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Abstract

Part based object detection with a flexible context constraint

Supporting object detection with easy context

by Karl Robert Biehl

This work describes an object detection system which integrates flexible spatial context constraints to improve detection
performance. It allows spatial and scale deformation of the object relative to its context. The contextual model extends
an existing deformable parts model and is trained on partially labeled data using a latent SVM. The approach can be
applied to any object detection problem where the object class always exists in one typical image context, but the context
can appear independently. A new scoring method is used to model the asymmetric relationship between object and
context. Furthermore, the system enables the use of contextual non-maximum suppression, a context sensitive way to
discard redundant detections. Trained on our combined dataset of dresses and persons, the system achieves a significant
improvement in detection performance when compared with basic deformable parts models.

Keywords. spatial constraints, context constraints, clothing detection, object detection, deformable models
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1 Introduction

Clothing detection in images is an area where current object detection methods fail to achieve good performance. How-
ever, detection of objects classes like faces, pedestrians and cars has been targeted by many researchers. A typical
benchmark for object detectors is the PASCAL Visual Object Challenge dataset. It includes several object classes which
vary strongly in difficulty. While top of the line object detectors trained on bikes, cars, horses and people usually have
good detection performance, other object classes like chairs, dogs, cows and plants tend to have lower results.1 While
not a part of this dataset, clothing object classes seem to be in this latter difficult category.2

Interestingly, pedestrian and people detectors fare relatively well.3 In many real life situations clothes are mostly present
when they are being worn by people. Thus, in most photos clothes should appear in the wearer’s direct proximity.
Furthermore, different types of clothes have different locations on the wearer’s body, e.g. most clothes like trousers,
shirts, dresses are centered horizontally on the body, whereas hats, shirts, belts, trousers, shoes all have distinct vertical
positions on the wearer’s body. To make use of these spatial relationships between wearer and clothing objects this work
describes an object detector, that combines two deformable parts models by Felzenszwalb et al. [2010a], one representing
the object, the other representing the context, where the context model enforces a flexible context constraint on the object
model.

The idea in object detection to infer knowledge between instances of multiple object classes has been examined on several
occasions already. Torralba et al. for instance introduced Boosted Random Fields (BRFs), which leverage boosting to learn
the graph structure and locality potentials of a conditional random field (CRF).4 They are training their model to “first
detect easy (and large) objects, since these reduce the error of all classes the fastest. The easy-to-detect objects can then
pass information to the harder ones”5. For example they infer the position of cars by detecting the road first, or detecting
a computer screen, then the keyboard and ultimately the mouse.6

Assuming a perfect people detector and that clothing is only present when being worn, one could implement a model
which detects clothes given the presence of a person. The resulting classifier would prevent false positive detections in
image areas where no person exists. According to our assumptions if we know there is no person, there cannot be any
clothes, therefore reducing the size of the clothing classification problem. Instead of having to look for each type of
clothing in the whole image the possible locations are at best tightly constrained. This should lead to a higher precision
compared to a classifier without this contextual constraint.

In this work we try to leverage these spatial constraints between clothes and the wearer – or in general between objects
and their context. This should still be possible with an imperfect but sufficiently good people detector as is available
today.

Our goal is defined by leveraging knowledge from the following assumptions:

Contextual model assumptions:
There is an object class and a context class with the following relationship:
· Object instances can only exist in context instances.
· Context instances can exist with or without an object instance.

This leaves the question: why is detection of clothing so difficult? There are different possibilities:

Taxonomy: It is difficult to categorize different types of clothing items. One could differentiate between top and bottom,
between dress, shirt, etc., or between mini, maxi or evening dress.

A practical taxonomy would be as coarse as possible without allowing too much inner class variability. Training data
has to be obtained, so each category increases costs when using a supervised learning method. Increased inner class
variability on the other hand makes classification for object detectors harder.

Appearance: Clothing items come in a variety of shapes, material and textures. First, clothes have no rigid shape, they
partly gain their shape by the person wearing it. In this work the shape of clothes is defined by the shape the item
portraits in a worn state. Most items of clothing cannot be correctly classified even by humans when just being dropped
on the floor. The item’s material influences reflection. Denim mostly has a matte appearance. Shining leather types on
the other hand can exhibit large contrasts dependent on the light source and thus introduce edges which could impair
many gradient feature based detectors. The same can be true for textures and prints. They often contain higher contrasts
than the item relative to its background.

1 See results of competition "comp3" in Everingham et al. [2012].
2 The detection performance of deformable parts models by Felzenszwalb et al. [2010a] trained on our dresses dataset suggests this.
3 See results for category people in Everingham et al. [2012] and results for person classifier trained on INRIA Person data set in Girshick et al.

[2012a].
4 Torralba et al. [2004, p. 2].
5 Torralba et al. [2004, p. 8].
6 See Torralba et al. [2004, p. 8].
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Occlusion: Clothing items are usually worn in combination. Especially accessories like scarves or bags often occlude
other items. Wearing a jacket on top of a dress might occlude the dresses’ arm parts left and right, while still leaving the
center and bottom visible.

This work does not focus on finding ways to solve these problems of clothing detection directly, instead this work focusses
on using domain specific knowledge that could significantly prune candidate clothing locations in an image, and therefore
simplify the object detection problem. This could reduce false positive detections as well as enable the object detector to
directly focus on the smaller problem, responding to more specific details, which would have less meaning or could have
been deceptive in a global scope.

This work extends the deformable parts object detector by Felzenszwalb et al. with knowledge about the object’s spatial
position relative to its context. An obvious choice as the context for clothing items is the person wearing them. As noted
above, using the relative spatial position one can constrain object detections to certain areas near the context. Context is
provided to the object detector in the form of a priori knowledge from a simpler and more reliable pedestrian detector.
In the following, the term object will be used to describe the class that should be detected, and context will be used to
describe the class that is used to gain a priori knowledge.

Ultimately this approach could lead to a model where one context detector is responsible for classifying rough obvious
features and one object detector can focus solely on fine details. In practice this could mean that the context model
detects the person, and different clothing detectors primarily need to discern between themselves instead of themselves
and an arbitrarily large set7 of background objects.

Approach
The decision to use deformable parts models by Felzenszwalb et al. as the framework for this thesis is based on its

“strong low-level features based on histograms of oriented gradients (HOG)[,]
efficient matching algorithms for deformable parts models (pictorial structures) [and]
discriminative learning with latent variables (latent SVM).”8

Additionally, Felzenszwalb et al. have an emphasis on building flexible grammar based models. Grammar based models
are relatively flexible and modular constructs of terminals (filters) and non-terminals (e.g. rules).9 Their model dis-
cerns two types of rules, deformation rules, which allow for spatial uncertainty, and structural rules, which are used
to aggregate scores from multiple deformation rules. Such a grammar based model offers a high grade of modularity
and extensibility. The base grammar can be extended with additional rules to model relationships between object and
context.

The deformable parts models are grouped in mixture models as components. Each component of the mixture model
contains a root filter – determining the bounding box of the object – and several smaller parts which have a higher
resolution than the root filter. Each part is spatially connected to the root filter by a standard offset in x and y direction.
Possible deformations are realized through “spring-like connections”10. Part deformations are penalized by a weighted
cost function growing quadratically. Examples of trained deformation costs can be seen in Figure 1 visualized as ellipses.

The deformable parts model by Felzenszwalb et al. is partly based on the Dalal-Triggs model, which achieved good object
detection performance with HOG features.11 As Felzenszwalb et al. extended the Dalal-Triggs model with deformable
parts, this work extends the deformable parts model with a flexible context constraint.

Flexible context constraint
A context is “flexible” in two ways:

1. Flexibility through a spring-like deformation model. Similar to parts in the deformable parts based models the
context can deform (move) from its mean location relative to the object. This is being moderated by deformation
costs, which determine how far the context can move from its common location.

2. The context constraint is also flexible in the way, that its influence on the object detector can be mediated by the
training algorithm. If a context does not help the object detector much, its impact into the overall score will be
diminished, if the context is a significant aid in finding the object, the impact on the overall score will be increased.

Based on this grammar based model a meta model is being described which extends the model architecture by another
level. The meta model contains multiple deformable parts models (one object class model, one or more context class
models). The resulting model is then used to classify the instances of the object class which appear in conjunction with

7 Rather than saying "infinitely" large set, since the amount of background objects is determined by the training data.
8 Felzenszwalb et al. [2011]
9 See Felzenszwalb and McAllester [2010, p 1].
10 Felzenszwalb et al. [2010a, p. 1].
11 See Felzenszwalb et al. [2010a, p. 2], Dalal and Triggs [2005].
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instances of the context class. From now on meta models will be referred to as contextual models and the deformable
parts models by Felzenszwalb et al. as base models.

Added latent
deformable
parts

Merge two
Felzenszwalb models
into one contextual
model

Dalal-Triggs model [2005] Felzenszwalb et al. model [2010a] Contextual model

Figure 1: How previous works define the contextual model structure. Development of the model by Dalal and Triggs
[2005] with extensions by Felzenszwalb et al. [2008, 2010a] which is used in the model with a flexible context
constraint proposed in this thesis.

The spatial relationship between object and each context is analogous to the way the relationship between root filter
and parts inside the deformable parts models is modeled. The deformable parts model is a recursive system of objects
containing parts, which are themselves objects.12 Now we have a contextual object model, which contains object and
context models, which in turn contain parts. Therefore, context model deformation can be compared with part deforma-
tion, however, it is extended by scale deformation. Scale deformation should make the contextual model robust enough
to, for example, detect both smaller and larger bags being worn by a person. This is one of the bigger changes to the
model, affecting both grammar and implementation.

Contextual Score
After defining the model architecture by extending the grammar a new scoring method is being developed. Two possible
scoring functions for merging object and context scores are being discussed.

One could either multiply both scores, which is complicated with SVM scores13, or add them, just as the part scores are
being summed up in the deformable part-based models14. Multiplying two scores between 0 and 1 only produces a high
result if both scores are high, which assures that both object and context have been detected. If one score is low, the
other cannot easily compensate. This aligns with our assumption that the object requires a context to exist in. By adding
both scores one could compensate the other one completely if it is just high enough. E.g. that could mean that a very
high context score could counterbalance a low object score and thus lead to a false positive. Instead a hybrid approach is
being chosen. A scoring function which adds the thresholded context score to the object score, making sure that negative
(below the threshold) context score penalizes the object score but a high context score does not impact the result. So
in the contextual model an example is scored by combining the object’s score and the context’s score in the following
function which will further be refered to as “conditional-sum”:

scorecontex tual(objectscore, contextscore) = objectscore+min(t, contextscore), (1)

where t is the threshold at which the context score is being capped. A standard value is t = 0, where positive context
scores have no impact, but negative context scores reduce the overall score. This conditional-sum function reflects the
assumption that the object can only exist in its context, but the context can exist on its own. Choosing t offers flexibility
and discretion to the SVM as to how much impact the context score is allowed to have.

12 See Felzenszwalb and McAllester.
13 Since we are working with SVM scores one would have to map them to a [0,1] interval first using sigmoids.
14 See Felzenszwalb et al. [2010a, p. 7].
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For root and part filter descriptors, HOG is used. These descriptors have been introduced by Dalal and Triggs and achieved
superior results for human detectors when compared with other descriptor methods. We think that due to our primary
goal of creating a model to improve detection of clothes worn by people HOG descriptors should be a very good fit. Also
Felzenszwalb et al. show that good results can be achieved using HOG on many different object classes.15

Training
Felzenszwalb et al. use what they call a latent SVM (or LSVM) to train their model with partially labeled data. Their
LSVM approach allows latent variables like part configurations (e.g. their position) to be trained automatically.16 For
contextual models a new objective function defining the optimization problem has to be defined based on the new scoring
method. An optimization problem has to be semi-convex so it can be trained using a latent SVM. Semi-convex means
that the optimization problem is convex on its negative examples, but not on its positives. Felzenszwalb et al. show
that confining the amount of possible part configurations to one per training algorithm iteration makes the optimization
problem convex.17

When developing the objective function to train the contextual model it became clear that just using the same partially
labeled data as Felzenszwalb et al., consisting of just bounding boxes for the object class, the optimization problem would
not be convex. Context scores would grow until all positive examples would no longer be penalized by the context.18

Thus, in an extreme case every detection window on an image could be classified as a positive context.

To prevent this behaviour the context has to be regularized. This requires additional class labels to be added to the
training data for the context. Both object and context appearances have to be annotated in the training data, their
respective class labels are y and ŷ . The training data is divided into two sets: positive object examples P and background
images (negative examples) N . Positive and negative context examples are spread through both sets. This is due to the
asymmetric relationship between object and context. Recall that objects always appear in context, but context can appear
alone. This means that also context appearances in N have to be annotated.

Two ways to regularize the context are being described. The first way is to handle all different cases of positive and
negative object and context class labels differently in the loss function. The other solution is the addition of another term
to the objective function, which in parallel trains the context classifier. Both are discussed and validated in section 10
and only the first one leads to satisfactory results. Also the semi-convexity property of the new optimization problem – a
requirement for the latent SVM – is being shown.

We further describe the initialization which is an important aspect of training and has a potentially large impact on the
final model. The two-step LSVM training algorithm is susceptible to local minima.19 Both the object and context part-
based models are being initialized and trained beforehand according to the work by Felzenszwalb et al. and merged to
a contextual mixture model. The initial spatial relationships between the models are derived directly from the training
data.

The LSVM training algorithm uses data-mining of “hard” negative examples, which violate the SVM loss function the
most. This mechanism is of the utmost importance for training the contextual model. Since the assumption behind the
contextual model is to find objects in their context, one wants to discard as many false examples through classifying the
context alone, and thus softly restrict the object classifier to the area defined by the context. If the context classifier is
doing a good job, most hard examples will fall into the area which is not penalized by the context. In this case the training
algorithm can focus on training the object detector to classify examples, which the context detector did not penalize.

The contextual model has then been implemented on top of the deformable parts model framework version 4 provided
by Felzenszwalb et al.. Rules for modeling the new scoring function and scale deformation have been added to the
framework. Also the new objective functions for the contextual model have been added to the training algorithm imple-
mentation. Details like scale offsets of values other than a doubling or halving the size20 and the fact that now multiple
class labels are present in the training data lead to significant changes to the codebase.

To implement scale deformation as an addition to deformation in x and y dimension on a feature pyramid, we created
a process to convert the feature pyramid to and from a grid and apply distance transform in three dimensions. Distance
transform can only be applied across scale levels if all levels have the same dimensions. This process introduces rounding
error, making backtracking the source location for feature extraction more difficult.

15 See Felzenszwalb et al. [2010a, p. 19].
16 See Felzenszwalb et al. [2010a, p. 2].
17 See Felzenszwalb et al. [2010a, p. 8].
18 This problem is being described in detail in section 7.
19 See Felzenszwalb et al. [2010a, p. 11].
20 In the original framework it is only possible to have an offset of a full scale octave. “The scale sampling in a feature pyramid is determined

by a parameter λ defining the number of levels in an octave. That is, λ is the number of levels we need to go down in the pyramid to get to
a feature map computed at twice the resolution of another one.” Felzenszwalb et al. [2010a, p.5].
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Results
Using this extended framework multiple experiments with different configurations of the contextual model have been
executed. Due to time constraints the experiments were confined to one dataset for the “dress” object class with the
“person” context class. The training dataset holds 1974 positive examples and 1614 negative images. The test dataset
contains 1201 images with 846 positive examples.

In some of the experiments all context model parameters except the bias have been fixed. This was done to keep the
context model independent from the object model, so that it could be reused with other object classes sharing the same
context. The initial person context model is trained using the INRIA Person dataset.21

Based on the object class “dress” this work examines different ways of configuring and training the proposed part based
model with flexible context constraint.

This work shows that the deformation parameters which model spatial relationship reach significant weights. This tells
us that they help classification of our training data and have been chosen by the training algorithm to penalize negative
examples.

Using fixed context model parameters and only training the context deformation and object model parameters, detection
performance of the contextual model is comparable with that of the original deformable parts model. The INRIA Person
deformable parts model used as the context model to initialize the overall contextual model, had a low performance,
when tested on the context bounding boxes in our training data. This shows us that the contextual model is very robust
against bad context models and can still leverage low performance classifiers to increase precision in low recall situations.

When training all parameters, the development of the object and context model show clear signs of adapting to their new
task. The object model assumes features, that it did not respond to before being constrained by a context. Additionally,
the context model also assumes rough features of the object. The resulting contextual model outperforms the original
deformable parts models on our training set.

Furthermore, this work describes a secondary use of the context constraint – the application of non-maximum suppression
to the context detection windows. With this method all but the best scoring detections sharing the same context detection
window, or overlap it by at least 50%, are getting discarded. This is based on the domain knowledge, that one person
can only wear one dress. This step decreases false positive detections significantly.

21 See Dalal [2005], trained by Felzenszwalb et al. [2011]
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2 Related work

As noted in the above the contextual model is based on the deformable parts models by Felzenszwalb et al. [2010a]
which we want to build upon to leverage contextual spatial constraints for objects. Using a part-based approach seems
important because of the deformable nature of clothes. There are other approaches which can be used to automatically
learn parts of objects like Schnitzspan et al. [2010] which has a much more flexible understanding of parts. Schnitzspan
et al. allow for “flexible [part] shapes and sizes”22 and can learn arbitrary part topologies instead of being restricted to a
star-shaped part constellation.23 The decision to go with the former has been based primarily on their approach to use
extendable grammar based models which gives reason to expect that an extension of their existing framework is feasible.

The main goal is to improve detection rate for clothing being worn by people. Therefore, this section is being divided
into work related to fashion and clothing detection and the use of context in object detection.

2.1 Clothing detection

Fashion and clothing in computer vision has received a lot of research. In the fashion industry research has mostly
targeted retrieval through similarity matching, e.g. via shape, texture, patterns, which is used in fashion search engines
like empora.com or like.com (now Google Shopping). These approaches are very practical and mostly work with product
photos with very simple backgrounds.24 There are examples of clothing segmentation in more complex images though,
like Hu et al. [2008]. Some even use clothing segmentation to recognize people.25

The work by Bertelli et al. [2011] focusses on object segmentation. They also work with the object class dresses, and
use a hybrid system of object detector and color models. Their example images contain relatively simple backgrounds,
mostly solid or smooth gradients in the background, and some people standing around, sourced from professional product
photography. Their innovation lies primarily in the combination of top-down and bottom-up segmentation approaches.
Therefore, they use simple, or out-of-the box object detectors – e.g. also the deformable parts models by Felzenszwalb
et al. [2010a]. Therefore, this can be seen as an extension to object detectors.26

The detection and classification of clothes in real world images has received far less attention. There is an approach by
Liu et al. using real-world photos of people wearing clothes with complex backgrounds to retrieve images from a product
database through parts alignment.27 In their work parts are detected by a part-based human detector with 20 upper-body
parts and 10 lower-body parts. Unlike in our work they use a large set of features including HOG, Local Binary Patterns,
color histogram and skin descriptor features.28 Their input images are very similar to the ones used in our training set
– street style photos with upright people and complex backgrounds. Since their approach works through part alignment
they rely on a distinctive human shape and images of products with people wearing them. In that way they are also
leveraging the human context. This approach does not, however, target an explicit object detection.

2.2 Spatial context in object detection

Using the spatial configuration of objects to improve the detection performance has already been the subject of much
research. There are different approaches on how to model relationship between objects and their context. Jahangiri
et al. [2010] propose a “conditional random field model for labelling parts of building scenes”29. Others propose post-
processing methods which can be applied to any object detection model. Rabinovich et al. [2007] propose a conditional
random field (CRF) post-processing framework, which maximizes object label agreement according to contextual rele-
vance. Their method can either be trained using labeled training data, or by querying the search engine of Google to
determine interconnections between categories.30 Their model only incorporates coarse spatial layout information.31

Another contextual post-processing method is part of the work about deformable part based models by Felzenszwalb
et al. [2010a] and will be described at the end of this section.

A different approach is to learn spatial context between “stuff” and “things”. Stuff represents types of objects of “amor-
phous spatial extent”, which could be more easily defined by regions than by detection windows, which is a good method

22 Schnitzspan et al. [2010, p. 2]
23 See Schnitzspan et al. [2010, p. 2]
24 See for example for image simliarity Aysal and Heesch [2009], for object segmentation in (fashion) product photos Jahangiri and Heesch

[2009].
25 See Gallagher and Chen [2008]
26 See Bertelli et al. [2011, p. 2f].
27 See Liu et al. [2012, p. 3330]
28 See Liu et al. [2012, p. 3334]
29 Jahangiri et al. [2010, p. 6]
30 See Rabinovich et al. [2007, p. 4f].
31 See Rabinovich et al. [2007, p. 3].
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define the location and extent of things.32 Their method “automatically groups regions based on both their appearance
and the relationships to the detections in the image”33 without the need of an explicit training set, and helps improve
detection performance over other detectors.34

In this work we use a predetermined relationship of inferring a hard object class “dress” from an easier one “person”.
This is similar to the approach by Torralba et al., who want to improve scene understanding by inferring knowledge
gradually from easier objects to harder objects – which in some cases un-identifiable on their own, even for humans.
In one example they successfully classify small blobs of pixels as computer mice through inference from keyboard and
computer screen detections.35 They note that CRFs have problems “capturing important long distance dependencies
between whole regions and across classes”36. Instead Torralba et al. propose Boosted Random Fields (BRFs), where the
graph structure is learned “by using boosting to select from a dictionary of connectivity templates (derived from labeled
segmentations)”37, and also learning local evidence potentials.38 The resulting dense graph can pool information from
large regions of the image, instead of just having connections between pixels.39

Another approach which rather targets multilateral spatial constraints has been proposed by Desai et al. [2011]. In
their work Desai et al. introduce “inhibitory intra-class constraints (NMS) and inhibitory inter-class constraints (Mutual
Exclusion) in a single unified model along with contextual cuing and spatial co-occurrence”40.

