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Abstract 
 

 

Keywords—sleep disorders; apnea; remote health monitoring; body 
sensor network;  
 

This Master Thesis introduced a proposal of a remote sensory system for the 

detection of sleep disorders in geriatric outpatients. Although the most accurate 

solution would be an in-depth study in a sleep clinic, it is not a realistic 

environment for the elderly. The objective is that the patient stays at home, and 

without changing their daily routines, the clinicians get objective information in 

order to make a correct diagnosis of the sleep disorders. Sleep disorders are 

often classified as medical disorders corresponding to modifications on the sleep 

patterns and the amount of these modifications increase with age. However, 

regularly, these illnesses are undiagnosed, since is hard for the patients to 

explain the symptoms to the doctor. To achieve the proposed objective, we 

studied the polysomnography bio-signals that could be used to accurate reflect 

the sleep disorders occurrences. We designed a Body Sensor Network (BSN) to 

be divided into both movement assessment (Accelerometer and Gyroscope) and 

biomedical signals (EMG, ECG, PPG, GSR) evaluation. These signals, reflecting 

both breathing and cardiac activities, are processed by a specifically developed 

algorithm. The reduction of the number of sensors was also envisaged, and it 

was decided to use 3 biomedical sensors instead of the minimum of 22 sensors 

used by polysomnography. Thus, to offer better visualization of the recorded 

signals a software interface was developed to include the processing and 

visualization of the signals.  To identify the sleep stage and apnea state, we 

settled an algorithm that processes both ECG and EMG. To validate this 

algorithm, it was decided to use two sources of data: PhysioNet data base 

containing ECG and EMG signals and data recorded by our BSN on volunteers.  

With this work, we were able to build a BSN capable of detecting a set of sleep 

disorders, without using any invasive method. The network provides reliable data, 

and using the developed interface, it helps elderly health providers to carry out 

an in-depth analysis of the information and to better identify sleep disorders. 
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Resumo 
 

 

Keywords — distúrbios de sono; apneia; Monitoramento remoto da saúde; 
Rede de sensores corporais; 
 
Este trabalho introduz uma proposta de uma monitorização remota de saúde 

para a deteção de desordens de sono em pacientes ambulatórios geriátricos. As 

desordens de sono são as condições que afetam a habilidade de dormir bem 

regularmente. Podem ser causadas por um problema de saúde ou por elevado 

stress.  Embora a solução mais precisa seja um estudo aprofundado numa clínica 

de sono, este não corresponde a um cenário realista para os idosos, 

corrompendo os dados registados devido ao stress associado ao ambiente 

desconhecido. De modo a que o paciente não saia de sua casa e não altere as 

suas rotinas diárias, o sistema desenvolvido tem um uso simples que pode ser 

utilizado num ambiente amigável e seguro para o paciente. Isto irá providenciar 

informação objetiva aos clínicos, de modo a diagnosticar as desordens de sono 

de maneira correta, já que os pacientes por vezes têm dificuldade em explicar 

os sintomas aos médicos durante a consulta, o que vai provocar um elevado 

número de casos subdiagnosticados. O primeiro passo a tomar, de modo a criar 

um sistema de monitoramento remoto doméstico, é definir quais são os sinais a 

monitorizar. O primeiro sinal definido para ser alvo de monitoramento foi o 

Eletrocardiograma (ECG). A razão deve-se ao fato de este sinal já ter sido 

empregado em variadíssimos estudos relativos ao sono, em que os 

pesquisadores utilizam a Heart Rate Variability (HRV) para a deteção de apneias 

de sono (tanto no domínio do tempo ou frequência) e outros transtornos de sono. 

Neste trabalho vamos tentar identificar episódios de acoplamento 

cardiorrespiratório, ao analisar a HRV. O segundo sinal a ser eleito foi o 

Eletromiograma (EMG) proveniente do queixo. Este sinal foi escolhido, devido à 

correlação que tinha com o sinal ECG na presença de episódios de apneia 

obstrutivos. Este fenómeno deve-se à dificuldade que o paciente tem ao inspirar, 

pois como tem as vias respiratórias obstruídas, o ar não chega aos pulmões. Isto 

vai levar a um esforço extra por parte do paciente, que se vai traduzir num 

aumento de amplitude do sinal. Esta variação vai novamente aparecer dez ou 
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mais segundos depois, quando o ar voltar a entrar nos pulmões, e o paciente 

voltar a respirar normalmente. Para além de estes dois sinais biomédicos, 

também vamos monitorizar o sinal Fotopletismografia (PPG) e a resposta 

galvânica da pele (GSR). O PPG é usado para detetar as diferenças no volume 

do sangue, de modo a avaliar a circulação periférica enquanto que a resposta 

galvânica mede a condutividade da pele. Ambos os sinais apresentaram 

características distintivas na presença de apneia, e podem ser alvo de estudo 

detalhado em trabalhos futuros. Em termos de sinal de movimento, foram 

gravados e analisados os sinais do acelerómetros e giroscópios em dois locais 

distintos: na região do diafragma, de modo a obter dados que se possam 

correlacionar com doenças respiratórias relacionadas com o sono, e na coxa 

esquerda. Esta informação não vai ser utilizada minuciosamente no presente 

trabalho, mas no futuro irá ser empregada de modo a ser correlacionada com 

distúrbios do movimento do sono. Identificados os sinais a ser supervisionados 

e a informação proveniente, vai ser desenvolvido um algoritmo para diferenciar 

o estado de apneia obstrutiva (OSA) e o estado de sono normal (NS). No 

algoritmo proposto foi processado o sinal ECG de modo a obter a HRV. O nosso 

algoritmo foi baseado no domínio da frequência, dado que a literatura aponta 

como a forma mais adequada para revelar diferenças de episódios de apneia 

obstrutiva e sono normal [1]. Ao processar a HRV, obtemos as suas 

características, e é efetuada a densidade espetral de potência (PSD) na Very 

Low Frequency (VLF) e High Frequency (HF).  Escolhemos estas duas bandas 

de frequência, porque está provado que são as melhores na distinção entre o 

estado de sono e o estado de apneia. No caso da VLF, o máximo em OSA é 

mais proeminente que no NS. Já o inverso ocorre na banda de HF, em que no 

estado NS, existe um pico que surge devido à arritmia do seio respiratório (RSA) 

e que normalmente tem o aspeto de uma curva gaussiana. Reconhecidas as 

diferenças entre os dois estados, são definidos thresholds para estado de apneia 

e estado de sono normal. Estes limites serão verificado por uma Moving Average 

Window com um tamanho de 60 segundos. No começo, o algoritmo vai 

desprezar os primeiro 60 segundos. Após este período, a janela média móvel vai 

fazer a PSD para HF e VLF e verifica se para ambos os resultados, o threshold 

é cumprido. Caso os limites sejam atingidos, a janela desloca-se 10 segundos, 

e aplica os mesmo método, durante os próximos 50 segundos, de modo a termos 
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os valores para 60 segundos. Após a recolha total de dados, é feita a média dos 

60 segundos para as duas bandas de frequência. Se ambas atingirem o 

threshold definido, o intervalo é definido como OSA.  

Para testar este algoritmo foram utilizadas duas bases de dados: a PhysioNet, 

que tem informação clinicamente anotada por médicos e é utilizada em diversos 

trabalhos nesta área, e também iremos testar na informação recolhida pela 

nossa rede de sensores.  

Relativamente à base de dados da PhysioNet, os resultados obtidos foram 

bastante satisfatórios, com precisão a 87,8%, especificidade a 89,9% e 

sensibilidade a 86,3%. No caso dos sinais recolhidos pela rede de sensores 

proposta, foi escolhido um dos voluntários que já tinha sido previamente 

diagnósticos com apneia severa de modo a aumentar as nossas chances de 

encontrar episódios de apneia. Não foi possível definir valores para a precisão, 

especificidade e sensibilidade já que não temos um sinal de referência com 

anotações médicas, para compararmos com os resultados obtidos pelo nosso 

algoritmo. Em alguns intervalos que foram identificados como episódios de 

apneia, os sinais recolhidos foram verificados no domínio do tempo, e foram 

encontradas correlações entre o sinal HRV, EMG, acelerómetro e giroscópio, em 

que estes dois últimos são sinais obtidos oriundos do peito. De modo a aumentar 

a precisão do sistema proposto, o próximo passo vai ser incluir o sinal EMG no 

nosso sistema. Como foi observado em literatura previamente lida, é possível 

usar a PSD no sinal EMG, para diferenciar entre indivíduos com determinada 

patologia e indivíduos saudáveis [2]. Por isso aplicamos a PSD no sinal EMG, 

nos dois diferentes estados (NS e OSA) e obtivemos curvas semelhantes para 

ambos os estados, obtidas no sinal ECG. Tal fato deve-se provavelmente à 

componente respiratória que vai influenciar o sinal muscular obtido do queixo.  

De modo a que os sinais sejam facilmente visualizados, também foi desenvolvida 

uma interface gráfica, na aplicação do Matlab™ GUIDE, que irá dar aos 

utilizadores acesso aos sinais gravados pela nossa rede de sensores, e 

possivelmente a aplicação do algoritmo proposto, para vermos em que pontos 

os episódios de apneia ocorreram. 
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Chapter 1.  Introduction 

 

Great advances have been made in the area of intelligent homes and they are 

the result of the steady increase in interest in this topic. The goal of intelligent 

homes is to monitor the home with a non-invasive sensory system, reducing the 

maximum levels of intrusion and intervention, and to maintain the standard of 

privacy of the monitored person. This area could be of interest for different 

categories of end users as elderly people, people with specific pathologies, and 

athletes or healthy people that can be interested in home monitoring to check 

their health status. However, the increase in life expectancy and the aged people 

living independently, makes elderly people one of the main targets for these 

intelligent environments.  

 

One health problem that is commonly underdiagnosed is the sleep disorders, 

mainly in the elderly people, since is difficult to explain properly the symptoms to 

the clinicians, making it difficult for them to do the correct diagnosis and 

treatment. This disorder is becoming an important aspect for health promotion 

and disease prevention because adequate and restful sleep is an essential part 

of a healthy lifestyle. 

 

A Home Sensor Network (HSN) is composed of heterogeneous sensors, 

physiological parameters monitoring devices and smart home automation 

devices, which enables the implementation of health monitoring services. In 

addition, a number of tiny sensors, strategically placed in the human body, could 

be used for developing a Body Sensor Network (BSN) that can monitor various 

vital signs, providing real-time feedback to the user and the carers.  

 

The proposal of this work is to develop two sensor networks (BSN and HSN), in 

order to help the diagnosis of sleep disorders in the elderly. As a first step towards 

achieving a home remote monitory system, this work introduces a BSN to monitor 
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various vital signals in order to collect enough information for sleep disorder 

diagnosis. 

 

The thesis is organized as follow: Chapter 2 shows the background, providing the 

reader with the basic information about the topic of this thesis; Chapter 3 

describes the proposed body sensor network, being referred the network layout, 

the bio-signals to be analysed, the signal processing algorithm and also the 

developed user interface to enable users visualizing the relevant signals; Chapter 

4 presents the experiments that were carried out and results obtained when data 

from a public database and also from the proposed body sensor network are 

tested; and finally Chapter 5 includes the main contributions of this work and 

guidelines for future work. 
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Chapter 2.  Background 

 
This chapter introduces the main concepts related to this work. Section 2.1 

describes the characterization of sleep disorders. It is useful to analyse these 

clinical disorders to understand how the sensors technical features can be used 

aiming at improving the elderly healthiness. The sleep states are also referred in 

this section. Section 2.2 describes the signals and instrumentation involved in 

sleep disorders assessment. Particular attention is paid to the characteristics of 

the signals so that a correct selection of sensors can be performed. Section 2.3 

focuses on the major physiologic parameters that are required to be monitored 

by the sensors. 

Section 2.4 includes the technology of body sensors networks available and their 

properties. This section summarizes the concept of activity monitoring and some 

ideas about how to monitor patients’ activity during sleep, considering sleep 

disorders characterization. Finally, it is also mentioned the importance of the 

environment where the patient is.  
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2.1 Sleep disorders characterization 

 
Good sleep is necessary for maintaining an optimal health status since sleep 

disorders affect hormone levels, mood and weight besides inducing other 

comorbidities. Because of its innate importance, sleep has been a research topic 

since the days before Christ. Ancients Egyptians analysed the meaning behind 

dreams and their symbols while the Greek philosopher Aristotle came up with the 

actual first scientific theory of sleep in 350 BC when he wrote: “a person awakes 

from sleep when digestion is complete ” [3].  He was wrong, but he was the 

pioneer of the sleep analysis.  

 

Sleep disorders are classified as medical disorders, when the sleep patterns of a 

person suffer modifications. Sleep disorders affect any gender at any age. There 

exist different categories to classify sleep disorders, as shown in Table 2.1-1. 

Sleep disorders have always been a target for studies. For instance, in [4] authors 

noticed that Obstructive Sleep Apnea (OSA) damages the brain because of 

oxygen depletion. Besides this deduction, they concluded that OSA has a more 

detrimental effect on women.  In [5], the patient can stay at home being diagnosed 

for insomnia related problems, while the electrodes collect the data and send it 

to a smart device. 

 

Turning our attention to the non-wearable systems, they are developed in order 

to reduce the intrusiveness, as in [6], where ultrasonic waves were transmitted 

across the airway, and recorded laterally across the neck, in an attempt to reduce 

intrusion. The researchers believed that the airway obstruction results in a 

change in the transmitted ultrasound signal, and that these changes are 

quantified to detect the airway occlusion.  
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                Category              Definition              Examples 
 
Hypersomnia 

Causes a person to be 

excessively sleepy. 

They even can fall 

asleep in inconvenient 

situations. 

Narcolepsy 

Idiopathic Hypersomnia 

Kleine-Levin Syndrome 

Insufficient Sleep Syndrome 

Long Sleeper 

 
Sleep Related 
Breathing Disorder 

Difficulty in breathing 

during sleep. Many 

variations of apnea 

belong to this category. 

Obstructive Sleep Apnea 

Snoring 

Central Sleep Apnea 

Child Sleep Apnea 

Infant Sleep Apnea 

Sleep Related Groaning 
 
Circadian Rhythm 
Sleep-Wake Disorder 

In this case, sleep time is 

out of the standard. A 

patient with this disorder 

do not follow the normal 

sleep routines. 

