

where the sum over i in the last expression runs over all occupied single-particle states in
the reference state |ψref⟩.

With this, the one-body operator used for the definition of single-particle energies reduces
to

fpq = H [1]
pq +

∑
rs

H̄ [2]
psqsγrs

= H [1]
pq +

∑
i

H̄
[2]
piqi, (10.16)

which is just the definition of the mean-field Fock operator from HF theory. Thus, the above
choice of Ĥ0 leads to ordinary single-configurational MBPT, which we have already discussed
in chapter 6.

10.2 Derivation of low-order corrections

The second-order energy correction to an arbitrary multi-determinantal reference state can
be calculated using (10.12). However, this expression is formulated entirely in terms of many-
body quantities. Therefore, for the evaluation of the second-order correction one must, in
principle, construct all many-body configurations {|Φν⟩} for a given Hilbert space H and
calculate the corresponding many-body matrix elements ⟨ψref|Ŵ |Φν⟩. 3 Such a strategy
becomes impractical when proceeding to heavier systems since the size of the many-body
space is too large. Therefore, we will reformulate energy corrections using normal-ordering
techniques and cast them into a form that only depends one one- and two-body quantities.
The sums over many-body configurations will then be replaced by sums over single-particle

2Note that in the case of a single-determinantal reference state we have again a well-defined particle-hole
picture which is not the case when using a multi-determinantal reference state.

3In quantum chemistry such approaches are entitled ’sum over configuration’.
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Virtual
...

Valence particles (x, y, ...)
...

Valence holes (u, v, ...)
...

Core
...

Particles (a, b, ...)

Holes (i, j, ...)

Figure 10.1: Classification of single-particle states in MCPT.

states. 4 We start with expanding the reference state in (10.12) with respect to its Slater
determinant components

E(2) =
∑

|Φµ⟩,|Φ′
µ⟩∈Mref

cµ′c
⋆
µ

∑
|Φν⟩/∈Mref

⟨Φµ′|Ŵ |Φν⟩⟨Φν |Ŵ |Φµ⟩
Eref − E

(0)
ν

. (10.17)

Fixing the determinants in the outer summation (µ ̸= µ′) leads to the evaluation of expres-
sions like

∑
|Φν⟩/∈Mref

⟨Φµ′|Ŵ |Φν⟩⟨Φν |Ŵ |Φµ⟩
Eref − E

(0)
ν

. (10.18)

The above expression only contains matrix elements with respect to single Slater determi-
nants. To make use of Wick’s theorem we must write all operators in normal-order with
respect to a fixed reference state. We conveniently chose the rightmost determinant |Φµ⟩ as
Fermi vacuum. All other determinants appearing in the above expressions are expressed as
particle-hole excitations with respect to |Φµ⟩, e.g.,

⟨Φµ′| = ⟨Φµ|{i†1 · · · i†pap · · · a1}|Φµ⟩. (10.19)

4Contrary to ’sum over configuration’ approaches these methods are called ’sum over orbital’ approaches.
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As we will see, diagrams appearing in the formulas for the energy correction in MCPT
contain open legs, which are not present in the energy corrections in single-configurational
MBPT. Accordingly, some of the single-particle indices are occupied in all reference de-
terminants corresponding to core indices while others are only occupied in some reference
determinants corresponding to valence indices. Further, states that are unoccupied in all
reference determinants are called virtual states. When specifying a particular determinant in
the (multi-determinantal) reference state there is again a well-defined particle-hole picture
and we can unambiguously refer to particle and hole indices, respectively. However, the
particular set of particle and hole states depends on the determinant under consideration.

Figure 10.1 gives an overview of the naming convention for the different classes of single-
particle states. However, we note that the ordering of the single-particle states does not
reflect the energetic ordering and the classification of valence states relies on the particular
reference state |ψref⟩. In particular in the most general case the core space is empty.

Diagrammatic rules in MCPT

The diagrammatic rules of single-configurational MBPT need to be extended to the multi-
configurational setting. First we rewrite the perturbation operator Ŵ in normal-product
form with respect to the Slater determinant |Φµ⟩,

W (µ) = ĥ
(µ)
0 + ĥ

(µ)
1 + ĥ

(µ)
2 (10.20)

= ĥ
(µ)
0 +

∑
pq

⟨p|ĥ(µ)1 |q⟩{ĉ†pĉq}|Φµ⟩ +
∑
pqrs

⟨pq|ĥ(µ)2 |rs⟩{ĉ†pĉ†q ĉsĉr}|Φµ⟩, (10.21)

with matrix elements

⟨p|ĥ(µ)1 |q⟩ = (H [1]
pq − ϵp)δpq +

1

2

∑
i∈|Φµ⟩

H̄
[2]
piqi (10.22)

⟨pq|ĥ(µ)2 |rs⟩ = H̄ [2]
pqrs. (10.23)

In the following when we derive the energy corrections from the diagrams it is implied that
we always use the normal-ordered part of the operators with respect to a fixed Fermi vacuum
|Φµ⟩. Note that the matrix elements of the one-body part implicitly depend on |Φµ⟩. While
we use the same diagrammatic representation for the two-body part of the perturbation
operator as in chapter 6, we introduce a new vertex style to distinguish the determinant-
dependent one-body vertices in MCPT from the ordinary HF-MBPT one-body vertices
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10.2 - Derivation of low-order corrections

Furthermore, the energy denominators are not given by differences of single-particle en-
ergies since E(0)

ref contains a non-trivial dependence on the one-body density. We rewrite the
denominator as

E
(0)
ref − E(0)

ν = E
(0)
ref − E(0)

µ + E(0)
µ − E(0)

ν (10.24)

and define the quantity

∆µ ≡ E
(0)
ref − E(0)

µ . (10.25)

Since both |Φµ⟩ and |Φν⟩ are SDs, the difference of zero-order energies in MP partitioning is
given by the difference of single-particle energies plus the contribution from (10.25) depending
on the reference determinant. The difference of the single-particle energies can be read off
from the resolvent-line crossings in the MCPT diagrams. The resolvent line is an imaginary
horizontal line between adjacent vertices of the perturbation operators. Typically, it is
not included in drawings of MBPT diagrams. We include the resolvent line in (10.29)
for pedagogical reasons. Note that for open diagrams there is no additional resolvent line
between the external legs and the top perturbation-operator vertex. In general a diagram of
order p contains p− 1 resolvent lines.

Since the number of different index types increases, we introduce the following convention
for the labelling of single-particle lines

x u a i

which corresponds (from left to right) to valence particles and valences holes as well as
general particles and general holes, respectively. External lines, i.e., lines corresponding to
valence indices, are indicated with double arrows.

In the following we extensively use different kinds of permutation operators. Let P(pq)

denote the transposition of single-particle indices p and q. We further define

P(p/qr) ≡ 1− P(pq)− P(pr), (10.26)

as well as

P(a/bc)
(i/jk) ≡ P(a/bc)P(i/jk). (10.27)
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Diagrammatic Rules for MCPT

1. Every vertex corresponds to a one- or two-body matrix element. Reading the
diagram from left to right lines are identified as follows

⟨1st ingoing line, 2nd ingoing line|...|1st outgoing line, 2nd outgoing line⟩

2. Every internal line corresponds to a single-particle summation.

3. Downgoing lines correspond to hole indices and upgoing lines correspond to particle
indices.

4. Each equivalent pair of lines gives a prefactor 1
2
.

5. The sign of the expression is given by (−1)h+l where h denotes the number of holes
and l the number of loops.

6. For open diagrams one has to take into account all permutations of single-particle
indices corresponding to open lines with their proper sign.

7. To every resolvent line corresponds an energy denominator

ϵa1···aki1···ik +∆µ =
k∑

n=1

(ϵan − ϵin) + E
(0)
ref − E(0)

µ (10.28)

depending on the number of single-particle lines crossing the resolvent line and
current Fermi vacuum |Φµ⟩.

The diagrammatic rules are best understood when applied to an example. In the following
diagram we investigate a second-order contribution coming from two two-body operators and
a triply-excited determinant |Φµ′⟩ = |Φxyz

uvw⟩. In the following the red dashed line denotes the
resolvent line used for the construction of energy denominators.

x u y
v z w

i

(10.29)

First we identify the two two-body matrix elements H̄ [2]
xyui and H̄ [2]

vwiz. The resolvent operator
yields an energy denominator ϵxyui + ∆µ. For the determination of the prefactor we need to
count equivalent lines. The two pairs x and y as well as v and w are equivalent thus yielding
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1 (a)(i) (b)(j)
1

4

∑
abij

H̄
[2]
abijH̄

[2]
ijab

ϵabij +∆µ

2 (a)(i)
∑
ai

H
[1]
ai H

[1]
ia

ϵai +∆µ

Figure 10.2: Closed ASG diagrams appearing at second-order MCPT.

a prefactor of 1
4
. The number of hole lines is h = 4 since u, v, w, i point downwards. For the

calculation of the number of closed loops we added the dotted lines on top of the diagram.
Obviously, the paths (x, u), (y, v, i) and (z, w) are all closed. Within these loops every vertex
is reached exactly once and the overall loop number is l = 3.

Additionally, making use of the permutation operators and summing over internal lines
the overall expression reads

−P(z/xy)
(u/vw)(−1)σ

1

4

∑
i

H̄
[2]
xyuiH̄

[2]
vwiz

ϵxyui +∆µ

, (10.30)

where σ denotes the sign of the permutation of external indices.

Second-order energy correction

The diagrammatic derivation of the second-order correction contains many more diagrams
than the simpler single-configurational MBPT case. In general the diagrams can be classified
according to the number of pairs of open legs, i.e., non-internal lines. in the case where the
leftmost and rightmost determinant in (10.17) coincide (µ = µ′) the diagrams are closed and
are the same as in single-configurational MBPT. However, note that since we are working
with a multi-configurational reference state, the energy denominator is different and con-
tains the additional contribution ∆µ as eluded before. Additionally, since the 1B part does
also contain a normal-ordered contribution depending on the current Fermi vacuum |Φµ⟩,
there is no analogue to Brillouin’s theorem and, hence, the one-body part does not vanish.
Therefore, we are always left with two closed diagrams. Figure 10.2 displays both topologies
and their individual contribution.

New diagrammatic content appears when the leftmost determinant is different from the
current Fermi vacuum, i.e., µ ̸= µ′. At second-order MCPT when using two-body operators
the leftmost determinant can be an up to 4p-4h excitation with respect to the Fermi vacuum.
In general the highest possible excitation rank at a given order p is given by
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3 x
(i)

u

(j) (a)
−1

2

∑
aij

H̄
[2]
xaijH̄

[2]
ijua

ϵaxij +∆µ

4 u
(b)

x

(i) (a)

1

2

∑
abi

H̄
[2]
uibaH̄

[2]
baxj

ϵabiu +∆µ

5 u x
(i) (a)

∑
abi

H̄
[2]
xauiH

[1]
ai

ϵaxui +∆µ

6

u x

(i) (a)

∑
ai

H̄
[2]
uaxiH

[1]
ai

ϵai +∆µ

7 u
(a)

x ∑
a

H
[1]
auH

[1]
ax

ϵau +∆µ

8 x
(i)

u ∑
i

H
[1]
xiH

[1]
ui

ϵxi +∆µ

Figure 10.3: ASG diagrams with single-replacement at second-order MCPT.

p · rank(Ĥ), (10.31)

where rank(Ĥ) denotes the highest particle-rank in the Hamiltonian.
In the simplest case the leftmost determinant is a single excitation with respect to |Φµ⟩.

The corresponding six topologies (3 − 8) are shown in 10.3. Recall that there is no sum-
mation over external lines and the single-particle indices x, u correspond to the particle-hole
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9 x
(i)

u

(j)

v
y 1

8

∑
ij

H̄
[2]
xyijH̄

[2]
ijuv

ϵxyij +∆µ

10 x
(i)

u

(a)

y
v −P(xy)

(uv)

∑
ai

H̄
[2]
xaivH̄

[2]
iyua

ϵaxiv +∆µ

11 u
(b)

x

(a)

y
v 1

8

∑
ab

H̄
[2]
uvabH̄

[2]
abxy

ϵabub +∆µ

12 u
(a)

x
y v P(xy)1

2

∑
a

H̄
[2]
uvayH

[1]
ax

ϵaxuv +∆µ

13 x
(i)

u
y v −P(uv)

1

2

∑
a

H̄
[2]
xyivH

[1]
ui

ϵxyiv +∆µ

Figure 10.4: ASG diagrams with double-replacements at second-order MCPT.

representation of |Φµ′⟩ with respect to |Φµ⟩.

In the next case the leftmost determinant is a double excitation with respect to |Φµ⟩ and
there are eight ASG diagrams (9−16) contributing according to Wick’s theorem. Figure 10.4
and 10.5 disentangle the individual contributions. Note that in the case of double excitations
the permutation operator P(xy)

(uv) enters for the first time thus giving up to four contributions
for each individual diagram. Figure 10.6 displays all topologies for triple (17 − 20) and
quadruple excitations (21) which yield additional five diagrams. Here, of course, higher
permutation operators P(xyz)

(uvw) and P(x1x2x3x3)
(u1u2u3u4)

enter. Overall there are 21 diagrams at second-
order MCPT for two-body operators making the implementation much more cumbersome
than in single-configurational MBPT.
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14 x
(i)

u v y

−P(xy)1

2

∑
i

H̄
[2]
uviyH

[1]
ix

ϵxi +∆µ

15 u
(a)

x v y
P(uv)

1

2

∑
a

H̄
[2]
avxyH

[1]
ua

ϵau +∆µ

16 u x
v y

P(xy)
(uv)

H
[1]
uxH

[1]
vy

ϵxu +∆µ

Figure 10.5: ASG diagrams with double-replacements at second-order MCPT, continued.

Computational considerations

Our implementation of MCPT uses a formulation in m-scheme. In this way we are not
restricted to even-even nuclei and 0+ states. However, the m-scheme basis dimension is
much larger compared to using a spherical single-particle basis as we did in the case of single-
configurational MBPT. Again single-particle summations can be classified into particle and
hole summations. When changing the Fermi vacuum the particular hole states change, their
number nh, however, stays the same. The same holds for the particle states and their number
np. Taking for example the first closed diagram in Figure 10.2 with two two-body vertices
we have two particle and two hole summations, giving a scaling

∼ n2
p · n2

h. (10.32)

Note, however, that this diagram has to be evaluated for every determinant. Let in the
following

Dref ≡ dim(Mref) (10.33)

denote the size of the reference space, i.e., the number of SDs which |ψref⟩ is composed of.
Therefore, diagram 1 yields an overall scaling of

1 ∼ Dref · n2
p · n2

h. (10.34)
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17 x u y
v z w

(i)
−P(z/xy)

(u/vw)

1

4

∑
i

H̄
[2]
xyuiH̄

[2]
vwiz

ϵxyui +∆µ

18 x u v
y z w

(a)
−P(x/yz)

(w/uv)

1

4

∑
a

H̄
[2]
xauvH̄

[2]
yzaw

ϵxauv +∆µ

19 x u y
z w

v P(z/xy)
(w/uv)

1

4

H̄
[2]
xyuvH

[1]
wz

ϵxyuv +∆µ

20 x u
y z wv

P(x/yz)
(u/vw)

1

4

H̄
[2]
yzvwH

[1]
xu

ϵxu +∆µ

21 x1 u1 x2 u2

x3 u3x4 u4

P(x1x2/x3x4)
(u1u2/u3u4)

1

16

∑
i

H̄
[2]
x1x2u1u2H̄

[2]
x3x4u3u4

ϵx1x21u2 +∆µ

Figure 10.6: ASG diagrams with triple- and quadruple-replacements at second-order MCPT.

The second closed diagram containing two one-body vertices has two internal summa-
tions, making it naively a Dref · np · nh process. The one-body vertices are, however, not
single matrix elements but contain, due to the normal-ordering with respect to the Fermi
vacuum, each an additional hole summation. Therefore, diagram 2 exhibits a scaling

2 ∼ Dref · np · n3
h. (10.35)

Since typically np ≫ nh the two-body diagram 1 dominates the second-order MCPT cor-
rections. We note that, due to the additional hole summations, the one-body diagram 2 is
computationally more demanding than the closed one-body diagram in single-configurational
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MBPT.5 The scaling of the closed diagrams at MCPT(2) is comparable to performing Dref

copies of HF-MBPT(2). In particular calculations using very large reference spaces, where
several millions of SDs are incorporated in the zero-order state, are numerically challenging.
Additionally, we must evaluate the open-diagrams. For every tuple (µ, µ′) of indices one
class of diagrams has to be computed. In the worst case these contain up to three particle
summations, i.e., diagrams 3 and 4. This is the case for the first two diagrams for single
replacements, see Figure 10.3. Since the number of tuples (µ, µ′) is given by D2

ref, an upper
bound for the scaling of the open diagrams is given by

∼ D2
ref · n2

p · nh. (10.36)

We note that this is a very crude estimate since not every pair (µ, µ′) corresponds to the case
where |Φµ′⟩ is a single excitation with respect to |Φµ⟩. If |Φµ′⟩ is, e.g., a double excitation
then the diagrams involve at most two single-particle summations and the scaling is milder.
However, (10.36) indicates how the scaling depends on the size of the reference space.

In summary we conveniently write6

MCPT(2) ∼ max{Dref · n2
p · n2

h,D2
ref · n2

p · nh.}, (10.37)

to indicate the scaling behavior of second-order MCPT, where the first element corresponds
to the scaling of the closed diagrams and the second one to the scaling of the open diagrams.
Most importantly we see the different powers of Dref that enter the description.

Extension to third order and three-body operators

We already discussed that the second-order energy correction required the derivation of a
lot of diagrams. When proceeding to the third-order energy correction the proliferation of
diagrams makes the error-prone derivation of the diagrams and the implementation of the
code very tedious. There appear 377 diagrams at third order which contain up to hextuple,
i.e., sixfold replacements. Therefore, one relies on the use of symbolic manipulation tools to
support the implementation of MCPT(3). However, even modern packages that are used to
evaluate Wick contractions automatically, might run into problems due to the high particle-
rank of the leftmost excited determinants. An alternative to this approach is provided by
the use of combinatorial graph theory, where the structure of the diagrams are encoded in
terms of matrices. In a second step both the desired formulas and the source code can be
generated from these matrices leading to an automated code generator. We will show how
to deal with this problem in a systematic way in chapter 11.

5In this analysis we assume that we evaluate the one-body matrix elements on the fly. This is a reasonable
assumption since the storage of Dref · np · nh matrix elements is impractical for large reference states.

6Here we assume again np ≫ nh which is the regime we are interested in.
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Another possible extension involves the inclusion of full three-body operators. This
greatly increases the number of diagrams even at second order. Moreover, more complicated
topologies arise containing up to hextuple replacements. Furthermore, not only the one-body
part of the normal-ordered perturbation operator depends on the current Fermi vacuum but
also the two-body part due to the contracted three-body part. Overall this tremendously
increases the computational scaling already at second-order. It does, however, offer the pos-
sibility to account for three-body effects beyond the NO2B approximation, which is currently
impossible for medium-mass open-shell nuclei.

10.3 Merging MCPT and NCSM

The above discussion is valid for arbitrary multi-configurational reference states |ψref⟩ with
the sole restriction that the reference state is normalized. The use of eigenvectors from a
NCSM calculation has a lot of advantages. As already introduced in chapter 9 the NCSM
and its importance-truncated extension are very powerful ab initio techniques for the inves-
tigation of up to medium-light nuclei. While the NCSM renders a fully variational approach,
the strong computational scaling prohibits its use beyond the oxygen chain. MCPT on the
other hand is a non-variational many-body approach, which can access very large model
spaces and effectively describe correlation effects perturbatively, provided the perturbation
series is convergent. By using multi-configurational reference states static correlation effects
are already included in the zero-order description and perturbative corrections take into
account the residual dynamic correlations. In this way the perturbatively-improved no-core
shell model (NCSM-PT) combines the advantages of both NCSM and MBPT and defines a
novel hybrid ab initio approach, which is capable of describing complex nuclei in a controlled
way from first principles.

In the NCSM-PT framework there exist two independent limits, where the exact wave
function is reproduced. First lets assume we have a fixed model space Mref characterized
by the value of N (ref)

max . If one calculates perturbative corrections up to infinite order the
exact wave function and binding energy is reproduced, provided the perturbation series is
convergent. On the other hand, if we alternatively enlarge the reference space we get in the
limit where N (ref)

max → ∞

E(p) = 0, for p ≥ 2. (10.38)

All correlation effects are included in the reference state and all perturbative corrections
vanish. Therefore, there are two independent limits of the theory, which reproduce the exact
solution of the Schrödinger equation.

In the simplest non-trivial case one uses the truncation
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(N (ref)
max = 0, p = 2). (10.39)

If this does not provide an accurate approximation to the exact result one either increases
the reference space size or includes higher-order effects depending on the particular problem
under consideration. In many cases the use of Nmax = 0 in NCSM calculations does not
reproduce the correct level ordering. Therefore, enlarging the reference to N (ref)

max = 2 might
help improving spectra in NCSM-PT. On the other hand, there are many known states
where very particular correlation effects play a dominant role. For example excited states
in 12C are known to show notoriously slow convergence in the NCSM with respect to model
space. Due to the α-clustering structure one expects the correlation expansion to be driven
by quadruply-excited and eightfold-excited intermediate states and the inclusion of higher-
order corrections beyond a simple second-order treatment might improve upon this. Thus our
hybrid framework enables us to adapt the truncation to the specific state we are interested
in.

However, we do note that increasing the perturbation order heavily increases computa-
tional demands and in applications even a third-order treatment is very challenging.
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11
Automated Code Generation

Automated generation and computer-aided derivation of formulas becomes increasingly im-
portant in modern nuclear theory. The tremendous increase in computing power enables
for the implementation of more sophisticated truncation schemes of many-body techniques,
e.g., MBPT, CC or IM-SRG. While the relaxation of the truncation schemes enables for
a more accurate description of nuclear systems, the complexity of the formalism typically
increases tremendously. This makes a more systematic treatment desirable. We particu-
larly aim for an application to the derivation of low-order MCPT formulas. However, by
introducing additional constraints for diagrams the same formalism may also be extended
to other frameworks.

Historically, string-based algorithms for the derivation of perturbative corrections were
introduced by Paldus and Wong for the computation of vacuum-to-vacuum amplitudes of
Feynman diagrams [PW73; WP73] and later applied to fourth- and fifth-order order pertur-
bation theory [Kal76].

11.1 Encoding diagrams as graphs

In the first step we investigate a convenient representation of a diagram in terms of a graph.
A graph G is an ordered triple (V,E, I) of a set of vertices V , a set of edges E, and an
incidence relation I, which indicates which vertices are joined by which edges. We further
call a graph simple if no edge starts and ends at the same vertex.

In the following we make use of a representation in terms of Hugenholtz diagrams where
all two-body vertices are collapsed into a dot. A typical example of a diagram appearing at
third-order MCPT is
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Closed diagrams at order p contain p vertices whereas open diagrams contain additional
pairs of external legs. In the following we will encode such diagrams by means of so-called
adjacency matrices. 1 An adjacency matrix AG of a graph G is the |V | × |V | matrix with
entries

(AG)ij = number of edges going from vertex i to vertex j. (11.1)

This notation requires, of course an ordering of the vertices. We, therefore, label the vertices
in the diagrams from bottom to top starting with i = 1 for the lowest vertex. For open
diagrams we will identify the external lines with an additional exceptional vertex - denoted
by a square - corresponding to the particle-hole excitations of the left-most determinant.
The above diagram will subsequently be presented by

1

2

3

4

(11.2)

where the dots correspond to one-body and two-body matrix elements and the square vertex
displays the excited determinant in the perturbation theory formulas. Here we also included
the numbering of the vertices for pedagogical reasons. However, we suppress the numbering
in the following.

By the definition (11.1) the adjacency matrix of the above diagram is given by
0 2 0 0

1 0 1 0

1 0 0 1

0 0 1 0

 . (11.3)

1In the literature some authors use the generalized adjacency matrices whereas the term adjacency
matrix is reserved for unordered graphs. However, we will always work with ordered graphs and, therefore,
will not distinguish the two terms. Note that in general this yields non-symmetric adjacency matrices.
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11.1 - Encoding diagrams as graphs

Properties of adjacency matrices

Before proceeding let us note some important observations. First all diagonal entries are
vanishing, i.e., (AG)ii = 0 which is a general feature of MBPT diagrams. This is related to
the fact that we are working with normal-ordered operators and, therefore, self-contractions
vanish. Further, the sum of all entries of a row or column determines the particle-rank of the
corresponding vertex. 2 Matrix-element vertices which are presented by a dot always have
particle rank one or two. The exceptional vertices corresponding to the excited determinants
(vertex number 4 in the above picture) can have excitation rank deg(v) = 1, ..., 6, where we
define the degree deg(v) of a vertex v to be the number of incoming (or outgoing lines). The
following diagram—corresponding to a triple-replacement—displays this property 3

(11.4)

As a first step of the automized generation of formulas we need to generate all possible
adjacency matrices at a given perturbation order. In the following we make use of the
notion of a k-partitioning4 of a natural number n defined to be the set of distinct ordered
tuples (a1, ..., ak) with ai ∈ N such that

k∑
i=1

ai = n. (11.5)

As an example the following set S lists all 4-partitionings of the number two:

S = {(2, 0, 0, 0), (0, 2, 0, 0), (0, 0, 2, 0), (0, 0, 0, 2), (1, 1, 0, 0), (1, 0, 1, 0),

(1, 0, 0, 1), (0, 1, 0, 1), (0, 0, 1, 1), (0, 1, 1, 0)}. (11.6)

2Note that there is no difference between summing over the row or column entries since we are working
with particle-number conserving operators and, therefore, the number of ingoing and outgoing lines always
coincide.

3The maximal particle rank depends on the particle rank of the perturbation operator rank(Ŵ ) and the
perturbation order p. In general the particle rank of external legs is rank(Ŵ ) · p, which is six for p = 3 and
rank(Ŵ ) = 2.

4The notion of a k-partitioning is not to be confused with the partitioning of the Hamiltonian from
MBPT. The terms are completely unrelated.
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Systematic generation of adjacency matrices

In order to generate all open diagrams at p-th order MCPT one must generate all p + 1-
partitionings of the degree of the corresponding vertices. The degree of the vertices is
deg(vi) = 1, 2 for i = 1, ..., p for all vertices except for the highest vertex vp, which can have
degree of up to deg(vp) = 1, ..., 2p. The degree of the p lowest vertices is fixed by the one-
and two-body nature of the interaction vertices, whereas the degree of the highest vertex
is bound from above by the maximal excitation rank of the leftmost determinant, which
is 2p for a two-body interaction. The adjacency matrices of p-th order open diagrams are
(p+ 1)× (p+ 1) matrices. 5

We define an auxiliary rank vector

R(p) = (deg(v1), ..., deg(vp), deg(vp+1)), (11.7)

containing the particle ranks of all interaction vertices in the diagrams including the excep-
tional vertex vp+1 that corresponds to the excitation rank of the leftmost determinant. As
a first step we classify a diagram D according to the vector of the operator rank RD. For
example, diagram (11.4) corresponds to

R
(3)
D = (2, 2, 2, 3). (11.8)

From the above rank vector we can already deduce if it is possible to create a valid diagram.
Take for example the vector

R(3) = (1, 2, 1, 6) (11.9)

corresponding to a hextuple-replacement as can be seen from its fourth component R̃(3)
4 = 6.

It is impossible to connect all twelve lines from the exceptional vertex with the other three
vertices since two one-body operators and one two-body operator only have eight edges. A
necessary condition for the validity of a given combination of particle ranks is thus given by

p∑
i=1

deg(vi) ≥ deg(vp+1). (11.10)

Note that the sum of the ranks of the first p vertices can be greater than deg(vp+1) like
diagram (11.2), corresponding to the vector (2, 2, 2, 1), shows.

In the first step we generate, at a given order in perturbation theory, all valid rank vectors
under the minimal requirement that the constraint (11.10) is fulfilled. It is important to note
that rank vectors are not in one-to-one correspondence to ASG diagrams. Usually, several

5Closed diagrams are considered as the special case of deg(vp+1) = 0.
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diagrams have the same rank vector. For example, all rank vectors for single replacements
at third-order MCPT are given by

{

2

2

2

1


T

,


1

2

2

1


T

,


2

1

2

1


T

,


2

2

1

1


T

,


1

1

2

1


T

,


1

2

1

1


T

,


2

1

1

1


T

,


1

1

1

1


T

}
. (11.11)

Now assume we are given a particular rank vector R(p) at perturbation order p. In the next
step we generate to every entry R

(p)
i all p-partitionings in a set Pi. We further define the

collection of all p-partitionings

P = {P1, ...,Pp+1}. (11.12)

The i-th row of the adjacency matrix is given by an element of Pi. In order to generate all
distinct diagrams we loop over all elements in the p-partitionings Pi for i = 1, ..., p+ 1. For
example consider the rank vector (1, 2, 1, 1). Then the set of p-partitionings is given by

P1 = {(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)},

P2 = {(2, 0, 0, 0), (0, 2, 0, 0), (0, 0, 2, 0), (0, 0, 0, 2), (1, 1, 0, 0), (1, 0, 1, 0),

(1, 0, 0, 1), (0, 1, 0, 1), (0, 0, 1, 1), (0, 1, 1, 0)},

P3 = {(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)},

P4 = {(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)}. (11.13)

Every entry of Pi defines the i-th row of a generalized adjacency matrix, e.g.,
1 0 0 0

2 0 0 0

0 0 0 1

0 0 1 0

 . (11.14)

From the above rank vector we can derive

|P1| · |P2| · |P3| · |P4| = 640 (11.15)

different adjacency matrices. We will see in the following that most of them can be excluded
since they do not correspond to a proper Hugenholtz diagram.

We call an adjacency matrix AG valid if the following constraints are satisfied

1. (AG)ii = 0 for all i = 1, ..., p+ 1
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2. For all i = 1, ..., p+ 1: ∑
j

(AG)ij = deg(vi) (11.16)

3. For all j = 1, ..., p+ 1: ∑
i

(AG)ij = deg(vj) (11.17)

The first property ensures that the graph is simple, i.e., there are no loops which—since
corresponding to self contractions—are forbidden by Wick’s theorem. The second and third
properties relate to the fact that we are working with particle-number conserving operators
and, therefore, the number of ingoing and outgoing lines is the same.

11.2 Derivation of perturbative formulas

The second step consists in the derivation of the working formulas from the matrix rep-
resentation of the diagrams. We start with introducing a new representation of graphs.
Instead of using a vertex-based description of the diagrams in terms of adjacency matrices
we can equally well use an edge-based description where matrix elements encode the incidence
information in terms of the start and end vertices of the edges.

Assume a graph G with a finite number of edges and vertices, i.e., |E| <∞ and |V | <∞,
where | · | denotes the cardinality of the set. We define the |E| × |V | incidence matrix BG

via

(BG)ij =


1, if edge eij enters vertex vi

−1, if edge eij leaves vertex vi
0, otherwise

. (11.18)

Again considering the single-replacement diagram (11.2) the incidence matrix is given by

BG =


−1 −1 1 1 0 0 0

1 1 −1 0 −1 0 0

0 0 0 −1 1 −1 1

0 0 0 0 0 1 −1

 . (11.19)

We note that there is no difference in using adjacency matrices or incidence matrices for the
encoding of diagrams. For the actual implementation, it is more convenient to start from
vertex-based description in terms of adjacency matrices since the physical constraints, e.g.,
from Wick’s theorem, manifest themselves quite obviously in the above mentioned rules.
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11.2 - Derivation of perturbative formulas

However, it is much simpler to derive the perturbative formulas from the incidence matrix
representation. Therefore, we transfer the adjacency matrices into incidence matrices. 6

We deduce from the above example some basic properties:

1. The sum over all entries of a row is zero.

2. The sum over all entries of a column is zero.

3. The number of entries that are equal 1 (−1) in each row corresponds to the degree of
the associated vertex.

4. Every column contains non-vanishing matrix elements.

The above properties are directly related to properties of the adjacency matrices. Since
we restrict ourselves to particle-number conserving operators the number of ingoing and
outgoing lines is equal. Therefore, the number of entries 1 (−1) is equal. Further, since self-
contractions are forbidden, every edge must start and end at different vertices thus yielding
non-trivial column vectors.

Decoding incidence matrices

Incidence matrices are very convenient when extracting MCPT formulas. The following set
of rules synthesize how to extract the expression from the incidence matrix:

Extraction of MCPT formulas from incidence matrices
1. Every column j corresponds to one single-particle index sj. More precisely it

corresponds to a hole index if the column vector c⃗ contains the element −1 before
the element 1 when reading it from top to bottom and a particle otherwise. If
further cp+1 ̸= 0 the corresponding single-particle index is of valence type.

2. Every row i = 1, ..., p corresponds to one matrix element. The bra indices corre-
spond to indices where Bij = −1. The ket indices correspond to row indices where
Bij = 1.

3. If n columns, corresponding to internal lines, are identical the diagram is multiplied
by 1

n!
.

4. Denominators Di for i = 1, ..., p− 1 correspond to pairs of subsequent row vectors
(ri, ri+1) for i = 1, ..., p− 1. A single-particle index sj contributes to Di if

6Typically, modern software packages have built-in functions that convert adjacency matrices into inci-
dence matrices and vice versa. In our case we made use of the ’Combinatorica’ package of MATHEMATICA.
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i∑
k=1

Bkj ̸= 0. (11.20)

Denominators are given by

Di =
∑
j

sgn(sj)ϵsj +∆, (11.21)

where the sgn(sj) is positive (negative) for holes (particles) and ∆ is the determinant-
dependent zero-order shift encountered in chapter 10.

5. Add a permutation operator P(x1···xp)
(u1···up) for every tuple of external single-particle

states.

Reconsidering again the above example we add the single-particle indices to columns of the
incidence matrix

BG =

a b i j c x u


−1 −1 1 1 0 0 0

1 1 −1 0 −1 0 0

0 0 0 −1 1 −1 1

0 0 0 0 0 1 −1

(11.22)

The first three column correspond to two-body matrix elements which are given by

M1 = H̄
[2]
abij (11.23a)

M2 = H̄
[2]
abic (11.23b)

M3 = H̄
[2]
jxcu. (11.23c)

The first and second row, corresponding to single-particle indices a and b, are identical
yielding a prefactor 1

2
. Further the above diagram contains two denominators D1, D2. The

first denominator is given by

D1 = ϵabij +∆µ, (11.24)

since

B1j ̸= 0 for j = 1, ..., 4. (11.25)

Analogously we get for the second denominator
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D2 = ϵcj +∆µ. (11.26)

Overall this gives the contribution

1

2

∑
abcij

H̄
[2]
abijH̄

[2]
abicH̄

[2]
jxcu

(ϵabij +∆µ)(ϵcj +∆µ)
. (11.27)

Note that up to now we have completely neglected the phase factor which is given by (−1)h+l,
where h corresponds to the number of hole indices and l counts the number of closed loops.
The number of hole lines can easily be determined once all single-particle states are classified.
In the above example h = 3 since i, j, u are hole indices.

The determination of the loop number is a little more involved and can be performed
by means of backtracking algorithms which explicitly construct a closed path in the graph.
However, here the representation in terms of adjacency matrices renders quite convenient
since one can show that

l = det(AG), (11.28)

which can straightforwardly be computed because the corresponding adjacency matrices are
small for low orders in MCPT.

11.3 Further Extensions

The above discussion explicitly aimed for the derivation of the Hugenholtz diagrams appear-
ing at third-order MCPT. However, the concepts we introduced are rather generic and can
be straightforwardly extended in many directions. An immediate application is the general-
ization to three-body operators. Remember that all calculations in this thesis are restricted
to two-body operators. The inclusion of explicit three-body operators and beyond requires
a relaxation of some of the constraints in the above framework.

Assume that we want to include many-body operators up to particle rank A. As a first
consequence the rank vectors are more general,

Ri ∈ {1, ..., A} for i = 1, ..., p (11.29)

and furthermore it holds that

Rp+1 ∈ {1, ..., p · A} (11.30)

where p is the perturbation order under consideration. Equation (11.30) is due to the highest
particle rank of replacements in open-diagrams in MCPT(p).
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Other than in MBPT, diagrammatic approaches are used in almost every many-body
method at play. In particular CC theory strongly benefits from the use of diagrams to make
the working equations more transparent. Even though we did not discuss CC theory in detail,
chapter 7 provided a first insight in the general structure of the CC amplitude equations. A
particularly important role is played by the cluster operators T̂n, which correspond to the
lowest vertex in CC diagrams. We expect the same graph-theoretical approach to apply also
for the derivation of amplitude equations at high-level coupled cluster truncation schemes,
e.g., CCSDT. In quantum chemistry automated code generation was successfully applied to
various CC models [LIA05; JS91; Hir03].
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12
Open-shell ground states and spectra

In the following we apply NCSM-PT to the calculation of binding energies of open-shell
systems. In analogy to HF-MBPT we start with a discussion of the convergence properties
of the perturbation series and proceed with a detailed investigation of low-order partial sums
in the remainder. We focus on the calculation of both ground-state energies and spectra of
open-shell systems in second-order NCSM-PT and compare to large-scale diagonalizations
in bare NCSM.

12.1 Convergence behavior in NCSM-PT

For the demonstration that the NCSM-PT perturbation series is well behaved we evaluate
high-order energy corrections by making use of the recursive scheme already applied to high-
order HF-MBPT. For the following analysis we use the already introduced chiral NN+3N-full
Hamiltonian with Λ3N = 400MeV.