The idea to include spatial cueing into a model as a way to enhance detection results is a core aspect of the model
proposed in this work. There are differences between our flexible context model and their multi-class model in how the
spatial cueing aspect is being modeled.

While Desai et al. [2011] focus on multi-class detection and all their unknown bilateral relations41 we focus on a “known”
context and only model the relations between object classes and one context class. For N classes Desai et al. [2011] have
N2 relations, while we only have N relations. While making our model less complex it is also less flexible in the way
that the model can learn which objects in a scene have any relevance to the object one wants to detect. So with our
flexible context model one could encounter the situation that the context class which was chosen by hand is completely
irrelevant to the objects. Therefore, this work relies heavily on domain knowledge in the sense that to be able to choose
a context class one must be sure that the object in question only appears in the chosen graphical context. Accordingly we
focus on the domain of worn clothing, where a person provides the context and the different types of clothing are the
object classes.

To model the spatial relationships between objects they define a fixed set of canonical relations like “above, below,
overlapping, next-to, near, and far”42. For each object class pair weights for these relations are being trained. That means
that the spatial relations by Desai et al. [2011] are modeled in a relatively coarse manner. Our model follows a different
approach. Instead of using a histogram and sampling the different relations into bins we model the spatial relations
between model and context analogously to how spatial relations and deformation is designed in the deformable parts
model by Felzenszwalb et al. [2010a].

An advantage of using offsets and distance transform based deformation is that on the one hand spatial relations can be
very precise and on the other hand are only limited by the model’s resolution. In this case the deformable parts model
uses histogram of gradient features with a bin size of 8 meaning that the model’s resolution would be 8 times less than
the image resolution. This is still a lot finer-grained than the canonical relation representation by Desai et al. They also
use a binary vector to store whether or not a relation is being satisfied.43 The deformable parts model on the other
hand uses quadratic deformation costs to penalize unnatural part locations.44 Common to their and our approach is
the promos that modelling precise spatial relationships between object classes improves classification performance. One
could view object classes in our model as optional parts of the context class, thus adding another hierarchy level to the
existing model structure.

E.g. dresses, trousers, hats, shoes are being worn by people and become parts of them. While the flexible context model
assumes that objects can only appear in their context – a dress can only appear when being worn by a person – it is

32 See Heitz and Koller [2008, p. 1]
33 Heitz and Koller [2008, p. 1]
34 See Heitz and Koller [2008, p. 13]
35 See Torralba et al. [2004, p. 9].
36 Torralba et al. [2004, p. 3].
37 Torralba et al. [2004, p. 3].
38 See Torralba et al. [2004, p. 3].
39 See Torralba et al. [2004, p. 2].
40 See the tabular visualization in Desai et al. [2011, Fig. 6]
41 Desai et al. [2011, p. 2]
42 Desai et al. [2011, p. 3]
43 See Desai et al. [2011, p. 3]
44 See Felzenszwalb et al. [2010a, p. 6].
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different the other way around, the context can appear with or without any associated object. A person can be naked,
wearing other clothes like T-shirts, but not mandatorily a dress, etc. Hence. objects in our case must be seen as optional
parts of their context. The non existence of the context can disprove the objects existence but the context’s existence does
not prove the objects existence.

This comes at a cost that an object can only have one mean location relative to their context. In the multi-class model by
Desai et al. allows for multiple spatial constraint relations, e.g. to have higher weights on the canonical relation above
and below the object at the same time, and lower weights on the relation next-to. While this makes sense to model
relations between arbitrary classes it might not be needed in all cases. In the domain of clothing most item classes have
a fixed place relative to the wearer’s body. However, there are exceptions, loosely worn accessories like bags tend to be
worn in the hip region, but they can be located either right, left or in front of the person holding it.

While there are similarities, Desai et al. [2011] focusses on a different problem than this work. That being said one
could imagine applying their canonical relations on top of this flexible context model. In the domain of clothing this
would make a lot of sense. There are rather obvious relations between some clothing types. E.g. trousers are rarely worn
together with dresses. Also a person usually only wears one of most clothing items. So rather than being redundant the
flexible context model could be extended with the work by Desai et al..

2.3 Context rescoring in deformable parts models

Felzenszwalb et al. [2010a] also propose a method that uses contextual information to improve results. In their case it
is a post-processing step, that rescores detections. However, the approach is very different. They use global contextual
information provided by “a set of detections obtained by using [...] different models [...] for different object categories”45.
A detection is then rescored by a classifier which receives the input vector g = (σ(s), x1, y1, x2, y2, c(I)), where σ(x) is
a renormalizing function, x1, y1, x2 and y2 define the detection’s bounding box (which is normalized by the size of the
image) and c(I) is the image context vector containing the best normalized scores for each different model σ(sk), where
sk is the highest score of the k-th model in the image I . The rescoring classifier itself is trained on images with bounding
boxes of multiple object classes.46 Such an approach would possibly be a useful addition to the model when multiple
clothing categories are detected on the same image.

45 Felzenszwalb et al. [2010a, p. 15].
46 See Felzenszwalb et al. [2010a, p. 15].
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3 Contextual model

In the following we describe the contextual model. Since it is based on the deformable parts models by Felzenszwalb
et al. [2010a], we start by recapping its architecture and then describe how the contextual model extends the existing
model.

3.1 Deformable parts models

In a deformable parts model, an object is represented as a set of filters, one root filter F0 covering the whole object, and
n part filters Fi(i = 1...n) of higher resolution covering smaller object parts. The complete model can be specified as an
(n+ 2) tuple.

M = (F0, P1, P2, ..., Pn, b), (2)

where

Pi = (Fi , v i , di) (3)

v i ∈ R2 (offset relative to root filter) (4)

di ∈ R4 (cost of deviating from offset v i) (5)

b ∈ R (a normalization to allow for mixture models) (6)

Each part is defined by a 3-tuple, the part’s filter Fi and parameters to model their spatial relation to the root filter.

Parameter v i ∈ R2 can be thought of as the spatial prior. It is the mean location relative to the object’s bounding box and
therefore the root filter F0. The model also allows for deformable parts. Felzenszwalb et al. are using a springlike model.
A part can move from its mean position but it is being penalized. There is a deformation cost vector di for each part i.
The parameter b represents the SVM bias and normalizes the model w.r.t. other models in a mixture model.

The filters are using histogram of oriented gradients descriptors, where Principal Component Analysis (PCA) has been
applied47, which will be described in section 6.

Multiple models of like M can be grouped into a single mixture model to be able to detect multiple classes. As noted
before b is being used to normalize each model’s score to make it comparable. Usually object classes that are perceived
by humans as an ’atomic’ class are being divided into multiple object classes by orientation (e.g. left and right facing)
and aspect ratio (often similar to viewpoint).48 But of course any group of classes can be merged into a mixture model.
This is part of the model initialization which will be described in section 8.

3.2 Contextual model

Now we describe how we extended the deformable parts models to introduce the flexible context constraint. To improve
detection of objects which typically reside in context we introduce additional spatial constraints by nesting multiple
models. Our extended model spans a hierarchy of deformable parts models. Here we introduce four terms to describe
the extended model and its sub-models:

• The term contextual model is being used to describe the overall model. This model consists of two parts, the object
model and the context model.

• The object model is a deformable parts model like described in Felzenszwalb et al. [2010a]. The object class is the
class one wants to detect with the contextual model.

• The context model is also a deformable parts model like the object model. The context class is the class of the
context one assumes the object class to be in. In the end the contextual model is using the context model to
penalize (preferably false) object detections outside of the detected context locations.

A contextual model can be constructed by combining one object model M0 and m ∈ N context models C j and adding
information about their spatial relation.

The contextual model is defined by

Mcontex tual = (M0, C1, ..., Cm) (7)

47 See Felzenszwalb et al. [2010a, p. 4,13].
48 See Felzenszwalb et al. [2010a, p. 12].
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where

C j = (M j , Vj , S j , D j) (8)

M j = (F j,0, Pj,1, Pj,2, ..., Pj,n j
, b j) (9)

where

n j ∈ N is the amount of filters in M j (10)

Vj ∈ R2 (offset relative to context filter) (11)

S j ∈ R1 (scale relative to context filter) (12)

D j ∈ R6 (cost of deviating from offset Vj and scale S j) (13)

where M j are instances of M as defined in (2).

It is obvious that the contextual model structure bears a big resemblance to the deformable parts model structure.
Basically an additional part hierarchy has been added to the system, however, there are significant differences.

The spatial prior Vj is now accompanied by a scale prior S j , since the object and context models can be trained in
different resolutions and sizes. S j is being derived from the mean scale difference between object and context model
and represents this resolution change. Due to the fact that features are generated from a gaussian pyramid, a model’s
resolution defines its scale. With S j it is possible to map the response of the context models to the object model. S j

represents the number of octaves, therefore the scale difference is 2S j .49

Interestingly this already happens in the model by Felzenszwalb et al. between root filter and part filters. If the gaussian
pyramid, which was used to generate the features, has λ steps per scale octave (a 2x scale change) then part filters are
positioned λ steps below the root filter. That means the filter’s resolution doubles while still covering the same area on
the root filter’s level. Adhering to the variable naming convention of capital letters for Mcontex tual ’s spatial parameters and
lowercase letters for M ’s spatial parameters one could say that the counterpart to S j also exists in M as a fixed parameter
si = 1.50 In more recent work Girshick et al. extended their model to allow for a range of other integer values for si .

51

In our case S j is a real number. As a feature pyramid only has λ levels per scale octave this value has to be rounded at
runtime to the closest level difference. There are also implications for the training algorithm implementation, since scale
jumps with Si ∈ R instead of a confined number of integer values introduces rounding errors, which will be discussed in
section 9.3.

The most prominent case for Mcontex tual is a contextual model which contains one context model M0 and one object
model M1. An example of such a model is depicted in Figure 2 — The boxes representing the context and object model
contain root and part filters. Their spatial relation is being described by the scale, offset and deformation parameters
illustrated in the circle.

Structure
The overall model Mcontex tual is very similar to the structure of its sub-models. The sub-models in the overall model act
similar to the parts in the sub-models. Like parts in the deformable parts model by Felzenszwalb et al. the sub-model
locations can be deformed and their detection scores are being aggregated. There are three core differences in score
aggregation, deformation and offsets.

Score aggregation:
While the part scores in Felzenszwalb et al. [2010a] are being summed up, the score of context and object scores in
Mcontex tual works differently. Summing would mean that the presence of a positive context score would increase the
overall detection’s score. This contradicts our assumption that a context only enables the presence of an object. The
context can exist without the presence of an object, the object can only exist together with the context. That is why the
context score is being thresholded at a certain point. See 4.2.1 Option 1: Conditional-sum.

Object Deformation:
Additionally to the deformation in the x and y dimensions this model allows a change of scale. This is important because
the object and context models represent their own objects which might vary in relative size. A practical example would

49 Some examples: The scale change for S j = 1 is 2 (double the original size), for S j = 0.5 it is
p

2≈ 1.4142 (about 1.4142 the original size).
50 See Felzenszwalb et al. [2010a, p. 5].
51 See framework version 5 change notes by Girshick et al. [2012a]
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Figure 2: Overall model structure of Mcontex tual in the case of one object and one context model.

be the size of the bag (object) relative to the person (context) holding it. One could imagine that there are bags of
different sizes. Moreover, the object and context model could be trained in different scales and resolutions. This results
in different score locations on the scale pyramid. To reflect such scale differences, the part offsets have to contain a scale
prior (see S1).

Scale Offset:
Felzenzwalb et al. use the part filter’s anchor points (top left corner) as the locations to compute relative offsets on. These
anchors are easy to use, since the filter response locations represent the part locations, however, relative anchor positions
are not scale invariant! In the former case scaling parts away from their mean size would increase anchor offsets and
lead to additional deformation costs in x and y directions. Instead the offsets between context and object model are
based on their center locations.

Specifically the offset is defined by the object detection’s anchor and the context detection’s center, since only the context
detection is being deformed in scale.

3D Context Deformation
Felzenszwalb et al. are using the method by Felzenszwalb and Huttenlocher [2004] to calculate the distance transform
which is needed to model part deformations.

A distance transform of a binary image specifies the distance from each pixel to the nearest non-zero pixel.52

52 Felzenszwalb and Huttenlocher [2004, p. 1]
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The generalized distance transform method is not limited to 1D or 2D (image) applications but can be easily applied to
additional dimensions. The algorithm can be computed in linear time. That means it runs along each dimension in linear
time. Adding another dimension to the problem increases the problem size by the additional dimension’s extent.

Our model adds another hierarchy to the model – the context. The context can be deformed in both the x and y
dimension – just like object parts – and also in scale. To allow for deformation on the relative scale between the object
and the context we need to add another dimension to the distance transform.53 Applying the distance transform to the
pyramid’s scale dimension is not trivial. The score pyramid contains the score responses of parts, or whole deformable
parts models. In the first case part filters are applied to a feature pyramid.54 The result is a score pyramid.

To be able to apply the distance transform in the scale dimension across each level of the scale-space pyramid, the
pyramid has to be transformed into a 3-dimensional matrix. That means each of the pyramid levels have to be scaled up
to the smallest common size. The distance transform can subsequently be applied in the z-dimension (scale dimension)
of the resulting 3-dimensional grid before converting it back to a score pyramid. The distance transform algorithm is
then being applied to the x and y axes on each scale level.

53 See Felzenszwalb and Huttenlocher [2004]
54 See Felzenszwalb et al. [2010a, p. 5].
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4 Matching

4.1 Original model

Given an object model M, one can use it to score an object hypothesis z, specified in terms of the positions of the various
filters pi in the feature pyramid which is generated from an input image I . In particular pi = (x i , di , li) specifies the
location of the i-th part in the feature pyramid H and z = (p0, ..., pn) defines the object hypothesis.

The score is being calculated by summing all filter responses (filter term), substracting all part’s deformation costs
and adding mixture model bias b. The filter responses are the dot product between filter vector Fi and the feature
vector φ(H, pi) which holds the features of part pi ’s location in feature pyramid H. The deformation costs are being
calculated using the deformation costs di and the deformation features φd(d x , d y) = (d x , d y, d x2, d y2). The part
displacements d x and d y are relative to the first (root) filter. The displacement of the i-th part is defined as (d x i , d yi) =
(x i , yi)− (2(x0, y0) + v i).55

According to Felzenszwalb et al. [2010a, p. 6] the score of a configuration specified by z is defined by the following
equation (14).

score(z) = score(p0, ..., pn) =
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The overall score of a root location is then calculated as the score of the best possible placement of the parts,

score(p0) = max
p1,...,pn

score(p1, ..., pn). (15)

Felzenszwalb et al. “use dynamic programming and generalized distance transforms (min-convolutions) [...] to compute
the best locations for the parts as a function of the root location”56. Given computed filter responses, their method
requires O(nk) time, with n parts and k locations in the feature pyramid. First, the generalized distance transform
algorithm is being applied to filter response Ri,l of each part, where Ri,l is a cross-correlation between part filter Fi and
level l of the feature pyramid. The algorithm can be computed in linear time per dimension.57 This transformation is
being defined mathematically as

Di,l(x , y) = max
d x ,d y

�

Ri,l(x + d x , y + d y)− di · (d x , d y)
�

, (16)

where the Di,l(x , y) represents the maximum score contribution (penalized by the deformation cost) of part i to the root
location (x , y) at level l.58

Then the overall score is being calculated as the sum of the root filter responses R0,l on each level l and the transformed
part filter responses Di,l of all parts. Before summing, the transformed part filter responses are being shifted by the offset
v i and moved down in the score pyramid by λ levels, specifically

score(x0, y0, l0) = R0,l0(x0, y0) +
n
∑

i=1

Di,l0−λ
�

2(x0, y0) + v i
�

+ b.59 (17)

Using the generalized distance transform algorithm the transformation Di,l(x , y) can also be inverted60, so the corre-
sponding part locations can be found starting from a high scoring root location. (This is important for feature extraction
from examples, which is needed to train the model using stochastic gradient descent.)

Mixture models
Mixture models are being used to combine multiple classifiers in a single model. Felzenszwalb et al. define a mixture
model with m components as an m-tuple, M = (M0, ..., Mm). The object hypothesis in a mixture model specifies the
component c part locations, z = (c, p0, ..., pnc

), where nc is the number of parts in model Mc . The overall score in a
mixture model at a particular location (x,y,l) is the maximum of component models Mc at that location.

55 See Felzenszwalb et al. [2010a, p. 6].
56 citet[p. 6]felzenszwalb2010object.
57 See Felzenszwalb et al. [2010a, p. 6], Felzenszwalb and Huttenlocher [2004, p. 9]
58 See Felzenszwalb et al. [2010a, p. 6].
60 See Felzenszwalb et al. [2010a, p. 6], Felzenszwalb and Huttenlocher [2004, p. 7]

13



4.2 Contextual model

A scoring function had to be developed that suits the assumptions of the contextual model. Recall that the object class is
supposed to only appear in its context, but the context class can exist with or without the object. Thus, the goal was to
find a scoring function, which

• does not infer the object’s existence by the likely existence of the context

• but does infer the object’s non-existence by the likely non-existence of the context.

4.2.1 Defining a contextual scoring function

Using a sum approach as in the basic scoring function (14) obviously does not fit this goal, which would cause the object
and context scores to be plainly added, leading to unwanted behavior. For instance, this could mean that a very high
context score could more than compensate a low object score, possibly leading to false positive detections.

In this section two options to construct a scoring method for the contextual model are being discussed. The first one
adheres to the assumptions and allows the object score to compensate a bad context score, however, the context score
can not improve a bad object score. This is being solved by thresholding the context score before summing. We call
this approach ’conditional-sum’. This is also the method that has been chosen for further development of the contextual
model. The second approach is a product approach where object and context SVM scores – with a theoretically unlimited
range – that have been mapped to probability estimates in the interval [0,1] – e.g. using sigmoid fitting. A sigmoid is
an “S”-shaped function which can map scores from R to [0, 1].61 Generating an overall score by multiplying two scores
s1, s2 ∈ [0,1] ensures that both object and context must have a sufficiently high score to generate a positive detection.
The detailed definitions of both scoring methods and the reasons for picking the first approach are described in this
section.

Not unlike a mixture model a contextual model also contains multiple deformable parts models. To score a contextual
model Mcontex tual we have to aggregate the scores of object and context models. As defined above a contextual model
Mcontex tual has an object model M0 and m − 1 context models C j , j ∈ {1, ..., m − 1}. We define the contextual object
hypothesis as a pair Z = (z0, ..., zm) consisting of both the context and object hypotheses. All models M j contained in
Mcontex tual are referred to as sub-models, C j , 0 < j ≤ m represent the context models. To account for the indices of
multiple sub-hypotheses we define z j = {p j,0, p j,1, ..., p j,n j

} j, where j is the j-th sub-model hypothesis.

Option 1: Conditional-sum
As defined in (14) we score a sub-model hypothesis z j with score(z j) = score(p j,0, ..., p j,i). As a simple example we now
look at a contextual model without deformation costs. Recall that the scores of part hypotheses are independent from
each other and thus can be aggregated after calculating the scores for each part. This is also true for the sub-models
in a contextual model. The difference lies in the aggregation method. Instead of summing up the part scores we limit
the context hypothesis scores to a certain threshold to reflect the asymmetric inference between object and context.
Specifically we score Z with

scorecontex tual(Z) = scorecontex tual(z0, ..., z j) = score(z0) +
m
∑

j=1

scorecontex t(z j), (18)

where

scorecontex t(z) =







score(z) score(z)< 0

0 otherwise
(19)

is the contribution of a context hypothesis to the score of Z . On the one hand, capping the context score at a certain
threshold controls and limits the inference from the context hypothesis z j to a contextual object hypothesis Z . On the
other hand, the object model hypothesis z0 has full impact on the overall score.

This scoring function is designed to penalize the overall object score when a negative context score is present, while
a positive context score leaves the overall object score unchanged. The threshold in this scoring function to enable or
disable context influence on the overall score is 0. While this threshold is fixed at 0 in (19), the threshold b j of context
model C j can be indirectly influenced by the model parameters of C j .

61 There are different methods to generate probability estimates from classifier scores. One example is the work by Zadrozny and Elkan [2002],
which use sigmoid fitting and score binning to estimate probabilities.
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The context score is being formed out of a dot product between the filter vector β and the context feature vector Φ(x , z)
for an example x and a hypothesis z. A threshold b which scorecontex tual should be capped can now be chosen by using
homogeneous coordinates. The threshold is defined by the following equation:

let v = Φ̂(x , z) (20)

β · v = (β1, ...,βn) ·







v1
...
vn






= b (21)

⇐⇒ (β1, ...,βn, b) ·











v1
...
vn
1











= 0 (22)

(23)

By extending β , the threshold b now is a part of the model parameters, and, in spite of being fixed in the scoring function,
can be influenced indirectly. Actually b is already present in the deformable parts models as the SVM bias parameter,
which makes additional changes unnessessary. Therefore, b is equivalent to the bias defined in (2).