Delayed Sleep-Wake Phase 

Advanced Sleep-Wake 

Phase 

Irregular Delayed Sleep-

Wake Rhythm 

Jet Lag, etc 

 
Parasomnias 

This group of sleep 

disorders involve 

unwanted events that 

occur while patient is 

falling asleep, sleeping 

or waking up. 

Confusional Arousal 

Sleepwalking 

Sleep Terrors 

Bedwetting 

Sleep talking 

REM Sleep Behaviour 

Disorder, etc. 

 
Sleep Movement 
Disorders 

A condition that causes 

movement during or 

prior to sleep. 

Restless Legs Syndrome 

Bruxism 

Sleep Leg Cramps 

Periodic Limb Movements 

Sleep Rhythmic Movement 

 
Insomnias 

Involves the inability to 

fall asleep or stay 

asleep. 

Insomnia 

Short Sleeper 

Child Insomnia 

Table 2.1-1. Summary of sleep states and their characterization 
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In [7], the authors proposed a system which perceives the difference between 

normal breathing and snoring using a wireless acoustic sensor to measure 

sounds, and the classification of all breathing episodes were implemented by a 

smartphone.  Although the work in [8] is very intrusive, the authors propose a 

depth video and audio record using a camera during the patient sleep to extract 

as much information as possible. 
 

Next subsections will detail the most common categories of sleep disorders and 

also recent studies aiming at the improvement on the detection of those illnesses. 

Additionally, we will also describe the sleeping stages.  
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2.1.1 Clinical sleep disorders characterization 

 

In this sub-section, a characterization of the clinical sleep disorders is performed. 

The four categories presented are: sleep related breathing disorders (SRDB) – 

sleep apnea and snoring; insomnias, parasomnias and sleep movement 

disorders. 

 

Sleep Apnea 
 

Apnea is the suspension of breathing. During an apnea episode, there is no 

movement of the muscle of inhalation, and the volume of the lungs initially 

remains unchanged. When a reduced breathing due to partial obstruction of the 

airway happens for a specified length of time or longer it is called hypopnea.  

 

If a patient is not breathing for at least a 10-second period and there is no effort 

to breathe for at least another 10 seconds it suffers from central apnea. Central 

apnea is due to the absence of air flowing into the lungs because the 

parasympathetic system ‘forgets’ to send the message of breathing to the 

diaphragm. When a breathing insufficiency is due to a mixture of no air flowing 

into the lungs for a 10 seconds period but the body is trying to breathe the disease 

is named mixed apnea. The extreme situation occurs for obstructive apnea 

(OSA). This is, the body is trying to breath but no air goes inside lungs for a period 

of at least 10 seconds due to complete obstruction of the pharyngeal airway. If 

the pharyngeal airway is only partially obstructed the disease is named 

obstructive hypopnea, as exhibited in Figure 2.1.1-1. All these different classes 

of breathing problems during sleep are quantified for sleep disorders evaluation. 

 

Typically, the length of each apnea and hypopnea is calculated as the mean 

duration of the event, this is, as the ratio between the sum of the lengths of events 

of a given type and the number of events of that given type. 
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The Apnea-Hypopnea Index (AHI) represents the average number of episodes 

of apneas and hypopneas per hour that the patient has when he/she is sleeping 

[9].  

 

This index is used to estimate the degree of the OSA syndrome. Normal AHI 

varies within 0 to 5, mild range when it varies from 6 to 15, moderate if the range 

is from 16 to 30; and if AHI is 31 or more it is classified as severe OSA. In [10] 

the authors state that severe OSA affect the quality of life and increase the risk 

for many diseases such as hypertension, poor mental and cognitive health, 

fragmented sleep, low blood oxygen levels, heart failure, myocardial infarction, 

and stroke.  

 

 
Figure 2.1.1-1 Picture showing a breath obstruction [10] 

 

 

 

One characteristic of the OSA patients is that they have an anatomically small 

upper airway with enhanced pharyngeal dilator muscle maintaining airway 

patency awake [11]. Other aspects that can promote the development of OSA 

are obesity, alcohol and smoking. 

 

OSA syndrome is a pathology affecting 100 million people worldwide, but it is 

suspected that many more cases exist without being diagnosed. A possible 



 

9 
 

justification is that a breath stop rarely triggers a full awakening.  Since the 

medical examination is very expensive, this is another reason for the lack of 

diagnosed cases. 

 

Then, there is a growing need for less invasive OSA detectors which should be 

planned to be used at ambulatory environment, comfortable and involving much 

less cost than the typical examination. These new devices would be suitable to 

be included in standard hospital beds, avoiding the use of special sleep disorders 

assessment units. 

 

As an example in [12] a textile-based wearable system is described, associated 

with an apnea detection algorithm. This work proved the feasibility of a wearable 

system for early detection of OSA, alternative to the uncomfortable PSG systems. 

 

Snoring 
 

Snoring is the vibration of respiratory structure and the characteristic sound is 

due to the obstructed air movement during breathing while sleeping. When 

sleeping the throat muscle relaxes, the tongue falls backward turning the throat 

narrow and “floppy”. During the breath, the walls of the throat begin to vibrate, 

and these vibrations lead to the characteristic sound of snoring. 

 

In some cases, the sound is smooth, but in most cases, it can be loud and 

unpleasant. It is a common problem among all ages and both genders, but people 

at most risk are the men and those who are overweight, presenting nasal 

problems or a narrow airway and alcohol drinkers. This problem becomes more 

serious as people age. It can cause disruptions, fragmented and un-refreshing 

sleep, leading to a poor daytime function and eventually heart diseases. About 

one-half of people who snore loudly have OSA [13]. Because of the sound, it is 

very easy to identify a person with this sleep disorder. But understanding the 

difference between snoring and breathing events is not so easy. In [14] the 

authors developed an algorithm which can distinguish between expiration, 

inspiration, snoring and breath.  
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Insomnia 
 
The definition of insomnia consists in a difficulty of falling asleep or staying 

asleep, even when a person has the chance to do so. These unhealthy people 

feel dissatisfied with their sleep and the symptoms associated with this disease 

are: fatigue, low energy, mood disturbances, difficulty in concentrating and 

decreased performance at work or at school [15]. Figure 2.1.1-2 displays other 

complications of insomnia. 

 

There are two types of insomnia: primary and secondary. We can label primary 

insomnia when sleep disorders happen without any relation to other health 

condition. The secondary type means that the patient has insomnia caused by 

other medical situation - asthma, depression, arthritis, cancer or heartburn - pain, 

medication prescribed by a doctor or self-medication or even substances that the 

patient is taking (drugs or alcohol). Insomnia has a wide range of apparitions, 

since it can vary in how long it lasts, how often it occurs, and the interval between 

each episode. It can be a short-term (acute insomnia) and it can last from one 

night to a few weeks or can be classified as long-term (chronic insomnia) when a 

person has three nights a week with insomnias for a month or longer. 

 

 
Figure 2.1.1-2. Complications of insomnia [16] 
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Studies were made as shown in [16] where the investigators used a combination 

of ECG and EEG to reveal the differences between a patient that had medication 

and other who received placebo. Some authors [17] analysed a single sleep 

stage instead of analysing a full night in order to diagnose and treat insomnia. In 

[5], an in-home monitoring system, had the ability to collect and send the required 

data to a smart system containing a sleep diary. This monitored the patient at 

his/her home without interfering with his/her sleeping habits, reducing the number 

of daily interviews carried out by the clinicians. An in-depth analysis of sleep 

stages and patterns in the vital signal is required to get an efficient insomnia 

diagnosis and treatment.  

 

Parasomnias 
 
The term Parasomnias refers to all the abnormal events that can happen to 

people while they sleep, apart from sleep apnea episodes. It is a category of 

sleep disorders which occur in any stage of the sleeping process. Most of them 

are dissociated sleep states that are partial arousals during the transitions 

between wakefulness and Non-REM (NREM) sleep, or vice versa.  

 

The occurrence of parasomnia can be a heredity factor. Other causes are the 

abuse of alcohol, medications or stress. However, in most of the cases 

parasomnias are triggered by sleep deprivation caused by other sleep disorders 

like sleep apnea or sleep movement disorders.  

 

We can divide parasomnias into two types: NREM and REM. The NREM 

parasomnias happen during the non-REM sleep. From this kind of parasomnias, 

the most usual include sleep-talking, sleep-walking, sleep-related eating 

disorder, night terrors, etc. The REM parasomnia occurs at REM stages of sleep 

and the most common type of this parasomnia are REM sleep behaviour disorder 

(RBD), catathrenia and sleep paralysis. In Figure 2.1.1-3 is presented a drawing 

of a children with sleep walking disorder. 
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Figure 2.1.1-3. Children with sleep walking disorder [19] 

 

If a person has been suffering from this disease, he/she should seek treatment 

as soon as possible. It is not only the patient’s health problem, but it subsists a 

considerable risk to injure another person, or even if the frequency is quite high 

or escalating, the possible injury problems increase. 

 

As problematic as this disease seems to be, parasomnia is rarely linked with a 

psychiatric disorder. Furthermore, patients felt improvement in their symptoms 

simply by improving their sleep habits like having a good night sleep, managing 

stress and having a regular sleep schedule. In profounder cases drug therapies 

are also used to control symptoms [18]. 

 
Sleep Movement Disorders 
 

This classification of sleep disorders refers to conditions that cause movement 

prior or during to sleep. It is difficult for people suffering from this conditions to fall 

asleep or to stay asleep. In this work It is mentioned Restless Legs Syndrome 

(RLS) and Periodic limb movement disorder (PLMD). 
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RLS is a neurologic sensorimotor disorder characterized by an overwhelming 

need to move the legs when people are at rest. The need to move is frequent, 

but not always accompanied by unpleasant sensations. It sometimes appears in 

different body locations like arms, face, torso and genital region, being more 

frequent in lower limbs. The symptoms occur during inactivity and a way to relieve 

them is by applying some pressure on the affected zone or trying to do some 

movement.  

 

The symptoms are worst in the evening, and can affect the sleep of the patient 

and daily life. We have primary RLS (also called hereditary RLS) and secondary 

RLS. In the primary RLS, scientists have not found the causes yet, but in the 

secondary type, medical doctors believe that the cause is an underlying medical 

condition – kidney failure, low levels of iron, pregnancy, stress or use of some 

drugs.  

 

This disorder is usually detected by one of the sensors in a body sensor network 

as demonstrated in [19]. Most of the times RLS is sensed by an accelerometer 

or an EMG detector. If the clinicians notice a strange recidivism behaviour coming 

from these sensors, this is probably an evidence of a pathology provoked by RLS. 

 

PLMD is described as a set of simple and repetitive events of muscle movements. 

The patient cannot control those movements although it is not impeditive to keep 

the person from sleep. The movements tend to involve the tightening or flexing 

muscle, and can be very unpleasant for both ill person as for the person lying in 

the bed besides him. We can classify the movements according to the time they 

appear [20]: 

 
Ø Periodic limb movements while the person sleeps (PLMS) 

Ø Periodic limb movements while the person is awake (PLMW) 

 

Of these two, PLMS occur more often. They occur through the night and 

generally, the patient is unaware of the movements. One typical movement is the 

extension of the big toe. Also can happen in the ankle, knee, hip or even in the 
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arms. The intensity of the movements changes from night to night. Each episode 

can last from just a few minutes to an hour. During that, movements tend to last 

from 20 to 40 seconds. 

 

PLMS usually happens during the NREM sleep in the first half of the night. When 

episodes are more severe, they may also appear while the unhealthy person is 

awake (PLMW). This disorder can be a cause for some symptoms like 

depression, bad memory, short attention span and fatigue. 

 

Polysomnography (PSG) is the only way to confirm that a person has PLMD since 

leg movements can be monitored while the patient sleeps in the clinical 

environment. 

 

2.1.2 Sleep states  

 

It is not general knowledge, but once a person falls asleep, the person progress 

through a series of stages, in which different brain wave patterns are displayed. 

These stages belong to the cycles of NREM and REM. The EEG has made 

possible the scientists to deepen the study in this matter.  

 

The NREM means non-rapid eye movement and had four stages, but the scientist 

merged the stage 3 and 4 in 2008. During the NREM stages, the body heals 

himself, as it builds muscle and bones, regenerates tissues and strengthens the 

immune system. As a person ages, he/she sleeps more lightly and gets less deep 

sleep [21]. 

 

REM stands for rapid eye movement and usually happens 90 minutes after falling 

asleep. Dreams typically happen during this stage, because the brain is more 

active. The first phase of REM usually lasts about 10 minutes. Each of the rest of 

REM stages gets longer, and the final one may last up to one hour [21]. During 

this stage, the breathing and heart rate quicken. 
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The table below (Table 2.1.2-1) shows concisely the sleep states and their 

characterization.  

 

 

 

Sleep state 

 

Duration 

Sleep 
cycle 
stage 

 

Characterization 

 AWAKE 16h to 18h   

 

 

CIRCADIAN 
RHYTHM: 
 

Transition 

between 

REM and 

NREM 

stages  

 

every 1h30 
to 2h 

(90-120min) 

 

LIGHT 
SLEEP 
(stage 1 & 

2 merged) 

 
 
 
 
4h to 7h 
Non-REM 
Stage 
 
(sleeping time 

of adults: 

stage 2=50% 

stages 

1&3=30%) 

Stage 
1 
 

• eyes move slowly and 
muscle activity is slow 

• many people present sudden 
muscle contractions. 

Stage 
2 

• eye movement stops and 
brain waves become slower 
with only one occasional 
burst of rapid brain waves 

• synaptic pruning 
DEEP 
SLEEP 
(stage 3 & 

4 merged 

in 2008) 

OR 

Slow-
Wave-
Sleep 

Stage 
3 
 

• extremely slow brain waves 
called delta waves are 
interspersed with smaller, 
faster waves 

• no eye movement or muscle 
activity 

Stage 
4 

• brain produces delta waves 
almost exclusively  

• no eye movement or muscle 
activity 

 

REM 
Stage 

 
 
20% sleeping 

time of adults 

REM 
Stage  

• breathing becomes more 
rapid, irregular and shallow  

• eyes jerk rapidly and  
• limb muscles are temporarily 

paralyzed  
• Brain waves increase to 

levels experienced when a 
person is awake 

• heart rate increases, blood 
pressure rises  

• irregular body temperature 
 

Table 2.1.2-1. Summary of sleep states and their characterization 
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Despite this reference table, we cannot use it indiscriminately for all patients, 

because the age influences the type and amount of sleep of each subject. Infants 

spend almost 50% of their time in REM sleep, while adults spend nearly 50% of 

sleep time in stage 2, about 20% in REM and the other 30% within other stages. 

