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Abstract

The question whether the Simplex method admits a polynomial time pivot rule remains one
of the most important open questions in discrete optimization. Zadeh’s pivot rule had long been
a promising candidate, before Friedmann (IPCO, 2011) presented a subexponential instance,
based on a close relation to policy iteration algorithms for Markov decision processes (MDPs).
We investigate Friedmann’s lower bound example and exhibit three flaws in the corresponding
MDP: We show that (a) the initial policy for the policy iteration does not produce the required
occurrence records and improving switches, (b) the specification of occurrence records is not
entirely accurate, and (c) the sequence of improving switches used by Friedmann does not con-
sistently follow Zadeh’s pivot rule. In this paper, we resolve each of these issues by adapting
Friedmann’s construction. While the first two issues require only minor changes to the specifica-
tions of the initial policy and the occurrence records, the third issue requires a significantly more
sophisticated ordering and associated tie-breaking rule that are in accordance with the LEAST-
ENTERED pivot rule. Most importantly, our changes do not affect the macroscopic structure of
Friedmann’s MDP, and thus we are able to retain his original result.

1 Introduction

The Simplex method, originally proposed by Dantzig in 1947 (see [2]), is one of the most impor-
tant algorithms to solve linear programs in practice. At its core, the method operates by maintain-
ing a subset of basis variables while restricting non-basis variables to trivial values, and repeatedly
replacing a basis variable according to a fixed pivot rule until the objective function value can no
longer be improved. Exponential worst-case instances have been devised for many natural pivot
rules (e.g., [1, 4, 6, 7]), and the question whether a polynomial time pivot rule exists remains one
of the most important open problems in optimization theory.

Zadeh’s LEAST-ENTERED pivot rule [9] was designed to avoid the exponential behavior on
known worst-case instances for other pivot rules. The rule is memorizing in that it selects a variable
to enter the basis that improves the objective function and has previously been selected least often
among all improving variables. Indeed, for more than thirty years, Zadeh’s rule defied all attempts
to construct superpolynomial instances, and it seemed like a promising candidate for a polynomial
pivot rule.

It was a breakthrough when Friedmann eventually presented the first superpolynomial lower
bound for Zadeh’s pivot rule [3]. His construction uses a connection between the Simplex Al-
gorithm and Howard’s Policy Iteration Algorithm [5] for computing optimal policies in Markov
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decision processes (MDPs). Essentially, Friedmann’s construction consists of an MDP, an initial
policy and an ordering of the improving switches that result in an exponential number of itera-
tions when beginning with the initial policy and repeatedly making improving switches according
to the given ordering, which obeys the LEAST-ENTERED pivot rule. The construction translates into
a linear program of size O(n2) where the Simplex Algorithm with Zadeh’s pivot rule needs Ω(2n)
steps, which results in a superpolynomial lower bound of 2Ω(

√
n) on the number of iterations.

Our contribution. In this paper, we expose different flaws in Friedmann’s lower bound construc-
tion and present adaptations to eliminate them. We first show that the chosen initial policy does
not produce the claimed occurrence records and improving switches, and we propose a modified
initial policy that leads to the desired behavior. Second, we observe that the formula describing the
occurrence records (that count the number of times an improving switch was made) given in [3]
is inaccurate, and provide a (small) correction that does not disturb the overall argument. Note
that these two modifications are necessary but relatively minor.

Finally, we exhibit a significant problem with the order in which the improving switches are
applied in [3]. More precisely, we show that this order does not consistently obey Zadeh’s LEAST-
ENTERED pivot rule, and, in fact, that no consistent ordering exists that updates the MDP level
by level in each phase according to a fixed order. This not only rules out Friedmann’s ordering,
but shows that a fundamentally different approach to ordering improving switches is needed. To
amend this issue, we show the existence of an ordering and a tie-breaking rule compatible with
the LEAST-ENTERED rule, such that applying improving switches according to the ordering still
proceeds along the same macroscopic phases as intended by Friedmann. In this way, we are able
to quantitatively retain Friedmann’s superpolynomial lower bound on the number of iterations
needed by Zadeh’s LEAST-ENTERED pivot rule.

Outline. Throughout this paper, we assume some basic familiarity with the construction given
in [3] and Markov decision processes in general. We review the most important aspects and
notation of [3] in Section 2, and, for convenience, we provide a copy of some tables that we rely
on in Appendix A. Section 3 treats issues with the initial policy and our adaptation to address them.
In Section 4, we correct an inaccuracy concerning some of the occurrence records given in [3]. The
main part of this paper is Section 5, where we show that the sequence of improving switches can be
reordered such that the order obeys the LEAST-ENTERED rule. Finally, we summarize our findings
in Section 6.

2 Preliminaries

In this section, we review the Markov decision process constructed in [3]. We introduce notation
related to binary counting and explain aspects of [3] used in this paper.

2.1 Friedmann’s lower bound construction

In [3], Friedmann uses the connection between the Simplex Algorithm for linear programming and
the Policy Iteration Algorithm for obtaining optimal policies in Markov decision processes (MDPs).
Similarly, we also restrict our discussion to policy iteration for MDPs, with the understanding that
results carry over to the Simplex Algorithm. We assume knowledge of MDPs and the connection to
the Simplex Algorithm and refer to [8] for more information.

We first establish some notation. Given an MDP, a player-controlled edge e = (u, v) and a
policy σ, we say that v is the target of u or u points to v if σ(u) = v. If σ(u) 6= v, we say that we
switch e or switch u to v when we apply the switch (u, v) in σ. For a policy σ and an improving
switch e for σ, we denote the policy obtained by applying the switch e in σ by σ[e].

Let n ∈ N, n 6= 0 be fixed. Friedmann’s lower bound construction emulates an n-bit binary
counter by a Markov decision process Gn. For every binary number b = (bn, . . . , b1) that can be
represented by n bits, there is a unique policy σb for Gn representing b. Note we denote the least
significant bit by b1, i.e., b =

∑n
i=1 bi2

i−1. The Markov decision process Gn is constructed such
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that applying the Policy Iteration Algorithm using the LEAST-ENTERED pivot rule enumerates all
policies σ0, σ1, . . . , σ2n−1. Since the LEAST-ENTERED pivot rule is applied, the algorithm always
chooses an improving switch that was chosen least often until now. More specifically, an occurrence
record φ is maintained, and, in every step, a switch minimizing φ is chosen. The rule does however
not determine which switch minimizing φ should be chosen if there are multiple candidates. There-
fore, an explicit tie-breaking rule may be used in the construction. For an edge e and a policy σ
for Gn that is calculated during the application of the Policy Iteration Algorithm, we denote the
occurrence record of e at the time when σ is reached by φσ(e). We denote the set of improving
switches with respect to the policy σ by Iσ.

For the remainder of this paper, we fix the following notation:

• The set of numbers that can be represented by n bits is denoted by Bn.

• Let b ∈ Bn. For i ∈ {1, . . . , n}, the i-th bit of the binary representation of b is denoted
by bi. For b 6= 0, we denote the least significant bit of b which is equal to 1 by `(b), that
is, `(b) := min{i ∈ {1, . . . , n} : bi 6= 0}.

• The unique policy representing b ∈ Bn constructed in [3] is denoted by σb.

The process Gn can be interpreted as a “fair alternating binary counter” in the following sense.
Usually, when counting from 0 to 2n − 1 in binary, less significant bits are switched more often
than more significant bits. As the LEAST-ENTERED pivot rule forces the algorithm to switch all bits
equally often, the construction must ensure to operate correctly when all bits are switched equally
often. This is achieved by representing every bit by two gadgets where only one of them actively
represents the bit. The gadgets alternate in actively representing the bit. This enables one gadget
to “catch up” with the rest of the counter while the other one represents the bit.

The lower bound construction consists of n structurally identical levels, where level i represents
the i-th bit. A parameter N ≥ 7n+1 with N ∈ N is used for defining the rewards and an additional
parameter ε ∈ (0, N−(2n+11)) is used for defining the probabilities. The i-th level is shown in
Figure 1, the coarse structure of the whole MDP in Figure 2.

A number nv below or next to the name of a vertex v in Figure 1 denotes a reward of (−N)nv

associated with every edge leaving v. Other edges have a reward of 0. Let σ be a policy and v be a
vertex. The value VALσ(v) of v with respect to σ is the expected accumulated reward obtained by
an infinite walk starting in v. The MDP is constructed such that all values are always finite.

Each level i contains two gadgets attached to the entry vertex ki. These gadgets are called lanes.
We refer to the left lane as lane 0 and to the right lane as lane 1. Lane j ∈ {0, 1} of level i contains
a randomization vertex Aji and two attached cycles with vertices bji,0 and bji,1. These gadgets are
called bicycles, and we identify the bicycle containing vertex Aji with that vertex. For a bicycle Aji ,
the edges (bji,0, A

j
i ), (b

j
i,1, A

j
i ) are called edges of the bicycle. For a policy σ, the bicycle Aji is said to

be closed (with respect to σ) if and only if σ(bji,0) = σ(bji,1) = Aji . A bicycle that is not closed is open.
The i-th level of Gn corresponds to the i-th bit. Which bicycle is actively representing the i-th

bit depends on the setting of the (i+ 1)-th bit. When this bit is equal to 1, bicycle A1
i is considered

active. Otherwise, bicycle A0
i is considered active. The i-th bit is interpreted as equal to 1 if and

only if the active bicycle in level i is closed.
As initial policy, the MDP is provided the policy σ? = σ0 representing 0. Then, a sequence of

policies σ1, σ2, . . . , σ2n−1 is enumerated by the Policy Iteration Algorithm using the LEAST-ENTERED

pivot rule and an (implicit) tie-breaking rule. For b ∈ Bn, b 6= 0, the goal is that the corresponding
policy σb fulfills the following invariants. These invariants also apply for level n by setting bn+1 := 0
and to b = 0 when substituting k`(b) with t.

1. Exactly the bicycles Aji corresponding to bits bi = 1 are closed. That is, bi = 1 holds if and
only if σb(b

j
i,0) = σb(b

j
i,1) = Aji where j = bi+1.

2. For all other bicycles Aji , it holds that σb(b
j
i,0) = σb(b

j
i,1) = k`(b). That is, these bicycles point

to the level corresponding to the least significant set bit.

3. All entry vertices ki point to the lane containing the active bicycle if bi = 1 and to k`(b)
otherwise. Formally, σb(ki) = cji , j = bi+1 if bi = 1 and σb(ki) = k`(b) if bi = 0.
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Figure 1: Level i of Gn. Circular shaped vertices are player-controlled, squares are randomization
vertices. Bold vertices are global in that they can be reached from other levels. Dashed vertices
do not belong to level i. Numbers on edges show the probability of taking this edge, numbers
below or next to vertices show the exponent of (−N) of the rewards of edges leaving this vertex.
Whenever there is no number, the rewards are 0.

4. The vertex s points to the entry vertex corresponding to the least significant set bit, that
is, σb(s) = k`(b).

5. All vertices h0
i point to the entry vertex of the first level strictly after level i+1 corresponding

to a bit equal to 1, that is, when l := min{j ∈ {i + 2, . . . , n} : bj = 1}, we have σb(h0
i ) = kl.

If no such l exists, σb(h0
i ) = t. Note that we do not need to specify the target vertex of h1

i as
these vertices have an outdegree of 1.

6. The vertex dji points to hji if and only if bi+1 = j and to s otherwise.

The Policy Iteration Algorithm is only allowed to switch one edge per iteration. Obviously, σb+1

cannot be reached from σb by performing a single switch. Therefore, intermediate policies need
to be introduced for the transition from σb to σb+1. These intermediate policies are divided into
six phases. In each phase, a different “task” is performed. We mention here that the following
description of the phases partly differs from the informal description given in [3, Pages 8,9]. We
explain in detail why our description is different in Section 5. Consider the policy σb representing
some b ∈ Bn. Let `′ := `(b+ 1).

1. In phase 1, switches inside of some bicycles are performed to keep their occurrence records
as balanced as possible. For every open bicycle Aji , at least one of the two improving
switches (bji,0, A

j
i ), (b

j
i,1, A

j
i ) is applied. Some inactive bicycles are allowed to apply both

of these switches in order to “catch up” with the other edges. In the active bicycle of level `′,
we also switch both edges, as this bicycle needs to be closed.

2. In phase 2, the new least significant set bit b`′ is made accessible by the rest of the MDP.
Thus, k`′ is switched to cj`′ , where j = (b + 1)`′+1 denotes the lane containing the active
bicycle.
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Figure 2: Coarse structure of Gn. The entry vertices are all connected to the vertices s and t.
Connections between levels and from the levels to s are not shown here. An additional vertex kn+1

is needed for technical reasons.

3. In phase 3, we perform the “resetting process”. The entry nodes of all levels i corresponding
to bits with (b+ 1)i = 0 switch to k`′ . The same is done for all inactive vertices bji,l contained
in inactive bicycle and all vertices bji,l corresponding to levels i with (b+ 1)i = 0. We discuss
this phase in more detail in Section 5.

4. In phase 4, the vertices h0
i are updated according to the new least significant set bit.

5. In phase 5, we connect vertex s with the new least significant set bit, i.e., we switch s to k`′ .

6. In phase 6, we update the vertices dji such that h0
i is the target of d0

i if and only if (b+1)i+1 = 0
and h1

i is the target of d1
i if and only if (b+ 1)i+1 = 1.

The phases are formally defined in [3, Table 2] which we discuss in Section 2.3.

2.2 Notation related to binary counting

Let b ∈ Bn. By binary counting, we refer to the process of enumerating the binary representations
of all b̃ ∈ {0, 1, . . . , b} in their natural order. These numbers are used to determine how often and
when specific edges of Gn are improving switches and will be applied.

Intuitively, we are interested in schemes that we observe when counting from 0 to b in binary, or,
more formally, in the set of numbers that match a scheme with respect to the following definition.

Definition 2.1 (Scheme, matching a scheme [3]). A scheme is a set S ⊆ N × {0, 1}. We say
that b ∈ Bn matches the scheme S if bi = q for all (i, q) ∈ S. We define the match set

M(b, S) := {b̃ ∈ {0, . . . , b} : b̃i = q ∀(i, q) ∈ S}

as the set of all numbers between 0 and b that match the scheme S.

The next definition introduces the flip set with respect to a number b, an index i and a scheme S.
This is a subset of M(b, S) that additionally fixes the i least significant bits in a specific way.

