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Abstract
As single-core performance of processors is not improving significantly anymore, the computer
industry is moving towards increasing the amount of cores per processor or, in the case of large-
scale computers, by installing more processors per computer. Applications now need to scale
in accordance with the increase of parallel computing power and software developers need to
take advantage of this movement. And parallel sorting algorithms present basic building blocks
for many complex applications.

In this thesis, we will validate the expected execution time complexities of five state-of-the-art
parallel sorting algorithms, implemented in C using MPI for parallelization, by using a scalability
validation framework based on Score-P and Extra-P. For each of the parallel sorting algorithms,
we will create a performance model. These models will allow us to compare their scalability
behaviour to the expectations. Furthermore, we will attempt to parallelize the local sorting step
of the splitter-based parallel sorting algorithms via C++11 threads, OpenMP tasks, and CUDA
acceleration.

We construct the performance models, on which we base our evaluations, using uniformly
randomly generated data. For most of the parallel sorting algorithms, we show that the given
expectations match the created models. We will discuss any other discrepancies in detail.
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Zusammenfassung
Da die Leistung einzelner Prozessoren sich nicht mehr wesentlich verbessert, setzt die Com-
puterindustrie immer mehr darauf die Anzahl der Prozessorkerne pro Prozessor zu erhöhen,
oder im Falle von Großrechnern, die Prozessoren pro System. Anwendungen müssen nun ent-
sprechend der Zunahme der parallelen Rechenleistung skaliert werden und Softwareentwickler
müssen sich dieser Bewegung anschließen. Parallele Sortieralgorithmen stellen hierbei grund-
legende Bausteine für viele komplexe Anwendungen dar.

In dieser Arbeit werden wir die Komplexitätserwartungen von fünf parallelen Sortieralgo-
rithmen validieren, die in C und MPI implementiert wurden, indem ein Skalierbarkeitsvalidie-
rungsframework basierend auf Score-P und Extra-P angewendet wird. Für jeden der parallelen
Sortieralgorithmen werden wir ein Leistungsmodell erstellen. Diese Modelle erlauben es uns
ihr Skalierungsverhalten mit den Erwartungen zu vergleichen. Außerdem werden wir versu-
chen, den lokalen Sortierschritt der Splitterbasierten parallelen Sortieralgorithmen mithilfe von
C++11 Threads, OpenMP Tasks und CUDA Beschleunigung zu parallelisieren.

Wir konstruieren die Leistungsmodelle, auf denen wir unsere Auswertungen basieren, indem
wir einheitlich zufällig erzeugte Daten verwenden. Für einige parallelen Sortieralgorithmen
zeigen wir, dass die gegebenen Erwartungen mit den erstellten Modellen übereinstimmen. Wir
werden weitere Diskrepanzen im Detail besprechen.

3





Contents

1 Introduction 7

2 Related Work 9

3 Background 11
3.1 Sorting Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Parallel Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3 Parallel Sorting Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3.1 Sample Sort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3.2 Histogram Sort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3.3 Exact Splitting Sort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3.4 Radix Sort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3.5 Mini Sort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.4 Performance Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.4.1 Score-P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.4.2 Extra-P . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4 Approach 19
4.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 Validation Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.3 Experimental Hybrid Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5 Evaluation 23
5.1 Experimentation Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.2 Validating Expectations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.3 Performance Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.4 Parallel Local Sort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.4.1 C++11 Threads/OpenMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.4.2 CUDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

6 Conclusion & Outlook 31

Bibliography 33

5





1 Introduction
Sorting is at the core of most applications - notable examples include search engines, file ex-
plorers, email clients and even address books. As a result, the field of sorting has been studied
heavily and is featured in a large amount of literature. With the need to sort an ever-growing
amount of data, developers are pressed to further their understanding and invent new meth-
ods to improve performance. But this movement has long outpaced the increase in single core
performance. And as we can see in the movement in the consumer computer industry towards
parallelism in the form of multi-core processors, we need to consider the sorting problem under
the consideration of parallel computing. Especially the field of High-Performance Computing
(HPC) sees increasing availability of parallelism thanks to the large array of processors in-
stalled. This calls for solutions that abide by the constraints of distributed memory and limited
communication bandwidth that come with this environment.

But not only sequential sorting was studied extensively. There also already exists a huge
amount of literature on parallel sorting algorithms. A subset of these is tailored to the structure
of HPC applications. Using the ’Message Passing Interface’ (MPI) for the parallelization, we can
implement these algorithms on a multitude of architectures.

Most notably there are splitter-based parallel sorting algorithms. Splitters are a sorted list
of elements that partition the process local data in a way that each partition can then be sent
to another process. After a necessary merging step this will result in a globally sorted array.
This way, large amount of data is only sent once and the communication steps are kept to a
minimum. State of the art splitter-based algorithms include sample sort [1], that constructs its
splitters from samples of each process. Another popular algorithm is histogram sort [2] that
finds splitters in a way where the data distribution after the sorting is kept more even across
all processes. More recently an algorithm called exact splitting sort [3] has been proposed that
will keep the distribution of data across all processes the same after the sorting step and before.

There are also more sophisticated algorithms that are based on different fundamental ideas
of sorting. Parallel radix sort [4] is a non-comparison sorting algorithm. It sorts the data
by looking at the binary representation of each element and can this way determine where
an element belongs. There are also special case algorithms that operate on only very specific
parameters. For example, mini sort [5] assumes minimal data per process.

Naturally, all of the above-mentioned parallel sorting algorithms will perform differently de-
pending on input and amount of processes as well as the underlying system. To understand the
behaviour of these parallel sorting algorithms, you would need to run extensive benchmarks on
a highly scalable system. This takes expensive computing power and, more importantly, time.
As these benchmarks are closely linked to run time parameters, it is also not easily possible to
draw conclusions to the general behaviour of the observed application.