Older adult spend progressively less time in REM sleep. The amount of REM 

sleep for elderly will decline roughly 10 minutes per night for every decade of life. 

 

With regard to the circadian rhythm, it can be identified through the EEG, since it 

is easier to identify the sleep stages. Other biosignals that can help recognizing 

the circadian rhythm are the EMG, by distinguishing reduced muscle activity to 

differentiate between awake and asleep states, or REM, since follows a circadian 

rhythm and normally it takes ninety minutes for the first phase of REM sleep to 

appear. Also, galvanic skin response (GSR) can be useful to differentiate 

between awake and slept, it is not appropriate for identifying particular stages of 

sleep [22]. The ECG signal can also be used to differentiate between deep sleep 

and REM, checking if there is an increase of the heart rate variability; or even the 

chest movement, to analyse the respiratory rate. 
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2.2 Clinical instrumentation and 
respective signals for sleep disorders 
assessment 
 

In order to diagnose a particular type of sleep disorder the acquired signals need 

to be suitable for sleep disorders’ classification. As said before, PSG detects 

several signals, so to develop a minimally intrusive sleep disorder monitoring 

system, we need to reduce the number of signals processed in order to decrease 

the complexity of the proposed system. 

 

The signals presented below are the ones who give a wider range of options to 

detect and process sleep disorders. The signals described in this sub-section are 

the electrocardiographic signal, the photoplethysmographic signal, the 

electromyography signal, the electroencephalography signal and the galvanic 

skin response. 

 

2.2.1 Polysomnography 

 

The golden standard procedure to detect any kind of sleep disorders is to submit 

the patient to a polysomnography test. The PSG is a complex system that makes 

use of a minimum of 22 thin electrodes and other sensors, which are pasted on 

specific body sites to provide readings during the patient’s night sleep.  

 

The PSG records the following signals:  

 

Ø Electroencephalogram (EEG) signals, needing a minimum of three 

channels to record the brain wave activity; 

Ø Electrooculogram (EOG) signals, using two electrodes to record the 

movement activity of the eyes; 

Ø Electromyogram (EMG) requires the use of at least one sensor to record 

the body muscles activity;  
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Ø Electrocardiogram (ECG) requests a minimum of three sensors to monitor 

the heart rate and rhythm; 

Ø Body movement detectors’ signals to monitor shins and waist movement, 

usually it is required one electrode for each belt acting together with a body 

position sensor; 

Ø Airflow through the nose and mouth signals, oxygen and carbon dioxide 

levels need one more channel. 

 

Other additional parameters necessary to be known during a PSG evaluation are 

patient’s age, patient health status, body position, body temperature, skin electric 

conductance and environmental temperature and humidity. 

 

Because of the amount of measuring instruments involving a polysomnography 

examination, it is carried out by sleep disorders specialists. These tests are 

performed at the hospital or in a sleep centre under the surveillance of specialized 

clinicians. As shown in Figure 2.2.1-1, the PSG can be very unpleasant, and 

much more for people having sleeping problems. 
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Figure 2.2.1-1. Patient being prepared for polysomnography  [23] and an example of how 
information is collected [8] 

 

In general, a medical doctor prescribes the PSG tests when the patient has some 

of the symptoms presented in the Table. 2.1-1. For the standard test, the patient 

goes early evening to the examination center when he/she starts to get wired up, 

to enable recording multiple channels of data. This phase takes 1-2 hours. In 

most clinics, the test is completed and the patient discharged home by 7 a.m. of 

the next day, unless the doctor decides to schedule a multiple sleep latency test 

to be done during the day to test the excessive daytime sleepiness. 

 

After the procedure, the doctor will analyse the doctor will analyse the data in 30 

seconds “epochs” and fill a form where he/she provides a score according to the 

following considerations: 

 

Ø Sleep efficiency, where the number of minutes of sleep is divided by 

the number of minutes in bed. A normal ratio is approximately 85% to 

90% or higher. 
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Ø Sleep onset latency, corresponds to the onset sleep from time the 

lights were turned off; usually takes less than 20 minutes. 

Ø The Sleep Stages combined data from EEG, EOG and EMG. With 

this information a patient can be classified as awake or at one out of 

four sleep stages. 

Ø Body position during sleep, where the patient will have a body position 

sensor around the waist together with a couple of electrodes placed 

on the muscles of the shins, recognizing the movement of the patient. 

Ø Oxygen saturation during sleep, to measure the amount of oxygen in 

the blood using an oximeter placed on the earlobe or on a finger. 
Ø Cardiac rhythm abnormalities. These irregularities are detected by 3 

electrodes (Triangle of Einthoven) laid in the upper left part of the 

chest, which will save the ECG signal for further analysis. 

Ø Arousals are the most evident sign of a sleep disorder. They are a 

sudden shift in brain wave activity. Example of arousals considered 

by the sleep expert can be breathing abnormalities (how often the 

patient stops breathing for at least 10 seconds or how many times the 

breathing is partly blocked for 10 seconds), muscle movements 

during the sleep and environmental noises. For an arousal to be 

counted the subject must be asleep for at least 10 seconds, also a 

minimum interval of 10 seconds between two arousals is required.  

 

For a patient to be considered as presenting sleep disorders the number of 

arousals must be higher than 10 during one hour of recording. The physician 

interprets the recorded data in conjunction with the patient’s medical history in 

order to provide a diagnosis. Table 2.2.1-1. shows a case study of a 

Polysomnogram result of a patient diagnosed with sleep apnea, where the 

abbreviations stand for: NREM – Non-rapid eye movement; REM – Rapid eye 

movement; RERA – Respiration effort related arousal; AHI – Apnea-Hypopnea 

Index; RDI – Respiratory Disturbance Index; HR – Heart Rate; BPM – Beats per 

minute; SaO2 – Oxygenated Haemoglobin. 
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Table 2.2.1-1. Example of a Polysomnogram result from a Sleep Apnea Patient [7]  

 

Time in Bed: 6.25 hours or 375 minutes 

Total Sleep Time: 4.08 hours or 245 minutes 

NREM Duration: 3.66 hours or 220 minutes 

REM Duration: 0.26 hours or 15.7 minutes 

Sleep Latency 22minutes 

Wake after sleep onset: 68 minutes 

Sleep Efficiency: 63.5% 

Arousals/Awakenings  

   Arousal (< 15sec) 59 

   Arousal (> 15sec) 20 

   Awakenings 31 

   Total Events: 31    REM = 0     NREM = 31  

        Supine=31  Non-Supine=0 

Longest event (sec): 28.3    REM = 0    NREM = 28.3 

Total Apneas: 11 

   Obstructive       2    REM = 0    NREM = 2 

   Central 9    REM = 0    NREM = 9 

   Mixed 0 

   Hypopneas 3       REM = 0      NREM = 3 

         Supine = 3   Non-supine = 0 

RERAs 13     REM = 0        NREM = 13 

         Supine = 13   Non-supine = 0  

AHI 3.2    REM = 0         NREM = 2.6 

         Supine = 3.2   Non-supine = 0 

RDI 6.3    REM = 0         NREM = 5.4 

         Supine = 6.3   Non-supine = 0  

Mean HR (REM)                             56 (NREM)                           49 

Mean HR (BPM)                             48 (NREM)                           54 

Max HR (BPM)                               53 (NREM)                           55 

Mean SaO2%   (wake)  99% (REM) 97%     (NREM) 97%      

(total) 97% 

Low  SaO2%    (wake)  n/a% (REM) n/a       (NREM) n/a    

(total) 93% 
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In this work, we will not analyse all the parameters shown in Table 2.2.1-1 since 

we are willing to produce a less intrusive sensing system than a typical 

Polysomnogram examination.  

 

2.2.2 The Electroencephalogram 

 

An electroencephalography instrument measures the electrical activity of the 

brain. The electroencephalogram (EEG) is the name given to the brain waves 

collected by the electroencephalography instrument and displayed in paper; 

sometimes EEG is used to mention the medical instrument also. The major parts 

of the brain are the brain stem (which includes the reticular formation, mid brain 

and pons medulla), the thalamus (between the hemispheres and the midbrain), 

cerebrum and the cerebellum [24]. Frequency (Hz) is a key characteristic used to 

define normal or abnormal EEG rhythms. 

 

EEG is used in the diagnosis and management of seizures disorders, like 

epilepsy. Other applications involve the diagnosis of brain damage and disease 

(e.g., stroke, tumours, encephalitis), sleep disorders, mental retardation, mental 

disorders (e.g., alcoholism, schizophrenia, autism) and degenerative diseases 

such as Alzheimer’s disease and Parkinson’s disease [96]. 

 

EEG should be prescribed and interpreted by a trained medical professional. The 

expert place the electrodes on the scalp, after preparing the scalp area by light 

abrasion to reduce impedance. Other option is to use a nets or caps in which 

electrodes are embedded. Figure 2.2.2-1 shows an example of an EEG exam. 
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Figure 2.2.2-1. Example of an electroencephalogram exam [25] 

 

Mental and physiological processes are associated with the EEG waveform, in 

which electroencephalography frequencies stands for different phenomenon in 

the EEG [24]. The EEG waveforms are classified according to their shape, 

frequency and amplitude. Another factor to influence the EEG signals is the site 

on the scalp at which the brain waves are recorded. The four best known EEG 

waveforms are alpha, beta, theta and delta. The waveforms are displayed in 

Figure 2.2.2-2. 

 

 
Figure	2.2.2-2.	Examples	of	alpha,	beta,	theta	and	delta	electroencephalography	frequencies	[25]	

	

With the frequency and shape withdrawn from the EEG waveforms the clinician 

combines this information with the patient’s age, his state of alertness or sleep to 

determine the information significance. 
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2.2.3 The Electrocardiogram  

The electrocardiogram (ECG) is a very common instrument used to detect the 

electrical activity of the heart through time. Heart is covered by cell membranes 

each one containing a charge which will be depolarized during each heartbeat. 

Figure 2.2.3-1 shows the anatomy and the electrical system of the human heart. 

 

 
Figure 2.2.3-1. Left: the anatomy of a human heart [28] . Right: electrical system of the human heart 

[6] 
 

The image 2.2.3-2 shows the ECG waveform. A cardiac cycle refers to a 

complete heartbeat from its beginning to the beginning of the next beat, and it 

has a series of waves labelled as P, QRS and T. It is possible to define each 

epoch in an ECG as: 

 

v P wave: Represents atrial depolarization. When the valve between 

the atria and ventricles opens, 70% of the blood in atria is extracted 

by ventricles as they expand [26]. The contraction applied by the 

atria is needed for the final 30% and therefore the work done by the 

muscle is small. So only a small amount of voltage is needed. 

v PQ segment: represents the stage before the beginning of the 

contraction where blood travels to the ventricles. 

v QRS wave: Usually it corresponds to the most visually obvious part 

of the ECG tracing. This wave represents the depolarization of the 
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ventricles by contraction of ventricular muscles in a fast sequence 

from the apex upwards. 

v ST segment: It connects the QRS wave and the T wave. It is flat 

and represents an isoelectric section. It represents the interval 

between ventricular depolarization and repolarization. When an 

irregularity exists, the main cause is infarction or myocardial 

ischemia. 

v T wave: It relates to the last phase of the action potential of 

ventricular muscle cells, the process of relaxation potential. The 

same potential takes care of contraction and repolarization, but one 

is an upstroke and the other is a downstroke. For this reason, the T 

wave may be related to a non-specific event. 

 
Figure	2.2.3-2.	ECG	peaks,	waves	and	interval	representations	[27]	

 

When recording the ECG signal, the frequency range interval for acquiring the 

main information goes from 200-500Hz. Since we do not want undesirable high 

frequencies, we use 256Hz to obtain the appropriate information. It is crucial to 

perform an accurate heartbeat detection. Quite often the signal is affected by 

artefacts, noise and interferences, and we have to pre-process the signal before 

performing ECG-based computations to obtain the information looked-for. The 

most common sources of noise in ECG signal are:  

 

ü Power line interference: Power line interference (PLI) is a significant 

source of noise during bio-potential measurements. The interference is 

coupled through the signal leads with a frequency of 50 to 60 Hz. It 



 

26 
 

degrades the signal quality and overwhelms tiny features that may be 

critical for clinical monitoring and diagnosis. The techniques that can be 

applied to solve this problem are, for instance, a Notch Filter or an 

Adaptive filtering [24]. 
ü EMG from the chest wall: This noise is coming from the muscular activity 

near the electrodes. Sometimes the ECG signal is totally concealed by a 

muscular contraction. Because the muscle activation produces the 

increase of the energy at low frequency, the solution to remove this 

interference is to apply a low-pass filter with a cut-off frequency > 40 Hz 

or an Adaptive filter [28]. 

ü Baseline drift: This effect produces a low frequency variation of the ECG 

baseline. A it happens at low frequency, we can remove it without losing 

important information from the ECG signal [28]. 

ü Electrode contact noise and Motion artifacts: These effects are 

generally produced by a bad contact between the skin and the electrodes 

or small movements of the patient. The unconnected electrodes can act 

as antennas. These artefacts produce high frequency epochs, that can be 

misclassified with a R peak [24].  

 

 

 

2.2.4 The Photoplethysmogram  

 

Photoplethysmogram (PPG) is a simple and low-cost optical instrument used to 

detect blood volume changes in the microvascular bed of tissue to evaluate 

peripheral circulation. This non-invasive technique detects the oxygen saturation 

(SpO2), and with this information it is possible to monitor if the oxygen is flowing 

properly. 

 

The signal obtained has two components: heart pulse (AC) and venous pulse 

(DC). The AC component is attributable to variation in blood volume in the skin 



 

27 
 

and usually has fundamental frequency of 1 Hz. The component is synchronized 

with the heartbeat and is superimposed on a slow varying DC. This DC 

component of the signal is due to the bulk absorption of the skin tissue. Figure 

2.2.4-1 presents a schematic display of the AC and DC components of the PPG 

signal. 

 

 
 

Figure. 2.2.4-1. Schematic of the PPG signal the AC and DC signals [32] 
 

To obtain a PPG signal, we can use two types of sensors: transmission and 

reflectance. The most used in pulse oximeter detection is the transmission type. 