Definition 2.2 (Flip set, flip number [3]). Let b ∈ Bn, i ∈ {1, . . . , n} and S be a scheme. The set

F (b, i, S) := M(b, S ∪ {(i, 1)} ∪ {(j, 0) : j ∈ {1, . . . , i− 1}})

is the flip set corresponding to b, i and S. The flip number is defined as f(b, i, S) := |F (b, i, S)|. For
convenience, we set F (b, i) := F (b, i, ∅) and f(b, i) := f(b, i, ∅).

Finally, we define the maximal flip number.

Definition 2.3 (Maximal flip number [3]). Let b ∈ Bn, i ∈ {1, . . . , n} and S a scheme. The maximal
flip number is g(b, i, S) := max({0} ∪ {b̃ : b̃ ∈ F (b, i, S)}).

We observe the following properties of the flip number and the flip set.1

1This and all other omitted proofs are deferred to Appendix B.
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Proposition 2.4. Let b ∈ Bn and i, j ∈ {1, . . . , n}. Then the following hold:

1. Let S, S′ be schemes and S ⊆ S′. Then M(b, S′) ⊆M(b, S).

2. Let S, S′ be schemes and S ⊆ S′. Then f(b, i, S′) ≤ f(b, i, S).

3. It holds that f(b, j) = f(b, j, {(i, 0)}) + f(b, j, {(i, 1)}) and f(b, j) =
⌊
b+2j−1

2j

⌋
.

4. Let i ≤ j and S be a scheme. Then f(b, j, S) ≤ f(b, i, S) and thus f(b, j) ≤ f(b, i).

5. Let i < j. Then F (b, j) = F (b, j, {(i, 0)}) and thus f(b, j, {(i, 0)}) = f(b, j).

2.3 Imported tables

In this section, we briefly describe and summarize the tables introduced in [3] that we use in this
work. These tables can also be found Appendix A.

The first table we use is [3, Table 2]. It formally defines when a policy σ is considered to be
a phase p policy, for p ∈ {1, . . . , 6}. As in [3], we say that a policy σ is a phase p policy if every
vertex is mapped by σ to a choice included in the respective cell of the table. Cells that contain
more than one choice indicate that policies of the respective phase are allowed to match any of the
choices. As we prove later, there is an issue concerning the side conditions of phase 3. Other than
correcting this issue, we rely on [3, Table 2].

The next table is [3, Table 3]. For a phase p policy σ, this table shows subsets Lpσ and super-
sets Upσ of the set Iσ of improving switches. In general, this table does not show the complete sets
of improving switches. We verified that the switches given in the sets L1

σ to L5
σ are in fact improv-

ing switches and discuss an issue related to the set L6
σ later. Other than correcting this issue, we

rely on [3, Table 3].
The last table we use is [3, Table 4]. For b ∈ Bn, this table contains the occurrence records φσb of

the edges with respect to the unique policy representing the number b. This table heavily uses the
notation introduced in Section 2.2. Again, we found an issue regarding the complicated conditions
that we discuss in Section 4. Other than correcting this issue, we rely on [3, Table 4].

3 Initial Policy

In this section, we discuss the initial policy σ? used in [3]. We show that it contradicts several
aspects of [3], in particular Table 3. We also discuss how to replace σ? such that the resulting
issues are resolved.

3.1 Issues with Friedmann’s initial policy

Before stating and discussing the issues regarding the initial policy, we correct a small but cru-
cial typo that can be found in the beginning of [3, Section 3]. There, the following is stated:
“An edge (u, v′) ∈ E0 such that σi(u) 6= v′ is then said to be an improving switch if and only if
either VALσi(v

′) > VALσi(u)”. This however seems to be incorrect and the inequality needs to be
replaced by the inequality VALσi(v

′) > VALσi(σi(u)).
On [3, Page 11], the following is stated on the initial policy: “As designated initial policy σ?,

we use σ?(dji ) = hji and σ?(_) = t for all other player 0 nodes with non-singular out-degree.” This
initial policy, however, is inconsistent with the sub- and supersets of improving switches given in
[3, Table 3] and [3, Lemma 4].

Issue 3.1. The initial policy σ? described above contradicts [3, Table 3].

We prove this statement using the following lemma.

Lemma 3.2. None of the edges (b1i,r, A
1
i ) for i ∈ {1, . . . , n} and r ∈ {0, 1} is an improving switch

with respect to σ?.
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Proof. Fix some i ∈ {1, . . . , n} and r ∈ {0, 1}. By definition of σ?, it holds that σ?(b1i,r) = t.
Therefore, VALσ?(b1i,r) = VALσ?(σ?(b1i,r)) = VALσ?(t) = 0 since all edges starting in b1i,r have a
reward of 0. Similarly, VALσ?(b1i,1−r) = 0. This implies that (b1i,r, A

1
i ) is an improving switch if and

only if VALσ?(A1
i ) > 0. But, due to σ?(ki+1) = t,

VALσ?(A1
i ) = εVALσ?(d1

i ) +
1− ε

2
VALσ?(b1i,l) +

1− ε
2

VALσ?(b1i,1−l)

= εVALσ?(d1
i )

= ε
[
(−N)6 + VALσ?(σ?(d1

i ))
]

= ε
[
N6 + VALσ?(h1

i )
]

= ε
[
N6 + (−N)2i+8 + VALσ?(ki+1)

]
= ε

[
N6 +N2i+8 + (−N)2(i+1)+7 + VALσ?(t)

]
= ε

[
N6 +N2i+8 −N2i+9

]
< 0,

as N ≥ 7n+ 1 ≥ 8 and i ≥ 1. Therefore, the edge (b1i,r, A
1
i ) is not an improving switch.

Proof of Issue 3.1. By definition, σ? is a phase 1 policy. Thus, according to [3, Table 3] and
since L1

σ = U1
σ holds for all phase 1 policies σ, the set of improving switches is given exactly

by Iσ? = {(bji,r, A
j
i )|σ?(b

j
i,r) 6= Aji}. By definition of σ?, we have σ?(b1i,r) = t which, due to t 6= A1

i ,
implies σ?(b1i,r) 6= A1

i . Therefore, (b1i,r, A
1
i ) ∈ Iσ? , that is, (b1i,r, A

1
i ) is an improving switch. But, by

Lemma 3.2, (b1i,r, A
1
i ) is not an improving switch for any i ∈ {1, . . . , n} and r ∈ {0, 1}. This is a

contradiction.

We mention that the initial policy additionally contradicts the informal description of how a
phase 1 policy is supposed to look like. In σ?, all vertices dji point to hji . This contradicts the
informal description as it is intended that “d0

i moves higher up iff bi+1 = 0 and d1
i moves higher up

iff bi+1 = 1” [3, Page 9].
Also, the following issue is caused by the initial policy σ?.

Issue 3.3. When the Policy Iteration Algorithm is started with σ?, either

1. [3, Table 4] containing the occurrence records is incorrect for b = 1, or

2. [3, Table 3] containing the sub- and supersets of the improving switches is incorrect for b = 1.

Proof of Issue 3.3. Consider the first phase 6 policy of the transition from σ? to σ1. Denote this
policy by σ and fix some i ∈ {1, . . . , n}. Then, by [3, Table 2], we have σ(s) = k1 and σ(kj) = k1

for all j ∈ {2, . . . , n}. Therefore since the reward of the edge (s, k1) is equal to zero, this implies
that VALσ(s) = VALσ(k1), and therefore

VALσ(σ(d1
i )) = VALσ(h1

i )

= N2i+8 + VALσ(ki+1)

= N2i+8 −N2i+9︸ ︷︷ ︸
<0

+ VALσ(k1)︸ ︷︷ ︸
=VALσ(s)

< VALσ(s),

hence the edge (d1
i , s) is an improving switch for every i ∈ {1, . . . , n}. Now, we can either

1. apply (some or all) of these improving switches now or

2. we do not apply any of these improving switches now.

Suppose that we apply the switch (d1
i , s) for every i ∈ {1, . . . , n}. By definition, phase 6 ends after

these switches are applied and phase 1 of the transition from σ1 to σ2 begins. But, according to [3,
Table 4], it should hold that φσ2(d1

i , s) = f(b, i+1)−1·bi+1 for all i ∈ {1, . . . , n}. Because b = 1, we
have bk = 0 for all k ∈ {2, . . . , n}. In particular, b2 = 0, implying that φσ2(d1

i , s) = f(b, i + 1) = 0.
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This is a contradiction to the fact that we have just switched the edges (d1
i , s). Note that this

argument still holds when we only apply a subset of all of the improving switches.
Now suppose that we do not apply any of the improving switches. Then, all of the edges (d1

i , s)
remain improving switches during phase 1 of the transition from σ1 to σ2. This however contradicts
[3, Table 3].

3.2 Fixing the initial policy

As discussed in Issues 3.1 and 3.3, the initial policy σ? needs to be changed. We propose to use the
following policy instead.

Definition 3.4 (New initial policy σ∗). We define the following initial policy σ∗:

• σ∗(d0
i ) := h0

i for all i ∈ {1, . . . , n}.

• σ∗(d1
i ) := s for all i ∈ {1, . . . , n}.

• σ∗(_) := t for all other player-controlled vertices with non-singular out-degree.

This policy is visualized in Figure 3. Note that this policy also represents the number 0 and [3,
Lemma 1] holds for the policy σ∗. We now show that this policy resolves Issue 3.1.
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Figure 3: A level of the alternative initial policy σ∗. Thick red edges correspond to edges of σ∗.

Lemma 3.5. For the policy σ∗, the set of improving switches is Iσ∗ = {(bji,r, A
j
i )|σ∗(b

j
i,r) 6= Aji}.

Proof. Compared to σ?, the changes can only have an effect on the edges (d1
i , h

1
i ) and (b1i,r, A

1
i ).

Thus it suffices to show that the edge (d1
i , h

1
i ) is not an improving switch for any i ∈ {1, . . . , n}

whereas the edges (b1i,r, A
1
i ) are improving switches for all i ∈ {1, . . . , n} and r ∈ {0, 1}.

Fix some i ∈ {1, . . . , n}. By the definition of σ∗, we have σ∗(d1
i ) = s and σ∗(s) = t. There-

fore, VALσ∗(σ
∗(d1

i )) = 0. To show that (d1
i , h

1
i ) is not an improving switch, it thus suffices to
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show VALσ∗(h
1
i ) < 0. This however holds since

VALσ∗(h
1
i ) = (−N)2i+8 + VALσ∗(ki+1)

= N2i+8 + (−N)2(i+1)+7 + VALσ∗(t)

= N2i+8 −N2i+9 < 0,

due to N ≥ 8 and i ≥ 1. Therefore, the edge (d1
i , h

1
i ) is not an improving switch.

Now fix some r ∈ {0, 1}. Since it holds that VALσ∗(σ
∗(b1i,r)) = VALσ∗(σ

∗(b1i,1−r)) = 0, it
suffices to show VALσ∗(A

1
i ) > 0 to prove that (b1i,r, A

1
i ) is an improving switch. Due to σ∗(d1

i ) = s,
we have

VALσ∗(A
1
i ) = εVALσ∗(d

1
i ) = ε

[
N6 + VALσ∗(s)

]
= εN6 > 0,

so (b1i,r, A
1
i ) is an improving switch.

It remains to show that our adapted initial policy σ∗ also avoids Issue 3.3.

Lemma 3.6. Starting the Policy Iteration Algorithm with the initial policy σ∗ avoids Issue 3.3, that
is, it does not contradict [3, Tables 3,4] for b = 1.

Proof. Consider the first phase 6 policy of the transition from σ∗ to σ1. Denote this policy by σ
and fix any i ∈ {1, . . . , n}. Then, σ(d1

i ) = s for all i ∈ {1, . . . , n} by the definition of σ∗ and the
application of improving switches. Therefore, none of the edges (d1

i , s) is an improving switch
for any i ∈ {1, . . . , n} and none of these edges can be switched. Thus, once σ1 is reached, the
occurrence record of these edges is equal to zero as they should be according to [3, Table 4]. This
also implies that the edges (d1

i , s) are no improving switches during the transition from σ1 to σ2,
resolving the contradiction regarding [3, Table 3].

4 Occurrence Records

In this section, we discuss an issue related to the occurrence records of the bicycles as specified
in [3, Table 4]. For b ∈ Bn, this table contains the occurrence records with respect to σb. For a
fixed b ∈ Bn and bicycle Aji , we use the abbreviations g := g(b, i, {(i + 1, j)}), z := b − g − 2i−1

and φσb(Aji ) := φσb(bji,0, A
j
i ) + φσb(bji,1, A

j
i ). Using these abbreviations, the following is stated

regarding the occurrence records:∣∣∣φσb(bji,0, Aji )− φσb(bji,1, Aji )∣∣∣ ≤ 1 (4.1)

φσb(Aji ) =


g + 1 if bi = 1 ∧ bi+1 = j,

g + 1 + 2z if bi+1 6= j and z < 1
2 (b− 1− g),

b otherwise.
(4.2)

We discuss an inconsistency regarding Equation (4.2): Assuming that φσb(Aji ) are given by
Equations (4.1) and (4.2) and that the other entries of [3, Table 4] are correct causes the following
contradiction.

Issue 4.1. Let b < 2n−k−1 − 1 for some k ∈ N. Then, there are edges that have a negative occurrence
record according to [3, Table 4].

Proof of Issue 4.1. Let i ∈ {n− k, . . . , n− 1} and j = 1. By b < 2n−k−1 − 1 and i ≥ n− k it follows
that b < 2i − 1. This implies bi = 0 and bi+1 = 0 6= 1 = j. Since also b̃i+1 = 0 for all b̃ ≤ b, it
follows that g = g(b, i, {(i+ 1, 1)}) = 0. In addition, since b < 2i − 1 is equivalent to 2i > b+ 1, we
get

2z = 2(b− 2i−1) = 2b− 2i < 2b− (b+ 1) = b− 1,
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or z < 1
2 (b − 1) = 1

2 (b − 1 − g). Thus, all conditions for the second case of Equation (4.2) are
fulfilled, implying

φσb(bji,0, A
j
i ) + φσb(bji,1, A

j
i ) = g + 1 + 2z

= 2z + 1

= 2(b− 2i−1) + 1

< 2(2n−k−1 − 1− 2i−1) + 1

≤ 2(2n−k−1 − 1− 2n−k−1) + 1

= −1 < 0.

Hence there must be at least one edge that has a negative occurrence record.

We now resolve Issue 4.1. Let b ∈ Bn and Aji be a bicycle. We show that when applying the
switches as described in [3], the occurrence records are given by the following system:

|φσb(bji,0, A
j
i )− φ

σb(bji,1, A
j
i )| ≤ 1 (4.3)

φσb(Aji ) =


g + 1, Aji is closed and active
b, Aji is open and active
b, Aji is inactive and b < 2i−1 + j · 2i

g + 1 + 2z, Aji is inactive and b ≥ 2i−1 + j · 2i

(4.4)

This system of equations properly distinguishes between inactive bicycles that need to catch up
with the counter and inactive bicycles that do not need to do so.