Option 2: Product of probability estimates
(Not currently pursued): The original score function is being changed to make sure that a good context match is not
directly leading to an object detection. Since we only want an object match if context and object has a good detection
score we sum each filter response for the context and object model seperately and then multiply their estimated proba-
bilites. An example to estimate probabilities from classifier scores would be through sigmoid fitting. Sigmoid functions
si gi can translate SVM scores into a [-1 1] interval. Therefore, one could define the estimated probabilities of score(Zi)
being positive with

pZi
=
(1+ si gi(score(Zi)))

2
∈ [0, 1]. (24)

The score could then be calculated by multiplying the probabiliites pZ0
and pZ1

. An example X would then be scored by

P(X ) = pZ0
· pZ1

(25)

(26)

The resulting (estimated) probability pZ represents the contextual model’s classifier score, which is thresholded to get a
binary detection result.

Comparing both matching methods
When comparing both methods, several reasons come to mind why it might be better to chose the conditional-sum
approach.

• Conditional sum is similar to the standard hinge loss (hinge loss is defined as max(0,1− β · Φ̂(x i , z(x i))) instead
of the conditional-sum term max(0,β · Φ̂(x i , z(x i))). This could be more easily applied to the loss function of an
SVM classifier.

• With the conditional-sum approach the dependency on a high context score is not as strong as in the product
approach, allowing the object score to compensate penalty by a mediocre to low context score. This could lead to
a more robust model when the context classifier misclassifies positives as false negatives.

For the second approach, when multiplying scores between 0 and 1, a single score can hardly compensate if the
other score is close to zero. We might not want to enforce the fact that the context classifier is not allowed to be
wrong. It should be for the discretion of the training algorithm if it allows instances where a high object score
compensates a low context score to still achieve a positive detection.

• It is a rather complex problem to generate probability estimates for classifier scores, especially in a multi-class
setting.62 Going this path would have introduced a lot more complexity into the contextual model.

Based on the reasons above, the conditional-sum approach is being used to score the contextual model going forward.

62 See work by Platt et al. [1999], Zadrozny and Elkan [2002], Milgram et al. [2005].
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4.2.2 Contextual model scoring

Matching in a contextual model is largely similar to matching in a deformable part model as described above. This section
will transfer the matching method by Felzenszwalb et al. [2010a] to contextual models including the new conditional-sum
score aggregation as well as scale deformation.

As defined above in section 4.2.1, the contextual object hypothesis Z contains multiple sub-model hypotheses z j . We
now extend (18) for contextual models with deformation costs, D j 6= (0,0, 0,0, 0,0). To calculate displacement and
deformation costs of a context hypothesis z j , we require its location. The location loc(z j) is defined by its root filter
location,

loc(z j) = p j,0 = (x j,0, y j,0, l j,0). (27)

Contrary to the parts in the model by Felzenszwalb et al. [2010a], the context can also move within the scale space.
There the anchor for the i-th part in M j are defined by the mean distance from the top-left corner of the first part p j,0
(root) to the top-left corner of part p j,i . In our model the anchor for the j-th context model is defined as the mean
distance between the center of the object center(z0) and the top-left corner of the context loc(z j), where

center(z j) = loc(z j) +
(w j , h j , 0)

2
∈ Z3 (28)

and (w j , h j) represents the width and height of root filter F j,0.

Since the object model M0 is just a deformable parts model its object hypothesis z0 is being scored by (14). Each context
model C j consist of a deformable parts model M j appended by 3-dimensional deformation parameters Di and offset and
scale priors Vi and Si . These act analogous to the deformation parameters and offsets for parts di and v i in the deformable
parts model. Thus, the score for the object hypothesis z0 is defined by

scorede f (z j) = scorecontex t(z j)
︸ ︷︷ ︸

context score

−D jφD(d x j,0, d y j,0, ds j,0)
︸ ︷︷ ︸

context deformation costs

(29)

where

ds j =
l j

λ
−
�

l0
λ
+ S j

�

(30)

(d x j , d y j) = (x j , y j)−
�

2ds j · center(z0) + Vi

�

(31)

is the displacement of the j-th context relative to its anchor position in a score pyramid H with λ levels per octave63 and

φD(d x , d y, ds) = (d x , d y, ds, d x2, d y2, ds2) (32)

are context deformation features. Recall that scorecontex t(z j) in (29) is the thresholding function (19). The context
deformation term D jφD(d x j,0, d y j,0, ds j,0) is subtracted after the context score has been thresholded because we want to
penalize the object for not being close enough to the context, not the other way around.

The resulting score for a contextual object hypothesis Z is defined by

scorecontex tual(Z) = score(z0) +
m
∑

j=1

scorede f (z j). (33)

63 The scale offset parameter Si and scale displacement dsi as well as the deformation costs in φD need to be invariant to the scale resolution
of the score pyramid H. This is why it makes sense to to describe scale changes as the number of scale octaves. The level change can then be
determined by rounding the scale change according to the pyramid scale resolution. E.g. a scale displacement ds = 0.25 in a pyramid with
λ= 5 levels per octave would result in a level displacement dl = bds ·λ+ 0.5c= 1
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Matching
Previously, we have defined how contextual models are being scored, including score aggregation and 3-dimensional
deformation. To detect objects with the contextual model, we need to calculate the overall score of an object location in
a contextual model. It is defined as the score of the best possible placement of its sub-models. In particular

score(z0) = max
z0,...,z1

score(z0, ..., z1) (34)

Let R′j,l(x , y) = score(x , y, l) be an array which stores the response of model M j in Mcontex tual in level l of the score
pyramid, corresponding to (17), and

R′<0
j,l = scorecontex t(x , y, l) =min(0, R′j,l(x , y)) (35)

an array which stores the thresholded responses of context models M j , 0< j ≤ m in level l of the score pyramid according
to (19).

Then we transform the thresholded response to allow for deformation in x , y and l with

D′j,l(x , y) = max
d x ,d y,ds

�

R′<0
j,l (x + d x , y + d y, l +λds)− D j · (d x , d y, ds)

�

. (36)

The array D′j,l(x , y) stores the maximum score contribution of context model j to the object location (x , y) at level l.

Finally, the overall score can be calculated as the sum of the root filter responses R′0,l on each level l and the transformed
responses D′j,l of all context models. Before summing the transformed part filter responses, they are being shifted by the
spatial offset Vj and scale offset S j

scorecontex tual(x0, y0, l0) = R′0,l0
(x0, y0) +

n
∑

i=1

D′j,l0−λS j

�

2(x0, y0) + Vj

�

. (37)

(37) is very similar to (17), but has no normalization parameter b. The whole detection process on the level of the
contextual model is depicted in Figure 3.

The transformation defined in array Di,l(x , y) for the deformable parts model can also be backtracked. This means, that,
given a root location, the optimal displacements for a part can be determined.64 As noted before, this is required for
feature extraction and model training. The transformation defined by Di,l(x , y) does only allow for spatial uncertainty in
the x and y dimensions and thus affects only the l-th level of the score pyramid. The transformation defined by D′j,l(x , y)
does also allow for scale uncertainty. Unfortunately the generalized distance transform algorithm is not defined for the
scale dimension in a pyramid. Instead it can only work on a grid. The next section explains how we solve this problem.
But ultimately it means that backtracking through scale space is not possible using the generalized distance transform
algorithm. This is why a brute force backtracking method needs to be used, which is being described in section 9.3.

64 See section 4.1 and Felzenszwalb et al. [2010a, p. 6].
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Figure 3: Contextual matching process at a single scale. The figure is analogous to the matching process in Felzenszwalb
et al. [2010a, p. 7] but transferred to the new hierarchical level of a contextual model. The object and context
models usually (but do not have to) require feature maps from different levels in the feature map. The context
model’s response is being thresholded as defined in (33). Next, the thresholded response is transformed ac-
cording to the deformation costs and combined with the object model’s unaltered response. One can see that
the scores far away from the context are suppressed. Note that the context transformation process also spreads
the score across pyramid levels. The score maps in this figure are normalized, therefore the thresholded context
model response becomes “redder” in some areas because score variance is reduced. HOG filter images created
with the framework by Felzenszwalb et al. [2011].
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5 3D distance transform on score pyramid

input score pyramid
with n levels

transform to 3D grid 

z
perform 1-dim 
dt in scale/z
dimension

transfer back to score pyramid

high resolution

low resolution

y

x
perform 2-dim dt

in x and y
dimensions

Step 1

Step 2

level 1

level n

Figure 4: Process to apply 3D distance transform on score
pyramid according to Algorithm 1. In step 1 the
distance transform algorithm is being applied to
the scale dimension only. After the score matrix has
been transformed back to a score pyramid in step
2 the distance transform algorithm is being applied
to x and y dimensions.

Felzenszwalb et al. use the generalized distance transform algorithm to efficiently calculate the cost of part deforma-
tions.65

To allow for scale deformation of the context relative to
the object we need to add another dimension to the dis-
tance transform. Generalized distance transform can be
applied to a grid with an arbitrary dimension, running
in “O(dk), where d is the dimension of the grid and k
is the overall number of grid locations”66. The problem
with this is not applying the distance transform itself, but
preparing the data to be able to do so. The score maps for
different scale levels are part of a score pyramid where
each level l has a different resolution depending on the
scale s = 2l/λ, where λ is the amount of levels per scale
octave.

In our case each pyramid is also surrounded by a fixed
amount of padding p ∈ N2, which is needed to apply
filters and receive responses in the fringe regions of the
feature and score pyramids. Therefore, p is determined
by the maximum filter size used in a model. Conse-
quently the feature maps on each level cannot just be
up-sampled to the same resolution. Since the padding
is a fixed amount, it makes up a larger percentage of the
feature map in lower levels of the pyramid than in higher
levels. Therefore, virtual padding is needed to translate
coordinates from one scale level to another.

Let Ci , C j ∈ R2 be coordinates on levels i, j ∈ [1, ..., n]
of the pyramid with n ∈ N levels and k ∈ N intervals
per octave. Also let P ∈ R2 be the padding applied to
each pyramid level. Downsampling a matrix by an octave
would reduce its resolution by half. Ci and C j represent
the same location in an image, just on different scale lev-
els on the pyramid.

Then Ci = 2
�

j−i
k

�

C j + 2
�

j−i
k −1

�

P. (38)

To perform distance transform on the scale axis we first
need to convert the pyramid to a 3-dimensional grid. We
do this by translating scale levels to the first scale level
with (38). The grid’s size will be determined by the size of

the top level plus two times the virtual padding 2
�

j−i
k −1

�

P
we get from translating level i = n to level j = 1. There-
fore, virtual padding can be relatively large. With 40 lev-
els and an interval of 10 for example the virtual padding
is getting almost 14 times as large as the padding itself.
Therefore, the grid can occupy a significant amount of
memory.67

65 See Felzenszwalb et al. [2010a, p. 6].
66 Felzenszwalb and Huttenlocher [2004]
67 This is especially a problem for distance transform running on GPUs, since memory is much more expensive in graphics cards. This can be

overcome through partitioning which adds complexity to the program.
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Algorithm 1 Applying 3D distance transform to score pyramid
function DT3D(P, d, a)

P ← shiftPyramidLevels(P, a)
M ← gridFromPyramid(P)
M ← dtScale(M)
P ← pyramidFromGrid(M)
P ← shiftPyramidLevels(P,−a)
M ← dt2D(P)

end function

In Algorithm 1 the process of applying the 3D distance transform is described in pseudo code. It starts by shifting the
pyramid’s feature maps by the anchor offset a = (w, h)/2 ∈ N2, where w and h are the width and height of the model’s
detection window. So shiftPyramidLevels(P, a) shifts all score locations in the pyramid to the center of the detection
window. Then the pyramid is transformed to a grid to perform the distance transform.

anchored at top left corner anchored at center

Figure 5: Scale deformation anchored at top left corner of
detection window (left) and scale deformation an-
chored at center of detection window (right).

In line 4 the call "dtScale" applies the distance trans-
form 1-dimensionally to the 3rd/scale dimension. Then
the grid is transformed back to a score pyramid, and the
previous shift is inversed with shiftPyramidLevels(P,−a).
Both shiftPyramidLevels calls before and after scale de-
formation make it a centered operation, meaning that the
detection windows corresponding to a location on the fea-
ture map expand or shrink from the center (see Figure 5).

In line 7 the 2D distance transform algorithm is being ap-
plied to the x and y dimensions on each of the pyramid’s
levels, analogous to Felzenszwalb et al. [2010a] .

When downsampling with pyramidFromGrid, it is impor-
tant to make sure that local maxima do not get thrown
out. To prevent that, the feature maps in each grid level
are being scaled up sparsely to a size which is a 2n multi-
ple of the target size, with n ∈ N. “Sparsely” in this con-
text means that the entries in the source feature map get
transferred uniquely to the larger matrix, without repli-
cating the values to fill up space. Then the feature map is downscaled to the size of the pyramid’s target level via a
max-pooling algorithm.
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6 Histogram of oriented gradients

In their work Dalal and Triggs show that HOG descriptors perform very well in object detection, especially for human
detection.68. Since Felzenszwalb et al. base their work on the Dalal-Triggs human detection model they also use HOG
as their image descriptors. Theoretically the HOG descriptor could be easily substituted for other descriptor methods.
However, based on the findings by Dalal and Triggs [2005] and Felzenszwalb et al. [2010a] HOG is the best descriptor
for most object detection problems.

While Dalal and Triggs showed that their HOG-based model would outperform previously existing feature sets for human
detection Felzenszwalb et al. could achieve cutting-edge detection performance on many more object categories.69

The method to generate HOG descriptors contains four steps. At first the input image is normalized regarding gamma
and color. Then gradients are computed by convoluting gradient filter templates with the preprocessed input image.
The image is divided into cells, which are described as “small spatial regions”70. Finally, the edge orientations from the
computed gradients in each cell are combined to form a histogram representing the gradients of a certain spatial region
of the input image.71 The number of buckets in the histogram can be chosen depending on requirements. For most
situations 18 buckets is enough, leading to an orientation resolution of 10◦.

To generate a descriptor, which is invariant with respect to changes in illumination and contrast, a local normalization
must take place. This is being done by further grouping multiple adjacent cells in so called blocks.

Figure 6: Visualization of a HOG descriptor. The image is divided into small cells and overlapping blocks. Each cell can
influence multiple blocks.

As depicted in Figure 6 these blocks are overlapping. Each cell can be part of multiple blocks. Now contrast normalization
is being performed on each block. These normalized blocks are the actual histogram of oriented gradients descriptors.
The whole dense grid of overlapping blocks extracted from an input image then forms the feature vector that can be used
to train a classifier.72

This process leads to the following key features of HOG. Due to localized cells and overlapping blocks the descriptor is
invariant to “local geometric and photometric transformations”73. The degree of invariance can be controlled by changing
the cell and block size. Larger cell sizes for example lead to higher geometric invariance, while losing spatial detail.

The main configuration parameters for HOG are the number of orientation bins in the histogram which determines the
resolution in which gradients are described, the cell size and block size. If for example 18 orientation bins are used the
whole range of gradients – 0◦ to 180◦ since the direction of the gradient is ignored – is divided into bins of 10◦ resolution.
The cell size determines how large the image area is to construct the histogram. The block size determines how many
cells are being combined to a block and thus determining the contrast normalization area. For the human detector Dalal
and Triggs came to the conclusion that the configuration of 9 bins, cell size of 6 by 6 pixels and a block size of 3 by 3
cells leads to the best results. Interestingly, the optimal cell size of 6 to 8 pixel for their human detector is reflected by

68 See Dalal and Triggs [2005, p. 1].
69 See Dalal and Triggs [2005, p. 4], Felzenszwalb et al. [2010a, p. 16].
70 Dalal and Triggs [2005, p. 2].
71 See Dalal and Triggs [2005, p. 2].
72 See Dalal and Triggs [2005, p. 2].
73 Dalal and Triggs [2005, p. 2].
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the human limb sizes in their training data.74 This could mean that the optimal configuration of the HOG descriptor is
dependent on the object class and should be considered when optimizing models.

Another advantage of HOG is that “translations and rotations make little difference if they are much smaller [... than]
the local spatial or orientation bin size”75. Still it is important that the objects remain in the same rough orientation. For
human detection this means that Dalal and Triggs use only images of persons that are roughly upright.76

Especially for the target domain of this work – fashion – their previous results show a great prospect. In most cases
clothing follows the wearer’s body shape. In this case it should be possible to leverage the advantages the HOG descriptor
showed in the work by Dalal and Triggs due to similarity of body shapes. Other instances of clothing which are either
stand-alone, like bags, or superimpose the body shape, like some types of dresses, usually show a clear contrast relative
to the wearer and background.

Also local contrast normalization can be really important for clothes. A person can wear multiple items with different
colors, patterns and materials, showing varying levels of contrast. The same object could have strong contrast w.r.t the
background for example, but a low contrast w.r.t an adjacent item of clothing. In such occasion normalizing contrasts
could make shapes much more distinguishable.

Patterns and prints, however, could become a challenge for a HOG classifier. Stripes, checkers or printed images on items
of clothing could confuse the classifier.

Felzenszwalb et al. propose using PCA to reduce the size of the HOG-descriptor. They achieve a reduction from 36
dimensions to just 11 without reducing the model’s performance by selecting the most relevant eigenvalues. Since these
are costly to compute, they define descriptors with 13 dimensions, based on the knowledge gained by analyzing the
eigenvalues, which are easier to compute. All descriptors have the same detection performance.77

74 See Dalal and Triggs [2005, p. 5].
75 Dalal and Triggs [2005, p. 2].
76 See Dalal and Triggs [2005, p. 2].
77 See Felzenszwalb et al. [2010a, p. 4,13].
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7 Latent SVM

In this section the Latent SVM used in Felzenszwalb et al. [2010a] is being recapitulated, so later modifications w.r.t the
objective function can be examined.

7.1 Latent SVM with standard hinge loss

Felzenszwalb et al. propose a classifier that scores an example x with

fβ(x) = max
z∈Z(x)

β ∗Φ(x , z) . (39)

β is a vector holding all model parameters. The possible configurations example x can have, also known as latent values,
are defined by Z(x) – z is one latent value configuration. Latent values contain for example both part configuration and
the component label. The binary label y ∈ {−1,1} for the example x results from the thresholding gβ(x).78

Then β is being trained using the binary labeled examples D = (〈x1, y1〉, 〈x2, y2〉, ..., 〈xn, yn〉) minimizing the objective
function

LD(β) =
1

2
||β ||2
︸ ︷︷ ︸

Regularization term

+C
∑

i

max(0, 1− yi fβ(x i))
︸ ︷︷ ︸

Standard hinge loss

. (40)

The constant C determines the relative weight of the regularization term 1
2
||β ||2 w.r.t. the standard hingle loss term.

To be able to train an SVM classifier with latent variables one has to show that the optimization problem is convex.

Semi-convexity

“A latent SVM leads to a non-convex optimization problem ..."79. Felzenszwalb et al. show that by specifying the latent
values for each positive example the objective function of their model becomes convex. This is what they call a semi-
convex optimization problem. Linear SVMs are a special case of latent SVMs “if there is a single possible latent value for
each example”80. This means if |Z(x i)|= 1 then fβ is linear in β .

With a linear SVM we know that the hinge loss max(0,1− yi fβ(x i)) is convex for yi =−1 since the maximum of multiple
convex functions is convex – (39) is defined as the maxium of convex functions.81 Hence, the objective function is convex
in β for all negative examples.

The moment you consider positive examples (yi = 1) then max(0, 1− yi gβ(x)) is no longer convex, as it is the maximum
of a convex and a concave function 1− yi fβ(x i)⇒ 1− fβ(x i) with yi = 1. This is why we assign each positive example
a single latent value (|Z(x i)| = 1) which renders fβ(x i) linear and the hinge loss convex for positive examples.82 This
shows that (40) is convex.

Optimization
When the latent values are being limited to one per example with |Z(x i)| = 1 let Zp define a single latent value for each
positive example in D. Then the optimization algorithm needs to optimize both the latent values Zp as well as the model
parameters in β . Felzenszwalb et al. use a coordinate descent approach, meaning that the algorithm alternates between
optimizing one of the two variables Zp and β .

They define an auxiliary objective function

LD(β , Zp) = LD(Zp)(β), (41)

where compared to (40) the training set D has been replaced by D(Zp), a training set where latent values have been
resticted to Zp. For each positive Zp specifies the latent value zi , the only possible latent value for the example x i ,
therefore setting Z(x i) = {zi}).