Performance modeling tries to fix this problem by constructing an expression that will define
the algorithms run time behaviour on a given parameter. For parallel applications, this method
can model its scalability in the form of a function of the process count p. For example, imagine
two functions f1 and f2 that model the run time complexity of two different algorithms. For
f1 = 4+ p and f2 = 125+ log2 (p)

1, f1 will perform better than f2 for a process count less than
128. f2 shows a better scalability behaviour.

We differentiate between analytical and empirical performance modeling. In analytical per-
formance modeling, experts analyze the underlying code of a given algorithm by hand. Since

1 Going forward log will refer to the logarithm of base 2 log2.
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this method is time intensive, they will usually focus on only the most time-critical functions.
But to create an accurate model, which is of great importance to find scalability bugs and
efficiently analyze the algorithm, every function will need to be considered. The resulting ex-
pression is usually written in big O notation (Landau notation) which represents the upper
bound complexity. Empirical performance modeling, on the other hand, can automatically cre-
ate models from measurements. As such it is well suited to deduct the scalability behaviour of
parallel sorting algorithms.

Extra-P [6] is a tool developed at Technische Universität Darmstadt to automatically generate
performance models. We will use Score-P [7] to create a set of measurement that is provided
to Extra-P. The measurements are extrapolated to create a model of the scalability behaviour on
even higher scaling systems.

Given the added complexity that comes with parallelism and the usage of analytical perfor-
mance modeling, we can not be sure of the accuracy of the expectations provided with the
parallel sorting algorithms. In this thesis, we make the following contributions:

• libparsort library — we will consolidate the five state-of-the-art parallel sorting algorithms
(sample sort, histogram sort, exact splitting sort, radix sort and mini sort) into one coher-
ent and usable library using C, C++, and MPI. This includes documentation of the functions
provided by the library.

• Validating expectations — by making use of a scalability validation framework, we can
easily benchmark our library and create performance models. It utilizes Score-P for the
instrumentation and Extra-P for the modeling.

• Experimental hybrid solutions — by extending the splitter-based parallel sorting algo-
rithms in our library with multithreaded code using C++11 threads [8] and OpenMP
tasks [9] and accelerated code using CUDA [10], we will analyze the benefits of these
solutions. The scalability validation framework can be used here to compare the perfor-
mance of the new code with the model of the old algorithm.

The remainder of this document is structured as follows: In Chapter 2, we summarize related
works and put them in relation to our own approach. In Chapter 3, we provide the neces-
sary background and fundamentals regarding parallel computing, sorting in sequence and in
parallel, and the tools behind the scalability validation framework - Score-P and Extra-P. Chap-
ter 4 describes the approach as outlined in the contributions above, followed by an evaluation in
Chapter 5. Lastly, we will conclude our findings and discuss potential future work in Chapter 6.
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2 Related Work
The contributions of this thesis combine the fields of parallel sorting, automatic generation of
empirical performance models and the usage of multiple parallel computing approaches such as
MPI, OpenMP, C++11 threads, and CUDA in one application. With this knowledge, we will val-
idate the complexity expectations of state-of-the-art parallel sorting algorithms. Furthermore,
we will attempt to optimize these sorting algorithms by multithreading and acceleration. In this
chapter, we will explore existing literature related to this process, while keeping the separate
topics in mind.

This work is heavily influenced by an unpublished paper by Siebert et al. [11] that analyzed
dynamic load balancing in parallel sorting algorithms. We were provided the paper itself and a
code base consisting of implementations of the parallel sorting algorithms discussed in it. We
would like to thank the authors as their work allowed us to create this thesis in the first place.

Of the approaches to the computer-aided analysis of parallel sorting algorithms known to
us, the one by Blelloch et al. [12] is the oldest we found. It uses a fine grain approach to
analyzing the algorithms, by benchmarking primitive operations. These benchmarks were then
applied to parallel radix sort and sample sort by counting the kind and amount of primitive
operations each one calls. This approach is highly accurate, but ultimately irrelevant for our
use case. Extra-P offers a way to quickly and automatically generate performance models that
can accurately express the scalability behaviour of a given algorithm.

In 1996 Amato et al. [13] compared parallel sorting algorithms on different architectures. The
parallel sorting algorithms include sample sort and a parallel radix sort. Their novel method of
constructing the expected complexities with two components - local computation L and inter-
processor communication C - allowed them to accurately predict scalability behaviour of these
algorithms. But more importantly, they tested the parallel sorting algorithms on a distributed
memory system.

In 2015 Shudler et al. [14] used Score-P and Extra-P to create a validation framework. They
applied a case study about MPI collective functions to the framework and validated the resulting
models to the expectations. This approach can easily be applied to the validation of parallel
sorting algorithms. Furthermore, the results of the MPI operations can be used to understand
the scalability behaviour of the parallel sorting algorithms more closely.

White et al. [15] proposed a hybrid CUDA-MPI solution for parallel sorting in 2012. Based
on their work another paper with a similar subject has been released in 2013 by Shenghui et
al. [16]. On a cluster of GPUs, each GPU has an array of data that is sorted using parallel bitonic
sort implemented using CUDA. Afterwards, they use MPI to merge the data. Their experiments
show optimistic improvements in run time. Our approach to hybrid parallel sorting also includes
a variation of a CUDA-MPI solution. But as we will need to copy large amounts of data between
CPU and GPU at least two times in our implementation, it is to be seen if we will observe similar
results.

A hybrid parallel merge sort using MPI and OpenMP has been proposed and evaluated by
Radenski [17]. In his work, he compares a shared memory implementation with OpenMP, a
distributed memory implementation and a hybrid implementation of merge sort against each
other. In the evaluation, we can observe significant speed ups with the hybrid solution.
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3 Background
Before presenting our approach in Chapter 4, we discuss in this chapter all the fundamentals
of parallel sorting and the validation process. Firstly we discuss the basics of comparison-based
sorting, how it relates to parallel computing and what parallel sorting algorithms look like.
Then all the specific algorithms used in this thesis are outlined. And lastly, we focus on Score-P
and Extra-P.