Informally, for b ∈ Bn the occurrence records can be described as follows:

• Every closed and active bicycle has an occurrence record corresponding to the last time it
was closed.

• Every open and active bicycle has an occurrence record of b.

• Inactive bicycles are either “catching up” with other bicycles and thus have an occurrence
record less than b or already finished catching up and have an occurrence record of b again.

Before proving that Equations (4.3) and (4.4) correctly describe the occurrence records, we
compare them to [3, Table 4]. Equations (4.1) and (4.3) bounding the difference of the occurrence
records within a bicycle are the same. Also the case of closed and active bicycles is the same since
a bicycle is closed and active by definition if and only if bi = 1 and bi+1 = j. Consider the second
condition of Equation (4.2). This case handles inactive bicycles that do not have an occurrence
record of b. This is handled by the condition z < 1

2 (b−1− g), which is equivalent to g+ 1 + 2z < b.
However, as shown in Issue 4.1, this condition does not describe inactive bicycles properly. We
therefore formulate another condition, regarding the relation between b and 2i−1 + j · 2i. This
condition distinguishes inactive bicycles that might need to catch up with the counter because they
have already been active once (if b ≥ 2i−1 + j · 2i), and inactive bicycle that do not need to catch
up because they have not been active before. Finally, the case of open and active bicycles, which is
included in the “otherwise” case in [3, Table 4] concludes our description.

Next, we explain how the improving switches within the bicycles should be applied. This de-
scription is a reformulation of [3], specifically of the description given in the proof of [3, Lemma 5].
We remind here that we use the term edges of bicycle Aji to refer to the edges (bji,0, A

j
i ) and (bji,1, A

j
i ).

We apply the improving switches according to the following rules for a bicycle Aji during phase 1
of the transition from σb to σb+1 (rules are not stated in the order of their application):

I. If Aji is open and active, we switch one edge of the bicycle.

II. Let j := b`(b+1)+1. In addition to rule I, the second edge of Aj`(b+1) is switched.

III. If Aji is inactive and b < 2i−1 + j · 2i, one edge of the bicycle is switched.
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IV. If Aji is inactive, b ≥ 2i−1 + j · 2i and z < 1
2 (b− 1− g), both edges of Aji are switched.

V. If Aji is inactive, b ≥ 2i−1 + j · 2i and z ≥ 1
2 (b− 1− g), only one edge of Aji is switched.

We now show that applying the improving switches according to these rules yields the occur-
rence records described by Equation (4.4). We additionally prove an upper bound on the occur-
rence records that is used heavily throughout the proof.

Theorem 4.2. Suppose that the improving switches within the bicycles are applied as described by
the rules I to V. Let b ∈ Bn and Aji be some bicycle. Then, Equations (4.3) and (4.4) describe the
occurrence record φσb(Aji ). In addition,

φσb(Aji ) ≤ b+ 1 (4.5)

where equality holds if and only if i = `(b) and j = b`(b)+1.

To simplify the proof, we introduce the following notion. Fix b ∈ Bn and a bicycle Aji . The
bicycle Aji is called bicycle of type i with respect to σb when it fulfills the i-th condition mentioned
in Equation (4.4) for σb. We additionally establish the following abbreviations and state a lemma
that is implicitly contained in the proof of Lemma 5 in [3].

• We define g := g(b, i, {(i+ 1, j)}, i.e., g is the largest number smaller than or equal to b such
that gi+1 = j, gi = 1 and gl = 0 for all l < i. We define g′ := g(b+1, i, {(i+1, j)}) analogously.

• We define z := b− g − 2i−1. We define z′ := b+ 1− g′ − 2i−1 analogously.

• We define ` := `(b) and `′ := `(b+ 1).

Lemma 4.3 ([3]). For every b ∈ Bn, i ∈ {1, . . . , n} with i 6= `(b+ 1) and j ∈ {0, 1} we have g = g′.

We also make use of the following lemma.

Lemma 4.4. Let b ∈ Bn and Aji be some bicycle. Then, the bicycle Aji was closed at least once during
the application of the Policy Iteration Algorithm upto policy σb if and only if b ≥ 2i−1 + j · 2i.

Proof. The bicycle Aji is closed the first time during the application of the Policy Iteration Algorithm
when a number b̃ ≤ b is reached such that b̃i = 1, b̃i+1 = j and b̃l = 0 else. This number is
exactly 2i−1 + j · 2i.

With this notation and Lemmas 4.3 and 4.4 in place, we now prove Theorem 4.2. Whenever we
discuss how a bicycle should look like, we implicitly refer to the invariants introduced in Section 2.1
that describe σb.

Proof of Theorem 4.2. We show the statement via induction on b. Let b = 0. By the definition
of both the original initial policy σ? and the new initial policy σ∗, the target of bji,l under the
corresponding policy is t for all i ∈ {1, . . . , n} and j, l ∈ {0, 1}. Therefore, all bicycles are open
and either active or inactive, regardless which of the two initial policies is considered. As b = 0,
the inequality b < 2i−1 + j · 2i holds for all i ∈ {1, . . . , n} and j ∈ {0, 1}. This implies that every
bicycle is either of type 2 or of type 3. Therefore, for Equation (4.4) to hold, the occurrence record
of every bicycle needs to be equal to b = 0. But, since we consider the initial policies, no improving
switch was applied yet. Therefore, φσ0(Aji ) = 0 for all bicycles Aji . Consequently, Equation (4.4)
holds. We furthermore observe that there is no least significant set bit `(b) since b = 0. Hence,
since φσ0(Aji ) = 0 < b+ 1 for all bicycles Aji , and no bicycle is closed, Equation (4.5) holds as well.

Suppose that the statement holds for all numbers smaller or equal to b ∈ Bn. We show that it
also holds for b+1. We distinguish between the induction hypotheses with respect to Equation (4.4)
and Equation (4.5) and always state to which we refer. We discuss Equation (4.3) at the end of the
proof.

Fix a bicycle Aji for some i ∈ {1, . . . , n} and j ∈ {0, 1}. The proof is organized as follows. We
distinguish all possible cases of which “state” (open, active, . . . ) Aji could be in with respect to σb.
We then investigate of which type the bicycle is with respect to σb and if this type changes when
transitioning to σb+1. We then state how many improving switches we need to apply according
to our rules and discuss what we need to show such that Equation (4.4) remains valid for the
policy σb+1.
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Case 1: Aji is open, active and i = `′. Then Aji is the active bicycle corresponding to the least
significant set bit of b+ 1. By construction, it is open with respect to σb but needs to be closed
with respect to σb+1. As b`′+1 = (b + 1)`′+1, the bicycle remains active. Thus, Aji is of type 1
with respect to σb+1. As we apply rules I and II and switch both edges of the bicycle, we thus
need to show

φσb(Aji ) + 2 = g′ + 1.

By the induction hypothesis (4.4), we have φσb(Aji ) = b sinceAji is a type 2 bicycle with respect
to σb. To show Equation (4.4), it therefore suffices to show b + 2 = g′ + 1, or, equivalently,
g′ = b+ 1. This however follows since the binary representations of g′ and b+ 1 both end on
the subsequence (b`′+1, 1, 0, . . . , 0) of length `′ + 1.

Observe that we have φσb+1(Aji ) = (b + 1) + 1 after applying the two switches, hence Equa-
tion (4.5) remains valid as well.

Case 2: Aji is open and active, but i 6= `′. We argue that Aji remains open and active, i.e., Aji
is a bicycle of type 2 with respect to σb+1. By the definition of open and active, we have bi = 0
and j = bi+1. In addition, b1 = · · · = b`′−1 = 1 since `′ = `(b + 1). As all active bicycles
corresponding to levels 1 to `′ − 1 are closed in σ and i 6= `′, this implies i > `′. Due to
only the `′ least significant bits (i.e., the bits b1 to b`′) being switched, Aji remains active with
respect to b+ 1. Since the active bicycle of level `′ is the only bicycle that is open with respect
to σb but closed with respect to σb+1, Aji remains open. Hence, since Aji remains open and
active, it is a bicycle of type 2 with respect to σb+1. Because we only apply one improving
switch in the bicycle Aji (rule I), we therefore need to show that

φσb(Aji ) + 1 = b+ 1.

By the induction hypothesis (4.4) φσb(Aji ) = b, so φσb(Aji ) + 1 = b + 1. Therefore, both
Equations (4.4) and (4.5) still hold.

Case 3: Aji is closed, active and i > `′. We show that Aji is of type 1 with respect to σb+1. By
the definition of closed and active, bi = 1 and bi+1 = j. As only bits corresponding to indices
smaller than `′ switch, Aji remains active, cf. Case 2. By i > `′, it also remains closed since
only the bits b1 to b`′−1 switch from 1 to 0 and thus only bicycles corresponding to these levels
are opened during phase 3. Therefore, Aji is a bicycle of type 1 with respect to σb+1 and none
of the edges (bji,0, A

j
i ), (b

j
i,1, A

j
i ) are switched. We thus need need to show

φσb(Aji ) = g′ + 1.

By the induction hypothesis (4.4), we have φσb(Aji ) = g + 1. It therefore suffices to show
that g + 1 = g′ + 1. Since i 6= `′, this follows from Lemma 4.3. Therefore, Equation (4.4) still
holds.

Equation (4.5) remains valid since φσb(Aji ) ≤ b holds by the induction hypothesis (4.5).
Since φσb+1(Aji ) = φσb(Aji ) holds by the argument above, we obtain φσb+1(Aji ) < b+ 1.

Case 4: Aji is closed, active and i < `′. We show that Aji is of type 4 with respect to σb+1.
Because of i < `′, the bits bi and bi+1 both switch. Thus, since i < `′ implies bi = 1, we
have (b+ 1)i = 0. Hence Aji is open with respect to σb+1. Since Aji is active with respect to σb,
we have bi+1 = j and therefore, because bit bi+1 switches, we obtain (b+ 1)i+1 6= j. Thus, Aji
is inactive with respect to σb+1. Since Aji is closed, Lemma 4.4 implies b ≥ 2i−1 + j · 2i.
Therefore, Aji is a bicycle of type 4 with respect to σb+1. Because Aji is closed, we do not
switch the edges of the bicycle and therefore need to show

φσb(Aji ) = g′ + 1 + 2z′.

By the induction hypothesis (4.4), it holds that φσb(Aji ) = g + 1. Thus, we need to show
that g + 1 = g′ + 1 + 2z′. Since i 6= `′, Lemma 4.3 implies g 6= g′. It thus suffices to show
that z′ = b+ 1− g′ − 2i−1 = 0.
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From the assumptions i < `′ and that Aji is closed, we get bi = 1. Since Aji is also active by
assumption, it follows that j = bi+1. This implies that g = (bn, . . . , bi+1, 1, 0, . . . , 0). Therefore,
since i < `′ implies b = (bn, . . . , bi+1, 1, 1, . . . , 1), we get b− g = 2i−1− 1. Because g = g′ holds
by Lemma 4.3, this can be formulated equivalently, obtaining the equality b+1−g′−2i−1 = 0.
Thus Equation (4.4) remains valid.

As in Case 2, φσb+1(Aji ) = φσb(Aji ) and since φσb(Aji ) ≤ b holds by the induction hypothe-
sis (4.5), also Equation (4.5) follows.

Case 5: Aji is closed, active and i = `′. This cannot happen since both bicycles of level `′ are
open with respect to σb since b`′ = 0.

Case 6: Aji is closed and inactive. This cannot happen since closed bicycles are always active
(see the invariants described in Section 2.1).

Case 7: Aji is inactive and b < 2i−1 + j · 2i. Then, Aji is a bicycle of type 3. We observe
that Aji being inactive implies that Aji is open. We distinguish the type of Aji is with respect
to σb+1, since this is not clear in this case.

It cannot happen that Aji is closed with respect to σb+1, because the active bicycle of level `′

is the only bicycle which is open with respect to σb and closed with respect to σb+1, and Aji is
inactive by assumption.

Suppose that Aji is a bicycle of type 3 with respect to σb+1. That is, it remains inactive with
respect to σb+1 and b + 1 < 2i−1 + j · 2i holds. As we apply one improving switch (rule III),
we thus need to show that

φσb(Aji ) + 1 = b+ 1.

This follows immediately since φσb(Aji ) = b by the induction hypothesis (4.4).

Suppose that Aji is a bicycle of type 2 with respect to σb+1. That is, it is active and open with
respect to σb+1. In this case, we also need to show

φσb(Aji ) + 1 = b+ 1,

which also follows from the induction hypotheses (4.4).

Suppose that Aji is a bicycle of type 4 with respect to σb+1. That is, it is inactive with respect
to σb+1 and b + 1 ≥ 2i−1 + j · 2i. Then, since b < 2i−1 + j · 2i, it follows immediately
that b + 1 = 2i−1 + j · 2i. But, by Lemma 4.4, this can only happen if the bicycle Aji is closed
during the transition from σb to σb+1, contradicting the inactivity of Aji with respect to σb.

Therefore, φσb(Aji ) + 1 = b+ 1 holds in all cases, and both Equation (4.4) and Equation (4.5)
stay valid.

Case 8: Aji is inactive, b ≥ 2i−1 + j · 2i and z < 1
2
(b− 1− g). In this case, Aji is a bicycle

of type 4 with respect to σb. We show that it also is a bicycle of type 4 with respect to σb+1,
i.e., that Aji is inactive with respect to σb+1 and b+ 1 ≥ 2i−1 + j · 2i. It then remains to show
that φσb(Aji )+2 = g′+1+2z′, or, since φσb(Aji ) = g+1+2z by the induction hypothesis (4.4),
that g + 1 + 2z + 2 = g′ + 1 + 2z′.

Observe that b + 1 ≥ 2i−1 + j · 2i immediately follows from b ≥ 2i−1 + j · 2i. Towards a
contradiction, assume that Aji is active with respect to σb+1. Since only bits with an index
smaller or equal to `′ are switched, only inactive bicycles on levels 1 to `′ − 1 can become
active. As a consequence, we have i < `′.