As benchmark systems we use 6Li and 7Li. Reference states are obtained from a prior
NCSM diagonalization within a N ref

max = 0 model space. Subsequently, perturbative correc-
tions are calculated in a small model space with Nmax = 4. Figure 12.1 shows the p-th partial
sums (left panels) and absolute value of the size of the p-th order energy correction (right
panel) for both lithium isotopes. The different plotmarkers correspond to different eigen-
states from the NCSM diagonalization characterized by their value of JΠ. For all states the
obtained sequence of partial sums converges very quickly and agrees within a range of a few
keV with the exact NCSM result in the same model space. Moreover, the semi-logarithmic
plot reveals an exponential suppression of higher-order energy corrections. In particular for
the case of 7Li the rate of convergence seems to be independent of the targeted reference
eigenvector. Even though all of the states exhibit rapid convergence, they display differences
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Figure 12.1: Partial sums (left panel) of 6Li and 7Li for the chiral NN+3N interaction with
α = 0.08 fm4 and truncation parameters Nmax = 4. The corresponding energy corrections for each
order are displayed in the right panel, respectively. All calculations are performed at ℏΩ = 20MeV.

in the convergence behavior. For example, the convergence pattern of the 1+ ground state
and the first excited 2+ state in 6Li share the same damped oscillatory behavior at low order.
This similarity is even more pronounced when looking at the size of the corresponding energy
corrections. For both states there appears a significant chip at perturbation order 22 and
23, respectively. Even though this may serve as a hint for structural similarities of the both
states, one needs additional characteristic data to confirm relation of intrinsic properties.

Most importantly the above high-order results motivate the use of low-order partial sums
to be a reasonable approximation to the exact binding energy.

12.2 Second-order NCSM-PT for ground-state energies of isotopic chains

In the next step we apply NCSM-PT at second-order for the calculation of ground-state
energies of heavier systems in larger model spaces, where the recursive scheme cannot be
applied due to the rapidly growing size of the many-body basis. We explore binding prop-
erties throughout the carbon and oxygen isotopes, including systems of even and odd mass
number. For such medium-light systems the IT-NCSM is still applicable and yields an exact
benchmark for second-order NCSM-PT.

In the following calculation we use reference states from N
(ref)
max = 0 and 2 model spaces

and compute their corresponding second-order energy corrections.
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chains

10 11 12 13 14 15 16 17 18
-120

-100

-80

-60

-40

A

E
0

[M
eV

]

AC

Figure 12.2: Reference energy (◦/□) and second-order partial sums (l/■) for N
(ref)
max = (0/2) for

the ground-state energy of carbon 11−18C for the NN+3N-full interaction with α = 0.08 fm4 and
truncation parameters emax = 12. All calculations are performed at ℏΩ = 20MeV. Importance-
truncated NCSM calculations ( ▼) are shown for comparison. Experimental values are indicated by
black bars [Wan+12].

Carbon chain

We start with an investigation of the carbon isotopic chain. Figure 12.2 shows ground-state
energies of even and odd carbon isotopes ranging from carbon 10C to 18C. The reference
energy

ENCSM = E(0) + E(1) (12.1)

corresponds to the first-order partial sum. The NCSM reference energy is shown as open
symbols for Nmax = 0 (◦) and Nmax = 2 (□). The corresponding second-order partial sums

E(2)
sum = ENCSM + E(2) (12.2)

are indicated by filled plot markers. Although there is a significant difference in the reference
energy when going from N

(ref)
max = 0 to N

(ref)
max = 2 the associated second-order partial sums

are very similar within a narrow band of 3%. Most remarkably the second-order partial
sums show excellent agreement with large-scale IT-NCSM calculations ( ▼) with deviations
of about 1% for heavy carbon isotopes. The typical size of the reference states ranges from a
couple of hundred configurations for 10C in N (ref)

max = 0 up to several tens of thousand for 18C
in a N (ref)

max = 2 model space. We particularly note that NCSM-PT yields consistent results
over a huge mass range of a factor of two in binding energy when going from 10C to 18C.

Further, note that both large-scale IT-NCSM and NCSM-PT underbind the experimental
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Figure 12.3: Reference energy (◦/□) and second-order partial sums (l/■) for the ground-state
energy of oxygen 18−24O. All parameters are the same as in Figure 12.2.

values indicated by black bars. However, this is due to defects of the chiral Hamiltonian.
Deviations from experimental values become worse for neutron rich isotopes due to the
coupling to the continuum. Such effects are not adequately described in a HO single-particle
basis and require the extension to a consistent inclusion of resonances in a Gamow or Bergren
scheme.

Oxygen chain

Analogously, we performed NCSM-PT studies for the oxygen isotopic chain starting from 18O
up to very neutron-rich 26O. Figure 12.3 summarizes the second-order NCSM-PT results
using the same chiral Hamiltonian and model-space parameters as for the carbon chain.
Again there is a big gain in reference energy when going from a N

(ref)
max = 0 to N

(ref)
max = 2

reference space, but the second-order partial sums agree within 3%. A closer investigation
shows that second-order partial sums for reference spaces from a N (ref)

max = 2 model space are
systematically stronger bound than the ones obtained from N

(ref)
max = 0 reference states with

the sole exception of the very neutron rich 26O isotope. The second-order partial sums for
N

(ref)
max = 2 are in excellent agreement with large-scale IT-NCSM results. We particularly

exclude 26O from this statement due to the importance of continuum effects, which are
neither incorporated in NCSM nor in NCSM-PT [Hag+12]. Most interestingly, NCSM-PT
confirms the experimental observed neutron dripline at 24O. In particular, the inclusion of
three-body effects—in this case on the normal-ordered two-body level—is key for obtaining
the correct dripline physics [GCR16; Her+13; Hag+09; Ots+10; CBN13].

Theoretical deviations from experiment are of the order of less than 3% for oxygen iso-
topes up to 24O. As already noted, the growing deviations for more neutron rich are due
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to missing coupling to continuum physics are not expected to be improved by including
higher-order correlations.

Again the size of reference states ranges from a few tens of SDs for 18O in N
(ref)
max = 0 up

to several hundreds of thousands SDs for 26O in N (ref)
max = 2.

In conclusion, for both carbon and oxygen isotopic chains, NCSM-PT with N
(ref)
max = 2

reference states provides accurate ground-state energies and a good compromise between
accuracy and computational efficiency. In particular, a single NCSM-PT calculations typi-
cally requires two or three orders of magnitude less computing time than the corresponding
IT-NCSM calculation thus enabling us to go beyond the oxygen chain, which is the current
limit of IT-NCSM implementations.

12.3 Excitation spectra

In the discussion of MCPT we have seen that the framework is completely agnostic about
the reference states, i.e., the reference states in NCSM-PT does not need to correspond
to the ground-state wave function. Therefore, excitation energies in NCSM-PT can be
straightforwardly calculated as energy differences of the correlated second-order partial sums.
In practice one targets several different eigenvectors from the prior NCSM calculation

|ψ1⟩, ..., |ψM⟩, (12.3)

and correspondingly obtains M different second-order partial sum

E
(2)
sum,1, ..., E

(2)
sum,M . (12.4)

We then take the minimal value

Emin = min
M

{E(2)
sum,1, ..., E

(2)
sum,M} (12.5)

and define the set of excitation energies

E⋆ ≡ {E(2)
sum,1 − Emin, ..., E

(2)
sum,M − Emin}, (12.6)

where obviously one of the elements of E⋆ is zero, thus corresponding to the (second-order)
ground state. We note that the lowest eigenvector for a small reference space does not
necessarily correspond to the exact ground state and NCSM-PT may induce level crossings.

We apply the above procedure to selected carbon and oxygen isotopes. In Figure 12.4
we compare the NCSM-PT spectra to direct NCSM excitation energies. The ground-state
energies are shown numerically below the ground-state level. Additionally, to N

(ref)
max = 0

and N
(ref)
max = 2 we investigate reference states from N

(ref)
max = 4 model spaces. For the sake
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Figure 12.4: Spectra obtained via second-order NCSM-PT for selected carbon and oxygen iso-
topes for the NN+3N-full interaction with α = 0.08 fm4 and truncation parameter emax = 12.
All calculations are performed at ℏΩ = 16MeV. Importance-truncated NCSM calculations for a
sequence of model-spaces are displayed in the right panel. For 19,20O and N

(ref)
max = 4 we introduced

an additional truncation cµcµ′ ≥ 10−6 (µ ̸= µ′) for the calculation of the second-order energy
corrections in NCSM-PT in order to reduce computing time.
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of computing power we introduce an additional truncation for N (ref)
max = 4 reference states,

which will be discussed in the next section. In the majority of cases, further enlarging the
reference space beyond N

(ref)
max = 2 does not improve the quality of the excitation energies

and most excitation energies seem to be stable under variation of N (ref)
max . An exception is

the first excited 0+ state in 12C, which exhibits notoriously slow convergence with respect
to both Nmax and N

(ref)
max . In the experimental spectrum there appears an excited 0+ state

at about 8 MeV which is expected to exhibit strong α clustering. This so-called Hoyle state
is expected to be dominated by particle-hole excitations of high excitation rank, e.g., 4p4h
and 8p8h excitations. These are, however, neither incorporated in a second-order NCSM-PT
calculation, nor is a direct Nmax = 6 NSCM calculation sufficient to capture these effects.
Apart from this, the level ordering in 12C is reproduced correctly, even though the energy
gap is widened compared to experimental excitation energies.

Even though excitation spectra of NCSM and NCSM-PT are in good agreement the
absolute binding energies in NCSM are far from being converged, whereas the ground-state
energies in NCSM-PT are already quite stable. This again shows that second-order NCSM-
PT effectively incorporates the of bulk of residual correlation effects from the large model
space.

We want to put particular emphasize on the reversed level ordering in the odd system
15C. Note that in the NCSM for Nmax = 2 the ground-state level ordering is reversed and the
5
2

+ state is the ground state. However, when performing NCSM-PT this ordering is reversed
and the 1

2

+ state is predicted to be the ground state. Therefore, the correct level ordering is
reproduced with a reasonable excitation energy of the first 5

2

+ state. From the NCSM-PT
ground-state energy in N (ref)

max = 0 for 19O we see that in such a small model space the correct
level ordering is not reproduced. However, when enlarging the reference space this deficiency
can be corrected. Typically, N (ref)

max = 0 reference states contain to few physically important
states to be a reasonable approximation to the true ground state.

12.4 C2
min truncation

The number of determinants in the reference space grows very rapidly when relaxing the
N

(ref)
max truncation and calculations beyond N (ref)

max = 4 are computationally expensive. In order
to handle very large reference states an additional truncation scheme can be adopted to
approximately evaluate the second-order NCSM-PT correction. Reconsidering the second-
order energy correction expanded with respect to the Slater determinantal components of
the reference state yields

E(2) =
∑

|Φµ⟩,|Φµ′ ⟩∈Mref

CµC
⋆
µ′

∑
|Φν⟩/∈Mref

⟨Φµ′ |Ŵ |Φν⟩⟨Φν |Ŵ |Φµ⟩
Eref − E

(0)
ν

. (12.7)
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Figure 12.5: Second-order MCPT correction over C2
min truncation for 12C in N

(ref)
max = 4 reference

space using a chiral NN+3N-full interaction. The oscillator frequency is given by ℏΩ = 16MeV.
The dashed line corresponds to the exact result, i.e., C2

min = 0.

Fixing a particular tuple (µ, µ′), the contribution is small if either CµC⋆
µ′ or

∑
|Φν⟩/∈Mref

⟨Φµ′ |Ŵ |Φν⟩⟨Φν |Ŵ |Φµ⟩
Eref − E

(0)
ν

(12.8)

becomes small. Therefore, the absolute of the value CµC⋆
µ′ serves as an a-priori measure

for the importance of the expression (12.8). We define a C2
min threshold such that all tuples

(µ, µ′) in the evaluation of (12.7) are included with

∣∣CµC⋆
µ′

∣∣ ≥ C2
min. (12.9)

In this way, we may discard a lot of pairs determinants determinants from the perturbative
treatment just by evaluating their respective expansion coefficient in the NCSM reference
state.

Figure 12.5 displays the effect of the C2
min truncation on the magnitude of the second-

order NCSM-PT energy correction. For the case of 12C we can still perform a full N (ref)
max = 4

calculation even though the reference state already contains several million configurations.
Obviously, for truncation parameter C2

min = 10−6 the approximate second-order energy cor-
rection is already in very good agreement with the exact second-order energy correction
and deviations are on a level of a few ten keV. However, even though agreeing on a sub
percent level, the approximate evaluation requires up to one order of magnitude less compu-
tational resources. We note that there is no reason for a monotone decreasing behavior of the
second-order energy correction when decreasing the value of C2

min. Even though the overall
second-order correction is given by a squared matrix elements, the expansion into Slater
determinant components does not conserve this, as can be seen from the peak in Figure 12.5
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Figure 12.6: Second-order NCSM-PT excitation energies over C2
min truncation for 12C in N

(ref)
max =

4 reference space using a chiral NN+3N-full interaction. The oscillator frequency is given by
ℏΩ = 16MeV.

at C2
min = 10−4.

We further investigate the dependence of excitation spectra on the C2
min truncation. In

Figure 12.6 we show low-lying spectroscopy of 12C for a sequence of values of C2
min. We

recognize only a small impact of the change of C2
min on excitation spectra. The excitation

energies are almost independent of the value of C2
min such that we conclude that the C2

min

truncation acts on different reference states in a similar way.

12.5 Dependence on the oscillator frequency

We have seen that second-order NCSM-PT yields very good agreement with large-scale
NCSM calculations. An important parameter in NCSM calculations is the oscillator fre-
quency fixing the width of the HO potential used for the definition of the reference single-
particle basis. In the limit Nmax → ∞, the NCSM results must agree for all values of the
oscillator frequency. In actual applications, when restricted to finite basis size, the NCSM
results do carry residual dependence on the oscillator frequency. In the following we will
investigate how this dependence transfers to the second-order NCSM-PT corrections.

As benchmark system we choose the fluorine isotopic chain using the same NN+3N-full
Hamiltonian as for carbon and oxygen isotopic chains. Figure 12.7 displays the dependence of
the reference energy and second-order partials sum on variations of the oscillator frequency.
The reference energy, i.e., NCSM eigenvalue, is roughly independent of the oscillator fre-
quency up to mass number A ≈ 23. For larger mass numbers there appear large deviations
between the reference energies obtained for different values of the oscillator frequency. In
particular lower frequencies yield more tightly bound systems. Even more pronounced is the
impact of variations with respect to the oscillator frequencies on the NCSM-PT energies.
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Figure 12.7: Ground-state energies obtained from NCSM (open symbols) and second-order
NCSM-PT (solid symbols) for 17−29F using N

(ref)
max = 2 reference states with a chiral NN+3N-full

Hamiltonian. The oscillator frequency is given by ℏΩ = 14 (l),16 (■),20 (♦) MeV.

Even for the lightest fluorine isotope considered here, 17F, there is considerable dependence
on the oscillator frequency. The second-order NCSM-PT varies by roughly 7MeV from
ℏΩ = 14MeV to 20MeV, which is already a deviation of the order of 5% of the overall bind-
ing energy. The dependence of the oscillator frequency grows considerably with increasing
mass number. For neutron-rich fluorine isotopes the difference of binding energies can be
up to 35MeV. It is clear that the particular choice of the basis strongly affects the binding
properties of heavy fluorine isotopes. Moreover, the prediction of the neutron dripline is
extremely sensitive to the choice of ℏΩ.

In order to overcome the deficiency inherent when using HO single-particle states we
extend NCSM-PT to other single-particle basis. From the discussion of HF-MBPT we al-
ready know that HF orbitals may strongly affect the quality of the perturbation expansion.
Therefore, applying NCSM-PT to a HF single-particle basis provides a reasonable solution
to implement the correct asymptotic behavior of the single-particle wave functions.
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Figure 12.8: Ground-state energies obtained from NCSM (open symbols) and second-order
NCSM-PT (solid symbols) for 17−31F using N

(ref)
max = 2 reference states with a chiral NN+3N-

full Hamiltonian using HF single-particle states. The oscillator frequency is given by ℏΩ = 16
(■),20 (♦) MeV.

12.6 NCSM-PT with Hartree-Fock basis

In the following we will work with HF single-particle states obtained from a prior HF calcu-
lation. Nuclear one-, two- and three-body matrix elements are transformed from HO to HF
basis and subsequently normal-ordered with respect to the multi-configurational reference
state. The initial CI calculation is performed in HF basis with full three-body forces.

We note that we introduced NCSM as a particular CI variant with Nmax-truncation
scheme. However, we still keep the terminology NCSM-PT for the many-body method at
play, even though we replace the HO basis with HF single-particle states.

Fluorine chain

The use of the HF single-particle basis is expected to improve the stability of NCSM-PT with
respect to variations of the oscillator frequency. Figure 12.8 displays the impact of variations
of the oscillator frequency on reference energies and second-order NCSM-PT results when
using a HF single-particle basis with N

(ref)
max = 2 reference states. Clearly, we see that both

NCSM reference energies and second-order NCSM-PT results are independent of the value
of ℏΩ over the entire mass range of the fluorine isotopes. Deviations are much less than
1MeV. Note that for deviations between these oscillator frequencies were of the order of
20MeV for the HO basis in 29F as depicted in Figure 12.7. We note that we can extend
the calculations to heavier isotopes. However, proceeding to 30F opens up the new neutron
pf-shell which yields a significant increase in reference energy, while at the same time the

125



Chapter 12 - Open-shell ground states and spectra

10 11 12 13 14 15 16 17
-120

-100

-80

-60

-40

A

E
0

[M
eV

]

A
C

Figure 12.9: Ground-state energies obtained from NCSM (open symbols) and second-order
NCSM-PT (solid symbols) for 18−26O with a chiral NN+3N-full Hamiltonian. The oscillator fre-
quency is given by ℏΩ = 20MeV. Blue (l) and red (■) plotmarkers correspond to HF single-particle
states in N

(ref)
max = 0, 2 and yellow plotmarkers to HO single-particle states with N

(ref)
max = 2 (♦). IT-

NCSM calculations are shown for comparison ( ▼). Experimental values are indicated by black
bars.

NCSM-PT energies remain constant.
We emphasize that this is the first ab initio calculation of even and odd fluorine isotopes in

a no-core approach in large model spaces reaching beyond A = 20. Due to having both open
neutron and proton shells, fluorine provides a complex test case for many-body methods.
The generality if the NCSM-PT enables to proceed along the fluorine isotopic chains which
is presently impossible in standard NCSM calculations due to computational requirements.

Carbon chain

Figure 12.9 provides a comparison between NCSM-PT with HF and HO orbitals. First of all
we notice that the reference energies fromN

(ref)
max = 2 are always lower when using HO orbitals.

However, for the second-order partial sum we encounter the opposite behavior, where NCSM-
PT with HF orbitals is bound tighter than with HO orbitals. The NCSM-PT results using
HF single-particle states are in good agreement with large-scale NCSM calculation up to
A = 14 and start to deviate more strongly for heavier carbon isotopes. However, we have
already seen in the case of fluorine isotopes that the dependence on the oscillator frequency
is more pronounced for neutron-rich systems. Therefore, a possible explanation for the larger
deviations might be the use of too high values for ℏΩ in the HO-based calculations. Going
to smaller values of ℏΩ would yield stronger binding.

For all cases second-order NCSM-PT with HF orbitals tends to overbind the exact IT-
NCSM result. This effect is more pronounced when using N

(ref)
max = 0 reference states—we
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Figure 12.10: Ground-state energies obtained from NCSM (open symbols) and second-order
NCSM-PT (solid symbols) for 18−26O with a chiral NN+3N-full Hamiltonian. The oscillator fre-
quency is given by ℏΩ = 20MeV. Blue (l) and red (■) plotmarkers correspond to HF single-particle
states in N

(ref)
max = 0, 2 and yellow plotmarkers to HO single-particle states with N

(ref)
max = 2 (♦). IT-

NCSM calculations are shown for comparison ( ▼). Experimental values are indicated by black
bars.

have already seen in the investigation of excitation energies that such small reference spaces
contain to few physical significant states to yield reliable results.

Oxygen chain

We reassess our results for the oxygen chain in the context of NCSM-PT with HF orbitals.
In Figure 12.10 we compare NCSM-PT results obtained using different single-particle bases.
Up to mass number A ≈ 22 the second-order NCSM-PT results for HO and HF single-
particle bases are approximately the same. Deviations are of the order of 3MeV. We also
note that the reference energies are very similar for the case of N (ref)

max = 2 up to A = 24.
Larger deviations in reference energies are obtained for 25,26O. Correspondingly, the second-
order NCSM-PT results reveal larger deviations as well. Remember, however, the strong
dependence on oscillator frequency when using HO single-particle states. In particular for
heavy, neutron-rich isotopes the corresponding value of ℏΩ might be too large and lowering
the oscillator frequency might yield stronger binding in, both, NCSM and NCSM-PT. Fur-
thermore, we note the deviations of NCSM-PT with HF orbitals from large-scale IT-NCSM
calculations for 25,26O. Again this is due to stronger coupling to continuum states, which
was already present in NCSM-PT with HO single-particle states. Even though HF orbitals
are able to cure the strong dependence on the oscillator frequency, continuum effects are
not accounted for. However, experimental binding energies are well reproduced in the range
18−24O.
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Part IV

Symmetry-Broken Many-Body
Perturbation Theory





Introduction to Part IV

For closed-shell systems the Hartree-Fock mean-field approach provides a proper starting
point for the construction of systematic correlation expansion methods. In particular, single-
configurational perturbation theory and coupled-cluster theory have shown to give excellent
results.

Hartree-Fock-Bogoliubov (HFB) theory is the simplest way to include pairing correlation
effects in a mean-field model. By solving a set of constrained mean-field equations using a
particle-number non-conserving vacuum one enters the realm of symmetry-breaking many-
body theory, where a symmetry of the Hamiltonian is broken by the reference state.

Similar to HF theory, the HFB framework does not only allow to perform calculations
of medium-mass open-shell systems, but also is used as a convenient tool for the construc-
tion of open-shell reference states, which enter a perturbative treatment at the next stage.
Of course, the subsequent many-body method must be grounded on the same foundations,
namely symmetry breaking. In this part we will introduce a novel flavour of many-body per-
turbation theory that uses a particle-number broken HFB reference state. The is approach
is called Bogoliubov many-body perturbation theory (BMBPT).

Even though symmetry-breaking many-body methods have existed for a long time, they
have only scarcely been applied in nuclear physics and quantum chemistry. Only very re-
cently many-body theories on top of a particle-number broken vacuum were formulated
and implemented, e.g., the Gorkov extension of self-consistent Green’s function theory
(GGF) [SDB11; Som+14] or Bogoliubov coupled cluster (BCC) [Sig+15; DS16]. The use
of BMBPT provides a simple yet efficient alternative to the above methods. In partic-
ular we know from the investigations in HF-MBPT that when using sufficiently softened
interactions, a perturbative treatment yields excellent results at low computational cost.
However, when dealing with finite quantum systems the eventual restoration of the bro-
ken symmetry becomes mandatory. Up to now a consistent restoration of U(1) symmetry
still poses a future problem in the GGF framework even at a formal level. Furthermore,
the restoration of particle-number in BCC becomes numerically much more demanding due
to the symmetry restoration protocol outlined in [DS16]. Current BCC codes make use
of an axially-deformed single-particle basis, which significantly increases both runtime and
required storage space for the cluster amplitudes [Sig+15]. Therefore, the simplest way to
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implement a symmetry-broken and restored many-body theory with full open-shell capa-
bilities is to perform low-order BMBPT using a spherical formulation. In particular, this
requires the derivation and implementation of an angular-momentum coupled framework for
the treatment of quasiparticle operators.

We note that the consistent restoration of particle-number symmetry is implemented on
a HFB level in several ways. Furthermore, there have been studies of approximate restora-
tion protocols of quasiparticle perturbation theory for the pairing Hamiltonian [Hen+14].
However, there are no studies of symmetry-restored beyond-HFB calculations using chiral
interactions.

We start this part of the thesis with an introduction to HFB theory and properties of
the HFB solution. The main part is dedicated to the introduction of BMBPT as well as
the derivation of the low-order corrections. We consider the formal treatment of BMBPT
in an m-scheme single-particle basis; the technicalities due to angular-momentum coupling
can be found in appendix E. We proceed with a brief introduction to the nuclear energy
density functional approach and its links to symmetry-broken many-body theory. Finally,
we present first results of second-order BMBPT using state-of-the-art chiral interactions with
additional emphasis on pairing properties of the nuclear Hamiltonian.
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13
Hartree-Fock-Bogoliubov Theory

The Hartree-Fock approximation is the simplest form of a mean-field approach and serves
as starting point for more elaborate approaches to treat correlation effects. Hartree-Fock-
Bogoliubov (HFB) theory is the simplest approach to consistently include pairing correlation
effects on a mean-field level. In HFB theory nucleons are described as independent quasi-
particles which are themselves superpositions of proper particles and holes.

The breaking of particle-number conservation is an intrinsic feature of HFB theory.
Therefore, observables obtained in the HFB framework are contaminated due to symmetry-
breaking. Different strategies can be employed to resolve the pathology. Either one can solve
a set of particle-number projected HFB equations or perform a particle-number projection
of the variational solution. For a comparison of both approaches see, e.g., [Her08; HR09a].
Furthermore, approximate ways of restoring particle-number symmetry can be obtained via
using cumulant expansions in the Lipkin-Nogami approach.

In the following we give a brief introduction to the fundamentals of HFB theory and fix
the notation for future reference. This chapter roughly follows [RS80].

13.1 Bogoliubov algebra

We make a transition from a independent-particle to an independent-quasiparticle picture
which is mediated by the so-called canonical Bogoliubov transformation,

β†
k =

∑
l

(Ulkĉ
†
l + Vlkĉl), (13.1a)

βk =
∑
l

(U⋆
lkĉl + V ⋆

lkĉ
†
l ), (13.1b)
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where the creators (annihilators) c† (c) are taken with respect to the reference basis. 1

The transformed quasiparticle operators obey the usual canonical anti-commutation re-
lations

{β̂k, β̂†
l } = δkl, (13.2)

{β̂k, β̂l} = 0, (13.3)
{β̂†

k, β̂
†
l } = 0. (13.4)

The transformation (13.1b) can be written in matrix representation by

W =

(
U V ⋆

V U⋆

)
. (13.5)

The unitarity relation WW† = W†W = 1 translates into

UU † + V ⋆V T = 1, UV † + V ⋆UT = 0, (13.6a)
V U † + U⋆V T = 0, V V † + U⋆UT = 1, (13.6b)
U †U + V †V = 1, U †V ⋆ + V †U⋆ = 0, (13.6c)
V TU + UTV = 0, V TV ⋆ + UTU⋆= 1. (13.6d)

The nuclear ground state |ψ⟩ is then given by the quasiparticle vacuum

β̂k|ψ⟩ = 0. (13.7)

Further we associate a generalized density matrix R with the quasiparticle vacuum |ψ⟩,

R =

(
ρ κ

−κ⋆ 1− ρ⋆

)
, (13.8)

where

ρkl = ⟨ψ|ĉ†l ĉk|ψ⟩, (13.9)
κkl = ⟨ψ|ĉlĉk|ψ⟩, (13.10)

define the (normal) density matrix and anomalous density, respectively. 2 The generalized
density matrix is also Hermitian and idempotent, i.e., R = R2 = R†. We further note the
Hermiticity and anti-Hermiticity of ρ and κ, respectively,

1In the following we use greek letters to denote creators/annihilators in quasiparticle space and roman
letters to denotes creators/annihilators in single-particle space.

2The anomalous density is also often called pairing tensor.
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ρk1k2 = ρ⋆k2k1 , (13.11)
κk1k2 = −κ⋆k2k1 . (13.12)

Transformation of the generalized density matrix R to the quasiparticle basis yields

R ≡ W†RW , (13.13)

with

R =

 ⟨Φ|β†
pβq |Φ⟩

⟨Φ|Φ⟩
⟨Φ|βpβq |Φ⟩

⟨Φ|Φ⟩
⟨Φ|β†

pβ
†
q |Φ⟩

⟨Φ|Φ⟩
⟨Φ|βpβ†

q |ϕ⟩
⟨Φ|Φ⟩

 ≡

(
R+−
pq R−−

pq

R++
pq R−+

pq

)
=

(
0 0

0 1

)
, (13.14)

which can be obtained from the action of quasiparticle operators on the symmetry-broken
vacuum. Equation 13.14 will be key in the derivation of the unperturbed propagators in
symmetry-broken MBPT.

13.2 The Hartree-Fock-Bogoliubov equations

In the following we invoke the Ritz variational principle to derive working equations similar
to the ones derived in the HF scheme. Again we restrict ourselves to the discussion of a
two-body interaction even though the extension to three-body forces is straightforward but
cumbersome. The energy functional in terms of normal and anomalous densities reads

E[ρ, κ, κ⋆] =
⟨ψ|Ĥ|ψ⟩
⟨ψ|ψ⟩

(13.15)

=
∑
k1k2

H
[1]
k1k2

ρk1k2 +
1

2

∑
k1k2q1q2

H̄
[2]
k1q2k2q1

ρk2k1ρq1q2 −
1

4

∑
k1k2q1q2

H̄
[2]
k1k2q1q2

κk2k1κ
⋆
q1q2

.

(13.16)

Since the quasiparticle vacuum |ψ⟩ explicitly breaks the conservation of particle number,
i.e., |ψ⟩ is not an eigenstate on the number operator Â, we need to perform the variation
under the constraint

Trρ = A, (13.17)

such that the mean particle number is equal to the actual number of particle of the system
under consideration. The above constraint is implemented in terms of a Lagrange multiplier
leading to

δ(E − λTrρ) =
∑
k1k2

( ∂E

∂ρk1k2
− λδk1k2

)
+

1

2

∑
k1k2

( ∂E

∂κ⋆k1k2
δκ⋆k1k2 +

∂E

∂κk1k2
δκk1k2

)
. (13.18)

135



Chapter 13 - Hartree-Fock-Bogoliubov Theory

It is convenient to define the so-called Hartree-Fock and pairing fields, h and ∆, respectively,

hk1k2 =
∂E

∂ρk1k2
= tk1k2 +

∑
q1q2

v̄k1q1k2q2ρk1k2 , (13.19)

∆k1k2 =
∂E

∂κk1k2
=

1

2

∑
q1q2

v̄k1q1k2q2κk1k2 . (13.20)

With this we define the Hartree-Fock-Bogoliubov Hamiltonian H and obtain the Hartree-
Fock-Bogoliubov equations

H

(
U

V

)
=

(
h− λ ∆

−∆⋆ −h⋆ + λ

)(
U

V

)
= E

(
U

V

)
, (13.21)

or equivalently [RS80]

[H,R] = 0, (13.22)

which ensures the existence a common eigenbasis of the HFB Hamiltonian and the generalized
density matrix in complete analogy to the HF case.

One obtains a set of conjugate HFB equations(
h− λ ∆

−∆⋆ −h⋆ + λ

)(
V ⋆

U⋆

)
= −E

(
V ⋆

U⋆

)
. (13.23)

Obviously, to every eigenvector (U, V )T of H with eigenvalue E there exist an eigenvector
(V ⋆, U⋆)T with eigenvalue −E. 3 This follows from the use of a quasiparticle formulation,
where quasiparticle creators and annihilators are taken to be independent. A physical solu-
tion is obtained by taking N out of the 2N eigenstates. It is common to take the eigenstates
(U, V )T that correspond to the N positive energy eigenvalues. 4

13.3 The canonical basis

From the definition of the quasiparticle vacuum according to (13.7), the quasiparticle anni-
hilators are fixed only up to a unitary transformation among themselves. Apart from the
quasiparticle basis {β̂†

k} there is another convenient basis for the discussion of HFB wave
function. The connection to this so-called canonical basis is due to Bloch-Messiah-Zumino
theorem (BMZ), which yields a decomposition of W via

3Such an eigenvector is called adjont eigenvector.
4We will stick to this convention when using HFB reference states for perturbative calculations.
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W =

(
D 0

0 D⋆

)(
Ū V̄

V̄ Ū

)(
C 0

0 C⋆

)
(13.24)

or equivalently

U = DŪC, (13.25)
V = D⋆V̄ C, (13.26)

where D and C are unitary transformations among the particle and quasiparticle operators,
respectively

â†k =
∑
l

Dlkĉ
†
l (13.27)

α̂†
k =

∑
l

Clkβ̂
†
l . (13.28)

The matrices Ū and V̄ define the special Bogoliubov transformation

α̂†
p = upâ

†
p − vâp̄ (13.29)

α̂†
p̄ = upâ

†
p̄ + vâp̄, (13.30)

which resembles formal equivalence with the transformation in standard BCS theory. The
canonical conjugate states (p, p̄) are connected via time-reversal symmetry. From the uni-
tarity of W we get for the occupation probabilities

u2k + v2k = 1. (13.31)

Furthermore, the BMZ theorem implies the following block structure for paired levels with
(uk > 0, vk > 0):

Ūkl = +uk̄δkl, uk̄= +uk, (13.32)
V̄kl = −vk̄δk̄l, vk̄ = −vk. (13.33)

The quasiparticle vacuum can be rewritten in the canonical basis

|Φ⟩ =
∏
p

α̂†
p|0⟩ =

∏
p>0

(
up + vpâ

†
pâ

†
p̄

)
|0⟩, (13.34)

where we restricted the product to count every pair only once. A particular feature of this
state is that it can only contain an even number of particles. This symmetry is referred to
number parity and plays a crucial role in many-body techniques using a HFB vacuum.
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13.4 The intrinsic Hamiltonian

For self-bound systems, such as nuclei, the proper starting point for a many-body calculation
is defined by a translationally invariant intrinsic Hamiltonian

Ĥint = T̂ − T̂cm + V̂ = T̂int + V̂ . (13.35)

Considering operators in Fock space, the intrinsic kinetic energy T̂ − T̂cm can be written
either composed as a sum of a one- and two-body operator

T̂
(a)
int =

(
1− 1

Â

)∑
i

p̂2i
2m

− 1

Âm

∑
i<j

p̂i · p̂j, (13.36)

or as a sum of two-body operators only, which corresponds to relative kinetic energies of
nucleonic pairs

T̂
(b)
int =

2

Â

∑
i<j

q̂2ij
2m

=
1

2Â

∑
i<j

(p̂i − p̂j)
2

m
. (13.37)

While both of the above choices coincide in the case of a particle-number conserving theory,
they are not equivalent in the case the reference state breaks U(1) symmetry. In particular
the naive replacement of particle-number operator Â by its expectation value leads to wrong
estimates.

By using a Taylor expansion of the particle-number operator it was shown that the
one- plus two-body-form of the intrinsic kinetic energy is superior in particle-number non-
conserving theories [HR09b].
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In Part II and III we introduced several flavors of MBPT with respect to different ref-
erence states. While the simplest version of MBPT is formulated with respect to a single-
determinantal reference state, the MCPT extension provides one possible way of generalizing
MBPT to open-shell systems, while having a reference state that still possesses the symme-
tries of the underlying Hamiltonian. Another strategy for including correlation effects is to
allow the reference state to explicitly break some of the symmetries. Such an approach is
called symmetry-broken many-body perturbation theory and has already been applied in the
context of other many-body techniques like CC or SCGF [Dug15; DS16; SDB11; Som+14].

In the most common form one uses reference states that break conservation of particle
number or total angular momentum. The corresponding reference states are then given as su-
perpositions of several irreducible representations (IRREPS) of the corresponding symmetry
group, e.g., for particle number conservation the symmetry group is U(1) while for rotational
symmetry it is SU(2). In this work we focus entirely on the case of U(1) symmetry-breaking,
which corresponds to using a reference state of HFB type yielding Bogoliubov many-body per-
turbation theory (BMBPT).

Even though many-body theories using symmetry-broken references states have been
known for a long time, there have been no systematic studies and in particular no imple-
mentations using modern interactions. There are, however, studies in the context of the
attractive pairing Hamiltonian, e.g., using quasiparticle CC [Hen+14] or projected quasipar-
ticle MBPT [LG12].

The discussion of the many-body formalism below is based on an extensive collaboration
with Thomas Duguet and Pierre Arthuis from CEA in Saclay, France. At the time of writing
of this thesis, the corresponding work was unpublished. Therefore, we present a condensed
version and refer to the literature when particular derivations are needed.
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14.1 The symmetry group U(1)

The breaking of particle-number conservation in HFB calculations is based on breaking
global U(1) symmetry. Therefore, we start with a brief discussion of some formal aspects of
the underlying symmetry group.

The abelian Lie group
U(1) ≡ {Ŝ(ϕ), ϕ ∈ [0, 2π]} (14.1)

is a symmetry group of the Hamiltonian Ĥ, the particle-number operator Â and some oper-
ator Ô,

[Ĥ, Ŝ(ϕ)] = 0, (14.2)
[Â, Ŝ(ϕ)] = 0, (14.3)
[Ô, Ŝ(ϕ)] = 0, (14.4)

where we assumed that Ô commutes with both Â and Ĥ, as well as Ĥ is a particle-number-
conserving operator

[Ĥ, Â] = 0. (14.5)

The unitary representation of U(1) on the Fock space F is defined by

Ŝ(φ) = eiÂφ. (14.6)

Consider now the stationary Schrödinger equation

Ĥ|ψAµ ⟩ = EA
µ |ψAµ ⟩, (14.7)

where EA
µ denotes the eigenvalue for a fixed value of A with increasing value for µ = 0, 1, 2, ....