3.1 Sorting Problem

Sorting has been around long before the electronic age, but where a person has limited possi-
bilities to sort, a computer can take very different approaches. The general problem definition
for sorting is defined as follows:

Input: A sequence of n items (x1, x2, . . . , xn), and a relational
operator ≤1that specifies an order on these items.

Output: A permutation (reordering) (y1, y2, . . . , yn) of the input
sequence such that y1 ≤ y2 ≤ . . .≤ yn.

There exist many solutions to the problem of sorting in computing, as it was studied for more
than sixty years. The most popular solutions are based on comparison and build upon a strategy
called ’divide and conquer’. Here the problem size n is repeatably divided into two partitions.
This creates a binary tree structure which is eventually merged from the leaves to the root.
Often used algorithms include quick sort and merge sort that both work on this process. To
understand the idea, let’s look at our implementation of merge sort in Algorithm 1.

Algorithm 1 Merge Sort

Input list A with |A|= n, a lower bound lo and a higher bound hi
1: if lo+ 1< hi then
2: mid = [(lo+ hi)/2]
3: mergesort(A, lo, mid)
4: mergesort(A, mid, high)
5: merge(A, lo, mid, hi)
6: end if
7: return A

By providing the merge sort function with a lower and higher bound for the data that should
be observed, we can recursively call this function with only a subset of the initial input. This
step is repeated until we are left with only one element. Now a sorting merge algorithm is used
to sort the partitions. This way of dividing data can already be applied to parallel computing by
simply running each subset on a different processing unit.

1 Sorting is not limited to the relational operator ≤, but will only be discussed for ascending order in this thesis.
Though the underlying functionality would not change in a drastic way if another relational operator was
chosen.
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Figure 3.1: Visual representation of the sequential sorting problem definition with n= 60 keys.

Figure 3.2: Visual representation of the parallel sorting problem definition for distributed mem-
ory(MPI) with p = 4 processes and n= 15+ 15+ 15+ 15 keys.

3.2 Parallel Computing

There are a lot of different approaches to creating parallel applications. The most basic idea
is to run parts of your code in parallel by scheduling them to threads. Threads are usually
managed by the operating system. Recently C++ has made strives towards an exception-safe
and hardware-agnostic implementation of threads in C++11.

The ability to parallelize your code has not always been of high priority. As such a method was
devised to parallelize your application without the need to rewrite large parts of the underlying
code. OpenMP works on this paradigm and provides parallelism concepts directives in the form
of #pragma statements.

The device that is capable of the most parallelization in your everyday computer is not the
CPU though, but the GPU. With the help of NVIDIA’s CUDA, you can program your graphics
card for large Single Instruction Multiple Data (SIMD) applications even outside of graphical
computing. The downside of working with both the CPU and GPU is the fact that each has their
own memory. This means we will have to copy data between the two devices.

The last method of parallel computing we will present and ultimately use the most in this
thesis is MPI. The "Message Passing Interface" is a library, that allows communication between
processes in the form of messages that hold data. It is especially suitable for large-scale comput-
ers and cluster, as it operates on the assumption that every process has its own separate memory.
Each of the p processes is given a rank with which the processes can communicate with each
other. The rank is an unsigned integer from {0, . . . , p−1}. MPI also provides collective functions
that allow for more advanced communication, such as broadcasting data to all other processes
at once.
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3.3 Parallel Sorting Algorithms

The general problem definition for parallel sorting with distributed memory is defined as fol-
lows:

Input: A sequence of n items (x1, x2, . . . , xn) over p processes with
ni = n/p items per process, and a relational operator ≤ that
specifies an order on these items.

Output: A permutation (reordering) (y1, y2, . . . , yn) of the input
sequence such that for the local data z z1 ≤ z2 ≤ . . .≤ zn on
each process i and zi[nin−1]≤ zi+1[0] for i ∈ {0, . . . , p−2}.

As opposed to the sequential case seen in Figure 3.1, the initial situation has changed in a way
where the known sequential algorithms can not trivially be fit to the parallel sorting problem. As
seen in Figure 3.2 the first process will need to access or receive data from the other processes.

As such our algorithms are designed in a way that complements the design of MPI. The
biggest performance bottleneck is the communication between processes, so this will be kept
to a minimum. Another thing to consider is the fact that there are specific syncing points
throughout the code, so the performance can be largely bounded by only the slowest process.
That is why the parallel sorting algorithms try to achieve evenly sized arrays distributed over
all p processes.

As part of our library libparsort, we made a selection of state-of-the-art parallel sorting algo-
rithms. These include splitter-based algorithms such as sample sort, histogram sort, and exact
splitting sort. Here p − 1 splitter elements are collected and used to partition the data of each
process such that for i ∈ {0, . . . , p−2} partition i can be sent to the process of rank i. The library
also includes parallel radix sort, a non-comparison algorithm and a special case algorithm for
minimal data per process called mini sort.

3.3.1 Sample Sort

Sample sort presents itself as a rather simple implementation of the splitter based approach. It
tries to achieve even distribution by sampling the data of the array to construct its splitters. But
it can not ensure that the data is sufficiently evenly distributed over the arrays because of the
data dependency of the sampling process.

Algorithm 2 Sample Sort

Input list A with |A|= ni on process i
1: Sampling . Local sort depending on variation
2: X ← gather((x i)i∈{1,...,k}) on root
3: root only: X ← sort(X )
4: root only: ∀i ∈ {1, ..., p− 1} : si ← X [i · k]
5: ∀i ∈ {1, ..., p− 1} : si ← broadcast(si) from root
6: (Ai)i∈{1,...,p}← partition(A, (si)i∈{1,...,p−1})
7: (Bi)i∈{1,...,p}← alltoall((Ai)i∈{1,...,p})
8: return B← sort(concat((Bi)i∈{1,...,p}))

p− 1 samples from each process are collected on the root process2. These p · (p− 1) samples
are sorted and p − 1 splitters are chosen from them equidistantly. They are then distributed

2 While the root can be arbitrarily defined by the developer, it usually refers to the process with rank 0, as it is
sure to exist at any number of processes.
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to all processes, where its local data of ni elements is partitioned accordingly. Afterwards, the
partitions are sent to each corresponding process and merge via sequential sort. This will keep
communication data to a minimum.