We next show that b−g = 2i+2i−1−1 holds. First assume that i 6= `′−1. Then, since i < `′−1
and b = (bn, . . . , b`′+1, 0, 1, . . . , 1), it follows that bi+1 = 1. Hence, by the inactivity of Aji with
respect to σb, we obtain j = 0. Therefore,

g = (bn, . . . , b`′+1, 0, 1, . . . , 1, 0︸︷︷︸
gi+1

, 1︸︷︷︸
gi

, 0, . . . , 0),

since we have gi = 1 and gi+1 = j = 0 by definition of g. Consequently, b− g = 2i + 2i−1 − 1.
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Now assume that i = `′ − 1. We then obtain bi+1 = b`′ = 0 and hence, by the inactivity of Aji ,
we get j = 1. Therefore,

g = (b̃n, . . . , b̃`′+1, 1, 1︸︷︷︸
gi=g`′−1

, 0, . . . , 0)

where (b̃n, . . . , b̃`′+1) = (bn, . . . , b`′+1) − 1. This implies that g + 2i + 2i−1 = b + 1 which is
equivalent to b− g = 2i + 2i−1 − 1.

Using the identities b − g = 2i + 2i−1 − 1 and φσb(Aji ) = b + 1 + 2z which follows from the
induction hypothesis (4.4), we obtain the following estimation for φσb(Aji ):

φσb(Aji ) = g + 1 + 2(b− g − 2i−1)

= 2b− g − 2i + 1

= b+ 2i + 2i−1 − 1− 2i + 1

= b+ 2i−1 > b.

Additionally, by assumption, z < 1
2 (b− 1− g), which implies

φσb(Aji ) = g + 1 + 2z < g + 1 + b− 1− g = b, (4.6)

contradicting the previous inequality. Therefore, the assumption of Aji being active with re-
spect to σb+1 cannot be correct, hence the bicycle must be inactive with respect to σb+1 and
thus be of type 4.

As discussed before, we now need to show

φσb(Aji ) + 2 = g + 1 + 2z + 2 = g′ + 2 + 2z′.

We observe that due to the inactivity of Aji with respect to σb+1, we have i 6= `′ and therefore,
by Lemma 4.3, also g = g′. Therefore,

g + 1 + 2z + 2 = g + 1 + 2b− 2g − 2i + 2

= g′ + 1 + 2(b+ 1)− 2g − 2i

= g′ + 1 + 2z′,

hence Equation (4.4) still holds.

It remains to show Equation (4.5). By Equation (4.6), we have φσb(Aji ) < b, and thus, by
integrality, φσb(Aji ) ≤ b− 1. Thus, φσb+1(Aji ) = φσb(Aji ) + 2 ≤ b− 1 + 2 = b+ 1 follows since
we apply two switches in Aji .

Case 9: Aji is inactive, b ≥ 2i−1 + j · 2i and z ≥ 1
2
(b− 1− g). In this case, we do not dis-

tinguish the type of Aji with respect to σb+1. Instead, we show g + 1 + 2z = b. This suffices
because the bicycle Aji cannot become closed and active (i.e., a bicycle of type 1) with respect
to σb+1 and, by rule V, the occurrence record of Aji increases by 1. Therefore, we do not need
to specify the type of Aji if we are able to show that its occurrence record before applying the
switch is equal to b.

To show that g+1+2z = b, we need to show z = 1
2 (b−1−g). Towards a contradiction, assume

that z > 1
2 (b− 1− g). Then, since Aji is a bicycle of type 4, by the induction hypothesis (4.4),

we have φσb(Aji ) = g + 1 + 2z. Thus

φσb(Aji ) = g + 1 + 2z > g + 1 + b− 1− g = b,

contradicting the induction hypothesis (4.5) requiring φσb(Aji ) ≤ b. Therefore, equality holds
and φσb(Aji ) = g+1+(b−1−g) = b. As we apply a single switch, we obtain φσb(Aji )+1 = b+1,
as claimed.

As we have discussed all possible cases, we successfully showed that the occurrence records
given in Equation (4.4) and the estimation given in Equation (4.5) hold. Because the switches can
always be applied alternatingly within a bicycle, we can ensure that Equation (4.3) holds at all
times during the application of the improving switches.
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5 Improving switches of phase 3

In this section, we discuss the application of the improving switches during phase 3. There are two
contradictory descriptions in [3] how to apply them. We prove that neither of the given orderings
obeys the LEAST-ENTERED rule, even if the issues discussed in the previous sections are resolved.
We additionally show that a natural adaptation of Friedmann’s scheme still does not obey the
LEAST-ENTERED rule. We then go on to prove the existence of an ordering and an associated tie-
breaking rule that obey the LEAST-ENTERED rule while still producing the intended behavior of
Friedmann’s construction.

Throughout this section, for a fixed b ∈ Bn, we use ` := `(b) and `′ := `(b + 1) to denote the
least significant set bits of b and b+ 1, respectively.

5.1 Issues with Friedmann’s switching order

We start by discussing phase 3 of the transition from σb to σb+1 for b ∈ {0, . . . , 2n − 2}. In Sec-
tion 2.1, we stated that in phase 3, improving switches need to be applied for every entry vertex ki
belonging to a level i with (b + 1)i = 0. In addition, several bicycles need to be opened, for ex-
ample bicycles that correspond to bits that switch from 1 to 0. However, according to the informal
description given by Friedmann [3, Pages 9–10], both the updates regarding the entry vertices and
the updates regarding the bicycles should not be performed for all levels but only those with an
index smaller than `′. To be precise, the following is stated (where r ∈ {0, 1} is arbitrary)2: “In the
third phase, we perform the major part of the resetting process. By resetting, we mean to unset lower
bits again, which corresponds to reopening the respective bicycles. Also, we want to update all other
inactive or active but not set bicycles again to move to the entry point k`′ . In other words, we need to
update the lower entry points kz with z < `′ to move to k`′ , and the bicycle nodes bjz,l to move to k`′ .
We apply these switches by first switching the entry node kz for some z < `′ and then the respective
bicycle nodes bjz,r.”

We show that this description is inconsistent with several aspects of [3] and violates the
LEAST-ENTERED pivot rule. Beforehand, we extract some estimations contained in the proof of
[3, Lemma 3] that will be used later.

Lemma 5.1. Let σ be a policy calculated by the Policy Iteration Algorithm during the transition
from σb to σb+1. Denote the reward of each edge emanating from vertex v by 〈v〉. Let

Si :=
∑

j∈{i,...,n}:bj=1

(
〈kj〉+ 〈c0j 〉+ 〈d0

j 〉+ 〈h0
j 〉
)

and Ti :=
∑

j∈{i,...,n}:(b+1)j=1

(
〈kj〉+ 〈c0j 〉+ 〈d0

j 〉+ 〈h0
j 〉
)
.

Then,

VALσ(s) ∈ [S1, T1]

VALσ(ki) ∈ [〈ki〉+ S1, Ti]

VALσ(hji ) ∈ [〈hji 〉+ 〈ki+1〉+ S1, 〈hji 〉+ Ti+1]

VALσ(dji ) ∈ [〈dji 〉+ S1, 〈dji 〉+ 〈hji 〉+ Ti+1]

VALσ(Aji ) ∈ [S1, 〈dji 〉+ 〈hji 〉+ Ti+1]

VALσ(bji,r) ∈ [S1, 〈dji 〉+ 〈hji 〉+ Ti+1]

VALσ(cji ) ∈ [〈cji 〉+ S1, 〈cji 〉+ 〈dji 〉+ 〈hji 〉+ Ti+1].

In this section, we only refer to [3, Table 3] when discussing occurrence records of improving
switches since we do not consider the occurrence records of edges (bji,r, A

j
i ). All discussed results

therefore hold independently of the previous findings in Section 4.
We begin by showing an issue regarding the informal description mentioned before.

Issue 5.2. For every b ∈ {1, . . . , 2n−2−1}, the informal description of phase 3 given in [3, Pages 9–10]
contradicts [3, Tables 2&4]. It additionally violates the LEAST-ENTERED pivot rule during the transi-
tion from σb to σb+1 for every b ∈ {3, . . . , 2n−2 − 2}.

2The notation in the quote was adapted from [3] to be in line with our paper.
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Proof of Issue 5.2. Let b ∈ {1, . . . , 2n−2 − 1}. Consider the transition from σb to σb+1. According
to [3, Table 2], for each phase 1 policy or phase 2 policy σ, it should hold that σ(ki) = k` if bi = 0
and σ(ki) = cji , j = bi+1 if bi = 1. But, due to b < 2n−2, we have b̃n = 0 for all b̃ ∈ {0, . . . , b}.
In particular, n > `(b̃) for all of those b̃. Since phase 3 is the only phase in which the target
of kn can be changed, this implies that the target of kn has never been changed. But for every
policy σ considered so far, σ(kn) = t held due to σ?(kn) = σ∗(kn) = t. Since σb is a phase 1
policy by definition, this contradicts [3, Table 2], even if we change the initial policy as discussed
in Section 3.2. Note that we obtainVALσb(kn) = 0 for all b ∈ {1, . . . , 2n−2 − 1} by the same
arguments.

As a consequence, the occurrence records of all edges (kn, ki) for i ∈ {1, . . . , n − 1} are zero.
We now discuss how this violates [3, Table 4]. Let i ∈ {1, . . . , blog2(b)c + 1}, i.e., consider some i
such that b ≥ 2i−1. According to [3, Table 4], it should then hold that φσb(kn, ki) = f(b, i, {(n, 0)}).
But, due to b̃n = 0 for all b̃ ≤ b, we have f(b, i, {(n, 0)}) = f(b, i). Thus, by Proposition 2.4 (3) and
since b ≥ 2i−1, we have

f(b, i, {(n, 0)}) = f(b, i) =

⌊
b+ 2i−1

2i

⌋
≥
⌊

2i−1 + 2i−1

2i

⌋
= 1.

This contradicts the occurrence records of all edges (kn, ki) for i ∈ {1, . . . , n− 1} being zero.
It remains to show that applying the improving switches as described before contradicts the

LEAST-ENTERED rule. We do so by showing that the edge (kn, k1) is an improving switch throughout
the whole transition from σ2 to σ3, and discuss the case of b ∈ {3, . . . , 2n−2− 2} afterwards. By [3,
Table 4], L5

σ = {(s, k`′)} for any phase 5 policy σ. Since only switches contained in the subsets Lpσ
are chosen as improving switches, this implies that (s, k1) is chosen in phase 5 of the transition
from σ2 to σ3. But, since `(1) = `(3) = 1, this edge has already been chosen in phase 5 of the
transition from σ0 to σ1. Therefore, the edge has a non-zero occurrence record throughout the
transition from σ2 to σ3. Thus, the result follows once we showed that (kn, k1) is an improving
switch, since we already observed that it has an occurrence record of zero but is not switched.

Consider σb for b = 2. The only set bit in the binary representation of b is b2. As observed
before, we have σ2(kn) = t, implying VALσ2

(σ2(kn)) = 0. In addition, by Lemma 5.1, for every
policy σ calculated during the transition from σ2 to σ3, it holds that

VALσ2
(k1) ≥ 〈k1〉+ S1

= (−N)2·1+7 + S1

≥
∑

j∈{1,...,n}:bj=1

[
(−N)2j+7 + (−N)2j+8 + (−N)7 + (−N)6

]
−N9

= (−N)2·2+7 + (−N)2·2+8 + (−N)7 + (−N)6 −N9

= N12 −N11 −N9 −N7 −N6 > 0,

since N ≥ 8. Thus, (kn, k1) is an improving switch during the whole transition from σ2 to σ3.
Since VALσb(kn) = 0 for all b ∈ {3, . . . , 2n−2 − 2} as discussed before, since `(b) 6= n for

all of those b, and since the values are non-decreasing, (kn, k1) remains an improving switch for
all b ∈ {3, . . . , 2n−2 − 2}. We further observe that due to b ≥ 3, both of the bicycles A0

1 and A1
1

have been closed at least once, see Lemma 4.4. This implies that all edges of these bicycles have
an occurrence of at least one. Also, at least one of the edges of the inactive bicycle of level 1 is
switched when transitioning from σb to σb+1 for any b ∈ Bn. Because this edge has a non-zero
occurrence record whereas the edge (kn, k1) has an occurrence record of zero and is an improving
switch, this shows that following the informal description contradicts the LEAST-ENTERED pivot
rule at least once during the transition from σb to σb+1 for every b ∈ {3, . . . , 2n−1 − 2}.

However, in other parts of the construction, Friedmann seems to apply the improving switches
differently, by not only applying them for levels with a lower index than the least significant set
bit but for all levels. Especially, the side conditions specified in [3, Table 2] for defining a phase p
policy rely on the fact that these switches are applied for all levels i with (b + 1)i = 0. According
to the proof of [3, Lemma 5], the switches need to be applied in the following way2: “In order to
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fulfill all side conditions for phase 3, we need to perform all switches from higher indices to smaller
indices, and ki to k`′ before bji,r with (b+ 1)i+1 6= j or (b+ 1)i = 0 to k`′”.

Before showing that this variant does not obey the LEAST-ENTERED pivot rule either, we state
two more lemmas. Recall that for an improving switch e and a policy σ, the policy obtained from σ
by applying e is denoted by σ[e]. The first lemma characterizes the set of all improving switches
that should be applied during phase 3. The second lemma shows the connection between L3

σ

and L3
σ[e] for a phase 3 policy σ and an improving switch e.

We begin by partitioning the subset L3
σ of the set of improving switches for a phase 3 policy σ

into three sets L3,1
σ , L3,2

σ and L3,3
σ . These sets are defined as follows (cf. [3, Table 3]):

• L3,1
σ := {(ki, k`′) : σ(ki) 6= k`′ ∧ (b+ 1)i = 0}

• L3,2
σ := {(bji,l, k`′) : σ(bji,l) 6= k`′ ∧ (b+ 1)i = 0}

• L3,3
σ := {(bji,l, k`′) : σ(bji,l) 6= k`′ ∧ (b+ 1)i+1 6= j}

Note that we use a different notation than Friedmann in order to avoid using the function σ̄.

Lemma 5.3. Let b ∈ Bn and let σ be the first phase 3 policy of the transition from σb to σb+1.
Then L3

σ = L3
σb

, and L3
σb

is the set of improving switches that should be applied during phase 3
according to [3, Table 2].

Proof. This follows nearly immediately from the description given in [3, Page 9]. A more detailed
argument can be found in Appendix B.

Lemma 5.4. Let σ be a phase 3 policy and let e ∈ L3
σ. Then L3

σ[e] = L3
σ \ {e}.