Note that by (14.3) |ψAµ ⟩ is also an eigenstate of Â

Â|ψAµ ⟩ = A|ψAµ ⟩. (14.8)

With this, matrix elements of the irreducible representations (IRREPs) are given by

⟨ψAµ |Ŝ(φ)|ψA
′

µ′ ⟩ = eiAφδAA′δµµ′ . (14.9)

One defines the volume of the group by

Vol(U(1)) ≡
∫ 2π

0

dφ = 2π. (14.10)
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We further quote the orthogonality relation of the IRREPs,

1

Vol(U(1))

∫ 2π

0

dφe−iAφe+iA
′φ = δAA′ , (14.11)

where the volume of the group enters for the sake of normalization.

14.2 Time-dependent formalism

In a particle-number broken approach we introduce a Lagrange parameter to constrain the
Hamiltonian to the correct particle-number on average. This yields the definition of the
grand potential

Ω̂ ≡ Ĥ − λÂ, (14.12)

which takes the role of the Hamiltonian Ĥ. 1 Making use of the eigenvalue relations of Ĥ
and Â we get

Ω̂|ψAµ ⟩ = ΩA
µ |ψAµ ⟩, (14.14)

where the eigenvalue is given by

ΩA
µ = EA

µ − λA. (14.15)

The Lagrange parameter λ is conveniently called chemical potential. In general, the Lagrange
parameter for proton and neutron number do not coincide and, therefore, the chemical po-
tential is isospin dependent.

Time-dependent states

For the following we introduce the imaginary-time evolution operator by

Û(τ) ≡ e−τ Ω̂, (14.16)

for some real τ . With this we define the time-evolved many-body state via

|ψ(τ)⟩ = Û(τ)|Φ⟩ (14.17)

1More precisely the above constraint reads

Ω̂− λN N̂ − λZẐ, (14.13)

where N̂ , Ẑ are neutron- and proton-number operators. For the sake of simplicity we refer to Â to be either
one of them.
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for some particle-number-broken vacuum |Φ⟩. By making use of the completeness relation

1 =
∑
A∈N

∑
µ

|ψAµ ⟩⟨ψAµ | (14.18)

in Fock space the time evolved-state can be written as

|ψ(τ)⟩ =
∑
A∈N

∑
µ

e−τΩ
A
µ |ψAµ ⟩⟨ψAµ |Φ⟩. (14.19)

In the following we will be interested in investigating the large τ limit and eventually taking
the limit of infinite τ . The large time limit is defined by

τ ≫ ∆E−1, (14.20)

where ∆E is the difference between the ground and first excited state of the grand potential
Ω. We use the notation

lim
τ→∞

(14.21)

to indicate the large time limit of some quantity. Note, however, that there remains residual
τ dependence and the large time limit is not a a limit in an mathematical sense but rather
a regime.

In the large time limit the time-evolved state corresponds to the ground-state in the
formulas

|ψA0
0 ⟩ ≡ lim

τ→∞
|ψ(τ)⟩ (14.22)

= e−τΩ
A0
0 |ψA0

0 ⟩⟨ψA0
0 |, (14.23)

where the chemical λ is fixed such that for the targeted particle number A0, ΩA0
0 is the lowest

eigenvalue,

Ω̂|ψA0
µ ⟩ = ΩA0

0 |ψA0
µ ⟩. (14.24)

We note that, in principle, the above condition only ensures a stationary point of the func-
tional. In applications, the chemical potential is fixed to a particle number A0 such that
ΩA0

0 corresponds to the lowest energy eigenvalue. In general this can only be achieved if the
convexity of the energy functional in a neighborhood of A0 is guaranteed.
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Time-dependent operator kernels

In the following we assume an arbitrary operator Ô that commutes with Ĥ and Â. We define
the time-dependent kernel of the operator Ô by

O(τ) ≡ ⟨ψ(τ)|Ô|Φ⟩. (14.25)

Application to the identity operator, Hamiltonian, particle-number operator and grand po-
tential gives

N(τ) ≡ ⟨ψ(τ)|1|Φ⟩, (14.26)
H(τ) ≡ ⟨ψ(τ)|Ĥ|Φ⟩, (14.27)
A(τ) ≡ ⟨ψ(τ)|Â|Φ⟩, (14.28)
Ω(τ) ≡ ⟨ψ(τ)|Ω̂|Φ⟩, (14.29)

where the time-dependent kernel of the grand potential corresponds to

Ω(τ) = H(τ)− λA(τ). (14.30)

Furthermore, we define the reduced kernel of an operator Ô by

O(τ) ≡ O(τ)

N(τ)
, (14.31)

which leads to the case of intermediate normalization, i.e., N (τ) = 1 for the reduced norm
kernel.

Making use of the expansion of the time-evolved many-body state we get

N(τ) =
∑
A∈N

∑
µ

e−τΩ
A
µ |⟨Φ|ψAµ ⟩|2, (14.32)

H(τ) =
∑
A∈N

∑
µ

EA
µ e

−τΩA
µ |⟨Φ|ψAµ ⟩|2, (14.33)

A(τ) =
∑
A∈N

∑
µ

A e−τΩ
A
µ |⟨Φ|ψAµ ⟩|2, (14.34)

Ω(τ) =
∑
A∈N

∑
µ

ΩA
µ e

−τΩA
µ |⟨Φ|ψAµ ⟩|2. (14.35)

We define the large τ limit of an operator kernel by

O(∞) ≡ lim
τ→∞

O(τ) (14.36)

thus obtaining
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N(∞) = e−τΩ
A0
0 |⟨Φ|ψA0

0 ⟩|2, (14.37a)

H(∞) = EA0
0 e−τΩ

A0
0 |⟨Φ|ψA0

0 ⟩|2, (14.37b)

A(∞) = A0 e−τΩ
A0
0 |⟨Φ|ψA0

0 ⟩|2, (14.37c)

Ω(∞) = ΩA0
0 e−τΩ

A0
0 |⟨Φ|ψA0

0 ⟩|2. (14.37d)

Obviously, the following eigenvalue-like relations hold in the large time limit

H(∞) = EA0
0 N(∞), (14.38a)

A(∞) = A N(∞), (14.38b)
Ω(∞) = ΩA0

0 N(∞), (14.38c)

which by employing reduced kernels lead to

H(∞) = EA0
0 , (14.39a)

A(∞) = A0, (14.39b)
Ω(∞) = ΩA0

0 . (14.39c)

The quantities in (14.39) refer to the exact, i.e., untruncated reduced operator kernels which
are in one-to-one correspondence to a physical IRREP in the large-time limit. However, in
actual applications the expressions of the kernels are approximated leading to a breaking of
U(1) symmetry. This typically leads to approximations for the reduced kernels that have
the form

Napp ≡
∑
A∈Z

NA
app, (14.40a)

Aapp ≡
∑
A∈Z

AAappN
A
app, (14.40b)

Happ ≡
∑
A∈Z

HA
appN

A
app. (14.40c)

The remaining summation over several values of A displays the contamination from breaking
particle-number conservation in a given truncation scheme.

14.3 Normal-ordering with respect to the HFB vacuum

In the end we are using reference states from a HFB calculation. Therefore, it is convenient
to formulate the formalism that follows with respect to a quasiparticle basis and use a
normal ordered representation of the operators with respect to |Φ⟩. The version of Wick
theorem used in symmetry-conserving many-body approaches makes use of the particle-hole
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formalism. However, in the quasiparticle basis there is no distinction between particle and
hole single-particle states. Therefore, an extension to particle-number breaking reference
states is required [BB69].

Given an arbitrary two-body operator Ô its normal-ordered form is given by

O ≡ O[0] +O[2] +O[4] (14.41a)

≡ O00 +
[
O11 + {O20 +O02}

]
+
[
O22 + {O31 +O13}+ {O40 +O04}

]
(14.41b)

= O00 (14.41c)

+
1

1!

∑
k1k2

O11
k1k2

β†
k1
βk2 (14.41d)

+
1

2!

∑
k1k2

{
O20
k1k2

β†
k1
β†
k2
+O02

k1k2
βk2βk1

}
(14.41e)

+
1

(2!)2

∑
k1k2k3k4

O22
k1k2k3k4

β†
k1
β†
k2
βk4βk3 (14.41f)

+
1

3!

∑
k1k2k3k4

{
O31
k1k2k3k4

β†
k1
β†
k2
β†
k3
βk4 +O13

k1k2k3k4
β†
k1
βk4βk3βk2

}
(14.41g)

+
1

4!

∑
k1k2k3k4

{
O40
k1k2k3k4

β†
k1
β†
k2
β†
k3
β†
k4
+O04

k1k2k3k4
βk4βk3βk2βk1

}
, (14.41h)

where each term Ôij is characterized by its number i (j) of quasiparticle creation (annihila-
tion) operators. The classes Ô[k] collect all terms Ôij with i+ j = k.

In analogy to the standard Wick theorem the contribution

Ô[0] ≡ Ô00 =
⟨Φ|Ô|Φ⟩
⟨Φ|Φ⟩

(14.42)

denotes the zero-body part of the normal-ordered operator in quasiparticle space.

We further note that all matrix elements are anti-symmetric,

Oij
k1,...,ki,ki+1,...,ki+j

= (−1)σ(Π)Oij
Π(k1,...,ki,ki+1,...,ki+j)

, (14.43)

where σ(Π) denotes the signature of the permutation Π. We only consider permutations
among quasiparticle creation or annihilation operators, respectively. A compilation of fully
anti-symmetrized normal-ordered matrix elements of various operators of particular impor-
tance for the implementation are presented in appendix C.
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14.4 Unperturbed system

In analogy to the symmetry-conserving approaches, we introduce a partitioning of the grand-
canonical potential via

Ω̂ = Ω̂0 + Ω̂1 , (14.44)

such that

Ω̂0 ≡ Ω̂00 + ˆ̄Ω11 , (14.45)

Ω̂1 ≡ Ω̂20 +
ˆ̆
Ω11 + Ω̂02

+ Ω̂40 + Ω̂31 + Ω̂22 + Ω̂13 + Ω̂04 , (14.46)

where ˆ̆
Ω11 ≡ Ω̂11 − ˆ̄Ω11. The term ˆ̄Ω11 has the same formal structure as Ω̂11. The specific

choice of ˆ̄Ω11 remains open and will later be chosen conveniently. Note that we assume that
the unperturbed system is defined in terms of a one-quasiparticle operator. The use of HFB
reference states leads to choosing an operator Ω̂0 that breaks particle-number conservation,
i.e.,

[Ω̂0, Ŝ(φ)] ̸= 0, (14.47)

for general φ ∈ [0, 2π]. From this we also get

[Ω̂1, Ŝ(φ)] ̸= 0. (14.48)

From a set of quasiparticle energies {Ek} we construct the unperturbed grand potential

Ω̂0 ≡ Ω̂00 +
∑
k

Ekβ̂
†
kβ̂k, (14.49)

where we chose Ek > 0 for each k. Quasiparticle excitations with respect to the HFB vacuum
are defined by

|Φk1···kp⟩ ≡ β̂†
k1
· · · β̂†

kp
|Φ⟩, (14.50)

where we assume p to be an even number since we are working with states of even number
parity.

The action of Ω̂0 on the HFB vacuum is given by

Ω̂0|Φ⟩ = Ω00|Φ⟩+
∑
k

Ekβ̂
†
kβ̂k|Φ⟩ (14.51)

= Ω00|Φ⟩, (14.52)
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since by construction {β̂k} annihilate the HFB vacuum. Analogously, the eigenvalues of Ω̂0

for quasiparticle excitations are given by

Ω̂0|Φk1···kp⟩ = Ω00|Φk1···kp⟩+
∑
k

Ekβ̂
†
kβ̂k|Φ

k1···kp⟩, (14.53)

= Ω00|Φk1···kp⟩+
∑
k

Ekβ̂
†
kβ̂kβ̂

†
k1
β̂k1 · · · β̂

†
kp
β̂kp |Φ⟩, (14.54)

= Ω00|Φk1···kp⟩+
∑
k

Ek

(∑
ki

δkki

)
|Φk1···kp⟩, (14.55)

=
(
Ω00 + Ek1 + · · ·+ Ekp

)
|Φk1···kp⟩. (14.56)

14.5 Perturbative expansion of operator kernels

In the following we will derive the perturbative expansion of norm and operator kernels. In
a first step this requires the discussion of the unperturbed propagators.

Unperturbed propagator

The transformation of the quasiparticle creation and annihilation operators to the interaction
presentation reads

β̂k(τ) ≡ e+τΩ0 β̂ke
−τΩ0 = e−τE0 β̂k, (14.57)

β̂†
k(τ) ≡ e+τΩ0 β̂†

ke
−τΩ0 = e+τE0 β̂†

k. (14.58)

In quasiparticle space the unperturbed propagator is defined as a 2× 2 matrix

G0 =

(
G+−(0) G−−(0)

G++(0) G−+(0)

)
, (14.59)

whose components are defined as

G
+−(0)
k1k2

(τ1, τ2) ≡
⟨Φ|T [β̂†

k1
(τ1)β̂k2(τ2)]|Φ⟩
⟨Φ|Φ⟩

, (14.60a)

G
−−(0)
k1k2

(τ1, τ2) ≡
⟨Φ|T [β̂k1(τ1)β̂k2(τ2)]|Φ⟩

⟨Φ|Φ⟩
, (14.60b)

G
++(0)
k1k2

(τ1, τ2) ≡
⟨Φ|T [β̂†

k1
(τ1)β̂

†
k2
(τ2)]|Φ⟩

⟨Φ|Φ⟩
, (14.60c)

G
−+(0)
k1k2

(τ1, τ2) ≡
⟨Φ|T [β̂k1(τ1)β̂

†
k2
(τ2)]|Φ⟩

⟨Φ|Φ⟩
. (14.60d)

147



Chapter 14 - Bogoliubov Many-Body Perturbation Theory

The quantity T denotes the time-ordering operator which orders a product of operators in a
decreasing fashion with respect to their associated time labels. One can show that

G
+−(0)
k1k2

(τ1, τ2) = −e−(τ2−τ1)Ek1θ(τ2 − τ1)δk1k2 , (14.61a)
G

−−(0)
k1k2

(τ1, τ2) = 0, (14.61b)
G

++(0)
k1k2

(τ1, τ2) = 0, (14.61c)
G

−+(0)
k1k2

(τ1, τ2) = +e−(τ1−τ2)Ek1θ(τ1 − τ2)δk1k2 , (14.61d)

where

θ(τ) =

1, τ > 0

0, else
(14.62)

is the Heaviside θ-function. Derivations of (14.61) can be found in appendix D.
A particular feature of this approach is that it does not involve anomalous propagators,

i.e., propagators containing two quasiparticle creation or annihilation operators. 2 Further-
more, it holds that the equal-time propagators vanish, i.e.,

G
−+(0)
k1k2

(τ, τ) = 0, (14.63)
G

+−(0)
k1k2

(τ, τ) = 0, (14.64)

since they involve contractions arising from the vanishing R+− matrix.

Operator expansion of the evolution operator

An expansion of U(τ) in powers of Ω1 can be obtained by starting from

U(τ) ≡ e−τΩ0U1(τ) (14.65)

which gives

U1(τ) = eτΩ0e−τ(Ω0+Ω1). (14.66)

From this we get a first-order differential equation

∂τU1(τ) = −eτΩ0Ω1e
−τΩ0U1(τ) (14.67)

with solution
2The situation in the symmetry-restoration step is different. There one encounters matrix elements

between different bra and ket state which differ by a gauge rotation. In such cases anomalous contractions
do occur and the framework becomes more involved. This will, however, not be investigated in this thesis.
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U1(τ) = Te−
∫ τ
0 dtΩ1(t). (14.68)

In this case

Ω1(τ) ≡ eτΩ0Ω1e
−τΩ0 (14.69)

defines the perturbation in the interaction representation and shall not be confused with a
time-dependent operator kernel introduced before. Finally, the time evolution operator is
given by

U(τ) = e−τΩ0Te−
∫ τ
0 dtΩ1(t). (14.70)

Expansion of the operator kernel

We now come back to the derivation of the perturbation expansion of an arbitrary operator
kernel O(τ). By the definition of the operator kernel we get

O(τ) = ⟨ψ(τ)|O|Φ⟩, (14.71)
= ⟨Φ|U(τ)O|Φ⟩, (14.72)
= ⟨Φ|e−τΩ0Te−

∫ τ
0 dtΩ1(t)O|Φ⟩. (14.73)

Expanding the exponential gives

O(τ) = e−Ω00⟨Φ|
(
O(0)−

∫ τ

0

dτ1T [Ω1(τ1)O(0)] +
1

2!

∫ τ

0

dτ1dτ2T [Ω1(τ1)Ω(τ2)O(0)] + · · ·
)
|Φ⟩

= e−Ω00
( ∞∑
p=0

(−1)p

p!

∑
i1+j1=2,4

∫ τ

0

dτ1 · · · dτp

×
∑

k1,...,ki1
ki1+1,...,ki1+j1...

l1···lip
lip ···lip+jp

Ωi1j1
k1...ki1 ,ki1+1...ki1+j1

(i1)!(j1)!
· · ·

Ω
ipjp
l1...li1 ,li1+1...li1+j1

(ip)!(jp)!

× ⟨Φ|T [β̂k1(τ1) · · · β̂
†
ki1

(τ1)β̂ki1+j1
(τ1) · · · β̂ki1+1(τ1) · · ·

· · · β̂†
l1
(τp) · · · β̂†

lip
(τp)β̂lip+jp

(τp) · · · β̂lip+1
(τp)]|Φ⟩

)
. (14.74)

By means of the generalized Wick theorem the expectation values of products of time-
dependent field operators can be evaluated explicitly.
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14.6 Extraction of diagrammatic rules

In the following we will investigate the first- and second-order norm kernel to derive a set
of diagrammatic rules which will be applied subsequently for the derivation of low-order
formulas.

First-order expansion of the norm kernel

In the following we suppress the additional prefactor e−Ω00 in the expansion of the norm
kernel. Starting with the first-order norm kernel we get for p = 1

N (1)(τ) = −
∫ τ

0

dτ1⟨Φ|Ω1(τ1)|Φ⟩

= −
∫ τ

0

dτ1

(∑
k1k2

Ω̆11
k1k2

1! 1!
⟨Φ|T

[
β†
k1
(τ1)βk2(τ1)

]
|Φ⟩.

+
∑
k1k2

Ω20
k1k2

2! 0!
⟨Φ|T

[
β†
k1
(τ1)β

†
k2
(τ1)

]
|Φ⟩

+
∑
k1k2

Ω02
k1k2

0! 2!
⟨Φ|T

[
βk2(τ1)βk1(τ1)

]
|Φ⟩

+
∑

k1k2k3k4

Ω22
k1k2k3k4

2! 2!
⟨Φ|T

[
β†
k1
(τ1)β

†
k2
(τ1)βk4(τ1)βk3(τ1)

]
|Φ⟩

+
∑

k1k2k3k4

Ω31
k1k2k3k4

3! 1!
⟨Φ|T

[
β†
k1
(τ1)β

†
k2
(τ1)β

†
k3
(τ1)βk4(τ1)

]
|Φ⟩

+
∑

k1k2k3k4

Ω13
k1k2k3k4

1! 3!
⟨Φ|T

[
β†
k1
(τ1)βk4(τ1)βk3(τ1)βk2(τ1)

]
|Φ⟩

+
∑

k1k2k3k4

Ω40
k1k2k3k4

4! 0!
⟨Φ|T

[
β†
k1
(τ1)β

†
k2
(τ1)β

†
k3
(τ1)β

†
k4
(τ1)

]
|Φ⟩

+
∑

k1k2k3k4

Ω04
k1k2k3k4

0! 4!
⟨Φ|T

[
βk4(τ1)βk3(τ1)βk2(τ1)βk1(τ1)

]
|Φ⟩
)

(14.75)

Evaluating the corresponding normal-ordered strings we get sums of products of unperturbed
propagators

N (1)(τ) = −
∫ τ

0

dτ1

{∑
k1k2

Ω̆11
k1k2

G
+−(0)
k1k2

(τ1, τ1) +
1

2

∑
k1k2

Ω20
k1k2

G
++(0)
k1k2

(τ1, τ1)

+
1

2

∑
k1k2

Ω02
k1k2

G
−−(0)
k2k1

(τ1, τ1)

+
1

4

∑
k1k2k3k4

Ω22
k1k2k3k4

(
G

++(0)
k1k2

(τ1, τ1)G
−−(0)
k4k3

(τ1, τ1) −G
+−(0)
k1k4

(τ1, τ1)G
+−(0)
k2k3

(τ1, τ1)
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+G
+−(0)
k1k3

(τ1, τ1)G
+−(0)
k2k4

(τ1, τ1)
)

+
1

3!

∑
k1k2k3k4

Ω31
k1k2k3k4

(
G

++(0)
k1k2

(τ1, τ1)G
+−(0)
k3k4

(τ1, τ1)−G
++(0)
k1k3

(τ1, τ1)G
+−(0)
k2k4

(τ1, τ1)

+G
+−(0)
k1k4

(τ1, τ1)G
++(0)
k2k3

(τ1, τ1)
)

+
1

3!

∑
k1k2k3k4

Ω13
k1k2k3k4

(
G

+−(0)
k1k4

(τ1, τ1)G
−−(0)
k3k2

(τ1, τ1)−G
+−(0)
k1k3

(τ1, τ1)G
−−(0)
k4k2

(τ1, τ1)

+G
+−(0)
k1k2

(τ1, τ1)G
−−(0)
k4k3

(τ1, τ1)
)

+
1

4!

∑
k1k2k3k4

Ω40
k1k2k3k4

(
G

++(0)
k1k2

(τ1, τ1)G
++(0)
k3k4

(τ1, τ1)−G
++(0)
k1k3

(τ1, τ1)G
++(0)
k2k4

(τ1, τ1)

+G
++(0)
k1k4

(τ1, τ1)G
++(0)
k2k3

(τ1, τ1)
)

+
1

4!

∑
k1k2k3k4

Ω04
k1k2k3k4

(
G

++(0)
k4k3

(τ1, τ1)G
++(0)
k2k1

(τ1, τ1)−G
++(0)
k4k2

(τ1, τ1)G
++(0)
k3k1

(τ1, τ1)

+G
++(0)
k4k1

(τ1, τ1)G
++(0)
k3k2

(τ1, τ1)
)}

= 0 , (14.76)

since all contractions involve equal-time propagators which vanish identically.

Second-order norm kernel

Application of the Taylor expansion at second-order yields the following contributions at
second-order for the norm kernel

N (2)(τ) = N (1)(τ) +
1

2!

∫ τ

0

dτ1dτ2⟨Φ|T [Ω1(τ1)Ω1(τ2)] |Φ⟩

= N (1)(τ)

+
1

2!

∫ τ

0

dτ1dτ2

{ ∑
k1k2l1l2

Ω̆11
k1k2

1! 1!

Ω̆11
l1l2

1! 1!
⟨Φ|T

[
β†
k1
(τ1)βk2(τ1)β

†
l1
(τ2)βl2(τ2)

]
|Φ⟩

+
∑

k1k2l1l2

Ω02
k1k2

0! 2!

Ω20
l1l2

2! 0!
⟨Φ|T

[
βk2(τ1)βk1(τ1)β

†
l1
(τ2)β

†
l2
(τ2)

]
|Φ⟩

+
∑

k1k2l1l2

Ω20
k1k2

2! 0!

Ω02
l1l2

0! 2!
⟨Φ|T

[
β†
k1
(τ1)β

†
k2
(τ1)βl2(τ2)βl1(τ2)

]
|Φ⟩

+
∑

k1k2l1l2

Ω̆11
k1k2

1! 1!

Ω02
l1l2

0! 2!
⟨Φ|T

[
β†
k1
(τ1)βk2(τ1)βl2(τ2)βl1(τ2)

]
|Φ⟩

+
∑

k1k2l1l2

Ω̆11
k1k2

1! 1!

Ω20
l1l2

2! 0!
⟨Φ|T

[
β†
k1
(τ1)βk2(τ1)β

†
l1
(τ2)β

†
l2
(τ2)

]
|Φ⟩
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+
∑

k1k2l1l2

Ω20
k1k2

2! 0!

Ω̆11
l1l2

1! 1!
⟨Φ|T

[
β†
k1
(τ1)β

†
k2
(τ1)β

†
l1
(τ2)βl2(τ2)

]
|Φ⟩

+
∑

k1k2l1l2

Ω02
k1k2

0! 2!

Ω̆11
l1l2

1! 1!
⟨Φ|T

[
βk2(τ1)βk1(τ1)β

†
l1
(τ2)βl2(τ2)

]
|Φ⟩

+
∑

k1k2l1l2

Ω02
k1k2

0! 2!

Ω02
l1l2

0! 2!
⟨Φ|T

[
βk2(τ1)βk1(τ1)βl2(τ2)βl1(τ2)

]
|Φ⟩

+
∑

k1k2l1l2

Ω20
k1k2

2! 0!

Ω20
l1l2

2! 0!
⟨Φ|T

[
β†
k1
(τ1)β

†
k2
(τ1)β

†
l1
(τ2)β

†
l2
(τ2)

]
|Φ⟩

+ . . .

}
, (14.77)

where the listed number of second-order terms is incomplete. We aim at calculating a few
terms in the series and deduce the diagrammatic rules from them. As an example we take
the term containing Ω̂02Ω̂20. Applying all possible Wick contractions yields

N
(2)
02.20(τ) ≡

1

2!

∫ τ

0

dτ1dτ2
∑

k1k2l1l2

Ω02
k1k2

0! 2!

Ω20
l1l2

2! 0!
⟨Φ|T

[
βk2(τ1)βk1(τ1)β

†
l1
(τ2)β

†
l2
(τ2)

]
|Φ⟩

=
1

8

∫ τ

0

dτ1dτ2
∑

k1k2l1l2

Ω02
k1k2

Ω20
l1l2

{
G

−−(0)
k2k1

(τ1, τ1)G
++(0)
l1l2

(τ2, τ2)

−G−+(0)
k2l1

(τ1, τ2)G
−+(0)
k1l2

(τ1, τ2) +G
−+(0)
k2l2

(τ1, τ2)G
−+(0)
k1l1

(τ1, τ2)
}

=
1

8

∫ τ

0

dτ1dτ2
∑

k1k2l1l2

Ω02
k1k2

Ω20
l1l2

{
−G−+(0)

k2l1
(τ1, τ2)G

−+(0)
k1l2

(τ1, τ2)

+G
−+(0)
k2l2

(τ1, τ2)G
−+(0)
k1l1

(τ1, τ2)
}

=
1

8

∑
k1k2l1l2

Ω02
k1k2

Ω20
l1l2

∫ τ

0

dτ1dτ2
{
−θ(τ1 − τ2)δk2l1δk1l2e

−(τ1−τ2)(Ek1
+Ek2

)

+θ(τ1 − τ2)δk2l2δk1l1e
−(τ1−τ2)(Ek1

+Ek2
)
}

=
1

8

∑
k1k2l1l2

Ω02
k1k2

Ω20
l1l2

(−δk2l1δk1l2 + δk2l2δk1l1)

∫ τ

0

dτ1dτ2θ(τ1 − τ2)e
−(τ1−τ2)(Ek1

+Ek2
)

=
1

8

∑
k1k2

(
−Ω02

k1k2
Ω20
k2k1

+ Ω02
k1k2

Ω20
k1k2

) [ τ

Ek1 + Ek2
+
e−τ(Ek1

+Ek2
) − 1

(Ek1 + Ek2)
2

]

=
1

4

∑
k1k2

Ω02
k1k2

Ω20
k1k2

Ek1 + Ek2

[
τ − 1− e−τ(Ek1

+Ek2
)

Ek1 + Ek2

]
, (14.78)

In a similar way we obtain for the Ω̂20Ω̂02 term

N
(2)
20.02(τ) ≡

1

2!

∫ τ

0

dτ1dτ2
∑

k1k2l1l2

Ω20
k1k2

2! 0!

Ω02
l1l2

0! 2!
⟨Φ|T

[
β†
k1
(τ1)β

†
k2
(τ1)βl2(τ2)βl1(τ2)

]
|Φ⟩
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=
1

8

∫ τ

0

dτ1dτ2
∑

k1k2l1l2

Ω20
k1k2

Ω02
l1l2

{
G

++(0)
k1k2

(τ1, τ1)G
−−(0)
l2l1

(τ2, τ2)

−G+−(0)
k1l2

(τ1, τ2)G
+−(0)
k2l1

(τ1, τ2) +G
+−(0)
k1l1

(τ1, τ2)G
+−(0)
k2l2

(τ1, τ2)
}

=
1

8

∑
k1k2l1l2

Ω20
k1k2

Ω02
l1l2

(−δk2l1δk1l2 + δk2l2δk1l1)

∫ τ

0

dτ1dτ2θ(τ2 − τ1)e
−(τ2−τ1)(Ek1

+Ek2
)

=
1

4

∑
k1k2

Ω20
k1k2

Ω02
k1k2

Ek1 + Ek2

[
τ − 1− e−τ(Ek1

+Ek2
)

Ek1 + Ek2

]
. (14.79)

Obviously both contributions coincide and finding two individual diagrammatic represen-
tation of the above terms would yield topologically equivalent diagrams. Therefore, both
contributions will be represented by one diagram.

As an additional example consider the term containing Ω̆11Ω02,

N
(2)
11.02(τ) ≡

1

2!

∫ τ

0

dτ1dτ2
∑

k1k2l1l2

Ω̆11
k1k2

1! 1!

Ω02
l1l2

0! 2!
⟨Φ|T

[
β†
k1
(τ1)βk2(τ1)βl2(τ2)βl1(τ2)

]
|Φ⟩

=
1

4

∫ τ

0

dτ1dτ2
∑

k1k2l1l2

Ω̆11
k1k2

Ω02
l1l2

{
G

+−(0)
k1k2

(τ1, τ1)G
−−(0)
l1l2

(τ2, τ2)

−G+−(0)
k1l2

(τ1, τ2)G
−−(0)
k2l1

(τ1, τ2) +G
+−(0)
k1l1

(τ1, τ2)G
−−(0)
k2l2

(τ1, τ2)
}

= 0 , (14.80)

which vanishes identically due to anomalous unperturbed propagators. Anomalous propa-
gators originate from contractions from either two creation or two annihilation operators.
Therefore, from the very start we can exclude contributions with a different number of
creation and annihilation operators.

Last consider the term Ω̆11Ω̆11,

N
(2)
11.11(τ) ≡

1

2!

∫ τ

0

dτ1dτ2
∑

k1k2l1l2

Ω̆11
k1k2

1! 1!

Ω̆11
l1l2

1! 1!
⟨Φ|T

[
β†
k1
(τ1)βk2(τ1)β

†
l1
(τ2)βl2(τ2)

]
|Φ⟩

=
1

2!

∫ τ

0

dτ1dτ2
∑

k1k2l1l2

Ω̆11
k1k2

Ω̆11
l1l2

{
G

+−(0)
k1k2

(τ1, τ1)G
+−(0)
l1l2

(τ2, τ2)

−G++(0)
k1l1

(τ1, τ2)G
−−(0)
k2l2

(τ1, τ2) +G
+−(0)
k1l2

(τ1, τ2)G
−+(0)
k2l1

(τ1, τ2)
}

= − 1

2!

∑
k1k2l1l2

Ω̆11
k1k2

Ω̆11
l1l2
δk1l2δk2l2

∫ τ

0

dτ1dτ2θ(τ2 − τ1)θ(τ1 − τ2)e
−(τ2−τ1)(Ek1

−Ek2
)

= 0 , (14.81)

which vanished as well since we have
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θ(τ2 − τ1)θ(τ1 − τ2) = 0. (14.82)

Therefore, normal propagators linking two vertices with different time labels are forced to
propagate in the same direction.

The manual evaluation of the above contribution allows us to infer the diagrammatic
rules in BMBPT which are subsequently used for a more efficient evaluation of low-order
corrections.

14.7 Diagrammatic treatment

The following provides an overview of the relevant diagrammatic rules in low-order BMBPT.

Diagrammatic Rules of BMBPT

1. Closed vacuum-to-vacuum Feynman diagrams of order p consist of p vertices cor-
responding to Ωij(τk).

2. Edges represent fermionic quasiparticle lines corresponding to unperturbed prop-
agators Ggg′(0) which form a set of closed loops.

3. Each vertex is labeled by a time label whereas each line is labeled by two quasi-
particle indices and two time labels at its end. Vertices contribute a factor

Ωij
k1...kiki+1...ki+j

and edges contribute a factor Ggg′(0)
k1k2

(τk, τk′) where g, g′ = ± determines the type
of unperturbed propagator which needs to be considered.

4. The contributions to N(τ) arising at order p are given by drawing all possible topo-
logically distinct vacuum-to-vacuum diagrams involving p perturbation operators
Ω̂1(τk). Two diagrams are called topologically equivalent if they can be obtained
from each other by relabelling vertex and edge labels.

5. One must sum over all internal quasiparticle indices and integrate over all time
labels from 0 to ∞.

6. One must assign a phase factor (−1)p+nc where p denotes the perturbation order
and nc denotes the number of crossing lines.

7. Add a prefactor 1
(ne)!

for each group of ne equivalent lines. Two lines are considered
equivalent, if they connect the same vertices and the corresponding unperturbed
propagators are characterized by the same superscripts g and g′.
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8. A symmetry prefactor 1
ns

needs to be considered corresponding to the of number of
ways one produces a topologically distinct diagram when exchanging time labels.

The normal-ordering in quasiparticle space yields many different contributions even if re-
stricting oneself to two-body operators in the first place. Therefore, the large number of
diagrams is a severe problem. Fortunately, there are some properties which tremendously
reduce the number of allowed diagrams.

Selection Rules
1. Anomalous propagators vanish identically and do not need to be considered.

2. Each string of operators needs to have the same amount of creation and annihila-
tion operators

na ≡
p∑

k=1

(jk − ik) ̸= 0 ⇒ ⟨Φ|Ωi1j1(τ1)Ω
i2j2(τ2) · · ·Ωikjk(τk)|Φ⟩ = 0. (14.83)

3. All equal-time propagators vanish since there are no self contractions.

14.8 Exponentiation of connected diagrams

In the following we will argue why the disconnected diagrams do not contribute, which is
important for the correct scaling behavior with respect to the size of the system, i.e., mass
number for finite nuclei.

Consider a disconnected diagram which consists of several connected components denoted
by Γci(τ) where none of the connected components are joined by edges. Furthermore, the
same connected part may appear several times in the overall diagram. The overall value of
a diagram Γ(τ) is proportional to

Γ(τ) ∝ Γc1(τ)
n1Γc2(τ)

n2 · · · (14.84)

Taking further into account permutations of the time labels of identical disconnected parts
we get

Γ(τ) =
1

n1!
Γcn1

(τ)n1
1

n2!
Γcn2

(τ)n2 · · · (14.85)

such that we can finally write by means of the power series representation of the exponential
function

⟨Φ|U1|Φ⟩ =
∑
Γ

Γ(τ)
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=
∑
Γ

1

n1!
Γc1(τ)

n1
1

n2!
Γc2(τ)

n2 · · ·

= eΓ
c
1(τ)+Γc

2(τ)+··· (14.86)

which shows that the time-evolution operator can be expanded in a exponential of the sum
of connected diagrams only. The norm can, prior to any truncation be written as

N(τ) = e−τΩ
00+n(τ)⟨Φ|Φ⟩, (14.87)

where n(τ) ≡
∑∞

n=1 n
(n)(τ), with n(n)(τ) being the sum of all connected Feynman vacuum-

amplitude diagrams of order n.

14.9 Second-order correction to the norm kernel

In the following we derive the second-order contributions to the norm kernel using the dia-
grammatic rules outlined before. The relevant diagrams are displayed in Figure 14.1. The
two-body contribution gives

PN2.2 = +
1

4!

∑
k1k2k3k4
k5k6k7k8

Ω40
k1k2k3k4

Ω04
k5k6k7k8

×
τ∫

0

dτ1dτ2G
+−(0)
k1k5

(τ1, τ2)G
+−(0)
k2k6

(τ1, τ2)G
+−(0)
k3k7

(τ1, τ2)G
+−(0)
k4k8

(τ1, τ2)

= +
1

4!

∑
k1k2k3k4
k5k6k7k8

Ω40
k1k2k3k4

Ω04
k5k6k7k8

δk1k5δk2k6δk3k7δk4k8

×
τ∫

0

dτ1dτ2 θ(τ2 − τ1)e
−(τ2−τ1)(Ek1

+Ek2
+Ek3

+Ek4
)

=+
1

4!

∑
k1k2k3k4

Ω40
k1k2k3k4

Ω04
k1k2k3k4

Ek1 + Ek2 + Ek3 + Ek4

[
τ − 1− e−τ(Ek1

+Ek2
+Ek3

+Ek4
)

Ek1 + Ek2 + Ek3 + Ek4

]
. (14.88)

Adopting the large time limit the above expression gives

PN2.2 = +
1

4!