There are a few different approaches to how the splitters are sampled. Most notably there is
regular sampling, where the samples are chosen equidistantly. This requires the data on each
process to be sorted sequentially in advance. There is also random sampling, where the samples
are chosen randomly, so the local data does not need to be sorted. In this case, the partitioning
needs to traverse the whole array and can not take advantage of a binary search approach.
Either way, the splitters are always chosen equidistantly from all the samples.

3.3.2 Histogram Sort

Histogram goes one step further to ensure sufficiently evenly distributed data across the pro-
cesses. Besides the array (and size), the algorithm also asks for a threshold value q ∈ [0; 1]
such that ni ∈ [(1 − q) · n

p ; (1 + q) · n
p ] for i ∈ {0, . . . , p − 2}. This means it can successfully

ensure a sufficiently even distribution. But there is no guarantee that the algorithm finishes as
the construction of the splitters is only using data from the root process.3

Algorithm 3 Histogram Sort

Input list A with |A|= ni on process i
1: A← sort(A)
2: (t i)i∈{1,...,p}← allgather(scan(ni,+))
3: loop
4: root only: ∀i ∈ {1, ..., p− 1} : si ← A[ j]
5: j from interpolation between known counts.
6: broadcast(i) from root
7: ci ← |{a ∈ A|a ≤ si}
8: Ci ← allreduce(ci,+)
9: if ∀i ∈ {1, ..., p} : |t i − Ci|< εni then

10: break
11: end if
12: end loop
13: (Ai)i∈{1,...,p}← partition(A, (si)i∈{1,...,p−1})
14: (Bi)i∈{1,...,p}← alltoall((Ai)i∈{1,...,p})
15: return B←merge(Bi)

Each process sorts its data array locally. Then p − 1 samples are taken only from the root
process. The samples are sent to all p processes where they analyze how many elements are
smaller than each sample. These values are collected on the root process and sum reduced
creating a histogram C . Now for each sample si with i ∈ {1, . . . , p− 1} there exists a histogram
entry Ci with the same index. If the sample is in range of the ideal splitter position where for si,
i ∗ (1+ q) ∗ n

p ≤ Ci ≤ i ∗ (1− q) ∗ n
p it will be used as a splitter. If a sample is not a satisfactory

splitter, a new sample is collected. Once all splitters have been determined, the partitions are
distributed to the corresponding processes followed by a local sequential sort.

3 Some other specifications may call for the splitters to be taken from all the processes. Another approach by
Solomonik et al. constructs a search space with bounds based on the range of the input over all processes, and
shrinking it with each necessary iteration [18].
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3.3.3 Exact Splitting Sort

Exact splitting sort is a rather new splitter-based parallel sorting algorithm. It is the last of the
splitter-based parallel sorting algorithms and as the name implies, tries to find splitters that
would partition the data such that ni after sorting equals ni before sorting. Assuming an even
distribution before calling the algorithm this would mean ni =

n
p - an ideal distribution.

Algorithm 4 Exact Splitting Sort

Input list A with |A|= ni on process i
1: A← sort(A)
2: global min & global max creates a search space
3: splitter finding over the search space using binary search with global median
4: (Ai)i∈{1,...,p}← partition(A, (si)i∈{1,...,p−1})
5: (Bi)i∈{1,...,p}← alltoall((Ai)i∈{1,...,p})
6: return B← p-way-merge(concat((Bi)i∈{1,...,p}))

As with each of the splitter-based algorithms, the first step is a local sorting step. Then local
minima and maxima are created based on the smallest and largest elements. From these values
a global minimum and maximum can be derived by using an MPI reduction function. The p−1
splitters are then found within this search space via binary search. Using the global median, the
search space in split into two parts and we evaluate the splitter by counting the elements less
than the splitter and comparing it to ni. This step is repeated until all splitters have been found.
As with sample sort and histogram sort before, partitions are created and distributed to the
corresponding process. But instead of local sequential sort, a more sophisticated p-way-merge
algorithm is used.

3.3.4 Radix Sort

Radix Sort is a non-comparison sorting algorithm that sorts elements based on its binary presen-
tation. This way it can overcome the lower bound complexity of traditional comparison-based
sorting algorithms of n · log n. Due to the way it works it is limited to integer- and float-like data
types and its performance is dependant on the number of bits and number of digits of the given
data.

Algorithm 5 Radix Sort

Input list A with |A|= ni on process i
1: for 1≤ r ≤ b by k do
2: (Ai)i ∈ {1, ..., 2k} ← partition(A) by bits r, ..., r + k− 1
3: for 1≤ i ≤ 2k do
4: ∀ processes: append(Ai)
5: end for
6: end for
7: return A

The algorithm sorts each element of b bits one digit of k bits at a time. This is done using
counting sort. This way the data is locally partitioned into 2k blocks. Looking at the distributed
memory of all processes as a global memory, the blocks are put into the global memory. This
creates a globally sorted sequence.
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3.3.5 Mini Sort

Mini sort is a rather new parallel sorting algorithm. It assumes the data on each process to be
minimal. In our case this means the local array is of size 1, resulting in n= p.

Algorithm 6 Mini Sort Sequential

Input element x i on process i
1: root only: X ← gather(x i)
2: root only: X ← sort(X )
3: y ← send(X [i]) to rank i
4: return y

Algorithm 7 Mini Sort Counting

Input element x i on process i
1: X ← allgather(x i)
2: dest= −1
3: ∀X i : i ∈ {1, . . . , p} ≤ x i → dest++
4: y ← send(x i) to dest
5: return y

As with sample sort there are different variations of this algorithm. In the naive approach,
each process sends its data to the root process, where it is sorted sequentially. Then each
element x i i ∈ {0, . . . , p} on the root is sent to process i. Another approach calls for each process
to send its data to all p processes where a counting algorithm is used on the resulting sequence
to determine the destination of its original data. It works very similarly to the naive mini sort
algorithm.