Proof. We only discuss the case e ∈ L3,1
σ – the cases e ∈ L3,2

σ and e ∈ L3,3
σ follow from similar

arguments. Let e ∈ L3,1
σ . Then, e = (ki, k`′) for some i ∈ {1, . . . , n} with σ(ki) 6= k`′ and

(b + 1)i = 0. Hence the improving switch (ki, k`′) can be applied in σ. When the switch e is
applied, we have σ[e](ki) = k`′ for the resulting policy σ[e]. This immediately implies e /∈ L3,1

σ[e] and
thus e /∈ L3

σ[e].
Let ẽ ∈ L3

σ and ẽ 6= e. We show that ẽ ∈ L3
σ[e]. Since ẽ ∈ L3

σ, we have ẽ = (x, k`′) where
either x = ki′ or x = bji′,r for some i′ ∈ {1, . . . , n} and r, j ∈ {0, 1}. In addition, since ẽ ∈ L3

σ, we
have σ(x) 6= k`′ . The switch (ki, k`′) is the only switch that we apply when transitioning from σ
to σ[e]. Therefore, σ(x) 6= k`′ implies σ[e](x) 6= k`′ as the target of no vertex other than ki changes.
As furthermore the conditions (b+ 1)i = 0 and bi+1 6= j remain valid, it follows that ẽ ∈ L3

σ[e]. This
implies that L3

σ ⊆ L3
σ[e] ∪ {e}.

Towards a contradiction, assume that there is some ẽ ∈ L3
σ[e] ∪ {e} but ẽ /∈ L3

σ. Then, since e ∈
L3
σ, we have that e 6= ẽ. Thus, ẽ = (x, k`′) for some x as in the last case and σ[e](x) 6= k`′ .

But since (ki, k`′) is the only switch that is applied when transitioning from σ to σ[e], this implies
that σ(x) 6= k`′ . But then, e ∈ L3

σ which is a contradiction. We therefore have L3
σ[e] ∪ {e} ⊆ L

3
σ and

thus L3
σ[e] ∪ {e} = L3

σ.

Corollary 5.5. Let σ be a phase 3 policy and e ∈ Iσ an improving switch for σ. Let σ′ be a phase 3
policy reached after σ during the same transition. If the switch e was not applied when transitioning
from σ to σ′, then e is an improving switch for σ′.

After having analyzed the set L3
σ in more detail, we now go back to the application of the im-

proving switches in phase 3. We prove a lemma that implies that applying the improving switches
in the order described in [3, Lemma 5] contradicts the LEAST-ENTERED rule. It will also be used to
show that a generalized class of orderings violates the LEAST-ENTERED pivot rule.

Lemma 5.6. Let i ∈ {2, . . . , n− 2} and l < i. Then, there is a number b ∈ Bn with `(b+ 1) = l such
that for all j ∈ {i+ 2, . . . , n}, it holds that φσb(ki, k`′) < φσb(kj , k`′) and (ki, k`′), (kj , k`′) ∈ L3

σb
.

Proof. Let b := 2i + 2l−1 − 1 and j ∈ {i + 2, . . . , n}. Then, `(b + 1) = `(2i + 2l−1) = l since i < l.
Furthermore, j ≥ i+ 2, i > l and i ≥ 2 imply b = 2i + 2l−1 ≤ 2i + 2i−2 ≤ 2j−2 + 2j−4 < 2j−1 − 1.
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Now consider the set F (b, l) containing all b̃ ≤ b such that `(b̃) = l, see Definition 2.2. We
remind here that, by definition, |F (b, l)| = f(b, l). Because b < 2j−1, it holds that b̃j = 0 for
all b̃ ≤ b and thus, F (b, l) = F (b, l, {(j, 0)}). Thus, by [3, Table 4] we have

φσb(kj , k`′) = φσb(kj , kl) = f(b, l, {(j, 0)}) = f(b, l).

In addition, since b < 2j−1 − 1 implies b = 1 < 2j−1 and thus (b + 1)j = 0 and σb(kj) = k` 6= k`′

holds due to the invariants discussed in Section 2, we have (kj , k`′) ∈ L3
σb
. However, because of

b > 2i, i ≥ 2 and i > l, it holds that b̃ := 2i−1 + 2l−1 ∈ F (b, l) since b̃ ≤ b. Additionally, we have
that b̃i = 1. As a consequence, b̃ /∈ F (b, l, {(i, 0)})). But this implies that F (b, l, {(i, 0)}) ( F (b, l).
Since, by [3, Table 4], φσb(ki, kl) = f(b, l, {(i, 0)}) and, |F (b, l{(i, 0)})| = f(b, l, {(i, 0)}) , this
implies

φσb(ki, k`′) = φσb(ki, kl) = f(b, l, {(i, 0)}) < f(b, l) = φσb(kj , kl) = φσb(kj , k`′).

Since (b+1)i = bi = 0 due to i > l = `(b+1) and σb(ki) = k` 6= k`′ , we also have (ki, k`′) ∈ L3
σb
.

Issue 5.7. Applying the improving switches as described in [3, Lemma 5] does not obey the LEAST-
ENTERED pivot rule.

Proof of Issue 5.7. According to [3, Lemma 5], the improving switches of phase 3 should be applied
as follows2: “[. . . ] we need to perform all switches from higher indices to smaller indices, and ki to k`′
before bji,l with (b + 1)i+1 6= j or (b + 1)i = 0 to k`′”. This description is also further formalized in
the side conditions of [3, Table 2].

Let i ∈ {2, . . . , n− 2}, l < i and j ∈ {i+ 2, . . . , n− 2}. By Lemma 5.6, there is a number b ∈ Bn
such that l = `(b+1) and φσb(ki, k`′) < φσb(kj , k`′). In addition, (ki, k`′), (kj , k`′) ∈ L3

σb
. Therefore,

by Lemma 5.3, the switch (kj , k`′) should be applied before the switch (ki, k`′) during the transition
from σb to σb+1 when following the description of [3].

Consider the phase 3 policy σ of this transition in which the switch (kj , k`′) should be applied.
Then, since j > i an we “perform all switches from higher indices to smaller indices”, the switch
(ki, k`′) was not applied yet. But, by Corollary 5.5, it is an improving switch for the current
policy σ. This implies that φσb(kj , k`′) = φσ(kj , k`′) and additionally φσb(ki, k`′) = φσ(ki, k`′).
Consequently, φσ(ki, k`′) < φσ(kj , k`′). Thus, since the edge (ki, k`′) is an improving switch for σ
having a lower occurrence record than (kj , k`′) and σ was chosen as the policy in which (kj , k`′)
should be applied, the LEAST-ENTERED rule is violated.

By stating a lemma similar to Lemma 5.6, we can even show a stronger statement. We observe
that Friedmann applies the improving switches of phase 3 in the following way: During the transi-
tion from σb to σb+1, the improving switches are applied “one level after another” where the order
of the levels depends on the least significant set bit of b + 1, that is, `(b + 1). Our goal is now to
show the following: Consider some l ∈ {1, . . . , n − 4}. When the improving switches of phase 3
are applied level by level according to a fixed ordering Sl during all transitions from σb to σb+1 for
which `(b+ 1) = l, the LEAST-ENTERED pivot rule is violated at least once.

To prove our statement we need the following lemma. Note that the occurrence records for the
policies σb given in [3, Table 4] are independent of the ordering in which the improving switches
are applied during phase 3.

Lemma 5.8. Assume that for any transition, the switches that should be applied during phase 3
were applied in some (possibly changing) order. Let i ∈ {2, . . . , n − 2} and l < i. Then there is a
number b ∈ Bn with `(b+1) = l such that φσb(ki+1, k`′) < φσb(b1i,r, k`′), where r ∈ {0, 1} is arbitrary
and (ki+1, k`′), (b

1
i,r, k`′) ∈ L3

σb
.

Proof. Since we assume that the same switches are applied during phase 3, the occurrence records
given in [3, Table 4] remain valid. For now, consider some b ∈ Bn with `(b + 1) = l. We fix its
value later. By [3, Table 4] and since `′ = `(b+ 1) = l,

φσb(ki+1, k`′) = f(b, `′, {(i+ 1, 0)})

and
φσb(b1i,r, k`′) = f(b, `′, {(i, 0)}) + f(b, `′, {(i, 1), (i+ 1, 0)}).
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By Proposition 2.4 (3),

f(b, `′, {(i, 0)}) = f(b, `′, {(i, 0), (i+ 1, 0)}) + f(b, `′, {(i, 0), (i+ 1, 1)}).

This implies that φσb(b1i,r, k`′) can be formulated equivalently as

f(b, `′, {(i, 0), (i+ 1, 0)}) + f(b, `′, {(i, 0), (i+ 1, 1)}) + f(b, `′, {(i, 1), (i+ 1, 0)}).

Since f(b, `′, {(i, 1), (i+1, 0)})+f(b, `′, {(i, 0), (i+1, 0)}) = f(b, `′, {(i+1, 0)}), the whole inequality
can thus be formulated as

f(b, `′, {(i+ 1, 0)}) < f(b, `′, {(i+ 1, 0)}) + f(b, `′, {(i, 0), (i+ 1, 1)}).

It therefore suffices to find some b ∈ Bn such that f(b, `′, {(i, 0), (i + 1, 1)}) > 0, `(b + 1) = l
and (ki+1, k`′), (b

1
i,r, k`′) ∈ L3

σb
.

We show that b := 2i+1 + 2l−1 − 1 fulfills this. We observe that `(b + 1) = `(2i+1 + 2l−1) = l
since l < i. In addition, since bi+1 = 0, it holds that σb(ki+1) = k` 6= k`′ . Since also (b+ 1)i+1 = 0,
we therefore have (ki+1, k`′) ∈ L3

σb
. Also, since (b + 1)i+1 = 0 6= 1 and σb(b

1
i,r) = k` 6= k`′ , we

additionally have (b1i,`′ , k`′) ∈ L3
σb
.

Consider the number b̃ := 2i + 2l−1. Then, b̃i = 0 and b̃i+1 = 1. Since b̃ < b, this implies
f(b, `′, {(i, 0), (i+ 1, 1)}) ≥ 1.

We now combine Lemmas 5.6 and 5.8 to prove that an entire class of orderings of the improving
switches of phase 3, including Friedmann’s, all violate the LEAST-ENTERED pivot rule. This class of
orderings consists of all orderings such that the improving switches of phase 3 are applied “level
by level”, where, during the transition from σb to σb+1, the sequence of levels only depends on
the least significant set bit of b + 1. That is, depending on `(b + 1), an ordering S`(b+1) of the
levels 1 to n is considered and when a level i1 appears before a level i2 within S`(b+1), all switches
in level i1 need to be applied before the improving switches of level i2 are applied. In some sense,
this shows that Friedmann’s ordering needs to be changed fundamentally, and cannot be fixed by
slight adaptation.

Issue 5.9. Suppose that the improving switches of phase 3 are applied one level after another as
described above. That is, the ordering of the levels in the transition from σb to σb+1 may only depend
on `(b+ 1). Then, the LEAST-ENTERED pivot rule is violated.

Proof. To prove Issue 5.9, we show that applying the improving switches as discussed before vi-
olates the LEAST-ENTERED rule several times by showing the following statement: Let Si be an
ordering of {1, . . . , n} for i ∈ {1, . . . , n}. Suppose that the improving switches of phase 3 of the
transition from σb to σb+1 are applied in the order defined by S`(b+1) for all b ∈ Bn. Then, for
every possible least significant bit l ∈ {1, . . . , n − 4}, assuming that the ordering Sl obeys the
LEAST-ENTERED rule results in a contradiction.

We first observe that Lemma 5.6 also holds when the improving switches are applied in some
arbitrary order since we always consider the occurrence record with respect to σb.

Fix some l ∈ {1, . . . , n − 4}. Consider the ordering Sl = (s1, . . . , sn). For k ∈ {1, . . . , n}, we
denote the position of k within Sl by k?, i.e., k? is defined such that sk? = k. Assume that applying
the improving switches level by level according to the ordering Sl obeys the LEAST-ENTERED rule.
We show that this assumption yields both (l+ 1)? < (n− 1)? and (n− 1)? < (l+ 1)? which clearly
is a contradiction.

Let i ∈ {l + 1, . . . , n − 2}. Then, i > l and therefore, by Lemma 5.8, there is a number b ∈ Bn
with `(b + 1) = `′ = l and φσb(ki+1, k`′) < φσb(b1i,r, k`′) such that (ki+1, k`′), (b

0
i,r, k`′) ∈ L3

σb
.

Therefore, by Lemma 5.3, both switches need to be applied during the transition from σb to σb+1.
Because of φσb(ki+1, k`′) < φσb(b1i,r, k`′), level i + 1 needs to appear before level i within the
ordering Sl. Since Lemma 5.8 can be applied for all i ∈ {l + 1, . . . , n − 2}, this implies that the
sequence (n− 1, n− 2, . . . , l+ 1) needs to be a (not necessarily consecutive) subsequence of Sl. In
particular, (n− 1)? < (l + 1)? since we have l + 1 6= n− 1 by assumption.

Now, let i = l + 1 and j ∈ {i + 2, . . . , n}. Then, by Lemma 5.6, there is a number b ∈ Bn
with `(b + 1) = l such that φσb(ki, k`′) < φσb(ki+2, k`′) and (ki, k`′), (ki+2, k`′) ∈ L3

σb
. Again, by
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Lemma 5.3, both switches need to be applied during the transition from σb to σb+1. Therefore, for
all i ∈ {l + 1, . . . , n − 2}, level i needs to appear before any of the levels level j ∈ {i + 2, . . . , n}
within Sl. But this implies that the sequence (l + 1, l + 3, l + 4, . . . , n − 1, n) needs to be a (not
necessarily consecutive) subsequence of Sl. In particular, (l+ 1)? < (n− 1)? since n− 1 ≥ l+ 3 as
we have l ≤ n− 4 by assumption. This however contradicts (n− 1)? < (l + 1)?.

Therefore, applying the improving switches level by level according to the ordering Sl does not
obey the LEAST-ENTERED rule.

5.2 Fixing the ordering of the improving switches

In this section we prove the existence of an ordering and an associated tie-breaking rule for the
application of the switches of phase 3 that obey the LEAST-ENTERED rule. We begin by giving a
brief outline of this section.

Let σ be a phase 3 policy. We compare L3
σ and U3

σ since all improving switches that can possibly
be applied during phase 3 are contained in U3

σ (by [3, Lemma 4]). This is done via partitioning
U3
σ and considering the partition of L3

σ used before. The comparison enables us to show that there
is always a switch contained in L3

σ minimizing the occurrence record. This justifies that “we will
only use switches from Lpσ” [3, Page 12] (at least for phase p = 3). We use structural results to
show the following: All improving switches that should be applied during phase 3 according to
the description in [3] can be applied (in a different order) during phase 3, without violating the
LEAST-ENTERED pivot rule.

As outlined in Section 2, the transition from σb to σb+1 is partitioned into six phases. During
the third phase, the MDP is reset, that is, some bicycles are opened and the targets of some entry
vertices are changed. Therefore, a phase 3 policy σ is always associated with such a transition and
we implicitly consider the underlying transition from σb to σb+1 for the corresponding b ∈ Bn when
discussing a fixed phase 3 policy.