∑
k1k2k3k4

Ω40
k1k2k3k4

Ω04
k1k2k3k4

Ek1 + Ek2 + Ek3 + Ek4

[
τ − 1

Ek1 + Ek2 + Ek3 + Ek4

]
. (14.89)

14.10 Norm kernel and correlation energy

Starting from

N(∞) = e−τΩ
A0
0 |⟨Φ|ΨA0

0 ⟩|2 (14.90)
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and matching (14.87) we get

lim
n→∞

n(τ) ≡ −τ∆ΩA0
0 + ln |⟨Φ|ψA0

0 ⟩|2, (14.91)

where

∆ΩA0
0 ≡ Ω̂A0

0 − Ω̂00

= ⟨Φ|Ω̂1

∞∑
k=1

( 1

Ω̂00 − Ω̂0

)k−1

|Φ⟩c (14.92)

is the analogue of the correlation expansion for the superfluid HFB reference state.

14.11 Perturbative expansion of generic operator kernels

After deriving the perturbative expansion of the norm kernel we can apply similar arguments
for a generic operator Ô where one assumes that Ô commutes with Ĥ and Â. For the time-
dependent operator kernel we get

O(τ) = ⟨Φ|e−τΩ0 Te−
∫ τ
0 dtΩ1(t)O|Φ⟩ (14.93)

= e−τΩ
00⟨Φ|

{
O(0)−

∫ τ

0

dτ1T [Ω1 (τ1)O(0)]

+
1

2!

∫ τ

0

dτ1dτ2T [Ω1 (τ1) Ω1 (τ2)O(0)] + ...
}
|Φ⟩ , (14.94)

where the key difference to the expansion of the norm kernel is given by the extra appearence
of the operator kernel O(0) at fixed time t = 0.

Analogously, to the expansion of the norm kernel we write

O(τ) ≡ e−τΩ
00
∑

i+j=0,2,4

∞∑
n=0

Oij (n)(τ)⟨Φ|Φ⟩ , (14.95)

where again the first sum displays the restriction to quasiparticle operators of rank four.
Here Oij (n)(τ) denotes the sum of connected vacuum diagrams of order n.

Factorization of connected diagrams

As already indicated the operator kernel diagrams correspond to insertions at time τ = 0 of
Ô into the perturbative expansion of the norm kernel. In particular any diagram Oij (n)(τ)

consists of a part, which is linked to the vertex Oij(0), and a part that is disconnected.
Therefore, the expression of operator kernel factorizes into

Oij(τ) ≡ oij(τ)N(τ) . (14.96)
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0

O00

PO0.1

0
O20

PO1.1

τ1
Ω02

0
O40

PO1.2

τ1
Ω04

Figure 14.1: First- and second-order vacuum diagrams contributing to o(τ) in BMBPT.

By virtue of reduced operator kernels this yields

Oij(τ) = oij(τ) , (14.97)

where we define
oij(τ) ≡

∞∑
n=0

oij (n)(τ) (14.98)

sums up all vacuum diagrams which are linked to the bottom vertex corresponding to the
operator of interest.

Second-order diagrams

At second-order BMBPT there appear two non-vanishing linked diagrams which contribute
to o(τ). Both involve the perturbation operator Ω1(τ1) at time τ1 > 0 as well as the operator
kernel O(0) at fixed time t = 0.

Figure 14.1 displays the corresponding diagrams at first- and second-order BMBPT. In
the following we will derive the contribution arising from the last diagram explicitly to show
how to work with the diagrammatic formalism. The fully labeled diagram is given by

0
+O40

k5k6k7k8

τ1
+Ω04

k1k2k3k4

k7

k3

k8

k4

k6

k2

k5

k1

which contain eight single-particle summations. Since there are no crossing lines and the
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Figure 14.2: Third-order vacuum BMBPT diagrams of a generic operator Ô. Single-particle and
time labels are suppressed.

diagram contains exactly one vertex the phase is given by (−1)p+nc = −1. Further, there
are four equivalent lines starting and ending at the same vertex. In particular since only one
vertex carries a non-trivial time label the symmetry factor ns = 1. The algebraic value is
thus given by

PO1.2 = (−1)1
1

4!

∑
k1k2k3k4
k5k6k7k8

O40
k1k2k3k4

Ω04
k5k6k7k8

×
τ∫

0

dτ1G
−+(0)
k5k1

(τ1, 0)G
−+(0)
k6k2

(τ1, 0)G
−+(0)
k7k3

(τ1, 0)G
−+(0)
k8k4

(τ1, 0)

=− 1

4!

∑
k1k2k3k4
k5k6k7k8

O40
k1k2k3k4

Ω04
k5k6k7k8

δk5k1δk6k2δk7k3δk8k4

τ∫
0

dτ1θ(τ1)e
−τ1(Ek1

+Ek2
+Ek3

+Ek4
)

=− 1

4!

∑
k1k2k3k4

O40
k1k2k3k4

Ω04
k1k2k3k4

Ek1 + Ek2 + Ek3 + Ek4

[
1− e−τ(Ek1

+Ek2
+Ek3

+Ek4
)
]
, (14.99)

where we made use of the integral identities provided in appendix B. In the infinite-time
limit the above expression is given by
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PO1.2 = − 1

4!

∑
k1k2k3k4

O40
k1k2k3k4

Ω04
k1k2k3k4

Ek1 + Ek2 + Ek3 + Ek4
. (14.100)

Proceeding to higher orders

When proceeding to higher order in BMBPT the proliferation of diagrams makes a more
systematic treatment of the diagrammatic approach desirable. The following algorithm safely
generates all distinct BMBPT diagrams at order p:

Generation of BMBPT diagrams

1. All propagators starting from the lowest vertex corresponding to O must travel
upwards, therefore only O20 and O40 need to be considered.

2. At perturbation order p restrict to the collection

{Oi0j0 ,Ωi1j1 , · · · ,Ωip−1jp−1} (14.101)

such that

p−1∑
k=0

(ik − jk) = 0. (14.102)

3. Draw all sets of propagators, starting from the bottom vertex corresponding to
the operator O since propagators connecting the same vertices must propagate in
the same direction.

4. Eliminate all topologically identical diagrams.

By applying the above set of rules at third order one gets the following set of eight topolog-
ically distinct third-order BMBPT diagrams, cf. Figure 14.2.

14.12 Monitoring symmetry breaking

14.12.1 Particle-number

Of particular importance in BMBPT or any other particle-number non-conserving approach
is the monitoring of the expectation value of the particle number operator as well as its
variance. In particular the BMBPT equation must be solved such that

A(∞) = lim
τ→∞

⟨Ψ(τ)|Â|Φ⟩
⟨Ψ(τ)|Φ⟩

= a(∞)
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= A0, (14.103)

with A0 being the particle number of the target system and

a(∞) ≡
∑

i+j=0,2

∞∑
n=0

aij (n)(∞) , (14.104)

where aij (n)(∞) denotes the set of all vacuum BMBPT diagrams of order n which are linked
to Aij at fixed time t = 0.

We note that in an actual implementation this has to be done separately for both neutron
number N and proton number Z. In the above discussion A serves as a placeholder for either
of them. Typically, reference states are constructed from a prior solution of a mean field
equation, e.g., a HFB solution. Even though the HFB reference has the correct particle
number on average, this is no longer true for the correlated BMBPT state. In particular, the
evaluation of perturbative corrections will have an impact on the average particle number of
the perturbed state and the particle number expectation value of this state will in general
not coincide with the particle number of the target nucleus. Therefore, the calculation of
perturbative corrections to the particle number in BMBPT is an intrinsic feature and it is
necessary to ensure correct particle number on average of the perturbed state.

Particle-number variance

Beyond the average value of the particle number operator the particle number variance

∆A2 ≡ a2(∞)− a(∞)2 (14.105)

is of particular interest since it measures the dispersion of both protons and neutrons. In the
above relation a2(∞) is the infinite-time limit of the square of the particle-number operator,
while a(∞)2 ≡ (a(∞))2 denotes the square of the infinite-time limit of the particle-number
operator. Making use of second quantization the square of the particle-number operator is
given by

A2 =

(∑
pq

δpq ĉ
†
pĉq

)(∑
rs

δrsĉ
†
rĉs

)

=
∑
pq

a(1)pq c
†
pcq +

1

2

∑
pqrs

a(2)pqrsĉ
†
pĉ

†
q ĉsĉr. (14.106)

In second-quantized form A2 consists of a one-body and a two-body part. Introducing fully
anti-symmetrized matrix elements the two-body part of A2 reads
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ā(2)pqrs ≡ a(2)pqrs − a(2)pqsr

= 2δprδqs − 2δpsδqr

= 2(δprδqs − δpsδqr) , (14.107)

and concludingly
A2 =

∑
pq

a(1)pq ĉ
†
pĉq +

1

4

∑
pqrs

ā(2)pqrsĉ
†
pĉ

†
q ĉsĉr . (14.108)

The introduction of anti-symmetrized matrix elements enables for the use of formulas of
transformations of quasiparticle matrix elements in Fock space in appendix C.

14.13 Implementation

In the following we will summarize the formalism outlined before and describe the algorithm
that is necessary for its implementation. We assume that the reference state arises from
a HFB calculation. However, the procedure outlined below can easily be generalized to
arbitrary particle-number broken reference states.

Algorithm

1. Solve the HFB equations in a given single-particle basis(
h ∆

−∆⋆ −h⋆

)(
Uk

Vk

)
= Ek

(
Uk

Vk

)
, (14.109)

witih quantitites according to chapter 13. This yields a HFB vacuum |Φ⟩, the
unperturbed grand potential Ω̂0 and a set

{Uk, Vk, Ek ≥ 0}. (14.110)

A first guess of the Lagrange multiplier is given by

⟨Φ|Â|Φ⟩ = A00 ≡ Aaux (14.111)

2. Calculate the matrix elements in quasiparticle space

Ωij
k1,...,ki+j

, Aijk1,...,ki+j
, H ij

k1,...,ki+j
, A2 ij

k1,...,ki+j
(14.112)

3. Compute the observable of interest in the infinite-time limit by

O(∞) = o(∞) (14.113)
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at order p according to

o(n)(∞) =
∑

i,j=0,2,4

p∑
l=0

oij(l)(∞). (14.114)

4. Compute the expectation value of the particle-number operator a(∞) such that

a(∞) = A0. (14.115)

In the case a(∞) ̸= A0 adjust the chemical potential λ and repeat from step 1.

5. When convergence is reached, compute the observables ω(∞), a(∞), a2(∞), h(∞)

as well as the particle-number variance

∆A2 = a2(∞)− a(∞)2. (14.116)

Application of the above algorithm gives correlated observables in BMBPT for genuine
open-shell systems with the constraint that the average value of the particle number operator
with respect to the perturbed wave function is equal to the particle number of the targeted
nucleus.

A peculiarity arises when applying BMBPT at second order with respect to a HFB
reference state. In this case—due to the one-body nature of the particle-number operator—
the second-order correction to a(∞) vanishes and the expectation value of the particle-
number operator is equal to A if the HFB equations were solved under this constraint.
Therefore, the adjustment of particle number is not necessary. This is, however, a particular
feature of the HFB reference state and does not hold for arbitrary symmetry-breaking vacua.
Furthermore, at third-order, corrections to a(∞) arise also in the HFB scheme and the above
outlined particle-number adaptation step becomes mandatory.

14.14 Spherical symmetry

The formalism presented above makes use ofm-scheme quantities only. In actual applications
for computational reasons we exploit spherical symmetry to reach model space convergence.

The reference state used in BMBPT arises from a HFB calculation using a spherical refer-
ence basis and in particular has good total angular momentum. In particular the Bogoliubov
matrices Uk1k2 and Vk1k2 are diagonal with respect to isosopin projection t, orbital-angular
momentum l and total angular momentum j. Thus, there appear only non-vanishing ma-
trix elements between states with different n quantum numbers within the same (ljt) block.
Additionally, all matrix elements are independent of m. Equally, the HFB quasiparticle
energies Ek do not depend on m either.
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For the formulation of spherical BMBPT it is, therefore, required to derive angular-
momentum coupled quasiparticle matrix element for the different Ω̂ij operators. These
expression are derived in detail in appendix E.
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15
Towards Correlated Energy Density Functional

Kernels

The formulation of symmetry-broken MBPT introduces a novel framework to the pool of
medium-mass ab initio methods. Even though the development of novel many-body ap-
proaches is interesting in its own right, many-body approaches rooted in symmetry-breaking
and restoration offer additional potential beyond sole ab initio applications. The aim of this
chapter is to give a brief introduction to nuclear energy density functional (EDF) theory
and show a way how symmetry-broken (and restored) many-body methods can be used to
constrain modern EDFs in a systematically improvable way. For a recent account of nuclear
EDF theory see [Dug14].

The forthcoming discussion serves as motivation of why one further needs to investigate
symmetry-broken MBPT. In particular, it serves as a guideline for the merging of ab initio
nuclear structure with state-of-the-art EDF theory. For a detailed discussion with particular
emphasis on the symmetry group SU(2) see [Dug+15] and references therein.

15.1 Basic elements of group theory

In the discussion of the EDF formalism basic elements of group theory are required, which will
be introduced in this section. For the interested reader we refer to Ref. [Geo99] for a discus-
sion of symmetry groups in physics. A mathematically thorough introduction of Lie algebras
can for example be found in the classic textbooks by Kac [Kac08] or Humphreys [Hum72].

Let G be an arbitrary symmetry group of the nuclear Hamiltonian Ĥ, which is assumed
to be parametrized by a set of r parameters α, i.e., G = {R(α)}, where α ≡ {αi ∈ Di : i =

1, ..., r} is defined over a domain of definition
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DG ≡ {Di : i = 1, ..., r}. (15.1)

This yields

[R(α), H] = 0 for all R(α) ∈ G. (15.2)

We further define the invariant measure on G as dm(α),

Vol(G) =
∫
DG

dm(α). (15.3)

and introduce the set of infinitesimal generators C ≡ {Ci : i = 1, ..., r} which build the
Lie algebra associated to G obtained by lifting the transformations R(α) via the exponential
map.

The key elements are the IRREPs Sλab(α) of the group, where the upper label corresponds
to the eigenvalue of the Casimir operator Λ̂. It can be shown that the following holds∑

c

Sλ⋆ca (α
′)Sλcb(α) =

∑
c

Sλ⋆ac (−α′)Sλcb(α) = Sλab(a− α′). (15.4)

Further, orthogonality of the IRREPS reads∫
G

dm(α)Sλ⋆ab (α)S
λ′

a′b′(α) =
Vol(G)
dλ

δλλ′δaa′δbb′ . (15.5)

where dλ denotes the dimension of the IRREP. A key property in the following analysis is
that any function f(α) defined on the domain of the group DG can be decomposed over the
IRREPs,

f(α) ≡
∑
λab

fλabS
λ
ab(α), (15.6)

where {fλab} is the corresponding set of expansion coefficients.
Since the discussion of group properties is rather abstract, Tab. 15.1 gathers properties

of the most prominent symmetry groups relevant in EDF theory, i.e., U(1) for the case of
breaking particle-number conservation, and SU(2) for breaking angular-momentum conser-
vation.

15.2 Off-diagonal kernels

The key ingredients of the nuclear EDF method are the off-diagonal norm N(g′; g) and
energy H(g′; g) kernels,
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G α dm(α) Vol(G) Λ̂ Sλab(α) dλ

U(1) φ dφ 2π Â2 eimφ 1

SU(2) α, β, γ sin βdαdβdγ 16π2 Ĵ2 DJ
MK(Ω) 2J + 1

Table 15.1: Overview of group properties of U(1) and SU(2). IRREPs of SU(2) are given by the
so-called Wigner functions DJ

MK(Ω), where Ω ≡ (α, β, γ) ∈ [0, 4π]× [0, π]× [0, 2π] parametrises the
set of Euler angles.

G |g| arg(g)

U(1) ||κ|| φ

SU(2) ρλµ α, β, γ

Table 15.2: Parameters appearing in symmetry breaking of U(1) and SU(2). Here ρλµ corresponds
to the multipole moments of the matter distribution.

N(g′; g) ≡ ⟨Φ(g′)|Φ(g)⟩ (15.7)

where

|Φ(g)⟩ = C
∏
µ

β(g)
µ |0⟩ (15.8)

denotes a many-body state of Bogoliubov type, obtained from the single-particle basis via a
unitary Bogoliubov transformation

β(g)
µ =

∑
k

U
(g)⋆
kµ ĉk + V

(g)⋆
kµ ĉ†k, (15.9)

β(g)†
µ =

∑
k

V
(g)⋆
kµ ĉk + U

(g)⋆
kµ ĉ†k, (15.10)

with corresponding Bogoliubov matrices U (g) and V (g). The quantity g ≡ |g|eiα labels a set
of order parameters which characterizes the breaking of the underlying symmetry. Explicit
correspondence for the case of U(1) and SU(2) is given in Tab. 15.2.

In general, the off-diagonal energy kernel

H(g′; g) ≡ h(g′; g)N(g′; g), (15.11)

invokes a functional
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h(g′; g) ≡ h(ρg
′g, κg

′g, κg
′g⋆), (15.12)

of the off-diagonal normal and anomalous one-body densities defined by

ρg
′g
k1k2

≡
⟨Φ(g′)|ĉk2 ĉ

†
k1
|Φ(g)⟩

⟨Φ(g′)|Φ(g)⟩
, (15.13)

κg
′g
k1k2

≡ ⟨Φ(g′)|ĉk2 ĉk1|Φ(g)⟩
⟨Φ(g′)|Φ(g)⟩

, (15.14)

κg
′g⋆
k1k2

≡
⟨Φ(g′)|ĉ†k1 ĉ

†
k2
|Φ(g)⟩

⟨Φ(g′)|Φ(g)⟩
. (15.15)

15.3 Effective-Hamiltonian kernels

Historically, one of the first routes for the definition of energy kernels made use of an effective
Hamiltonian,

Ĥeff ≡ T̂ + V̂
[2]

eff + V̂
[3]

eff (15.16)

=
∑
pq

tpq ĉ
†
q ĉq +

1

4

∑
pqrs

v̄eff
pqrsĉ

†
pĉ

†
q ĉsĉr +

1

36

∑
pqrstu

v̄eff
pqrstuĉ

†
pĉ

†
q ĉ

†
rĉuĉtĉs (15.17)

where tpq denotes the one-body part of the kinetic energy and v̄eff
pqrs and v̄eff

pqrstu denote (anti-
symmetric) two- and three-body matrix elements of suitably chosen effective potentials,
respectively.

The off-diagonal operator kernel of Ĥeff is then given by

heff(Ω) ≡
⟨Φ(0)|Ĥeff|Φ(Ω)⟩
⟨Φ(0)|Φ(Ω)⟩

, (15.18)

=
∑
pq

tpqρ
0Ω
qp +

1

2

∑
pqrs

v̄eff
pqrsρ

0Ω
rp ρ

0Ω
sq +

1

6

∑
pqrstu

v̄eff
pqrstuρ

0Ω
sp ρ

0Ω
tq ρ

0Ω
ur , (15.19)

which is obtained by evaluating contractions according to the generalized Wick theorem.
Equation (15.19) constitutes nothing but the mean-field approximation of Ĥeff. When using
a energy kernel which is strictly based on an effective Hamiltonian, the Pauli principle is
automatically implemented. However, over the last past decades it appeared that a strict
effective-Hamiltonian-based description of energy kernels was too limiting in applications.

15.4 Single-reference EDF

EDF calculations are implemented in two successive stages. In the first step, one makes use
of the diagonal energy kernel only,
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H(g; g) = h(g; g), (15.20)

which involves only one symmetry-breaking state, leading to the name single-reference EDF
method. For a targeted value of |g| the SR energy E|g|

SR is obtained through the minimization

E
|g|
SR ≡ min

{|Φ(g)⟩}
E|g| (15.21)

with

E|g| ≡ h(g; g)− λ(A− ⟨Φ(g)|Â|Φ(g)⟩)− λ|g|(|g| − ⟨Φ(g)|Ĝ|Φ(g)⟩) (15.22)

where the operator Ĝ characterizes the order parameter. The SR energy landscape is then
generated via repeated solution of (15.21) for several target values of |g|.

Equation (15.21) leads to solving a constrained Bogoliubov eigenvalue problem,(
h− λ1 ∆

−∆⋆ −h⋆ + λ1

)(g)(
U

V

)(g)

µ

= E(g)
µ

(
U

V

)(g)

µ

, (15.23)

where the one-body fields are given by functional derivatives with respect to the normal and
anomalous one-body densities, respectively,

h(g) − λ1 ≡
δE|g|
δρgg⋆

(15.24)

∆(g) ≡
δE|g|
δκgg⋆

(15.25)

It is important to note that the above SR energy does not depend on the angle α of g which
indicates the existence of a pseudo-Goldstone mode. In particular the value of the norm and
energy kernels are independent under simultaneous rotation of bra and ket states about the
same angle and direction. Therefore, off-diagonal kernels may only depend on the difference
of the angles of bra and ket states,

N(|g′|, α′; |g|, α) = N(|g′|, 0 ; |g|, α′ − α) (15.26)

and analogously

h(|g′|, α′; |g|, α) = h(|g′|, 0 ; |g|, α′ − α). (15.27)
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15.5 Multi-reference EDF

In any finite quantum system, good symmetries must be restored and the symmetry breaking
becomes fictitious. The symmetry-broken state, corresponding to the diagonal energy kernel,
is a mixture of several IRREPs of the broken symmetry group and consequently ESR is
contaminated as well. A symmetry-restoration step is ultimately needed to obtain a binding
energy that is in one-to-one-correspondence to a single IRREP of the symmetry group.

First we rewrite the kernels with respect to their Fourier expansion,

N(|g′|, 0; |g|, α) ≡
∑
abλ

N λ
ab(|g′|, |g|)Sλab(α) (15.28)

as well as

E(|g′|, 0; |g|, α)N(|g′|, 0; |g|, α) ≡
∑
λab

Eλab(|g′|, |g|)N λ
ab(|g′|, |g|)Sλab(α). (15.29)

The particle-number restored kernels are then extracted via

N λ
ab(|g′|; |g|) =

dλ
Vol(G)

∫
DG

dm(α)Sλ⋆ab (α)N(|g′|, 0; |g|, α) (15.30)

and

Eλab(|g′|; |g|)N λ
ab(|g′|, |g|) =

dλ
Vol(G)

∫
DG

dm(α)Sλ⋆ab (α)E(|g′|, 0; |g|, α)N(|g′|, 0; |g|, α),

(15.31)

thus relating the particle-number restored kernels with the particle-number broken ones. For
the particular case of α = 0 we obtain with Sλab(0) = δab

N(|g′|, 0; |g|, 0) =
∑
λa

N λ
aa(|g′|; |g|) , (15.32)

E(|g′|, 0; |g|, 0)N(|g′|, 0; |g|, 0) =
∑
λa

Eλaa(|g′|; |g|)N λ
aa|g′|; |g|) , (15.33)

and further specifiying |g′| = |g| yields the sum rules

1 =
∑
λ

dλN λ(|g|; |g|), (15.34)

E
|g|
SR =

∑
λ

dλEλ(|g|; |g|)N λ(|g|; |g|). (15.35)

which relates the SR energy to the entire set of symmetry-number restored energies Eλab.
Starting form the symmetry-restored kernel one then obtains the multi-reference EDF
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energy by performing a minimization according to

EMR
λk = min

fλ⋆|g|a

∑
|g′|,|g|

∑
ab f

λk⋆
|g′|af

λk
|g|b Eλab(|g′|, |g|)N λ

ab(|g′|, |g|)∑
|g′|,|g|

∑
ab f

λk⋆
|g′|af

λk
|g|bN λ

ab(|g′|, |g|)
. (15.36)

In actual applications the set of mixing coefficients {fλk|g|b} is determined by solving the Hill-
Wheeler equation of motion [HW53],∑

|g|b

Eλab(|g′|, |g|)N λ
ab(|g′|, |g|)fλk|g|b = EMR

λk

∑
|g|b

N λ
ab(|g′|, |g|)fλk|g|b, (15.37)

which constitutes an eigenvalue problem expressed in a non-orthogonal basis.

15.6 Pathologies in MR applications

In current applications, the above MR-EDF formalism is limited to even-even nuclei, where
proton and neutron numbers and angular momentum of axially deformed Bogoliubov states
are restored simultaneously. Furthermore, the mixing is performed over several shapes of
the quadrupole deformation. Even though the capabilities of modern MR-EDF codes are
remarkable in accessing nuclear observables to very high accuracy [Ben08; Rod10; Yao10],
the EDF framework is not completely free from pathologies as will be discussed below.

Recent investigations identified a number of divergences in potential energy surfaces, e.g.,
in the context of proton-number-restored energy kernels for different Skyrme parametriza-
tions. It was later analyzed that such pathological behavior is due to non-analyticities of
the off-diagonal energy kernel [Dob+07; BDL09; LDB09]. In particular, it was shown that
the violation of the Pauli principle leads to self-interaction processes causing anomalous be-
haviour of the shape of potential energy surfaces. These pathologies can—in principle—be
avoided when working with a strict effective-Hamiltonian-based description.

Such spuriousities become even more interesting in the discussion of particle-number
restoration. For the case of U(1) restoration the sum rule (15.34) becomes

1 =
∑
A∈Z

NA(||κ′||, ||κ||). (15.38)

Contributions from A ≤ 0 strictly vanish when working with a effective-potential energy
kernel. However, for arbitrary energy kernel one gets

NAEA ̸= for A ≤ 0. (15.39)

Figure 15.1 illustrates the appearance of such pathologies for the proton-number restoration
of 18O. Obviously, the particle-number restored energies have contributions from systems
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Figure 15.1: Proton-number restored kernels as a function of Z. The top panel corresponds to the
norm kernel NZ and the middle panel corresponds to spurious contributions from the energy kernel.
The lower panel shows NZEZ as well as regularized NZEZ proton-number-restored energy kernels.
In none of the calculations neutron number was restored. The picture is taken from [BDL09].

with negative particle number which spreads up to values Z = −20. While the range of
summations in the particle-number restored kernels runs a priori over all integers, physically
allowed states must be restricted to positive proton number. However, there is no guarantee
for this for an arbitrary EDF parametrization. In particular none of the currently applied
Skyrme or Gogny parametrizations in modern EDF theory are strictly derived from an
effective Hamiltonian.

The current status in the field is that a sound MR-EDF formalism requires the usage
of energy kernels which derive from effective Hamiltonian thus circumventing unwanted
pathologies due to self-interaction processes from the very beginning by enforcing the Pauli
principle.

15.7 EDF kernels from ab initio theory

Recent applications indicate that the restriction to (uncorrelated) mean-field kernels are in-
capable of providing a qualitatively correct description of nuclear observables, independently
of the particular form of Ĥeff. A recently applied strategy to circumvent this problem is the
inclusion of higher-order many-body terms to Ĥeff in term of non-integer powers of the one-
body densities for the description of off-diagonal operator kernels [Agr06]. While (15.19)
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15.7 - EDF kernels from ab initio theory

contains linear, bilinear and trilinear terms the inclusion of fractional powers of the off-
diagonal densities offers a potential way of simulating missing correlation effects. However,
it is not at all clear how to proceed with this systematically.

It is highly desirably to have an approach which is capable of systematically encoding
missing correlations beyond the mean-field in a controlled way. This requires a fully consis-
tent expansion technique of off-diagonal operator kernels.

Even though modern nuclear MR-EDF calculations provide highly accurate observables,
they still lack predictive power when proceeding to the experimentally unknown region.
Therefore, one aims to complement the design of modern EDF parametrizations by so-called
non-empirical kernels which possess a direct link to the underlying nuclear Hamiltonian.
There are two separate ways to achieve this:

1. Use ab-initio tools to generate pseudo data for experimentally unknown nuclei to val-
idate EDF extrapolations and constrain parameters entering the functional form of
nuclear EDF kernels.

2. Use expansion methods for the Schrödinger equation to serve as guidance for parametriza-
tions of EDF kernels.

The first approach does not (yet) pose a viable alternative since the maturity of state-of-
the-art many-body methods is not high enough to put strong restrictions on the parametriza-
tions of EDF kernels. Furthermore, no restriction on the functional form of the EDF kernel
at play is gained through the use of such pseudo data.

The second approach on the other hand yields the possibility of guessing the functional
form from the nuclear interaction and not just the value of the coupling parameters. It was
argued, that the mean-field form of (15.19) is too restrictive to grasp complex correlation
effects. Performing a systematic expansion of off-diagonal operator kernels is expected to
resolve the pathologies of modern MR-EDF calculations [Dug+15]. However, a key feature
is the fact that the expansion method at play must rely on the same underlying concepts,
i.e. the spontaneous breaking and restoration of symmetries.

While we extensively discussed the formulation symmetry-broken MBPT, i.e., MBPT
for diagonal operator kernels, the next step requires the development and implementation of
the symmetry-restoration step which corresponds to MBPT for off-diagonal operator kernels.
This is not only mandatory to yield a full-fledged symmetry-restored many-body approach
but also is highly beneficial in constraining state-of-the-art EDF kernels. Instead of per-
forming symmetry-restored MBPT with a chiral ab initio Hamiltonian, we take an effective
Hamiltonian Ĥeff as input for the calculation. In a first step the calculation of second-order
off-diagonal energy kernels yields new insights into correlations in modern EDF effective po-
tentials and enriches the correlation content of off-diagonal operator kernels in a systematic
way.
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Chapter 15 - Towards Correlated Energy Density Functional Kernels

We note that in principle other many-body approaches can be considered as well. How-
ever, it is required that the many-body formalism under consideration is based on the same
principles as EDF, namely the breaking and restoration of symmetries. Due to the mild
scaling behaviour low-order MBPT is highly favorable. In particular since ultimately one
wants to break several symmetries at a time. Going beyond second-order MBPT in a non-
spherical scheme for heavy nuclei is expected to require intractable computational resources,
in particular with a full inclusion of three-body forces.
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16
Medium-Mass Semi-Magic Isotopic Chains

In the following we will apply second-order BMBPT to the calculation of ground-state en-
ergies of even-even nuclei of medium-mass isotopic chains. We use three different chiral
interactions, NN4

500, NN4
500+3N3

400 and N2LOsat as introduced in chapter 2. Three-body in-
teractions are included via using the Hamiltonian in NO2B approximation. Furthermore, in
all calculations the kinetic-energy operator is incorporated in its one- plus two-body form
as introduced in chapter 13. For validating our results, we compare to recent MR-IM-SRG
calculation using the same chiral interaction [Her14]. We particularly include a NN-only
interactions, to benchmark the effect of the NO2B approximation, since in particle-number-
broken approaches there are no systematic studies on the effect of neglecting the residual
three-body part of the Hamiltonian. However, it is clear from the beginning that a NN-only
interaction will suffer from systematic overbinding.

We focus on two-neutron separation energies defined via

S2n(A) ≡ Egs(A− 1)− Egs(A), (16.1)

where Egs(A) denotes the ground-state energy of the A-body system. This allows for a
investigation of shell-closure effects.

All of the following calculations are performed for semi-magic nuclei, i.e., we investigate
isotopic chains which possess a proton shell closure. Therefore, the particle-number variance
actually coincides with the neutron-number variance.

16.1 Oxygen isotopes

We start with the discussion of oxygen isotopes starting from the doubly-magic 16O up to
26O. Figure 16.1 shows the binding energy per nucleon, the particle-number variance and
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Figure 16.1: Ground-state energy per particle, particle-number variance and two-neutron separa-
tion energies for HFB (l) and second-order BMBPT (■) for oxygen isotopic chain using different chi-
ral interactions. Binding energies obtained from MR-IMSRG ( ▼) are included for the NN4

500+3N3
400

interaction. Calculations where performed for emax = 12, ℏΩ = 20MeV and α = 0.08 fm4. Experi-
mental values are indicated by black bars [Wan+12].

two-neutron separation energies for three different interactions. The different plotmarkers
correspond to the mean-field HFB results (l) and BMBPT(2) partial sums (■).

From the top panel we recognize strong overbinding when restricting to two-body inter-
actions only. When including three-body interactions the binding energy becomes is reduced
to a value of 7 − 8MeV per nucleon in the oxygen chain. Interestingly, the correlation en-
ergy per nucleon, i.e., the size of the second-order correction per nucleon is roughly the
same for all interactions namely 1.5− 2MeV per nucleon. For oxygen isotopes the N2LOsat

interaction yields larger absolute values for the second-order correction compared to the
NN4

500+3N3
400 interaction. As already indicated the monitoring of the breaking of symmetry

is key in BMBPT, therefore, the evaluation of the second-order particle-number variance
becomes mandatory. We see that the HFB particle-number variance is very close to the
second-order partial sum. For the case of NN-only and NN4

500+3N3
400 interactions the cor-

rection to the particle-number variance is positive such that the second-order partial sum
in larger than the mean-field value. Therefore, the correlated second-order states have a
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16.2 - Calcium isotopes

particle-number distribution, which is more smeared out than the one from HFB, while still
possessing the same mean-value. This behavior changes when using the N2LOsat interaction,
where the particle-number-variance corrections become negative thus yielding a more narrow
particle-number distribution. However, this effect is quite small and the dispersion is still
of the order of three units. Further, note that the particle-number variance vanishes for
closed-shell systems, since BMBPT reduces to (symmetry-conserving) HF-MBPT for these
systems.

By means of the ground-state binding energies we obtain two-neutron separation energies
for both HFB and second-order BMBPT. One can see a clear gap when going from 24O to 26O
indicating the shell closure for the doubly-magic nucleus 24O. Furthermore, the two-neutron
separation energy is negative for 26O indicating the neutron dripline.

For these medium-light isotopic chains BMBPT ground-state energies are in good agree-
ment with experimental value when including a three-body interaction.

Furthermore, we note the very good agreement of second-order BMBPT ground-state
energies with results obtained from MR-IM-SRG.

16.2 Calcium isotopes

The calcium chain is an ideal candidate for proceeding to the heavy-mass regime. Again the
use of a NN-only interaction displays the strong overbinding with ground-state energies of up
to 16MeV per nucleon. Contrarily, NN4

500+3N3
400 and N2LOsat interaction produce saturated

binding energies of approximately 9MeV per nucleon at second-order BMBPT. As in the
case of oxygen isotopes, the second-order correction is larger for the N2LOsat interaction.
However, the second-order partial sum for both three-body interactions is approximately the
same, but the HFB energy is lower for the NN4

500+3N3
400 interaction. For both interactions

the minimal value for the second-order corrections is taken at 48Ca, i.e., for a closed-shell
systems. For the NN4

500+3N3
400 interaction comparison to recent MR-IMSRG calculations

reveals very good agreement of the ground-state energy with deviations of less than one
percent.

The particle-number variance tends to show pathological behavior for all three interac-
tions. While for closed-shell systems the particle-number-variance correction trivially van-
ishes, it exhibits quite large contributions for 42−46Ca, in particular for a NN-only interaction,
such that in BMBPT the correlated states are extremely smeared out. Similar tendencies
also occur when including three-body effects.

From looking at the bottom row of Figure 16.2 two-neutron separation energies clearly
indicate shell closures at both HFB level and for correlated BMBPT and MR-IMSRG binding
energies. In particular shell closures for 40Ca and 48Ca are well reproduced. Additionally, a
larger step appears from the transition form 50Ca to 52Ca.
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Figure 16.2: Ground-state energy per particle, particle-number variance and two-neutron sep-
aration energies for HFB (l) and second-order BMBPT (■) for calcium isotopic chain using
different chiral interactions. Binding energies obtained from MR-IMSRG ( ▼) are included for
the NN4

500+3N3
400 interaction. Calculations where performed for emax = 12, ℏΩ = 20MeV and

α = 0.08 fm4. Experimental values are indicated by black bars [Wan+12].

16.3 Nickel isotopes

Figure 16.3 reveals the same systematic overbinding of the NN-only interaction which is
cured by including induced three-body forces. Again, for the NN4

500+3N3
400 interaction com-

parison with MR-IMSRG shows excellent agreement of ground-state energies. From looking
at second-order energies for the N2LOsat interaction we see slight dips for 50Ni and 74Ni,
where the second-order corrections is larger compared to neighboring systems. This effect is
not present at the HFB level.

The particle-number variance corrections reveal similar behavior as in calcium isotopes,
i.e., while the HFB wave function admits moderate particle-number dispersion, the corre-
lated BMBPT ground-state has much larger particle-number variance—74Ni being the most
extreme case for all three interactions.

Two-neutron separation energies indicate shell closure effects for the NN4
500+3N3

400 inter-
action at 56,68,78Ni and an additional step from 60−64Ni. In the case of NN-only and N2LOsat
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Figure 16.3: Ground-state energy per particle, particle-number variance and two-neutron separa-
tion energies for HFB (l) and second-order BMBPT (■) for nickel isotopic chain using different chi-
ral interactions. Binding energies obtained from MR-IMSRG ( ▼) are included for the NN4

500+3N3
400

interaction. Calculations where performed for emax = 12, ℏΩ = 20MeV and α = 0.08 fm4. Experi-
mental values are indicated by black bars [Wan+12].

interactions, no clear conclusion about shell closures can be drawn. For the N2LOsat inter-
action HFB ground-state energies suggest shell closures at 56,78Ni. However, the BMBPT
calculations do not support this statement, which might be due to the simple HFB vacuum
or missing symmetry restoration step.

Again we note that, both, absolute binding energies as well as two-neutron separation
energies are in very good agreement to MR-IM-SRG calculations.