In this case, a LED illuminates an extremity of the body and the photo detector 

records from the opposite side. In reflectance type, source and detector are in 

the same plane. After detected the signal is amplified and filtered [16]. 

 
 

Figure 2.2.4-2. Left: Example of a transmission sensor. Right: Example of a reflectance sensor [33] 
 

Some obstacles can appear when retrieving a PPG signal like a poorer blood 

perfusion and a lower compliance (stiffer arteries). In the case of elderly people, 

the reflectance and transmittance of light to the photo-detector is affected 

because of the wrinkled skin, that acts like a low-pass filter, preventing the current 

characterization of PPG pulse [29]. 
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The Figure 2.2.4-3 compares the pulsatile (AC) component of the PPG signal and 

corresponding ECG. The AC component is overlaid by a DC component that 

relates to the average blood volume and with the tissue. It represents the 

increased light attenuation associated with the increase in microvascular blood 

volume with each heartbeat. In practice, the PPG waveform is often inverted [30], 

so that it goes in the same direction as the arterial pressure waveform.  

 

 
 

Figure 2.2.4-3. Comparison between corresponding ECG and the component AC of the PPG signal 
[35] 

 

Although with a reflectance sensor it is possible to acquire a PPG signal from 

every local part of the body, the best places to obtain the best signals are ear 

lobe, fingers and forehead [31]. After the measurement, we have to apply some 

signal processing since the data contains low-frequency interferences, due to 

noise or motion artefacts [32].  

 

 

 2.2.5 The Electromyogram 

 

The electromyogram (EMG) is a technique of electro diagnosis used in medicine, 

and it measures electrical currents produced in skeletal muscle, during the 

contraction of a muscle, which represents neuromuscular events.  

 

The responsible for the control of muscle activity is the nervous system. The 

motor units (MU) are the constituents of the skeletal fibers. When stimulated by 
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a neuron signal, each MU contracts and produces an electrical signal retrieved 

by every cell. Their sum represents all the action potentials. This phenomenon it 

is known as Motor Unit Action Potential (MUAPS) and is what brings to life the 

interference pattern [33]. 

 

It is possible to measure EMG signals in two ways: surface and intramuscular. 

As the name indicates, the EMG surface detection corresponds to the recording 

of the muscles’ activities at the skin on the surface of the muscle under analysis. 

In this way, it is impossible to retrieve data with only one electrode, because EMG 

recording displays the potential difference between two separated electrodes. 

The intramuscular EMG is an invasive method that uses a needle inserted in the 

muscle to collect the signals. 

 

Figure 2.2.5-1 shows an example of intramuscular and surface EMG signals 

(iEMG and sEMG respectively). The MUAPS are visible in both images despite 

their different shapes due the different tissue filtering and detection modalities. 

 
 

Figure 2.2.5-1. Blue signal: Intramuscular EMG signal (iEMG); Black signal: Surface EMG signal 
(sEMG) [39] 

 

The figure that shows the iEMG signal is more reliable but it is very intrusive, 

while the sEMG lacks resolution. This can occur due to problems of excess of 

adipose tissue in the studied zone. Other reason for the lack of resolution is the 

muscle cross talk due to the EMG signal from one muscle is being affected the 

neighbour muscle.  
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Inevitably, the signal recorded is soiled with various artefacts and noise signals. 

Although the present technology is immune to some of these noises, baseline 

noise and movement artefact are still a problem for signal processing. In [34], the 

authors suggest a Butterworth filter to eliminate the baseline noise and movement 

artefact.  

 

The analysis of the EMG can provide interested information for our work. In [35] 

it is stated that the mean power retrieved from the chin EMG is higher, one minute 

before and after waking up, on patients with obstructive sleep apnea.  Also, at 

[36] is used the power spectral density to identify to compare the power before, 

during and after the incidents of different kinds of apnea. 

 

2.2.6 Galvanic Skin Response 

 

Human skin has electrical properties reflecting the sympathetic nervous system 

activity. Any arousal of the psychological or physiological state of the patient 

induces a variation on the blood flow and an increase of the sweet gland activity. 

Fright, anger, fear, anxiety, excitement, being startled or under mental stress are 

proved to induce hot flashes and sweating in many people. The more intense the 

epoch, the higher is the skin conductance variance.  

 

The galvanic skin response (GSR) is an instrument used to measure the variation 

of the electrical conductance of the skin and can be charted and measured. This 

conductance is mainly affected by sweat, as salty water is an excellent conductor. 

The body parts with a larger amount of sweat glands are the hands and feet (200-

600 sweat glands per cm2). In other words, GSR measures how sweaty your 

palms are. 

 

When measuring the GSR, it is possible to choose two different methods:  

 

• Active: When the doctor applies a small current in the patient’s body to 

measure the conductivity. 
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• Passive: Measures the current that is generated by the person’s body 

itself. 

 

The feedback from these measures will provide the GSR. A common usage of 

GSR is one of the measures used during a polygraph test. The GSR can detect 

a variation on the skin conductance, although it is not very reliable because it is 

impossible to know if the precise source of conductance variance is due to the 

stress of lying or being interrogated [45], or any other circumstance that can 

provoke sweating. Figure 2.2.6-1 shows an example of a person under a 

polygraph test. 

 

Therefore, complementary physiologic measurements such as changes in 

perspiration, breathing and heartbeat, should be simultaneously analysed to 

differentiate the cause of GSR variations.  

   

 

 
Figure 2.2.6-1. Example of a subject doing a polygraph test [42] 

 

Different stimulus (mood, environment, medication and underlying conditions) will 

affect the people’s autonomic activity in different ways. The skin conductance is 

captured by using skin electrodes, where the data is acquired with sampling rates 

between 1-10Hz. The time course of the signal is considered the result of two 

processes: a tonic base level driver and a phasic component. The tonic base 

level driver fluctuates very slowly (seconds to minutes), and the faster-varying 

phasic component fluctuates within seconds. The phasic component will show 
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the burst and distinctive peaks that are identified with our eyes, with a slow 

decline of the baseline level. These pikes are produced from stimulus such as 

fear, excitement, happiness or saddening.  
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2.3 Physiological parameters for sleep 

disorders assessment 

 

In this section, is being analysed the physiological parameters that can be 

indicators of human health state and the techniques to register them. 

Physiological parameters are self-interdependent, and the diversity of them 

defines the human health.  

 

One example of physiological parameters is the body temperature, which 

represents a balance between the heat produced by the body and the heat it 

loses. The blood pressure is also an important physiological parameter, 

representing the strength of the blood pushing against the sides of the blood 

vessels. Although it is not a physiological parameter, the body mass index (BMI) 

is an important parameter because obesity has implications in the sleep disorder 

study. IBM is defined as the body mass divided by the square of the body height.  

 

Following the directions of medical investigations, the most vital parameters are 

those that specify the functioning of heart and respiratory system. In the next sub-

sections heart rate variability, oxygen saturation and respiratory rate are 

described. 

 

2.3.1 Heart Rate Variability 

 

Heart rate variability (HRV) is the time variation between heartbeats. It is 

measured by the variation of the beat-to-beat interval and is controlled by the 

Autonomic Nervous System (ANS).  These beats are produced by the sinus node 

in the heart. It generates electrical impulses and leads them throughout the 

muscle of the heart, stimulating the heart to pump blood. The firing rate of the 
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sinus atrial node is controlled by impulses from the autonomous and central 

nervous system. 

 

HRV is directly related to the body’s interdependent regulatory system, efficiency 

and health. Although generally the greater the HRV the better  [37], it is better to 

have a small interval of values of HRV [80-65] instead of a larger one [100-60], 

because these kind of variability can lead to the suspicion of various health risk 

factors. Some examples are heart diseases, fetal distress, asthma, autonomic 

nervous system dysfunction and depression.  

 

The HRV is also related to emotional arousal and reflects the moment-to-moment 

output of Central Autonomous Nervous and by association, an individual’s 

capacity to generate regulated physiological responses in the context of 

emotional expression [38].  

 

As Figure 2.3.1-1 shows, when the individual is frustrated, the HRV has a bigger 

interval of values and a larger amount of peaks, when comparing to a state when 

the individual feels appreciated and with a stable emotion. 

 

 

 

 

 
Figure 2.3.1-1. Difference in HRV between a state of frustration and appreciation [45] 
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The HRV signal can be analysed in different ways according to the application in 

study. Because of its clinical value, several studies have been made to retrieve 

features related to time, frequency and graphical representations. 

 

The HRV can be measured with different protocols, and it can take from 1 to 10 

minute tests. These measurements include: 

 

v 1-minute-deep breathing test. 

v Real time frequency spectrum indicating sympathetic and 

parasympathetic nervous system activity (Fast Fourier Transform). 

v 10 minute supine/standing test [39]. 

 

The heart rate variability can be useful for the detection of sleep disorders, so is 

included in health monitoring and body sensor networks, as shown in [40] and 

[41].  
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2.3.2 Oxygen Saturation 

 

Oxygen attaches to haemoglobin molecules to flow throw the blood current. 

Oxygen saturation indicates the level of haemoglobin contained in the red blood 

cells (erythrocytes) [42]. The two techniques most used to detect oxygen 

saturation are pulse oximetry and arterial blood gases (ABG). 

 

The ABG measures the efficiency of the lungs carrying oxygen into the blood 

stream while removing carbon dioxide. It is usually measured from the wrist and 

it can be a painful method as shown in Figure 2.3.2-1. The critical oxygen blood 

level is 55-60mmHg (SaO2). If the readings are below this level, they indicate that 

the person is under-oxygenated.  

 

The pulse oximetry is defined by the SpO2, measuring light absorption by blood. 

A SpO2 of 90% (equivalent to SaO2 of 55-60mmHg) is considered to be a critical 
level. When light passes through body tissues, it is absorbed in different amounts 

by body fluids, skin bones, vessels and venous or arterial blood. The light detector 

is applied to measure change in backscatter, which indicates change of 

absorption, which in turn indicates changes of flow volume. This way, the 

occurrence of blood pulse is non-invasively detected  [42] by inserting a finger 

(can be used on the ear or on a toe as well) into the device – the oximeter where 

a red light calculates the redness of the blood pulsing through the finger, as 

indicated in Figure 2.3.2-1, the redder the blood the higher the oxygen saturation. 
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Figure 2.3.2-1. Left: Example of retrieving of ABG [53], Right: Example of recording Pulse Oximetry 
[50] 

 

Some factors will affect the readings of the pulse oximeter: 

 

§ Nail polish. 

§ Poor circulation to the extremities. 

§ Dirty fingers. 

 

As a conclusion, the pulse oximeter provides a quick and less intrusive indication 

of blood saturation levels, although the arterial blood gases will give the most 

accurate measure.  

 

 

2.3.3 Respiratory Rate  

 

The respiration rate is the number of breaths a person takes per minute. It is 

better to measure it when a person is at rest simply counting how many times the 

chest rises in one minute [43]. An optical breath rate sensor can be used for 

monitoring patients during a magnetic resonance imaging scan. 

 

When a person has some fever or illness, the respiratory rate will change. 

Another aspect to considerer is to check if a person has any breathing problems. 

The normal number of breaths in a healthy person depends on the age. A normal 

range of breaths for an adult at rest varies from 12 to 16 breaths per minute. 
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As seen in [44] the respiratory rate is measured regularly with other vital signs to 

facilitate identification of change of physiology.  
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2.4 Types of sensors for sleep disorders 

assessment 

 

Wearable sensors have been widely used in many applications such as medical, 

entertainment, security, and commercial fields. They are very beneficial when we 

wish to record data with a high accuracy and to get reliable information. 

 

A body sensor network (BSN) is a set of wearable sensors for non-invasive real-

time monitoring of vital parameters. This is a fast growing research area and 

represents an architecture of choice for distributed monitoring due to the easiness 

of deployment and configuration [19]. Their flexibility, low-cost, and uninterrupted 

operation make them suitable for a large variety of applications, such as 

telemedicine, health care (supervising of elderly patients, chronic diseases and 

enhanced diagnostic tools), e-fitness (monitoring of sport activities and physical 

performance) [45], etc. A example of a BSN is displayed s Figure 2.4-1. 

 

 
 

Figure 2.4-1. Example of a body sensor network [54] 
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These sensors are directly attached to the human body, and the information that 

they provide can be sent to a computer that is continuously running. When 

developing a BSN, some features have to be taken into account such as adaptive 

sampling, network performance, strong security, energy efficiency, adaptive 

communication strategies, etc. [45] 

 

Developers in [46] compare pulses’ transit times from different node and different 

parameters in BSN to compare measurements from arterial blood. As shown in 

[45], the investigators tried to design a BSN as less intrusive as possible and 

highly accurate. They inspect the lack of sleep deprivations by checking the skin 

temperature periodically with the objective of verifying whether mental activities 

affect the skin temperature. In [47] the researchers proposed both an activity 

monitoring and a BSN to recognize meaningful activities and keep control of the 

parameters related to health status. 

 

Next subsection introduces a variety of sensors that can compose a body sensor 

network. 
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2.4.1 Body sensors 

 

When designing body sensors networks, a sequence of procedures is required: 

firstly, we have to make the decision of what biological parameters to record, in 

order to choose the appropriate sensors; and secondly, commercial sensors are 

analysed to check if they match the body-monitoring goal and if their accuracy is 

sufficient for the purpose of the study. Only afterwards, the network can be 

implemented and data may start to be gathered.  

 

Temperature sensor 
 
A temperature sensor is the instrumentation equipment that is used to measure 

temperature or heat on a person or machine. Figure 2.4.1-1 presents an example 

of a skin sensor to monitor temperature.  

 

Temperature sensing is performed by equipment called thermocouple. In activity 

monitoring, a temperature sensor installed in a home can be helpful, as it enables 

maintaining a steady temperature throughout the day. This is more important for 

the elderly people that suffer more with the temperature variations [48]. With 

regard to the sleep disorders, temperature issues in the two most common sleep 

disorders, insomnia and sleep apnea [49] cases, have been investigated aiming 

at the temperature regulation according to the individual comfort. 

 

 
Figure 2.4.1-1. Example of a skin sensor to monitor temperature [59] 
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Pressure sensor 
 

A pressure sensor provides information about the carried force per unit area of a 

surface. The electronic form of this sensor is displayed as an integrated circuit 

that acts as a transducer, that is, it replicates (in form of an electrical signal) the 

signal it receives as a function of the imposed pressure. 