78 See Felzenszwalb et al. [2010a, p. 8].
79 Felzenszwalb et al. [2010a, p. 8].
80 Felzenszwalb et al. [2010a, p. 8].
81 See Felzenszwalb et al. [2010a, p. 8].
82 See Felzenszwalb et al. [2010a, p. 8].
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The new auxiliary objective function bounds the LSVM objective with

LD(β) =min
Zp

LD(Zp)(β) (42)

and LD(β)≤ LD(β , Zp) by fixing (39) to the currently best latent configuration.83

The coordinate descent algorithm alternates between the following two steps:

1. Relabel positive examples. In this step LD(beta, Zp) is being optimized over Zp “by selecting the highest scoring
latent value for each positive example”84. In practice this can be described as a data-mining step, where for each
positive example Pi and bounding box (I , B), the highest scoring detection that has sufficient overlap with B, is
being stored in zi . In short, zi = argmaxz∈Z(xi)β ·Φ(x i , z).85

2. Optimize beta. “Optimize LD(β , Zp) over beta by solving convex optimization problem definied by LD(Zp)(β).”
86

Felzenszwalb et al. note that by searching exponentially-large space of latent values for positive and negative examples
one gets a “relatively strong local optimum”87 after the algorithm has converged. Step one searches the space of latent
values for positive examples, while step 2 does that implicitly for negatives.88

It may be important to initialize β carefully to train a good model. A bad β especially impacts the relabeling of positive
examples in step 1, since it is important there to select sensible latent values. The intialization is being described in
section 8.89

Stochastic gradient descent
The convex optimization problem defined by LD(Zp)(β) is being solved via stochastic gradient descent.

Stochastic gradient descent algorithm approximates ∇LD, the sub-gradient of the LSVM objective function, by taking a
step in the negative direction of a subset of examples.

Using the sub-gradient of the LSVM objective function (40)

∇LD(β) = β + C
∑

i

h(β , x i , yi) (43)

h(β , x i , yi) =
�

0 i f yi fβ(x i)≥ 1
−yiΦ(x i , zi(β))) otherwise (44)

one can approximate the term
∑n

i=1 h(β , x i , yi) with nh(β , x i , yi). It has been shown that by repeating this step many
times and slowly reducing the step size the global minimum can be reached almost surely.90

Felzenszwalb et al. improve this method by using a feature vector cache F for D(Zp) instead of a cache of examples x .
“This makes it possible to avoid doing inference over all of Z(x) in the inner loop of an optimization algorithm such as
gradient descent.”91

The feature vector cache consists of (i, v ) ∈ F where i is the index of an example x i and the v = Φ(x i , z) the feature
vector for z ∈ Z(x i). F can contain multiple feature vectors of the same negative example x i with different latent values
z.92 All i indexed by F are contained in I(F). Now instead of optimizing LD(β) they optimize LFβ – a slightly modified
objective function which only considers the feature vectors indexed by F :

LF (β) =
1

2
||β ||2 + C

∑

i∈I(F)

max(0,1− yi( max
(i,v )∈F

β · v )). (45)

Similar to (43) we can derive the sub-gradient ∇LF (β) = β + C
∑

i h(β , x i , yi) with

h(β , x i , yi) =
�

0 i f yi(max(i,v )∈F β · v )≥ 1
−yiΦ(x i , zi(β))) otherwise (46)

Then β can be updated using the following algorithm93:

83 Felzenszwalb et al. [2010a, p. 8].
84 Felzenszwalb et al. [2010a, p. 8].
85 See Felzenszwalb et al. [2010a, p. 8].
86 Felzenszwalb et al. [2010a, p. 8].
87 Felzenszwalb et al. [2010a, p. 8].
88 See Felzenszwalb et al. [2010a, p. 8].
89 See Felzenszwalb et al. [2010a, p. 8].
90 See Bottou [1998], Kiwiel [2001].
91 Felzenszwalb et al. [2010a, p. 10].
92 This is not the case for positive examples, since they have a single latent value z defined by Zp.
93 See Felzenszwalb et al. [2010a, p. 10].
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Algorithm 2 Stochastic gradient descent with feature cache
1) Let αt be the learning rate for iteration t
2) Let i ∈ I(F) be a random example i indexed byF
3) Let v i = argmaxv∈V (i)β · v
4) If yi(β · v i)≥ 1 set β = β −αtβ
5) Else set β = β −αt(β − Cnyiv i)

The learning rate αt defines the step size in each iteration. A larger learning rate is not always favorable, since one
could step far further than and diverge from the minimum. Therefore, the learning rate should decrease each iteration.
According to Shalev-Shwartz et al. [2007] setting αt =

1
t

works well for linear SVMs. In their implementation of the

gradient descent algorithm, however, Felzenszwalb et al. use a learning rate of αt =
1

min( n
2 ,t+10000)

for a maximum of n

iterations, basically starting with a learning rate which is already well below one and keeping it at 2
n

for larger t.

Data-mining hard examples
The size of the feature cache I(F) basically determines the runtime of the gradient descent algorithm. While it is very
efficient in the sense that each gradient descent iteration can be computed very fast, it is still important to select examples
that get into the I(F) wisely, so that the algorithm converges faster. This is especially important since negative examples
are so numerous. Obtaining a training set of negatives, images not containing the object class, is very inexpensive
compared with the process of finding and annotating positive examples. One image can already have 105 detection
windows to consider. A typical training set with 2000 negative images would lead to 200 million feature vectors to
consider while training. Therefore, only "hard negatives", and of course positives, should be used to form I(F).94

Hard negatives are negative examples which violate the SVM margin the most. In a Latent SVM the hard and easy feature
vectors of a training set D are defined as H(β , D) and E(β , D) respectively:

H(β , D) = {i,Φ(x i , zi)|zi = argmaxz∈Z(xi)β ·Φ(x i , z) and yiβ ·φ(x i , zi)< 1} (47)

E(β , D) = {(i, v ) ∈ F |yiβ · v > 1} (48)

Felzenszwalb et al. propose an iterative algorithm which alternates between training the model and mining hard exam-
ples.

Algorithm 3 LSVM data-mining algorithm
1) Let βt := β∗(Ft)(train the model)t
2) If H(β , D(Zp))⊆ Ft stop and return βt
3) Let F ′t := Ft\X for any X such that X ⊆ E(βt , Ft) (shrink the cache)
4) Let Ft+1 := F ′t ∪ X for any X such that X ∩H(βt , D(Zp))\Ft 6= ;)

The LSVM Data-mining algorithm (Algorithm 3) starts by training the model using the initial cache of feature vectors
F1. β∗(D) is defined as argminβ LF (β). The algorithm stops as soon as all hard negatives in D(Zp) are included in Ft
(H(β , D(Zp)) ⊆ Ft). Since this implies that all examples in Ft\X have zero loss on β , Felzenszwalb et al. conclude that
this must mean that one has found β = β∗(D(Zp)).95 They also show that the algorithm is going to terminate after a
finite number of iterations because LFt

(β∗(Ft)) grows with each iteration while being bounded by LD(Zp)(β
∗(D(Zp)).96 In

step three the cache is being shrunk, that means all examples (i, v ) which are elements of E(β , Ft) are being discarded
from the cache. Step four is the actual data mining step, where the shrunk cache F ′t is being replenished with newly
found hard negatives in F(Zp).

7.2 Latent SVM with contextual loss

In the following section we describe how contextual model is being trained with a Latent SVM analogous to the LSVM
Data-mining algorithm described above.

94 See Felzenszwalb et al. [2010a, p. 9].
95 See Felzenszwalb et al. [2010a, p. 9f].
96 See Felzenszwalb et al. [2010a, p. 9f].
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7.2.1 Semi-convexity

To be able to apply the LSVM Data-mining algorithm to our contextual model, we have to show that its optimization
problem is semi-convex as well.

The changes to the model structure in this work are limited to appending existing elements of the model structure to form
a metamodel, basically adding another hierarchy level. Two deformable parts models in accordance with Felzenszwalb
et al. are being grouped and used as components of a new model, linked by deformation rules. Thus, this resulting
metamodel can be expected to have the same properties.

It still has to be shown that the objective function also is convex.

With our new scoring function scorecontex t the function, which scores an example x changes from

fβ(x i) = β ·Φ
�

x i , zi(β)
�

(49)

in the original deformable parts model to

gβ(x i) = β · Φ̃
�

x i , zi(β)
�

+min
�

0,β · Φ̂
�

x i , zi(β)
��

(50)

= β · Φ̃
�

x i , zi(β)
�

−max
�

0,−β · Φ̂
�

x i , zi(β)
��

(51)

in the contextual model.

To be able to discern between the object and context part of the model parameters, the feature vectors Φ̃(x i , zi(β))
and Φ̂(x i , zi(β)) are being introduced in the previous function. These vectors are sparse and contain the values 6= 0 of
Φ(x i , zi(β)) of the respective sub-model. Φ̃(x i , zi(β)) represents the object sub-model, while Φ̂(x i , zi(β)) represents the
context sub-model so that

Φ(x i , zi(β)) = Φ̃(x i , zi(β)) + Φ̂(x i , zi(β)). (52)

Also there are flavours of fβ(x i) which only score either the context or object in x i:

f̃β(x i) = β ∗ Φ̃(x i , zi(β)) (53)

and

f̂β(x i) = β ∗ Φ̂(x i , zi(β)). (54)

The SVM loss function corresponding to gβ(x i) consists of two loss functions

L(s) =max(0,1− s) (55)

for object classification, and

Lcontex t(s) =−min(0, s) (56)

for the context classification, which are being nested to achieve the wanted dependency between object and context –
see (57). The output of Lcontex t is being used as a modifier to the input for L. The variable s in our case would be filter
response scores by either the object or the context model.

The resulting contextual loss function with the context score s0 and object score s1 is

Lcontex tual(s0, s1) = L(s1 + Lcontex t(s0)). (57)

In Figure 7 one can see that the value of Lcontex tual(s0, s1) is being influenced for s0 < 0. That means the loss increases if
s0 is too low. For s0 ≥ 0 the graph of Lcontex tual is equal to the standard SVM hinge loss max(0,1− yi f̃β(x i)). In other
words, a context score s0 below zero shifts the standard hinge loss left. A way to make this clearer is to alter the SVM
hinge loss notation from max(0, 1− yi f̃β(x i)) in a standard SVM to

max(0, a− yi f̃β(x i)) where a = 1−max(0, f̂β(x i)). (58)

The original soft margin optimization problem with the slack variable ξi and a linear loss function is defined by

minβ ,ξi ,b

�

1
2
||β ||2 + C

∑

i ξi

�

s.t. yi(β x i − b)≥ 1− ξi , ξi ≥ 0. (59)
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Figure 7: 2D plot of the loss functions L(left) and 3D plot of Lcontex tual(s0, s1)(right)

Using the standard loss function and the Latent SVM according to Felzenszwalb et al. [2010a, p. 8], the original objective
function is defined as (40): LD(β) =

1
2
||β ||2 + C

∑

i max(0, 1− yi fβ(x i)) =
1
2
||β ||2 + C

∑

i L(yi fβ(x i)).
Now the contextual model’s objective function can be constructed. Felzenszwalb et al. “train β from labeled examples
D = (〈x1, y1〉, ..., 〈xn, yn〉), where yi ∈ {−1,1}, by minimizing the objective function” 97 (40). An objective function can
be formed which reflects the overall model’s scoring function (50):

LDcontex tual
(β) =

1

2
||β ||2 + C

∑

i

yi gβ(x) (60)

=
1

2
||β ||2 + C

∑

i

L(yi f̃β(x i)− yi Lcontex t( f̂β(x i))) (61)

=
1

2
||β ||2 + C

∑

i

max(0,1− yi f̃β(x i) + yi max(0,− f̂β(x i))). (62)

The loss function’s subgradients are as follows:

∇LDcontex tual
(β) = β + C

∑

i

h(β , x i , yi) (63)

h(β , x i , yi) =







0 if yi f̃β(x i)− yi max(0,− f̂β(x i))≥ 1
−yiΦ̃(x i , zi(β)) if yi f̃β(x i)< 1∧ f̂β(x i)≥ 0
−yiΦ̃(x i , zi(β))− yiΦ̂(x i , zi(β)) otherwise

(64)

Now, having defined the optimization problem by LDcontex tual
(β), we have to show that it is in fact semi-convex according

to Felzenszwalb et al. [2010a]. Recall that the hinge loss in a linear SVM is convex for yi = −1. We now have to show
that this is also true for our contextual loss. It is obvious that there is a problem with the convexity w.r.t. f̂β(x i):

max(0, 1− yi f̃β(x i) + yi max(0,− f̂β(x i))) (65)

Let yi =−1 (66)

=⇒ max(0, 1+ f̃β(x i)−max(0,− f̂β(x i))) =max(0,1+ f̃β(x i) +min(0, f̂β(x i))) (67)

We can see that min(0, f̂β(x i)) is concave, hence, the loss is not convex for yi =−1. This also gets apparent when looking
at the sub-gradient of the objective function.

That the objective function in this state is not semi-convex can also be explained intuitively. Now, if the contextual model
would be trained with equation (62), one would encounter the problem that the context model would only be affected

97 Felzenszwalb et al. [2010a, p. 8].

27



by the positive examples in a way that the context scores would increase until f̂β(x i) ≥ 0 for all positive examples.
Negative examples loose impact as soon as their context score f̂β(x i) ≥ 0. One could see that this optimization problem
is not semi-convex. Given a context model which scores every example with a score larger than zero, there would be no
pressure by the objective function to train it anymore.

With each relabeling step new positive examples can be detected with context scores below zero. In the following
gradient descent step, the context model parameters increase again, so that more positive and negative examples have a
greater or equal than zero context score. This happens until all positive examples have a context score of > 0. Thus, the
optimal model parameters could never get reached. To break this cycle, we have to introduce additional constraints to
the objective function.

7.2.2 Semi-convexity through context regularization

The solution is to make use of an additional class label ŷi for the context classifier f̂β(x). That requires that additional
training data has to be acquired. The context label ŷi is being introduced. It is independent from the object class label
yi and therefore context bounding boxes have to be annotated in negative example images. Hence, the training dataset
D has to be extended with context labels ŷi . The resulting dataset is called E. With these extended labeled examples
E = (〈x1, y1, ŷi〉, ..., 〈xn, yn, ŷn〉) where yi , ŷi ∈ {−1, 1},
We explore two ways to avoid context model parameters from drifting to unreasonably large values. In the first approach
the contextual hinge loss from (62) is modified directly by adding negative pressure to context model parameters, in the
second approach an additional weighted standard SVM hinge loss is being added to the objective function (62).

1. Integrated context regularization with additional context class label
For the first approach we now consider the four resulting cases of combining the possible values of the object class yi and
context class ŷi .

When applying the soft margin optimization problem

1

2
||β ||2 + C

∑

i

ξi (68)

to this model, with the assumption that a positive object example always means that there is also a context nearby, we
only need to distinguish between the following three cases:

s.t. ∀ : yi =+1⇒ ŷi =+1 f̃β(x i)−max(0,− f̂β(x i)) ≥ 1− ξi

∀ : yi =−1∧ ŷi =+1 − f̃β(x i) ≥ 1− ξi

∀ : yi =−1∧ ŷi =−1 − f̃β(x i)− f̂β(x i) ≥ 1− ξi

(69)

When comparing (62) with (69) the cases with yi = −1 are handled differently. The max function, which previously
enforced the context score threshold, is gone. This change is based on the following assumption, which is very similar
to the way standard linear SVMs are being trained. Usually the class label yi is being used to force the score of positives
and negatives into opposite directions when optimizing by giving them inverted loss functions. In our case a second class
label ŷi has to be used to define ’different’ loss functions for each combination – which are later of course combined into
one loss function, with parameters yi and ŷi .

Correctness Assumption: The threshold which is enforced by max is only relevant for f̂β(x i)> 0. Now we want the final
trained model to have f̂β(x i) < 0∀x i , i ∈ N where ŷi = −1. This would mean that in the final model all examples with
ŷi =−1 would have negative context scores, hence, thresholding with max would have no effect. This means that the loss
function is deliberately altered, depending on the object and context label configuration. Now each label configuration
has an own loss term. Because these changes do not affect the final model – assumed the context appearances training
data can be classified correctly in the end ( ŷi). While in reality there might certainly be some outliers in the training set
that are impossible to classify correctly, if the training data has a certain quality the model should classify most of the
context training data correctly. In the training context, given the model can reach good results on the training data, this
might be a feasible approach to regularize the context parameter while training.

Correctness assumption: assume that ŷi = sign( f̂β(x i)) ∀ 〈x i , yi , ŷi〉 ∈ E after the contextual model has been trained.

Based on knowledge we gain from ŷi , limiting f̂β(x i) using max is being omitted in cases of ŷi = −1. This basically
means negative context examples have a different loss function than positive context examples. This is analogous to the
standard SVM hinge function, where the example’s class label determines the loss term.
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That way the truing algorithm “knows” that it can decrease a negative examples’ loss (and score) by reducing the context’s
score. This would not be the case if the context score would still be thresholded in the objective function because then the
gradient w.r.t. context model parameters would equal zero. Ultimately, the training algorithm would have no indicator
how to decrease the loss of negative examples using the context.

1. Case one (yi = +1⇒ ŷi = +1) covers the positive object examples. This case is equivalent to the global scoring
function fβ(x i). The other two cases differentiate between available and unavailable context.

2. For the second case the knowledge about a positive context ( ŷi = +1) tells us that in this instance a successful
classification has to be achieved through object model.

3. In the third case yi = −1 ∧ ŷi = −1 a classification should be made as a joint effort by the object classifier and
context classifier, this assumption means that in this case f̂β ought to be negative. This assumption is reinforced
by the context class label, since a negative context label in the training data should mean that this example would
get a negative score/sign in the trained model. This is why we are removing the threshold previously enforced by
the max function.

This results in the following loss function.

yi f̃β(x i)−
�

yi + 1

2

�

max(0,− f̂β(x i))−
�−yi + 1

2

− ŷi + 1

2

�

f̂β(x i)≥ 1− ξi (70)

=⇒ LE(β) =
1

2
||β ||2 + C

∑

i

max
�

0,1− yi f̃β(x i) +
�

yi + 1

2

�

max(0,− f̂β(x i)) +
�−yi + 1

2

− ŷi + 1

2

�

f̂β(x i)
�

(71)

Now we show that this loss function forms a semi-convex optimization problem for all combinations of yi and ŷi . For
argumentation purposes we first show semi-convexity for case three and one, and lastly for case two.

• (yi = −1 ∧ ŷi = −1) If both object and context class are negative, then the loss for these examples is defined as
max

�

0,1+ f̃β(x i) + f̂β(x i)
�

. Equations (53, 54) and (52) show that for negative examples contextual loss and
linear SVM hinge loss with scoring function (39) are equal, that is

max
�

0,1+ f̃β(x i) + f̂β(x i)
�

=max
�

0, 1+ fβ(x i)
�

, (72)

which proves that is convex for negative examples.

• (yi = +1 ⇒ ŷi = +1) In an LSVM the optimization problem (71) is not convex for positive examples, but it
becomes convex when we limit latent values per example |Z(x i)| = 1|. This works completely analogous to the
way semi-convexity has been shown for the linear SVM hinge loss.

• (yi = −1∧ ŷi = +1) This case is rather simple. With ŷi = 1 the loss function (71) for an example becomes equal
to the linear SVM hinge loss:

max
�

0,1− yi f̃β(x i) +
�

yi + 1

2

�

max(0,− f̂β(x i)) +
�−yi + 1

2

− ŷi + 1

2

�

f̂β(x i)
�

with yi =−1∧ ŷi =+1

(73)

=⇒ max
�

0,1− yi f̃β(x i) +
�

0 ·max(0,− f̂β(x i)
�

+ (0 · 0) f̂β(x i)
�

(74)

=⇒ max
�

0,1− yi f̃β(x i)
�

(75)

Since we know that the standard hinge loss is convex for negative examples this case is also semi-convex.

After showing that the optimization problem defined by LE(β) is indeed semi-convex we, show that LE(β) can be derived
directly from the non-semi-convex optimization problem defined by (62). One can show that equation (71) is in fact
equivalent to the contextual loss term of (62) when substituting the fixed class label ŷi with sign( f̂β(x i)), where

sign(a) =
�

−1 a < 0
1 a > 0 , a ∈ R. (76)

This also means it reflects the scoring function (50).
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yi f̃β(x i)−
�

yi + 1

2

�

max(0,− f̂β(x i))−
�−yi + 1

2

− ŷi + 1

2

�

f̂β(x i) (77)

⇐⇒ yi f̃β(x i)−

(

max(0,− f̂β(x i)) if yi = 1
�− ŷi+1

2

�

f̂β(x i) if yi =−1
(78)

⇐⇒ yi f̃β(x i)−







max(0,− f̂β(x i)) if yi = 1
(

0 if ŷi = 1

f̂β(x i) if ŷi =−1
if yi =−1

(79)

let ŷi := sign( f̂β(x i)) (80)

=⇒ yi f̃β(x i)−







max(0,− f̂β(x i)) if yi = 1
(

0 if sign( f̂β(x i)) = 1

f̂β(x i) if sign( f̂β(x i)) =−1
if yi =−1

(81)

⇐⇒ yi f̃β(x i)−

(

max(0,− f̂β(x i)) if yi = 1

min(0, f̂β(x i)) if yi =−1
(82)

⇐⇒ yi f̃β(x i)−

(

max(0,− f̂β(x i)) if yi = 1

−max(0,− f̂β(x i)) if yi =−1
(83)

⇐⇒ yi f̃β(x i)− yi max(0,− f̂β(x i)) (84)

⇐⇒ yi

�

f̃β(x i)−max(0,− f̂β(x i))
�

(85)

⇐⇒ yi gβ(x i) (86)

As one can see by substituting ŷi with si gn( f̂β(x i)) with (80) the result is equivalent to the loss term in (62). When
defining ŷi := sign( f̂β(x i)) we let the classifier f̂β(x i) determine the class label.