16.4 Tin isotopes

Tin isotopes are typically beyond the range of applicability of an accurate ab initio de-
scription because the interaction—fitted to the two- and three-body sector—is not accurate
enough. A priori one might expect that this can be overcome by going to higher order in
the chiral perturbation expansion. Additionally, in heavy systems it is more challenging
reaching model-space convergence with respect to the E3max truncation of the three-body
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Figure 16.4: Ground-state energy per particle, particle-number variance and two-neutron sep-
aration energies for HFB (l) and second-order BMBPT (■) for tin isotopic chain using different
chiral interactions. Calculations where performed for emax = 12, ℏΩ = 20MeV and α = 0.08 fm4.
Experimental values are indicated by black bars [Wan+12].

matrix elements.

From the upper left plot of Figure 16.4 we see the strong overbinding of the NN forces,
which contradicts the experimentally observed ground-state energies. This overbinding can
be resolved when including three-body effects, either with the NN4

500+3N3
400 or N2LOsat

Hamiltonian.

Investigation of particle-number variance reveals similar conclusions as in the other iso-
topic chains. While the particle-number dispersion is comparably small at the mean-field
level the second-order corrections can be quite large. Particular examples are 118,124,126Sn.
However, for the NN-only and NN4

500+3N3
400 interaction, the second-order correction for the

particle-number variance vanishes in agreement with the collapse of the HFB theory to HF
theory, without any symmetry breaking. This behavior is not reproduced for the N2LOsat

Hamiltonian. Many shell closures are not reproduced on the HFB level, e.g., 106,108Sn. Such
deficiencies of a interaction can have several reasons. First, note that the N2LOsat interac-
tion was fitted to A-body observables to give a better reproduction of binding properties of
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medium-mass systems, which can have negative effects on the performance of this interaction
in a regime far away from the one it is initially fitted to. We further note that deformation
effects play a more important role than in lighter systems. Those are not accounted for in us-
ing a spherical BMBPT framework but require using, e.g., an axially deformed single-particle
basis with additional angular-momentum projection.

Two-neutron separation energies leave no clear sign for shell closures, even though for
mass numbers A = 108 a significant drop appears for the NN-only interaction and the
NN4

500+3N3
400 interaction at both HFB and BMBPT level. While the HFB calculations also

support shell closures for 120,132Sn, this is not clear from the BMBPT energies. In particular,
this might be due to large particle-number-variance corrections for neighboring systems that
smear out the drop in the two-neutron separation energies.

In general the results obtained for tin isotopes using the N2LOsat interaction serve as
a indication of severe pathologies one may encounter when using chiral interactions in the
heavy-mass regime.

16.5 Pairing properties

There appeared several cases where particle-number-variance corrections were comparably
large to other systems in the same isotopic chain. Closer investigation showed, that for these
nuclei quasiparticle energies—obtained from the HFB calculation—were very small. While
for most nuclei the lowest quasiparticle energies were of the order 1−2MeV, systems exhibit-
ing pathological large particle-number-variance corrections revealed quasiparticle energies of
the order 10−2 MeV. Since quasiparticle energies enter BMBPT energy denominators, such
small quasiparticle energies can cause singularities in the perturbation expansion. However,
the second-order energy correction seems to be more stable. A possible explanation is that
the denominator in the formula of the energy correction contains four quasiparticle energies,
whereas the one for the particle-number-variance contains only two quasiparticle energies.
Therefore, the particle-number variance might be more susceptible to small quasiparticle
energies.

A general conclusion might be that the investigated chiral interactions tend to exhibit low
pairing. However, this needs to be validated in a more complete benchmark with additional
variations of parameter of the interaction and the reference basis. Additionally, the use of
other particle-number-broken vacua might overcome this problem.

16.6 Computational scaling

Finally, we discuss computational characteristics of second-order BMBPT. The most impor-
tant feature is the fact that the runtime of a second-order calculation is independent of the
target nucleus. More precisely, the combined evaluation of the the second-order energy and
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variance correction requires 20-30 CPU hours for all cases discussed here. Due to working
in quasiparticle basis, the scaling is independent of the mass number, which is different for
frameworks that make use of a particle-hole formalism. Therefore, the framework presented
here can easily be extended to even higher masses. We note, however, that both uncertainties
in the chiral Hamiltonian and the demands of reaching model-space convergence prohibit
the application of BMBPT to heavier systems in a controlled way.

In particular the mild scaling is a desirable feature, particularly in the context of merging
ab initio and EDF technology as outlined in chapter 15.
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Summary and Outlook

Ab initio nuclear structure theory has made great progress in the description of nuclear
observables in recent years. By using chiral interactions with a sound link to QCD one is
able to accurately reproduce experimental quantities up to high accuracy in the medium-light
systems using large-scale diagonalization techniques like NCSM with a full inclusion of chiral
three-body forces. The strong computational scaling prohibits the use of such techniques
in heavier systems. The goal of this thesis was to develop novel and innovative versions of
many-body perturbation theory, which are applicable to genuine open-shell medium-mass
nuclei.

Single-Configurational Many-Body Perturbation Theory

We present three different flavours of MBPT that are applicable to different kinds of nucleonic
systems. In the simplest version MBPT is performed on top of a single Slater determinant.
Such techniques have been known for a long time and by know became a standard tool for the
description of closed-shell nuclei. However, such a single-configurational theory is only viable
if the exact ground state is expected to be dominated by a single determinant. Therefore,
it does not directly extend to the description of truly open-shell systems. In applications
to light closed-shell systems, we compared the sensitivity of the order-by-order convergence
behavior of the perturbation series on the choice of partitioning by calculating high-order
partial sums with respect to HO and HF unperturbed Hamiltonians. An appropriate choice
of Ĥ0 strongly affects the rate of convergence of the perturbation series. Whereas the series
was exponentially converging when using HF orbitals, the use of HO single-particle states
yields a divergent perturbation expansion. The convergence with HF orbitals was very robust
and the high-order results encourage the use of low-order partial sums as approximations in
medium-mass systems.

Naturally the question arises what other parameters may affect the perturbation series.
We illustrated that the proper choice of the SRG flow parameter is crucial for a perturbative
treatment. The use of sufficiently ’softened’ interactions is key for many-body methods.
While a bare, i.e., untransformed interaction, yields unbound systems on the mean-field
level, we see a systematic dependence of the convergence behavior on variations of the SRG
flow parameter α. For larger values of the flow parameter (i.e. softer interactions) the
perturbation series converges more rapidly. However, the HF-MBPT perturbation series is
still very robust and even hard interactions give convergent perturbation series, even though
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the convergence rate is in some cases quite poor.

When using SRG transformed potentials and a HF partitioning, the perturbation series
always reveals rapid convergence and the explicit evaluation of second- and third-order for-
mulae via normal-ordering techniques enables for proceeding to the medium-mass region. In
particular, the use of HF orbitals in MBPT simplifies the diagrammatic treatment consid-
erably and gives a much lower number of Hugenholtz diagrams compared to MBPT with
respect to an arbitrary single-determinantal reference state at the same order. Furthermore,
the use of angular-momentum coupling techniques allows us to cast the working equations in
matrix-product form, which can be efficiently evaluated using modern linear algebra libraries.
The algorithmic simplicity allows for the evaluation of third-order partial sums in large model
spaces up to heavy tin isotopes. Comparison with state-of-the-art CC calculations shows
excellent agreement on a sub-percent level for various interactions, while requiring signifi-
cantly less computing time. Thus, HF-MBPT provides a light-weighted alternative to more
sophisticated approaches like CC or IM-SRG.

Additionally, we investigated a subtle issue of MBPT which is, however, present in almost
all many-body approaches—a detailed analysis of effects of the individual contributions at
a given truncation order. At third order, there appear three Hugenholtz diagrams with
different computational characteristics. Previous applications in neutron-matter calculations
neglected the particle-hole channel for the of sake of simplicity. Our calculations, however,
show that the particle-hole channel contributes significantly and a neglect may lead to wrong
estimates for the third-order energy correction. From our analysis it is clear that only a full
inclusion of all contributing diagrams at a given order is reasonable and a selective omission
of certain contributions breaks the hierarchy of the correlation expansion of the many-body
framework under consideration.

Even though, HF-MBPT is a well-established many-body approach, there are still many
possible directions for future research. The most straightforward extension is the relaxation
of the truncation order and the derivation of higher-order energy corrections. This has al-
ready been performed in our group in the case of fourth-order HF-MBPT. The proliferation
of diagrams makes the implementation and coupling tedious and error-prone. However, at
higher order new topologies arise which for example account for the effect of quadruply-
excited intermediates. Such states are expected to dominantly contribute to nuclei that
exhibit alpha-cluster structure, which are typically only poorly described at lower trunca-
tion order. Furthermore, our investigations in HF-MBPT are restricted to ground-state
energies. An extension to other excited states can, for example, be achieved in an EOM
framework, which allows also to investigate spectra of closed-shell nuclei. Other observables,
such as charge radii, can be accessed by means of correlated one- and two-body densities.
With the advent of high-precision calculations, the inclusion of three-body forces beyond the
normal-ordered two-body approximation will be necessary. Therefore, an extension of HF-
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MBPT to three-body operators is of great interest. While this will tremendously increase the
computational cost, the implementation is straightforward once three-body matrix elements
are available in a suitable format. An corresponding investigation in the CC framework has
already been presented [Bin+13; Bin14].

Another aspect, which is not related to the extension of MBPT machinery, is probing the
correlation expansion. In the past five years the rigorous quantification of theoretical un-
certainties has become an important tool in ab initio nuclear theory. Recent investigations
are restricted to studying the impact of systematic errors in the chiral Hamiltonian, e.g.,
from truncations in the chiral power counting, in the framework of Bayesian statistics. Ul-
timately, one aims for a consistent propagation of systematic errors starting from the input
Hamiltonian up to the truncation schemes of the many-body method under consideration.
The simplicity of the MBPT ansatz makes it an ideal candidate for probing such effects.
However, it is unclear how to apply probabilistic methods for a rigorous quantification of
theoretical uncertainties in the many-body framework.

Perturbatively-Improved No-Core Shell Model

Closed-shell nuclei provide the simplest testbed for a many-body framework. However, in
the case of open-shell systems, the HF determinant typically does not provide an adequate
reference point for the correlation expansion and the degeneracy of several zero-order states
may yield divergent single-configurational theories. An integral part of this thesis is the
development of an extension of HF-MBPT capable of treating genuine open-shell nuclei.
To overcome the degeneracy of the zero-order solution, we introduced reference states that
are superpositions of several Slater determinant, i.e., multi-configurational reference states,
and derived a formalism in which these generalized zero-order states are perturbed. While
initially the choice of the reference states remained arbitrary, we later introduced a novel
hybrid ab initio approach that uses NCSM reference states and, therefore, merges CI and
MBPT technology to overcome their individual drawbacks. This allows incorporating static
correlation effects in the NCSM reference states and treat residual dynamic correlation effects
perturbatively in the MCPT framework.

First benchmark calculations explore the convergence behavior of the MCPT pertur-
bation and use an extension of the machinery already applied in high-order HF-MBPT.
NCSM-PT reveals a very robust convergence behavior for light nuclei and several target
states with different values for JΠ. The rate of convergence was again exponential such that
low-order partial sums are expected to be excellent approximations to the converged result.
MCPT is formulated in m-scheme and, therefore, equally applies to even and odd nuclei and
arbitrary values of J . However, the use of an uncoupled formulation significantly increases
computing time and, therefore, the current implementation is restricted to the calculation
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of second-order energy corrections. The NCSM-PT code was applied for the calculation
of ground-state energies for both carbon and oxygen isotopic chains. All results were in
remarkable agreement compared to large-scale IT-NCSM calculation at significantly lower
cost. Furthermore, we varied the size of the reference space from the prior diagonalization.
Typically, the use of N (ref)

max = 2 yields better agreement than the use of N (ref)
max = 0, which is

the smallest possible model space. When applying NCSM-PT using HO single-particle states
to ground states in the fluorine isotopic chain, we encounter a large dependence of NCSM-PT
results on the oscillator frequency. When switching to HF orbitals, second-order NCSM-PT
results are very robust to variations in the oscillator frequency up to very neutron-rich flu-
orine isotopes. This allows, for the first time, for an ab initio treatment of even and odd
fluorine isotopes in a no-core approach beyond A = 20.

Further improvement in NCSM-PT can be gained through the use of other single-particle
bases. An alternative to HO and HF single-particle states, which has attracted attention
in recent years, are natural orbitals, i.e., eigenstates obtained via the diagonalization of
the one-body density matrix. Applications in the NCSM have revealed improved model
space convergence which is expected to transfer to NCSM-PT as well. The construction of
correlated one-body density matrices can be obtained, e.g., in a perturbative framework.

In order to overcome deficiencies of second-order NCSM-PT, higher-order correlations can
be incorporated via the calculation of the third-order energy correction. Even though the
derivation of the formulas is straightforward and can be automized as discussed in chapter 11,
the third-order corrections exhibits a stronger scaling and, therefore, are computationally
more demanding. However, it is unclear if the extension to higher perturbation order can
overcome the problem of accounting for multi-particle-multi-hole excitations, e.g., the Hoyle
state in 12C. It might be more convenient to derive another flavour of MBPT based on using
generalized multi-particle multi-hole excitations and the extended Wick theorem as in the
MR-IM-SRG, which are able to account for these collective excitations. However, up to now
the formal derivation of such a perturbation theory still poses a future challenge.

Other variants of MCPT can be obtained by using different zero-order Hamiltonians.
Either following a Epstein-Nesbet philosophy, i.e., diagonal matrix elements in a given many-
body basis or sticking to the Møller-Plesset partitioning but use another definition of single-
particle energies.

A very important extension of NCSM-PT for future applications is the inclusion of three-
body operators without making use of the NO2B approximation. Due to significantly grow-
ing computational demands of modern medium-mass methods when using three-body oper-
ators, one is typically restricted to two-body operators. A second-order treatment provides
the simplest way of including three-body operators. Due to the increasing particle rank the
number of second-order diagrams grows significantly. In particular the contributing topolo-
gies can be more complex, i.e., there appear up to hextuple replacements. Furthermore, the
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normal-ordered two-body part in the MCPT formalism also depends on the current Fermi
vacuum.

When proceeding to higher mass numbers, the generation of reference states, i.e., per-
forming full CI calculations can be computationally very demanding. For the calculation
of calcium isotopes the many-body basis in Nmax = 2 model space already contains several
millions configurations. A possible ansatz for the reduction of the vast amount of basis
states is the use of restricted CI instead of full CI, e.g., in the form of CISD. The lack of size
extensivity can be approximately accounted for in terms of a-posteriori corrections. This
significantly lower computational scaling of second-order NCSM-PT and allows to proceed
to heavier systems.

Bogoliubov Many-Body Perturbation Theory

In the final part of this thesis, we introduced symmetry-broken MBPT as an alternative way
to NCSM-PT to extend a perturbative approach to genuine open-shell systems. Instead of a
proper multi-configurational reference state, we use a particle-number broken HFB vacuum
as starting point for the correlation expansion. Pairing correlation are already included via
the self-consistent HFB iteration. Conveniently, particle-number broken methods are for-
mulated in quasiparticle space. A large part of this work was spent on the derivation of
angular-momentum-coupled quasiparticle matrix elements and the implementation of spher-
ical BMBPT at second-order.

In first benchmark calculations, we investigated second-order energy corrections along
even-even nuclei in the oxygen, calcium, nickel and tin isotopic chains using state-of-the-art
chiral interactions. The results are in very good agreement with other medium-mass many-
body methods. However, second-order BMBPT requires significantly less computational
resources and provides a simple alternative to more advanced many-body approaches such
as MR-IM-SRG or the Gorkov extension of SCGF.

From the ground-state binding energies we derived two-neutron separation energies at the
HFB and BMBPT level along the isotopic chains. These served as an indicator for effects of
shell closures. However, since BMBPT is a particle-number broken approach, the correlated
many-body states do only possess good particle-number on average. Therefore, the wave
function contains components with different particle-numbers. This can lead to smeared-out
edges in two-neutron separation energies when looking at the systematics throughout the
chain and shell closures appear less pronounced.

In addition to binding properties, the monitoring of the symmetry breaking is mandatory
in a symmetry-broken approach. In particular, this includes the investigation of corrections
to the particle-number variance at second-order BMBPT. In most cases this correction ap-
peared to be positive and the correlated state was smeared out even further, i.e., has a large
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particle-number dispersion. This behavior was surprising and one expected the correlated
wave function to have a sharper peak about the mean-particle number.

Additional investigations of the pairing properties of the chiral Hamiltonians exhibit
quite small pairing gaps and quasiparticle energies for some selected isotopes, which lead to
pathological corrections to the particle-number variance. In particular, small quasiparticle
energies can cause severe problems since these quantities enter denominators of perturbative
formulas and can cause an (almost) singular perturbation expansion.

Symmetry-broken MBPT provides a plethora of different directions for future research.
In order to include additional correlation effects, BMBPT can be extended to third order.
The contributing diagrams for the ground-state energy were already introduced in this work.
However, at third order additional features appear. Most importantly, not only corrections
to the particle-number variance appear but also corrections to the particle-number itself.
Therefore, the correlated state has no correct particle-number on average. To overcome this
problem has to adjust the HFB constraint in such a way that the correlated particle number
(and not the HFB particle number) coincide with the target value. This can be done by
means of an additional iteration scheme.

The derivation of fourth-order diagrams is under investigation and will be part of fu-
ture research. Of course, one needs to include particle-number corrections at fourth order
consistently and solve the iteration scheme for the particle-number adjustment.

The inclusion of higher-order correlation effects beyond simply increasing the pertur-
bation order can be achieved via applying the Bogoliubov extension to other infinite-order
methods such as CC and IM-SRG. While the implementation of BCC was already performed
using an axially-deformed single-particle basis, the formulation and implementation of Bo-
goliubov IM-SRG has not been performed yet. In a first step an implementation of BCC
with doubles in spherical scheme poses a computationally feasible alternative to low-order
BMBPT allowing for an all-order treatment of four-quasi-particle-excitations up to infinite
order in large model spaces.

Besides investigating binding energies of ground-state wave functions BMBPT can be
applied to other operators as well, e.g., charge radii. However, there appears the additional
complication that typically such operators do not commute with the Hamiltonian and, there-
fore, the formalism needs to be generalized. In the BCC framework this is done in terms a of
Λ extension [Sig+15; DS16]. It is, however, straightforward to derive a degraded second-order
Λ framework for the evaluation of observables that do not commute with the Hamiltonian.

As already indicated, the breaking of symmetries is an auxiliary tool for the development
of novel many-body approaches. In finite systems this symmetry breaking does not appear,
and eventually the symmetry needs to be restored consistently. In particular all calculated
quantities still carry a pathological dependence on the particle-number variance. The most
important step in the validation of BMBPT is the restoration of good particle number. While
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the theory has already been introduced in the CC framework for the restoration of U(1) and
SU(2) symmetries the corresponding MBPT variant needs to be worked out. However, this
can be achieved by performing a second-order reduction of the symmetry-restoraton step in
BCCSD and thus does not pose a major challenge on a formal level [DS16].

In the longer term the inclusion of deformation effects via the breaking of angular-
momentum conservation is envisioned. Again the CC counterpart has already been intro-
duced and, therefore, the introduction of an MBPT version is comparably simple. However,
due the non-abelian character of SU(2) the formal part of the derivation is more involved
than in BMBPT. The consistent breaking and restoration of both U(1) and SU(2) at the
same time poses an additional challenge for the following years to come.

Ultimately, symmetry-broken many-body methods yield a natural link to the constraining
of state-of-the-art EDF kernels. Thus, the further development of symmetry-breaking many-
body theory provides a unique opportunity to close the gap between ab initio methods
and EDF theory. In this way off-diagonal norm and energy kernels entering modern EDF
parametrizations can be systematically improved.
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Appendices





A
Spherical Hartree-Fock Many-Body

Perturbation Theory

The aim of this section if to derive the third-order energy correction in J-coupled scheme
when using canonical HF orbitals. In this way due to Brillouins theorem the one-body party
vanishes and we are left with three ASG diagrams which already have been introduced in
Fig. 6.1.

We again use Baranger notation

k = (k̃,mk) (A.1)

to split the single-particle states into a spherical part and a m-dependent part.

A.1 The particle-particle channel

We start with the coupling of the particle-particle channel

E(3)
pp =

1

8

∑
abcdij

H̄
[2]
ijabH̄

[2]
abcdH̄

[2]
cdij

ϵabij ϵ
cd
ij

=
1

8

∑
ãb̃c̃d̃̃ij̃

∑
mambmc
mdmimj

∑
JJ ′J ′′
MM ′M ′′

JH
[2]

ĩj̃ãb̃
J ′
H

[2]

ãb̃c̃d̃
J ′′
H

[2]

c̃d̃̃ij̃

ϵabij ϵ
cd
ij

×

(
ji jj J

mimj M

)(
ja jb J

mambM

)(
ja jb J ′

mambM
′

)(
jc jd J ′

mcmdM
′

)(
jc jd J ′′

mcmdM
′′

)(
ji jj J ′′

mimj M
′′

)
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=
1

8

∑
ãb̃c̃d̃̃ij̃

∑
JJ ′J ′′
MM ′M ′′

JH
[2]

ĩj̃ãb̃
J ′
H

[2]

ãb̃c̃d̃
J ′′
H

[2]

c̃d̃̃ij̃

ϵãb̃
ĩj̃
ϵc̃d̃
ĩj̃

δJJ ′δJ ′J ′′δJ ′′JδMM ′δM ′M ′′δM ′′M

=
1

8

∑
ãb̃c̃d̃̃ij̃

∑
J

Ĵ2

JH
[2]

ĩj̃ãb̃
JH

[2]

ãb̃c̃d̃
JH

[2]

c̃d̃̃ij̃

ϵãb̃
ĩj̃
ϵc̃d̃
ĩj̃

(A.2)

We see that by using orthogonality of the CG coefficients the final expression is independent
of m quantum numbers and can be written as matrix product of the Hamiltonian for each
J-block. Additionally, we use that single-particle energies do not depend on the m quantum
number, i.e., ϵãb̃

ĩj̃
= ϵabij .

A.2 The hole-hole channel

In complete analogy we get for the hole-hole channel

E(3)
pp =

1

8

∑
abijkl

H̄
[2]
abijH̄

[2]
ijklH̄

[2]
klab

ϵabij ϵ
ab
kl

=
1

8

∑
ãb̃̃ij̃k̃l̃

∑
mambmi
mjmkml

∑
JJ ′J ′′
MM ′M ′′

JH
[2]

ãb̃̃ij̃
J ′
H

[2]

ĩj̃k̃l̃
J ′′
H

[2]

k̃l̃ãb̃

ϵabij ϵ
ab
kl

×

(
ji jj J

mimj M

)(
ja jb J

mambM

)(
ji jj J ′

mimj M
′

)(
jk jl J

′

mk mlM
′

)(
jk jl J

′′

mk mlM
′′

)(
ja jb J ′′

mambM
′′

)

=
1

8

∑
ãb̃̃ij̃k̃l̃

∑
JJ ′J ′′
MM ′M ′′

JH
[2]

ãb̃̃ij̃
J ′
H

[2]

ĩj̃k̃l̃
J ′′
H

[2]

k̃l̃ãb̃

ϵãb̃
ĩj̃
ϵãb̃
k̃l̃

δJJ ′δJ ′J ′′δJ ′′JδMM ′δM ′M ′′δM ′′M

=
1

8

∑
ãb̃̃ij̃k̃l̃

∑
J

Ĵ2

JH
[2]

ãb̃̃ij̃
J ′
H

[2]

ĩj̃k̃l̃
J ′′
H

[2]

k̃l̃ãb̃

ϵãb̃
ĩj̃
ϵãb̃
k̃l̃

, (A.3)

which also display the structure of a matrix product.

A.3 The particle-hole channel

For the coupling of the particle-hole channel we introduce the Pandya-transformed matrix
elements

KH
[2]

c̃j̃k̃b̃
=
∑
J

Ĵ2 ·J HXC
k̃c̃j̃b̃

{
jj jc K

jk jb J

}
(A.4)

KH
[2]

j̃ĩãb̃
=
∑
J

Ĵ2 ·J HXC
k̃b̃ãj̃

{
ja ji K

jj jb J

}
(A.5)
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A.3 - The particle-hole channel

KH
[2]

ĩk̃ãc̃
=
∑
J

Ĵ2 ·J HXC
k̃c̃ã̃i

{
jk jc K

ja ji J

}
(A.6)

Starting with the third-order particle-hole diagram

E
(3)
ph =

∑
abcijk

H̄
[2]
abijH̄

[2]
cikbH̄

[2]
jkac

ϵabij ϵ
ac
jk

(A.7)

we define an auxiliary quantity

Babij ≡
H̄

[2]
abij

ϵabij
, (A.8)

and rewrite

E
(3)
ph =

∑
abcijk

BabijH̄
[2]
cjkbBikac. (A.9)

Transformation into J-scheme yields

E
(3)
ph =

∑
abcijk

BabijH̄
[2]
cikbBkjac

=
∑
abcijk

∑
JJ ′J ′′

∑
MM ′M ′′

JBabji · J
′
H

[2]
ickb ·

J ′′
Bkjac

×

(
ja jb J

mbmbM

)(
jj ji J

mj miM

)(
ji jc J ′

mimcM
′

)(
jk jb J ′

mk mbM
′

)(
jk jj J ′′

mk mj M
′′

)(
ja jc J ′′

mamcM
′′

)
(A.10)

We start from

∑
mcmkM ′M ′′

(
ji jc J ′

mimcM
′

)(
jk jb J ′

mk mbM
′

)(
jk jj J ′′

mk mj M
′′

)(
ja jc J ′

mamcM
′

)
=

∑
mcmkM ′M ′′

(−1)2(jk−mk)+2(jc+mc)

× Ĵ ′2Ĵ ′′2

ĵaĵbĵiĵj

(
J ′ jc ji

−M ′mc −mi

)(
jk J ′ jb

mk −M ′ −mb

)(
jk J ′′ jj

mk −M ′′ −mj

)(
J ′′ jc ja

−M ′′mc −ma

)
=

∑
mcmkM ′M ′′

(−1)ji−jc−J
′+jj−jk−J ′′

× Ĵ ′2Ĵ ′′2

ĵaĵbĵiĵj

(
jc J ′ ji

mc −M ′ −mi

)(
jk J ′ jb

mk −M ′ −mb

)(
J ′′ mk jj

jk −M ′′ −mj

)(
J ′′ jc ja

−M ′′mc −ma

)
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=
∑

J ′′′M ′′′

(−1)ji−jc−J
′+jj−jk−J ′′

Ĵ ′2Ĵ ′′2
(

jj ji J ′′′

−mj miM
′′′

)(
ja jb J ′′′

−ma −mbM
′′′

)
J ′ jk jb

jc J
′′ ja

ji jj J
′′′


=
∑

J ′′′M ′′′

(−1)ji−jc−J
′+jj−jk−J ′′−ja−jb+2(J ′′′−ji−jk)Ĵ ′2Ĵ ′′2

(
ji jj J ′′′

mimj M
′′′

)(
ja jb J ′′′

mambM
′′′

)
J ′ jk jb

jc J
′′ ja

ji jj J
′′′


(A.11)

where we made use of identity (20) in section (8.7.4) of [VMK88] and further renamed
summations indices and used time-reversal symmetry of the CGs. We can further write∑

mambmimj

∑
J ′′′M ′′′

(−1)ji−jc−J
′+jj−jk−J ′′−ja−jb+2(J ′′′−ji−jk)Ĵ ′2Ĵ ′′2

×

(
ji jj J

mimj M

)(
ja jb J

mambM

)(
ji jj J ′′′

mimj M
′′′

)(
ja jb J ′′′

mambM
′′′

)
J ′ jk jb

jc J
′′ ja

ji jj J
′′′


=
∑

J ′′′M ′′′

(−1)ji−jc−J
′′+jj−jk−J ′′−ja−jb Ĵ ′2Ĵ ′′2δJJ ′′′δMM ′′′


J ′ jk jb

jc J
′′ ja

ji jj J
′′′


= (−1)ji−jc−J

′′+jj−jk−J−ja−jb Ĵ ′2Ĵ ′′2


J ′ jk jb

jc J
′′ ja

ji jj J


= (−1)ji−jc−J

′′+jj−jk−J−ja−jb Ĵ ′2Ĵ ′′2


jk jb J

′

J ′′ ja jc

jj J ji


= Ĵ ′2Ĵ ′′2


jk jb J

′

jj J ji

J ′′ ja jc

 (A.12)

where we used permutation symmetry of the 9j symbol according to equation (5) in section
(10.4) of [VMK88]. Further using that the 9j symbol can be expanded into three 6j symbol
we get (cf. equation (20), section (10.2.4) in [VMK88])

jk jb J
′

jj J ji

J ′′ ja jc

 =
∑
J ′′′

(−1)J
′′′
Ĵ ′′′

{
jk jc J

′′′

ji jb J ′

}{
ja jj J

′′′

jk jc J
′′

}{
ja jb J

ji jj J
′′′

}
. (A.13)

We finally write the third-order particle-hole term as
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E
(3)
ph =

∑
ãb̃c̃̃ij̃k̃

∑
JJ ′J ′′J ′′′

Ĵ2Ĵ ′2Ĵ ′′2Ĵ ′′′2JBãb̃̃ij̃ ·
J ′
H

[2]

ĩc̃k̃b̃
· J ′′

Bk̃j̃ãc̃

{
jk jc J

′′′

ji jb J ′

}{
ja jj J

′′′

jk jc J
′′

}{
ja jb J

ji jj J
′′′

}

=
∑
abcijk

∑
J

Ĵ2JB
XC

ãj̃ĩb̃ ·J
′
HXC
k̃c̃̃ib̃

· J ′′
B
XC

ãj̃k̃c̃

=
∑
K

Ĵ2 Tr
(
JBXC · JH̄XC · JBXC

)
. (A.14)
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B
Integral Identities

For the derivation of Feynman diagrams the following integrals have to be evaluated fre-
quently. We, therefore, list them here for further reference∫ τ

0

dτ1 e
aτ1 =

1

a

(
eτa − 1

)
, (B.1a)∫ τ

0

dτ1dτ2 θ (τ1 − τ2) e
a(τ1−τ2) =

∫ τ

0

dτ1 e
aτ1

∫ τ1

0

dτ2 e
−aτ2

= −τ
a
+

1

a2

(
eτa − 1

)
, (B.1b)∫ τ

0

dτ1dτ2 θ (τ1 − τ2) e
aτ1+bτ2 =

∫ τ

0

dτ1 e
aτ1

∫ τ1

0

dτ2 e
bτ2

=
1

b (a+ b)

(
eτ(a+b) − 1

)
− 1

ab

(
eτa − 1

)
. (B.1c)

When applying the above identities to Feynman diagrams it holds that a < 0 and a+ b < 0.
Therefore, one obtains the following large time limits

lim
τ→∞

∫ τ

0

dτ eaτ = −1

a
, (B.2a)

lim
τ→∞

∫ τ

0

dτ1dτ2 θ (τ1 − τ2) e
a(τ1−τ2) = −τ

a
− 1

a2
, (B.2b)

lim
τ→∞

∫ τ

0

dτ1dτ2 θ (τ1 − τ2) e
aτ1+bτ2 =

1

a(a+ b)
. (B.2c)

Note that the first and third identity are positive due to a and a+ b being negative.
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C
Normal-ordered matrix elements

In this section we quote the expression of the normal-ordered matrix elements in quasiparticle
space which were already published in [Sig+15].

C.1 Generic operator Ô

As the Ô[6] terms are not considered for practical applications at this point, the matrix
elements Oij

k1k2k3k4k5k6
, with i + j = 6, are excluded for brevity. The generic operator Ô

of (14.41h), up to and including Ô[4]

Ô ≡ Ô[0] + Ô[2] + Ô[4] (C.1)

≡ Ô00 +
[
Ô11 + {Ô20 + Ô02}

]
+
[
Ô22 + {Ô31 + Ô13}+ {Ô40 + Ô04}

]
, (C.2)

displays fully anti-symmetrized matrix elements, whose explicit expressions in terms of anti-
symmetrized matrix elements of O1N , O2N and O3N , as well as of U and V matrices defining
the reference Bogoliubov state, are given by

O00 =
∑
l1l2

[
Λ1N
l1l2
ρl2l1 +

1

2
Λ2N
l1l2
ρl2l1 +

1

3
Λ3N
l1l2
ρl2l1 −

1

2
Υ2N
l1l2
κ∗l2l1 +

1

3
Υ3N
l1l2
κ∗l2l1

]
, (C.3a)

O11
k1k2

=
∑
l1l2

[
U †
k1l1

Λl1l2Ul2k2 − V †
k1l1

ΛTl1l2Vl2k2 + U †
k1l1

Υl1l2Vl2k2 − V †
k1l1

Υ∗
l1l2
Ul2k2

]
, (C.3b)

O20
k1k2

=
∑
l1l2

[
U †
k1l1

Λl1l2V
∗
l2k2

− V †
k1l1

ΛTl1l2U
∗
l2k2

+ U †
k1l1

Υl1l2U
∗
l2k2

− V †
k1l1

Υ∗
l1l2
V ∗
l2k2

]
, (C.3c)

O02
k1k2

=
∑
l1l2

[
− V T

k1l1
Λl1l2Ul2k2 + UT

k1l1
ΛTl1l2Vl2k2 − V T

k1l1
Υl1l2Vl2k2 + UT

k1l1
Υ∗
l1l2
Ul2k2

]
,

(C.3d)
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O22
k1k2k3k4

=
∑
l1l2l3l4

[
Θl1l2l3l4

(
U∗
l1k1

U∗
l2k2

Ul3k3Ul4k4 + V ∗
l3k1

V ∗
l4k2

Vl1k3Vl2k4 + U∗
l1k1

V ∗
l4k2

Vl2k3Ul3k4

− V ∗
l4k1

U∗
l1k2

Vl2k3Ul3k4 − U∗
l1k1

V ∗
l4k2

Ul3k3Vl2k4 + V ∗
l4k1

U∗
l1k2

Ul3k3Vl2k4

)
+ Ξl1l2l3l4

(
U∗
l1k1

U∗
l2k2

Ul4k3Vl3k4 + U∗
l1k1

V ∗
l4k2

Vl3k3Vl2k4

− U∗
l1k1

U∗
l2k2

Vl3k3Ul4k4 − V ∗
l4k1

U∗
l1k2

Vl3k3Vl2k4

)
− Ξ∗

l1l2l3l4

(
V ∗
l3k1

U∗
l4k2

Ul1k3Ul2k4 + V ∗
l3k1

V ∗
l2k2

Vl4k3Ul1k4

− U∗
l4k1

V ∗
l3k2

Ul1k3Ul2k4 − V ∗
l3k1

V ∗
l2k2

Vl4k4Ul1k3

)]
, (C.3e)

O31
k1k2k3k4

=
∑
l1l2l3l4

[
Θl1l2l3l4

(
U∗
l1k1

V ∗
l4k2

V ∗
l3k3

Vl2k4 − V ∗
l4k1

U∗
l1k2

V ∗
l3k3

Vl2k4 − V ∗
l3k1

V ∗
l4k2

U∗
l1k3

Vl2k4

+ V ∗
l3k1

U∗
l2k2

U∗
l1k3

Ul4k4 − U∗
l2k1

V ∗
l3k2

U∗
l1k3

Ul4k4 − U∗
l1k1

U∗
l2k2

V ∗
l3k3

Ul4k4

)
+ Ξl1l2l3l4

(
U∗
l1k1

U∗
l2k2

U∗
l3k3

Ul4k4 + V ∗
l4k1

U∗
l2k2

U∗
l1k3

Vl3k4

− U∗
l2k1

V ∗
l4k2

U∗
l1k3

Vl3k4 + U∗
l2k1

U∗
l1k2

V ∗
l4k3

Vl3k4

)
+ Ξ∗

l1l2l3l4

(
U∗
l4k1

V ∗
l3k2

V ∗
l2k3

Ul1k4 − V ∗
l3k1

U∗
l4k2

V ∗
l2k3

Ul1k4

+ V ∗
l3k1

V ∗
l2k2

U∗
l4k3

Ul1k4 − V ∗
l3k1

V ∗
l2k2

V ∗
l1k3

Vl4k4

)]
, (C.3f)

O13
k1k2k3k4

=
∑
l1l2l3l4

[
Θl1l2l3l4

(
V ∗
l4k1

Ul3k2Vl2k3Vl1k4 − V ∗
l4k1

Vl2k2Ul3k3Vl1k4 − V ∗
l4k1

Vl1k2Vl2k3Ul3k4

+ U∗
l1k1

Vl2k2Ul3k3Ul4k4 − U∗
l1k1

Ul3k2Vl2k3Ul4k4 + U∗
l1k1

Ul3k2Ul4k3Vl2k4

)
+ Ξl1l2l3l4

(
U∗
l1k1

Vl2k2Vl3k3Ul4k4 − V ∗
l4k1

Vl1k2Vl2k3Vl3k4

+ U∗
l1k1

Ul4k2Vl2k3Vl3k4 − U∗
l1k1

Vl2k2Ul4k3Vl3k4

)
+ Ξ∗

l1l2l3l4

(
V ∗
l3k1

Vl4k2Ul1k3Ul2k4 − V ∗
l3k1

Ul1k2Vl4k3Ul2k4

+ V ∗
l3k1

Ul1k2Ul2k3Vl4k4 − U∗
l4k1

Ul1k2Ul2k3Ul3k4

)]
, (C.3g)

O40
k1k2k3k4

=
∑
l1l2l3l4

[
Θl1l2l3l4

(
U∗
l1k1

U∗
l2k2

V ∗
l4k3

V ∗
l3k4

− U∗
l1k1

V ∗
l4k2

U∗
l2k3

V ∗
l3k4

− V ∗
l4k1

U∗
l2k2

U∗
l1k3

V ∗
l3k4

+ U∗
l1k1

V ∗
l4k2

V ∗
l3k3

U∗
l2k4

+ V ∗
l4k1

U∗
l2k2

V ∗
l3k3

U∗
l1k4

+ V ∗
l4k1

V ∗
l3k2

U∗
l1k3

U∗
l2k4

)
+ Ξl1l2l3l4

(
U∗
l1k1

U∗
l2k2

U∗
l3k3

V ∗
l4k4

− U∗
l1k1

U∗
l2k2

V ∗
l4k3

U∗
l3k4

+ U∗
l1k1

V ∗
l4k2

U∗
l2k3

U∗
l3k4

− V ∗
l4k1

U∗
l1k2

U∗
l2k3

U∗
l3k4

)
+ Ξ∗

l1l2l3l4

(
V ∗
l1k1

V ∗
l2k2

V ∗
l3k3

U∗
l4k4

− V ∗
l1k1

V ∗
l2k2

U∗
l4k3

V ∗
l3k4

+ V ∗
l1k1

U∗
l4k2

V ∗
l2k3

V ∗
l3k4

− U∗
l4k1

V ∗
l1k2

V ∗
l2k3

U∗
l3k4

)]
, (C.3h)

O04
k1k2k3k4

=
∑
l1l2l3l4

[
Θl1l2l3l4

(
Ul3k1Ul4k2Vl2k3Vl1k4 − Ul3k1Vl2k2Ul4k3Vl1k4 + Ul3k1Vl2k2Vl1k3Ul4k4
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− Vl2k1Ul3k2Vl1k3Ul4k4 + Vl2k1Vl1k2Ul3k3Ul4k4 + Vl2k1Ul3k2Ul4k3Vl1k4

)
+ Ξl1l2l3l4

(
Vl1k1Vl2k2Vl3k3Ul4k4 − Vl1k1Vl2k2Ul4k3Vl3k4

+ Vl1k1Ul4k2Vl2k3Vl3k4 − Ul4k1Vl1k2Vl2k3Vl3k4

)
+ Ξ∗

l1l2l3l4

(
Vl4k1Ul3k2Ul2k3Ul1k4 − Ul3k1Vl4k2Ul2k3Ul1k4

+ Ul3k1Ul2k2Vl4k3Ul1k4 − Ul3k1Ul2k2Ul1k3Vl4k4

)]
. (C.3i)

The above expressions make use of four one- and two-body operators whose matrix
elements are given in an arbitrary single-particle basis by

Λpq ≡ Λ1N
pq + Λ2N

pq + Λ3N
pq (C.4a)

= o1Npq +
∑
rs

ō2Npsqrρrs +
1

2

∑
rstu

ō3Nprsqtu

(
ρusρtr +

1

2
κ∗rsκtu

)
, (C.4b)

Υpq ≡ Υ2N
pq +Υ3N

pq (C.4c)

=
1

2

∑
rs

ō2Npqrsκrs +
1

2

∑
rstu

ō3Nrpqstuρsrκtu , (C.4d)

Θpqrs ≡ ō2Npqrs +
∑
tu

ō3Npqtrsuρut , (C.4e)

Ξpqrs ≡
1

2

∑
tu

ō3Npqrstuκtu . (C.4f)

It is easy to verify the following properties

Λ2N
pq = Λ2N∗

qp , (C.5a)
Λ3N
pq = Λ3N∗

qp , (C.5b)
Υ2N
pq = −Υ2N

qp , (C.5c)
Υ3N
pq = −Υ3N

qp , (C.5d)
Θpqrs = −Θpqsr = Θqpsr = −Θqprs , (C.5e)
Θpqrs = Θ∗

rspq , (C.5f)
Ξpqrs = −Ξqprs = Ξqrps = −Ξprqs = Ξrpqs = −Ξrqps , (C.5g)

as will be the case for the other operators to follow.