 

In [50] the researcher implemented a system imbued with pressure sensors, to 

identify the position of the patient. Chen et al [51] designed a system for 

recognizing complex living activities in a smart home, where, among others, they 

used a pressure sensor. In another example [52], authors developed a bed that 

can sense the patient body pressure and intelligently adjust to the benefit of the 

unhealthy subjects.  

 

Also for the activity monitoring, if a bed has a pressure sensor - similar to the 

ones that cars have to inform if a person has fastened the seat belt or not - we 

could know when a person gets up from bed. This information can be helpful in 

case of sleep-walking. 
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2.4.2 Activity monitoring 

 

As life expectancy is increasing, also is the number of elderly leading to an 

increase in healthcare costs. To avoid overcrowding the hospitals, it is being 

highly invested in sensing technologies, embedded systems, wireless 

communication technologies, nano-technologies, and miniaturizations that make 

possible the development of smart systems to monitor activities to detect any 

abnormal situation in the patient’s house. 

 

Activity monitoring is a real-time status of a person when deployed with sensors 

in a monitoring area. The preferred communication mode is wireless to form a 

self-organizing network system. This means that independently of the arming 

state of the sensors panel (activated, suspended, hibernation) we can set up the 

sensors in a way that, when they are triggered, a notification is sent to inform the 

user.  

 

With activity monitoring, we can precise the type of activity the patient is carrying 

out. As seen in [53] , the proposed system is used to get the information regarding 

subjects’ activity and posture. This system contains a position estimator, and can 

identify five types of physical activities, i.e. sitting, standing, walking, walking 

upstairs and walking downstairs, as seen in Figure 2.4.2-1. 
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Figure 2.4.2-1. Example of activity monitoring where the upper subfigure shows the pitch angle 
estimation for a walk and where the lower figure shows the Mean RR signal, measured in beats per 

minute [30] 
 

Activity monitoring has a large spectre of application in health-care. In this case, 

monitoring is being developed to increase the quality of life of the senior person 

as exemplified in [54], where a capacity sensing system can monitor the mobility 

of the person through sensing floor tiles. The author proposed a system that 

measures capacitance on an electrode from a charging/discharging cycle. The 

referred work is also capable of differentiating between a human and a house 

pet, by comparing threshold values, due to their different weights.  

 

A problem that comes together with the monitoring, is the battery lifespan of the 

sensors, as the continuous usage of the sensor consumes huge amounts of 

energy. In [55] authors tried to lower energy consumption by implementing a duty 

cycling that minimizes the active time of the sensor. This improves the battery life 

of the sensor at the expense of information loss since it predicts the persons 

behaviour based on the activity history. 
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Chapter 3.  Proposed Body Sensor 
Network 

 

When designing a body sensor network in general, the physiological parameters 

to be analyzed should be defined in relation to the sensors to be used and how 

their relationship should work out algorithmically to accomplish the main 

objective. Considering this thesis, as mentioned in Chapter 2, it is required to 

keep in mind that each sleep disorder is characterized by different behaviors of 

physiological parameters 

 

So, based on already published algorithms and/or signal processing algorithms 

developed within the research group, the combined action of all sensors’ 

processed signals were gathered to be presented to the clinician through a real-

time user friendly interface (to be described in this chapter). We also focus on the 

description of the particularities of the biomedical signals ECG, PPG, GSR and 

EMG. 

 

From the ECG was generated the HRV signal, whose characteristics are 

analyzed to identify sleep disorders. The EMG is envisaged to be correlated with 

HRV, in order to detect the sleep disorders by measuring the chin movement, so 

it is possible to detect the arousals. With regard to the GSR and PPG, we do not 

go into great detail providing only an introduction, considering them for future 

work. 

 

With respect to the movement signals, when detected from the chest, the 

accelerometer and gyroscope are used to try to correlate with HRV to identify 

sleep disorders and to identify the noise in the ECG recording. As we envisage a 

sleep disorder detector capable of being used at home, we propose to 

incorporate a model of activity monitoring, which can inform the clinician about 
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how the patient behaved during the night. This system is embedded in a device, 

and it is placed on the left thigh of the subject. 

 

In this chapter we describe the composition of the proposed sensor network, the 

algorithms necessary to analyze the physiological parameters, the scheme to 

monitor the activity in a room and a Matlab™ interface to show the recorded 

signals. 
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3.1 Network Layout 

 

With the main objectives of recording the maximum data as possible and in order 

to make this BSN as reliable as possible, was decided to use three sensors for 

this work. They record the biomedical and movement data, and all of them are 

based on wireless Shimmer™ platforms [56].  

The Shimmer™ device is a wearable platform composed of a MSP430F5437A 

microprocessor and several internal sensors. Some of the peripherals are: a 3-

axis low noise accelerometer array, a 3-axis wide range accelerometer array, a 

3-axis gyroscope, 3-axis magnetic sensor, a relative pressure sensor and a 

temperature sensor as well as a bluetooth antenna and a micro SD card socket. 

In addition, there are several expansion boards for adding capabilities to the basic 

platform. For this research, two shimmer’s ECG/EMG board [57] are used and 

also one shimmer GSR+ [58]. To retrieve the information from this instrument, 

we can send the data in real-time to our computer via its Bluetooth antenna, or it 

is also possible to save the data in a micro SD card.  

A schematic example of how the sensors will bet displayed is depicted in Figure 

3.1-1. 
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Figure 3.1-1. Arrangement of the proposed sensor network (A = Shimmer3 ECG/EMG; B = 

Shimmer3 ECG/EMG; C = Shimmer3 GSR) 
	

As previously said, the proposed BSN is formed by 3 sensors, in this image 

defined by A, B and C, to facilitate the reader's understanding. The sensor A is 

one of the shimmer ECG/EMG board, and this sensor records not only the 3-lead 

EMG signal coming from the chin but also the data from the wide range 

accelerometer and the gyroscope, withdrawn from the diaphragm, since the 

shimmer is strap around the trunk.  

The other Shimmer ECG/EMG board is the sensor B in Figure 3.1-1 and it is 

positioned in the left thigh, also insured by a strap. It records the information of 

the 3-lead ECG signal by using an Einthoven Triangle configuration [59], the 

gyroscope and also the wide range accelerometer.  

Sensor C is the Shimmer GSR+, and his task is to record the PPG and GSR 

signal. It is placed on the left wrist. 
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Table 3.1-1 shows the task of each different sensor. 

 

Table 3.1-1. Table showing the defined task of each sensor and figure of each (Left: Shimmer3 ECG/EMG; 
Middle: Shimmer3 GSR+; Right: Shimmer3 ECG/EMG) 

 

The frequency sample to be used for all shimmers is 256 Hz that is high enough 

for the signals to be recorded, since it is permitted in [60]. The reason behind the 

same frequency for all sensors, is to facilitate the understanding and subsequent 

analysis of the signals.  

Comparing to the PSG, our body sensor network may not give the same amount 

of information, but also is less intrusive than the standard PSG. Table 3.1-2 

exhibits the relation between both approaches.  
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PSG Signals Measure To be included in BSN 

EEG brain wave activity (min 

3 channels) 

NO 

ECG heart rate and rhythm 

(min 3 sensors) 

YES 

EOG Eye movement activity NO 

EMG body muscles activity 

(min 1 sensor) 

YES 

Body Movement 
Detectors 

shins and waist 

movement (min 3, 1 

being reference) 

YES 

Airflow through the 
nose and mouth 

Respiration rhythm NO 

 

Table 3.1-2. Comparison between the signals obtained by the PSG and the proposed body sensor 
network. 
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3.2 Signal Analysis 

 

When collecting real data, it is difficult to conclude if the data corresponds to 

reality or not. The difficulty of biomedical signal analysis comes from the fact that 

the signals have low voltage (mV) amplitudes and they can be corrupted with 

noise, either from the instruments or from other body signals. Therefore, when 

acquiring a body signal, we are actually recording a set of biomedical signals and 

hence it is required a pre-processing. 

 

Details about the processing of the raw data, both from the physiological 

parameters and activity monitoring, are explained in the next sub-chapters.  

 

3.2.1 Physiological Parameters 

 

After recording the data, we need to pre-process the signals according to their 

origin so that the next step, the sleep disorders decision stage, becomes as 

accurate as possible. It is important to keep in mind that filtering the signals may 

lead to the loss of information if the filter is not correctly tuned. 

 

Analysis of Electrocardiogram 
 
The objective when recording the ECG signal from the patient is to retrieve the 

R-peaks, to enable the calculation of the heart rate variability. This is an important 

step, since from the HRV we can withdraw features relevant for potential sleep 

disorders identification. The algorithm used was proposed by [27], corresponding 

to an improved version of the well-known algorithm Pan and Tompkins [61]. The 

author was able to reduce the computation complexity and improve the 

algorithm’s performance. By applying an integration window, the computational 
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effort was reduced and the procedure to detect the position of the R peaks 

became dependent of only one threshold.  

 

Figure 3.2.1-1 presents the block diagram of the algorithm proposed by [27]. 

 

 
Figure 3.2.1-1. Block diagram of the proposed QRS complex detection algorithm [30] 

 

The first pre-processing task is the derivation of the input ECG signal x[n]. The 

goal is to have a signal without wandering baseline effect, an effect caused by 

respiration. In the next step, we apply an integration to remove the high-frequency 

artefacts and it also acts as a low pass filter (Moving Average). To finish the pre-

processing stage, the signal will be squared, in order to accentuate the R peaks.   

 

During the threshold stage, the algorithm identifies the R peak position. The 

algorithm uses an adaptive threshold, which is very useful when the pre-

processing stage cannot remove all the artefacts, or even for those signals 

presenting large T-waves, avoiding misclassifying them as R peaks. The 

threshold value is defined by a Finite State Machine (FSM), according to the 

following states: 

 

o State 1: Searching for a maximum peak. The algorithm looks for the 

maximum peak of the signal during a time interval identical to the minimum 

feasible RR interval - RRmin - plus the standard duration of a QRS complex 

- QRSint ;  

 

o State 2: Waiting state. The period of this state depends on the position 

RpeakPos corresponding to the location where the R-peak was discovered 

in State 1. The FSM is waiting for a time equal to RRmin less the time 

between the position of the last R-peak and the end of State 1; 
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o State 3: Threshold decreasing. When State 2 finishes, the initial value 

of the threshold th[n] is computed as the mean value of all the previous 

spotted R-peaks. In this state, the threshold value th[n] is reduced with 

every new sample from the input ECG signal. 

 

Figure 3.2.1-2 shows how the finite state machine works, and Figure 3.2.1-3 

displays the correspondence between the states of the FSM and the phase of the 

ECG signal. 

 

 
 

Figure 3.2.1-2.  State machine diagram [30] 
 

 

 
Figure 3.2.1-3. Correspondence between the FSM states and the ECG phase [30] 
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After identifying the R peaks position, it is possible to calculate the HRV, as the 

figure 3.2.1-4 shows. 

 

 
Figure 3.2.1-4. Proposed algorithm applied in the ECG signal 
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HRV Features 
 

Here is the list of features obtained from the signal’s HRV: 

 
§ MRR: Average HRV 

§ STDNN: Standard deviation of the RR intervals 

§ CV: Coefficient of Variance 

§ RMSSD: Root mean square of the RR intervals 

§ NN50: Number of successive pairs of RR intervals differing for more than 50 ms. 

§ pNN50/pNN25: Percentage of successive pairs of RR intervals that differ for 

more than 50/25 ms. of the RR intervals within the analyzed epoch. 

§ STPP/STNN: Number of RR intervals that are longer/shorter than the previous 

one. 

§ CSI/CVI: Cardio Sympathetic/Vagal Index 

§ SD1/SD2: Short/Long axis of the poincaré ellipsis 

§ VLF/LF/HF: Total power in the very low/low/high frequency bands 

§ ratioLFHF or LFHF: Ratio between LF and HF 

§ Histo: Histogram index 

 

References  [62] and [63] demonstrate that the above referred HRV’s features 

can be used to compare patients suffering sleep apnea with healthy sleep 

patterns.  

 

Analysis of Electromyogram 

 

It was decided to record the EMG from the chin/genioglossus muscle by using 

surface electrodes. The aim is to search for distinct periods of movement that can 

correlate with the information provided by the ECG. The raw EMG signal is also 

targeted for pre-processing.  

 

A notch filter was used with the objective to remove noise caused by power lines. 

Afterwards, a Butterworth filter was applied in order to cut-off undesired 

frequencies. Then, a moving average filter was applied to smooth the data.  
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Finally, the signal is rectified, by transforming the negative portion of the signal 

into positive values. Figure 3.2.1-2 shows the pre-processing applied on the EMG 

raw signal x[n].  

 

 
Figure 3.2.1-2. Block diagram of the pre-processing stage with the algorithm for the raw EMG 

 

 

Each one of the referred operations is respectively implemented as follows: 

 

• Notch Filter rejects a narrow frequency band and leaves the rest of the 

spectrum almost unchanged (eq.3.2.1.1).  The most common is having to 

remove 60Hz from power lines. 

𝒇𝒏 =
𝟏		

𝟐𝝅𝑹𝟎𝑪𝟎
																																																																																									(eq.3.2.1.1)	

 

• Butterworth Filter works as band pass filter for noise cancelation of other 

sampling frequencies (eq.3.2.1.2). The cut-off low frequency of 10 Hz is 

settled to get rid of the baseline wander, while the upper cut-off frequency 

of 100 Hz is established to avoid high frequency noises. 
 

𝑯 𝝎 𝟐 = 𝟏

𝟏5 𝝎
𝝎𝒄

𝟐𝑵																																																																											(eq.3.2.1.2)	

 
• Moving Average Filter main purpose is to smooth the signal, a linear 

enveloped was created and the extreme parts of the signal were excluded 

(eq.3.2.1.3). The span used was five. 
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																𝒚[𝒏] = 	 𝟏		
𝑵;𝟏

𝒛;𝒌𝑵;𝟏
𝒌>𝟎 																																																																				(eq.3.2.1.3)	

 
• Rectification is implemented to rectify the signal, all negative values were 

transformed in positives one and added to the rest of the signal 

(eq.3.2.1.4). 
 

							𝒚 𝒏 = 	𝒚𝟏[𝒏]𝟐																																																																																													(eq.3.2.1.4)	

 

The features of this pre-processing stage are detailed in [64]. According to [63]  

a root mean square step was also recommended, but on present work this step 

was avoided because this action would influence the sample size, besides not 

being so relevant on this particular study. 