Conversely we could say that by adding the information about context class label ŷi to the first proposed loss function (62)
and thus enforcing the context class through labeled training data we end up with (69), again showing the requirement
of the correctness assumption if ŷi = sign( f̂β(x i)).
As noted in Felzenszwalb et al. [2010a] the standard latent SVM optimization problem is semi-convex, therefore relying
on a fixed set of positive examples to become convex. If all cases in (69) would be handled with the term

yi f̃β(x i)− yi max(0,− f̂β(x i))≥ 1− ξi (87)

the optimization problem would not be convex, even with defining |Z(x i)| = 1, since ŷi would not be used to regularize
the context parameters. Recall that an SVM optimization algorithm wants to maximize the margin between the Hyper-
plane defined by the SVM and the positive and negatives examples. In a convex optimization problem the algorithm
should be able to modify all parameters. However, as noted above, the sub-gradients of (87) can become zero w.r.t. the
context parameters for negative examples yi , thus being stuck at certain suboptimal values.

If the context score is always grater zero, the sub-gradients are always zero for context parameters in (64). However,
defining the optimization problem by (69) solves this problem.

With (71) we can define the objective function:

LE(β) =
1

2
||β ||2 + C

∑

i

max(0, 1− yi f̃β(x i) +
�

yi + 1

2

�

max(0,− f̂β(x i)) +
�−yi + 1

2

− ŷi + 1

2

�

f̂β(x i)) (88)

The resulting subgradients are as follows:

∇LD(β) = β + C
∑

i

h(β , x i , yi , ŷi) (89)

h(β , x i , yi , ŷi) =







0 if yi f̃β(x i)−
� yi+1

2

�

max(0,− f̂β(x i))−
�−yi+1

2
− ŷi+1

2

�

f̂β(x i)≥ 1
−yiΦ̃(x i , zi(β)) if yi f̃β(x i)< 1∧

�

( f̂β(x i)≥ 0∧ yi =+1)∨ (yi =−1∧ ŷi =+1)
�

−yiΦ̃(x i , zi(β))− ŷiΦ̂(x i , zi(β)) otherwise

(90)
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The label ŷi is equivalent to yi in row three of (90) due to first two cases. Row three can only be reached when yi = ŷi .
That means we can simplify the subgradient with (52) to:

h(β , x i , yi , ŷi) =







0 if yi f̃β(x i)−
� yi+1

2

�

max(0,− f̂β(x i))−
�−yi+1

2
− ŷi+1

2

�

f̂β(x i)≥ 1
−yiΦ̃(x i , zi(β)) if yi f̃β(x i)< 1∧

�

( f̂β(x i)≥ 0∧ yi =+1)∨ (yi =−1∧ ŷi =+1)
�

−yiΦ(x i , zi(β)) otherwise
(91)

This also confirms that the context parameters (or rather just its bias parameter, since we do not retrain the context
model) is never being modified alone, only in conjunction with the object parameters. Only the object parameters are
being trained on their own if the context’s score is large enough. This reflects the conditional scoring function (33) where
the object score scorede f (Z1) is a mandatory term and score(Z0) only added if it is below the threshold.

Models that have been trained using this approach are marked with the keyword “RegA” in the result section.

2. Independent context regularization with hinge loss
The other approach to regularize context parameters introduces another term to the objective function (62). The ad-
ditional standard SVM hinge loss is supposed to keep the context parameters so that context training data is still being
correctly classified.

LE(β) =
1

2
||β ||2 + C

∑

i

Lcontex tual

�

f̂β(x i), yi f̃β(x i)
�

+ D
∑

j

L
�

ŷ j f̂β(x
′
j))
�

(92)

=
1

2
||β ||2 + C

∑

i

max(0, 1− yi f̃β(x i) + yi max(0,− f̂β(x i)))

︸ ︷︷ ︸

Term 1: contextual loss (57)

+D
∑

j

max(0, 1− ŷ j f̂β(x
′
j))

︸ ︷︷ ︸

Term 2: standard hinge loss (55)

. (93)

As shown before with (62) also (93) is not semi-convex. Though (93) is semi-convex in f̃β(x). This means that just the
parameters in β where Φ̂(x i , zi(β)) is non-zero will step in the wrong direction (of course this later also influences the
other ones). To prevent that, another standard hinge loss term is being introduced – see Term 2 in (93), which we know
is semi-convex. This term only trains the context parameters. Unlike in the previous approach the context examples x ′j
that are used in this term can also come from a completely different training set.

This creates a competitive relationship between the contextual loss term and the added standard hinge loss. As discussed
before in 7.2.2 term 1 tends to larger f̂β(x i) to ensure there is no context penalty on positive examples. Term 2 on the
other hand now tends to keep the parameters reasonable to be able to classify the context class correctly. The variable D
is being used to change the relative weight between all terms and the impact of the new context regularization term.

Models that have been trained using this approach are marked with the keyword “RegB” in the result section.

Comparison of context regularization methods
The two context regularization methods are very different. The first approach works analogous to a standard hinge loss
where yi is already known, by also fixing the context class ŷi while training. This solves the problem of the previous
non-convex objective function.

Both approaches require additional labels for the training data. Without ŷi the context parameters in β cannot be
prevented from deviating to a local minimum. Still, the training data requirements are still different. While the integrated
approach with (88) requires both object and context labels (bounding boxes) to be labeled in the same training data,
(93) can work with an integrated trainingset as well as with two different trainingsets for the object and context classes.
This can be a huge disadvantage for the first approach. Most of the time training sets of objects only contain bounding
boxes of a single class. Even if there are multiple class annoations in a single data set, there is still a big chance that these
classes together do not have a relationship as stated in our assumptions on page 1.

In these cases it could be more feasible to train a contextual model through the independent context regularization ap-
proach. Training sets for both model and context could be selected independently. Existing datasets could be recombined
to test out different object/context combinations. In our case of clothing objects and person context models we could
fall back on an existing extensive amount of annotated human datasets. Only the clothing dataset would have to be
generated from scratch. Of course one would have to chose only images for the clothing dataset where also the context
is available. It does not have to be annotated though, thus, saving time.
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Other than that, the independent context regularization approach has many drawbacks. There is another constant D
which together with C defines the relative weights of the three loss terms. D is not independent from C through the term
1
2
||β ||2, which, together with a typical model training time of several hours, makes it very time-consuming to find suitable

values. Also it is hard to show that the optimization problem becomes semi-convex by adding the additional hinge loss
for the context model.

The integrated approach on the other hand is a) proven to be semi-convex and b) does not introduce additional weights
between object and context model – the impact of the context model in the contextual model is instead trained implicitly.
For this reason we decide primarily use the first approach, objective function LE(β) as defined in (88).
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8 Training contextual models

A contextual mixture model is being initialized by combining fully trained deformable part mixture models, in our case
one object class mixture model and one context class mixture model. In this section model initialization and training for
deformable parts models, according to Felzenszwalb et al., will be recapitulated.

8.1 Deformable parts model initialization

The models are being trained by the LSVM coordinate descent algorithm. It “is susceptible to local minima and thus
sensitive to initialization”98.

The deformable part mixture models are being initialized in multiple phases. We have positive training data P containing
image, bounding box pairs (I , B). Negative training data N just contains images.

1. In the first phase the root filters Fi
99 for m components are being initialized. Bounding boxes from the training

data are being sorted by their aspect ratio and divided into m equally sized groups. “Aspect ratio is used as a simple
indicator of extreme intraclass variation.”100 Now for each component group root filters Fi , i ∈ [1, ..., m] are being
trained. Their dimensions are being defined by the mean aspect ratio of the current group and the area at the 80th
percentile. “This ensures that for most pairs (I , B) ∈ Pi we can place Fi in the feature pyramid of I so it significantly
overlaps with B.”101 Fi is being trained with a standard SVM. Positive examples are extracted directly from the
image region under each bounding box B in Pi and warped to obtain a feature map with the same dimensions as
the root filter. Negative examples in the filter size are extracted randomly from the negative data set N .

2. In phase two the components, respectively the root filters, are being merged into a single mixture model. Now
the mixture model is being trained using the full training datasets P and N and the LSVM algorithm. The latent
variables in this phase are the root location and the component label. As Felzenszwalb et al. point out, the LSVM
training algorithm can be interpreted as an alternating clustering method. In the relabeling step each example is
assigned a mixture label (equivalent to the cluster label) while in the gradient descent the root filters representing
the cluster "means" are being estimated.102

3. In phase three the model is being extended by adding parts for each component. Felzenszwalb et al. are proposing
the heuristic of chosing six parts per component and placing them greedily in high energy regions of the root
filter.103 The energy of the region where the part has been placed is set to zero and the next best high energy
region is being chosen for the next part, until all parts have been chosen. The part weights are initialized by
doubling the resolution of the root filter and extracting the weight in the part’s area.104 Felzenszwalb et al.
[2010a] allow for a small set of different rectangular part shapes and require the parts to be either centered
vertically or have a symmetric counterpart. In their newer code release from 2011 Felzenszwalb et al. only use
quadratic part shapes of a single size.105 Additionally, they introduce mirrored components to the mixture model
which makes it possible to place the parts everywhere in the root filter without creating symetric counterparts.
Each part does not have its symmetric counterpart inside the same component model, but rather in another
completely symmetric component model.106 Deformation model parameters for all parts are being initialized to
di = (d y, d x , d y2, d x2) = (0,0, 0.1,0.1) which “pushes part locations to be fairly close to their anchor position”107.

8.2 Training algorithm

Felzenszwalb et al. define the procedure Train by combining the LSVM training algorithm in section 7.1 and the
data-mining of hard examples algorithm 3. To train a model for an object class c, the procedure expects positive ex-
amples P, negative images N and the initial model parameters β . P contains pairs of images and bounding boxes
P = {(I1, B1), ..., (In, Bn)} defining object locations, N is a set of background images – images without objects of class c.
β are the parameters of a mixture model M that has been initialized according to the method described above.108

98 Felzenszwalb et al. [2010a, p. 11].
99 Each root filter Fi in a mixture model represents F0 in single model, see equation(2).
100 Felzenszwalb et al. [2010a, p. 11].
101 Felzenszwalb et al. [2010a, p. 12].
102 See Felzenszwalb et al. [2010a, p. 12].
103 See Felzenszwalb et al. [2010a, p. 12].
104 See Felzenszwalb et al. [2010a, p. 12].
105 Possibly to speed up the feature extraction. With parts of the same size only one feature map per window location has to be extracted from

the feature pyramid. This could increase performance significantly.
106 See Felzenszwalb et al. [2011]
107 Felzenszwalb et al. [2010a, p. 12].
108 See Felzenszwalb et al. [2010a, p. 11].
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As described above, the procedure (see algorithm 4) alternates between optimizing the latent values “by selecting the
highest scoring latent value for each positive example”109, and optimizing β . Both steps are being executed multiple times
resulting in nested for loops, the outer relabel-loop and the inner datamine-loop. The variable num-relabel determines
how often the outer loop is being exectuted, where all positive examples are being relabeled, hence, optimizing the latent
values Zp. The variable num-datamine determines how often hard negatives are being mined and the stochastic gradient
descent algorithm is being carried out. The variable memor y-l imit depends on the runtime environment and on the size
of each feature vector (i, v ) ∈ Fn.

Algorithm 4 Procedure Train110

function TRAIN(P, N ,β)
Fn← ;
for relabel = 1→ num-relabel do

Fp ← ;
for i = 1→ n do

Add detect-best(β , Ii , Bi) to Fp
end for
for datamine = 1→ num-datamine do

for j = 1→ m do
if |Fn|< memor y-l imit then

Add detect-all(β , J j ,−(1+δ)) to Fn
end if
β ← gradient-descent(Fp ∪ Fn)
Remove (i, v ) with β · v <−(1+δ) from Fn

end for
end for

end for
end function

In general the algorithm could also stop if while loops instead of fixed-length for loops would be used. This is not
being reflected in the depicted Algorithm 4. The first loop has an exit condition, that stops as soon as the relabeling
step improves the loss of all positive examples by less than 1%. This exit condition is implemented in the framework by
Felzenszwalb et al. [2011]. The data-mining algorithm has an explicit exit condition, which stops the loop when all hard
negatives of the training data N are in the feature cache Fn.111

Felzenszwalb et al. explained, that the algorithm runs a fixed number of iterations for practical reasons. While not
further describing these practical reasons, one could imagine that it is reasonable to prevent an algorithm from running
an indefinite amount of time.

When training models using the PASCAL training data, they execute the procedure Train with num-relabel = 8 and
num-datamine = 10, while using a smaller subset N ′ of their negative images N . Then they run an additional data-
mining loop – see Algorithm 4 – with num-datamine = 5 for the whole set of negative images N .112 This two-step
approach might make sense to learn latent values fast using N ′, and then use the whole set N to optimize β on its own.
These details might be highly dependent on the training set.

8.3 Contextual model initialization

To construct a contextual mixture model we first train two deformable part mixture models according to the algorithm
described above. The object class mixture model is being trained on our object training dataset. The context class mixture
model on the other hand is preferrably being trained on a disconntected training dataset to assure that object specific
features have less impact.

After both mixture models have been trained, they can be merged to form an initial contextual mixture model. Since in
each mixture model each component has a right and left facing version, two ways to merge the mixture models into a
contextual model come into mind. We refer to these initialization options as l r and l × r. The l r option groups each
left facing component of the object model with each left facing component of the context model, the same is being done
with the right facing components. The l × r option on the other hand groups each component of the object model with

109 Felzenszwalb et al. [2010a, p. 8].
110 Felzenszwalb et al. [2010a, p. 11, Procedure Train].
111 See Felzenszwalb et al. [2010a, p. 9f].
112 See code in framework version 4, Felzenszwalb et al. [2011].
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each of the context model’s components. While the latter is more thourough and considers each possible combination of
object and context appearance, the l r approach is simpler and faster to train. The l r-type contextual models contain half
the amount of parameter than l × r-type contextual models.

For example we have a deformable parts model A with 4 components (2 component sizes, each left and
right) and a deformable parts model B with 2 components (1 component size, which also exists in left
and right versions). Be A the object model and B the context model. Let Ai be the i-th component
of A and Bi the i-th component of B respectively. When merging both models to a contextual mixture
model using the l r approach one would get a 4-component mixture model with the component permutations
[(A1, B1), (A2, B2), (A3, B1), (A4, B2)]. By using the l × r approach one would get an 8-component model with the compo-
nent permutations [(A1, B1), (A1, B2), (A2, B1), (A2, B2), (A3, B1), (A3, B2), (A4, B1), (A4, B2)].
For example let’s look at a the number of components m of a contextual mixture model Mcontex tual which is being
generated from the mixture model M0 with m0 components and context mixture model M1 with m1 components. Let
every second component of M0 and M1 be a mirrored version of the previous component. Thus, each component exists
in a left and in a right facing version, meaning we have an even amount of components in each sub-model, m0%2 =
m1%2= 0.

Using l r merging Mcontex tual would have ml r = 2 · (m0
2
· m1

2
) components. In other words, first the sub-models’ left facing

components are being grouped in all permutations and then all left facing components. In general ml r = 2
∏n

c=1
mc
2

,
where n is the number of sub-models in Mcontex tual . Using l × r merging Mcontex tual would have ml×r = m0 ·m1 compo-
nents. Hence, a model using l × r-merging has 2n times more permutations, resulting in a much higher complexity and
a proportional growth of the number of model parameters in β ,

ml×r = 2n−1 ·ml r . (94)

Each component pair (Ai , Bi) is then merged to a contextual model. All resulting contextual models together form one
contextual mixture model. To merge a component pair we need to initialize the offset, scale and deformation cost
parameters Vi , Si and Di respectively as defined in (7), since these parameters define their spatial relation. Vi and Si are
calculated as the mean location and scale offsets of the object and context bounding boxes in the training dataset. It is
worth noting that, while annotated data for their relative configuration is available, the object location w.r.t. its context
is still considered to be a latent variable and is being trained. The reason for this is that the initial mean location and
scale offsets can change when examples get assigned different component labels in the relabeling step of the training
algorithm.

The deformation costs for each (Ai , Bi) are being initialized at Di = (d y, d x , ds, d y2, d x2, ds2) = (0, 0,0, 0.01, 0.01,0.02),
leaving the deformation costs low and pushing the object only slightly to its context. Each parameter in the model has
customizable learning and regularization rate parameters. For the object deformation costs the same rates are chosen
as the part deformation parameters of the original deformable parts model by Felzenszwalb et al.. These parameters
could have effects on model performance, but, since the results of changing learning and regularization rates can only be
observed after training the whole model, experiments were not feasible due to time constraints.

8.4 Contextual model training

If one wants to keep the context model independent from the object in a contextual model the learning and regularization
rates for its parameters – except the bias parameter b – can be set to zero. Keeping the context model independent enables
the reuse of the same model in multiple contextual models. We also do this for some of the contextual models we show
in section 10. This adheres to the vision to reuse and share context models across multiple object categories. If a large
dataset of different objects is available for training one could also leave the context model parameters trainable. More
objects trained at the same time would decrease the dependency between a single object class and the context. In this
case we are limited to keep the context model parameters static to simulate this independency because we only have one
training dataset for the object category “dress”.

After the initialization the contextual model is being trained analogous to the deformable parts-based model, using either
the objective function (71) or (93) defined in section 7.2.2.

The deformable part model’s training algorithm is the same as in the work by Felzenszwalb et al.. There are several parts
that need to be changed.

Learning the threshold and model degeneration
Augmenting a deformable parts model with a context should lead to a model which performs equally or better than the
original. Therefore, the influence of the contextual constraints should be weighed by the training algorithm. This makes
the model robust to context models which do not significantly correlate with the object. In such a case the threshold
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parameter b could be raised by the training algorithm to a level where all detection windows result in a positive context
score. This would remove any context constraint and impact of deformation costs.

Imagine a contextual model Mcontex tual = (M0, C1) with their object hypothesis z0 and context hypothesis z1. Now
consider the C1’s bias b1. There must be a value for b1, where

lim
b1→∞

score(z1)≥ 0 with z1 = (p1,0, ..., p1,n1
)∀p1,i ∈ N3, (95)

where n1 is the number of parts of context model C1. With (19) this implies that the impact of any context hypothesis z1
on the score of the overall Z is completely migitated.

=⇒ lim
b1→∞

scorecontex tual(Z) = scorede f (Z1) +min(0, lim
b1→∞

score(Z0)) (96)

= score(z0) + 0 (97)

= score(p0,0, p0,1, p0,2, ..., p0,n0
) (98)

= score(p0, ..., pn0
). (99)

In that case the contextual model Mcontex tual degenerates to a model, which is equivalent to the input object model M0
( lim

b1→∞
Mcontex tual = M0).

The opposite is also possible. If the bias b0 became low enough, the context score would never have to be thresh-
olded. In that case the threshold becomes irrelevant and the contextual model just becomes the sum of its sub-models,
( lim

b1→−∞
Mcontex tual = M0 +M1).

This shows that the context model’s bias parameter moderates the context’s impact.
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9 Implementation

9.1 Framework version 4

While this work is based on deformable parts models by Felzenszwalb et al. [2010a] the implementation is also based
on their framework voc-release4.113 This framework is programmed in Matlab as well as in C for modules demanding
faster performance. The reason why Version 5 of the framework is not used here, is that it has not been published at the
time of implementation of the contextual model described here. A further look at the newer framework and how its new
features could be leveraged has been appended to the end of this section.

Model blocks
The model structure itself resides in Matlab. The model parameters in β are encoded as a weight vector and divided
and stored in blocks. Blocks represent related weights. Each element of deformable parts model M114, Fi , v i , di or b
has their own block. For instance each part’s weights are being stored in their own block. Each block has an associated
blocklabel. Having blocks instead of a single weight vector allows for sparse feature vectors, which can speed up dot
product calculation for mixture models needed in the gradient descent step.115 This also enables the possibility to identify
different types of blocks, generating multiple dot products and handling them differently in the gradient descent.116 This
is a core requirement to be able to implement the contextual model without introducing deep changes to the model
structure.

Grammar
Additionally, the model contains symbols and rules. Felzenszwalb et al. [2011] constructed their model so that it can be
described by an acyclic grammar out of symbols. Each symbol has a label and a type. Their types can either be terminal
or non-terminal. Each terminal symbol represents a filter (like a root or a part filter), while each non-terminal symbol
represents a rule. Rules represent the grammar’s productions.117 A rule holds information about the left hand side (lhs,
its own symbol label) and the right hand side (rhs) of the production. The rhs can consist of one ore more symbol labels.

In their framework Felzenszwalb et al. use two different rules:

• Structural rules merge all symbols on the rhs by adding their score pyramids and applying an offset to the resulting
score pyramid which is stored in the lhs-symbol. This offset represents the bias b of model M . Therefore, the offset
has an associated block to store its weight.

• Deformation rules apply distance transform to the rhs-symbol. The rule contains the deformation cost parameters
which like the structural rule’s offset have an associated block. When this rule is being applied, the modified score
pyramid is stored and together with lookup tables generated as a by-product of the distance transform algorithm.
These lookup tables allow backtracking of the deformation in x and y direction which is needed to look up the
original part locations before deformation. With these part locations the features can be extracted and stored in
feature vectors used in the gradient descent.