C.2 Grand canonical potential Ω̂

In the particular case that O corresponds to the grand canonical potential Ω the matrix
elements are given by
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Λpq ≡ hpq (C.6a)
≡ tpq − λ δpq + Γ2N

pq + Γ3N
pq (C.6b)

= tpq − λ δpq +
∑
rs

v̄psqrρrs +
1

2

∑
rstu

w̄prsqtu

(
ρusρtr +

1

2
κ∗rsκtu

)
, (C.6c)

Υpq ≡ ∆2N
pq +∆3N

pq (C.6d)

=
1

2

∑
rs

v̄pqrsκrs +
1

2

∑
rstu

w̄rpqstuρsrκtu , (C.6e)

Θpqrs ≡ v̄pqrs +
∑
tu

w̄pqtrsuρut , (C.6f)

Ξpqrs ≡
1

2

∑
tu

w̄pqrstuκtu . (C.6g)

C.3 Hamiltonian operator Ĥ

Similarly to the grand potential case, one uses, along with the expressions in appendix C.1,
four one- and two-body operators whose matrix elements are given in an arbitrary single-
particle basis by

Λpq ≡ tpq + Γ2N
pq + Γ3N

pq (C.7a)

= tpq +
∑
rs

v̄psqrρrs +
1

2

∑
rstu

w̄prsqtu

(
ρusρtr +

1

2
κ∗rsκtu

)
, (C.7b)

Υpq ≡ ∆2N
pq +∆3N

pq (C.7c)

=
1

2

∑
rs

v̄pqrsκrs +
1

2

∑
rstu

w̄rpqstuρsrκtu , (C.7d)

Θpqrs ≡ v̄pqrs +
∑
tu

w̄pqtrsuρut , (C.7e)

Ξpqrs ≡
1

2

∑
tu

w̄pqrstuκtu . (C.7f)

C.4 Particle-number operator Â

Significant simplifications arise for the particle-number operator Â,

Λpq ≡ apq (C.8a)
= δpq , (C.8b)

Υpq ≡ 0 , (C.8c)
Θpqrs ≡ 0 , (C.8d)
Ξpqrs ≡ 0 . (C.8e)
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C.5 Â2 operator

The Â2 operator can be written using the work accomplished for a generic operator in
appendix C.1, making use of one- and two-body operators whose matrix elements are given
in an arbitrary single-particle basis by

Λpq ≡ a(1)pq +
∑
rs

ā(2)psqrρrs (C.9a)

= δpq +
∑
rs

2(δprδqs − δpsδqr)ρrs , (C.9b)

Υpq ≡
1

2

∑
rs

ā(2)pqrsκrs (C.9c)

=
∑
rs

(δprδqs − δpsδqr)κrs , (C.9d)

Θpqrs ≡ ā(2)pqrs (C.9e)
= 2(δprδqs − δpsδqr) , (C.9f)

Ξpqrs ≡ 0 . (C.9g)
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D
Unperturbed Propagator

In the following we will derive the different unperturbed propagators present in BMBPT,
i.e., all different components of the matrix propagator

G0 =

(
G+−(0) G−−(0)

G++(0) G−+(0)

)
. (D.1)

Recall for the following derivation the definition of the generalized density matrix

R =

 ⟨Φ|β†
pβq |Φ⟩

⟨Φ|Φ⟩
⟨Φ|βpβq |Φ⟩

⟨Φ|Φ⟩
⟨Φ|β†

pβ
†
q |Φ⟩

⟨Φ|Φ⟩
⟨Φ|βpβ†

q |ϕ⟩
⟨Φ|Φ⟩

 ≡

(
R+−
pq R−−

pq

R++
pq R−+

pq

)
=

(
0 0

0 1

)
, (D.2)

which will be used subsequently.

Derivation of normal propagators G+−(0) and G−+(0)

We start with the derivation of

G
+−(0)
k1k2

(τ1, τ2) =
⟨Φ|T[β†

k1
(τ1)βk2(τ2)]

⟨Φ|Φ⟩

= +θ(τ1 − τ2)
⟨Φ|β†

k1
(τ1)βk2(τ2)|Φ⟩
⟨Φ|Φ⟩

− θ(τ2 − τ1)
⟨Φ|βk2(τ2)β

†
k1
(τ1)|Φ⟩

⟨Φ|Φ⟩

= +θ(τ1 − τ2)e
τ1Ek1e−τ2Ek2

⟨Φ|β†
k1
βk2|Φ⟩

⟨Φ|Φ⟩
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− θ(τ2 − τ1)e
τ1Ek1e−τ2Ek2

⟨Φ|βk2β
†
k1
|Φ⟩

⟨Φ|Φ⟩
= +θ(τ1 − τ2)e

τ1Ek1e−τ2Ek2R+−
k1k2

− θ(τ2 − τ1)e
τ1Ek1e−τ2Ek2R−+

k2k1

= −θ(τ2 − τ1)e
τ1Ek1e−τ2Ek2δk2k1

= −θ(τ2 − τ1)e
−(τ2−τ1)Ek1δk1k2 .

and similarly for the other normal propagator

G
−+(0)
k1k2

(τ1, τ2) =
⟨Φ|T[βk1(τ1)β

†
k2
(τ2)]

⟨Φ|Φ⟩

= +θ(τ1 − τ2)
⟨Φ|βk1(τ1)β

†
k2
(τ2)|Φ⟩

⟨Φ|Φ⟩

− θ(τ2 − τ1)
⟨Φ|β†

k2
(τ2)βk1(τ1)|Φ⟩
⟨Φ|Φ⟩

= +θ(τ1 − τ2)e
−τ1Ek1eτ2Ek2

⟨Φ|βk1β
†
k2
|Φ⟩

⟨Φ|Φ⟩

− θ(τ2 − τ1)e
−τ1Ek1eτ2Ek2

⟨Φ|β†
k2
βk1|Φ⟩

⟨Φ|Φ⟩
= +θ(τ1 − τ2)e

−τ1Ek1eτ2Ek2R−+
k1k2

− θ(τ2 − τ1)e
τ1Ek1e−τ2Ek2R+−

k2k1

= −θ(τ1 − τ2)e
−τ1Ek1eτ2Ek2δk1k2

= −θ(τ1 − τ2)e
−(τ1−τ2)Ek1δk1k2 .

Derivation of anomalous propagators G−−(0) and G++(0)

Similarly, we derive the anomalous propagators

G
−−(0)
k1k2

(τ1, τ2) =
⟨Φ|T[βk1(τ1)βk2(τ2)]

⟨Φ|Φ⟩

= +θ(τ1 − τ2)
⟨Φ|βk1(τ1)βk2(τ2)|Φ⟩

⟨Φ|Φ⟩

− θ(τ2 − τ1)
⟨Φ|βk2(τ2)βk1(τ1)|Φ⟩

⟨Φ|Φ⟩

= +θ(τ1 − τ2)e
−τ1Ek1e−τ2Ek2

⟨Φ|βk1βk2|Φ⟩
⟨Φ|Φ⟩

− θ(τ2 − τ1)e
−τ1Ek1e−τ2Ek2

⟨Φ|βk2βk1|Φ⟩
⟨Φ|Φ⟩

= +θ(τ1 − τ2)e
−τ1Ek1e−τ2Ek2R−−

k1k2
− θ(τ2 − τ1)e

−τ1Ek1e−τ2Ek2R−−
k2k1

= 0

and
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G
++(0)
k1k2

(τ1, τ2) =
⟨Φ|T[β†

k1
(τ1)β

†
k2
(τ2)]

⟨Φ|Φ⟩

= +θ(τ1 − τ2)
⟨Φ|β†

k1
(τ1)β

†
k2
(τ2)|Φ⟩

⟨Φ|Φ⟩

− θ(τ2 − τ1)
⟨Φ|β†

k2
(τ2)β

†
k1
(τ1)|Φ⟩

⟨Φ|Φ⟩

= +θ(τ1 − τ2)e
τ1Ek1eτ2Ek2

⟨Φ|β†
k1
β†
k2
|Φ⟩

⟨Φ|Φ⟩

− θ(τ2 − τ1)e
τ1Ek1eτ2Ek2

⟨Φ|β†
k2
β†
k1
|Φ⟩

⟨Φ|Φ⟩
= +θ(τ1 − τ2)e

τ1Ek1eτ2Ek2R++
k1k2

− θ(τ2 − τ1)e
τ1Ek1eτ2Ek2R++

k2k1

= 0.

which both vanish due to the appearance of Rqq′ with q = q′.
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E
Spherical Bogoliubov Many-Body Perturbation

Theory

In the following we discuss the angular-momentum coupling used in spherical BMBPT which
is naturally formulated in quasiparticle space. The definitions of the relevant coupling sym-
bols can be found in chapter 1 of this document.

E.1 Spherical Hartree-Fock-Bogoliubov theory

We start with a short discussion of spherical HFB theory and quote expressions of the
reduced matrix elements of the quantities that enter BMBPT formulas.

The general Bogoliobov transformation has the form

β̂†
k =

∑
a

Uakc
†
a + Vakĉa. (E.1)

In the calculations the single-particle basis is taken as a harmonic oscillator (HO) basis
carrying spherical symmetry, i.e., a = (n, l, j,m, t). In the following we will equivalently
describe single-particle states via a = (n, π, j,m, t) where π = (−1)l defines the parity of a
single-particle state.

Writing out the Bogoliubov transformation with respect to the quantum numbers leaves
us with

β̂†
nkπkjkmktk

=
∑
nπjmt

Unπjmtnkπkjkmktk ĉ
†
nπjmt + Vnπjmtnkπkjkmktk ĉnπjmt (E.2)

We will now derive the reduced matrix elements of the HFB quantities involved when using
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a spherical formulation. In the following upper indices denote quantum numbers a given
operator is diagonal in. In a spherical scheme any scalar operator is diagonal in the projection
quantum number of total angular momentum m (and is independent of it). For the sake of
brevity we suppress the m quantum number in the upper indices and, additionally, use the
short-hand notation for the matrix elements of ô

õ(πjt)1n1n2
≡ õ(π1j1t1)n1n2

. (E.3)

When the system under consideration is constrained to be in a 0= state the transformation
matrices U, V possess the following symmetries

Un1π1j1m1t1n2π2j2m2t2 = δ̃12δm1m2Ũ
(πjt)2
n1n2

(E.4)
Vn1π1j1m1t1n2π2j2m2t2 = (−1)j1−m1 δ̃12δm1−m2 Ṽ

(πjt)2
n1n2

, (E.5)

where we introduced the ’spherical’ Kronecker delta

δ̃12 ≡ δπ1π2δj1j2δt1t2 . (E.6)

The reduced HFB one-body densities, obtained from (13.9) and (13.10), are given by

ρn1π1j1m1t1;n2π2j2m2t2 = δ̃12 δm1m2 ρ̃
(πjt)2
n1n2

, (E.7)
κn1π1j1m1t1;n2π2j2m2t2 = δ̃12 δm1−m2(−1)j1−m1κ̃(πjt)2n1n2

, (E.8)

which consequently leads to (cf. (13.19) and (13.20)),

Γn1π1j1m1t1;n2π2j2m2t2 = δ̃12 δm1m2Γ̃
(πjt)2
n1n2

, (E.9)
∆n1π1j1m1t1;n2π2j2m2t2 = δ̃12 δm1−m2(−1)j1−m1∆̃(πjt)2

n1n2
. (E.10)

Note the difference in diagonality of ρ and κ with respect to the magnetic quantum numbers.

From this the HF Hamiltonian reads as

hn1π1j1m1t1;n2π2j2m2t2 = tn1π1j1m1t1;n2π2j2m2t2 + Γn1π1j1m1t1;n2π2j2m2t2 − λ1

= δ̃12δm1m2h̃
(πjt)2
n1n2

. (E.11)

The above relations and their derivations with additional details on spherical formulas for
the HFB energy can be found in Appendix B of [Her08].
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E.2 Angular-momentum coupling of quasiparticle operators

Before proceeding with the angular-momentum coupling of the individual terms of a scalar
operator Ô, we briefly introduce the notion of tensor products of spherical tensor operators.
For a thorough treatment of spherical tensor operators see Refs. [VMK88; Suh07].

Coupling of spherical tensor operators

In the following let TL1 and TL2 be two spherical tensors of rank L1 and L2, respectively.
We define the tensor product TLM by

TLM =
∑
M1M2

(
L1 L2 L

M1M2M

)
TL1M1TL2M2 ≡ [TL1TL2 ]LM . (E.12)

A particularly important case is given by the coupling of two spherical tensors of equal rank
into a scalar

[TLSL]00 =
∑
M1M2

(
L L 0

M1M2 0

)
TLM1SLM2

=
∑
M1

(
L L 0

M1 −M1 0

)
TLM1SL−M1

=
∑
M

(−1)L−M L̂−1TLMSL−M (E.13)

With this one conveniently defines the scalar product of two spherical tensors of equal rank
by

TL · SL ≡ (−1)LL̂[TLSL]00 =
∑
M

(−1)MTLMSL−M , (E.14)

where Ĵ =
√
2J + 1 denotes the ’hat symbol’.

Single-particle creators and annihilators

Consider now a single-particle state |k⟩ labelled via (nklkjkmktk). The corresponding single-
particle creation operator

ĉ†nklkjkmktk
≡ Bjkmk

(E.15)

is the mk component of a spherical tensor of rank jk. Similarly, the quantity 1

1We note that there is another convention for the definition of annihilators in proper tensor form using

(−1)mk ĉnklkjk−mktk = B̄jkmk
.
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(−1)jk−mk ĉnklkjk−mktk ≡ B̄jkmk
, (E.16)

defines a spherical tensor of rank mk as well. With this the tensor product of a creation and
annihilation operator is given by

ĉ†nk1
πk1jk1mk1

tk1
ĉnk2

πk2jk2mk2
tk2

= (−1)jk2−mk2Bjk1mk1
B̄jk2−mk2

= (−1)jk2−mk2

∑
JM

(
jk1 jk2 J

mk1 −mk2 M

)[
Bjk1 B̄jk2

]
JM
, (E.17)

where
[
Bk1B̄k2

]
JM

is the M component of a spherical tensor of rank J . Analogously, we get
for the coupling of two creation operators

ĉ†nk1
πk1jk1mk1

tk1
ĉ†nk2

πk2jk2mk2
tk2

= Bjk1mk1
Bjk2mk2

=
∑
JM

(
jk1 jk2 J

mk1 mk2 M

)[
Bjk1Bjk2

]
JM
, (E.18)

and of two annihilation operators

ĉnk1
πk1jk1mk1

tk1
ĉnk2

πk2jk2mk2
tk2

= (−1)jk1+jk2−mk1
−mk2 B̄jk1−mk1

B̄jk2−mk2

= (−1)jk1+jk2−mk1
−mk2

∑
JM

(
jk1 jk2 J

−mk1 −mk2 M

)[
B̄jk1 B̄jk2

]
JM
,

(E.19)

respectively.

Useful identities

In the following we make extensive use of the following formula [Wol16]

∑
m1m2m3m4M ′

(−1)j1+j2+j3+j4+J
′−m1−m2−m3−m4−M ′

(
j2 J j1

m2 −M m1

)
3j

(
j1 j4 J ′

−m1m4M
′

)
3j

×

(
j4 J ′′ j3

−m4M
′′m3

)
3j

(
j3 j2 J ′

−m3 −m2 −M ′

)
3j

= (−1)J−M Ĵ−2δJJ ′′δMM ′′

{
j1 j2 J

j3 j4 J
′

}
(E.20)

which relates Wigner 3j- and 6j-symbols as introduced in chapter 1.

However, since the derivations of the spherical HFB quantities were performed using the definition given in
the main body of the text, we will stick to this convention.
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E.3 Cross coupling of matrix elements

From the definition of m-scheme matrix elements we see that there is no common block
structure with respect to (M,Π) shared by all Ô[4] matrix elements. While for example

mk1 +mk2 +mk3 = mk4 and πk1πk2πk3 = πk4 (E.21)

for O31
k1k2k3k4

,

mk1 +mk2 = mk3 +mk4 and πk1πk2 = πk3πk4 (E.22)

holds for O22
k1k2k3k4

. For the sake of simplicity and the efficiency of the numerical implemen-
tation it is desirable for all Ô[2] and Ô[4] matrix elements to share the same block structure.

Therefore, it is convenient to define cross-coupled matrix elements by [SHD14]

Õ40
k1k2k3k4

≡ O40
k1k2k̄3k̄4

, (E.23a)
Õ04
k1k2k3k4

≡ O04
k̄1k̄2k3k4

, (E.23b)
Õ22
k1k2k3k4

≡ O22
k1k2k3k4

, (E.23c)
Õ31
k1k2k3k4

≡ O31
k1k2k̄3k4

, (E.23d)
Õ13
k1k2k3k4

≡ O13
k1k̄2k3k4

, (E.23e)
Õ11
k1k2

≡ O11
k1k2

, (E.23f)
Õ20
k1k2

≡ O20
k1k̄2

, (E.23g)
Õ02
k1k2

≡ O02
k̄1k2

, (E.23h)

where we introduced the notation,

k̄ ≡ (nk, lk, jk,−mk, tk). (E.24)

By means of the above introduced matrix elements all quantities Õij with ij = 40, 04, 22,

31, 13 carry the same (Π,M) block structure such that

M = mk1 +mk2 = mk3 +mk4 , (E.25)
Π = πk1πk2 = πk3πk4 . (E.26)

Furthermore, we get for Õij with ij = 20, 11, 02 that

mk1 = mk2 , (E.27)
πk1 = πk2 . (E.28)
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We note that the introduction of cross-coupled matrix elements for O22
k1k2k3k4

and O11
k1k2

is
trivial since the operator already possesses the desired diagonality with respect to M and Π.

In the following we perform the angular-momentum coupling of cross-coupled matrix
elements of an arbitrary scalar operator with anti-symmetrized two-body matrix elements
denoted by ōl1l2l3l4 .2

E.3.1 Angular-momentum Coupling of Ô[22]

The m-scheme matrix element of Ô[22] is given by

Õ22
k1k2k3k4

=
∑
l1l2l3l4

ōl1l2l3l4

(
U∗
l1k1

U∗
l2k2

Ul3k3Ul4k4 + V ∗
l3k1

V ∗
l4k2

Vl1k3Vl2k4 + U∗
l1k1

V ∗
l4k2

Vl2k3Ul3k4

− V ∗
l4k1

U∗
l1k2

Vl2k3Ul3k4 − U∗
l1k1

V ∗
l4k2

Ul3k3Vl2k4 + V ∗
l4k1

U∗
l1k2

Ul3k3Vl2k4

)
. (E.29)

We start with transforming the creation and annihilation operators to a spherical basis. For
a generic operator O this yields the following expression

Ô[22] =
1

4

∑
k1k2k3k4

O
[22]
k1k2k3k4

β̂†
k1
β̂†
k2
β̂k4 β̂k3

= −1

4

∑
k̃1k̃2k̃3k̃4

∑
mk1

mk2
mk3

mk4

(−1)jk3−mk3
+jk4−mk4O

[22]
k1k2k3k4

Bk1mk1
Bk2mk2

B̄jk3−mk3
B̄jk4−mk4

= −1

4

∑
k̃1k̃2k̃3k̃4

∑
mk1

mk2
mk3

mk4

∑
JJ ′MM ′

(−1)jk3−mk3
+jk4−mk4O

[22]
k1k2k3k4

×

(
jk1 jk2 J

mk1 mk2 M

)(
jk3 jk4 J ′

−mk3 −mk4 M
′

)
[Bk1Bk2 ]JM [B̄k3B̄k4 ]J ′M ′

= −1

4

∑
k̃1k̃2k̃3k̃4

∑
mk1

mk2
mk3

mk4

∑
JJ ′
MM ′

Õ
[22]
k1k2k3k4

(
jk1 jk2 J

mk1 mk2 M

)(
jk3 jk4 J ′

mk3 mk4 −M ′

)

× (−1)J
′+M ′

[Bk1Bk2 ]JM [B̄k3B̄k4 ]J ′M ′

= −1

4

∑
k̃1k̃2k̃3k̃4

∑
mk1

mk2
mk3

mk4

∑
JJ ′
MM ′

Õ
[22]
k1k2k3k4

(
jk1 jk2 J

mk1 mk2 M

)(
jk3 jk4 J ′

mk3 mk4 M
′

)

× (−1)J
′+M ′

[Bjk1Bjk2 ]JM [B̄k3B̄k4 ]J ′−M ′ , (E.30)

2One can cut loose the restriction of scalar operators in the following derivation by allowing bra and
ket indices of m-scheme matrix elements ol1l2l3l4 in single-particle space to couple to different total angular
momenta. Since the many-body formalism at play, however, is restricted to scalar observables from the
beginning we restrict ourselves to the coupling of scalar operators as well.
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from which we define

Õ
[22]

k̃1k̃2JM ;k̃3k̃4J ′′M ′′ ≡
∑

mk1
mk2

mk3
mk4

(−1)J
′′+M ′′+1Õ

[22]
k1k2k3k4

(
jk1 jk2 J

mk1 mk2 M

)(
jk3 jk4 J ′′

mk3 mk4 M
′′

)
. (E.31)

We split the fully anti-symmetrized matrix elements into its six parts and perform the
angular-momentum coupling individually,

1Õ
[22]
k1k2JM ;k3k4J ′′M ′′ = (−1)J

′′+M ′′+1
∑

mk1
mk2

mk3
mk4

∑
l1l2l3l4

ōl1l2l3l4U
∗
l1k1

U∗
l2k2

U∗
l3k3

U∗
l4k4

(
jk1 jk2 J

mk1 mk2 M

)(
jk3 jk4 J ′′

mk3 mk4 M
′′

)
= (−1)J

′′+M ′′+1
∑

mk1
mk2

mk3
mk4

∑
J ′M ′

∑
nl1

nl2
nl3

nl4

ōJ
′

nl1
ljtk1nl2

ljtk2nl3
ljtk3nl4

ljtk4

× Ũ
(πjt)k1
nl1

nk1
Ũ

(πjt)k2
nl2

nk2
Ũ

(πjt)k3
nl3

nk3
Ũ

(πjt)k4
nl4

nk4

×

(
jk1 jk2 J

mk1 mk2 M

)(
jk3 jk4 J ′′

mk3 mk4 −M ′′

)(
jk1 jk2 J ′

mk1 mk2 M
′

)(
jk3 jk4 J ′

mk3 mk4 M
′

)
= (−1)J+M+1

∑
nl1

nl2
nl3

nl4

ōJnl1
ljtk1nl2

ljtk2nl3
ljtk3nl4

ljtk4

× Ũ
(πjt)k1
nl1

nk1
Ũ

(πjt)k2
nl2

nk2
Ũ

(πjt)k3
nl3

nk3
Ũ

(πjt)k4
nl4

nk4
δJJ ′′δMM ′′ , (E.32)

2Õ
[22]
k1k2JM ;k3k4J ′′M ′′ = (−1)J

′′+M ′′+1
∑

mk1
mk2

mk3
mk4

∑
l1l2l3l4

ōl1l2l3l4Vl3k1Vl4k2Vl1k3Vl2k4

×

(
jk1 jk2 J

mk1 mk2 M

)(
jk3 jk4 J ′′

mk3 mk4 −M ′′

)
=

∑
mk1

mk2
mk3

mk4

∑
J ′M ′

∑
nl1

nl2
nl3

nl4

ōJ
′

nl1
ljtk3nl2

ljtk4nl3
ljtk1nl4

ljtk2

× (−1)J
′′+M+1+jk1+jk2+jk3+jk4+M

′+M ′′
Ṽ

(πjt)k3
nl1

nk3
Ṽ

(πjt)k4
nl2

nk4
Ṽ

(πjt)k1
nl3

nk1
Ṽ

(πjt)k2
nl4

nk2

×

(
jk1 jk2 J

mk1 mk2 M

)(
jk3 jk4 J ′′

mk3 mk4 M
′′

)(
jk3 jk4 J ′

−mk3 −mk4 M
′

)(
jk1 jk2 J ′

−mk1 −mk2 M
′

)
=

∑
nl1

nl2
nl3

nl4

ōJ
′

nl1
ljtk3nl2

ljtk4nl3
ljtk1nl4

ljtk2
Ṽ

(πjt)k3
nl1

nk3
Ṽ

(πjt)k4
nl2

nk4
Ṽ

(πjt)k1
nl3

nk1
Ṽ

(πjt)k2
nl4

nk2

× δJJ ′′δMM ′′(−1)J+M+1, (E.33)
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3Õ
[22]
k1k2JM ;k3k4J ′′M ′′ = (−1)J

′′+M ′′+1
∑

mk1
mk2

mk3
mk4

∑
l1l2l3l4

ōl1l2l3l4Ul1k1Vl4k2Vl2k3Ul3k4

×

(
jk1 jk2 J

mk1 mk2 M

)(
jk3 jk4 J ′′

mk3 mk4 −M ′′

)
=

∑
mk1

mk2
mk3

mk4

∑
J ′M ′

∑
nl1

nl2
nl3

nl4

ōJ
′

nl1
ljtk1nl2

ljtk3nl3
ljtk4nl4

ljtk2

× (−1)J
′′+M ′′+1+jk2+jk3−mk2

−mk3 Ũ
(πjt)k1
nl1

nk1
Ṽ

(πjt)k2
nl4

nk2
Ṽ

(πjt)k3
nl2

nk3
Ũ

(πjt)k4
nl3

nk4

×

(
jk1 jk2 J

mk1 mk2 M

)(
jk3 jk4 J ′′

mk3 mk4 −M ′′

)(
jk1 jk3 J ′

mk1 −mk3 M
′

)(
jk4 jk2 J ′

mk4 −mk2 M
′

)
= (−1)jk3+jk4+1+M

∑
J ′

∑
nl1

nl2
nl3

nl4

ōJ
′

nl1
ljtk1nl2

ljtk3nl3
ljtk4nl4

ljtk2

× Ũ
(πjt)k1
nl1

nk1
Ṽ

(πjt)k2
nl4

nk2
Ṽ

(πjt)k3
nl2

nk3
Ũ

(πjt)k4
nl3

nk4
Ĵ ′2
{
jk1 jk2 J

jk4 jk3 J
′

}
δJJ ′′δMM ′′ , (E.34)

4Õ
[22]
k1k2JM ;k3k4J ′′M ′′ = (−1)J

′′+M ′′+1
∑

mk1
mk2

mk3
mk4

∑
l1l2l3l4

ōl1l2l3l4Vl4k1Ul1k2Vl2k3Ul3k4

×

(
jk1 jk2 J

mk1 mk2 M

)(
jk3 jk4 J ′′

mk3 mk4 M
′′

)
=

∑
mk1

mk2
mk3

mk4

∑
J ′M ′

∑
nl1

nl2
nl3

nl4

ōJ
′

nl1
ljtk2nl2

ljtk3nl3
ljtk4nl4

ljtk1

× (−1)J
′′+M ′′+1+jk1+jk3−mk1

−mk3 Ṽ
(πjt)k1
nl4

nk1
Ũ

(πjt)k2
nl1

nk2
Ṽ

(πjt)k3
nl2

nk3
Ũ

(πjt)k4
nl3

nk4

×

(
jk1 jk2 J

mk1 mk2 M

)(
jk3 jk4 J ′′

mk3 mk4 M
′′

)(
jk2 jk3 J ′

mk2 −mk3 M
′

)(
jk4 jk1 J ′

mk4 −mk1 M
′

)
=
∑
J ′

∑
nl1

nl2
nl3

nl4

ōJ
′

nl1
ljtk2nl2

ljtk3nl3
ljtk4nl4

ljtk1
Ṽ

(πjt)k1
nl4

nk1
Ũ

(πjt)k2
nl1

nk2
Ṽ

(πjt)k3
nl2

nk3
Ũ

(πjt)k4
nl3

nk4

× Ĵ ′2
{
jk1 jk2 J

jk3 jk4 J
′

}
(−1)J+M+1+jk1+jk2+jk3+jk4δJJ ′′δMM ′′ , (E.35)

5Õ
[22]
k1k2JM ;k3k4J ′′M ′′ = (−1)J

′′+M ′′+1
∑

mk1
mk2

mk3
mk4

∑
l1l2l3l4

ōl1l2l3l4Ul1k1Vl4k2Ul3k3Vl2k4

×

(
jk1 jk2 J

mk1 mk2 M

)(
jk3 jk4 J ′′

mk3 mk4 M
′′

)
=

∑
mk1

mk2
mk3

mk4

∑
J ′M ′

∑
nl1

nl2
nl3

nl4

ōJ
′

nl1
ljtk1nl2

ljtk4nl3
ljtk3nl4

ljtk2
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× (−1)J
′′+M ′′+1+jk2+jk4−mk2

−mk4 Ũ
(πjt)k1
nl1

nk1
Ṽ

(πjt)k2
nl4

nk2
Ũ

(πjt)k3
nl3

nk3
Ṽ

(πjt)k4
nl2

nk4

×

(
jk1 jk2 J

mk1 mk2 M

)(
jk3 jk4 J ′′

mk3 mk4 M
′′

)(
jk1 jk4 J ′

mk1 −mk4 M
′

)(
jk3 jk2 J ′

mk3 −mk2 M
′

)
= (−1)J+M+1

∑
J ′

∑
nl1

nl2
nl3

nl4

oJ
′

nl1
ljtk1nl2

ljtk4nl3
ljtk3nl4

ljtk2

× Ũ
(πjt)k1
nl1

nk1
Ṽ

(πjt)k2
nl4

nk2
Ũ

(πjt)k3
nl3

nk3
Ṽ

(πjt)k4
nl2

nk4
Ĵ ′2
{
jk1 jk2 J

jk3 jk4 J
′

}
δJJ ′′δMM ′′ , (E.36)

6Õ
[22]
k1k2JM ;k3k4J ′′M ′′ = (−1)J

′′+M ′′+1
∑

mk1
mk2

mk3
mk4

∑
l1l2l3l4

ōl1l2l3l4Vl4k1Ul1k2Ul3k3Vl2k4

×

(
jk1 jk2 J

mk1 mk2 M

)(
jk3 jk4 J ′′

mk3 mk4 M
′′

)
=

∑
mk1

mk2
mk3

mk4

∑
J ′M ′

∑
nl1

nl2
nl3

nl4

ōJ
′

nl1
ljtk2nl2

ljtk4nl3
ljtk3nl4

ljtk1

× (−1)J
′′+M ′′+1+jk1+jk4−mk1

−mk4 Ṽ
(πjt)k1
nl4

nk1
Ũ

(πjt)k2
nl1

nk2
Ũ

(πjt)k3
nl3

nk3
Ṽ

(πjt)k4
nl2

nk4

×

(
jk1 jk2 J

mk1 mk2 M

)(
jk3 jk4 J ′′

mk3 mk4 M
′′

)(
jk2 jk4 J ′

mk2 −mk4 M
′

)(
jk3 jk1 J ′

mk3 −mk1 M
′

)
=
∑
J ′

∑
nl1

nl2
nl3

nl4

ōJ
′

nl1
ljtk2nl2

ljtk4nl3
ljtk3nl4

ljtk1
Ṽ

(πjt)k1
nl4

nk1
Ũ

(πjt)k2
nl1

nk2
Ũ

(πjt)k3
nl3

nk3
Ṽ

(πjt)k4
nl2

nk4

× Ĵ ′2(−1)jk1+jk2+1+M

{
jk1 jk2 J

jk4 jk3 J
′

}
δJJ ′′δMM ′′ , (E.37)

With this we define the J-coupled matrix element by

Õ
[22]

k̃1k̃2JM ;k̃3k̃4J ′′M ′′ ≡ (−1)MδJJ ′′δMM ′′
JÕ

[22]

k̃1k̃2k̃3k̃4
(E.38)

and thus finally arrive at

Ô[22] = −1

4

∑
k̃1k̃2k̃3k̃4

∑
JM

JÕ
[22]

k̃1k̃2k̃3k̃4
(−1)M [Bjk1Bjk2 ]JM [B̄jk3 B̄jk4 ]J−M ,

= −1

4

∑
k̃1k̃2k̃3k̃4

∑
J

JÕ
[22]

k̃1k̃2k̃3k̃4
[Bjk1Bjk2 ]J · [B̄jk3 B̄jk4 ]J , (E.39)

which is the spherical representation of Ô[22].
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Angular-momentum coupling of Ô40

The m-scheme matrix element is given by

Õ40
k1k2k3k4

= O40
k1k2k̄3k̄4

=
∑
l1l2l3l4

Θl1l2l3l4

(
U∗
l1k1

U∗
l2k2

V ∗
l4k̄3

V ∗
l3k̄4

− U∗
l1k1

V ∗
l4k2

U∗
l2k̄3

V ∗
l3k̄4

− V ∗
l4k1

U∗
l2k2

U∗
l1k̄3

V ∗
l3k̄4

+ U∗
l1k1

V ∗
l4k2

V ∗
l3k̄3

U∗
l2k̄4

+ V ∗
l4k1

U∗
l2k2

V ∗
l3k̄3

U∗
l1k̄4

+ V ∗
l4k1

V ∗
l3k2

U∗
l1k̄3

U∗
l2k̄4

)
. (E.40)

The coupling of the operator yields

Ô[40] =
1

24

∑
k1k2k3k4

O
[40]
k1k2k3k4

β̂†
k1
β̂†
k2
β̂†
k3
β̂†
k4

=
1

24

∑
k̃1k̃2k̃3k̃4

∑
mk1

mk2
mk3

mk4

∑
JJ ′
MM ′

O
[40]
k1k2k3k4

(
jk1 jk2 J

mk1 mk2 M

)(
jk3 jk4 J ′

mk3 mk4 M
′

)

× [Bjk1Bjk2 ]JM [Bjk3Bjk4 ]J ′M ′

=
1

24

∑
k̃1k̃2k̃3k̃4

∑
mk1

mk2
mk3

mk4

∑
JJ ′
MM ′

Õ
[40]

k1k2k̄3k̄4

(
jk1 jk2 J

mk1 mk2 M

)(
jk3 jk4 J ′

mk3 mk4 M
′

)

× [Bjk1Bjk2 ]JM [Bjk3Bjk4 ]J ′M ′

=
1

24

∑
k̃1k̃2k̃3k̃4

∑
mk1

mk2
mk3

mk4

∑
JJ ′
MM ′

Õ
[40]
k1k2k3k4

(
jk1 jk2 J

mk1 mk2 M

)(
jk3 jk4 J ′

−mk3 −mk4 M
′

)

× [Bjk1Bjk2 ]JM [Bjk3Bjk4 ]J ′M ′

=
1

24

∑
k̃1k̃2k̃3k̃4

∑
mk1

mk2
mk3

mk4

∑
JJ ′
MM ′

Õ
[40]
k1k2k3k4

(
jk1 jk2 J

mk1 mk2 M

)(
jk3 jk4 J ′

mk3 mk4 −M ′

)

× (−1)jk3+jk4+J
′
[Bjk1Bjk2 ]JM [Bjk3Bjk4 ]J ′M ′ (E.41)

and we define

Õ
[40]

k̃1k̃2JM ;k̃3k̃4J ′M ′ ≡
∑

mk1
mk2

mk3
mk4

(−1)jk3+jk4+J
′
Õ

[40]
k1k2k3k4

(
jk1 jk2 J

mk1 mk2 M

)(
jk3 jk4 J ′

mk3 mk4 −M ′

)
. (E.42)

Again we perform the coupling of the six terms individually.