Now, fix some b ∈ {0, . . . , 2n− 2}. For an edge e = (v, w), we say that the edge belongs to level i
when vertex v is part of level i of the lower bound construction.

We begin by further investigating the occurrence records of switches that should be applied
during phase 3, i.e., we analyze the set L3

σ for a phase 3 policy σ. We first show an upper bound
on the occurrence record of these switches.

Lemma 5.10. Let σ be a phase 3 policy. Then maxe∈L3
σ
φσ(e) ≤ f(b, `′).

Proof. As discussed in Section 5.1, the set L3
σ can be partitioned into three subsets L3,1

σ , L3,2
σ

and L3,3
σ . It thus suffices to distinguish three cases. The last two cases can be discussed together as

the occurrence records of edges contained in L3,2
σ and L3,3

σ are the same, see [3, Table 4].

Case 1: e ∈ L3,1
σ . Then, e = (ki, k`′), where σ(ki) 6= k′` and (b+ 1)i = 0 holds. The first of these

conditions implies that the switch e was not applied yet during the transition from σb to σb+1.
We therefore have φσ(ki, k`′) = φσb(ki, k`′). Since φσb(e) = f(b, `′, {(i, 0)}) by [3, Table 4],
this implies φσ(e) = f(b, `′, {(i, 0)}). By Proposition 2.4 (3), we therefore have

φσ(e) = f(b, `′, {(i, 0)}) = f(b, `′)− f(b, `′, {i, 1}) ≤ f(b, `′).

Case 2: e ∈ L3,2
σ or e ∈ L3,3

σ . Then, e = (bji,r, k`′), where σ(bji,r) 6= k`′ and either (b + 1)i = 0

if e ∈ L3,2
σ or (b + 1)i+1 6= j if e ∈ L3,3

σ . The first condition implies that the switch e was not
applied yet during the transition from σb to σb+1. We thus have φσ(bji,r, k`′) = φσb(bji,r, k`′).
Since φσb(e) = f(b, `′, {(i, 0)}) + f(b, `′, {(i, 1), (i+ 1, 1− j)}) by [3, Table 4], this implies

φσ(e) = f(b, `′, {(i, 0)}) + f(b, `′, {(i, 1), (i+ 1, 1− j)}).

By Proposition 2.4 (2), it also holds that f(b, `′, {(i, 1), (i+ 1, 1− j)}) ≤ f(b, `′, {(i, 1)}). Thus,
we obtain

φσ(e) ≤ f(b, `′, {(i, 0)}+ f(b, `′, {(i, 1)}) = f(b, `′).
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Before showing that for all phase 3 policies σ, there is always an improving switch contained
in L3

σ that minimizes the occurrence record, we further discuss the superset U3
σ . We observe

that L6
σ is contained in this set. Therefore, when analyzing U3

σ , we need to analyze this set as well.
However, there is a small error in the definition of this set that needs to be corrected.

Issue 5.11. For every b ∈ Bn with `(b+1) > 1, there is an improving switch that should be applied in
phase 6 of the transition from σb to σb+1 but is not contained in the set L6

σ for any phase 6 policy σ.

Proof. Fix some b ∈ Bn such that `′ = `(b + 1) > 1. Consider the vertex d0
`′−1. We show that the

switch (d0
`′−1, s) needs to be applied during phase 6 of the transition from σb to σb+1 but is not

contained in L6
σ for any phase 6 policy σ. By analyzing [3, Table 2] and the function σ̄ that is used

in this table, it can be shown that b` = 0 implies σb(d0
`′−1) = h0

i . Since the `′-th bit switches during
the transition from σb to σb+1, by [3, Table 2], σb+1(d0

`′−1) = s needs to hold. Therefore, (d0
`′−1, s)

needs to be an improving switch for some policy σ calculated during the transition from σb to σb+1.
Towards a contradiction, assume that there was a policy σ in which the switch (d0

`′−1, s) should
be applied. Since the subsets of phase 6 policies are the only subsets that can contain this switch, σ
needs to be a phase 6 policy. By [3, Lemma 4], (d0

`′−1, s) ∈ L6
σ then holds for this policy σ.

Again analyzing the function σ̄, it can be shown that due to (d0
`′−1, s) ∈ L6

σ, both σ(d0
`′−1) 6= s

and σ(d0
`′−1) = s need to hold. This is clearly a contradiction. As a consequence, there is no

policy σ for which the switch (d0
`′−1, s) should be applied.

Issue 5.11 does not only hold for the switch (d0
`′−1, s) but in fact for all switches contained in L6

σ

for any phase 6 policy σ. This can be proven analogously to Issue 5.11 but can however be resolved
easily. To be precise, L6

σ should be defined as follows when the notation using the function σ̄ is not
used.

Theorem 5.12. For any phase 6 policy σ, the subset of improving switches contained in [3, Table 3]
needs to be

L̄6
σ :=

{
(d0
i , x) : σ(d0

i ) 6= x ∧ σ(d0
i ) =

{
h0
i , (b+ 1)i+1 = 1

s, (b+ 1)i+1 = 0

}
∪{

(d1
i , x) : σ(d1

i ) 6= x ∧ σ(d1
i ) =

{
s, (b+ 1)i+1 = 1

h0
i , (b+ 1)i+1 = 0

}
.

Proof. Let σ be a phase 6 policy. We show that when we assume that the switch (d0
`′−1, s) was not

applied yet, it holds that (d0
`′−1, s) ∈ L̄6

σ. For all other edges contained in L̄6
σ, the statement can be

shown in a similar way.
As discussed when proving Issue 5.11, σb(d0

`′−1) = h0
i holds and σb+1(d0

`′−1) = s needs to
hold. Since (d0

`′−1, s) was not applied yet by assumption, σ(d0
`′−1) = σb(d

0
`−1′) = h0

i . In particular,
it holds that σ(d0

`′−1) 6= s. But, by the definition of `′, we have(b + 1)`′−1+1 = (b + 1)`′ = 1.
Therefore, e ∈ L̄6

σ.

Henceforth, we always implicitly consider L̄6
σ as defined in Theorem 5.12 when referring to L6

σ,
that is, for any phase 6 policy σ, we redefine L6

σ := L̄6
σ.

Let νni+2(b) := min({n + 1} ∪ {j ∈ {i + 2, . . . , n} : bj = 1}. This term represents the next bit
equal to 1 with an index of at least i+ 2. When there is no such index, νni+2(b) is equal to n+ 1.

As we need to analyze phase 3 in detail, we partition the superset U3
σ contained in [3, Table 3]

for a phase 3 policy σ as follows, see [3, Table 3].

U3,1
σ := {(ki, kz) : σ(ki) /∈ {kz, k`′}, z ≤ `′ ∧ (b+ 1)i = 0}

U3,2
σ := {(bji,r, kz) : σ(bji,r) /∈ {kz, k`′}, z ≤ `

′ ∧ (b+ 1)i = 0}}

U3,3
σ := {(bji,r, kz) : σ(bji,r) /∈ {kz, k`′}, z ≤ `

′ ∧ (b+ 1)i+1 6= j}
U3,4
σ := {(h0

i , kl) : l ≤ νni+2(b+ 1)}
U3,5
σ := {(s, ki) : σ(s) 6= ki ∧ i < `′}

U3,6
σ := {(dji , x) : σ(dji ) 6= x ∧ i < `′}
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U3,7
σ :=

{
(d0
i , x) : σ(d0

i ) 6= x ∧ σ(d0
i ) =

{
h0
i , (b+ 1)i+1 = 1

s, (b+ 1)i+1 = 0

}

U3,8
σ :=

{
(d1
i , x) : σ(d1

i ) 6= x ∧ σ(d1
i ) =

{
s, (b+ 1)i+1 = 1

h0
i , (b+ 1)i+1 = 0

}
U3,9
σ := {(bji,l, A

j
i ) : σ(bji,l) 6= Aji}

Our goal is to show that whenever we have a phase 3 policy σ, we can apply a switch con-
tained in L3

σ while obeying the LEAST-ENTERED rule. In Lemma 5.10, we showed an upper bound
of f(b, `′) on the occurrence records of switches contained in L3

σ for a phase 3 policy σ. The next
lemma now gives a lower bound of f(b, `′) on all switches that should be applied after phase 3.
It can also be used to estimate the occurrence records of possible improving switches contained
in U3

σ . Thus, combining these two lemmas will enable us to show that the switches contained in U3
σ

do not prevent us from applying switches in L3
σ due to their occurrence record.

Lemma 5.13. Let σ be a phase 3 policy. Assume that the Policy Iteration Algorithm is started with
the policy σ∗ introduced in Definition 3.4. Then mine∈L4

σ∪L5
σ∪L6

σ
φσ(e) ≥ f(b, `′).

Proof. The policy σ is calculated after the policy σb. Thus, φσ(e) ≥ φσb(e) holds for all edges e.
It therefore suffices to show φσb(e) ≥ f(b, `′) for all e ∈ L4

σ ∪ L5
σ ∪ L6

σ. Note that the conditions
that we give here are not exactly the same as those given in [3], since we omit the additional
notation σ̄. They are, however, equivalent. We distinguish three cases.

Case 1: e ∈ L4
σ. Then, by [3, Table 3], it holds that e = (h0

i , kνni+2(b+1)) for some i ∈ {1, . . . , n}
and σ(h0

i ) /∈ {kνni+2(b+1), t}. Since σ(h0
i ) 6= t and by the way the improving switches are

applied, there needs to be a next bit equal to 1 with an index of at least i+ 2.

Since `′ is the least significant bit of b + 1, we have bj = (b + 1)j for all j ∈ {`′ + 1, . . . , n}.
Therefore, the bit equal to 1 with an index of at least i+ 2 does not change if i ≥ `′ − 1. More
formally, νnj+2(b) = νnj+2(b + 1) holds for all j ∈ {`′ − 1, . . . , n − 2}. Thus, i ≤ `′ − 2 needs
to hold since otherwise, σ(h0

i ) = kνni+2(b+1), contradicting that (h0
i , kνni+2(b+1)) is an improving

switch. As also (b+ 1)j = 0 for j < `′, it follows that νnj+2(b+ 1) = `′ for all j ∈ {1, . . . , `′− 2}.
Thus, e = (h0

i , k`′) for some i ∈ {1, . . . , `′ − 2}, and, by [3, Table 4],

φσb(e) = φσb(h0
i , k`′) = f(b, `′).

Case 2: e ∈ L5
σ. Then, by [3, Table 3] and since L5

σ = {(s, k`′)}, we have e = (s, k`′). Therefore,
because φσb(s, k`′) = f(b, `′) by [3, Table 4] it holds that

φσb(e) = φσb(s, k`′) = f(b, `′).

Case 3: e ∈ L6
σ. By Theorem 5.12, it holds that

L6
σb

= {(d1
`′−1, h

1
`′−1), (d0

`′−1, s)} ∪ {(d0
i , h

0
i ), (d

1
i , s) : i ∈ {1, . . . , `′ − 2}}.

Since L6
σ ⊆ L6

σb
can be obtained by a result similar to Lemma 5.4 it suffices to show the

inequality for all e ∈ L6
σb

.

First, let e = (d0
`′−1, s). Then, by [3, Table 4],

φσb(d0
`′−1, s) = f(b, (`′ − 1) + 1) + j · bi+1 = f(b, `′ − 1 + 1)− 0 · bi+1 = f(b, `′).

Analogously, for e = (d1
`′−1, h

1
`′−1),

φσb(d1
`′−1, h

1
`′−1) = f(b, (`′ − 1) + 1) + (1− j) · bi+1 = f(b, `′)− 0 · bi+1 = f(b, `′).

Therefore, φσb(e) ≥ f(b, `′) holds for e ∈ {(d0
`′−1, s), (d

1
`′−1, h

1
`′−1)}.

Let e = (d1
i , s) for some i ∈ {1, . . . , `′ − 2}. Then, e is an improving switch if and only if

the (i + 1)-th bit switches from 1 to 0. We observe that the first transition in which (d1
i , s) is
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an improving switch is therefore the transition from σ2i+1−1 to σ2i+1 . As the Policy Iteration
Algorithm is initialized with the policy representing the number 0, the number b ∈ Bn is rep-
resented after b many transitions. Therefore, e is an improving switch every 2i+1-th transition
as the i+ 1 least significant bits are all equal to 0 again once the number b = 2i+1 is reached.

We now interpret φσb(e) as a “counter”, which increases during the application of the Policy
Iteration Algorithm. By what we just discussed, this counter increases every 2i+1 transitions
and is initialized with zero. In contrast to this, the “counter” f(b, `′) increases the first time
when the number 2`

′−1 is reached. But then, after another 2`
′−1 transitions the number 2`

′

is reached and we have `(2`
′
) = `′ + 1. Therefore, it takes another 2`

′−1 transitions until
the counter f(b, `′) increases another time. In short, the counter f(b, `′) increases every 2`

′

iterations, excluding the first increase which is reached after 2`
′−1 iterations. Since i+1 ≤ `′−1

follows immediately from i ≤ `′−2, this shows that whenever the counter f(b, `′) is increased,
the counter φσb(e) must have been increased at least once before or in the same iteration.
Therefore, φσb(e) ≥ f(b, `′).

The statement follows for e = (d0
i , h

0
i ) by the same arguments in the following way. The

switch (d1
i , s) is applied whenever the (i+ 1)-th bit is no longer equal to 1. The switch (d0

i , h
0
i )

is applied whenever the (i+1)-th bit becomes 0. Both of these happen whenever the (i+1)-th
bit switches from 1 to 0 and thus, the same arguments used before can be applied.

This lemma can now be used to show that the occurrence records of edges contained in the
sets U3,4

σ to U3,9
σ are too large and that no improving switch contained in one of these sets will be

applied for any phase 3 policy when following the LEAST-ENTERED rule.

Lemma 5.14. Let σ be a phase 3 policy. For all e ∈ L3
σ and ẽ ∈ Iσ ∩

(
U3,4
σ ∪ · · · ∪ U3,9

σ

)
, it holds

that φσ(e) ≤ φσ(ẽ).

Proof. Let σ be a phase 3 policy and let e ∈ L3
σ. Then, φσ(e) ≤ f(b, `′) by Lemma 5.10. It thus

suffices to show φσ(ẽ) ≥ f(b, `′) for all ẽ ∈ Iσ ∩
(
U3,4
σ ∪ · · · ∪ U3,9

σ

)
. We distinguish in which of the

sets U3,k the switch ẽ is contained.