Symmetry

The mixture models’ symmetry allows for a parameter reduction by half.118 In Felzenszwalb et al. [2010a] model com-
ponents could only be self-symmetric. This means that parts in the model had to be positioned in a symmetric manner. In
this case parameter reduction could be achieved within a single model. The framework voc-release4 Felzenszwalb et al.
[2011] introduced asymmetric models, in the sense that now left and right orientations of objects could be modelled.
To make it possible to model non-symmetric objects each model has a mirrored counterpart, e.g. a car from the left and
a car from the right side. The parameters of this mirrored counterpart do not need to be redundantly stored. Instead
a "flip"-flag is being added to the mirror filters and rules, which lets the framework know that these are just mirrored
copies of the original filters and rules.

113 See download at Felzenszwalb et al. [2011]
114 See equation (2).
115 See Felzenszwalb et al. [2011]
116 Gradient descent with the subgradients in equation XYZ requires the knowledge of the individual object and context scores and need to

modify object and context parameters individually as well. This is possible due to the division into blocks.
117 See “documentation.txt” in Felzenszwalb et al. [2011]
118 See Felzenszwalb et al. [2010a, p. 11].
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9.2 Extended framework

The grammar based model is a great opportunity for extensions. At least on the structural level this is easily done. The
offset and deformation linking the object and context model as depicted in Figure 2 can be described by two rules.

• Extended structural rules: We need to extend the structural rules to be able to offset parts (or sub-models) by
any arbitrary scale difference. While there is actually no need to change the data encoded in the rule, we need
to change the parts of the program where structural rules are being processed. In the original framework only
octave scale changes are supported by the implementation, while any scale change is allowed by the grammar.
This means that the extended structural rule implementation can be used as a replacement of the old ones. The
grammar does not need to change, but the implementation does. The final program does not need to make a
distinction between extended structural rules and original structural rules.

• This is not the case for extended deformation rules: These rules cannot be used as a replacement for original
deformation rules, since they introduce new grammar through new data and functionality. The extended defor-
mation rule applies 3-dimensional distance transform to the whole score pyramid as described in section 5. As
such the rule holds a weight vector with the length of six instead of four to include linear and quadratic scale
deformation costs. Like in the original deformation rules, x/y coordinate lookup tables are being stored in the
rule for backtracking. There is no scale-space lookup table though. Backtracking w.r.t. the scale level is being done
using a simple brute force approach for reasons explained in the following section 9.3.

Before applying the 3-dimensional distance transform, the extended deformation rule also applies the threshold
cap to the context scores according to the contextual scoring function (33).

9.3 Feature extraction and backtracking

Implementing the 3-dimensional distance transform has been one of the major changes enable the framework of Felzen-
szwalb et al. to support contextual models. In the earlier sections we described how generalized distance transform
can be applied to score pyramids. In the following chapter we explain how the distance transform backtracking works
through the scale levels of score pyramids.

To train the model positive and negative examples must be extracted from the detections. This is done by starting at
the detection window and tracing back offsets and deformation to the part filter locations. The process to backtrack and
extract an example contains three distinctive steps:

1. Backtracking offsets.

2. Backtracking deformation.

3. Extracting root and part filter features.

To backtrack offsets (e.g. used in spatial positioning of parts and sub models) the coordinates are being translated by
the negative offset and scaled according to the scale level offset. All levels in the feature pyramid are padded by a fixed
amount. This means that in addition to scaling, the virtual padding between two levels has to be subtracted from the
resulting coordinate. This virtual padding can introduce rounding errors into the resulting coordinates.

pv ir tual(δs) = p · (2δs − 1), p ∈ N (100)

In the case that all scale changes are either 1
2

or 2, which means that the scale change is always a whole octave119, the
introduction of rounding error can be prevented by choosing an even valued padding.

p := 20 (101)

pv ir tual(1) = p · (21 − 1) = 20 (102)

pv ir tual(−1) = p · (2−1 − 1) =−10 (103)

This is the fact for Felzenszwalb et al. “[In their] models the part filters capture features at twice the spatial resolution
relative to the features captured by the root filters”120. While in our model the part filters are equivalent to the ones by
Felzenszwalb et al., the spatial resolution of the features captured by the context model relative to the features captured
by the object model is not fixed. The difference in resolution depends on the actual resolution of the trained object and
context models, as well as their relative sizes in the real world or rather in the training data. Thus, δs may assume any
value in R.

119 A scale change by an octave halves or doubles the frequency/resolution of the resulting feature matrix.
120 See Felzenszwalb et al. [2010a, p. 2].
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Therefore, virtual padding pv ir tual can have non-integer values, also leading to non-integer coordinates. Since integer
coordinates are needed to extract values in the matrix and perform further backtracking, these coordinates have to be
rounded. This leads to several differences in the backtracking implementation between our code and the code supplied
by Felzenszwalb et al.121. This will be explained below.

Additionally to the offsets, the newly introduced scale deformation of the context leads to an additional potential round-
ing error. While backtracking the deformation in x and y dimension is easily done with a coordinate lookup, the same is
not possible for scale deformation. The lookup table can be generated as a byproduct of the actual distance transform.
Scale deformation is applied to a grid matrix. Then the matrix is transformed back to the feature pyramid, thus, rendering
the previously built lookup table useless.

In our implementation the scale dimension lookup table is completely discarded and instead a scan for the expected
score takes place on the score pyramid. This is being done under the assumption that there is only one location on the
score pyramid where deformed score minus scale deformation cost equals original score. This assumption should be true
for the majority of examples. In reality the probability of this happening is very low as the score is calculated with dot
products of double precision feature and filter vectors with dimensions which are usually larger than 1000.122

With n levels the algorithm starts at location S on level lstart with the score s to scan the score pyramid P for the expected
score e and finally returns its source location A. The process can be written in pseudo code as shown in Algorithm 5.

Algorithm 5 Backtracking function to scan score pyramid for expected score.
function SCANPYRAMIDFORSCORE(P, s, lstart)

for l ← 1, n do
e← s−deformationCost(lstart − l)
(w, h)← sizeForLevelInPyramid(l, P)
for x ← 1, w do

for y ← 1, h do
ssource ← P(x , y, l)
if e = ssource then

A← (x , y, l)
end if

end for
end for

end for
end function

In practice the implementation of this brute-force algorithm only scans a small area of each pyramid level for the expected
score e. The area depends on the difference of the start level lstart and potential source level l. Is δl = lstart− l smaller or
equal to one the area in which we scan for e is small. In this case the area should span the largest possible rounding error
that can be expected from the scale deformation operation.123 In the case that δl is larger than 1 we have to consider
the error that may result from upsampling. The larger δl, the larger the error may be:

error=
�

−
 

2δs − 1
£

,
 

2δs − 1
£�

(104)

While the backtracking approach by Felzenszwalb et al. is much simpler, this brute force approach is still fast enough for
training when several hundreds hard negatives can be detected per negative example image. When the model is nearing
its optimum most images lead to less detections the scan does not affect detection speeds significantly. If one is only
interested in the object’s bounding box and not the part’s the whole backtracking process can be ignored.

9.4 Outlook: framework version 5

Girshick et al. released a new version 5 of the framework in late 2012. It improves the implementation in multiple
ways.124

121 See Felzenszwalb et al. [2011]
122 Assuming a model of root filter and 8 parts, a root feature resolution of 40x40 and part feature resolutions of 20x20 and histogram of

gradients for each feature with 9 buckets the feature and filter vectors would have a dimension of 43200.
123 See transformation from score pyramid to 3d matrix to score pyramid in 5 3D distance transform on score pyramid
124 See Girshick et al. [2012a] and Girshick et al. [2012b] for change log.
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• It now contains generalized code for training LSVM and weak labeled structured SVMs (WL-SSVM). The latter is
used for training occlusion sensitive models in Girshick et al. [2011], which could help improving the contextual
model later on.

• It includes a cadcade classifier to improve detection speed by Felzenszwalb et al. [2010b]

• Improved optimizer, which speeds up convergence. The implementation also does not use hard disk to cache
features anymore.

• The model now includes a scale prior, which calibrates detection scores at different scales.

• Improved modularity. For example objective functions can now be changed without editing many locations in the
implementation code.

How these improvements could be used in the current contextual model is being described in section 12, Future work.
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10 Empirical results

Before we will present the empirical results in this section, we describe the methodology of how the models have been
trained exactly, what training and test data has been used and how that data has been generated. First we look at the
training and testing data set.

10.1 Training and Testing Data

Figure 8: Annotation and segmentation tool

As described in the first section, one of the goals of the
contextual model should be to improve the detection of
clothing items which are being worn by a person. There-
fore, our training and testing data focusses on clothing
(objects) and the person wearing them (context). Unfor-
tunately for comparison purposes there are no datasets
available for our target domain – clothing. Thus, compar-
ison with other object detection methods will be limited
and training and testing data had to be generated from
scratch.

Data annotation has been done through microwork plat-
forms like Crowdflower and Amazon Mechanical Turk.
Images have been taken from the Fashionfreax.net image
database. For the annotation steps we have used our own
HTML5 canvas annotation tool, which supports segmen-
tation with vertices as well as simple bounding boxes (see
Figure 8).

The data generation process consists of 5 successive steps:

1. Preselecting images: In the first step images from the Fashionfreax.net image database which have been tagged
with certain clothing categories have been selected. The clothing categories for this step have been:

• bags

• boots

• dresses

• high heels

• jackets

• skirts

• shirts, blouses

• shoes

• trousers

• T-shirts

These alphabetically ordered classes have been chosen because these categories make up most of the items tagged
on outfit photos by users on Fashionfreax.net. Positives as well as negatives will be taken from the Fashionfreax.net
database of outfit photos.

2. Filtering positives for context appearance: Since our assumption for contextual models is that the object class we
are looking for exists in a certain context, we have to make sure that our training data reflects that. In this case we
want images containing people wearing clothes, however, not clothes by themselves (e.g. product photos). So this
step consists of filtering out images where either no person is visible or where they are not completely visible from
head to toe. Also images where the person is not standing are being filtered. The reason why also partly visible
people are being filtered is that the context model to detect these people should not be too complex in these experiments.
Instead a simple standing person model is being used. In general it would be possible to build a contextual model with
a more complex person model, e.g. one that can also match upper body, or even portrait photos.

3. Validating and Completing Tags: This step has been crowdsourced. Here, workers go through each of the images
and select which of the aforementioned categories are present in the photo. This step is necessary because it cannot
be guaranteed that the images on Fashionfreax.net have been tagged exhaustively. Quality control in this step has
been supported by the use of pre-tagged examples. All user’s had to tag these examples randomly throughout their
task to determine if their results are trustworthy.125

125 See Crowdflower [2013]
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4. Annotating Clothes: In this step all clothes which have been selected in the first step are being segmented. Crowd-
flower workers segment one item of clothing at a time by adding vertices until the item is fully segmented (See
Figure 8). Vertices based (almost pixel-wise) segmentation has been used to make sure that the worker includes
all of the item and the output is more precise. Additionally, this can be used at a later stage as training data for
clothing segmentation. We then automatically fit a bounding box around the segments so the whole item is inside
the bounding box.

5. Annotating Persons: This step consists of segmenting each person with a simple bounding box. In this case we
also have to annotate persons in the negative training set. While this reduces the advantages of hard negatives
mining when training an LSVM, this is mandatory for our approach. Here the relationship between context and
object is key. The object in a contextual model can only be present if the context is also present. Thus, for positive
examples this is relatively simple. In the positive training data each annotated object needs an annotated context
– object class label yi and context class label ŷi are equal – see first case in equation (69).

However, negative examples are not as simple. We have to distinguish between two types of negative examples.
While negative examples never feature the object, they might or might not contain the context. Hence, the two
cases of class labels yi = −1, ŷi = 1 and yi = −1, ŷi = −1 exist. Negative examples only mean that they are
negative examples for the object training, not necessarily for the context. Thus, bounding boxes for context
appearances in all negative examples are needed. This can also be seen when looking at equation (91), the LSVM
objective function’s sub-gradients contain context and object class labels, which do not have to be equal. Unlike
the positive examples negative examples can have zero to many context annotations.

Both annotation steps have been done by a small number of instructed workers. Annotations have been manually
validated at the beginning of the task, to ensure the workers were reliable. The order in which the images have
been annotated was random.

The final set we used for training and evaluating models in this work contains the following data:

• 2820 positive examples of annotated dresses and their associated persons. These are being split up in a 70/30
ratio. Thus, there are 1974 positive training examples and 846 positive testing examples.

• 1614 negative images with annotated persons.126

• The resulting testing set contains 1201 images with 846 positive examples.

Figure 9: Several examples of bounding boxes from the “dress” training set. All persons wearing a dress are upright and
come with many variations in pose, appearance and backgrounds. The dresses vary in appearance, size, type
and shapes impacted by the wearer’s pose.

10.2 Object and context model training

Before creating a contextual model the object and context class have to be defined. In this evaluation the object class is
dress and the context class the person wearing it.

126 The reason that in this case it is not "1614 negative examples" but "1614 negative images" is that each image contains many possible negative
examples. The Latent SVM algorithm is taking advantage of this fact by data mining hard negative examples, examples whose score is larger
than -1, the margin defined by the loss function in equation (55). In the case of positive examples, the training set contains only one positive
example per image. Thus, for positive examples the number is the same.
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Object classifier
The object classifier consists of standard deformable parts models. The deformable parts models are trained with the
whole training set (1974 positive examples, 1614 negative images). The positive training data is divided into two sets
to train a mixture model of two components. The final mixture model then contains 2 unique models and 2 mirrored
models. The models are trained with root filters and six parts each.127

The resulting dress classifier is being used as both a benchmark for the resulting contextual dress classifier as well as the
initialization for the object mixture model used in the contextual mixture model. However, using a fully trained object
mixture model to initialize the context mixture model is not mandatory, since the object models are being fully trained
again, when training the contextual models. In our case this was a convenient implementation choice, since the object
mixture model structure is readily available for integration into the contextual model structure.128

The final mixture model is visualized in Figure 10. The dress outline is visually very distinctive in both components. Per
definition they differ in aspect ratio129, but interestingly significant differences can be seen in HOG weights in the center
parts. While the first component exhibits a distinctive vertical line (which could represent a belt or color contrast of the
dress itself), the second component does not show a similar feature. One could imagine that both components are trained
to classify very different kinds of dresses. While the first component conveys an hour glass shape often seen with casual
dresses, the second component seems to have a much more pronounced part below the hips, and a less pronounced
upper body part. This is typical for floor-length evening gowns/dresses.

Additionally, there are differences between the deformation parameters of the components parts. While the parts of the
first component have relatively similar deformation costs in both the x and y direction, the top-left and right-center parts
of the second component have very different deformation costs in both dimensions. This results in oval-looking part
deformation visualizations in Figure 10.

Figure 10: Fully trained two component dress deformable part mixture model.130

Context classifier
The context classifier is also a deformable parts mixture model like the object classifier. However, since its purpose
is interchangeability – so it can be reused in conjunction with different object classes which share the same context
– a pre-trained person model is being used. It has been trained on the INRIA Person Dataset. This dataset contains

127 See model initialization and training in Felzenszwalb et al. [2010a, p. 11].
128 If initializing with a fully trained mixture model versus an untrained mixture model increases or decreases the time to reach the global

optimum could be an interesting topic for discussion.
129 See model initialization Felzenszwalb et al. [2010a, p. 11].
130 Model visualized with framework by Felzenszwalb et al. [2011]. Redundant mirrored models have been hidden.
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upright persons.131 It achieved an average precision of 0.882 “using the PASCAL evaluation methodology in the complete
test dataset, including images without people”132. This shows that this is an up-to-date person detector, which should
perform well detecting upright people wearing clothes (dresses). However, the pre-trained context model only achieves
an average precision of 0.581 on our training set which suggests that it might not be a perfect fit for our data. We will
still use it to see how robust the contextual model approach is w.r.t. imperfect context models.

Figure 11: Fully trained one component person deformable part mixture model.133

The reasoning behind choosing a context classifier trained on a third party dataset is that it should be as independent as
possible. Training a person classifier on the data we generated would mean that it is being trained on an outstanding
amount of persons wearing dresses. Hence, at least parts of the person classifier would be especially fit to respond to
features in dresses. This is redundant and does not align with the context classifiers envisaged purpose. Still, there might
be the risk that an independently trained context classifier does not reflect the context in your training data, possibly
leading to subpar results.

There might be a reason to do a tradeoff between context classifiers that are independent enough from the object classifier
and (at least partly) trained on the object class dataset. In this work the approach to use an independently trained context
classifier has been chosen to show its effect in less than perfect situations. In production one would train the context
classifier on the context annotated in the training data. If there are multiple object classes having the same context class
the context class should be trained on all of them. Adding more and more object classes and training on their annotated
context examples should lead to a sufficiently independent context classifier. At the end most of the inter class similarity
should be modeled by the context classifier, while the inter class dissimilarity should be modeled by the object classifiers
themselves. Together they could form a contextual mixture model covering a multitude of classes. This aspect will be
discussed more thoroughly in section 12.

10.3 Contextual model initialization and training

Contextual models are being initialized using the object and context model described above. Then the spatial prior
parameters Vi and Si have to be initialized. These are being calculated as the mean spatial (including scale) offsets found
in the training data. There priors are being calculated separately for each component pair which form new components
in the resulting contextual mixture model. The scale offsets are needed to compare scores of models which have been
trained in different resolutions. This is apparent when looking at both the dress model in Figure 10 and the person
model in Figure 11. The root filters of the dress model are 11, respectively 13 blocks in height, the person model’s root
filter is 15 blocks in height. Also the dress root filters are 7, respectively 6 blocks in width, while the person root filter is
only 5 blocks in width. Together with knowledge about the real (mean) sizes of these objects a conversion scale can be
calculated. In this case the person model is being offset by Vc, j =−0.5 scale octaves w.r.t the first dress component c = 1,
and Vc, j =−0.4 scale octaves w.r.t. the second dress component c = 2, which means that the person model’s components
are applied to a lower resolution version of the input image than the dress model’s.

131 See Dalal [2005].
132 Felzenszwalb et al. [2011]
133 Model visualized with framework by Felzenszwalb et al. [2011]. Redundant mirrored models have been hidden.
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The deformation costs for the context models have been initialized at Di = (d y, d x , ds, d y2, d x2, ds2) =
(0, 0,0, 0.01, 0.01,0.02). This allows the object to move freely relative to its context. Part deformation costs in the
deformable parts models on the other hand are being initialized much higher, allowing less movement initially.134 Low
initial deformation costs have been chosen because as part of the evaluation the development of deformation parameters
should be examined. By keeping the initial value low we can be relatively sure that if it increases in value the assumed
spatial relations also exist in the training data, and the training algorithm is working correctly.

The objective functions used for training, all contain the parameter C to control regularization term weights. The value
has been set to C = 0.002 as it has been used in the framework version 4 by Felzenszwalb et al. [2011] for training
models on training data from the PASCAL VOC challenge, and has been shown to work well for different object classes.
Due to the significant increase of model parameters in contextual models it might be useful to experiment with this value.
However, for experiments in this work, the value has been kept fixed.

We trained multiple contextual models in different configurations with four main parameters to compare their impact on
performance. These include the choice of training dataset, objective function, merging method (l r vs. l × r) and context
model training (initial parameters vs. trained parameters).

Training sets – ALL, MEDIUM, FAST
There are three training set sizes which have been used to train models:

• ALL: 1974 positives, 1614 negative images

• MEDIUM: 700 positive examples, 1614 negative images

• FAST: 500 positives examples, 474 negative images

The choice of the training set depends largely on practical reasons. FAST and MEDIUM are used to reduce the training
time. While models across different training sets are not comparable, some models have been primarily trained for
comparison of different combinations of configuration parameters, in which case using training sets, which reduce the
contextual model’s training time is reasonable.

Objective functions – RegA, RegB
In section 7.2.2 two different objective functions have been defined, referred to as RegA and RegB. In a nutshell RegA
defines a semi-convex optimization problem, while requiring object and context annotations on the same training set.
RegB allows spreading object and context annotations over two standalone training sets, but has the disadvantage of
having increased complexity through the additional term weight parameter D. Also the resulting optimization problem
is not semi-convex as defined by Felzenszwalb et al. [2010a]. Instead an auxiliary term with weight D is being used to
regularize the contextual loss concave term. Most models trained in this work for evaluation use RegA as the objective
function due to reasons described above and in section 7.2.2. However, some contextual models have been trained using
RegB to examine its practicability.

Merging methods – l r, l × r

As described before, there are two ways to merge object and context mixture models to form a contextual mixture model,
l r and l× r. (94) shows that models initialized with l× r are much more complex than if they are initialized using l r. In
our case of merging dress mixture model M0 with 4 components and the person mixture model M1 with 2 components l r
leads to a contextual mixture model Ml r with 4 components, l×r to a contextual mixture model Ml×r with 8 components.
Ml r is comparable to the original object model in terms of amount of components. It also leads to a less complex model,
increasing training and classification speed compared to Ml×r . With Ml×r one would end up with double the amount of
components in the original object model. This has implications on comparability. Training a dress deformable parts model
using 8 components instead of 4 could already lead to a higher detection performance.135 Therefore, any performance
improvement of Ml×r relative to M0 could be ascribed to the increased number of components, not necessarily to use
of additional contextual information. A solution to that would be the reuse of model components and their parameters
across different components in the contextual mixture model, so that the real amount of object components does not
increase relative to the original object model. This option has not been implemented yet.