1Õ
[40]
k1k2JM ;k3k4J ′′M ′′ = (−1)jk3+jk4+J

′′ ∑
mk1

mk2
mk3

mk4

∑
l1l2l3l4

ōl1l2l3l4U
∗
l1k1

U∗
l2k2

V ∗
l4k̄3

V ∗
l3k̄4
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×

(
jk1 jk2 J

mk1 mk2 M

)(
jk3 jk4 J ′′

mk3 mk4 −M ′′

)
=

∑
mk1

mk2
mk3

mk4

∑
J ′M ′

∑
nl1

nl2
nl3

nl4

ōJ
′

nl1
ljtk1nl2

ljtk2nl3
ljtk4nl4

ljtk3
(−1)mk3

+mk4
+J ′′

× Ũ
(πjt)k1
nl1

nk1
Ũ

(πjt)k2
nl2

nk2
Ṽ

(πjt)k3
nl4

nk3
Ṽ

(πjt)k4
nl3

nk4

×

(
jk1 jk2 J

mk1 mk2 M

)(
jk3 jk4 J ′′

mk3 mk4 −M ′′

)(
jk1 jk2 J ′

mk1 mk2 M
′

)(
jk4 jk3 J ′

mk4 mk3 M
′

)
=

∑
nl1

nl2
nl3

nl4

ōJ
′

nl1
ljtk1nl2

ljtk2nl3
ljtk4nl4

ljtk3
Ũ

(πjt)k1
nl1

nk1
Ũ

(πjt)k2
nl2

nk2
Ṽ

(πjt)k3
nl4

nk3
Ṽ

(πjt)k4
nl3

nk4

× (−1)jk3+jk4+MδJJ ′′δM−M ′′ , (E.43)

2Õ
[40]
k1k2JM ;k3k4J ′′M ′′ = (−1)jk3+jk4+J

′′ ∑
mk1

mk2
mk3

mk4

∑
l1l2l3l4

ōl1l2l3l4U
∗
l1k1

V ∗
l4k2

U∗
l2k̄3

V ∗
l3k̄4

×

(
jk1 jk2 J

mk1 mk2 M

)(
jk3 jk4 J ′′

mk3 mk4 −M ′′

)
=

∑
mk1

mk2
mk3

mk4

∑
J ′M ′

∑
nl1

nl2
nl3

nl4

ōJ
′

nl1
ljtk1nl2

ljtk3nl3
ljtk4nl4

ljtk2

× (−1)jk2+jk3+mk2
−mk4

+1+J ′′
Ũ

(πjt)k1
nl1

nk1
Ṽ

(πjt)k2
nl4

nk2
Ũ

(πjt)k3
nl2

nk3
Ṽ

(πjt)k4
nl3

nk4

×

(
jk1 jk2 J

mk1 mk2 M

)(
jk3 jk4 J ′′

mk3 mk4 −M ′′

)(
jk1 jk3 J ′

mk1 −mk3 M
′

)(
jk4 jk2 J ′

mk4 −mk2 M
′

)
=

∑
nl1

nl2
nl3

nl4

ōJ
′

nl1
ljtk1nl2

ljtk3nl3
ljtk4nl4

ljtk2
Ũ

(πjt)k1
nl1

nk1
Ṽ

(πjt)k2
nl4

nk2
Ũ

(πjt)k3
nl2

nk3
Ṽ

(πjt)k4
nl3

nk4

× (−1)jk3+jk4+M+1Ĵ ′2
{
jk1 jk2 J

jk4 jk3 J
′

}
δJJ ′′δM−M ′′ , (E.44)

3Õ
[40]
k1k2JM ;k3k4J ′′M ′′ = (−1)jk3+jk4+J

′′ ∑
mk1

mk2
mk3

mk4

∑
l1l2l3l4

ōl1l2l3l4V
∗
l4k1

U∗
l2k2

U∗
l1k̄3

V ∗
l3k̄4

×

(
jk1 jk2 J

mk1 mk2 M

)(
jk3 jk4 J ′′

mk3 mk4 −M ′′

)
=

∑
mk1

mk2
mk3

mk4

∑
J ′M ′

∑
nl1

nl2
nl3

nl4

ōJ
′

nl1
ljtk3nl2

ljtk2nl3
ljtk4nl4

ljtk1

× (−1)jk1+jk3+mk1
−mk4

+J ′′+1Ṽ
(πjt)k1
nl4

nk1
Ũ

(πjt)k2
nl2

nk2
Ũ

(πjt)k3
nl1

nk3
Ṽ

(πjt)k4
nl3

nk4
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×

(
jk1 jk2 J

mk1 mk2 M

)(
jk3 jk4 J ′′

mk3 mk4 −M ′′

)(
jk3 jk2 J ′

−mk3 mk2 M
′

)(
jk4 jk1 J ′

mk4 −mk1 M
′

)
=

∑
nl1

nl2
nl3

nl4

∑
J ′

ōJ
′

nl1
ljtk3nl2

ljtk2nl3
ljtk4nl4

ljtk1
Ṽ

(πjt)k1
nl4

nk1
Ũ

(πjt)k2
nl2

nk2
Ũ

(πjt)k3
nl1

nk3
Ṽ

(πjt)k4
nl3

nk4

× (−1)jk1+jk4+J
′+J ′′+M+1δJJ ′′δM−M ′′ Ĵ ′2

{
jk1 jk2 J

jk3 jk4 J
′

}
=

∑
nl1

nl2
nl3

nl4

∑
J ′

ōJ
′

nl1
ljtk3nl2

ljtk2nl4
ljtk1nl3

ljtk4
Ṽ

(πjt)k1
nl4

nk1
Ũ

(πjt)k2
nl2

nk2
Ũ

(πjt)k3
nl1

nk3
Ṽ

(πjt)k4
nl3

nk4

× (−1)J+M Ĵ ′2
{
jk1 jk2 J

jk3 jk4 J
′

}
δJJ ′′δM−M ′′ , (E.45)

4Õ
[40]
k1k2JM ;k3k4J ′′M ′′ = (−1)jk3+jk4+J

′′ ∑
mk1

mk2
mk3

mk4

∑
l1l2l3l4

ōl1l2l3l4U
∗
l1k1

V ∗
l4k2

V ∗
l3k̄3

U∗
l2k̄4

×

(
jk1 jk2 J

mk1 mk2 M

)(
jk3 jk4 J ′′

mk3 mk4 −M ′′

)
=

∑
mk1

mk2
mk3

mk4

∑
J ′M ′

∑
nl1

nl2
nl3

nl4

ōJ
′

nl1
ljtk1nl2

ljtk4nl3
ljtk3nl4

ljtk2

× (−1)jk2+jk4+mk2
−mk3

+J ′′+1Ũ
(πjt)k1
nl1

nk1
Ṽ

(πjt)k2
nl4

nk2
Ṽ

(πjt)k3
nl3

nk3
Ũ

(πjt)k4
nl2

nk4

×

(
jk1 jk2 J

mk1 mk2 M

)(
jk3 jk4 J ′′

mk3 mk4 −M ′′

)(
jk1 jk4 J ′

mk1 −mk4 M
′

)(
jk3 jk2 J ′

mk3 −mk2 M
′

)
=

∑
nl1

nl2
nl3

nl4

∑
J ′

ōJ
′

nl1
ljtk1nl2

ljtk4nl3
ljtk3nl4

ljtk2
Ũ

(πjt)k1
nl1

nk1
Ṽ

(πjt)k2
nl4

nk2
Ṽ

(πjt)k3
nl3

nk3
Ũ

(πjt)k4
nl2

nk4

× (−1)J+M+1Ĵ ′2
{
jk1 jk2 J

jk3 jk4 J
′

}
δJJ ′′δM−M ′′ , (E.46)

5Õ
[40]
k1k2JM ;k3k4J ′′M ′′ = (−1)jk3+jk4+J

′′ ∑
mk1

mk2
mk3

mk4

∑
l1l2l3l4

ōl1l2l3l4V
∗
l4k1

U∗
l2k2

V ∗
l3k̄3

U∗
l1k̄4

×

(
jk1 jk2 J

mk1 mk2 M

)(
jk3 jk4 J ′′

mk3 mk4 −M ′′

)
=

∑
mk1

mk2
mk3

mk4

∑
J ′M ′

∑
nl1

nl2
nl3

nl4

ōJ
′

nl1
ljtk4nl2

ljtk2nl3
ljtk3nl4

ljtk1

× (−1)jk1+jk4+mk1
−mk3

+J ′′+1Ṽ
(πjt)k1
nl4

nk1
Ũ

(πjt)k2
nl2

nk2
Ṽ

(πjt)k3
nl3

nk3
Ũ

(πjt)k4
nl1

nk4

×

(
jk1 jk2 J

mk1 mk2 M

)(
jk3 jk4 J ′′

mk3 mk4 −M ′′

)(
jk4 jk2 J ′

−mk4 mk2 M
′

)(
jk3 jk1 J ′

mk3 −mk1 M
′

)
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=
∑

nl1
nl2

nl3
nl4

∑
J ′

ōJ
′

nl1
ljtk4nl2

ljtk2nl3
ljtk3nl4

ljtk1
Ṽ

(πjt)k1
nl4

nk1
Ũ

(πjt)k2
nl2

nk2
Ṽ

(πjt)k3
nl3

nk3
Ũ

(πjt)k4
nl1

nk4

× (−1)jk1+jk4+J
′+MδJJ ′′δM−M ′′ Ĵ ′2

{
jk1 jk2 J

jk4 jk3 J
′

}
=

∑
nl1

nl2
nl3

nl4

∑
J ′

ōJ
′

nl1
ljtk4nl2

ljtk2nl4
ljtk1nl3

ljtk3
Ṽ

(πjt)k1
nl4

nk1
Ũ

(πjt)k2
nl2

nk2
Ṽ

(πjt)k3
nl3

nk3
Ũ

(πjt)k4
nl1

nk4

× (−1)jk3+jk4+M Ĵ ′2
{
jk1 jk2 J

jk4 jk3 J
′

}
δJJ ′′δM−M ′′ , (E.47)

6Õ
[40]
k1k2JM ;k3k4J ′′M ′′ = (−1)jk3+jk4+J

′′ ∑
mk1

mk2
mk3

mk4

∑
l1l2l3l4

ōl1l2l3l4V
∗
l4k1

V ∗
l3k2

U∗
l1k̄3

U∗
l2k̄4

×

(
jk1 jk2 J

mk1 mk2 M

)(
jk3 jk4 J ′′

mk3 mk4 −M ′′

)
=

∑
mk1

mk2
mk3

mk4

∑
J ′M ′

∑
nl1

nl2
nl3

nl4

ōJ
′

nl1
ljtk3nl2

ljtk4nl3
ljtk2nl4

ljtk1

× (−1)jk1+jk2+jk3+jk4+mk1
+mk2

+J ′′+1Ṽ
(πjt)k1
nl4

nk1
Ṽ

(πjt)k2
nl3

nk2
Ũ

(πjt)k3
nl1

nk3
Ũ

(πjt)k4
nl2

nk4

×

(
jk1 jk2 J

mk1 mk2 M

)(
jk3 jk4 J ′′

mk3 mk4 −M ′′

)(
jk3 jk4 J ′

−mk3 −mk4 M
′

)(
jk2 jk1 J ′

−mk2 −mk1 M
′

)
=

∑
nl1

nl2
nl3

nl4

ōJ
′

nl1
ljtk3nl2

ljtk4nl3
ljtk2nl4

ljtk1
Ṽ

(πjt)k1
nl4

nk1
Ṽ

(πjt)k2
nl3

nk2
Ũ

(πjt)k3
nl1

nk3
Ũ

(πjt)k4
nl2

nk4

× (−1)jk1+jk2+MδJJ ′′δM−M ′′ . (E.48)

We again get for the coupled matrix element

Õ
[40]
k1k2JM ;k3k4J ′′M ′′ ≡ (−1)MδJJ ′′δM−M ′′

JÕ
[40]

k̃1k̃2k̃3k̃4
, (E.49)

such that we can write

O[40] =
1

24

∑
k̃1k̃2k̃3k̃4

∑
JM

JÕ
[40]

k̃1k̃2k̃3k̃4
(−1)M [Bjk1Bjk2 ]JM [Bjk3Bjk4 ]J−M

=
1

24

∑
k̃1k̃2k̃3k̃4

∑
J

JÕ
[40]

k̃1k̃2k̃3k̃4
[Bjk1Bjk2 ]J · [Bjk3Bjk4 ]J . (E.50)

For the transformation from m-scheme to J-scheme we have

JÕ
[40]

k̃1k̃2k̃3k̃4
=

∑
mk1

mk2
mk3

mk4

Õ
[40]
k1k2k3k4

(−1)jk3+jk4+J+M

(
jk1 jk2 J

mk1 mk2 M

)(
jk3 jk4 J

mk3 mk4 M

)
, (E.51)
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and conversely,

Õ
[40]
k1k2k3k4

=
∑
JM

JÕ
[40]

k̃1k̃2k̃3k̃4
(−1)jk3+jk4+J+M

(
jk1 jk2 J

mk1 mk2 M

)(
jk3 jk4 J

mk3 mk4 M

)
. (E.52)

Angular-momentum coupling of Ô31

The m-scheme expressions of the cross-coupled matrix element is given by

Õ31
k1k2k3k4

=
∑
l1l2l3l4

Θl1l2l3l4

(
U∗
l1k1

V ∗
l4k2

V ∗
l3k̄3

Vl2k4 − V ∗
l4k1

U∗
l1k2

V ∗
l3k̄3

Vl2k4 − V ∗
l3k1

V ∗
l4k2

U∗
l1k̄3

Vl2k4

+ V ∗
l3k1

U∗
l2k2

U∗
l1k̄3

Ul4k4 − U∗
l2k1

V ∗
l3k2

U∗
l1k̄3

Ul4k4 − U∗
l1k1

U∗
l2k2

V ∗
l3k̄3

Ul4k4

)
. (E.53)

The coupling of the operator reads as

Ô[31] =
1

6

∑
k1k2k3k4

O
[31]
k1k2k3k4

β̂†
k1
β̂†
k2
β̂†
k3
β̂k4

=
1

6

∑
k̃1k̃2k̃3k̃4

∑
mk1

mk2
mk3

mk4

(−1)jk4−mk4O
[31]
k1k2k3k4

Bk1mk1
Bk2mk2

Bk3mk3
B̄jk4−mk4

=
1

6

∑
k̃1k̃2k̃3k̃4

∑
mk1

mk2
mk3

mk4

∑
JJ ′MM ′

(−1)jk4−mk4O
[31]
k1k2k3k4

×

(
jk1 jk2 J

mk1 mk2 M

)(
jk3 jk4 J ′

mk3 −mk4 M
′

)
[Bjk1Bjk2 ]JM · [Bjk3 B̄jk4 ]J ′M ′ ,

=
1

6

∑
k̃1k̃2k̃3k̃4

∑
mk1

mk2
mk3

mk4

∑
JJ ′MM ′

(−1)jk4−mk4 Õ
[31]

k1k2k̄3k4

×

(
jk1 jk2 J

mk1 mk2 M

)(
jk3 jk4 J ′

mk3 −mk4 M
′

)
[Bjk1Bjk2 ]JM · [Bjk3 B̄jk4 ]J ′M ′ ,

=
1

6

∑
k̃1k̃2k̃3k̃4

∑
mk1

mk2
mk3

mk4

∑
JJ ′MM ′

(−1)jk4−mk4 Õ
[31]
k1k2k3k4

×

(
jk1 jk2 J

mk1 mk2 M

)(
jk3 jk4 J ′

−mk3 −mk4 M
′

)
[Bjk1Bjk2 ]J · [Bjk3 B̄jk4 ]J ′M ′ (E.54)

and define

Õ
[31]

k̃1k̃2JM ;k̃3k̃4J ′M ′ =
∑

mk1
mk2

mk3
mk4

(−1)jk4−mk4 Õ
[31]
k1k2k3k4

(
jk1 jk2 J

mk1 mk2 M

)(
jk3 jk4 J ′

−mk3 −mk4 M
′

)
. (E.55)

The corresponding six terms are given by
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1Õ
[31]
k1k2JM ;k3k4J ′′M ′′ = (−1)jk4−mk4

∑
mk1

mk2
mk3

mk4

∑
l1l2l3l4

ōl1l2l3l4U
∗
l1k1

V ∗
l4k2

V ∗
l3k̄3

Vl2k4

×

(
jk1 jk2 J

mk1 mk2 M

)(
jk3 jk4 J ′′

−mk3 −mk4 M
′′

)
=

∑
mk1

mk2
mk3

mk4

∑
J ′M ′

∑
nl1

nl2
nl3

nl4

ōJ
′

nl1
ljtk1nl2

ljtk4nl3
ljtk3nl4

ljtk2

× (−1)jk2+jk3+mk2
−mk3

+1Ũ
(πjt)k1
nl1

nk1
Ṽ

(πjt)k2
nl4

nk2
Ṽ

(πjt)k3
nl3

nk3
Ṽ

(πjt)k4
nl2

nk4

×

(
jk1 jk2 J

mk1 mk2 M

)(
jk3 jk4 J ′′

−mk3 −mk4 M
′′

)(
jk1 jk4 J ′

mk1 −mk4 M
′

)(
jk3 jk2 J ′

mk3 −mk2 M
′

)
=

∑
nl1

nl2
nl3

nl4

∑
J ′

ōJ
′

nl1
ljtk1nl2

ljtk4nl3
ljtk3nl4

ljtk2
Ũ

(πjt)k1
nl1

nk1
Ṽ

(πjt)k2
nl4

nk2
Ṽ

(πjt)k3
nl3

nk3
Ṽ

(πjt)k4
nl2

nk4

× (−1)J+M Ĵ ′2
{
jk1 jk2 J

jk3 jk4 J
′

}
δJJ ′′δMM ′′ , (E.56)

2Õ
[31]
k1k2JM ;k3k4J ′′M ′′ = (−1)jk4−mk4

∑
mk1

mk2
mk3

mk4

∑
l1l2l3l4

ōl1l2l3l4Vl4k1Ul1k2Vl3k̄3Vl2k4

×

(
jk1 jk2 J

mk1 mk2 M

)(
jk3 jk4 J ′′

−mk3 −mk4 M
′′

)
=

∑
mk1

mk2
mk3

mk4

∑
J ′M ′

∑
nl1

nl2
nl3

nl4

ōJ
′

nl1
ljtk2nl2

ljtk4nl3
ljtk3nl4

ljtk1

× (−1)jk1+jk3+mk1
−mk3

+1Ṽ
(πjt)k1
nl4

nk1
Ũ

(πjt)k2
nl1

nk2
Ṽ

(πjt)k3
nl3

nk3
Ṽ

(πjt)k4
nl2

nk4

×

(
jk1 jk2 J

mk1 mk2 M

)(
jk3 jk4 J ′′

−mk3 −mk4 M
′′

)(
jk2 jk4 J ′

mk2 −mk4 M
′

)(
jk3 jk1 J ′

mk3 −mk1 M
′

)
= (−1)jk1+jk2+M

∑
nl1

nl2
nl3

nl4

∑
J ′

ōJ
′

nl1
ljtk2nl2

ljtk4nl3
ljtk3nl4

ljtk1

× Ṽ
(πjt)k1
nl4

nk1
Ũ

(πjt)k2
nl1

nk2
Ṽ

(πjt)k3
nl3

nk3
Ṽ

(πjt)k4
nl2

nk4
Ĵ ′2
{
jk1 jk2 J

jk4 jk3 J
′

}
δJJ ′′δM−M ′′ , (E.57)

3Ō
[31]
k1k2JM ;k3k4J ′′M ′′ = (−1)jk4−mk4

∑
mk1

mk2
mk3

mk4

∑
l1l2l3l4

ōl1l2l3l4Vl3k1Vl4k2Ul1k̄3Vl2k4

×

(
jk1 jk2 J

mk1 mk2 M

)(
jk3 jk4 J ′′

−mk3 −mk4 M
′′

)
=

∑
mk1

mk2
mk3

mk4

∑
J ′M ′

∑
nl1

nl2
nl3

nl4

ōJ
′

nl1
ljtk3nl2

ljtk4nl3
ljtk1nl4

ljtk2
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× (−1)jk1+jk2−mk1
−mk2

+1Ṽ
(πjt)k1
nl3

nk1
Ṽ

(πjt)k2
nl4

nk2
Ũ

(πjt)k3
nl1

nk3
Ṽ

(πjt)k4
nl2

nk4

×

(
jk1 jk2 J

mk1 mk2 M

)(
jk3 jk4 J ′′

−mk3 −mk4 M
′′

)(
jk3 jk4 J ′

−mk3 −mk4 M
′

)(
jk1 jk2 J ′

−mk1 −mk2 M
′

)
= (−1)J+M+1δJJ ′′δM−M ′′

∑
nl1

nl2
nl3

nl4

ōJ
′

nl1
ljtk3nl2

ljtk4nl3
ljtk1nl4

ljtk2

× Ṽ
(πjt)k1
nk3

nk1
Ṽ

(πjt)k2
nl4

nk2
Ũ

(πjt)k3
nl1

nk3
Ṽ

(πjt)k4
nl2

nk4
δJJ ′′δM−M ′′ , (E.58)

4Õ
[31]
k1k2JM ;k3k4J ′′M ′′ = (−1)jk4−mk4

∑
mk1

mk2
mk3

mk4

∑
l1l2l3l4

ōl1l2l3l4Vl3k1Ul2k2Ul1k̄3Ul4k4

×

(
jk1 jk2 J

mk1 mk2 M

)(
jk3 jk4 J ′′

−mk3 −mk4 M
′′

)
=

∑
mk1

mk2
mk3

mk4

∑
J ′M ′

∑
nl1

nl2
nl3

nl4

ōJ
′

nl1
ljtk3nl2

ljtk2nl3
ljtk1nl4

ljtk4

× (−1)jk1+jk4+mk1
−mk4 Ṽ

(πjt)k1
nl3

nk1
Ũ

(πjt)k2
nl2

nk2
Ũ

(πjt)k3
nl1

nk3
Ũ

(πjt)k4
nl4

nk4

×

(
jk1 jk2 J

mk1 mk2 M

)(
jk3 jk4 J ′′

−mk3 −mk4 M
′′

)(
jk3 jk2 J ′

−mk3 mk2 M
′

)(
jk1 jk4 J ′

−mk1 mk4 M
′

)
= (−1)M+J+1

∑
nl1

nl2
nl3

nl4

ōJ
′

nl1
ljtk3nl2

ljtk2nl3
ljtk1nl4

ljtk4

× Ṽ
(πjt)k1
nl3

nk1
Ũ

(πjt)k2
nl2

nk2
Ũ

(πjt)k3
nl1

nk3
Ũ

(πjt)k4
nl4

nk4
Ĵ ′2
{
jk1 jk2 J

jk3 jk4 J
′

}
δJJ ′′δM−M ′′ , (E.59)

5Õ
[31]
k1k2JM ;k3k4J ′′M ′′ = (−1)jk4−mk4

∑
mk1

mk2
mk3

mk4

∑
l1l2l3l4

ōl1l2l3l4Ul2k1Vl3k2Ul1k̄3Ul4k4

×

(
jk1 jk2 J

mk1 mk2 M

)(
jk3 jk4 J ′′

mk3 −mk4 M
′′

)
=

∑
mk1

mk2
mk3

mk4

∑
J ′M ′

∑
nl1

nl2
nl3

nl4

ōJ
′

nl1
ljtk3nl2

ljtk1nl3
ljtk2nl4

ljtk4

× (−1)jk2+jk4+mk2
−mk4 Ũ

(πjt)k1
nl2

nk1
Ṽ

(πjt)k2
nl3

nk2
Ũ

(πjt)k3
nl1

nk3
Ũ

(πjt)k4
nl4

nk4

×

(
jk1 jk2 J

mk1 mk2 M

)(
jk3 jk4 J ′′

−mk3 −mk4 M
′′

)(
jk3 jk1 J ′

−mk3 mk1 M
′

)(
jk2 jk4 J ′

−mk2 mk4 M
′

)
= (−1)jk1+jk2+M+1

∑
nl1

nl2
nl3

nl4

ōJ
′

nl1
ljtk3nl2

ljtk1nl3
ljtk2nl4

ljtk4
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× Ṽ
(πjt)k1
nl3

nk1
Ũ

(πjt)k1
nl2

nk1
Ṽ

(πjt)k2
nl3

nk2
Ũ

(πjt)k3
nl1

nk3
Ũ

(πjt)k4
nl4

nk4
Ĵ ′2
{
jk1 jk2 J

jk4 jk3 J
′

}
δJJ ′′δM−M ′′ ,

(E.60)

6Õ
[31]
k1k2JM ;k3k4J ′′M ′′ = (−1)jk4−mk4

∑
mk1

mk2
mk3

mk4

∑
l1l2l3l4

ōl1l2l3l4Ul1k1Ul2k2Vl3k̄3Ul4k4

×

(
jk1 jk2 J

mk1 mk2 M

)(
jk3 jk4 J ′′

−mk3 −mk4 M
′′

)
=

∑
mk1

mk2
mk3

mk4

∑
J ′M ′

∑
nl1

nl2
nl3

nl4

ōJ
′

nl1
ljtk1nl2

ljtk2nl3
ljtk3nl4

ljtk4

× (−1)jk3−mk3
+jk4−mk4 Ũ

(πjt)k1
nl1

nk1
Ũ

(πjt)k2
nl2

nk2
Ṽ

(πjt)k3
nl3

nk3
Ũ

(πjt)k4
nl4

nk4

×

(
jk1 jk2 J

mk1 mk2 M

)(
jk3 jk4 J ′′

−mk3 −mk4 M
′′

)(
jk1 jk2 J ′

mk1 mk2 M
′

)(
jk3 jk4 J ′

mk3 mk4 M
′

)
= (−1)J+M

∑
nl1

nl2
nl3

nl4

ōJ
′

nl1
ljtk1nl2

ljtk2nl3
ljtk3nl4

ljtk4

× Ũ
(πjt)k1
nl1

nk1
Ũ

(πjt)k2
nl2

nk2
Ṽ

(πjt)k3
nl3

nk3
Ũ

(πjt)k4
nl4

nk4
δJJ ′′δM−M ′′ . (E.61)

Therefore, we finally arrive at

O
[31]
k1k2JM ;k3k4J ′′M ′′ ≡ (−1)MδJJ ′′δM−M ′′

JÕ
[31]

k̃1k̃2k̃3k̃4
, (E.62)

leading to the spherical form of the operator

Õ[31] =
1

6

∑
k̃1k̃2k̃3k̃4

∑
JJ ′MM ′

JÕ
[31]

k̃1k̃2k̃3k̃4
(−1)M [Bjk1Bjk2 ]JM [Bjk3 B̄jk4 ]J−M

=
1

6

∑
k̃1k̃2k̃3k̃4

∑
J

JÕ
[31]

k̃1k̃2k̃3k̃4
[Bjk1Bjk2 ]J · [Bjk3 B̄jk4 ]J . (E.63)

We finally write the matrix element as

JÕ
[31]

k̃1k̃2k̃3k̃4
=

∑
mk1

mk2
mk3

mk4

(−1)jk4−mk4
+M Õ

[31]
k1k2k3k4

(
jk1 jk2 J

mk1 mk2 M

)(
jk3 jk4 J

−mk3 −mk4 −M

)

=
∑

mk1
mk2

mk3
mk4

(−1)jk3−mk4
−J+M+1Õ

[31]
k1k2k3k4

(
jk1 jk2 J

mk1 mk2 M

)(
jk3 jk4 J

mk3 mk4 M

)
(E.64)

and conversely
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Õ
[31]
k1k2k3k4

=
∑
JM

(−1)jk3−mk4
−J+M+1 × JÕ

[31]

k̃1k̃2k̃3k̃4

(
jk1 jk2 J

mk1 mk2 M

)(
jk3 jk4 J

mk3 mk4 M

)
. (E.65)

Angular-momentum coupling of Ô13

Analogously, we start from the m-scheme expression of the cross-coupled matrix element:

Õ13
k1k2k3k4

=
∑
l1l2l3l4

Θl1l2l3l4

(
V ∗
l4k1

Ul3k̄2Vl2k3Vl1k4 − V ∗
l4k1

Vl2k̄2Ul3k3Vl1k4 − V ∗
l4k1

Vl1k̄2Vl2k3Ul3k4

+ U∗
l1k1

Vl2k̄2Ul3k3Ul4k4 − U∗
l1k1

Ul3k̄2Vl2k3Ul4k4 + U∗
l1k1

Ul3k̄2Ul4k3Vl2k4

)
. (E.66)

Coupling of the operator yields

Ô[13] =
1

6

∑
k1k2k3k4

O
[13]
k1k2k3k4

β̂†
k1
β̂k4 β̂k3 β̂k2

= −1

6

∑
k̃1k̃2k̃3k̃4

∑
mk1

mk2
mk3

mk4

(−1)jk2−mk2
+jk3−mk3

+jk4−mk4O
[13]
k1k2k3k4

× Bk1mk1
B̄jk2−mk2

B̄jk3−mk3
B̄jk4−mk4

= −1

6

∑
k̃1k̃2k̃3k̃4

∑
mk1

mk2
mk3

mk4

∑
JJ ′MM ′

(−1)jk2−mk2
+jk3−mk3

+jk4−mk4 Õ
[13]

k1k̄2k3k4

×

(
jk1 jk2 J

mk1 −mk2 M

)(
jk3 jk4 J ′

−mk3 −mk4 M
′

)
[Bjk1 B̄jk2 ]JM [B̄jk3 B̄jk4 ]J ′M ′

= −1

6

∑
k̃1k̃2k̃3k̃4

∑
mk1

mk2
mk3

mk4

∑
JJ ′MM ′

(−1)jk2−mk2
+J ′+M ′

Õ
[13]

k1k̄2k3k4

×

(
jk1 jk2 J

mk1 −mk2 M

)(
jk3 jk4 J ′

mk3 mk4 −M ′

)
[Bjk1 B̄jk2 ]JM [B̄jk3 B̄jk4 ]J ′M ′

= −1

6

∑
k̃1k̃2k̃3k̃4

∑
mk1

mk2
mk3

mk4

∑
JJ ′MM ′

(−1)jk2+mk2
+J ′+M ′

Õ
[13]
k1k2k3k4

×

(
jk1 jk2 J

mk1 mk2 M

)(
jk3 jk4 J ′

mk3 mk4 −M ′

)
[Bjk1 B̄jk2 ]JM [B̄jk3 B̄jk4 ]J ′M ′

(E.67)

and we define the cross-coupled matrix element in J-scheme by

Õ
[13]

k̃1k̃2JM ;k̃3k̃4J ′M ′ =
∑

mk1
mk2

mk3
mk4

(−1)jk2+mk2
+J ′+M ′+1Õ

[13]
k1k2k3k4

(
jk1 jk2 J

mk1 mk2 M

)(
jk3 jk4 J ′

mk3 mk4 −M ′

)
.