A more sophisticated mini sort algorithm uses a median-of-three reduction scheme coupled
with a tree recursion model to find the global median. This value is then used as a pivot to
partition the single element data on each process into three groups; less than the pivot, equal
to the pivot and greater than the pivot. Using vector structures and reduction sum functions,
the destination process can be calculated.

3.4 Performance Modelling

Complexity analysis is a big field of computer science. As we move into parallel space, deter-
mining accurate complexity expressions of a given parallel algorithm is getting more intricate
because of the added complexity. But it can also be wildly influenced by the implementation of
the algorithm, unoptimized code in the MPI library and experimentation setup. So as part of
the validation process, we will be using empirical performance modeling to create complexity
models of each parallel sorting algorithm. The scalability validation framework [14] we chose
to use calls for the tools Score-P and Extra-P.

3.4.1 Score-P

”The Score-P measurement infrastructure is a highly scalable and easy-to-use tool suite for profiling,
event tracing, and online analysis of HPC applications.”4

4 Taken from http://www.vi-hps.org/projects/score-p/(accessed on 2017-10-05).
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We will use Score-P for its profiling capabilities. It consists of an instrumentation framework
and run-time libraries, applicable to C/C++. Instrumentation describes the insertion of measure-
ment functions into the source code. It does so by providing its own compiler wrapper that can
wrap around a large collection of compilers. This way Score-P can automatically instrument
the underlying code. You can also provide filters to adjust this automatic step or use manual
instrumentation only. Either way, MPI calls will always be instrumented and measured.

For programs that were compiled with Score-P, measurements are automatically collected
when the application is run. Metrics include visits and time as well as other metrics. This
performance data is saved as a performance profile in the CUBE [19] data format. The format
holds the data in 3 dimensions. The first one holds the performance metrics. The second
dimension is a call tree. This way measurements for each function are stored and can later
be analyzed in detail. The last dimension is a description of the system the application was
executed on.

3.4.2 Extra-P

”Extra-P is an automatic performance-modeling tool that supports the user in the identification of
scalability bugs.”5

We will use Extra-P’s performance modeling to express the scalability behaviour of parallel
sorting algorithms. Extra-P takes a set of performance profiles that can be provided by Score-P.
The performance profiles are collected by running the application multiple times with different
configuration parameters. From that, a human-readable model in the form of a function is
created, describing the scalability behaviour over these configuration parameters. For parallel
sorting, this means running the program with different process counts. For accurate modeling,
Extra-P needs measurements for at least five different parameter variations.

The resulting scaling models are assignments of the performance model normal form (PMNF),
defined by the formula

f (p) =
k
∑

n=1

ck · pik · log (p) jk

Extra-P also introduces error metrics on the generated model. R̄2 is of range 0 to 1 and shows
how well the constructed PMNF matches the underlying actual model, 1 being ideal. SMAPE,
on the other hand, is a scale-independent, relative error metric presented by Reisert [20]. It
uses the ratio of the difference between measured and predicted value to create an error metric
of range 0 to 200, where 0 means no error at all.

5 Taken from http://www.scalasca.org/software/extra-p/download.html(accessed on 2017-10-05).
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Figure 3.3: Screenshot of Extra-P, showing data from the parallel sorting library
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4 Approach
Before we can generate performance models of the scalability of parallel sorting algorithms,
we will need to implement what we have discussed in Chapter 3. We will discuss the im-
plementation of the library and our approach to the validation of the scalability behaviour of
parallel sorting algorithms. Afterwards, we will present our solution to a parallel local sort for
splitter-based algorithms.

4.1 Implementation

A large part of the algorithms was already implemented. But the code was scattered, partly
incomplete or even nonfunctional and it lacked a cohesive direction. The code was written in
C using OpenMPI [21] for the parallelization. We will use gcc 4.9.4 and OpenMPI 1.10.7 in
conjunction with autotools to manage and compile the project.

The main objective of this phase was to create a complete and functional library consisting of
all the algorithms ready to use. This phase was further split up into the following milestones:

• Write a simple test suite

• Condense all the code into a single unified library

• Make adjustments and fix bugs

In the first step a test program that would make use of the library and define test cases had
to be created. Since we had no intention of using an uneven distribution, our test application
only defines the number of elements each process should hold. Before any sorting takes place,
we seed the random number generator in a unique way for each process. This seed is also used
for any algorithm that depends on random numbers, such as random sample sort. Before each
sorting algorithm is executed, we create uniformly random numbers to fill the local array.

Next up, we unified the the way the algorithms were set up. By using a similar structure
for the functions, they could be easily interchanged. We also isolated common code between
parallel sorting algorithms to prevent duplicate code.

Now that we could test our library, it was quickly apparent that there were some major issues
with the code already present. Sample sort did not actually conform to any known specification.
It instead opted to not sort the local array while still choosing samples equidistantly. Since
the code was well structured, rewriting it to support regular and random sampling was easy.
Curious to see how this "new" variation, we decided to call mixed sampling, would perform we
kept it in. Later on, we also ran into issues consisting of integer overflows as we were handling
such large numbers.

Having a feature complete version ready and usable now, the next step was switching from
C to C++11 in anticipation of the experimental hybrid solutions. There was little that had to be
done as we would stay on the C subset of C++ because of performance and portability concerns.
Besides the thread support, the only other thing of consideration was template usage for generic
versions of the algorithms. Due to time issues, this feature was ultimately deemed unnecessary
as we already decided to test only on unsigned 64-bit integers. Since malloc in C and C++
function slightly different we did decide to replace the calls to malloc and free with the C++
equivalents new and delete.

Now that the implementation was finished, we created proper documentation for the relevant
library functions using Doxygen [22].