Case 1: ẽ ∈ U3,4
σ . Then ẽ = (h0

i , kl) for some l ≤ νni+2(b + 1), where νni+2(b + 1) again denotes
the first bit equal to 1 with an index of at least i+ 2. If there is no such bit, νni+2(b+ 1) is equal
to n + 1. By [3, Table 4], we have φσb(ẽ) = f(b, l) and since σ is reached after σb, we also
have φσ(ẽ) ≥ φσb(ẽ) = f(b, l). First, assume that l ≤ `′. Then, by Proposition 2.4 (4), it holds
that f(b, l) ≥ f(b, `′), implying φσ(ẽ) ≥ f(b, `′).

Now assume that l > `′. We show that this results in a contradiction. To be precise, we show
that (h0

i , kl) is not an improving switch in this case, i.e., we show VALσ(σ(h0
i )) ≥ VALσ(kl).

To simplify the notation, let ν := νni+2(b+ 1).

First observe that σ(h0
i ) ∈ {t, ki+2, . . . , kn}, see Figure 1. Therefore ν 6= n + 1 needs to hold

since the edge (h0
i , kn+1) does not exist. In addition, by the definition of ν and the invariants

discussed in Section 2.1, σ(h0
i ) = kν . We thus need to show VALσ(kν) ≥ VALσ(kl).

Since l > `′ by assumption and ν ≥ l by the choice of ẽ, also ν > `′. Therefore, since `′ is
the least significant set bit of b + 1, we have bj = (b + 1)j for all j ∈ {ν, . . . , n}. This implies
that during phase 1, no bicycle of one of these levels was opened and the target of none of
the vertices kν , . . . , kn was changed during phase 2. Therefore, using the notation introduced
in Lemma 5.1, it holds that VALσ(kν) = Sν . By the same lemma, we also get VALσ(kl) ≤ Tl.
Thus, using bj = (b+ 1)j for all j > `′ and l > `′, we obtain,

VALσ(kl) ≤ Tl =
∑

j∈{l,...,n}:(b+1)j=1

[N2j+8 −N2j+7 −N7 +N6]

=
∑

j∈{l,...,n}:bj=1

[N2j+8 −N2j+7 −N7 +N6].

By definition, ν is the smallest index larger than or equal to i+ 2 such that the corresponding
bit of b + 1 is equal to 1. Since σ(h0

i ) ∈ {t, ki+2, . . . , kn}, also l ≥ i + 2 needs to hold, see
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Figure 1. Therefore, since l ≤ ν, this implies that bl = bl+1 = · · · = bν−1 = 0 and using the
previous inequality we obtain

VALσ(kl) ≤
∑

j∈{l,...,n}:bj=1

[N2j+8 −N2j+7 −N7 +N6]

=
∑

j∈{ν,...,n}:bj=1

[N2j+8 −N2j+7 −N7 +N6]

= Sν

= VALσ(kν).

This shows that the edge ẽ is not an improving switch. Thus, l > `′ implies ẽ /∈ Iσ. There-
fore, φσ(ẽ) ≥ f(b, `′) holds for all ẽ ∈ Iσ ∩ U3,4.

Case 2: ẽ ∈ U3,5
σ . Then ẽ = (s, ki) for some i < `′ and σ(s) 6= ki. Therefore, by [3, Table 4], we

have that φσb(s, ki) = f(b, i). Since σ is reached after σb, we also have φσ(s, ki) ≥ φσb(s, ki).
Since, by assumption, i < `′ and by Proposition 2.4 (4), this implies

φσ(s, ki) ≥ φσb(s, ki) = f(b, i) ≥ f(b, `′).

Case 3: ẽ ∈ U3,6
σ . Then ẽ = (dji , x) for x ∈ {s, hji} where i ∈ {1, . . . , n}, j ∈ {0, 1}, σ(dji ) 6= x

and i < `′. First, assume that x = s. Then σ(dji ) 6= x = s, implying σ(dji ) = hji . Since i < `′,
it holds that bi+1 = 1 for i 6= `′ − 1 and bi+1 = 0 for i = `′ − 1. In addition, the target vertex
of dji can only be changed during phase 6 of the current transition and was thus not changed
yet. This implies that we either have dji = d1

i and σ(d1
i ) = h1

i for some i < `′, i 6= `′ − 1 or
dji = d0

`′−1 and σ(dji ) = σ(d0
`′−1) = h0

`′−1 if i = `′ − 1. For these switches we however already
showed in the proof of Lemma 5.13 that φσb(ẽ) ≥ f(b, `′) holds and thus, also φσ(ẽ) ≥ f(b, `′)
holds.

Now assume that x = hji , that is, ẽ = (dji , h
j
i ). Analogously to the case x = s it can then be

shown that we either have hji = h0
i and σ(d0

i ) = h0
i for i < `′ − 1 or hji = h1

i and σ(d1
i ) = h1

i

for i = `′ − 1. Again, these edges have already been investigated in the proof of Lemma 5.13
and the inequality φσ(ẽ) ≥ f(b, `′) was shown there.

Case 4: ẽ ∈ U3,7
σ or ẽ ∈ U3,8

σ . Since U3,7
σ , U3,8

σ ⊆ L6
σ and φσ(ẽ) ≥ f(b, `′) holds for all ẽ ∈ L6

σ

by Lemma 5.13, the statement follows immediately.

Case 5: ẽ ∈ U3,9
σ . The set U3,9

σ contains edges that are improving switches since phase 1. We
thus refer to Section 4 and the description of the application of these edges. We need to
investigate the occurrence record of switches that we could have applied during phase 1 but
did not apply. By the rules I to V and Theorem 4.2, we only switched one instead of two edges
within a bicycle Aji when φσb(Aji ) = b held at the beginning of phase 1. Since we always
chose to switch the edge with the lower occurrence record in a bicycle and their occurrence
records differ at most by one by Equation (4.3), this implies that for any ẽ = (bji,l, A

j
i ) ∈ U3,9

σ

with σ(bji,l) 6= Aji the equality φσb(bji,l, A
j
i ) =

⌈
b
2

⌉
=
⌊
b+1

2

⌋
needs to hold. Since

⌊
b+1

2

⌋
= f(b, 1)

holds by Proposition 2.4 (3), `′ ≥ 1, and Proposition 2.4 (4), we obtain

φσ(ẽ) ≥ φσb(ẽ) = f(b, 1) ≥ f(b, `′).

We now show that applying certain improving switches prevents other switches from being
applied. To do so, we first introduce subsets of U3,1

σ , U3,2
σ and U3,3

σ . The intuitive idea behind
introducing these subsets is to “slice” these sets such that for each such slice, there is an improving
switch that prevents the whole slice from being applied.

Definition 5.15 (Slices). Let σ be a phase 3 policy and i ∈ {1, . . . , n}. Then

S3,1
i,σ := {(ki, kz) : σ(ki) /∈ {kz, k`′}, z ≤ `′ ∧ (b+ 1)i = 0}
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is called slice of U3,1
σ . For i ∈ {1, . . . , n} and j, l ∈ {0, 1},

S3,2
i,j,r,σ := {(bji,r, kz) : σ(ki) /∈ {kz, k`′}, z ≤ `′ ∧ (b+ 1)i = 0}

is called slice of U3,2
σ . For i ∈ {1, . . . , n} and j, l ∈ {0, 1},

S3,3
i,j,r,σ := {(bji,r, kz) : σ(ki) /∈ {kz, k`′}, z ≤ `′ ∧ (b+ 1)i 6= j}

is called slice of U3,3
σ .

Obviously, for a fixed phase 3 policy σ and each of U3,1
σ , U3,2

σ and U3,3
σ , the set of all slices as

specified in Definition 5.15 partitions the corresponding set.
We now show that the switches contained in L3

σ prevent the improving switches contained in
certain slices from being applied.

Lemma 5.16. The following statements hold.

1. Let σ be the phase 3 policy in which the improving switch (ki, k`′) is applied. Let σ′ be an
arbitrary phase 3 policy of the same transition reached after the policy σ. Then Iσ′ ∩ S3,1

i,σ′ = ∅.

2. Let σ be the phase 3 policy in which the improving switch (bji,l, k`′) with σ(bji,l) 6= k`′ and
(b+ 1)i = 0 is applied. Let σ′ be an arbitrary phase 3 policy of the same transition reached after
the policy σ. Then Iσ′ ∩ S3,2

i,j,l,σ′ = ∅.

3. Let σ be the phase 3 policy in which the improving switch (bji,l, k`′) with σ(bji,l) 6= k`′ and
(b + 1)i+1 6= j is applied. Let σ′ be an arbitrary phase 3 policy of the same transition reached
after the policy σ. Then Iσ′ ∩ S3,3

i,j,l,σ′ = ∅.
Proof. We show the first statement in detail and only sketch the proof of the other two statements
since all of them use the same arguments.

1. Let σ′ be an arbitrary phase 3 policy reached after σ. Let ẽ ∈ S3,1
i,σ′ . We show that ẽ is not an

improving switch with respect to σ′.

We observe that due to the application of e in σ and since σ′ is reached after σ, we have
σ′(ki) = k`′ . Since ẽ ∈ S3,1

i,σ′ , we have ẽ = (ki, kz) for some z ≤ `′ such that σ′(ki) 6= kz. It thus
suffices to show that VALσ′(k`′) ≥ VALσ′(kz). Since σ′ is a phase 3 policy, by Lemma 5.1,

VALσ′(kz) ≤
∑

j∈{z,...,n}:(b+1)j=1

[
(−N)2j+8 + (−N)2j+7 + (−N)7 + (−N)6

]
. (5.1)

However, since σ[e] is also a phase 3 policy, the active bicycle of level `′ was already closed
(phase 1) and k`′ points towards the lane containing the active bicycle (phase 2). In addition,
since `′ = `(b+ 1), no bicycle corresponding to a level j > `′ was opened as bj = (b+ 1)j for
these indices. This implies

VALσ[e](k`′) =
∑

j∈{`′,...,n}:(b+1)j=1

[
(−N)2j+8 + (−N)2j+7 + (−N)7 + (−N)6

]
. (5.2)

As the values of the vertices are non-decreasing during the application of the Policy Iteration
Algorithm, we have VALσ′(k`′) ≥ VALσ[e](k`′). Since (b + 1)j = 0 for all j < `′, combining
Equations (5.1) and (5.2) yields

VALσ′(k`′) ≥ VALσ[e](k`′)

=
∑

j∈{`′,...,n}:(b+1)j=1

[
(−N)2j+8 + (−N)2j+7 + (−N)7 + (−N)6

]
=

∑
j∈{1,...,n}:(b+1)j=1

[
(−N)2j+8 + (−N)2j+7 + (−N)7 + (−N)6

]︸ ︷︷ ︸
>0 ∀j≥1

≥
∑

j∈{z,...,n}:(b+1)j=1

[
(−N)2j+8 + (−N)2j+7 + (−N)7 + (−N)6

]
≥ VALσ′(kz)

Thus, VALσ′(k`′) ≥ VALσ′(kz) and ẽ = (ki, kz) is not an improving switch for the policy σ′.
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2. We need to show that for every phase 3 policy σ′ reached after applying e = (bji,r, k`′) in σ, no
switch contained in S3,2

i,j,r,σ′ is an improving switch. Let σ′ be a phase 3 policy reached after σ.
Then, σ[e](bji,r) = k`′ and thus VALσ[e](b

j
i,r) = VALσ[e](k`′). Since any ẽ ∈ S3,2

i,j,r,σ′ is of the
form ẽ = (bji,r, kz) for some z ≤ `′, it therefore suffices to show VALσ′(k`′) ≥ VALσ′(kz).
This however follows by the same estimations used in the first case.

3. This is proven analogously to 2.

This enables us to prove the following lemma which allows us to show that it is possible to
always choose a switch contained in L3

σ when applying the LEAST-ENTERED pivot rule.

Lemma 5.17. Let σ be a phase 3 policy. Then there is an edge e ∈ L3
σ ∩ arg minẽ∈Iσ φ

σ(ẽ).

Proof. We first observe that I3
σ 6= ∅ for any phase 3 policy σ since the set of improving switches is

empty if and only if σ is an optimal policy. Let e ∈ arg minẽ∈Iσ φ
σ(e).

Since L3
σ ⊆ Iσ ⊆ U3

σ by [3, Lemma 4], either e ∈ L3
σ or e ∈ U3

σ \ L3
σ. Assume that the second

case holds, since the statement follows directly otherwise. We observe that since U3,1
σ , . . . , U3,9

σ

form a partition of U3
σ , there is exactly one k ∈ {1, . . . , 9} with e ∈ U3,k

σ .
Assume that k ∈ {4, . . . , 9}. Then, by Lemma 5.14, φσ(e) ≥ φσ(ẽ) for all ẽ ∈ L3

σ since e ∈ Iσ.
Since e minimizes the occurrence record, this implies φσ(e) = φσ(ẽ) for all ẽ ∈ L3

σ. This in particu-
lar implies that there is an ẽ ∈ L3

σ minimizing the occurrence record, so ẽ ∈ arg minẽ∈Iσ φ
σ(ẽ)∩L3

σ.
Now assume that k ∈ {1, 2, 3}. We analyze these cases one after another.

Case 1: e ∈ U3,1
σ . Then e = (ki, kz) for some i ∈ {1, . . . , n} and some z ∈ {1, . . . , `′} such

that σ(ki) /∈ {kz, k`′} and (b+1)i = 0. Thus e ∈ S3,1
i,σ . First assume that (ki, k`′) was not applied

yet. Then, φσ(ki, k`′) = φσb(ki, k`′) and we additionally obtain φσb(ki, k`′) = f(b, `′, {(i, 0)})
by [3, Table 4]. Together with z ≤ `′ and Proposition 2.4 (4), this implies

φσ(ki, k`′) = φσb(ki, k`′) = f(b, `′, {(i, 0)}) ≤ f(b, z, {(i, 0)}) = φσb(e) ≤ φσ(e).

Since e is chosen such that it minimizes the occurrence records among all improving switches,
we have φσ(ki, k`′) = φσ(e). This however implies that (ki, k`′) ∈ arg minẽ∈Iσ φ

σ(ẽ). There-
fore, the statement follows from (ki, k`′) ∈ L3

σ.

It remains to show that (ki, k`′) was not applied yet. Towards a contradiction, assume that it
was applied before in this transition. Then there was another phase 3 policy σ′ reached before
σ such that (ki, k`′) was applied in σ′. But then, by Lemma 5.16, it holds that Iσ ∩ S3,1

i,σ = ∅
since the policy σ is reached after σ′. This is a contradiction since e ∈ Iσ and e ∈ S3,1

i,σ .