 

Figure 3.2.1-3. shows the sequence of signals generated along the pre-

processing stage. It can be seen how the different artefacts are removed, 

providing a clear output signal.  

 
Figure 3.2.1-3. Signals generated during the pre-processing stage of the proposed algorithm. 
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Analysis of Photoplethysmogram 
 
The photoplethysmogram signal is a valuable asset included in the proposed 

sensor network to provide the pulse rate variability (PRV). In the proposed BSN, 

the PPG can be detected either by using an optical pulse sensing probe that is 

inserted on the patient’s finger, or by an optical ear pulse sensor, that has to be 

placed on the earlobe.  

 

After acquiring the raw data, we have to filter the signal to reduce motion 

artefacts. The selected filter is the moving average. Figure 3.2.1-4 shows the 

difference between a raw PPG signal and the evolution the signal suffers, after 

being applied a Moving Average Filter. 

 
Figure 3.2.1-4. PPG signal before and after being pre-processed.  

 

Although in this thesis, we do not go any further with the PPG signal, exist some 

methods to use this signal as an identifier of sleep disorders. As seen [29], the 

researchers obtained characteristics point positions, with the objective to extract 

the PRV features as surrogate for HRV indexes.  
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Analysis of Galvanic Skin Response 
 
The galvanic skin response sensor is going to measure the electrical conductivity 

of the skin. The frequency sample that should be used to record this signal is 

between 1-5 Hz [58] . As explained before, all the signals will be recorded at 

256Hz and since the GSR signal does not suffer corruption during the acquisition 

procedure at this sampling frequency, a low pass filter of 5 Hz was the only pre-

processing done to the signal, as displayed in Figure 3.2.1-5. 

 

 
Figure 3.2.1-5. Block diagram of the processing stage for the raw GSR. 

 

 

3.2.2 Analysis of the Activity Monitoring 

 

One of the main drawbacks of PSG is the mandatory need to go to a health care 

center/hospital to undertake a sleep exam. Many studies are being developed to 

avoid this obligation. Then, instead of the patient goes to the site, the site comes 

to the patient, with the aim of improving the patient’s comfort and reduce the cost 

related to hospitalization. 

 

Therefore, in this proposal we provide sleep disorders’ assessment at the 

patient’s own home, with the possibility to be tested on their natural environment. 

However, at home the patient can move as he is no supervised by a nurse, being 

this a problem for recording the required signals. As we know from previous work 
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[53], some categories of movement have an effect on the HRV which can be 

misunderstood as being a peak of some kind of apnea.  

 

We propose to include an activity monitoring system based on the so-called 

Pocket Navigation System.  

 

Pocket Navigation System 
 

The pocket navigation system was first developed in [53] and then used in [27] 

as personal navigator based on inertial sensors. It is usually bind to the leg with 

an elastic band or putted in the trousers or skirt pocket. The navigation is doable 

by the Shimmer [57], and contains a three mutually orthogonal  accelerometers 

and gyroscopes. 

 

This navigation registers the patient to walk along his/her house, while still being 

able to continue with the monitoring. This can be helpful if the patient is having 

an episode of sleepwalking, and we have means of differentiating normal 

movements from cardiac cycle movements when the patient is still. The pocket 

navigation system can identify five physical activities, i.e. walking, walking 

downstairs, standing and sitting [53]. These are the most common activities that 

a person can do at his own house. 

 

These activities have an effect on the HRV, so we can misclassify them as an 

event of sleep apnea. For example, if the patient changes its posture from lying 

to seated, the action will be reflected on the HRV signal. These kind of events 

may also increase the number of false positives; therefore, we need to detect 

which HRV variations are provoked by which event.  

 

It is also possible to measure the chest movement and correlate it with the 

increase in HRV. This means that for each unit of movement, the heart rate is 

increased by a fixed number of beats [27].  
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Figure 3.2.2-1 displays an example of a person using the Shimmer to monitor is 

activity. 

 

 
Figure 3.2.2-1. Shimmer allocation for the pocket navigation system [30] 
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3.3 Decision Algorithm 
 

The objective of the proposed algorithm is to detect OSA episodes based on 

parameters derived from ECG and EMG signals with a contribution from the 

motion signals, recorded from the accelerometer and gyroscope. The former 

provides the heart rate variability (HRV); and the latter, when retrieved from the 

chin, is a redundant signal, which is going to be used to confirm or discard possible 

OSA intervals from the ECG, as well as to confirm the OSA time period.  

 

Starting with ECG, there are several ways of detecting OSA. The feature 

extraction can be performed in the time domain or in the frequency domain. An 

example of the first is the increase of mean HRV that occurs after an OSA interval, 

due to the effort made by the person to rapidly breathe and recover normal values 

of oxygen saturation. As for OSA, this behavior happens to be cyclic [65]. An 

example of the second is the presence of the characteristic peak shown in the 

high frequency range (in the 0,15-0,40 Hz band), due to the patient’s normal 

breathing. This is due to the respiratory sinus arrhythmia (RSA), a physiological 

phenomenon defined as an increase in HRV when the person inhales, and a 

decrease in HRV when the person exhales [1] (see Figure 3.3-2). 

 

Although our final goal is to use the ECG and EMG signals, in our first approach 

we are going to process only the ECG signal, as proposed in [65], in order to 

compare the results. Figure 3.3-1 shows the HRV of a patient when he/she is 

suffering an OSA episode (grey area). Notice the strong cyclic pattern that the 

HRV shows while OSA occurs compared to when it does not. 
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Figure 3.3-1. HRV for an OSA interval (gray background) and a normal sleep interval (white 
background) 

 

Our proposal focuses on the frequency domain, as it better reveals the difference 

between OSA and normal sleep (NS) than time domain [1]. We perform power 

spectral density (PSD) of HRV through Lomb periodogram, which has been 

proven to be superior to FFT for these applications [66]. 

 

The monitored features are the variation of density of normalized power at 

different frequency ranges: 1) very low frequency (VLF), (0,003-0,04 Hz); and 2) 

high frequency (HF), larger than 0,15 Hz. These frequency bands have been 

proven to be the most powerful in order to classify OSA and NS [65]. Figure 3.3-

2. shows the normalized PSD of HRV computed over 1-minute segments for the 

same patient when there are OSA (in red) and NS (in blue) episodes. The 

frequency bands (VLF, HF) that we are going to use for classifying these episodes 

are labelled in the figure. In order to improve OSA and NS classification, a novelty 

has been introduced so that the HF range is set automatically to be solely as wide 

as the RSA Gaussian shape for each individual, instead of being the full traditional 

range. 
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Figure 3.3-2. Mean PSD of HRV for OSA intervals (in red) and for NS intervals (in blue) 
 

The frequency domain features, at VLF and HF, are monitored over time with a 

delay of 1 minute. A first-in first-out (FIFO) memory buffers the last minute 

recorded, and computes the normalized PSD of HRV (PSDn) with a moving 

window of width of 1 minute, and window displacement of 10 seconds. At this point 

the algorithm relies on a cumulative variable (SPSDi), i indicating the 10-second 

shift on the processed windows. For each window, the power of the VLF and HF 

regions is added as indicated in eq.3.1.1 and eq.3.1.2 (see Figure 3.3-2), 

obtaining the two classifying features. Note that the VLF frequency band is fixed 

[0.003-0.04], and the HF frequency limits [flower -fupper] depend on the position 

of the RSA at normal sleep (NS).  

 

 

𝑺𝑷𝑺𝑫𝑽𝑳𝑭𝒊 = 𝑷𝑺𝑫𝒏 𝒇𝟎.𝟎𝟒
𝒇>𝟎.𝟎𝟎𝟑 																																																																			(eq.	3.3.1)	

																																																																											 

𝑺𝑷𝑺𝑫𝑯𝑭𝒊 = 𝑷𝑺𝑫𝒏 𝒇
𝒇𝒖𝒑𝒑𝒆𝒓
𝒇𝒍𝒐𝒘𝒆𝒓

																																																																							(eq.	3.3.2)	

 

For every sample i, the value of each feature to an empirically obtained threshold. 

This process can be clarified with the schematic diagram of the proposed 

algorithm shown in Figure 3.3-3. After computing the HRV and its PSD, the SPSD 

is calculated at each frequency range. 
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If		𝑆𝑃𝑆𝐷UVWX > 𝑆𝑃𝑆𝐷UVWZ[\ and 𝑆𝑃𝑆𝐷[WX < 𝑆𝑃𝑆𝐷[WZ[\,	the algorithm then 

computes the mean value of each feature over the following minute eq. 3.3.3 and 

eq. 3.3.4 and if it also lies above or below the corresponding threshold, 

respectively, that minute is then classified as apneic (OSA). 

 

𝟏
𝑵

𝑺𝑷𝑺𝑫𝑽𝑳𝑭𝒊
𝑵
𝒊 > 𝑺𝑷𝑺𝑫𝑽𝑳𝑭𝑻𝑯𝑹; 	𝑵 = 𝒊 + 𝟓																																								(eq.	3.3.3)	

 

𝟏
𝑵

𝑺𝑷𝑺𝑫𝑯𝑭𝒊
𝑵
𝒊 < 𝑺𝑷𝑺𝑫𝑯𝑭𝑻𝑯𝑹; 	𝑵 = 𝒊 + 𝟓																																												(eq.3.3.4)	

																																																																																					 

 

 

 Figure 3.3-3. Schematic diagram of the proposed algorithm 
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With regard to the EMG signal, it is still a work in progress. An example of 

characteristic behavior of EMG signal after an OSA interval is the increase in 

mean muscular activity at the chin due to patient’s jaw opening in order to intake 

a greater air volume. With this information, we tried to develop an algorithm, with 

a defined threshold. Each time the processed chin’s EMG signal overcomes the 

threshold is marked as an epoch of apnea.  

 

This first attempt was not successful. The main reason for the failure was because 

all three states during the sleep stage (‘Normal Sleep’, ‘Sleep Apnea’ and 

‘Movement Time’) can vary their amplitude a lot. So even if we have a pre-defined 

mean for each state, a cluster of samples during “Normal Sleep” can be classified 

as ‘Movement Time’. We also try variations of measures in amplitude, like 

histograms or measuring the standard deviation between peaks, but none of them 

provided the information desirable to elaborate an accurate algorithm. 

 

The present approach was based on a study that did a comparison between 

neuropathic and Healthy EMG signal using PSD [2]. As there is a difference in the 

spectral analysis between normal and neuropathy signals, we tried to apply the 

same principal to detect the difference between “Normal Sleep” and “Obstructive 

Sleep Apnea”. The Figure 3.3.4 shows the normalized PSD of EMG signal 

computed over 30 seconds segments for the same patient, when there are NS (in 

blue) or OSA (in red) episodes. 

 

 

Figure 3.3-4. Mean PSD of EMG signal for OSA intervals (in red) and for NS intervals (in blue) 



 

67 
 

 

As is readily seen, the PSD of the normalized EMG signal in NS is quite similar to 

the one belonging to the ECG signal (Figure 3.3-2). The most noticeable feature 

in both signals is a high peak during the high frequency interval which derives from 

breathing. The second property involves the VLF. In the EMG signal, it is not so 

noticeable the disparity between the two states. The main reason for this setback 

is length of the apnea annotations intervals. In the previous ECG database, the 

apnea annotations are marked with one-minute apart intervals while the EMG 

database marks with 30 seconds apart.  

 

This thirty seconds difference is important because the minimum frequency 

observable for each database varies with the interval of apnea annotations (iaa), 

as shown in Equation 3.3.5. 

 

																																																								𝒇𝒎𝒊𝒏 =
𝟏
𝒊𝒂𝒂
																																																		(eq.3.3.5)	

																																																				 

 

𝑓gXhijk_mno_pnqr	 =
s
tuv

= 0.0166	𝐻𝑧  𝑓gXhi{k_mno_pnqr =
s
|uv

= 0.0333	𝐻𝑧 

 

 

Since the VLF band is 0,003-0,04Hz, by using the ECG database we have a range 

from 0.0166 – 0.04Hz. On the other side, if we use the EMG database, we are 

only able to get from 0.0333 – 0.04 Hz.  

 

This explains the difficulty of finding a major gap in VLF between OSA and NS for 

the database when the EMG signal retrieved from the chin is included. A way to 

overcome this problem is to find another data more suitable for our task. 

 

Even though we have this problem with one of frequencies band, the algorithm 

will be applied on the EMG signal following the steps and procedures previously 

mentioned. 
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3.4 User Interface 

 

In order to display the recorded signals in a friendly way, a Matlab™ GUIDE 

Interface was created. This interface provides the ability to not only see the 

documented signals but also to enable the application of the algorithms 

previously mentioned. Figure 3.4-1 is a schematic image showing the final aspect 

of the application. Furthermore, we can do certain adjustments and select the 

functions that we desire to implement (callbacks) in file signals.m. 

 

 
 

Figure 3.4-1. Schematic diagram of the proposed Matlab GUIDE Interface 
 

One of the main features that was required was the easiness of use.  So after the 

experiment, the user will be able to save the data from Shimmer in the same 

folder where the interface is stored. In order to identify the signals and the files, 

the user has to save it in txt format, providing an identifiable name (any name 

followed by the recorded signal, i.e. BeatrizECG.txt).  
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To access this file, it is only required to write the name of the patient and select 

the signal to be analysed. The different algorithms can be applied to each signal. 

Figure 3.4-2 presents an example of the proposed interface, displaying both 

biomedical and movement signals. 

 

 
Figure 3.4-2. Display of the Matlab GUIDE Interface proposed in this Master Thesis 
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Chapter 4.    

 Experiments and Results 

 

This chapter describes the experimental setup, and shows the obtained results 

with the available signals. In chapter 4, we started by explaining how the setup 

of the experiment is established and the test performed to validate the proposed 

BSN. 

 

Since the data obtained in real experiments is more predisposed to have 

inaccuracies, we start testing the proposed algorithm in the PhysioNet database 

and then, in the data retrieved with the proposed body sensor network. We 

analyze the performed tests, the obtained results and the performance of the 

algorithms with different sources of data.  

 

These strategies enable the comparison with other published results and allow 

differentiating what is due to algorithmic design against what is related to 

implementation issues.  
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4.1 Experimental Setup 

 

Before seeing how the proposed algorithm works with different sources of data, 

it is required to know which the experimental setup is. This trial starts before the 

subject falls sleep, and it will end, when the person responsible for the experiment 

finishes it. 