19



Model
generation

Search space
generation Benchmark

Performance
measurementsScaling model

p

Expectation

+ optional
deviation

limit

log p

Divergence model
p/ log p

Comparing
alternatives

Regression
testing

Initial
validation

Figure 4.1: Framework overview including use cases. Taken from Exascaling Your Library: Will
Your Implementation Meet Your Expectations? [14]

4.2 Validation Framework

The process of validation is based on the scalability validation framework seen in Figure 4.1. It
consists of the following four steps:

• Initial expectations

• Benchmark design

• Generating performance models

• Validating expectations

Initial expectations
Thanks to extensive literature about parallel sorting algorithms, we can easily find the initial

expectations and incidentally, the validation framework expects the initial expectations in big
O notation (Landau notation). In almost all cases the complexity was constructed via analyti-
cal performance modeling. For the scalability validation, we also want to further simplify the
expression into so-called leading-order terms.

Design benchmark
To create our benchmark data we will use Score-P as we can easily use the data in Extra-

P. Initially, there was a significant performance loss and after the change to C++ there were
unnecessary and cluttering calls to C++ specific code visible in the call tree. To compensate,
but not entirely nullify the performance regression, a filter was utilized. The code is compiled
once and then run on an increasing amount of processes via a batch script.
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Generate scaling models
For the performance modeling, a developer version of Extra-P is used that implements "Au-

tomated Refinement of Performance Models" by Reisert [20]. We also made additional mod-
ification to the source code. First, we used the median option opposed to the mean option
to generate the performance model. Another problem arose in the occasions when only one
process would do the majority of the work. Normally an average across all processes was used
which introduced falsely models. We changed the relevant code to always use the maximum
value over all processes. A weak scaling approach was chosen to generate the models.

Validate expectations
As we accept expectations in big O notation, we need to adjust the generated performance

model. We will drop coefficients that were introduced and simplify the model to its leading-
order term. We also introduce a divergence model defined as δ(p) = F(x)/E(x) where F(x) is
the modified performance model expression and E(x) is the expectation. This will help in the
evaluation step, as we can see in what capacity the model diverges from the expectation.

4.3 Experimental Hybrid Solutions

Lastly, we will focus on the splitter-based sorting algorithms once more. While we largely base
all our performance on the performance of MPI, the splitter-based approaches call for sorting
its local array of size ni. As ni reaches into the tens of millions of elements and as a result takes
up most of the run time of these algorithms, it will oftentimes dominate the performance model
of the whole algorithm.

By using only a subset of available processes for MPI, we are able to use the other processes
to speed up the local sorting step. We will do this by implementing a simple parallel merge
sort for C++11 threads and OpenMP tasks. Assuming a constant n, means each MPI process will
have a larger array to sort. The goal of this experiment is to evaluate the loss of performance
of cutting down on MPI processes versus the potential speedup of parallelizing the local sorting
step.

The underlying sorting algorithms will work on shared memory and thus can make away
with the constraints of the earlier parallel sorting algorithms. The downside is that we can not
multithread our algorithm between nodes. But thankfully that is not relevant for our use case,
as we only need to work with the data of one MPI process. At large, these algorithms will simply
try to divide the local array between the available parallel computing units. By multithreading
and accelerating the local sorting step, we hope to gain some more insight into how not only
the algorithms themselves scale but also how the MPI processes scale with increasing data.

Algorithm 8 Parallel Merge Sort

Input list A with |A|= n, a lower bound lo and a higher bound hi
1: if lo+ 1< hi then
2: mid = [(lo+ hi)/2]
3: fork mergesort(A, lo, mid)
4: mergesort(A, mid, high)
5: join
6: merge(A, lo, mid, hi)
7: end if
8: return A

A simple implementation of parallel merge sort that we are using is presented in Algorithm 8.
Note that the recursion termination of our implementation will also terminate if the size of the
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partition falls under 32 thousand elements. Furthermore, the multithreaded algorithm will also
base how many threads or tasks it will spawn on the remaining available resources. If either the
remaining amount of elements is too low or we run out of available cores, a sequential merge
sort is used.

For the CUDA accelerated local sorting we will use the sort function provided by CUDA’s
thrust library [23]. Internally this function has implementations for both parallel radix sort and
parallel merge sort. Since radix sort is faster in general, it will be used by default. Whenever
the input data is not integer-like and thus not applicable to radix sort, the merge sort imple-
mentation is used instead. Before sorting we will also have to copy the data array from the
main memory to the GPU memory and back. While this is a trivial concept, it could have big
performance implications.

For the performance modeling we will once again use Score-P and Extra-P, but now to test
only the splitter-based algorithms. We will apply the validation framework once more but this
time we keep p constant and increase n instead. This way ni is steadily increasing across all
processes. Whereas these values are not nicely divisible by p the resulting loss of elements on
each process is negligible.

22



5 Evaluation
In this chapter, we will apply the scalability validation framework to our library ’libparsort’. We
will create performance models of the parallel sorting algorithms, analyze them and compare
them to the expectations. Additionally, we will discuss the performance of the parallel sorting
algorithms against each other. Lastly, we will evaluate the results of our experimentation in
parallelizing the local sort of splitter-based algorithms.

5.1 Experimentation Environment

The data we will present was collected by benchmarking our parallel sorting library on the Licht-
enberg High Performance Computer 1 at Technische Universität Darmstadt. Using Slurm [25],
the job scheduling system used on the cluster, we were able to effortlessly submit jobs that run
all the benchmarks at high repetitions.

In Figure 5.1 we can see that the topology of the HPC is split into two phases. For the
validation process, we will only use phase I. More specifically we will use one MPI island(i01-
i15), which consists of 32 nodes. Each node has 32 gigabytes of main memory and two “Intel®
Xeon® E5-2670” processors resulting in 16 cores. Tests will be run from one node with 16 MPI
processes to all 32 nodes with 512 MPI processes. Since we are interested in the weak scaling
behaviour of these parallel sorting algorithms, we decided to keep the size of the data on each
process ni constant to ten million. Ten repetitions were used for this step.