(E.68)
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The corresponding six terms are given by

1Õ
[13]
k1k2JM ;k3k4J ′′M ′′ = (−1)jk2+mk2

+J+M ′+1
∑

mk1
mk2

mk3
mk4

∑
l1l2l3l4

ōl1l2l3l4V
∗
l4k1

Ul3k̄2Vl2k3Vl1k4

×

(
jk1 jk2 J

mk1 mk2 M

)(
jk3 jk4 J ′′

mk3 mk4 −M ′′

)
=

∑
mk1

mk2
mk3

mk4

∑
J ′M ′

∑
nl1

nl2
nl3

nl4

ōJ
′

nl1
ljtk4nl2

ljtk3nl3
ljtk̄2

nl4
ljtk1

× (−1)jk2+jk3+jk4+mk2
+mk3

−mk4 Ṽ
(πjt)k1
nl4

nk1
Ũ

(πjt)k̄2
nl3

nk̄2
Ṽ

(πjt)k3
nl2

nk3
Ṽ

(πjt)k4
nl1

nk4

×

(
jk1 jk2 J

mk1 mk2 M

)(
jk3 jk4 J ′′

mk3 mk4 −M ′′

)(
jk4 jk3 J ′

−mk4 −mk3 M
′

)(
jk2 jk1 J ′

−mk2 −mk1 M
′

)
= (−1)jk3+jk4+MJ′′

∑
nl1

nl2
nl3

nl4

ōJ
′

nl1
ljtk4nl2

ljtk3nl3
ljtk̄1

nl4
ljtk̄2

× Ṽ
(πjt)k1
nl4

nk1
Ũ

(πjt)k̄2
nl3

nk̄2
Ṽ

(πjt)k3
nl2

nk3
Ṽ

(πjt)k4
nl1

nk4
δJJ ′′δM−M ′′ , (E.69)

2Õ
[13]
k1k2JM ;k3k4J ′′M ′′ = (−1)jk2+mjk2+J

′+M ′+1
∑

mk1
mk2

mk3
mk4

∑
l1l2l3l4

ol1l2l3l4V
∗
l4k1

Vl2k̄2Ul3k3Vl1k4

×

(
jk1 jk2 J

mk1 mk2 M

)(
jk3 jk4 J ′′

mk3 mk4 −M ′′

)
=

∑
mk1

mk2
mk3

mk4

∑
nl1

nl2
nl3

nl4

∑
J ′M ′

ōJ
′

nl1
ljtk4nl2

ljtk2nl3
ljtk1nl4

ljtk3

× (−1)jk1+jk4+mk2
−mk4

−M+M ′′+J ′′+1Ṽ
(πjt)k1
nl4

nk1
Ṽ

(πjt)k2
nl2

nk2
Ũ

(πjt)k3
nl3

nk3
Ṽ

(πjt)k4
nl1

nk4

×

(
jk1 jk2 J

mk1 mk2 M

)(
jk3 jk4 J ′′

mk3 mk4 −M ′′

)(
jk4 jk2 J ′

−mk4 mk2 M
′

)(
jk1 jk3 J ′

−mk1 mk3 M
′

)
= (−1)jk3+jk4+M+1

∑
nl1

nl2
nl3

nl4

∑
J ′

ōJ
′

nl1
ljtk4nl2

ljtk2nl3
ljtk1nl4

ljtk3

× Ṽ
(πjt)k1
nl4

nk1
Ṽ

(πjt)k2
nl2

nk2
Ũ

(πjt)k3
nl3

nk3
Ṽ

(πjt)k4
nl1

nk4
Ĵ ′2
{
jk1 jk2 J

jk4 jk3 J
′

}
δJJ ′′δM−M ′′ , (E.70)

3Õ
[13]
k1k2JM ;k3k4J ′′M ′′ = (−1)jk2+mjk2+J

′+M ′+1
∑

mk1
mk2

mk3
mk4

∑
l1l2l3l4

ol1l2l3l4Vl4k1Vl1k̄2Vl2k3Ul3k4

×

(
jk1 jk2 J

mk1 mk2 M

)(
jk3 jk4 J ′′

mk3 mk4 −M ′′

)
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=
∑

mk1
mk2

mk3
mk4

∑
nl1

nl2
nl3

nl4

∑
J ′M ′

ōJ
′

nl1
ljtk3nl2

ljtk2nl3
ljtk1nl4

ljtk4

× (−1)jk1+jk3+mk2
−mk3

+J ′′−M+M ′′+1Ṽ
(πjt)k1
nl4

nk1
Ṽ

(πjt)k2
nl1

nk2
Ṽ

(πjt)k3
nl2

nk3
Ũ

(πjt)k4
nl3

nk4

×

(
jk1 jk2 J

mk1 mk2 −M

)(
jk3 jk4 J ′′

mk3 mk4 −M ′′

)(
jk3 jk2 J ′

−mk3 mk2 M
′

)(
jk1 jk4 J ′

−mk1 mk4 M

)
= (−1)J+M+1

∑
nl1

nl2
nl3

nl4

∑
J ′

ōJ
′

nl1
ljtk3nl2

ljtk2nl3
ljtk1nl4

ljtk4

× Ũ
(πjt)k1
nl3

nk1
Ṽ

(πjt)k1
nl4

nk1
Ṽ

(πjt)k2
nl1

nk2
Ṽ

(πjt)k3
nl2

nk3
Ũ

(πjt)k4
nl3

nk4
Ĵ ′2
{
jk1 jk2 J

jk3 jk4 J
′

}
δJJ ′′δM−M ′′ ,

(E.71)

4Õ
[13]
k1k2JM ;k3k4J ′′M ′′ = (−1)jk2+mjk2+J

′+M ′+1
∑

mk1
mk2

mk3
mk4

∑
l1l2l3l4

ol1l2l3l4Ul1k1Vl2k̄2Ul3k3Ul4k4

×

(
jk1 jk2 J

mk1 mk2 M

)(
jk3 jk4 J ′′

mk3 mk4 −M ′′

)
=

∑
mk1

mk2
mk3

mk4

∑
nl1

nl2
nl3

nl4

∑
J ′M ′

ōJ
′

nl1
ljtk3nl2

ljtk1nl3
ljtk2nl4

ljtk4

× (−1)jk2+jk3+M
′′+J ′′+1Ũ

(πjt)k1
nl1

nk1
Ṽ

(πjt)k2
nl2

nk2
Ũ

(πjt)k3
nl3

nk3
Ũ

(πjt)k4
nl4

nk4

×

(
jk1 jk2 J

mk1 mk2 M

)(
jk3 jk4 J ′′

mk3 mk4 −M ′′

)(
jk3 jk1 J ′

−mk3 mk1 M
′

)(
jk2 jk4 J ′

−mk2 mk4 M

)
= (−1)jk1+jk2+M+1

∑
nl1

nl2
nl3

nl4

∑
J ′

ōJ
′

nl1
ljtk3nl2

ljtk1nl3
ljtk2nl4

ljtk4

× Ũ
(πjt)k1
nl1

nk1
Ṽ

(πjt)k2
nl2

nk2
Ũ

(πjt)k3
nl3

nk3
Ũ

(πjt)k4
nl4

nk4
Ĵ ′2
{
jk1 jk2 J

jk4 jk3 J
′

}
δJJ ′′δM−M ′′ , (E.72)

5Õ
[13]
k1k2JM ;k3k4J ′′M ′′ = (−1)jk2+mjk2+J

′+M ′+1
∑

mk1
mk2

mk3
mk4

∑
l1l2l3l4

ol1l2l3l4Ul1k1Ul3k̄2Vl2k3Ul4k4

×

(
jk1 jk2 J

mk1 mk2 M

)(
jk3 jk4 J ′′

mk3 mk4 −M ′′

)
=

∑
mk1

mk2
mk3

mk4

∑
nl1

nl2
nl3

nl4

∑
J ′M ′

ōJ
′

nl1
ljtk2nl2

ljtk1nl3
ljtk3nl4

ljtk4

× Ũ
(πjt)k1
nl1

nk1
Ũ

(πjt)k2
nl3

nk2
Ṽ

(πjt)k3
nl2

nk3
Ũ

(πjt)k4
nl4

nk4
(−1)J

′′+M ′′

×

(
jk1 jk2 J

mk1 mk2 M

)(
jk3 jk4 J ′′

mk3 mk4 −M ′′

)(
jk2 jk1 J ′

mk2 mk1 M
′

)(
jk3 jk4 J ′

mk3 mk4 M

)
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= (−1)jk1+jk2+M
∑

nl1
nl2

nl3
nl4

ōJ
′

nl1
ljtk3nl2

ljtk1nl3
ljtk2nl4

ljtk4

× Ũ
(πjt)k1
nl1

nk1
Ũ

(πjt)k2
nl3

nk2
Ṽ

(πjt)k3
nl2

nk3
Ũ

(πjt)k4
nl4

nk4
δJJ ′′δM−M ′′ , (E.73)

6Õ
[13]
k1k2JM ;k3k4J ′′M ′′ = (−1)jk2+mjk2+J

′+M ′+1
∑

mk1
mk2

mk3
mk4

∑
l1l2l3l4

ol1l2l3l4Ul1k1Ul3k̄2Ul4k3Vl2k4

×

(
jk1 jk2 J

mk1 mk2 M

)(
jk3 jk4 J ′′

mk3 mk4 −M ′′

)
=

∑
mk1

mk2
mk3

mk4

∑
nl1

nl2
nl3

nl4

∑
J ′M ′

ōJ
′

nl1
ljtk4nl2

ljtk1nl3
ljtk2nl4

ljtk3

× Ũ
(πjt)k1
nl1

nk1
Ũ

(πjt)k2
nl3

nk2
Ũ

(πjt)k3
nl4

nk3
Ṽ

(πjt)k4
nl2

nk4
(−1)jk2+jk4+M+M ′+M ′′+J ′′

×

(
jk1 jk2 J

mk1 mk2 M

)(
jk3 jk4 J ′′

mk3 mk4 −M ′′

)(
jk4 jk1 J ′

−mk4 mk1 M
′

)(
jk2 jk3 J ′

−mk2 mk3 M

)
= (−1)jk1+jk2+jk3+jk4+J+M+1

∑
nl1

nl2
nl3

nl4

∑
J ′

ōJ
′

nl1
ljtk4nl2

ljtk1nl3
ljtk2nl4

ljtk3

× Ũ
(πjt)k1
nl1

nk1
Ũ

(πjt)k2
nl3

nk2
Ũ

(πjt)k3
nl4

nk3
Ṽ

(πjt)k4
nl2

nk4
Ĵ ′2
{
jk1 jk2 J

jk3 jk4 J
′

}
δJJ ′′δM−M ′′ . (E.74)

Therefore, we finally arrive at

O
[13]
k1k2JM ;k3k4J ′′M ′′ ≡ (−1)MδJJ ′′δM−M ′′

JÕ
[13]

k̃1k̃2k̃3k̃4
, (E.75)

leading to the spherical form of the operator

Õ[13] =
1

6

∑
k̃1k̃2k̃3k̃4

∑
JJ ′MM ′

JÕ
[13]

k̃1k̃2k̃3k̃4
(−1)M [Bjk1 B̄jk2 ]JM [B̄jk3 B̄jk4 ]J−M

=
1

6

∑
k̃1k̃2k̃3k̃4

∑
J

JÕ
[13]

k̃1k̃2k̃3k̃4
[Bjk1 B̄jk2 ]J · [B̄jk3 B̄jk4 ]J . (E.76)

By diagonality in J and M we can write

JÕ
[13]

k̃1k̃2k̃3k̃4
≡

∑
mk1

mk2
mk3

mk4

(−1)jk2+mk2
+J+1 × Õ

[13]
k1k2k3k4

(
jk1 jk2 J

mk1 mk2 M

)(
jk3 jk4 J

mk3 mk4 M

)
(E.77)

as well as the converse transformation

Õ
[13]
k1k2k3k4

≡
∑
JM

(−1)jk2+mk2
+J+1 × JÕ

[13]

k̃1k̃2k̃3k̃4

(
jk1 jk2 J

mk1 mk2 M

)(
jk3 jk4 J

mk3 mk4 M

)
. (E.78)
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Angular-momentum coupling of Ô04

The m-scheme expression of the cross-coupled matrix element is

Õ04
k1k2k3k4

=
∑
l1l2l3l4

Θl1l2l3l4

(
Ul3k̄1Ul4k̄2Vl2k3Vl1k4 − Ul3k̄1Vl2k̄2Ul4k3Vl1k4 + Ul3k̄1Vl2k̄2Vl1k3Ul4k4

− Vl2k1Ul3k2Vl1k3Ul4k4 + Vl2k̄1Vl1k̄2Ul3k3Ul4k4 + Vl2k̄1Ul3k̄2Ul4k3Vl1k4

)
. (E.79)

The coupling of the operator yields

Ô[04] =
1

24

∑
k1k2k3k4

O
[04]
k1k2k3k4

β̂k1 β̂k2 β̂k3 β̂k4

=
∑

k̃1k̃2k̃3k̃4

∑
mk1

mk2
mk3

mk4

(−1)jk1−mk1
+jk2−mk2

+jk3−mk3
+jk4−mk4O

[04]
k1k2k3k4

× B̄jk1−mk1
B̄jk2−mk2

B̄jk3−mk3
B̄jk4−mk4

=
1

24

∑
k̃1k̃2k̃3k̃4

∑
mk1

mk2
mk3

mk4

∑
JJ ′MM ′

(−1)jk1+jk2+jk3+jk4+M+M ′
O

[04]
k1k2k3k4

×

(
jk1 jk2 J

−mk1 −mk2 M

)(
jk3 jk4 J ′

−mk3 −mk4 M
′

)
[B̄jk1 B̄jk2 ]JM [B̄jk3 B̄jk4 ]J ′M ′

=
1

24

∑
k̃1k̃2k̃3k̃4

∑
mk1

mk2
mk3

mk4

∑
JJ ′MM ′

(−1)jk1+jk2+J+M+M ′
O

[04]
k1k2k3k4

×

(
jk1 jk2 J

−mk1 −mk2 M

)(
jk3 jk4 J ′

mk3 mk4 −M ′

)
[B̄jk1 B̄jk2 ]JM [B̄jk3 B̄jk4 ]J ′M ′

=
1

24

∑
k̃1k̃2k̃3k̃4

∑
mk1

mk2
mk3

mk4

∑
JJ ′MM ′

(−1)jk1+jk2+J−mk1
−mk2

−mk3
−mk4 Õ

[04]

k̄1k̄2k3k4

×

(
jk1 jk2 J

−mk1 −mk2 M

)(
jk3 jk4 J ′

mk3 mk4 −M ′

)
[B̄jk1 B̄jk2 ]JM [B̄jk3 B̄jk4 ]J ′M ′

=
1

24

∑
k̃1k̃2k̃3k̃4

∑
mk1

mk2
mk3

mk4

∑
JJ ′MM ′

(−1)jk1+jk2+J+mk1
+mk2

−mk3
−mk4 Õ

[04]
k1k2k3k4

×

(
jk1 jk2 J

mk1 mk2 M

)(
jk3 jk4 J ′

mk3 mk4 −M ′

)
[B̄jk1 B̄jk2 ]JM [B̄jk3 B̄jk4 ]J ′M ′

=
1

24

∑
k̃1k̃2k̃3k̃4

∑
mk1

mk2
mk3

mk4

∑
JJ ′MM ′

(−1)jk1+jk2+J−M+M ′
Õ

[04]
k1k2k3k4

×

(
jk1 jk2 J

mk1 mk2 M

)(
jk3 jk4 J ′

mk3 mk4 −M ′

)
[B̄jk1 B̄jk2 ]JM [B̄jk3 B̄jk4 ]J ′M ′ (E.80)
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and we define the cross-coupled matrix element in J-scheme by

Õ
[04]
k1k2JM ;k3k4J ′M ′ =

∑
k̃1k̃2k̃3k̃4

(−1)jk1+jk2+J
′−M+M ′

Õ
[04]
k1k2k3k4

(
jk1 jk2 J

mk1 mk2 M

)(
jk3 jk4 J ′

mk3 mk4 −M ′

)
.

(E.81)

The corresponding six terms are given by

1Õ
[04]
k1k2JM ;k3k4J ′′M ′′ = (−1)jk1+jk2+J

′′−M+M ′′ ∑
mk1

mk2
mk3

mk4

∑
l1l2l3l4

ōl1l2l3l4Ul3k̄1Ul4k̄2Vl2k3Vl1k4

×

(
jk1 jk2 J

mk1 mk2 M

)(
jk3 jk4 J ′′

mk3 mk4 −M ′′

)
=

∑
mk1

mk2
mk3

mk4

∑
J ′M ′

∑
nl1

nl2
nl3

nl4

ōJ
′

nl1
ljtk4nl2

ljtk3nl3
ljtk̄1

nl4
ljtk̄2

× (−1)jk2+jk3+jk4+mk2
+mk3

−mk4 Ũ
(πjt)k1
nl3

nk1
Ũ

(πjt)k2
nl4

nk2
Ṽ

(πjt)k3
nl2

nk3
Ṽ

(πjt)k4
nl1

nk4

×

(
jk1 jk2 J

mk1 mk2 M

)(
jk3 jk4 J ′′

mk3 mk4 −M ′′

)(
jk4 jk3 J ′

−mk4 −mk3 M
′

)(
jk1 jk2 J ′

−mk1 −mk2 M
′

)
= (−1)jk3+jk4+M

′′∑
J ′

∑
nl1

nl2
nl3

nl4

ōJ
′

nl1
ljtk4nl2

ljtk3nl3
ljtk̄1

nl4
ljtk̄2

× Ũ
(πjt)k1
nl3

nk1
Ũ

(πjt)k2
nl4

nk2
Ṽ

(πjt)k3
nl2

nk3
Ṽ

(πjt)k4
nl1

nk4
δJJ ′′δM−M ′′ , (E.82)

2Õ
[04]
k1k2JM ;k3k4J ′′M ′′ = (−1)jk1+jk2+J

′′−M+M ′′ ∑
mk1

mk2
mk3

mk4

∑
l1l2l3l4

ol1l2l3l4Ul3k̄1Vl2k̄2Ul4k3Vl1k4

×

(
jk1 jk2 J

mk1 mk2 M

)(
jk3 jk4 J ′′

mk3 mk4 −M ′′

)
=

∑
mk1

mk2
mk3

mk4

∑
nl1

nl2
nl3

nl4

∑
J ′M ′

ōJ
′

nl1
ljtk4nl2

ljtk2nl3
ljtk1nl4

ljtk3

× (−1)jk1+jk4+mk2
−mk4

−M+M ′′+J ′′+1Ũ
(πjt)k1
nl3

nk1
Ṽ

(πjt)k2
nl2

nk2
Ũ

(πjt)k3
nl4

nk3
Ṽ

(πjt)k4
nl1

nk4

×

(
jk1 jk2 J

mk1 mk2 M

)(
jk3 jk4 J ′′

mk3 mk4 −M ′′

)(
jk4 jk2 J ′

−mk4 mk2 M
′

)(
jk1 jk3 J ′

−mk1 mk3 M
′

)
= (−1)jk3+jk4+M+1

∑
nl1

nl2
nl3

nl4

∑
J ′

ōJ
′

nl1
ljtk4nl2

ljtk2nl3
ljtk1nl4

ljtk3

× Ũ
(πjt)k1
nl3

nk1
Ṽ

(πjt)k2
nl2

nk2
Ũ

(πjt)k3
nl4

nk3
Ṽ

(πjt)k4
nl1

nk4
Ĵ ′

{
jk1 jk2 J

jk4 jk3 J
′

}
δJJ ′′δM−M ′′ , (E.83)
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3Õ
[04]
k1k2JM ;k3k4J ′′M ′′ = (−1)jk1+jk2+J

′′−M+M ′′ ∑
mk1

mk2
mk3

mk4

∑
l1l2l3l4

ol1l2l3l4Ul3k̄1Vl2k̄2Vl1k3Ul4k4

×

(
jk1 jk2 J

mk1 mk2 M

)(
jk3 jk4 J ′′

mk3 mk4 −M ′′

)
=

∑
mk1

mk2
mk3

mk4

∑
nl1

nl2
nl3

nl4

∑
J ′M ′

ōJ
′

nl1
ljtk3nl2

ljtk2nl3
ljtk1nl4

ljtk4

× (−1)jk1+jk3+mk2
−mk3

+J ′′−M+M ′′+1Ũ
(πjt)k1
nl3

nk1
Ṽ

(πjt)k2
nl2

nk2
Ṽ

(πjt)k3
nl1

nk3
Ũ

(πjt)k4
nl4

nk4

×

(
jk1 jk2 J

mk1 mk2 −M

)(
jk3 jk4 J ′′

mk3 mk4 −M ′′

)(
jk3 jk2 J ′

−mk3 mk2 M
′

)(
jk1 jk4 J ′

−mk1 mk4 M

)
= (−1)J+M+1

∑
nl1

nl2
nl3

nl4

∑
J ′

ōJ
′

nl1
ljtk3nl2

ljtk2nl3
ljtk1nl4

ljtk4

× Ũ
(πjt)k1
nl3

nk1
Ṽ

(πjt)k2
nl2

nk2
Ṽ

(πjt)k3
nl1

nk3
Ũ

(πjt)k4
nl4

nk4
Ĵ ′

{
jk1 jk2 J

jk3 jk4 J
′

}
δJJ ′′δM−M ′′ , (E.84)

4Õ
[04]
k1k2JM ;k3k4J ′′M ′′ = (−1)jk1+jk2+J

′′−M+M ′′ ∑
mk1

mk2
mk3

mk4

∑
l1l2l3l4

ol1l2l3l4Vl2k̄1Ul3k̄2Vl1k3Ul4k4

×

(
jk1 jk2 J

mk1 mk2 M

)(
jk3 jk4 J ′′

mk3 mk4 −M ′′

)
=

∑
mk1

mk2
mk3

mk4

∑
nl1

nl2
nl3

nl4

∑
J ′M ′

ōJ
′

nl1
ljtk3nl2

ljtk1nl3
ljtk2nl4

ljtk4

× (−1)jk2+jk3+M
′′+J ′′+1Ṽ

(πjt)k1
nl2

nk1
Ũ

(πjt)k2
nl3

nk2
Ṽ

(πjt)k3
nl1

nk3
Ũ

(πjt)k4
nl4

nk4

×

(
jk1 jk2 J

mk1 mk2 M

)(
jk3 jk4 J ′′

mk3 mk4 −M ′′

)(
jk3 jk1 J ′

−mk3 mk1 M
′

)(
jk2 jk4 J ′

−mk2 mk4 M

)
= (−1)jk1+jk2+M+1

∑
nl1

nl2
nl3

nl4

∑
J ′

ōJ
′

nl1
ljtk3nl2

ljtk1nl3
ljtk2nl4

ljtk4

× Ṽ
(πjt)k1
nl2

nk1
Ũ

(πjt)k2
nl3

nk2
Ṽ

(πjt)k3
nl1

nk3
Ũ

(πjt)k4
nl4

nk4
Ĵ ′

{
jk1 jk2 J

jk4 jk3 J
′

}
δJJ ′′δM−M ′′ , (E.85)

5Õ
[04]
k1k2JM ;k3k4J ′′M ′′ = (−1)jk1+jk2+J

′′−M+M ′′ ∑
mk1

mk2
mk3

mk4

∑
l1l2l3l4

ol1l2l3l4Vl2k̄1Vl1k̄2Ul3k3Ul4k4

×

(
jk1 jk2 J

mk1 mk2 M

)(
jk3 jk4 J ′′

mk3 mk4 −M ′′

)
=

∑
mk1

mk2
mk3

mk4

∑
nl1

nl2
nl3

nl4

∑
J ′M ′

ōJ
′

nl1
ljtk2nl2

ljtk1nl3
ljtk3nl4

ljtk4
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× Ṽ
(πjt)k1
nl2

nk1
Ṽ

(πjt)k2
nl1

nk2
Ũ

(πjt)k3
nl3

nk3
Ũ

(πjt)k4
nl4

nk4
(−1)J

′′+M ′′

×

(
jk1 jk2 J

mk1 mk2 M

)(
jk3 jk4 J ′′

mk3 mk4 −M ′′

)(
jk2 jk1 J ′

mk2 mk1 M
′

)(
jk3 jk4 J ′

mk3 mk4 M

)
= (−1)jk1+jk2+M

∑
nl1

nl2
nl3

nl4

ōJ
′

nl1
ljtk3nl2

ljtk1nl3
ljtk2nl4

ljtk4

× Ṽ
(πjt)k1
nl2

nk1
Ṽ

(πjt)k2
nl1

nk2
Ũ

(πjt)k3
nl3

nk3
Ũ

(πjt)k4
nl4

nk4
δJJ ′′δM−M ′′ , (E.86)

6Õ
[04]
k1k2JM ;k3k4J ′′M ′′ = (−1)jk1+jk2+J

′′−M+M ′′ ∑
mk1

mk2
mk3

mk4

∑
l1l2l3l4

ol1l2l3l4Vl2k̄1Ul3k̄2Ul4k3Vl1k4

×

(
jk1 jk2 J

mk1 mk2 M

)(
jk3 jk4 J ′′

mk3 mk4 −M ′′

)
=

∑
mk1

mk2
mk3

mk4

∑
nl1

nl2
nl3

nl4

∑
J ′M ′

ōJ
′

nl1
ljtk4nl2

ljtk1nl3
ljtk2nl4

ljtk3

× Ṽ
(πjt)k1
nl2

nk1
Ũ

(πjt)k2
nl3

nk2
Ũ

(πjt)k3
nl4

nk3
Ṽ

(πjt)k4
nl1

nk4
(−1)jk2+jk4+M+M ′+M ′′+J ′′

×

(
jk1 jk2 J

mk1 mk2 M

)(
jk3 jk4 J ′′

mk3 mk4 −M ′′

)(
jk4 jk1 J ′

−mk4 mk1 M
′

)(
jk2 jk3 J ′

−mk2 mk3 M

)
= (−1)jk1+jk2+jk3+jk4+J+M+1

∑
nl1

nl2
nl3

nl4

∑
J ′

ōJ
′

nl1
ljtk4nl2

ljtk1nl3
ljtk2nl4

ljtk3

× Ṽ
(πjt)k1
nl2

nk1
Ũ

(πjt)k2
nl3

nk2
Ṽ

(πjt)k3
nl1

nk3
Ũ

(πjt)k4
nl4

nk4
Ĵ ′

{
jk1 jk2 J

jk3 jk4 J
′

}
δJJ ′′δM−M ′′ . (E.87)

Therefore, we finally arrive at

O
[04]
k1k2JM ;k3k4J ′′M ′′ ≡ (−1)MδJJ ′′δM−M ′′

JÕ
[04]

k̃1k̃2k̃3k̃4
, (E.88)

leading to the spherical form of the operator

Õ[04] =
1

24

∑
k̃1k̃2k̃3k̃4

∑
JJ ′MM ′

JÕ
[04]

k̃1k̃2k̃3k̃4
(−1)M [B̄jk1 B̄jk2 ]JM [B̄jk3 B̄jk4 ]J−M

=
1

24

∑
k̃1k̃2k̃3k̃4

∑
J

JÕ
[04]

k̃1k̃2k̃3k̃4
[B̄jk1 B̄jk2 ]J · [B̄jk3 B̄jk4 ]J . (E.89)

By diagonality in J and M we can write

JÕ
[04]

k̃1k̃2;k̃3k̃4
≡

∑
mk1

mk2
mk3

mk4

(−1)jk1+jk2+J × Õ
[04]
k1k2k3k4

(
jk1 jk2 J

mk1 mk2 M

)(
jk3 jk4 J

mk3 mk4 M

)
(E.90)
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as well as the converse transformation

Õ
[04]
k1k2k3k4

≡
∑
JM

(−1)jk1+jk2+J × JÕ
[04]

k̃1k̃2k̃3k̃4

(
jk1 jk2 J

mk1 mk2 M

)(
jk3 jk4 J

mk3 mk4 M

)
. (E.91)

Compilation of Results

For the derivation of low-order BMBPT formulas we will make extensive use of angular-
momentum coupling of cross-coupled matrix elements. Therefore, we gather all relevant
expressions necessary for deriving the angular-momentum coupled counterparts of their m-
scheme expressions.

Transformation of Matrix Elements in Quasiparticle Space

Õ
[04]
k1k2k3k4

=
∑
JM

(−1)jk1+jk2+J+M × JÕ
[04]

k̃1k̃2k̃3k̃4

(
jk1 jk2 J

mk1 mk2 M

)(
jk3 jk4 J

mk3 mk4 M

)
(E.92)

Õ
[13]
k1k2k3k4

=
∑
JM

(−1)jk2+mk2
+J+1 × JÕ

[04]

k̃1k̃2k̃3k̃4

(
jk1 jk2 J

mk1 mk2 M

)(
jk3 jk4 J

mk3 mk4 −M

)
(E.93)

Õ
[22]
k1k2k3k4

=
∑
JM

JÕ
[22]

k̃1k̃2k̃3k̃4

(
jk1 jk2 J

mk1 mk2 M

)(
jk3 jk4 J ′

mk3 mk4 M
′

)
(E.94)

Õ
[31]
k1k2k3k4

=
∑
JM

(−1)jk4−mk4
+M × JÕ

[31]

k̃1k̃2k̃3k̃4

(
jk1 jk2 J

mk1 mk2 M

)(
jk3 jk4 J

−mk3 −mk4 −M

)
(E.95)

Õ
[40]
k1k2k3k4

=
∑
JM

(−1)jk3+jk4+J+M × JÕ
[40]

k̃1k̃2k̃3k̃4

(
jk1 jk2 J

mk1 mk2 M

)(
jk3 jk4 J

mk3 mk4 M

)
(E.96)

E.4 Particle-number operator

Of particular importance in BMPT is the derivation of particle-number corrections. The
reduced matrix element of the cross-coupled particle number operator in quasiparticle space
is given by

Ã
[20]
k1k2

=
∑
l1l2

U †
k1l1

Vl1k̄2 − V †
k1l1

U⋆
l1k̄2

=
∑
l1

Ul1k1Vl1k̄2 − Vl1k1Ul1k̄2

=
∑
nl1

(
(−1)jl1−ml1 δ̃l1k1Ũ

(πjt)k1
nl1

nk1
δ̃l1k2Ṽ

(πjt)k2
nl1

nk2
δmk1

mk2

− (−1)jl1−ml1 δ̃l1k1Ṽ
(πjt)k1
nl1

nk1
δ̃l1k2Ũ

(πjt)k2
nl1

nk2
δmk1

mk2

)
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E.5 - Particle-number variance operator

= (−1)jk1−mk1 δ̃k1k2δmk1
mk2

∑
nl1

(
Ũ

(πjt)k1
nl1

nk1
Ṽ

(πjt)k2
nl1

nk2
+ Ṽ

(πjt)k1
nl1

nk1
Ũ

(πjt)k2
nl1

nk2

)
, (E.97)

which is diagonal with respect to all quantum numbers other than n.

E.5 Particle-number variance operator

As already seen, the anti-symmetrized matrix elements of the two-body part of the particle-
number variance operator in single-particle space are given by

ā(2)pqrs = 2(δprδqs − δpsδqr). (E.98)

We define

ā
(2)
p̃q̃JM ;r̃s̃J ′′M ′′ ≡

∑
mpmqmrms

ā(2)pqrs

(
jp jq J

mpmqM

)(
jr js J ′′

mr msM
′′

)

= 2
∑
mpmq

{(
jp jq J

mpmqM

)(
jp jq J ′′

mpmqM
′′

)
−

(
jp jq J

mpmqM

)(
jq jp J ′′

mq mpM
′′

)}

= 2
∑
mpmq

{
δprδqs

(
jp jq J

mpmqM

)(
jp jq J ′′

mpmqM
′′

)

− (−1)jp+jq−Jδpsδqr

(
jp jq J

mpmqM

)(
jp jq J ′′

mpmqM
′′

)}
= δJJ ′′δMM ′′2

(
δp̃r̃δq̃s̃ − (−1)jp+jq−Jδp̃s̃δq̃r̃

)
, (E.99)

and, therefore, for the J-coupled matrix element we get

J ā
(2)

p̃q̃r̃s̃ ≡ 2
(
δp̃r̃δq̃s̃ − (−1)jp+jq−Jδp̃s̃δq̃r̃

)
. (E.100)

The J-coupled matrix elements from (E.100) are then used as input for the angular-momentum
coupled form in quasiparticle space.

E.6 Second-order corrections for operators

The angular-momentum coupled form of the second-order BMBPT correction of an arbitrary
(scalar) two-body operator Ô is given by

PO1.2 = − 1

24

∑
k1k2k3k4

O04
k1k2k3k4

O40
k1k2k3k4

Ek1 + Ek2 + Ek3 + Ek4

= − 1

24

∑
k1k2k3k4

O04
k1k2k3k4

O40
k3k4k1k2

Ek1 + Ek2 + Ek3 + Ek4
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= − 1

24

∑
k1k2k3k4

Ω̃04
k̄1k̄2k3k4

Õ40
k3k4k̄1k̄2

Ek1 + Ek2 + Ek3 + Ek4

= − 1

24

∑
k1k2k3k4

Ω̃04
k1k2k3k4

Õ40
k3k4k1k2

Ek1 + Ek2 + Ek3 + Ek4

= − 1

24

∑
k1k2k3k4

∑
JJ ′
MM ′

(
jk1 jk2 J

mk1 mk2 M

)(
jk3 jk4 J

mk4 mk4 M

)(
jk1 jk2 J ′

mk1 mk2 M
′

)(
jk3 jk4 J ′

mk4 mk4 M
′

)

× (−1)2jk1+2jk2+J+J
′
JΩ̃04

k̃1k̃2k̃3k̃4

J ′
Õ40
k̃3k̃4k̃1k̃2

Ek1 + Ek2 + Ek3 + Ek4

= − 1

24

∑
k̃1k̃2k̃3k̃4

∑
J

Ĵ2

JΩ̃04
k̃1k̃2k̃3k̃4

JÕ40
k̃3k̃4k̃1k̃2

Ek̃1 + Ek̃2 + Ek̃3 + Ek̃4
, (E.101)

where we have used the definition of cross-coupled matrix elements as well as orthogonality
relations of the Clebsch-Gordan coefficients. The energy correction is obtained as the par-
ticular case where Ô = Ô. Note that when using a spherical HFB reference the quasiparticle
energies are independent of mk, i.e., Ek = Ek̃.

E.7 Third-order particle-number correction

The third-order particle-number correction in cross-coupled scheme is given by

PA2.1 =
1

6

∑
k1k2k3k4k5

A
[20]
k1k2

Ω
[31]
k3k4k5k1

Ω
[04]
k3k4k5k2

(Ek1 + Ek2)(Ek2 + Ek3 + Ek4 + Ek5)

=
1

6

∑
k1k2k3k4k5

Ã
[20]

k1k̄2
Ω̃

[31]

k3k4k̄5k1
Ω̃

[04]

k̄5k̄2k3k4

(Ek1 + Ek2)(Ek2 + Ek3 + Ek4 + Ek5)

=
1

6

∑
k1k2k3k4k5

Ã
[20]
k1k2

Ω̃
[31]
k3k4k5k1

Ω̃
[04]
k5k2k3k4

(Ek1 + Ek2)(Ek2 + Ek3 + Ek4 + Ek5)

=
1

6

∑
k1k2k3k4k5

∑
JJ ′
MM ′

(
jk3 jk4 J

mk4 mk4 M

)(
jk5 jk1 J

−mk5 −mk1 −M

)(
jk5 jk1 J ′

mk5 mk1 M
′

)(
jk3 jk4 J ′

mk4 mk4 M
′

)

× (−1)jk1−mk1 (−1)jk5+jk2+J
′
(−1)jk1−mk1

˜A[20]
(πjt)k2
nk1

nk2

JΩ̃
[31]
k3k4k5k1

J
′
Ω̃

[04]
k3k4k5k2

(Ek1 + Ek2)(Ek2 + Ek3 + Ek4 + Ek5)

=
1

6

∑
k̃1k̃2k̃3k̃4k̃5

∑
J

Ĵ2

˜A[20]
(πjt)k2
nk1

nk2

JΩ̃
[31]
k3k4k5k1

JΩ̃
[04]
k3k4k5k2

(Ek1 + Ek2)(Ek2 + Ek3 + Ek4 + Ek5)
. (E.102)

For a more efficient evaluation we define an auxiliary quantity
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E.7 - Third-order particle-number correction

Bk1k2k3k4 ≡
∑
u

Ã
[20]
uk1

(Eu + Ek1)
Ω̃

[31]
k3k4k2u

(E.103)

and we, additionally, define the anti-symmetrized matrix element by

B̄k1k2k3k4 ≡
1

2

∑
u

(
Ã

[20]
uk1

(Eu + Ek1)
Ω̃

[31]
k3k4k2u

−
Ã

[20]
uk2

(Eu + Ek2)
Ω̃

[31]
k3k4k1u

)
(E.104)

such that

B̄k1k2k3k4 = −B̄k2k1k3k4 = −B̄k1k2k4k3 = B̄k2k1k4k3 . (E.105)

We further define auxiliary matrix elements

Cuk1 ≡
Ã

[20]
uk1

(Eu + Ek1)
. (E.106)

The m-scheme particle-number correction can now be written as

PA2.1 =
1

6

∑
k1k2k3k4

B̄k1k2k3k4

Ω̃
[04]
k1k2k3k4

(Ek1 + Ek2 + Ek3 + Ek4)
. (E.107)

We define the angular-momentum-coupled quantity by

Bk̃1k̃2JM ;k̃3k̃4J ′′M ′′ ≡
∑

mk1
mk2

mk3
mk4

B̄k1k2k3k4

(
jk1 jk2 J

mk1 mk2 M

)(
jk3 jk4 J ′′

mk3 mk4 M
′′

)

=
∑

mk1
mk2

mk3
mk4

∑
J ′M ′

∑
u

(
jk1 jk2 J

mk1 mk2 M

)(
jk3 jk4 J ′′

mk3 mk4 M
′′

)
(−1)M

×
(
C[20]
uk1

J ′
Ω

[31]

k̃3k̃4k̃2ũ

(
jk3 jk4 J ′

mk3 mk4 M
′

)(
jk2 ju J ′

−mk2 −mu −M ′

)
(−1)jk1−mk1

− C[20]
uk2

J ′
Ω

[31]

k̃3k̃4k̃1ũ

(
jk3 jk4 J ′

mk3 mk4 M
′

)(
jk1 ju J ′

−mk1 −mu −M ′

)
(−1)jk2−mk2

)
=

∑
mk1

mk2

∑
u

(
jk1 jk2 J

mk1 mk2 M

)
(−1)M

×
(
C[20]
uk1

J ′
Ω

[31]

k̃3k̃4k̃2ũ

(
jk2 ju J ′′

−mk2 −mu −M ′′

)
(−1)jk1−mk1

− C[20]
uk2

J ′
Ω

[31]

k̃3k̃4k̃1ũ

(
jk1 ju J ′′

−mk1 −mu −M ′′

)
(−1)jk2−mk2

)
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=
∑

mk1
mk2

∑
nu

(
jk1 jk2 J

mk1 mk2 M

)
(−1)M

×
(
C(ljt)[20]

ũk̃1

J ′
Ω

[31]

k̃3k̃4k̃2ũ

(
jk2 jk1 J ′′

−mk2 −mk1 −M ′′

)
(−1)jk1+ju−mk1

−mu

− C(ljt)[20]

ũk̃2

J ′
Ω

[31]

k̃3k̃4k̃1ũ

(
jk1 jk2 J ′′

−mk1 −mk2 −M ′′

)
(−1)jk2+ju−mk2

−mu

)
= (−1)M

∑
nu

(
(−1)jk1−jk2+JC(ljt)[20]

ũk̃1

JΩ
[31]

k̃3k̃4k̃2ũ
− C(ljt)[20]

ũk̃2

JΩ
[31]

k̃3k̃4k̃1ũ

)
δJJ ′′δMM ′′

(E.108)

such that we can write

PA2.1 =
1

6

∑
k̃1k̃2k̃3k̃4

∑
J

Ĵ2 × J ′
B̄k̃1k̃2k̃3k̃4

J ′
Ω̃

[04]

k̃1k̃2k̃3k̃4

(Ek̃1 + Ek̃2 + Ek̃3 + Ek̃4)
. (E.109)
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List of Acronyms

ASG Anti-symmetrized Goldstone (diagram)

BCC Bogoliubov Coupled Cluster

BCH Baker-Campbell-Hausdorff

BMBPT Bogoliubov Many-Body Perturbation Theory

BMZ Bloch-Messiah-Zumino (theorem)

CC Coupled-Cluster method

CG Clebsch-Gordan (coefficient)

CI Configuration Interaction

EDF Energy Density Functional

EFT Effective Field Theory

EN Epstein-Nesbet (partitioning)

EOM Equation of Motion

GFMC Green’s Function Monte Carlo

HF Hartree-Fock

HF-MBPT Hartree-Fock Many-Body Perturbation Theory

HFB Hartree-Fock-Bogoliubov

HO Harmonic Oscillator

IM-SRG In-Medium Similarity Renormalization Group

IRREP Irreducible Representation of a symmetry group

IT-NCSM Importance-Truncated No-Core Shell Model

LEC Low-Energy Constant

MBPT Many-Body Perturbation Theory
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MCPT Multi-Configurational Perturbation Theory

MP Møller-Plesset (partitioning)

NCSM No-Core Shell Model

NCSM-PT No-Core Shell Model Perturbation Theory

NO2B Normal-Ordered Two-Body Approximation

ODE Ordinary Differential Equation

PNR Particle-Number Restoration

PT Perturbation Theory

SCGF Self-Consistent Green’s Function

SD Slater Determinant

SRG Similarity Renormalization Group

UCOM Unitary Correlation Operator Method
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