 

When the patient is a man, it is recommended to shave the beard, since it cause 

noise to the EMG recorded signal. In addition, to avoid discomfort for the male 

patient, is suggested to do the hair removal of the chest, as the electrodes, when 

removed, act as depilatory bands. 

 

After taking care of all the hygiene issues, the electrodes are placed on the 

patient’s skin and the Shimmers at the indicated body locations. As shown in 

Figure 3.1-1, one Shimmer is positioned on the diaphragm to measure the 

acceleration and signal from the gyroscope, and with three electrodes positioned 

at the chin, two below the lower lip  [67], while one is putted below the jaw line, 

working as a reference. Other Shimmer is placed on the left leg, where it also 

measures the signal provided by the wide range accelerometer and gyroscope 

and the ECG signal, by using the Einthoven Triangle method. The last Shimmer 

is worn as a bracelet by the patient, and measures both PPG from ear or finger 

and the Galvanic Skin Response from finger.  

 

After all the sensors are placed, we wait for the person to fall asleep and then we 

start recording data. We do not need to record 5 hours of sleep, but we need a 

minimum of 1 hour signals, to see how the signals develop. Since we have not 

enough time and resources to produce a sleeping test at a large scale, we 

decided to test the BSN system with volunteers. The first two cases were on 

healthy people, while in the third case, the patient had previously been diagnosed 

as a person with severe apnea.  
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4.2 Algorithm Test 

 

To test the ECG algorithm, we decided to test it first with annotated signals from 

PhysioNet Databases. This database is used in various studies, where we can 

know almost every specification of the signal and the exact interval where an 

apnea epoch occurs.  

 

In the second test, will be used the volunteers recorded data by the BSN with the 

Shimmer sensors. Below is explained how the records from PhysioNet are 

constituted and the process followed for acquiring data with the developed BSN, 

in order to test the algorithm. 

 

 

4.2.1 Testing ECG 

 

This section describes the process of selecting the ECG signal, and also the 

results after the application of the algorithm.  

 

Data Selection 
 

Despite the number of times that the information is checked, data selection can 

have a tremendous effect on the outcome of any work produced. A wrong choice 

can induce errors that will drive the user to a result completely different from the 

one imagined. This data selection involves both PhysioNet data and data 

recorded with the proposed body sensor network. This leads to different views, 

and with that, retrieve different interpretations for the same purpose. 
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I. PhysioNet database and their specifications  
 

The database used in this work to test the algorithms developed for the ECG was 

extracted from the PhysioNet Website [68], more specifically from the Apnea-

ECG Database [69]. The use of this database helps the comparison of our results 

with other that have been previously published.   

 

Apnea-ECG Database consists of 70 records, divided into a learning set of 35 

records and a test set of 35 records. The data records’ length varies between 7 

to 10 hours and the sampling frequency used was 100 Hz. The mean age from 

the group of subjects is 33 years (27-42 years).  

 

II. Body Sensor Network Data 

 

Two experiences of the same trial, when conducted by different people, will have 

different results. Then we decided to analyse the signals with the highest 

precision possible, defining an experimental plan, as the volunteers were not 

diagnosed with having apneas. 

 

This plan was conceived with the objective of seeing the effect of the apnea on 

ECG signal. So to observe the effects, we decided to establish a 20 minutes’ 

span to record the signals. For each volunteer we made two different recordings. 

The first recording is carried out when the volunteer is still, being the reference 

signal. On the second record we will simulate apnea at pre-set times with a pre-

determine intervals. Those minutes were chosen because they had a wide period 

between them, so that the pretended apneas do not influence each other.  
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4.2.2 Results 

 

The next subsection shows the results of our algorithm, when running on the 

above signals.  

  

I. Data from PhysioNet 

 

The first data to be tested corresponded to the patient a19 from the PhysioNet 

Apnea-ECG database. Table 4.2.2-1 shows the main features characterizing this 

data.  

 

The selection of this particular database is due to the fact that the apnea 

annotations are marked with one minute apart intervals and the proposed 

algorithm is optimized to operate with that interval size.  

 

Record Length AHI Age Gender Weight (Kg) 

a19     8:40h 34 55 Male 92 

 

Table 4.2.2-1. The characteristics of the first data record chosen to test the ECG algorithm. This subject, 
patient 19, belongs to Apnea-ECG Database [82]. 

 

This record was chosen among seventy, because it had ideal characteristics to 

test our algorithm, such as an AHI relatively low, for a person with severe apnea 

and also the apnea episodes had a good distribution, to make it easier to see the 

results of our algorithm. 

 

Figure 4.2.2-1 shows the comparison between the Physionet’s classification and 

the one obtained by the proposed algorithm with the described subject.       
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Figure 4.2.2-1. (from top to bottom) a) OSA classification by expert annotation on Physionet- grey area; 

b) SPSD_VLF sum of PSD on VLF range, and lower threshold used for classification; c) SPSD_VLF: sum 
of PSD on HF range, and upper threshold used for classification; d) Proposed algorithm’s OSA 

classification – grey areas. 
 

The algorithm has shown solid results with accuracy at 87,8%, specificity at 

89,9% and sensitivity at 86,3%. And if we compare with Chen at [65], our outcome 

is very promising, since they also used single-lead electrocardiogram (accuracy 

of 82,1%, sensitivity of 83,2%, and specificity of 80,2%). 

 

II. Body Sensor Network Data  

 
Due to a lack of time, we only have carried out the analysis in the time domain, 

without using the described algorithm. 

 

Incidents of apnea were simulated at 300, 600 and 900s and each one of these 

epochs lasted 30s. Table 4.2.2-2 shows the characteristics of the volunteer. 

 
Record Length AHI Age Height (cm) Gender Weight (Kg) IBM 

Subject 1.   0:20h ? 24 187 Male 89 25.5 
 

Table 4.2.2-2.  Characteristics of the volunteer to contribute for the record 
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The apnea was simulated by inspiring the air with the mouth, and then, after the 

pre-set time, expelling it by the mouth. By comparing the two evidences, we can 

see how the apneas affect the signals. Figure 4.2.2-2 shows the results of this 

trial. 

 

 
Figure 4.2.2-2. Graphics representing the body sensor network data acquired for Subject 1. 

The upper graph represents the reference HRV signal, and the below displays the signal with 
the simulated apneas. 

 

The top graph shows the HRV reference signal, with some glitches probably 

provoked by a bad connection with the electrodes. The bottom graph represents 

the HRV signal when the apneas were simulated. In this case, each mock apnea 

had the size of 30s and they began at 5, 10 and 15 minutes. Analysing the data, 

the apnea periods are not so distinctive from others interval. 

 

Instead of looking to the interval, we need to look from the point when the apnea 

ends to the next 30 seconds of each apnea. This interval displays a prominent 

variation, triggered by the apnea and because the lack of oxygen, causes the 

body to rule as well. 
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4.3 Testing the Body Sensor Network 

 

The best way to check the feasibility of the proposed BSN is to use it with pre-

diagnosed patients in a health center/hospital. This would help to know 

specifically what we were searching in each patient. Another advantage is that 

someone would be close to the subject during the full sleep test. Then, 

information about movement would be annotated, as this is the most difficult task 

is this work, to differentiate between the movement (defined as “Movement Time” 

in PhysioNet Database) and sleep disorders epochs, as the effect on the ECG is 

quite similar. Unfortunately, this has not been possible. 

 

As our objective is to to prove that our proposal is able to detect sleep disorders 

with accuracy, we have used volunteers for recording their signals, and we have 

annotated the epochs we consider there are apneas according to the literature 

and the signals belonging to the PhysioNet database.  

 

4.3.1 Body Sensor Network Data  

 

Three volunteers collaborated in this trial. All those tests were different from each 

other for different reasons as it is explained below.  

 

a) Subject 1. 

 
The first test was carried out in a controlled environment, so if any problem 

happened it would be easy to solve it, and restart the session. As far as we know 

this subject was not diagnosed having sleep disorders. Table 4.3.1-1 shows the 

characteristics of the volunteer. 
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Record Length AHI Age Height (cm) Gender Weight (Kg) IBM 

Subject 1.   3:18h ? 24 187 Male 89 25.5 
 

Table 4.3.1-1  Characteristics of the first volunteer to partake in the trial of the proposed Body Sensor 
Network 

 

In this first trial, we tried the three Shimmers (2x Shimmer3 ECG/EMG and the 

Shimmer3 GSR+), and the sampling frequency was 256 Hz. Because we used 

more than one Shimmer, we needed to install the Consensys Pro software [70], 

that allow to connect multiple Shimmers at the same time. However, there was a 

problem with one of the Shimmer, and we only collected the information provided 

by two Shimmers:  

 

§ Shimmer3 ECG/EMG - (ECG + Accelerometer), allocated in the chest 

§ Shimmer3 GSR+ - (PPG + GSR), measured from the fingers, positioned 

in the wrist. 

 

With this alteration, the data was fully recorded, and the signals were appropriate 

for the analysis. 

 

b) Subject 2. 

 
Although Subject 2 does not have any documented sleep disorder, he snores a 

lot, so he seemed a good candidate to test the BSN. Table 4.3.1-2 shows his 

relevant information for the test. 

 
Record Length AHI Age Height (cm) Gender Weight (Kg) IBM 

Subject 2.   2:44h ? 23 181 Male 81 24.7 
 

Table 4.3.1-2. Characteristics of the second volunteer to partake in the trial of the proposed Body Sensor 
Network 
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In this specific trial, we used the three Shimmers, and for avoiding the problem 

that happened with the first trial we only recorded the first hour after the volunteer 

fell asleep. With this option, we got all the proposed movement and biomedical 

signals, except for the gyroscope ones belonging to the chest. 
 

c) Subject 3. 
 

The last test was performed in a subject that has sleep disorders, in a severe 

state. So severe, that he needs to sleep with a support machine, allocated at is 

face, and every time he as an incident of apnea, the machine will conduct air 

through his respiratory system, to re-establish the healthy state. Table 4.3.1-3 

shows the characteristics of the unhealthy volunteer. 

 
Record Length AHI Age Height (cm) Gender Weight (Kg) IBM 

Subject 3.   5:03h ? 36 180 Male 100 30.9 
 

Table 4.3.1-3. Characteristics of the third volunteer to partake in the trial of the proposed Body Sensor 
Network 

 

For this test, we only used two Shimmers, since the subject did not desire such 

a high level of discomfort. So based in our published work [71], that correlates 

both EMG and ECG signal in order to detect obstructive sleep apneas: 

 

§ Shimmer3 ECG/EMG - (ECG + Accelerometer + Gyroscope), allocated in 

the chest 

§ Shimmer3 ECG/EMG - (EMG + Accelerometer + Gyroscope), positioned 

in the left thigh 

 

In order to avoid the problems of the two previous tests, we decided to pre-

program the Shimmers in order that when the button in the side is switched (see 

Figure 4.3.1-1), each Shimmer starts recording directly to the SD Card. With this 

approach, every Shimmer is independent, so each one will record autonomously.  
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Figure 4.3.1-1. Image showing the position of the switch in Shimmer3 

 

Although we avoided the problems with Shimmer connections, we also lost the 

synchronization provided from the ConsensysPRO software. In order to minimize 

this problem, it is recommended to turn on the Shimmers at the same time.  

 

In the Appendix there is a description of the instructions to carry out this process. 

Subject 3 was provided with this information as he did himself the recordings at 

home. 

 

4.3.2 Results 

 

This subsection will show the output signals retrieved from the body sensor 

network, in all of the trials with the volunteers. In this results, we search for events 

in the signals, that when appearing, they probably indicate an incident of apnea. 

At this stage we cannot guarantee that this events are real apneas as we do not 

have a doctor’s confirmation, and on top of that, we have the interference of the 

movement.  

 

In order to distinguish between these two different states, we relied on the 

literature previously read, reference signals previously recorded and the 

algorithms formerly explained. The proposed algorithm for OSA detection was 

applied in each trial, aimed at HRV signal in order to check if it works properly 

using the data retrieved from the sensors. 
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a) Subject 1. 
 

As has been previously mentioned, in this first trial we recorded the signals ECG, 

GSR, PPG and the accelerometer measured from the chest. Figure 4.3.2-1 

shows a segment of the recorded signals. 

 
Figure 4.3.2-1. Accelerometer, HRV, PPG and GSR retrieved from the trial.1. The grey parts are the 

classification made by the proposed algorithm for OSA detection.   (Note: All intervals displayed are 
taken when the subject is sleeping) 

 

This test shows two incidents (at seconds 3950 and 3990) that can be classified 

as apnea. In the entire accelerometer axis, it shows clearly two peaks. These two 

events show a change of the state of the patient, indicating a blockage of an air 

flow in the lungs, and posterior effort to return to a normal state. The PPG signal 

shows a clear decrease of the amplitude near the peaks marked in the 

accelerometer signal. This evidence is often used in works as [72] [29], to detect 

sleep breathing disorders. HRV also proves our point explained in Subchapter 

4.2.1, by existing a high variation signal after the epoch displayed at 955s. 

Another indication that we are facing with an apnea is the variation in the signal 

GSR, representing a stress indicator.  
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After running the algorithm, we can see that the result displayed goes according 

to our assumptions, that is, an incident of apnea affects several signals either 

movement or biomedical.  

 
b) Subject 2. 
 

In this trial, all biomedical and movement signal (except Gyroscope from chest) 

proposed in the body sensor network were recorded. This trial provides the 

biggest amount of information, since almost every signal proposed in the body 

sensor network is recorded. This gives the opportunity to accomplish one of the 

objective for this Master Thesis, and that is, gathering the maximum number of 

signals as possible in order to identify sleep disorders.  

 

Figures 4.3.2-2 and 4.3.2-3 show the obtained results. 

 

 
Figure 4.3.2-2.  Accelerometer and gyroscope signals retrieved from the left thigh trial (Note: All 

intervals displayed are taken when the subject is sleeping) 
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Figure 4.3.2-3. HRV, EMG, GSR, PPG and accelerometer signals (Note: All intervals displayed are 

taken when the subject is sleeping) 
 

In the interval presented (from 4650s to 4850s), we can see two incidents that 

can suggest an epoch of some kind sleep apnea. We see a correlation between 

the movement signals retrieved from the left thigh and also the HRV and PPG 

signal at 4680 and 4750s.  The signals EMG, GSR and the accelerometer are 

synchronized, maybe indicating that before an apnea starts, an arousal occurs, 

characterised here by these signals.  