For the benchmarking of the local sorting experiments, we were limited by CUDA. Figure 5.1
shows an island marked as NVD. It consists of 44 nodes identical to the MPI island nodes but
also includes two “NVIDIA® Tesla™ K20X” per node. Assigning a MPI process to each GPU, we
can only run two MPI processes per node. As a result, we decided to limit the benchmarking
for the local sorting experiment to 64 MPI processes, which correspond to 32 nodes on the NVD

1 http://www.hhlr.tu-darmstadt.de/hhlr/

Figure 5.1: Island topology of the Lichtenberg High Performance Computer at Technische Uni-
versität Darmstadt. [24] (accessed 2017-10-13)
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island. In this case, increasing the amount of processes over the benchmarking process does not
make sense as the local sorting step is only affected by n. Instead, we will increase n, which will
also increase ni, from 30 to 240 million elements in eight steps. Five repetitions were used for
this step.

A new seed is chosen for every iteration. For changes in the configuration such as increasing
n or p, the same seed is kept. This was done to ensure some overlap in the input data between
different process configurations. Histogram sort was benchmarked using a threshold q of 10%.
Radix sort was run with k = 8.

5.2 Validating Expectations

As outlined in the scalability validation framework we do not want to compare the resulting
performance models directly to the expectations. We will instead present the expectations in
big O notation (Landau notation) and compare only the leading-order term, as it describes
the scalability behaviour on highly scalable systems the best. The models Extra-P constructs
automatically are unfit for direct comparison because they are constructed in a way where
inner functions are weighted based on their run time. That usually results in functions that take
more time to mask the leading-order term. Extra-P also adds constant expressions to the model
that are largely irrelevant in the context of parallel scalability. That is why the created model
and the extracted leading-order term might not have any direct correlation, as the leading-
order term might have been taken from an inner function that was not considered for the final
generated model.

Table 5.1 summarizes our findings. In the following passages, we will establish the expecta-
tions for each algorithm, simplify them to a leading-order term and discuss the results.

Sample Sort
The expectations for splitter-based parallel sorting algorithms are similar in structure. Most

notably they will reflect the local sorting step in O ( n
p log n). With the way we do our bench-

marking the expression n
p corresponds to the constant ni. Furthermore, the expression log n can

be rewritten as log p · ni and simplified to log p. That means the local sorting step is expressed
as O (log p).

Initial expectations: O ( n
p log n+ p2 log p2)

Expected scalability behaviour: O (p2 log p)

For both regular and random sample sort, the leading order term can be traced back to calcu-
lating the splitters and distributing them to all processes. With a big O notation of O (p2 log p)
it matches our generated model perfectly. While R̄2 is significantly lower for random and mixed
sample sort, SMAPE shows that the error is rather small.

Histogram Sort
Histogram is data dependent as shown in the complexity expectation by r, the number of

repetitions until sufficient splitters are found. Yet our tests show that given our large local sizes
with randomly generated input, the number of repetitions never reached a critical mass where
it would affect the scalability behaviour of this algorithm.

Initial expectations: O (r ∗ p log n
p +

n
p log n)

Expected scalability behaviour: O (p)
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Table 5.1: Generated runtime models of various parallel sorting algorithms implemented in our libparsort library. R̄2 specifies the adjusted coef-
ficient of determination and SMAPE is a scale-independent, relative error metric. δ(p) represents how far the model diverges from the
expectation. The Match column shows if the validation was successful. Bwill signal inconclusive behaviour

Expectation
Algorithm Time complexity Leading-order term Model leading-order term R̄2 SMAPE δ(p) Match

Sample Sort Regular O ( n
p log n+ p2 log p2) O (p2 log p) O (p2 log p) 1 0.592 O (1) Ø

Sample Sort Random O ( n
p log n+ p2 log p2) O (p2 log p) O (p2 log p) 0.7 1.18 O (1) Ø

Sample Sort Mixed O ( n
p log n+ p2 log p2) O (p2 log p) O (p2 log p) 0.74 2.884 O (1) Ø

Histogram Sort O (r · p log n
p +

n
p log n) O (p) O (p2.5 log p) 0.967 5.478 O (p1.5 log p) x

Exact Splitting Sort O ( n
p log n+ p log2 n) O (p log2 p) O (p1.5 log p) 0.995 1.844 O (p0.5/ log p) ≈

Radix Sort O ( b
k (

n
p + 2k + log p)) O (log p) O (p0.5 log p) 0.984 2.341 O (p0.5) ≈

Mini Sort Sequential O (p log p) O (p log p) O (p0.5) 0.915 6.816 O (1/(p0.5 log p)) B

Mini Sort Counting O (p) O (p) O (p0.5) 0.745 76.734 O (1/p0.5) B

Mini Sort Scalable O (log2 p) O (log2 p) O (p log p) 0.998 13.139 O (p/ log p) ≈B
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Yet the generated model does not match the expectations at all. Even assuming r did actually
reach p, the expectation and the model would still not line up. Thus, it is very likely that there
is some scalability bug in our implementation.

Exact Splitting Sort
The complexity of exact splitting sort is dominated by the local sorting step and the global

splitter finding. As we have established, in this test case the local sorting step should be con-
stant. Thus only the global splitter finding complexity is observed.

Initial expectations: O ( n
p log n+ plog2 n)

Expected scalability behaviour: O (plog2 p)

The generated model is not unreasonably different to the expectations. But it still misses
the mark and deserves some discussion. The implementation of exact splitting sort includes a
set of configurations that include different median algorithms and a custom alltoallv. It is
possible that either of these potions will have an impacts on the performance of the algorithm.
Furthermore, the algorithm was more likely to fail the validation because of its relatively young
age. This is one of the first works that incorporate exact splitting sort.

Radix Sort
As radix sort needs to do repetitions based on the number of bits b in the elements and k, the

number of bits in a digit, its complexity is largely based on these parameters. With a relatively
low number of processes, the expression 2k will dominate the scalability behaviour. Regardless,
the generated model will need to be compared to the leading-order term which is O (log p).