134 See Felzenszwalb et al. [2010a, p. 12].
135 Increasing the amount of components in a mixture model usually increases detection performance, see performance results in Felzenszwalb

et al. [2010a, p. 16]. However, one has to consider the amount of positive training data per component. If the ratio between training set size
per component gets to small lower detection performance could be expected.
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Context model parameter training – TRAIN, FIX
As described in 8.4 one has the option of training the context model parameters or keeping them fixed when training the
contextual model. Fixed context model parameters prevent them from assuming object specific features and, therefore,
stay independent from the object model parameters. Keeping the context model parameters flexible on the other hand
could lead to a better fit to the training data and better model performance. We investigate both options in our perfor-
mance results. Contextual models where the context parameters are being kept fixed are tagged with the keyword FIX
and if not with TRAIN in results Table 1.

In all cases the context model’s bias parameter as well as the context deformation costs are being trained, since they are
mandatory to train a contextual model. The bias, as noted in section 8.4, is used to moderate the impact of the context
to the overall score and, therefore, is of importance for a robust contextual model.

Fitting Training Data: For contextual models, where context parameters stay fixed, the positive training examples are
being pruned to guarantee a certain fit between training data and the context model. Depending on the context model
positive examples with a context score below a certain threshold t are being discarded – t = (−1+ t ′)/2, where t ′ is
the minimal score of any example in the context model’s own training data. With a perfect context model and typical
SVM margins of 1 the threshold should become t = 0. In our case the context t ≈−0.8, which means that only very low
scoring examples are being discarded.

The different configurations that have been used to train contextual models are noted in Table 1.

10.4 Performance evaluation metrics

To quantify the performance of different models we use plots of detection error tradeoff (DET) curves. These are com-
monly used in place of precision vs. recall (PR) curves because they “allow small probabilities to be distinguished more
easily”136. In DET curves one plots the miss rate (MR) versus false positives per image (FPPI). This tradeoff displays
the same information as so-called receiver operating characteristics (ROC), e.g. PR curves, but better results are smaller
instead of larger. Some researchers also use MR v.s. false positives per window (FPPW) instead of FPPI. FPPW sometimes
leads to problems when comparing different detectors because the amount of windows in the dataset can vary depending
on the descriptor and its configuration. In this case we decided to use FPPI, since it renders the results much more
comprehensible.

MR= 1−HR=

∑

FN
∑

(TP+ FN)
(105)

FPPI=

∑

FP

|I|
, (106)

where FN are false negative detections, TP are true positive detections and FP are false positive detections. |I| is the
number of images in the test set.

Additionally, the Average Precision (AP) metric is used as a rough model quality indicator in Table 1. It is defined as
the mean precision in the whole precision v.s. recall graph. Precision is defined as Usually AP is approximated by taking
the mean value of a fixed amount of points in the graph. The PASCAL VOC Challenge manual proposes that AP should
be calculated as the mean precision at 11 different recall values 0.0 to 1.0 in steps of size 0.1.137 This approximation is
defined as

Pavg =
1

11

∑

r

pinterp(r), where r ∈ {0,0.1, 0.2, ..., 1.0} (107)

and pinterp(r) is the maximum precision available where the recall is larger than r.138 However, it is important to note
that a finer grained approximation may increase “the impact of the wiggles in the precision/recall curve, caused by small
variations in the ranking of examples”139.

AP can give an idea of how well a model does balance precision and recall across the precision vs. recall graph, however,
it does not indicate how the detection error tradeoff curve looks, which is why DET curve graphs are needed to assess
model performance in detail.

Detections are being evaluated with a minimal overlap of 0.5. The overlap ao is defined as

ao =
area(Bp ∩ Bg t)

area(Bp ∪ Bg t)
(108)

136 Dalal and Triggs [2005, p. 2].
137 See Everingham et al. [2010, p. 313].
138 See interpolated average precision definition in Salton and McGill [1986].
139 Everingham et al. [2010, p. 313].

46



where Bp is the bounding box of the detection and Bg t is the bounding box of the ground truth.140 Multiple positive
detections on the same positive example will be counted as false positives.

10.5 Post processing

Non-maximum suppression (NMS) is being used to greedily select high scoring object detections and remove others that
overlap the same area analogous to Felzenszwalb et al. on all models.141 For contextual models non-maxium suppression
is also used on the context detection windows. Since we assume that a person can only wear a single item of a class,
we can limit redundant object detections in the same context. In the tests executed in this work the context detection
windows are greedily selected by the overall object detection score. All models have been evaluated on the test data using
NMS, and the contextual models also using NMS based on the context detection windows – contextual non-maximum
suppression (CNMS). Both results are displayed in Table 1. Using CNMS improves the detection performance significantly
for important areas in the DET graph.

10.6 Performance results

Table 1 gives an overview over the different models and configurations that have been trained. The first model that has
been trained 1.1 is a standard deformable parts model trained with framework version 4 by Felzenszwalb et al. [2011]
using 4 components (2 aspect ratio sizes, left and right orientation). Its DET curve and average precision (AP = 0.701)
acts as the base line with which the contextual models are being compared with.

In the current implementation detecting dresses in an image takes about 5 (10) times or longer for the trained contextual
models in l r (l × r) configuration when compared to the original deformable parts model. Additionally to having the
complexity and amount of parameters of two part based models the speed decrease is mostly attributable to running the
distance transform algorithm in 3 dimensions, with the overhead of transforming score pyramids to grids and vice versa.
Possible improvements in that matter are being discussed in the section 12, Future work.

The AP of Contextual model 2.4 using CNMS has been marked as the “winner”, since 2.4 has the same amount of
components as 1.1 , making for a better comparison. Contextual model 2.5 , which has been trained using
l × r, has more components – therefore some of the performance increase could be due to more model components.

The following sections 10.7 and 10.8 evaluate and discuss the the trained models in a qualitative and quantitative manner.

140 See Everingham et al. [2010, p. 314].
141 See Felzenszwalb et al. [2010a, p. 14f].
142 Tested on context annotations in positive training set.
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# Model Type Comment Plot Params Merging Object Context AP (NMS) AP (CNMS)

1 Base Model

1.1 Parts ALL l r Dress n/a 0.701

1.2 Parts INRIA Person142 l r Person n/a 0.581

2 RegA

2.1 Contextual FAST l × r Dress FIX 0.651 0.634

2.2 Contextual MEDIUM l × r Dress TRAIN 0.685 0.646

2.3 Contextual ALL l × r Dress FIX 0.682 0.691

2.4 Contextual ALL l r Dress TRAIN 0.719 0.721

2.5 Contextual ALL l × r Dress TRAIN 0.750 0.724

3 RegB

3.1 Contextual MEDIUM D := C l × r Dress FIX 0.596 0.611

3.2 Contextual MEDIUM D := 1
2
C l × r Dress FIX 0.614 0.631

3.3 Contextual MEDIUM D := 2C l × r Dress FIX 0.633 0.641

Table 1: Configurations and results for trained contextual models. The column Model Type defines if the model is a
deformable parts model (’Parts’) as defined by Felzenszwalb et al. [2010a] or a contextual model as defined in
this work (’Contextual’). The other keywords used in this table are described in section 10.3.

Figure 12: Detection error tradeoff plots for all models trained with RegA in Table 1, post-processed using standard NMS.
(Linear plot on the left, log-log plot on the right)

10.7 Qualitative evaluation of results

First, the trained models are being evaluated qualitatively. Here the focus is to determine if the approach of a model
with a flexible context constraint works and if expected spatial and scale relationships exist between object and context
– in our case dress and person. In particular, the following two aspects are being evaluated: the development of context
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Figure 13: Detection error tradeoff plots for all models trained with RegA in Table 1 which are post-processed using
CNMS. (Linear plot on the left, log-log plot on the right). Due to obvious reasons 1.1 is post-processed
using standard NMS.

deformation costs and the development of the object and context sub-models after training starting from their initial
states.

10.7.1 Development of deformation costs

The deformation costs D j for the j-th context model are the core metric in which the spatial and scale relationship
between object and context is encoded. Initial values before training have been set to very low values to allow for
relatively free movement. In practice there is also a lower bound for D j which is used to keep deformation costs from
becoming too “flat”.143 We now look at the deformation costs of different contextual mixture models that have been
trained.

Expectations: In the real world dresses (as most clothes) are centered horizontally on the wearer’s body. Furthermore,
dresses start closely below the wearer’s head. This can also be observed in our training data ( see Figure 9). There are
only small deviation of the dress relative to the person in the horizontal axis. Also the bounding box of the dress starts
below the persons’s chin, or for some dresses above the décolleté. However, the lengths of the dresses may vary a lot.
The contextual model anchors at the center of the body, which means that deformation in y-dimension could be needed
to correct the changed y position of the scaled object. Consequently, one would expect high horizontal and lower vertical
deformation costs.

Contextual model 2.3 with configuration [ALL, RegA, l × r, FIX], shows that the deformation costs have been learned by
the training algorithm to improve classification and are in consequence non-trivial. Table 10.7.1 shows the deformation
costs for each of its 4 left facing components (the other 4 right facing components are equal in value, except mirrored
in x). The data clearly shows that the deformation costs are significantly higher after training the model than the values
used for initialization. This makes sure that the model is training correctly.

Recall that the deformation costs for an example is computed by D j · φ(d x , d y, ds) where φD(d x , d y, ds) =
(d x , d y, ds, d x2, d y2, ds2).
For deformation costs D j,4 in x-dimension all components are relatively similar across all components. This aligns with
the expectation that all dresses, regardless of type or size, have the same horizontal position. However, the actual value
of D j,4 is relatively low. In no way does it really enforce a centered position on the body.

143 See Felzenszwalb et al. [2010a, p. 11].
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XXXXXXXXXXComponent
D j 1

d x
2

d y
3
ds

4
d x2

5
d y2

6
ds2

initial values 0.0 0.0 0.0 0.01 0.01 0.02
1 0.0140 -0.0042 -0.0258 0.0424 0.0611 0.0859
3 0.0041 -0.0260 -0.0504 0.0487 0.0320 0.0267
5 -0.0135 0.0112 -0.0083 0.0398 0.0569 0.0578
7 -0.0141 0.0737 0.0279 0.0320 0.0316 0.0533

Table 2: Deformation costs for each component in model 2.3 from Table 1. The first three data columns contain
the actual deformation costs. The last 3 colums are learned corrections for spatial and scale priors.

XXXXXXXXXXComponent
D j 1

d x
2

d y
3
ds

4
d x2

5
d y2

6
ds2

initial values 0.0 0.0 0.0 0.01 0.01 0.02
1 0.0284 -0.0498 -0.0903 0.0324 0.0527 0.0419
3 -0.0208 0.0945 -0.0050 0.0275 0.0574 0.0543

Table 3: Deformation costs for each component in model 2.4 from Table 1. The first three data columns contain
the actual deformation costs. The last 3 colums are learned corrections for spatial and scale priors.

The deformation costs D j,5 in y-dimension show much more variation across the components, which is also true for
the cots D j,6 in scale dimension. It seems like components with lower vertical deformation costs also have lower scale
deformation costs. Interestingly, the linear correlation between D j,5 and D j,6 is 0.81.

The values in D j for the first two indices is learned correction of the spatial prior, and D j,3 is the learned correction of the
scale prior. Component 3 for example has the strongest correction of the scale prior, and also the lows scale deformation
costs D j,6.

The trained weights of the deformation costs do not point to the expected strong horizontal relationship of object and
context. There could be multiple reasons for that in initialization and training of the model.

Foremost, it could be possible that each component had to cater to a large variety of dress location and scales. This
can be partly controlled by the component clustering for the mixture model generation: components should not only be
discerned by aspect ratio but also by the size relative to their context. Deformation costs in experiment 2.3 could suggest
that. Component 1,5 and 7 have relatively high scale deformation costs, while component 3 has a much lower scale
deformation cost. This could mean that component 3 has to handle a larger interval in the scale-space and, thus, has
increased spatial uncertainty. This change in component clustering is also described in section 12, Future work.

Another source for large spatial uncertainty could be the method for applying scale distance transform to the score
pyramid described in section 5. It introduces x and y error when downsampling transformed grid levels to convert them
back to pyramid levels.

Another possibility is that the performance of the context model determines how stable spatial relationships are in the
resulting contextual model and, thus, influencing the magnitude of the deformation costs. In reality the fact that, while
training, the context and object bounding boxes are defined by the training data, contradicts this theory. Instead the
spatial relationship should be greatly impacted by the annotations themselves and less by the performance of the context
model. Also the model of experiment 2.4 where the context model parameters have been trained, suggesting a better
context model fit, does not yield the expected results. There the difference between x and y deformation costs is even
higher, see Table 10.7.1, contradicting the expected results described above even more.144

10.7.2 Development object and context models from initial states

Context deformation costs D j model the spatial and scale constraints between object and context. Recall that these
constraints should redistribute responsibility between object and context models. Therefore, one would expect that the
object model parameters develop further from initial values. In the next paragraphs we will compare ’before’ (initial) and

144 To further investigate the development of deformation costs one could define a verification experiment with controlled and automatically
generated training data. E.g. a training data of two simple shapes (triangles, the objects, centered in rectangles, the context) where triangles
can appear outside and inside of the rectangle, rectangles could appear without triangles. Triangles which are not centered in the rectangles
would not count as the object class. It should be possible to automatically generate images and annotations and train a contextual model. In
that environment contextual models could be trained with training sets of different variations in deformation.
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’after’ (trained) states of the dress and person models. The contextual model 2.4 has been chosen for this comparison,
because due to l r merging it has the same amount of components as the original dress model. Specifically let Mcontex tual =
(M0, C1), where M1 = (M1, V1, S1, D1), the initialized contextual model, and M0, M1 initial dress and person models
respectively. Then M ′contex tual = (M

′
0, C ′1) is the contextual model in its trained state, and M ′0, M ′1 are the trained versions

of M0 and M1. Next, the differences between M0 and M ′0 as well as M1 and M ′1 are being examined.

Dress model development
The initial dress object model has four components, in two left/right orientation groups by aspect ratio. This model’s
development is depicted in Figure 14. The root and part filter are HOG filters where each block has been visualized as a
set of oriented bars. Thicker, more visible bars represent higher weights at that certain orientation.

Starting with the root filters there are not many differences between initial components and the trained versions. The
overall visible shape of the HOG visualization stays the same, even after training. Maybe the most prominent differences
lie in the inner blocks of components’ root filters, the area which represents the skirt-shaped part of a dress. There the
initial root filters have relatively low weights, and the visualization appears darker. The trained components on the other
hand show higher weights in the blocks in this area. The second component usually matches larger dresses, which reach
further down to the floor.

If one would lay both root filters on top of each other, they would have to be aligned at the top border. Then the blocks in
which the weights have increased also lie roughly at the same location in both root filters. Since the data set for training
the dress on its own and for training the contextual model have been the same, these weights could be ascribed to the
effect of a contextual constraint.

As described in the introduction the goal of adding a contextual constraint was the reduction of the actual object detector’s
problem size, freeing up scope to assimilate features which are significant for the object class in context but could lead
to false reasonings outside of the context. Therefore, these changes in block weights after training the contextual model
could be signs of such an adjustment and indicate that the contextual model assumptions might be true.

Root Filter Part Filters Deformation Model

Initial Comp 2Initial Comp 2Initial Comp 2 Component 2 Component 2 Component 2

Initial Comp 1Initial Comp 1Initial Comp 1 Component 1 Component 1 Component 1

Figure 14: Dress model before and after training of the contextual model in experiment 2.4.

Person context model development
Comparing the weights of the initial and trained context model show considerable differences. The root and part filters
seem to have assumed a lot of object specific information. The HOG visualization in Figure 15 shows that both person
components now contain features that are redolent of dress features. The person model deviates partly to a "person
wearing a dress"-model, with visible bottom lines of the dress. The bottom line is visible further up in component 1 than
in component 2. This reflects the shape of the dress model components.
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Root Filter Part Filters Deformation Model

Initial
Component 1

Component 1'

Component 1 Component 1

Initial
Component 1

Component 1' Component 1'

Component 1

Initial
Component 1

Figure 15: Person model before and after training of the contextual model in experiment 2.4. Due to duplication of con-
text components when initializing the contextual model, component 1 of the person model has been trained
into two different components. The left column shows the development of the root filter, the middle one of
the part filters, and the right column of the deformation model. The resulting part filters show an assimilation
of domain specific features from the dress training data.

This was to expect because the training set only contained the class dress, hence, any person not wearing a dress is
irrelevant for the classification task of the context. In another situation where multiple clothing items share the same
person model as their context this ’feature assimilation’ would not happen in this extent.

There are also other differences in the HOG filters of the trained person model, where the original model had strong
weights for vertical edges (thick vertical lines in visualization), the trained person context model seems to have a much
higher variation in gradient orientations (many star or cross shaped histogram visualizations). Also the chest area of the
original model had relatively low weights, which can be seen as the dark areas in the visualization. After training most of
these low weight, dark areas seem to have vanished. Especially the visualizations of the root filters becomes noisy after
training. The previously distinctively visible shape of a person becomes hardly visible. One of the few parts, which reflect
the expected shape of a body part, is the head. Both components still present a distinctive head-like shape. Still there are
significant weight differences. While the initial person model had stronger weights in the outer areas of the head, these
weights are less pronounced and other weights in the inner blocks of the part become more distinct.

Looking at the parts deformation costs, strong changes can be observed, too. The deformation costs of most parts
decrease after training allowing for higher spatial uncertainty. This is visible in Figure 15 as the visualized distributions
gain a higher variance after training and appear darker and further spread out. Additionally, the spatial priors change
as well. Especially the top part (head) and one of the bottom parts (foot) are getting moved further out after training,
enabling detections of taller persons.
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Many of these differences between the initial person model and the resulting person model could be attributed to fitting
the person model to the new training data, since the original model was trained on the INRIA Person training set. Apart
from that the person model also gained a different purpose when being part of a contextual model. It did not have to
explicitly classify persons anymore. Its purpose in a contextual model is to penalize non-person detection windows, and
stay neutral if there is a person. The classification task itself becomes less important than the task to provide information
for the object model.

10.7.3 Development of the context model’s threshold

Now that we examined the development of the context deformation costs and the sub-models’ filters and part deformation
costs, the third aspect of the contextual model, the score threshold enforced by scorecontext defined in (19) is being
analyzed. Unfortunately there is no exact value that could be read. The threshold itself is always zero. Therefore, to
lower the threshold the bias increases, etc. In fact the threshold is an indirect value and depends on the whole context
model’s parameters. We can only examine the threshold relative to the scores that are being achieved by the context
models C j inside the trained contextual models.

By definition a threshold is low, if it is often reached, and a threshold is high, if it is hardly reached. Therefore, a
context model M j , j > 0 with a low learned threshold would often have a score ≥ 0, a context model with a high learned
threshold would rarely reach a score ≥ 0. Recall that also the object model has a bias parameter. In the case of a low
scoring context model due to a high threshold, the object model bias could compensate.

Let b′ be an auxiliary threshold parameter, with

scorecontex t(z) =







score(z) score(z)< b′t

b′t otherwise
, (109)

where t ∈ 0,1 determines if the model has been trained (1) or not (0). Now we set b′0 := 0. This is an arbitrary
choice, but the simplest. Now we try to determine if b′1 < b′0 or b′1 > b′0 for the trained contextual models. This can
be approximately determined by analyzing the scores on all detection windows in the training data of the initial context
model, and the context model after training the contextual model. If the score distribution would have increased after
training, this would indicate that b′1 < b′0, and vice versa.

In detail, we inspect the resulting contextual model of experiment 2.4. When analyzing the training data the average
scores of the context model increases from -4.81 to -1.91 after training, also the rate of detection windows which receive
a score > 0 increases from 0.0029% to 0.0046%. This gives reason to assume that b′1 < b′0, so the contextual model
reduced the impact of the context model on the overall score compared with its initial state.

10.8 Quantitative evaluation of results

Fixed context parameters (FIX): First we analyze the results of the contextual models with fixed context parameters. For
the objective function RegA these are experiments 2.1, trained on FAST, and 2.3, trained on ALL. As one would expect 2.1

, which was using the smaller training set, has a higher miss rate curve in the DET graph than 2.3 . Especially
compared to the original dress model 1.1 , 2.1 cannot compete. The DET curve of 2.3 on the other hand
does reach almost the same performance as the original dress model. Only in low miss/high FPPI regions suffered a little
bit (see log-log graph in Figure 12). This is a relatively uninteresting region, though, because there the miss rate/false
positive tradeoff is not acceptable any more for most applications.

As depicted in Table 1 the initial context model which was trained using the INRIA Person training set does only have
an average precision of 0.581 on the context annotations of the training data. This shows that contextual models are
relatively robust against context models, which do not reflect the training data. In that way the context model was
possibly not able to contribute a lot of meaningful information to contextual model 2.3 to surpass the original dress
model 1.1 . There are several FPPI intervals, where 2.3 outperforms the baseline by a little margin, but also
others where 1.1 prevails.