 

When the algorithm is applied, it is observable that the effects shown on PPG 

and HRV signal are synchronized with the period referred as apnea, showing 

again the utility of recording the maximum number of signals as possible. 

 

c) Subject 3. 
 

The last trial was performed on a patient pre-diagnosed with sleep related 

breathing disorders. Since we had an opportunity to test the BSN in a real patient, 

we decided to use the sensors necessary to prove the algorithm presented in 

[71]. Figures 4.3.2-4 and 4.3.2-5 show the obtained results. 
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Figure 4.3.2-4. EMG, gyroscope and accelerometer signals obtained from subject 3, when 
shimmer was positioned in the chest. The grey parts are the classification made by the 

proposed algorithm for OSA detection. (Note: All intervals displayed are taken when the subject 
is sleeping) 

 

 

 

 
Figure 4.3.2-5. HRV, gyroscope and accelerometer signals acquired from subject.3. The 

grey parts are the classification made by the proposed algorithm for OSA detection. (Note: All 
intervals displayed are taken when the subject is sleeping) 

 

 

The interval from 6800 to 7000 seconds shows signs of sleep related illnesses. 

In both marked intervals, HRV together with the EMG, accelerometers and 

gyroscope, show clear signals of a possible apnea. This conclusion is due to the 

presence of high variability in small intervals in both accelerometers and 
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gyroscopes positioned throughout the body and also the shape curve recorded 

in the HRV signal, that suggest a cycle of obstructive sleep apneas [65]. 

 

A special reference for the axis X and Z of the wide range accelerometer located 

on the chest in Figure 4.3.2-4, since it shows a signal similar to the one recorded 

during previous experiments plans. The comparison between them is shown in 

Figure 4.3.2-6. 

 
 

Figure 4.3.2-6. Comparison between: (Left) An accelerometer signal acquired from the 
experimental plan developed in the lab, when simulating a apnea; (Right) The accelerometer 

signal retrieved from trial.3.  (Note: All intervals displayed are taken when the subject is 
sleeping) 

 

Once again, we confirm our suspicion, since the algorithm indicates that the 

subject is having apneas in the interval where the cyclic epochs appear in the 

HRV signal. Despite the EMG signal is not so synchronized with the ECG, we 

also need to consider the fact that first will appear the EMG peak - due the 

interruption of normal air flow -, and only after that, it will be shown on the HRV 

features. 
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4.4 Work in Progress 

Similar to the Subchapter 4.2.2, this section explains the procedure of picking the 

finest EMG signal with the purpose of testing the adapted algorithm. Not only we 

analysed the simulated data, but also the EMG signals retrieved from the trials, 

in order to see if we can proceed with the idea of using the same algorithm for 

both biomedical signals. 

 

a) Data Selection 
 

I. PhysioNet database and their specifications  
 

For the development of this work, the EMG signal was also retrieved from the  

PhysioNet Website [68], particularly from MIT-BIH Polysomnographic Database 

[73]. 

 

To test the EMG algorithm, MIT-BIH Polysomnographic Database contains 16 

PSG recordings, each one with different lengths, all using a sampling rate of (Fs) 

250 Hz. In this database, all 16 subjects were male, aged from 32 to 56 years old 

(average age 43 years old), with weights ranging from 89 to 152 kg (average 

weight 119kg).  

 
For the purpose of this work, it is only possible to analyse 5 out of the 16 cases 

since not all patients include EMG record signal, while ECG signals were 

recorded for all of them. Therefore, for testing the EMG algorithm, the database 

has 5 suitable cases: slp32, slp37, slp41, slp45, slp48. The summary of the 

available records is presented in Table 4.4-1. 
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Record Length AHI Age Gender Weight (Kg) 

Slp32     5:20h      22.1 54 Male 92 

Slp37     5:50h     100.8 39 Male 125 

Slp41     6:30h      60 [1] 45 Male 145 

Slp45     6:20h       5 [1] 42 Male 133 

Slp48     6:20h      46.8 56 Male [2] 
[1] Estimated from visual review; apnea annotations unavailable.  

[2] Information not available.  
 

Table 4.4-1. The database records of the patients to whom the EMG signals were recorded [75] 

 

For testing the algorithm that relates ECG and EMG, the records used were 

Slp37, Slp48 and Slp32. Both Slp41 and Slp45 do not have the apnea 

annotations, so we cannot use them to check the accuracy of the results.  

 

II. Body Sensor Network Data 

 

To see how the EMG signal works when a subject has apnea, we decided to 

record some interval of 20 minutes of the EMG signal retrieved from the chin.  

 
A. Simulated Apnea Data 

 

As mentioned above for the ECG signal, we made two different records. The first 

one was the reference signal, and with the second one we simulated apneas to 

see the differences. 

 

The apnea was simulated by inspiring the air with the mouth, and then, after the 

pre-set time, expelling it by the mouth. By comparing the two evidences, we can 

see how the apneas affect the signals. Figure 4.4-1 shows the results. 
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Figure 4.4-1. Graphics representing the body sensor network data acquired on EMG from chin. The 

upper graph represents the reference EMG signal, and the below displays the signal with the simulated 
apneas. 

 

The upper graph, in Figure 4.4-1, shows the EMG reference signal. The three 

peaks on the chart are defined as movement-time, as they were not supposed to 

appear in a reference signal, but sudden movements were made and created 

such irregularities.  

  

The second graph displays the EMG signal, with the simulated apnea intervals, 

identified by the green colour. These intervals were originated at 5, 10 and 15 

minutes.  At 5 minutes, the subject hold on the respiration for 30 seconds. In both 

10 and 15, it was held for 15 seconds. The change of time in simulated apnea 

was necessary to see if any difference exist between the two different times. 

Nothing important of mention was found, so we decided to specify 30s for holding 

breath in all future mock apneas. 

 

Those minutes were chosen because they had a wide period between them, so 

that the mock apneas do not influence each other. The signal generated clearly 

shows three intervals, corresponding to the previously identified intervals. This 

result demonstrates that there is a variation of the EMG signal upon inspiration 

and subsequent expiration, which we can be used to help identifying the 

beginning and the end of the apnea. 
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B. Trial Data 

 

Now we retrieved the EMG signal recorded throughout the trials and we it was 

check if there is some evidence that can be considered an apnea incident. In 

Figure 4.4-2, it shows an example when our algorithm outlined an apnea, and we 

see some effects on the EMG signal on Subject 3 

 

 
Figure 4.4-2. Example of the EMG signal when the exchange takes place from Normal Sleep 

to Sleep Apnea from Subject 3 signal. 
 

In this example is shown a peak of movement at 6890 seconds. But when we 

enter at sleep apnea state, we see two peaks at 6920 and 6945 second, that may 

indicate the opening of the mouth, trying to restore the healthy state and the 

second one, is the signal that appears when the apnea ends, and the subject 

starts to breathing normal. 
 

Now looking at Subject 2, the signal in Figure 4.4-3, we also see variance in the 

signal, suggesting a potential apnea epoch. 
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Figure 4.4-3. Example of the EMG signal when the exchange takes place from Normal Sleep to Sleep 

Apnea from Subject 2 (Trial.2). 
 

These two examples show that the EMG signal can be taken into account for 

improving our algorithm to detect sleep disorders. 
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4.5 Conclusions 

 

In this chapter, we have explained how the experimental setup of the body sensor 

network is defined, and how this help us detecting sleep related disorders, since 

every sensor of the proposed BSN should have a reason to be included. Then 

the ECG algorithm is tested. The results have shown a high precision 

comparatively with previous developed algorithms. So with this information, we 

applied the algorithm to all the volunteers, and we searched for patterns that 

could indicate epochs of apnea.  

 

Since the data recorded from the body sensor network is not clinically annotated, 

we changed to the time domain analysis, to search for event that can justify the 

onset of apnea. Although the algorithm has been designed for detecting episodes 

of obstructive sleep apnea, it can also detect other kinds of apnea. After analysing 

some OSA intervals, we can recognize repetitions previously read in literature, 

that suggest episodes of apnea, as seen in HRV in the figure 4.3.2-5.  

 

With regard to the work in progress, the EMG appears to be a reliable signal that 

can be included in order to improve the precision of the proposed algorithm.  
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Chapter 5.  Conclusions and 
future work 

 

This chapter summarizes the key contributions of this Master Thesis. Firstly, the 

conclusions extracted from this work are analysed; secondly some future 

research lines are suggested; and finally the publication derived from this work is 

included. 

5.1 General Conclusions 

In order to help the diagnosis of sleep disorders in the elderly, this work proposed 

the development of two sensor networks (BSN and HSN), by relating biomedical 

and movement signals. 

 

In this work we developed a body sensor network to record all the required signals 

for analysing the sleep disorders at home. Although we recorded a big amount of 

signals, we decided to focus on the relationship between ECG and EMG signals, 

when developing an algorithm for sleep disorder detection.  

 

We spotted an increase of the mean activity of the EMG signal from the chin, 

when an incident of apnea occurs, followed by a high variation of the HRV signal 

coming from the ECG signal. Using an algorithm that compares the Power 

Spectral Density from both “Sleep Apnea” and “Normal Sleep”, we were able to 

check for differences at the VLF and HF frequency bands.  

 

Since the algorithm using EMG is a working progress, in this thesis we were able 

to automatically classify OSA episodes only based on the frequency domain 

analysis of the ECG. The preliminary results are very promising with sensitivities 
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around 85%, although we desire to increase the accuracy of the algorithm, by 

correlating with the set of signals provided by the rest of the BSN (EMG and 

Accelerometer).  
 

It also has been programmed a user interface that helps to check the recorded 

signals, and to evaluate the proposed algorithm. It was programmed in a Matlab 

based User Interface.  

5.2 Future Work 

In this Thesis, a comprehensive study regarding the development of a non-

invasive Body Sensor Network to detect sleep disorders has been carried out. As 

it has been shown throughout this work, this is such a large research area that 

just some points will be mentioned below to improve and progress this work: 

 
Ø Increase of the database for the EMG signal: As felt from the beginning of this 

work, the lack of signals to test the methodologies is a major constraint in 

research. The PhysioNet Database only had 5(!) subjects where the evaluation 

of sleep disorders could be assessed through the analysis of signals from EMG 

recorded from the chin. To add up, only three of the five had clinical annotations. 

This amount of data is clearly insufficient to establish any kind of pattern affecting 

the development of the EMG algorithm. 

 
Ø Create a PPG algorithm for the detection of Obstructive Sleep Apnea 

incidents: After the development of the ECG and EMG algorithm, the next signal 

to be processed should be the PPG. Since we can obtain the Pulse Rate 

Variability from it, this will allow us the possibility to compare results with the ECG 

algorithm and maybe increase the accuracy of the results. The reasoning for this 

proposal is that sleep disorders profoundly affect the PPG amplitude thus, 

combining those two properties, may allow increasing the performance of the 

algorithm by comparison of redundant information. In addition, the laboratory just 

bought a Shimmer3 GSR+ therefore no economic effort would come from this 

proposal. 
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Ø Add an online mode to the Matlab GUI Interface: For practical application of 

the proposed system, the real-time implementation of both processing algorithms 

and GUI interface is required. Due to timing issues, this task was not developed 

during the present Master Thesis. 

 

Ø Expanding the Body Sensor Network: Another future research guide-line is 

the expansion of the BSN to allow collecting different sets of data. To be 

mentioned that EEG signals are recommended for differentiation of sleep states. 

However, as mentioned previously, EEG sensors are uncomfortable during 

sleep, so, as an alternative, a respiration sensor could be introduced in the 

system to allow measurement of breathing flow, or at least, by introducing a pulse 

oximetry sensor, the amount of oxygen in the patient could be assessed. 

 
Ø Reduce the intrusiveness: Another long-term objective of this research is to 

reduce the intrusiveness of the BSN, in order to improve the comfort of the 

patient. Since doctors will be able to diagnose patients after monitoring them 

while they sleep at home, our proposal will result in a more suitable patient 

education and more appropriate treatment, avoiding harmful and unnecessary 

medications. 

 

Ø Initiate a clinical trial: The objective of the trial, is to validate the proposed 

sensor networks and algorithm. By using data recorded in patients previously 

diagnosed with different kinds of sleep disorders, will grant us the opportunity to 

identify specific illnesses. 
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5.3 Publications Derived from the Thesis 

5.3.1 International Conferences 

M.C.Alberto, M.A. Herrero, M. Graça Ruano, Ana Jiménez, J.J. García, Edel 

Díaz, “Sensory System for the Sleep Disorders Detection in the Geriatric 

Population”, in 2017 4th Experiment International Conference  EXP.AT’17 ,2017 
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Appendix 

 

 

User guide to perform a ECG/EMG test 
at home 
 

Inventory: 

• 6x 1-meter-long leads 

• 2x Shimmer3 ECG/EMG 

• 2x adhesive tapes 

• 12x electrodes (6 large for the heart and 6 for the chin) 

• 2x elastic holding straps. 

 
Instructions: 
 

1) The elastic straps are used to place SHIMMER devices attached to the 
body. One is placed on the center of the chest (the one that measures the 
chin) and another is placed on the left thigh, at the height of a pocket (the 
one that measures the heart). Figure A-1 exemplifies the position of the 
straps. 
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Figure A-1. Position of the straps: A allocated in the chest and B in the left thigh.	

 
 

2) The electrodes should be connected properly as indicated in Figure A.2 
 

 

 

 

Figure A-2. Example on how positioning the electrodes in the right position. LEFT: Shimmer B; 

RIGHT: Shimmer A. 

 
For small electrodes it is necessary to use a little bit of adhesive tape to fix 
them. It is recommended to follow the recommendations of Figure A.3. 
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Figure A-3. Example of how to put adhesive tape around the electrodes. 

 
 

3) When the electrodes are attached, the SHIMMER device can be switched 
on with the switch (NOT THE ROUND BUTTON). The switch is located on 
one side. Green and blue lights will turn on and within seconds, only a 
green light will blink. The device will automatically start taking 
measurements. Figure A.4 shows the correct switch. 
 

 
Figure A.4. Image showing the position of the switch in Shimmer3 

 

 

 
 

 
IMPORTANT 
If both SHIMMERS have to be used at the same time (FACE AND HEART), turn 

on the two devices at the same time so that the measurements are as 

synchronized as possible. 
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