Initial expectations: O ( b
k (

n
p + 2k + log p))

Expected scalability behaviour: O (log p)

The difference in expectation and model can be easily explained with the aforementioned
phenomenon on low process counts. Our tests only use up to 512 processes where 2k will still
dominate. Further testing is necessary for a conclusive answer, but given the circumstances, the
O (p0.5) difference can be attributed to the aforementioned problem and additional noise.

Mini Sort
Due to the simple nature of mini sort, we do not need to extract the leading-order term from

their run time complexities. You can see the expectations in Table 5.1.
Interestingly enough almost all of the variations perform better in the performance model

than in the expectations. This result can be traced back to the inadequate testing environment
for an algorithm such as mini sort. Part of that can be seen in the SMAPE metric as well as R̄2.
Further testing on a more scalable environment is needed.

5.3 Performance Comparison

Another point of interest is how the algorithms perform against each other. Given the expec-
tations, we can already guess, which will perform the best. And considering the validation
process, we can confirm our guess. We plot the generated models onto the same coordinate
system that we can see in Figure 5.2.

Mini sort was not included as the experimentation parameters differ to heavily from the other
parallel sorting algorithms. As for sample sort, only regular and random sample sort were ob-
served. We can see that by using the generated models instead of the abstracted asymptotic
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Figure 5.2: Performance comparison of the parallel sorting algorithms.

scalability behaviour, some of the algorithms are not accurately represented. Most notably reg-
ular and random sample sort demonstrate far better scalability performance than they should.
This clearly showcases how inconclusive the data is. Nonetheless, by cross referencing with
Table 5.1, we can safely assume that radix sort will perform the best on our input.

5.4 Parallel Local Sort

Here we make use of another aspect of the scalability validation framework. Instead of com-
paring our findings to expectations from literature, we run our benchmark under previous con-
ditions and create a performance model first. This will present our initial model from which we
can conclude the general scalability of our algorithms. Afterwards, we can make changes to our
code, more specifically to our function that handles the sorting of the local data of each process.
We will compare the generated models directly because the expected scalability behaviour is
unlikely to show in the model and because we want to see the speed up that was achieved. We
decided to only observe regular sampling for sample sort for convenience.

5.4.1 C++11 Threads/OpenMP

OpenMP tasks and C++11 threads behave quite similarly. But their performance is dependant
on the available resources. As outlined in Section 5.1, we will keep the number of processes
constant but we will run separate benchmarks on different amount of MPI processes. We will
start with 32 MPI processes over 4 nodes and go down to 4 MPI processes, which means 1 MPI
process per node. The remaining cores will be used to run the threads or tasks. For example,
with 32 MPI processes, each MPI process will be able to use two threads/tasks.

In Figure 5.3 we can see that the performance worsens with the increase in threads/tasks.
This might be because of our very simple approach to the parallel merge sort that has very
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limited scalability. Besides an outlier seen in Figure 5.3b the data makes sense given that the
amount of data that is sent between processes doubles when we half the MPI processes used.

Comparing the best performing multithreading approach on 32 MPI processes to the sequen-
tial merge sort used on 64 MPI processes we can see an improvement in performance on our
input parameters. Given the scalability trend, the sequential merge sort will eventually still
perform better on larger input sizes. This can already be seen in Figure 5.4 for exact splitting
sort.

5.4.2 CUDA

Testing the CUDA implementation will be much simpler since we only have one configuration.
Each node will have two MPI processes that each get to use one of the two graphics cards for
accelerated sorting.

The results in comparison with the multithreaded solution and the sequential merge sort can
be seen in Figure 5.4. While it looks promising, the accuracy of the data needs to be questioned.
Given that the data needs to be copied to the GPUs memory, this outcome is more than likely
inconclusive. Compared to exact splitting sort where the model for CUDA was too big to be
modeled it is safe to assume that the model behaves very irregularly.
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Figure 5.3: Comparison of parallelization with OpenMP tasks(left) and C++11 threads(right) on
different amount of MPI processes.
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Figure 5.4: Comparison of all forms of parallelization of the local sorting step using two C++11
threads / two OpenMP tasks per MPI process.
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6 Conclusion & Outlook
Empirical performance modeling presents a way to generate run time models from benchmarks.
This can be extended to represent the scalability behaviour of a given application on increas-
ing number of processes. Traditionally, analytical performance modeling was used to express
the run time behaviour. But with highly complex and parallel code, there is no proof that
these expectations are accurate. But unlike previous work, we do not construct the run time
complexities analytically but with empirical performance modeling using Extra-P.

In this thesis, we discussed the idea of parallel computing and parallel sorting. As part of
this discussion, we presented five state-of-the-art parallel sorting algorithms. The splitter-based
algorithms sample sort, histogram sort, and exact splitting sort. As well as parallel radix sort
and mini sort.

Consolidating these algorithms into a coherent library, we were able to generate empirical
performance models using Score-P and Extra-P. Afterwards, we were able to use the models in
a scalability validation framework to validate the expectations and explore possible improve-
ments by parallelizing the local sorting of the splitter-based parallel sorting algorithms. While
the results for the experimental parallelization are largely inconclusive, it shows promise and
should be more closely investigated. We are however able to show that the expected scalability
behaviour of the parallel sorting algorithms matches in for a large part of the algorithms.

But there is a point to be made that different experimentation environments might present
data that will lead to another conclusion. Especially for mini sort, as its innate design requires
a very large number of processes. The scalability behaviour over different architectures might
be a basis for future work.

Furthermore, we already presented some possible improvements that can be made to the core
of the parallel sorting library. These improvements target the specification of the algorithms in
histogram sort’s case or suggest the incorporation of implementation specific improvements.
Exact splitting sorts p-way-merge algorithm and its custom alltoallv MPI collective function
might help to improve sample sort or histogram sort.

Future works could also attempt to classify the parallel sorting algorithms. Classifications
would include the performance model based on a two-parameter approach over p and n and
architectural identifiers such as network topology and nature of the input data. This might make
it possible to automatically choose the parallel sorting algorithm that best fits the use case.
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