Case 2: e ∈ U3,2
σ . Then e = (bji,r, kz) for some i ∈ {1, . . . , n} and some z ∈ {1, . . . , `′} such

that σ(bji,l) /∈ {kz, k`′} and (b + 1)i = 0. Hence, e ∈ S3,2
i,j,r,σ. First assume that the improving

switch (bji,r, k`′) was not applied yet. Then, since z ≤ `′, by [3, Table 4] and by Proposi-
tion 2.4 (4),

φσ(bji,r, k`′) = φσb(bji,l, k`′)

= f(b, `′, {(i, 0)}) + f(b, `′, {(i, 1), (i+ 1, 1− j)})
≤ f(b, z, {(i, 0)}) + f(b, z, {(i, 1), (i+ 1, 1− j)})
= φσb(e)

≤ φσ(e).

Since e is chosen such that it minimizes the occurrence records among all improving switches,
we have φσ(bji,r, k`′) = φσ(e). This implies that (bji,r, k`′) ∈ arg minẽ∈Iσ φ

σ(ẽ). Therefore, the
statement follows from (bji,r, k`′) ∈ L3

σ.

It remains to show that (bji,r, k`′) was not applied yet. However, assuming that this switch was
applied before results in the same contradiction as in the last case when applying Lemma 5.16.

Case 3: e ∈ U3,3
σ . This follows analogously to the previous case.
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Lemma 5.17 does not immediately imply that all improving switches belonging to phase 3 that
should be applied according to [3] can be applied. Although Lemma 5.17 ensures that we can
chose an improving switch contained in L3

σ for every phase 3 policy σ, it is not clear why it cannot
happen that a phase 4 policy is reached although not all switches of phase 3 were applied yet. This
however can be shown when using Lemmas 5.3 and 5.4 as follows.

Theorem 5.18. There is an ordering of the improving switches and an associated tie-breaking rule
compatible with the LEAST-ENTERED pivot rule during phase 3 such that all improving switches con-
tained in L3

σb
are applied and the LEAST-ENTERED pivot rule is obeyed during phase 3.

Proof. Let σ denote the first phase 3 policy of the transition from σb to σb+1. Then, L3
σ = L3

σb
by

Lemma 5.3. By Lemma 5.17, there is an edge e1 ∈ L3
σ minimizing the occurrence record Iσ. By

Lemma 5.4, applying this switch results in a new phase 3 policy σ[e1] such that L3
σ[e1] = L3

σ \ {e1}.
Now, again by Lemma 5.17, there is an edge e2 ∈ L3

σ[e1] minimizing the occurrence record Iσ[e1].
We can now apply the same argument iteratively until we reach a phase 3 policy σ̂ such

that
∣∣L3
σ̂

∣∣ = 1 while only applying switches contained in L3
σb

. Then, by construction and by
Lemma 5.17, (e1, e2, . . . ) defines an ordering of the edges of L3

σb
and an associated tie-breaking

rule that always follow the LEAST-ENTERED rule. When the policy σ̂ with
∣∣L3
σ̂

∣∣ = 1 is reached,
applying the remaining improving switch results in a phase 4 policy. Then, all improving switches
contained in L3

σb
were applied and the LEAST-ENTERED pivot rule was obeyed.

Note that the ordering used in the proof of Theorem 5.18 avoids Issue 5.9: As we proved
in Issue 5.9, it is not possible to apply the improving switches in level `(b + 1) and level n − 1
consistently such that all switches of level `(b + 1) are applied before any switch of level n + 1
is applied and vice versa. By further analyzing the proof of Issue 5.9, it can be shown that the
same holds for the improving switches of other levels. Our ordering always chooses an improving
switch that minimizes the occurrence record regardless of the level, and in particular does not
apply improving switches level by level in an order that only depends on the least significant set
bit.

6 Conclusion

In this paper we revisited the lower bound example constructed in [3] that yields a subexponential
lower bound on the Simplex Algorithm using the LEAST-ENTERED pivot rule. We discussed the ex-
ample in general and highlighted several issues with the construction. We proposed alterations of
the construction and the application of the Policy Iteration Algorithm to resolve all of these issues.
In particular, we showed that the initial policy for the policy iteration needs to be changed and pro-
vided a new initial policy (Section 3). We further showed that the description of occurence records
are not entirely accurate and corrected the inaccuracy (Section 4). Most notably, we proved that
the order in which Friedmann applies certain improving switches, as well as simple adaptations of
this order, are inconsistent with the LEAST-ENTERED rule (Section 5), and we implicitly provided a
more involved ordering and associated tie-breaking rule that overcome this issue.

Crucially, our changes retain the macroscopic properties of the construction, and, as a conse-
quence, we are able to recover Friedmann’s subexponential lower bound.
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A Imported Tables

This appendix contains tables of [3] used in this paper. They are labeled the same way as in [3]
and use the exact notation used in [3]. The tables use the alternative notion σ̄ for referring to the
target of a vertex with respect to a policy σ that we omitted in our paper. It is defined as follows.

σ(v) t ki h∗∗ s A∗∗ cji
σ̄(v) n+ 1 i 1 0 0 −j

Also, as it is done in [3]we write σ̄(Aji ) = 1 if σ(bji,0) = Aji and σ(bji,1) = Aji and σ̄(Aji ) = 0
otherwise. In addition, the notation b′ = b+ 1 and νji := min({n+ 1} ∪ {j ≥ i : bj = 0}) is used.

The first table shows when a policy σ is considered a phase p policy.

Phase 1 2 3 4 5 6

σ̄(s) r r r r r r′

σ̄(d0i ) 1−bi+1 1−bi+1 1− bi+1 1− bi+1 1− bi+1 1− bi+1, 1− b′i+1

σ̄(d1i ) bi+1 bi+1 bi+1 bi+1 bi+1 bi+1, b
′
i+1

σ̄(h0
i ) νni+2(b) νni+2(b) νni+2(b) νni+2(b), νni+2(b′) νni+2(b′) νni+2(b′)

σ̄(b∗∗,∗) 0, r 0, r 0, r, r′ 0, r′ 0, r′ 0, r′

σ̄(A
bi+1

i ) bi ∗ ∗ ∗ ∗ ∗

σ̄(A
b′i+1

i ) ∗ b′i b′i b′i b′i b′i

Phase 1-2 3-4 5-6

σ̄(ki)

{
r if bi = 0

−bi+1 if bi = 1


r, r′ if b′i = 0 ∧ bi = 0

−bi+1, r
′ if b′i = 0 ∧ bi = 1

−b′i+1 if b′i = 1

{
r′ if b′i = 0

−b′i+1 if bi = 1′

Phase 3 Side Conditions

(a) ∀i.([b′i = 0 and (∃j, l.σ̄(bji,l) = r′)] implies σ̄(ki) = r′)
(b) ∀i, j.([b′i = 0, b′j = 0, σ̄(ki) = r′ and σ̄(kj) 6= r′] implies i > j)

Table 2: Policy Phases where b′ = b+ 1, r = νn1 (b), r′ = νn1 (b′) and ∗ is arbitrary

The second table shows subsets Lpσ and supersets Upσ of the set of improving switches of a
phase p policy. Note that this table shows the original Table contained in [3].

Ph. p Improving Switches Subset Lpσ Improving Switches Superset Upσ
1 {(bji,l, A

j
i )|σ(bji,l 6= Aji} L1

σ

2 {(kr′ , c
b′
r′+1

r′ )} L1
σ ∪ L2

σ

3
{(ki, kr′)|σ̄(ki) 6= r′ ∧ b′i = 0}∪
{(bji,l, kr′)|σ̄(bji,l) 6= r′ ∧ b′i = 0}∪
{(bji,l, kr′)|σ̄(bji,l) 6= r′ ∧ b′i+1 6= j}

U4
σ ∪{(ki, kz)|σ̄(ki) /∈ {z, r′}, z ≤ r′∧ b′i = 0}∪
{(bji,l, kz)|σ̄(bji,l) /∈ {z, r

′}, z ≤ r′ ∧ b′i = 0}∪
{(bji,l, kz)|σ̄(bji,l) /∈ {z, r

′}, z ≤ r′ ∧ b′i+1 6= j}
4 {(h0

i , kνni+2(b
′))|σ̄(h0

i ) 6= νni+2(b′)} U5
σ ∪ {(h0

i , kl)|l ≤ νni+2(b′)}

5 {(s, kr′)}
U6
σ ∪ {(s, ki)|σ̄(s) 6= i ∧ i < r′}∪
{(dji , x)|σ(dji ) 6= x ∧ i < r′}

6 {(d0i , x)|σ(d0i ) 6= x∧ σ̄(d0i ) 6= b′i+1}∪
{(d1i , x)|σ(d1i ) 6= x ∧ σ̄(d1i )

′bi+1)} L1
σ ∪ L6

σ

Table 3: Improving Switches (where b′ = b+ 1 and r′ = νn1 (b′))

The last table shows the occurrence records of a policy σb representing the number b ∈ Bn
according to [3]. In this table, the notation g∗ := g(b, i, {(i+ 1, j)}) is used.
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Edge e (∗, t) (s, kr) (h0
∗, kr)

φb(e) 0 f(b, r) f(b, r)

Edge e (bji,∗, kr)

φb(e) f(b, r, {(i, 0)}) + f(b, r, {(i, 1), (i+ 1, 1− j)})
Edge e (ki, kr) (ki, c

j
i )

φb(e) f(b, r, {(i, 0)}) f(b, i, {(i+ 1, j)})
Edge e (dji , s) (dji , h

j
i )

φb(e) f(b, i+ 1)− j · bi+1 f(b, i+ 1)− (1− j) · bi+1

Complicated Conditions
|φb(bji,0, A

j
i )− φ

b(bji,1, A
j
i )| ≤ 1

φb(bji,0, A
j
i ) + φb(bji,1, A

j
i ) =

g∗ + 1 if bi = 1 and bi+1 = j

g∗ + 1 + 2 · z if bi+1 6= j and z := b− g∗ − 2i−1 < 1
2
(b− 1− g∗)

b otherwise

Table 4: Occurrence Records

B Omitted Proofs

This appendix contains the proofs omitted from the main part of this paper.

Proposition 2.4. Let b ∈ Bn and i, j ∈ {1, . . . , n}. Then the following hold:

1. Let S, S′ be schemes and S ⊆ S′. Then M(b, S′) ⊆M(b, S).

2. Let S, S′ be schemes and S ⊆ S′. Then f(b, i, S′) ≤ f(b, i, S).

3. It holds that f(b, j) = f(b, j, {(i, 0)}) + f(b, j, {(i, 1)}) and f(b, j) =
⌊
b+2j−1

2j

⌋
.

4. Let i ≤ j and S be a scheme. Then f(b, j, S) ≤ f(b, i, S) and thus f(b, j) ≤ f(b, i).

5. Let i < j. Then F (b, j) = F (b, j, {(i, 0)}) and thus f(b, j, {(i, 0)}) = f(b, j).

Proof. We prove the statements one after another.

1. Let S, S′ be schemes such that S ⊆ S′. Since every number matching the scheme S′ also
matches the scheme S, it follows that M(b, S′) ⊆M(b, S) for all numbers b ∈ Bn.

2. This follows directly from (1) and by the definition of f(b, i, S′).

3. The first statement follows immediately since for every binary number b ∈ Bn and index
i ∈ {1, . . . , n}, either bi = 0 or bi = 1.

It remains to show that f(b, j) =
⌊
b+2j−1

2j

⌋
for b ∈ Bn and j ∈ {1, . . . , n}. We observe

that 2j−1 is the smallest number matching Sj = {(j, 1), (j − 1, 0), . . . , (1, 0)}. This implies
the statement for b < 2j−1. Now, let mi denote the i-th number matching the scheme Sj .
Then, by the previous argument, m1 = 2j−1. As only numbers ending on the subsequence
(1, 0, . . . , 0) of length j match the scheme Sj , we immediately have mi = (i− 1) · 2j + 2j−1.
Since f(mi, j) = i by definition and⌊

mi + 2j−1

2j

⌋
=

⌊
(i− 1) · 2j + 2j−1 + 2j−1

2j

⌋
=

⌊
i · 2j

2j

⌋
= i,

we get f(mi, j) =
⌊
mi+2j−1

2j

⌋
.

30



Now let b ∈ Bn and choose i ∈ N such that b ∈ [mi,mi+1). Then, by the definition of f(b, j),
we have f(b, j) = i. In addition, by the choice of i,⌊

b+ 2j−1

2j

⌋
≥
⌊
mi + 2j−1

2j

⌋
= f(mi, j) = i (B.1)

and ⌊
b+ 2j−1

2j

⌋
<

⌊
mi+1 + 2j−1

2j

⌋
= f(mi+1, j) = i+ 1. (B.2)

By integrality, Equations (B.1) and (B.2) imply that
⌊
b+2j−1

2j

⌋
= i and thus,

f(b, j) = i =

⌊
b+ 2j−1

2j

⌋
.

4. Let i ≤ j and b ∈ Bn. Let Sj := {(j, 1), (j − 1, 0), . . . , (1, 0)} and define Si similarly. Consider
any number b̃ ≤ b matching both the schemes Sj and S. Then, since i ≤ j there needs to be
at least one number b̂ ≤ b̃ matching Si and S. This implies f(b, j, S) ≤ f(b, i, S).

The second inequality follows immediately when setting S := ∅.

5. Let i < j and define Sj := {(j, 1), (j − 1, 0), . . . , (1, 0)}. Since i < j, we have (i, 0) ∈ Sj ,
immediately implying F (b, j) = F (b, j, {(i, 0)}) .

Lemma 5.3. Let b ∈ Bn and let σ be the first phase 3 policy of the transition from σb to σb+1.
Then L3

σ = L3
σb

, and L3
σb

is the set of improving switches that should be applied during phase 3
according to [3, Table 2].

Proof. Consider the invariants on given in [3, Page 9]. There it is stated that2 “(1) all active bicycles
corresponding to set bits are closed, (2) all other bicycles are completely open, moving to the least set
bit, (3) all entry points ki move to the next active bicycle if bit i is set and to the least set bit otherwise
[...]”. The set L3,1

σ contains exactly the edges corresponding to entry vertices whose corresponding
bit is not set in b+ 1. That is, it contains exactly the edges that need to be applied such that aspect
(3) of the description is fulfilled. In addition, the set L3,2

σ contains the edges of bicycles that need
to be open since the corresponding bit of b+ 1 is equal to zero. Similarly, the set L3,3

σ contains the
edges of inactive bicycles. Since the edges of all of these bicycles need to switch to the vertex k`′
in order to obey the second aspect of the description given above, the set L3

σ completely describes
the set of improving switches that should be applied during phase 3.
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