Trained context parameters (TRAIN): Next, we look at contextual models were the context model parameters were not
fixed. Starting with 2.2 , we can see that using only the MEDIUM training set a competitive performance to the
original model 1.1 can be reached in the interval below 0.6 FPPI. Finally, model 2.4 which has been trained using the
ALL training set is able to significantly outperform 1.1 . This result should validate the contextual model approach,
especially since 2.4. has been initialized using the l r merging approach, so it has the same amount of components as the
original dress model 1.1.

There is still small FPPI interval where 1.1 outperforms 2.4 – in the area where MR > 0.65 and FPPI < 0.04 (not visible
in the DET graph). This is very interesting because the intuitive expectation when defining the contextual model was,
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that it will increase precision and, thus, especially have advantages in that region. In reality the contextual model 2.4
achieves the best results relative to 1.1 for FPPI > 0.15.

10.8.1 Contextual non-maximum suppression

Using CNMS to post-process detections helps increasing the detection performance of some of the contextual models.
Model 2.4 has an average precision of 0.719 before, and 0.721 after CNMS, however, the AP does not indicate the
real changes. When comparing Figure 12 with Figure 13, one can see that the contextual model curves achieve a better
detection error tradeoff (they achieve lower false positives per image while the miss rate stays the same). The downside
is that applying CNMS increases the minimum miss rate that can be reached with the model, also decreasing recall and
thus affecting AP adversely. This is why the AP for most contextual models decreases when applying CNMS.

One could compare the CNMS method with simple methods that only allow one detection per image. This would be a
bad practice, since it relies on knowledge about the testing data, only containing one object in the image. In our case
we adopt this idea, by only allowing one detection per context. This knowledge is not inferred from the testing data, but
from the training data, since a person can either wear no dress or exactly one dress. Therefore, this is a viable method in
all images, independent of how many people with or without dresses are present.

The improved MR/FPPI tradeoffs are also noticeable for contextual models that have been trained with fixed context
parameters (see DET graph of 2.3 ). This shows that even independent, imperfect context detectors provide useful
information to increase an object detector’s performance in the most relevant regions of the DET graph.

10.8.2 Performance of models using RegB objective function

Three models have been trained using the RegB objective function as defined in (93) – 3.1, 3.2 and 3.3. All these
models have been trained using the MEDIUM training set, l × r mixture model generation and fixed context model
parameters (FIX). The only parameter that has been varied was the relative term weight D, which controls the impact of
the additional context loss term in (93), while their values have been set relative to the contextual loss term weight C .
Tested values are D ∈ {C , 1

2
C , 2C}.

The best performance of these three options can be reached using D := 2C (AP = 0.633). The results suggest that
the best performance can be achieved by increasing D even more. A more thorough grid search is needed to get more
significant results. The current data implies that models trained with RegB have a subpar performance to models trained
with RegA. Even with a smaller training set, RegA model 2.1 has a higher AP than RegB model 3.1. Further exploration
of different values for C and D are needed to confirm or reject this result.

54



11 Conclusion

In this work we proposed a method to model and train an object detector with flexible context constraints based on the
deformable parts models by Felzenszwalb et al. [2010a]. It uses the same star-shaped architecture to model constraints
between an object class and other context (object) classes. It is also possible for different object classes to share the same
context class each having individual constraints.

For modeling the unique asymmetric relationship of object and model we proposed a new way to score combined exam-
ples of object and context which mediates the impact of context score on the overall score.

The trained contextual models suggest that

• expected spatial and scale relations between object and context do exist in the training data, as the deformation
costs increased to significantly higher values after training than the initial values, showing that the contextual
model uses them to classify objects.

• the object deformable parts model inside the contextual model can assimilate more object variations, adapting to
the contextual environment by changing its filter weights and deformation costs. This is observable by compar-
ing the filter weights and deformation costs of the initial object model with the object model after training the
contextual model.

The contextual models achieved a significantly higher detection performance on the dresses dataset in most areas of the
detection error tradeoff graph, when compared with deformable parts models. In addition contextual non-maximum
suppression increased the detection performance even more and showed that the contextual information can be used in
two different ways. First, the context penalizes bad object locations in the object detection step, then multiple object
detections of the same class referring to the same context detection window as their context location can be suppressed.

Also this work identifies several methods which could be used to subsequently improve contextual models. The following
section describes some potential solutions for the current contextual model’s shortcomings and an outlook on how the
model could be used in a production environment later on.
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12 Future work

The result evaluation shed some light on the contextual model’s performance and properties. As described above, there
are some areas the contextual model can be improved in, to possibly achieve increased detection performance and speed.

12.1 Detection performance

This section will describe several methods that could be used to improve the model’s detection performance, starting
with a focus on improving the modeling of real-world spatial relationships.

12.1.1 Allowing for different context anchor positions

Currently the object’s spatial and scale prior is anchored to the center of the context. A centered anchor has been
introduced together with scale deformation, so that the bounding box of the scale deformed model expands or shrinks
in all directions equally. As for dresses, the training data suggests that while being centered vertically on the person’s
body most dresses start at the shoulders and have different lengths. Therefore, it could make sense to change the anchor
to a top-center position. Then, deforming dresses in scale would make them wider and longer, but their bounding box’s
top edge would be anchored to the shoulders. This would reduce interaction between spatial and scale transformation,
because the scale deformation does not ignore spatial constraints. This new anchor could be determined directly from
the training data, and could improve the contextual model’s ability to model real world spatial and scale constraints.
This could have implications on the development of deformation costs, while training, and could, in the end, increase
detection performance of the resulting model.

12.1.2 Scale sensitive mixture model initialization

Another related method to improve the modeling of spatial relationships lies in the mixture model initialization. To
initialize a mixture model of deformable parts models with m components, bounding boxes from the training data are
being sorted by their aspect ratio and divided into m equally sized groups. As Felzenszwalb et al. state “aspect ratio
is used as a simple indicator of extreme intraclass variation.”145 The current implementation of contextual models is
directly being initialized using a deformable parts mixture model. Therefore, the same approach is being inherited.

In reality for contextual models there is another important indicator for extreme intraclass variation, the relative scale,
which is currently being ignored. Figure 9 shows examples of dresses in different sizes relative to the wearer. The two
rightmost examples show dresses which on their own exhibit very similar aspect ratios and, according to a plain aspect
ratio clustering approach, would be most likely assigned to the same component. When initializing the contextual model
the object and context windows in that component get a fixed spatial and scale prior, which obviously cannot model both
of these examples very well at the same time.

The effects of this can be seen in the deformation costs, as stated in section 10.7.1, where some components have
significantly reduced scale deformation costs to make up for this problem. As noted in the previous section, a higher
scale uncertainty also leads to increased spatial uncertainty. Scaling is not invariant w.r.t x and y location if the anchor
of that operation does not equal the top left corner’s location of the detection window. Therefore, it would make sense
to cluster bounding boxes by aspect ratio AND their relative scale to their context bounding box.

It is expected that the resulting contextual model can then increase deformation costs significantly due to reduced scale
and spatial uncertainty. This could result in a contextual model with a higher ability to model the contextual relationships,
thus, possibly achieving better detection performance.

12.1.3 Training optimization

There are many parameters in the training algorithm and objective function. It would be interesting to see if better
settings could be found.

The objective function contains a term weight C , which controls the relative weight between the regularization and loss
term. The current value has been adopted from the implementation by Felzenszwalb et al. [2011]. They argue that it
has worked well with many object categories. It could be that for contextual models other weights achieve better results.

Additionally, the training algorithm itself has many more parameters. First, there are learning and regularization rates,
which can be chosen independently for each parameter in the model. These are also dependent on C , which makes it
hard to optimize them. Still it would be interesting to see how changing the learning rate and regularization rate of
newly added contextual 3D deformation parameter affects model performance.

145 Felzenszwalb et al. [2010a, p. 11].
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Iteration Positive Loss Before After Ratio
1 n/a 12.0012 n/a
2 4.068 3.4582 0.8501
3 5.228 4.9283 0.9427
4 4.5951 4.4585 0.9706
5 4.6083 4.5247 0.9819
6 4.5847 4.5269 0.9874
7 4.5433 4.4976 0.9899
8 4.1822 4.0937 0.9788
End

Table 4: Positive loss development while training contextual model 2.4. Even at the last iteration it still improved by over
2%, thus, it might make sense to increase the amount of training algorithm iterations.

In the current implementation, the training algorithm runs at a fixed number of iterations, in particular it runs the relabel
step 8 times (optimizing latent variables) and for each relabel step there are 10 iterations of data-mining hard examples
and gradient descent step. Table 4 shows the development of the positive loss while training contextual model 2.4.
It shows that at the last iteration the positive loss still decreased significantly by over 2%. Standard deformable parts
models with less parameters and latent variables tend to converge faster. This is why it may be useful to change the
number of optimization iterations and see if it improves the model.

Also currently only 600 negative images are used in the main training process. After the 8 relabeling steps have been
finished all 1614 negative images are used in 5 final data-mining and gradient-descent iterations. This is also due to
adopting the existing framework implementation and configuration by Felzenszwalb et al. [2011] for practical purposes.
Due to the fact that contextual models are more complex it might be useful to integrate more negative images in the main
training process. The downside of this would be that the amount of time needed for training would increase significantly.

12.1.4 Increase bounding box size

The bounding boxes in the dresses dataset envelop the objects tightly. This originates from using annotated segmentations
and fitting a bounding box tightly around it. It might have a positive effect to the object detector’s performance if it
would be trained on bounding boxes which also encompass some of the surrounding area of the object. It would also be
important to see if the performance advantage of contextual models still persists, if the deformable parts object model
itself has some of the context information through an increased bounding box.

12.1.5 Integrating related work on grammar models

There is a significant amount of related work to grammar models and deformable parts models by the same, or closely
connected authors. Some of these works focus on speed improvements, like the cascade detection approach to prune
areas of the image to reduce the work done.146 These will be described below.

There are also approaches which improve the grammar model’s performance in certain situations like object occlusion.
They introduce a model of occlusion for partially visible objects.147 This is especially useful for improving the person
context model inside the contextual model. With the special focus on clothing detection, the shape of the person is
often occluded or concealed by clothing. Especially dresses, bags, hair and hats can alter the visible shape significantly.
Therefore, introducing occlusion reasoning, one could improve the context detector in the model and therefore achieve
more accurate context constraints, improving the whole contextual model.

12.2 Potential speed improvements

After describing some of the potential performance improvements this section will focus on improving the detection
speed.

12.2.1 Speed improvements for detection

Currently the implementation has very high memory requirements, mainly because of the costly grid conversion needed
for applying the distance transform algorithm in the scale dimension.

146 See Felzenszwalb et al. [2010b, p. 4].
147 See Girshick et al. [2011].
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3D distance transform
In the current implementation, the 3D distance transform is the main reason the detection speeds of contextual models
are much slower than of the deformable parts models. Currently the pyramid↔ grid conversion is done in Matlab, which
could be improved by moving this part to compilable code. Generating a grid from a pyramid is very space consuming.
Depending on the model’s feature and score padding the overhead in scaling the smallest pyramid level to the size of the
largest pyramid level is enormous. Let score pyramid H have 50 levels, lH = 50 with λ = 10 levels per octave (a typical
pyramid size), and each score level is padded by p = (px , py) = (20,10) (the original padding of the evaluated contextual
models). Let sl be the size of level l in pyramid H, withslH = (1,1)+2p = (41, 21) being the size of the feature map at the
smallest level. Converting the feature map at level lH to the size of s1 it has to be scaled by the factor of 2(lH−1)/λ = 24.9,
resulting in a grid where each of the feature maps is of size S = slH ·2

4.9 ≈ (1224, 627). Now the scale distance transform
has to be applied to all locations, with 8 byte double precision score values, going through over 292MB of data. This
operation has to be done for each component in the contextual model.

Reducing memory requirements also has the possibility to increase performance. Usually detection is being run in parallel
threads. With many parallel threads there is a chance that memory runs low and the whole process gets slowed tremen-
dously when virtual memory is getting used. For that case it might be useful to move to a sparse data representation,
because large areas of the 3D grid is occupied by empty areas of normal and virtual padding. On the execution side the
distance transform could also be stopped as soon as it enters these empty padding areas.

Generalized distance transform is a highly parallelizable operation, so it might be feasible to improve the execution speed
by implementing pyramid↔ grid conversion as well as the distance transform algorithm on a graphics processing unit
(GPU). With a grid of the size mentioned above the scale distance transform could be split into 1224 · 627 = 767448
parallel threads, opening up a lot of potential for performance increase through parallel computing.148

Integrating related work on grammar models
Other speed improvements could be integrated into the model which have been proposed by Felzenszwalb et al.
[2010a,b]. Since these speed improvements have been developed as extensions of the deformable parts and gram-
mar models, these could be used to increase the relative detection speed of the contextual model approach.

In Felzenszwalb et al. [2010a] PCA is being used to reduce the filter sizes and therefore increase the detection speeds.
They show that the using PCA one can reduce feature dimension from 36 to 11 without decreasing detection performance.
Though, “some of the gain is lost because [they] need to perform a relatively costly projection step when computing
feature pyramids.“149

Felzenszwalb et al. [2010b] introduce a cascade detection method into the grammar model, that prunes locations in the
input images by using intermediate scores after evaluating each part filter.150 Using this approach the amount of work
that has to be done when detecting objects in an image is reduced significantly, which leads to a 22 fold increase in
detection speed on average, without sacrificing performance.151

These methods are available in framework version 5 and, thus, could be used in an updated contextual model implemen-
tation fairly easily.

12.2.2 Speed improvements for training

The speed in which a model is being trained is based on three aspects: the training set size, the detection speed and
the gradient descent implementation speed. The training set size should usually not be reduced for pure training speed
reasons. Also we described some methods to increase detection speeds above.

Training a model like 2.4 which has 4 contextual components currently takes about 48 hours using a high end PC with 8
cores. Speed and memory usage improvements that have been described above should speed this up significantly.

Additionally, the new framework version 5 introduces an implementation of the optimization algorithm which circum-
vents writing the feature vector cache to the hard disk, and directly trains the model using in memory data. Also the
optimization algorithm is supposed to converge faster.152

However, in the end the training algorithm mostly consists of relabeling positives and data-mining hard-negatives and
running gradient descent in between, which is why detection speeds should be the focus of improvement.

148 Experimental implementations for parallel execution of distance transform on the GPU have been already developed for the purposes of this
work, but not used due to Matlab integration issues.

149 Felzenszwalb et al. [2010a, p. 13].
150 See Felzenszwalb et al. [2010b, p. 4].
151 See Felzenszwalb et al. [2010b, p. 7].
152 See Girshick et al. [2012b].
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For the future it is planned to extend the training set to share context with multiple object classes. In that case it is
important to increase training speeds to make training of large multi-class mixture models feasible.

12.3 Improve and extend training set

Generating a training set to train contextual models is very expensive. Not only do positive examples have to have
two bounding boxes – for both object and context – also negative images need to be annotated with context examples,
diminishing some of the advantages of the LSVM training algorithm, where data-mining can make efficient use of massive
sets of negative examples.

Recall that the contextual model depends on a training set, which has context bounding boxes in the negative images
training set N . This can lead to problems with low quality training sets. For example, if one uses an out-of-the-box person
model as the context model (which we do) the problem that many of these context bounding boxes do not fit the context
model can arise. In these cases the training algorithm gets a wrong label ŷ . The context label ŷ is determined positive if
the context detection window overlaps the context bounding box by 70%, else it is determined to be negative.

The potential problem is that resulting contextual model could get overconfident of people appearances if negative object
labels do not correlate enough with positive context labels. This could result in a high number of false positives in test
sets where people appear without wearing dresses.

This could be an issue with the trained contextual models shown in Table 1. The current contextual models work well: the
contextual model 2.4 outperforms the original model 1.1 in low FPPI intervals of the DET graph, however, implementing
methods to prevent overconfidence w.r.t. context appearances from the training data, could further improve the detection
performance!

There are two possible approaches: First, the required overlap of context bounding boxes to set the context label ŷ to
1 could be decreased. For example to a minimum overlap of 50%, which is commonly used for testing. This would
result in more context instances being detected in negative images, decreasing the overall confidence of the context.
Second, it could make sense to increase the amount of negative images with context appearances. Currently the number
of context appearances in the negative examples is less than in the positive examples (numerically, since there are 1974
positive training example (with context) and 1614 negative images containing about one context bounding box each).
This could reduce the correlation between positive context and positive object, therefore moving the contextual further
to the original assumption – where non-existing context inhibits object detections, but existing context does not promote
object detections.

The next steps will focus on building a larger dataset, containing the 10 object categories listed above. When training
multiple clothing classes one could take advantage of reusing some of the positive examples of other classes, since clothes
often appear in combination. Also images with positive examples of a certain class could be used as negative images for
other classes if they do not appear in the same image, reusing the required context bounding box. Therefore, the cost to
add more and more clothing classes should decrease. This requires structured knowledge about what class is, and is not
in each image.

Having more object classes also opens the possibility to analyze and make use of multilateral constraints between items
of clothing.

12.4 Add multilateral spatial constraints

The current contextual model has a star-based architecture, which only allows to model spatial relations from context
to a single object. Especially in the domain of fashion and street style photography it would be interesting to evaluate
multilateral spatial constraints between objects. In addition to the relationship between clothes and wearer, which has
been addressed in this work, different types of clothes could also have relationships. Many types of relationships between
different clothing items come to mind. For instance spatial relations, e.g. t-shirts are above trousers, some items could be
mutually exclusive, like a suit and a dress. Moreover, some categories could have mutual positive correlations, like high
heels and dresses, or gender specific clothes in general, others could have negative correlations, like trousers and skirts.

Having a local contextual scope in the form of a person could help leveraging these relationships, especially simple
relative occurrence correlations. Integrating multilateral spatial constraints on the other hand is hard using the current
model. Many aspects of the model, like part deformations, are based on the fact, that the model is star-shaped and there
is no interaction between the parts and their scores. As noted in section 2 Related Work Desai et al. [2011] developed
a method which could be used to model spatial relations between items of clothing. As noted before the spatial model
in their approach is much more coarse than the flexible deformation model described in this work, which makes it more
useful in an environment of multilateral relations.

In the future the contextual model will be trained with many more clothing categories, which makes it possible to analyze
potential multilateral relationships. The feasibility of making use of these relationships in the current model will vary
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considerably, but the goal is to integrate some of them to build a clothing detection framework with a high enough
detection performance for use in consumer facing products.

12.5 Practical use of the model with flexible context constraint

The goal is to build a system which accepts street style photos (one or a few persons in the foreground, complex back-
grounds) and classifies all clothes which are being worn by the visible persons. Having created an object detector with
flexible context constraint as described in this work is the first step. Later a large mixture model with many different
fashion related object classes sharing the same context should be trained. There will be an substantial amount of work
to generate the needed training sets. As noted above, another aspect is the incorporation of methods to exploit other
contextual relationship between classes of clothing.

Having detected the object class and location, the next step is to analyze it’s properties. Specific shape, colors, texture,
patterns and material are especially relevant to find similar products. To analyze these products the specific area of the
piece of clothing has to be determined by segmenting it from the background.

Figure 16: Mockup of system to automatically detect and segment all clothing items a person is wearing.

Bertelli et al. [2011] offer an approach, which uses kerneled structural SVM to perform object segmentation. They define
multiplicative kernel consisting of an object similarity kernel and a mask similarity kernel, accommodating a top-down
approach using information from object detection in the object similarity kernel and bottom-up cues from color and shape
information in the mask similarity kernel.153 The object similarity kernel can make use of a descriptor generated from the
coordinates of an object detector. In fact, they use the deformable parts model detector by Felzenszwalb et al. [2010a]
as an example.154 This makes their approach a sensible extension to the contextual model. The mask similarity kernel
in turn contains a shape kernel, local color model kernel and a global color model kernel.155 Similar to the data-mining
of hard negatives in Felzenszwalb et al. [2010a], their algorithm also focusses on learning from hard examples, meaning
bad segmentations and, thus, training a model that “knows what good segmentations are”156.

The final system could be integrated into a fashion related image database, which then would be automatically searched
for items of clothing. Based on these detections, further object analysis as described above could be conducted. Then
similar products could be linked to the image and displayed users as related information when viewing images from the
database, like shown in Figure 16.

153 See Bertelli et al. [2011, p. 1f].
154 See Bertelli et al. [2011, p. 5].
155 See Bertelli et al. [2011, p. 3f].
156 Bertelli et al. [2011, p. 1].
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Figure 17: Detections using contextual model 2.4. True positives, where original 1.1 model was not confident enough.
The threshold for each model has been set to the lowest score where FPPI> 0.3

Figure 18: Detections using contextual model 2.4. Yellow boxes show boxes after applying CNMS using red box. Green
boxes are being discarded. Left: CNMS helps discarding false positives. Second from right: CNMS discards a
true positive detection. Far right: false positive detections. Not sorted or filtered by score.
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Figure 19: Interesting detections. Left: confident true positive detection (yellow/red) and low confidence false positive at
clock tower (white). The clock tower somehow resembles the shape of a person. Right: confident true positive
detection (yellow/red) and low confident true positive (white). The pose of the person reduces context score.

Figure 20: Detections Contextual Model 2.4 (green). Examples the dress was detected by the contextual model but the
dress size did not match. The rightmost photo also contains a false positive from original model 1.1 (red).
(FPPI> 0.3)
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